
Consider it Parsed!
Max Hendriks Supervisor: Vadim Zaytsev

Formal Methods and Tools, University of Twente, Enschede, Netherlands

ABSTRACT

Relational parsing with context-free memoization, first presented in 2020, promises generalised context-
free parsing at speeds exceeding that of the current state-of-the-art parser generator: ANTLR4. Here,
we present an independent attempt at bringing relational parsing to life based only on its original
documentation, identify challenges when implementing it, and examine the capabilities of relational
parsing. Our implementation of relational parsing can parse some challenging types of grammars, half of
which ANTLR4 could not. However, there is a type of grammar that we cannot parse and for most tested
grammars we did not manage to improve parsing speed by using context-free memoization. We expect
these two caveats result from the way we implemented relational parsing rather than the method itself.
We discuss some open questions that need answering before relational parsing can take its place as a
practical and usable context-free parser.

Keywords: Parsing, Relational Parsing, Parser generators, ANTLR4, ALL(*)

INTRODUCTION
In this thesis we will discuss a recently developed method for parsing context-free languages called
relational parsing, developed and introduced in a paper by Herman (2020). In his experiments he found
that while relational parsers are generalised parsers, it was also able to outperform ANTLR4 and several
other parser generators. We explore this method of parsing, identify some of the main challenges in
implementing a relational parser and attempt to increase the amount of knowledge available on relational
parsing.

First we introduce the concept of parsing in general, we explain what grammars are and what types
exist. Then we continue on with an argument for why parser generators are useful and why we focus on
parsing context-free languages. This is followed by a brief overview of the types of algorithms that exist
for parsing context-free languages and an important technique that helps speed up these common parsing
algorithms. Then we follow with an overview of the current industry standard, ANTLR4, and how its
algorithm ”ALL(*)” functions. Further, we describe relational parsing, the challenges to overcome when
implementing a relational parser and evaluate our attempt at bringing it to life.

GENERAL REVIEW OF LITERATURE
Parsing is the process of analysing a string of symbols conforming to the rules of a formal grammar. It
can mean different things in different contexts. In linguistics, for example, it is commonly used to assign
meaning to a sentence. For this purpose, sentences are parsed using a ”tree-diagrammatic representation
of phrase structure rules called a PHRASE MARKER”. (Mitchell, 1994) Within computational linguistics,
this same process is performed automatically by a computer, producing a parse tree. Some parsing
algorithms may produce a parse forest for a syntactically ambiguous sentence input. Within computer
science, the technique of parsing is commonly used to syntactically analyse input code into its component
parts to then be compiled to machine code by a compiler or interpreted by an interpreter to be run as-is.

Grammars
In formal language theory, a grammar contains a list of production rules that describe how to form strings
from an alphabet of symbols that are valid according to a language’s syntax. These grammars include
a start symbol from which the production rules are applied sequentially to generate any string in the
grammar’s language. Because of this, grammars are typically thought of as language generators, however,
in computer science they are often used as language recognisers or parsers.

There are multiple types of grammars, that are commonly organised in a hierarchy called the Chomsky
hierarchy (Chomsky, 1956). The Chomsky hierarchy organises grammars into several levels according to
the types of production rules that are allowed in a grammar. The levels range from type-0 to type-3, where
type-3 is the most restrictive type of grammar and type-0 is the least restrictive. The more restrictive the
grammar, the easier it is to recognise and parse.

Figure 1. The Chomsky Hierarchy.

To describe these types of grammars, we represent any grammar G by a four-tuple (T,N,P,sstart)
where T is the finite terminal alphabet and N is the finite nonterminal alphabet. P is a finite set of
production rules written in the form of A→ ω where A is in N and ω in (N∪T)∗. Finally, sstart in N is
the starting symbol. Whenever we write a production rule, any capital letter represents a nonterminal in
N, any lowercase letter represents a terminal in T and ε represents the empty string.

The language generated by a grammar is the set of strings without nonterminal symbols generated
from the starting symbol sstart . If there are multiple ways of generating the same string, the grammar is
said to be ambiguous.

The language generated by a grammar can be defined using the following notation {xyz}. In this
example, the language consists only of the single string of terminals ”xyz”. If in a language definition we
write x j, we mean x concatenated to itself j times. If j=2, then this results in the string ”xx”.

In the following sections we describe the various types of grammars and provide some example
grammars and productions. These example productions help give a feel for how grammars generate their
strings, and are relevant to the discussion of parsers later on.

Type-3
Type-3 grammars, commonly called the regular grammars, come in two types: right-linear and left-linear.
(Shi, 2021) In a right-linear language, all rules are one of the following forms:

A→ a

A→ aB

A→ ε

In a left-linear language, all rules follow the forms:

A→ a

A→ Ba

A→ ε

All regular languages generate strings of the form {aib j...|i, j, ... ∈N}, where there is no relation between
i and j (or any other counters).

Right-linear rules and left-linear rules cannot be mixed in a single regular grammar. For example, the
grammar with the rule set {S→ aB,B→ Sb,S→ ε} is type-2, and describes the language {aibi|i ∈ N}.

All regular languages can be recognised by a nondeterministic finite automaton.

2/39

Type-2
Type-2 grammars are commonly referred to as context-free grammars. In this type of grammar, production
rules are of the form A→ α where A ∈ N is any nonterminal symbol and α ∈ (T ∪N)∗ any string of
terminal and nonterminal symbols. (Shi, 2021)

A simple context-free grammar is the following:

S→ aSb

S→ ε

An example production of this grammar is the following sequence S 1→ aSb 1→ aaSbb 1→ aaaSbbb 2→
aaabbb. All context-free grammars can be recognised by nondeterministic push down automata.

This class of grammars is especially interesting for designing programming languages, as this is
the most restricted type where it is possible to enforce well-formed closing parentheses using only the
grammar definition. Consider the following rule: S→ (A). Clearly, applying this rule will ensure that all
new tokens produced by A will be enclosed in two matching brackets. (Shi, 2021) This type of notation is
very commonly used in programming languages to mark and define scopes, function definitions, calls and
more.

Type-1
Type-1 grammars are also known as context-sensitive grammars. Production rules of context-sensitive
grammars are of the form αAβ → αγβ with A ∈ N, α,β ∈ (N∪T)∗ and γ ∈ (N∪T)+. This means that
to apply the production rule A, it must exist in the context where α is on its left and β on its right. (Shi,
2021) Also, any nonterminal on the right of a context-sensitive rule is not allowed to be nullable with ε .

One canonical example of a context-sensitive language is the {anbncn|a,b,c ∈ N}, generated by the
following grammar:

S→ abc

S→ A

A→ aABc

A→ abc

cB→ Bc

bB→ bb

An example production of this grammar with n = 3 is the sequence S 2→ A 3→ aABc 3→ aaABcBc 4→
aaabcBcBc 5→ aaabBccBc 6→ aaabbccBc 5→ aaabbcBcc 5→ aaabbBccc 6→ aaabbbccc.

All context-sensitive grammars can be recognised by linear bounded automata.

Type-0
The final class, type-0, is known as the class of unrestricted grammars. This class allows any type
of production rule. Unrestricted grammars allow production rules of the form α → β with α ∈ (T ∪
N)∗N(T ∪N)∗ and β ∈ (T ∪N)∗. (Shi, 2021)

An example of an unrestricted grammar generating the language {anbncn|a,b,c ∈N} is the following:

S→ aBSc

S→ ε

Ba→ aB

Bc→ bc

Bb→ bb

An example production of this grammar with n= 3 is the sequence S 1→ aBSc 1→ aBaBScc 1→ aBaBaBSccc 2→
aBaBaBccc 3→ aBaaBBccc 3→ aaBaBBccc 3→ aaaBBBccc 4→ aaaBBbccc 5→ aaaBbbccc 5→ aaabbbccc

While this grammar generates the same language as the example in the context-sensitive grammar
section, it does so by applying fewer production rules. As this grammar class is unrestricted, it can be

3/39

used to generate many more languages than possible with the previous types of grammars. The languages
generated by unrestricted grammars are also called recursively enumerable languages.

A recursively enumerable language is a language for which there exists a Turing machine, that will
halt and accept when given a string in the language as input, but will either halt and reject or loop forever
when given a string not in the language.

Why context-free for programming languages?
Context-free languages have quite a few limitations. Most programming languages contain context-
sensitive features which cannot be expressed using only context-free grammars. A few examples of
context-sensitive features identified by Laurent and Mens (2016) follow:

• In C, if the parser encounters x*y, it must decide whether the statement expresses the product of
x by y or the declaration of a variable y that is a pointer to type x. This is done by analysing the
definitions preceding this statement.

• In Haskell and standard ML, operators with custom precedence and associativity can be introduced
by the programmer. These definitions have to be interpreted by the parser to parse the remainder of
the input.

• In Python, code blocks are defined by indentation. Therefore, a Python parser needs to detect when
the indentation level increases or decreases.

• In XML, opening tags and closing tags must be matched at the same level of nesting. <foo><
/foo> is valid while <foo>< /bar> is not. An XML parser must memorise the names of open
tags at arbitrary levels of nesting.

• In TCP and other network protocols, length-delimited fields are used which do not have a fixed
length. Instead, the length is indicated by a field that precedes them.

However, even if we try to express our programming languages using context-sensitive grammars, we
will discover that there are language features that also cannot be fully expressed with a context-sensitive
grammar. An example of this is variable declaration before use. Writing this rule into a context-sensitive
grammar requires us to write derivation rules for every possible variable declaration. In languages with a
small name space, this might be possible, but in modern languages with a large name space the set of
names is too large to encode into context-sensitive grammars. (Cooper and Torczon, 2012)

However, as we travel up the Chomsky hierarchy, parsing algorithms become slower and slower.
Context-free languages can be parsed in a reasonable time. The Earley parsing algorithm, for example,
allows us to parse every context-free language in cubic time, which is much faster than any context-
sensitive parsing algorithm. According to Cooper and Torczon (2012), parsing context-sensitive languages
is P-Space complete, and going even higher up in the Chomsky hierarchy exacerbates this problem.
Therefore, finding the correct level for our programming language grammars is a balancing act of parsing
performance versus grammar expressivity.

To allow context-free grammars to parse programming languages with context-sensitive features, we
write context-free grammars that parse at least all valid inputs for the programming language as well as
some invalid ones. We then use either context-sensitive preprocessing to produce a context-free token
stream and/or use post-processing techniques on the parse tree to filter out any invalid inputs, leaving only
the valid options. As an example, the python preprocessor inserts ”INDENT” and ”DEDENT” tokens
whenever an indentation change is detected.

Because context-free parsers are relatively quick, and because pre- and post-processing techniques
allow us to still use context-sensitive language features with context-free grammars, context-free parsers
are the parsers we should be using to parse our programming languages.

Recognisers and parsers
Given a string of symbols, we can ask whether this string is syntactically valid according to a particular
grammar. An algorithm that decides this is called a recogniser. Language parsers are also language
recognisers and attempt to discover which production rules can be applied to generate the input string. By
doing this they produce a parse tree (or forest) when the input is valid and usually return an error if the
input is invalid. Some parsers may also include functionality to handle encountered errors, producing

4/39

a best-effort parse tree that, while incomplete, may expose multiple errors rather than only the first one
encountered, helping end-users write syntactically correct inputs.

Hand-written parsers and generated parsers
The parsers employed by computer scientists to build compilers for programming languages can commonly
be divided into two categories: hand-written parsers and generated parsers. Most major programming
languages employ hand-written parsers for their compilers. There are multiple reasons for this: Handwrit-
ten parsers tend to be more user-friendly as they can output more specific error messages, provide error
recovery and well-written parsers are generally faster than generated parsers.

However, there are also benefits to using generated parsers: It is usually much easier to write a
specification for the language than it is to manually code the language structure into a parser. Grammar
definitions may also be much easier to maintain as grammar definitions usually flow more naturally than
code. Finally, generated parsers may still be faster than hand-written parsers as writing a good parser is
very difficult.

Because writing grammars for a parser generator is relatively easy, a language designer can design, test,
and iteratively improve upon existing grammars much more quickly than if they work with a hand-written
parser. This allows for more and quicker innovation in the design of new types of programming languages.

Caching and memoization
As Norvig (1991) explains, memoization refers to the process whereby a function remembers the results of
previous computations and is a specific form of the more general method of caching. This technique can
bring extreme efficiency gains when applied to, for example, recursive functions like those that calculate
Fibonacci numbers:

fn fib(n) {
if n <= 1 {

return n;
} else {

return fib(n-1) + fib(n-2);
}

}

If the function is run as-is, many Fibonacci numbers will be calculated over and over: when calculating
fib(5), fib(2) is calculated three times. If instead, we remember all previous computations in a table,
we can calculate every value once, enter it into the table and retrieve this computed value whenever we
need it in the future. Applying this optimisation to the above fib(n) algorithm transforms it from a O(cn)
algorithm to a O(n) one.

The technique of memoization can be used in parsing applications to bring great performance boosts.
Take for example the LL(1) algorithm (further described later); it performs memoization by precomputing
a parse table from the target grammar. This simplifies parsing as the algorithm does not have to search the
grammar’s list of rules when trying to predict a rule when matching a terminal symbol to a nonterminal
one. Instead, the precomputed table will tell the algorithm that it should apply a certain rule or spit out an
error because the input string is invalid.

Most parsing algorithms include at least one method of memoization as not including it means the
algorithm would be unable to parse anything efficiently. However, one also cannot simply memoize
everything as this would lead to an immense memory requirement and lookup overhead. Therefore,
different algorithms memoize different things in different ways to find the biggest performance gain for
that particular algorithm.

Algorithms
We will look at several parsing algorithms to give a snapshot of the types of algorithms that already exist,
what their properties are and why there is a need for developing other algorithms.

LL(k) algorithms
LL(k) parsers are top-down parsers which parse grammars using a fixed amount of look-ahead where k
determines the amount of look-ahead a parser uses. The languages parsed by LL(k) parsers are called

5/39

LL(k) languages and the grammars generating these are called LL(k) grammars. Ambiguous grammars
are not LL(k) and unambiguous grammars are not necessarily LL(k). One important class of LL(k) parsers
are the LL(1) parsers which parse their inputs with a look-ahead of 1 token. Lewis and Stearns (1968)
were one of the first to define the LL(k) property and explain how to construct an LL(k) recogniser.

LL(k) parsers are usually extremely fast, often parsing their inputs in linear time. If a non-LL(k)
grammar generates an LL(k) language, it can be rewritten to become an LL(k) grammar. However, if we
rewrite a grammar into an LL(k) form, its structure may change drastically, often making its structure
more complicated. This may also become more difficult to find errors in the grammar and generated
parse trees may no longer reflect the structure originally desired. This then requires generated parse trees
to be modified at a later step to conform to the original structure. If rewriting a non-LL(k) grammar is
undesired or impossible, a general parsing algorithm is needed. LL(k) parsing is described in-depth in
Parsing Techniques by Grune and Jacobs (2008).

Earley
As described by Aycock and Horspool (2001), Earley’s algorithm is a general parsing algorithm, meaning it
can recognise and parse inputs described by any context-free language. Earley parsers are often described
as top-down parsers with bottom-up recognition. In essence, it functions by producing predictions in a
top-down manner from the grammar and then performing bottom-up shifts and reduces to recognise the
input.

As Earley (1970) wrote when he introduced his parsing algorithm, the general case complexity of
Earley’s algorithm is O(n3) and O(n2) for unambiguous grammars, where n represents the length of the
input string.

LR(k) algorithms
LR(k) algorithms are bottom-up parsers with a top-down part that function very similar to Earley’s
algorithm. LR(k) parsers execute a top-down exploration of a given grammar to see what states are
reachable and what types of reductions can be performed by a parser in practice for that grammar.

However, compared to Earley, LR(k) grammars put restrictions on the types of grammars accepted
so that the algorithms can be run deterministically and in O(n) time. LR(k) parsers parse by building
a deterministic automaton that recognises parts of the input which can be reduced into a grammar
nonterminal.

Just like with LL(k), the k in LR(k) refers to the amount of look-ahead the parsers can use to parse
input strings. The first class LR(0) parses without any look-ahead but is extremely limited in its parsing
capabilities. LR(1) expands this a bit and higher numbers will allow for more grammars. However, some
grammars cannot be parsed by any LR(k) parser. For example, the grammar S→ aSa|a producing strings
with an odd number of as is impossible to parse using LR(k). This is because LR(k) cannot recognise
reductions in the middle of a string. A detailed description of LR(k) can be found in Parsing Techniques
(Grune and Jacobs, 2008).

Variants of LL and LR
Many other parsing algorithms build upon LL(k) or LR(k) to expand their efficiency, reduce memory
requirements or increase the number of compatible grammars.

Take for example LALR(1), which takes LR(0) and expands it with a look-ahead capability of 1.
This is different from LR(1) in the fact that the deterministic automaton of LALR(1) is the same size
as that of LR(0), and is exponentially smaller than that of LR(1) and uses only a small amount of extra
memory compared to LR(0). Another variant of LR(k) is SLR(k). An SLR(1) parser is the same size
as an LALR(1) parser, but is less powerful. Therefore, LALR(k) parsers are generally preferred. Both
LALR(k) and SLR(k) parsers were first introduced by DeRemer (1969).

An algorithm for unbounded LL parsing also exists, called LL(*) (Parr and Fisher, 2011). LL(*)
parsers use an arbitrary look-ahead that changes to be the minimum look-ahead required to recognise
rules.

Generalised versions of LL and LR (called GLL (Scott and Johnstone, 2010) and GLR (Tomita,
1985a)), can parse any context-free grammar are generally obtained by relaxing the restrictions of
deterministic LL and LR parsing and using either depth-first or breadth-first search methods whenever
non-deterministic sections in the grammar are encountered.

Detailed descriptions of LALR(1), GLL and GLR and other algorithms can also be found in Parsing
Techniques (Grune and Jacobs, 2008).

6/39

Data-dependent parsing with Iguana
As introduced in a paper by Afroozeh and Izmaylova (2016), Iguana is a parser generator built upon GLL
and extends the class of parseable grammars from the purely context-free to a class called data-dependent.
Data-dependent grammars extend context-free grammars with arbitrary computation, variable binding,
and constraints. This allows users to add syntactic constructs such as operator precedence and indentation-
sensitive constructs to a language without needing to modify the internal machinery of a parsing algorithm.
Such constructs can be specified at a high level - above the data-dependent level - and be automatically
desugared by Iguana to a data-dependent grammar.

ANTLR4 and ALL(*)
ANTLR4 (hereafter called ANTLR) is a modern parser generator. According to Parr (2022), Twitter uses
ANTLR to parse search queries, Lex Machina to extract information from legal texts, Oracle for their
SQL Developer IDE and more. In essence, it is the current-day standard in both industry and academia
for the development of languages, tools and frameworks.

When given a suitable grammar, ANTLR can generate a parser for various host programming
languages like Java, C#, Python and more. The parsing algorithm it uses is a variation of LL(*) called
Adaptive LL(*) (henceforth called ALL(*)). Even though this is a top-down algorithm, ANTLR can parse
most left-recursive grammars. It does this by translating the grammar into a non-left-recursive grammar
before passing it on to ALL(*). ANTLR rejects grammars with indirect left-recursive rules.

As Parr et al. (2014) explains, ANTLR grammars use yacc-like syntax with EBNF operators like
the Kleene star (*) and token literals in single quotes. In this way, the grammars contain both lexical
and syntactic rules in a combined specification. In addition to standard grammar rules, programmers
are also able to include side-effecting actions (semantic actions). These semantic actions are written in
the host language to which the parser will compile and can access and modify the internal state of the
parser. Side-effect-free actions (semantic predicates) are also supported. These semantic predicates are
boolean expressions written in the host language determining the validity of a particular production rule
and are also one of the features supported by data-dependent grammars. Semantic actions and predicates
dramatically increase the power of ALL(*) as they provide some context-sensitive decision-making while
parsing an otherwise context-free grammar. Figure 2 is an example of a left-recursive grammar accepted
by ANTLR.

Figure 2. Sample left-recursive ANTLR 4 predicated grammar Parr et al. (2014)

As explained by Parr et al. (2014), ALL(*) is a top-down parsing strategy and supports all non-left-
recursive grammars.

Parsers like LL(k) rely on static analysis of the input grammar. ALL(*) instead moves this analysis to
run-time and incrementally builds a library of look-ahead deterministic finite automata (DFAs), one for
every nonterminal in the grammar. A DFA consists of a set of states S, a finite set of input symbols T , a
transition function δ : S×T → S, an initial start state Sstart , and a set of accept states Saccept . Because
DFAs are deterministic by definition, every state may only have one outgoing transition for each input

7/39

symbol. Given a state s ∈ S and an input symbol t ∈ T , the transition function outputs the next state s′, if
any exists. If, by following a string of input symbols, a state is returned that is in the set of accept states,
the DFA is said to accept that string.

Leveraging the above process, Parr matches look-ahead phrases to predicted production rules with
prediction function adaptivePredict. Familiar phrases can be quickly looked up in the look-ahead DFA,
allowing ALL(*) to skip grammar analysis for these phrases. Unfamiliar phrases trigger the grammar
analysis mechanism predicting a production rule to apply and updates the DFA with states and transitions
to include this new phrase. The analysis is performed by a ”GLR-like mechanism” that explores all
possible decision paths for the current stack of in-process nonterminals and remaining input tokens. This
mechanism of prediction and subsequent DFA construction is how ALL(*) performs memoization to
speed up its parsing efforts.

The DFAs are constructed similarly to how the well-known NFA-to-DFA subset construction algorithm
functions. However, instead of mapping a nondeterministic finite automaton (NFA), ALL(*) internally
simulates the actions of an augmented transition network (ATN) representation of a grammar. Therefore
ALL(*) constructs its DFAs from the simulated ATN instead. As DFA construction is a major part of
what makes ALL(*) fast, we will discuss how it works.

DFA construction
As Parr explains Parr et al. (2014), when adaptivePredict reaches a decision point for the first time, it
initialises a look-ahead DFA for that decision. The DFA start state D0 represents the set of ATN subparser
configurations reachable without consuming any input symbols. Using the stat rule from the grammar
in Figure 2, we have the ATN subgraph in Figure 3. The DFA construction of D0 would first add ATN
configurations (p,1, []) and (q,2, []) where p and q are ATN states corresponding to production rules 1
and 2 and [] is the empty subparser call stack.

Figure 3. ATN for ANTLR rule stat in Figure 2 Parr et al. (2014)

Following the construction of D0, a new DFA state is created indicating where ATN simulation could
reach after consuming the first look-ahead symbol and connecting the previous and new states with an
edge labelled with that symbol. This process is repeated until all ATN configurations in a newly-created
DFA state predict the same production. The last state is marked as an accepting state and returns to the
parser with that production number.

Figure 4a depicts the look-ahead DFA for decision stat after analysing the input x = y;. If a similar
phrase is encountered again, the DFA does not look beyond = as that symbol is sufficient to distinguish
expr’s production rules. :1 in the accept state means ”predict production 1”.

Figure 4. look-ahead DFA for decision stat in Figure 3 Parr et al. (2014)

Oftentimes, adaptivePredict finds an existing DFA for a particular decision. If a DFA exists,
adaptivePredict looks for a path from the start state to an accepting state. If a non-accepting DFA
state is reached without an edge for the current look-ahead symbol, the DFA is extended by simulating
the ATN. For example, when analysing another input phrase for stat like f (x);, adaptivePredict finds an
existing ID edge from D0 and jumps to s1 in the DFA. However, there is no existing edge from s1 for (so

8/39

adaptivePredict simulates the ATN to build a path to an accepting state. In this case, a second path is
built predicting the production rule 2 (Figure 4b).

Because the sequence ID(ID) predicts both production rules 1 and 2, the simulation continues until
the DFA has edges for both the = and ; symbols. If ATN simulation computes a target state that is already
included in the DFA, a new edge is added targeting that state and then continues with DFA simulation.
Adding edges like this introduces cycles in the DFA.

As adaptivePredict encounters more and more unfamiliar phrases, the DFA is extended more and
more, thereby decreasing the likelihood that unfamiliar phrases are encountered in the future. And because
DFA simulation is quicker than ATN simulation, parsing will speed up as it goes on.

Two-stage parsing
Two-stage parsing is another optimisation that makes parsing with ALL(*) quick. To explain the need for
two-stage parsing, we first need to understand that ALL(*) cannot always rely on the look-ahead DFA
to make a correct parsing decision. Occasionally, ALL(*) prediction must consider the parser call stack
at the start of prediction. The following is a simple grammar that exhibits a stack-sensitive decision in
nonterminal A: S→ xB|yC B→ Aa C→ Aba A→ b|ε .

Without the parser stack, A’s productions cannot be distinguished by any look-ahead. Taking look-
ahead ba, A→ b is predicted when B reaches A, but A→ ε is predicted when C reaches A. If the call
stack is ignored in this situation, a prediction conflict is reached upon look-ahead ba. Parsers that ignore
the call stack for prediction are called Strong LL (SLL) parsers.

Creating a different look-ahead DFA for every possible parser call stack is not feasible as the number
of stack permutations is exponential to the stack depth. Instead, ALL(*) takes advantage of the fact
that most decisions are not stack-sensitive and builds DFA ignoring the stack. If SLL parsing finds a
prediction conflict, it is unknown whether the phrase is ambiguous or stack-sensitive. In that case, the
look-ahead must be re-examined using the parser stack. This hybrid stack-sensitive/stack-insensitive
parsing is called optimised LL mode. It improves performance by caching stack-insensitive prediction
results in look-ahead DFA wherever possible and retains full stack-sensitive capabilities when the DFA is
inconclusive.

As SLL is weaker but faster than LL it makes sense to parse as much of the input as SLL and because
Parr Parr et al. (2014) has found that most decisions are SLL in practice, ALL(*) attempts to parse entire
inputs in SLL mode only. If SLL finds a syntax error, this may be either an SLL weakness or a real syntax
error, so the entire input is then parsed again in optimised LL mode. These are the two stages in ALL(*)s
two-stage parsing strategy. While two-stage parsing may parse the entire input twice, Parr has found that
in practice it can dramatically increase the speed over using only optimised LL mode.

RELATIONAL PARSING
In 2020, Herman introduced his new parsing technique called relational parsing Herman (2020). Similar
ANTLR and other parsing techniques, relational parsing simulates possible runs of pushdown automata
(PDAs). It inductively computes the relations between languages of PDA configurations and the ways
of reaching them when reading consecutive input symbols. These languages can be computed from the
previous one by a constant number of simple, well-known language operations: union, concatenation and
Brzozowski derivatives. These languages, called atomic languages, are precomputed from the grammar.
They are regular and are represented as NFAs. For the languages computed during parsing, a directed
acyclic graph (DAG) structure is used. As all cyclicity is embedded within the NFAs of atomic languages
themselves, we never need to add edges to existing DAG nodes.

In addition to introducing the relational parsing algorithm, Herman also introduces a technique for
context-free memoization. It exploits the typical structure of the DAG representation, splitting it into
a stack of smaller components. Each input symbol can be handled by only examining the top element
of this stack and can therefore be memoized. This simplifies the parsing of many input symbols to a
dictionary lookup and a few operations on a stack.

Important operations
Several language operations are important for relational parsing; these operations are described below. In
these following examples, we denote by S the combined set of symbols of G: S = T ∪N.

9/39

Left-linear closure
The left-linear closure of a language Σ ⊆ S∗ is the language [Σ] obtained by applying any number of
production rules to the leftmost nonterminal in any string σ ∈ Σ: [Σ] = {σ ′ ∈ S∗|σ ∗7→ σ ′ for some σ ∈ Σ}.

Brzozowski derivatives
The Brzozowski derivative of a language Σ by a string s is the language Σ(s) containing all strings
obtainable by cutting off the prefix s: Σ(s) = {σ ′|s ·σ ′ ∈ Σ}. Note that the Brzozowski derivative acts as
both a mutator and a filter, as only the strings containing the prefix s are included in the resulting set. Any
strings without the prefix are excluded altogether.

Atomic languages
To efficiently parse symbols, we precompute the set of atomic languages ΓG of G. This set consists of
Σε , which is the language before parsing any symbol, and [s](t) for each s ∈ S and t ∈ T , which is the
left-linear closure followed by the Brzozowski derivative of every symbol s and terminal t in the alphabet
of G.

A nonterminal in a grammar is said to be nullable if there exist rules which, if applied, result in
no terminal symbols being generated from that nonterminal. The simplest way to make a nonterminal
nullable is by adding an epsilon rule for that nonterminal. For example, to make nonterminal S nullable,
we add S→ ε to the grammar.

These nullable symbols may add extra complexity during parsing, so most parsing algorithms find
some way to eliminate these nullable symbols by, for example, rewriting the grammar. This is often done
by removing epsilon rules from nullable nonterminals and adding rules where the nullable nonterminal
appears in the right hand side with that nonterminal removed. We then have the rule in both its normal
form and in its ”nulled” form.

Relational parsing also removes nullable nonterminals, but instead of doing this by rewriting the
grammar, we integrate the nulling of nonterminals into the computation of atomic languages. This means
that the atomic languages in practice are not exactly the set [s](t), but [S](t), meaning we add words with
all possible combinations of nullable symbols removed.

To illustrate what these atomic languages look like with and without nulling, consider the following
grammar:

S→ a

S→ Sa

S→ SbSc

The atomic languages for this grammar without nullable rules are the following:

Σε = S

[S](a) = (a+bSc)∗

a = b = [c](b) = ε

Note that atomic languages are always regular, so in our notation for [S](a) we used the Kleene star
operator X∗ to denote ”zero or more instances” and + for choice.

Now, when we add a rule nulling S to the grammar: S→ ε , the set of atomic languages becomes:

Σε = S+ ε

[S](a) = (a+bSc+bc)∗

[S](b) = (Sc+ c)(a+bSc+bc)∗

a = b = c = ε

10/39

Recognising a string
Now, to recognise a string τ = t1 · · · tn, we start with the language Σε and inductively compute Σt1···tk =
[Σt1···tk−1]

tk . Each language obtained is called a phase of Σ and the computation itself is called a phase
shift. Finally, to check whether the string τ is recognised, we check whether ε ∈ [Στ]

Precomputing the atomic languages of G allows us to forego computing left-linear closures and
most derivatives while parsing and instead reduces most of the recognition effort to prepending atomic
languages to the current language and performing some derivatives on the result, which is much quicker
and simpler.

Memoization of recognition
While the set of precomputed atomic languages already serves as a simple form of memoization, with
relational parsing we can do even better; Consider the language Στ computed after processing the input
prefix τ and imagine we can factorise it as Στ = Σ ·∆, with ε /∈ Σ. If we process the next input symbol t,
the language we compute is:

Στ·t =
⋃
s∈S

[s](t) ·Σ(s)
τ

=
⋃
s∈S

[s](t) · (Σ ·∆)(s)

=
⋃
s∈S

[s](t) ·Σ(s) ·∆

= (
⋃
s∈S

[s](t) ·Σ(s)) ·∆

This means that the computation of the next phase depends only on Σ and ∆ is a context that does
not have to be considered. If we need to compute a phase from a language Σ ·∆′ we can reuse the prefix⋃
s∈S

[s](t) ·Σ(s) and concatenate it with ∆′.

Parsing a string
Up to now, we have only concerned ourselves with recognising strings, to move on to full parsing, we
need to not only consider parsed languages but the relations between these languages and the derivations
by which they can be reached.

For a sting τ ∈ T ∗, a relation /0⊆ S∗×D∗ is τ-parsed if for every γ ∈ S we have

sstart
δ⇒ τ · γ ⇐⇒∃(σ ,

←
δ1) ∈ /0 : δ = δ1 ·δ2 and σ

δ2⇒ γ .

Achieving this is simple in theory, one simply needs to substitute atomic languages for the correspond-
ing atomic relations. However, one complication in practice is the presence of nullable symbols, as we
cannot simply skip arbitrary instances of nullable symbols like we can in atomic languages. We need to
keep track of the positions of nullable symbols and the derivation steps that lead to these nullings.

To solve this problem, we define positively parsed relations over (S∪D)∗×D∗ where earlier derivation
steps capture the way of reaching a particular configuration and later steps the pending erasure of nullable
symbols. These positively parsed relations allow us to specify the location and erasure of nullable symbols
and are sufficient to express any atomic relation.

Memoization of parsing
Context-free memoization also poses a challenge when computing derivations; While factors of parsed
languages repeat very often in practice as Herman demonstrated Herman (2020), leftmost derivations
never repeat as each prefix of such an input has a different number of parsed terminals. This means that
direct memoization of the parsing information, or labels, will not work; It is necessarily different at every
computed phase.

However, these labels are a function of those beforehand, and this function depends on only the
factors of parsed languages that do repeat. Therefore, if we memoize not the labels themselves, but the
expressions by which we can compute new labels from old ones, we can leverage the repetition uncovered
by relational parsing.

11/39

Existing experimental results of relational parsing, ALL(*) and others
ALL(*) performance relative to other methods
In his paper on ALL(*) Parr et al. (2014), Parr includes a report on the performance of ALL(*). The
theoretical complexity of ALL(*) parsing is O(n4). In addition to these theoretical results, Parr empirically
compared ALL(*) to other popular parsing algorithms when parsing the 12,920 source files of the Java 6
library and compiler. The graphs resulting from these tests can be seen in Figure 5.

Figure 5. ”Comparing Java parse times for 10 tools and 8 strategies on Java 6 library and compiler
source code (smaller is faster)” Parr et al. (2014)

In their experiment, ALL(*) outperforms all other parser generators and only performs about 20%
slower than the hand-built parser of the Java compiler itself. More detailed results and possible explana-
tions can be found in the original paper by Parr Parr et al. (2014).

Relational parsing performance relative to ALL(*) and other methods
As Herman (2020) calculates, the theoretical complexity of relational parsing matches that of the state-
of-the-art parsing algorithms; it is O(n3), O(n2) on unambiguous grammars and O(n) on LR-regular
grammars. To empirically compare relational parsing to available tools, Herman tested relational parsing
with context-free memoization against ANTLR4, YAEP, and Iguana using ANTLRs ”Java8” grammar
and the elasticsearch java source files as well as with a ”simple, unambiguous grammar for XML” with a
single file containing ”about 4.5M terminals and rich internal structure”.

Four tests were performed; recognition (check whether the input matches the grammar), counting
(calculating the number of parse trees without producing them), tree (producing an arbitrary parse tree)
and forest (representing all possible parse trees), though not all tools supported all types of tests. The
results of these experiments can be seen in Figures 6 and 7.

In general, relational parsing with context-free memoization was reported to be faster than all other
algorithms in all modes of testing.

METHODOLOGY

Replications in Computer Science
As discussed by Shepperd (2018), replication studies in computer science are not automatically useful.
This is especially the case when studies performing small experiments with a small effect are exactly
replicated, i.e. reproducing the same small experiments. In these cases, it is trivial to replicate the results
of, and therefore confirm, another study, resulting in almost no gain of knowledge. However, performing
replication studies to enhance the trustworthiness of an empirical result is considered to be a central tenet
of the scientific method and it, therefore, stands to reason, that properly performing a replication study is
also useful in the field of computer science.

In particular, Shepperd (2018) makes four recommendations to make proper findings within the field
of computer science:

1. Provide information on the dispersion (variance) of the variables involved in experiments.

2. Construct prediction intervals before conducting a replication.

12/39

Figure 6. ”Parsing time for highly ambiguous Java grammar” Herman (2020)

Figure 7. ”Parsing time for the unambiguous XML grammar” Herman (2020)

13/39

3. Limit replications to matters of reproducibility.

4. Conduct independent studies of important research questions where the effects matter to practising
software engineers and combine results using meta-analytic techniques. Avoid close replications as
these may violate the underlying assumption of independence and consider corrections needed due
to potential publication bias of the first study.

Why replicate relational parsing?
In the original paper on relational parsing (Herman, 2020), Herman gave a very high-level mathematical
explanation of relational parsing and provided evidence that relational parsing may have very good
performance when compared to state-of-the-art parser generators. To confirm that this novel technique is
indeed able to perform on par or better than, for example, ANTLR, more research is needed on relational
parsing.

To aid this investigation we attempt to re-implement relational parsing according to the explanation
by Herman (2020) and then, in more detail, describe the various steps necessary to implement a relational
parser generator and evaluate its speed on several types of grammars. The source code of the original
work is publicly available (Grzegorz, 2023), however, to examine how feasible it is to implement
the algorithms using only its published documentation as well as any potential shortcomings of this
documentation, we decided to implement relational parsing based only on Herman’s paper, ignoring the
previous implementation.

If this allows us to describe (some of) the strengths and weaknesses of relational parsing and make it
more accessible to implement, this may make relational parsing easier or more interesting to investigate
in the future.

DESIGN OF RELATIONAL PARSING RE-IMPLEMENTATION
We will now discuss the re-implementation of relational parsing produced for this study. We start
off explaining our choice of programming language and then move on to explaining the various al-
gorithms implemented. The source code can be viewed at https://github.com/BurritoZz/
Relational-Parsing-Rust.

Choice of programming language
Rust is our choice of language for the re-implementation as it is one of the faster languages while also
guaranteeing memory safety. When changes are made to underlying data structures, its strong typing
system helps keep methods in sync with the data structures they operate on, allowing for easier incremental
changes to the software.

Base data structures
We start the discussion of our implementation by listing some important data structures underlying the
rest of the implementation.

Starting with the types necessary to define grammar; Terminal symbols are defined to be lowercase
characters. Similarly, nonterminal symbols are defined as uppercase characters. These symbols can be
composed into words via the Symbol enum, unifying the Terminal and Nonterminal types and adds an
Epsilon variant to be used for representing empty words. The Word type represents strings of Symbol
elements.

Using the above types, we define a grammar as follows; The Terminals and Nonterminals are collected
in HashSets of the corresponding types. The start symbol must be one of the Nonterminals in the
Nonterminals set. Derivation rules are stored as HashMaps, mapping a Nonterminal to its corresponding
HashSet of Words. Every Word in such a set represents one derivation rule.

Finally, we have a field for storing the grammar’s finite state automaton. The finite state automaton is
calculated according to the other fields in the grammar and is stored here to aid in our parsing efforts later
on. The definition and construction algorithm of the finite state automaton will follow later.

Atomic language calculation
The calculation of atomic languages from the starting grammar follows two phases; First, we calculate the
regular expressions by which we can represent these atomic languages, and then convert these regular
expressions into a finite state automaton for use in the parsing phase.

14/39

https://github.com/BurritoZz/Relational-Parsing-Rust
https://github.com/BurritoZz/Relational-Parsing-Rust

Regular expression calculation
The calculation of regular expressions is best explained via the use of an example. We will use the
following grammar with an epsilon rule (hereafter abbreviated to e-rule) and refer to it as the ”e-rule
grammar”.

S→ ε

S→ a

S→ Sa

S→ SbSc

We start by making a queue for all nonterminal and terminal combinations: [S](a), [S](b), and [S](c).
For this grammar, these are the three possible atomic languages that may be generated by the grammar.

For every potential atomic language, we follow the same process: First, we sort all rules belonging to
the nonterminal into three sets: direct, recursive and different atomic. The rules that start with the terminal
symbol on their right-hand side go into the direct set. Those rules starting with the same nonterminal as
the atomic language itself go into the recursive set. Rules starting with a nonterminal different from the
current nonterminal are added to the different atomic set.

Any rules starting with a terminal that is different from the terminal of the atomic language we are
calculating are discarded. Epsilon rules tell us that nonterminal can be nulled but are otherwise not used.

The rules in the recursive and different atomic sets do not start with the necessary terminal symbol to
directly produce a Brzozowski derivative by that terminal, we, therefore, do not know yet whether we can
perform the derivation necessary. To represent this uncertainty, we replace the starting nonterminal of
these rules with a new placeholder symbol representing an atomic language. Later we may be able to
substitute finished atomic languages into these placeholders and add the rule to our atomic language.

Next, we look at whether any of the rules have nullable nonterminals. We go through every set and
find out whether any nonterminals in these rules can be nulled by applying one or more rules. If so, we
make new rules for all possible combinations of nulled and non-nulled symbols and sort these new rules
among the three sets as before.

Of importance in this process is that we keep track of the position of nulled symbols and the rules used
to null them. To do this, we add placeholder symbols containing the applied derivation rules. Note that to
null a nonterminal we may apply more than one derivation rule, if, for example, we have a grammar with
rules like S→ A,A→ ε , nonterminal S could be nulled by applying those two rules.

The new rules generated for the above grammar are the following: for S→ Sa we get the new rule
S→ εa. For S→ SbSc we get S→ εbSc, S→ Sbεc, and S→ εbεc. Here we use ε as a placeholder
symbol representing a nulled nonterminal. In our implementation, we use the enum variant representing
applied nulling rules.

For the above grammar and atomic language [S](b), the three sets would look as follows:

direct : {S→ εbSc,S→ εbεc}

recursive : {S→ [S](b)a,S→ [S](b)bSc,S→ [S](b)bεc}
di f f erent atomic : /0

From these sets we now construct the regular expression by the following procedure: Rules in the
direct set are collected and form the basis of our regular expression: (εbSc + εbεc).

The rules in the recursive set are similarly collected, but we factor out the placeholder symbol at the
start and because the rules are recursive and can therefore be applied as many times as we want we add
the kleene-star: (a + bSc + bεc)∗.

If the different atomic set is empty as in our example, we are finished and the final regular expression
is formed by concatenating the direct and recursive portions: [S](b) = (εbSc + εbεc)(a + bSc + bεc)∗.
Note that the only difference between this expression and the example given in is that here we keep track
of nulled symbols. [S](a) is calculated in a similar manner. When attempting to calculate [S](c) however,
we find that both the direct and different recursive sets are empty, with only the recursive set containing
anything. In such cases, the atomic language cannot be calculated and that terminal-nonterminal pair has
no atomic language.

15/39

If we have a grammar for which the different atomic set is not empty, things become more complicated.
Take, for example, the following indirectly left-recursive grammar:

A→ Ba

A→ a

B→Ca

B→ b

C→ Aa

C→ c

The sets for [A](c) would look as follows:

direct : /0
recursive : /0

di f f erent atomic : {A→ [B](c)a}

Now, to calculate [A](c), we need to first calculate [B](c). Its sets are similar:

direct : /0
recursive : /0

di f f erent atomic : {B→ [C](c)a}

Finally, for [C](c), we have:

direct : {C→ c}
recursive : /0

di f f erent atomic : {C→ [A](c)a}

Even though we now have something in the direct set, the different atomic set for [C](c) is not empty
and [C](c) is therefore still dependent on [A](c). To solve this circular dependency we take rules out of the
different atomic sets, perform substitutions on them and sort the new rules into one of the three sets again
until we have no more rules in the different atomic sets.

After this substitution process is applied a few times, the sets for [A](c) should look as follows:

direct : {A→ caa}

recursive : {A→ [A](c)aaa}
di f f erent atomic : /0

Now we can construct the regular expression as before and end up with [A](c) = (aa)(aaa)∗

If at any point we have an atomic language referencing another that is already fully calculated (i.e. no
circular dependency exists), we can simply substitute the entire atomic language and skip the step-by-step
substitution performed above.

For the process of calculating atomic languages, we must carefully keep a queue of languages to be
computed and perform substitution steps in a round-robin fashion to give all atomic languages equal
opportunity to finish calculating. If we don’t use round-robin scheduling, the atomic language calculation
may run in an infinite loop.

Finite state automaton construction
Now that we have calculated the regular expression (regex) representation of our atomic languages,
converting them to a finite state automaton (FSA) to be used in parsing is relatively simple. The atomic
languages for the e-rule grammar are: [S](a) : (a+ bc+ bSc)∗ and [S](b) : (c+ Sc)(a+ bc+ bSc)∗. Its
corresponding FSA is:

16/39

0

1

2

3 4

[S](a)

5

6

[S](b)

S a

b

c

S

c

c
c

S

In our implementation, these finite state automata are represented as a set of states, a set of accepting
states, a starting state, a map of edges and a map connecting atomic languages represented as a symbol-
terminal pair to a state in the automaton. A state is simply a non-negative integer. The map of edges first
maps a state to a second map, this second map maps a symbol to a set of states and rules. The finite state
automaton may be nondeterministic, mapping from one state to multiple other states via a single symbol.
This implementation can be viewed in finite state automaton.rs

The regex representation built in the previous stage is separated into ”nodes”; Each section within
brackets is such a node. Taking [S](b) of the e-rule grammar as an example, (εbSc + εbεc) is one node
and (a + bSc + bεc)∗ is another. To build the FSA for a grammar, we first create the starting state 0 and
connect it to the ending state 1 via an edge labelled with the grammar’s start symbol.

We then continue by randomly choosing an atomic language to process. We do this by going through
it node-by-node in reverse. For any regex node, we generate an ending state if there is not already one,
and we generate a starting state. This pair of starting and ending states is registered using the current
regex node as a key, so that we may re-use the starting and ending state when building an FSA for later
regex nodes.

Once we have our starting and ending state, we build every alternative word by starting at the starting
state, creating a new state and edge for every symbol in the word, until we reach the last symbol of the
word. When we are at the last symbol, we create a final edge, connecting the penultimate state to the
final state that we generated previously. On the last edge of a word, we attach the derivation rules used to
generate that word, these rules are later used to build parse traces while parsing. If during this process, we
find that a new word starts with one or more symbols that are identical to a previously processed word,
we can simply follow the edges of that previous word until we find a symbol that is different from the
previous word. We then continue generating from that state and create states and edges for the rest of the
symbols in the current word.

Two factors are complicating this process; Firstly, due to the nature of our parsing algorithm, when a
word ends with a nonterminal symbol, this nonterminal symbol cannot be the final edge that connects to
the ending state. In that case, we need to pad the word with an epsilon edge, connected to the final state
with the derivation rules of that word attached to it. If we do not do this and instead attach the derivation
rules to the edge with the nonterminal symbol, the parse rules of that nonterminal will be in the wrong
position.

The other factor is that the regular expression we created earlier on may have contained some nulled
nonterminals. If it does, the rules applied to null those symbols are included in some position in the regular
expression. If this nulling comes before another symbol in the word, we can simply attach this nulling
rule to the edge of that following symbol. If the nulled nonterminal is in the last position of the word, we
also need to create an epsilon edge and attach the nulling rule to that edge. If multiple nulling rules follow
one another, we concatenate the rules and attach the concatenation to the following non-nulling edge.

We go through regex nodes in reverse order, because it allows us to merge parts of the automaton for
multiple separate regexes whenever possible. This merging can be observed in the FSA for the e-rule
grammar shown before: the ending of [S](b) is the same as the entirety of [S](a), meaning that if we connect

17/39

the end of the first node of [S](b) to the start of [S](a) we do not need to create extra states and edges in the
FSA for the rest of [S](b). This process also works if we build the FSA for [S](b) before [S](a).

The concatenation of FSA sections is more pronounced for the indirect left recursive grammar.
The atomic languages of nonterminal A are as follows: [A](a) : (aaa)∗, [A](b) : (a)(aaa)∗, and [A](c) :
(aa)(aaa)∗. If we were to create separate automata for each atomic language, we would already end up
with three separate automata for only nonterminal A. However, because we merge them at appropriate
locations, we can represent all three atomic languages with a single connected automaton (Only the atomic
languages for nonterminal A shown):

[A](c)

2

34

[A](b)

[A](a)

7

5

6 a

a
a

a

a

a

In the above example, merging the automata saves us from having to keep track of six states and six
edges. While the size reduction is still quite small for this grammar, this may make a significant difference
for larger grammars, especially those with more terminal symbols.

Languages and LanguageList
Relational parsing relies on the fact that when using atomic languages, parsing new symbols devolves
into applying a primitive language operation to a previous language and sometimes prepending an atomic
language to it. To properly take advantage of this, we build our parsing data structure to reflect this
observation; we define every language to be a combination of prefixes to previous languages.

When we do this, the entire data structure may be viewed as a Directed Acyclic Graph (DAG) where
every node represents a language. These edges connecting nodes are labelled with states from the FSA.
When a symbol is parsed, these labels are used to calculate new edges and form new languages. Edges in
this DAG may additionally carry (partial) parse traces and nodes may carry completed parse traces if the
language contains the empty string ε .

In our implementation, the entire DAG structure is contained in a data structure called LanguageList
and languages themselves are represented as a Language. Both of these implementations can be found in
language list.rs.

The LanguageList is simply a list of languages. Languages in this list refer to other languages not by
their position in the list, but by their relative depths in the list. Using a dynamic depth value instead of a
fixed position makes memoization easier later on.

If a language contains ε , the fin flag is set to true. If this flag is set, the field completed parses may
contain a set of completed parse traces. The edges field connects a language to one or more previous
languages. It is through these edges that languages express anything other than ε .

Representing languages like this has several advantages. If we instead represent these languages as a
much simpler list of FSA states to be expanded and shrunk during parsing, and the grammar is ambiguous,
we need to duplicate the list of states for every ambiguity encountered during parsing. With the wrong
grammar, this list of lists would grow and become unwieldy very quickly. In addition, many lists would
be partially identical to one another. This is because when a list of FSA states is populated with some
states and then an ambiguity is introduced, all the states that were already in the list are duplicated. In

18/39

the LanguageList structure, we avoid this issue as any encountered ambiguity only adds a single edge or
a node with a few edges to the list instead of requiring us to duplicate (part of) the list. In this way, the
operations necessary to perform on this list become cheaper at the expense of having a more difficult data
structure to reason about.

The edges in languages refer to other languages via a depth parameter. This depth parameter points to
another language in the LanguageList relative to the current position in the list. So, as an example, if we
have a language at position 3 in the list, with an edge of depth 2, then it points to a language at position 1
in the list. Using an absolute pointer also works for parsing, but makes memoizing the parsing process
much more difficult later on, this is explained in the later section on memoization.

Parsing
To use the previously outlined data structure for parsing, we implemented one final data structure called
ParseRound that keeps track of partial results while parsing a single symbol. Every time we parse a new
symbol, we create a new ParseRound.

Parsing a string using Relational Parsing relies on two basic operations; derivative and prepend.
Derivative takes a language and a symbol and calculates the Brzozowski derivative of that language
by symbols. Prepend prepends an atomic language to a language. In our case, these operations are
implemented onto the ParseRound data structure in the form of derive, prep derive and prepend.

Our parsing algorithm is based on the recognition algorithm outlined by Herman (2020). We start by
initialising our LanguageList, retrieving the start state from the FSA and inserting a starting language
connected to {ε} via the FSA start state. Then, for every token in the input string, we perform the
following steps:

We pop the top-level language (calling it curr lang) off the language list and initialise a new
ParseRound. Then we try to calculate a new derivative from curr lang and the current token and
save the result in the deriv field of ParseRound. Then, for every nonterminal in the grammar, we check if
we have an atomic language for that nonterminal and the current token. If so, we perform a derivative
on curr lang by that nonterminal, save it in the prep deriv field of ParseRound and follow it by a call to
prepend with the atomic language we found. Finally, the result is saved to the prepend field of ParseRound.
After this process, we write the contents of ParseRound to our LanguageList by calling the register
method.

One noteworthy aspect of derivative and prepend is that if the FSA state attached to an edge is
accepting, we need to copy edges from the target language to the current one. Because we use relative
depths, we need to sum these depths so that our resulting language refers to the correct target. As an
example, say we have a language in position 3 targeting a language in position 1 (with a depth of 2) and a
language in position 6 referring to that language in position 3 (depth 3) with an edge that is accepting,
then to add the edge referring to language 1, we sum the depths and end up with a target depth of 5.

One other location where we need to do extra depth calculations is in the register method of
ParseRound. When we compute a new language via calling prepend and prep derive, we create ei-
ther one or two new languages. In the case that we create two new languages and also called derive,
we need to add the edges of the derive call to the language computed from prepend. But because we
are adding two languages instead of one and because the language added by prep derive will be added
underneath the one added prepend, the edges added by derive will be off by one. Therefore, the depths of
all these edges need to be increased by one. If prep derive did not add a new language, or if derive was
the only method called, this does not need to happen and the edges can stay as they were. These depth
calculations are necessary because of the choice to use relative pointers; If we used absolute pointers, they
could be avoided.

The algorithm described above, called parse, can be found alongside ParseRound and implementations
for derivative and prepend in parse.rs.

Memoization
To perform memoization on the parsing process, we built three data structures; MemoBuilder, which is
initialised during parsing and later populates the other two structures, Memo, containing the memoization
data for a particular language, and Memoize that contains all instances of Memo and the languages they
belong to.

While parsing a new combination of language and input token, the edges that we create are memoized
in MemoBuilder. We do this separately for edges created by calls to prepend, derive, and prep derive.

19/39

During the call of ParseRound’s register at the end of a parsing round, the MemoBuilder is converted into
a Memo and registered into Memoize.

Now, when we encounter that language and input token combination again, we can perform a lookup
in the Memoize structure and apply the modifications stored in the retrieved instance of Memo to our
LanguageList instead of calculating new languages via the usual calls to prepend and derivative.

As we discussed before, the use of the depth parameter in edges adds some complexity during parsing
when no memoization is available. However, these extra calculations necessary to adjust the depth are not
wnecessary anymore when we use a memoized result as we save these edges with the necessary depth
adjustments included. If we used absolute depth instead, we would have to perform this type of adjustment
every time we refer to the memoization table. This is because the current position of a language is not
relevant to the memoization table, if a language occurred in position 1 in the LanguageList and is later
encountered again in position 5 with the same input token, we can still look up previous calculations in
the memoization table. If we were using absolute depth, we would still need to memoize the relative depth
by which these languages refer to each other and calculate a new absolute depth every time we perform a
lookup. Herman (2020) asserted that parsing will devolve into mostly table look-ups (in his experiments
for up to 99% of parsed tokens), it, therefore, makes sense to optimise for memoization look-ups at the
expense of initial calculations by using relative depth pointers instead of absolute pointers.

EVALUATION
To evaluate our implementation of relational parsing, we test its performance both with and without
memoization on input strings of increasing length with various grammars. This will tell us how the
performance of our implementation changes with inputs of varying lengths and grammar archetypes.

We will now discuss the various grammars we used for this evaluation.

Grammar 1.

S→ a

S→ Sa

S→ SbSc

Grammar 1 is unambiguous, and is defined by Herman (2020). We will refer to it as the ”basic grammar”.
It is left-recursive and contains a structure reminiscent of brackets in programming languages. We see
that every time we apply the third derivation rule, adding a ’b’ to the terminal string, we must also add a
’c’ to the end of that string. This is similar to how brackets work in most programming languages where
every opening bracket must be followed by a corresponding closing bracket.

Grammar 2.

S→ ε

S→ a

S→ Sa

S→ SbSc

Grammar 2, previously defined as the ”e-rule grammar”, adds an epsilon rule to the basic grammar,
making it ambiguous. Because it accepts all input strings of the previous grammar, we can use it to
observe how much the introduction of an ambiguity affects the performance of our relational parsing
algorithm.

Grammar 3.

S→ aSa

S→ a

Grammar 3, which we refer to as the ”odd number of a grammar” is one that is difficult to parse for most
parsers even though it is not ambiguous. The reason for this difficulty is that all terminal symbols are
identical. To start parsing, a parser has to find the middle ’a’. Parsers that rely on a fixed look-ahead

20/39

cannot do this for all inputs, because the parser cannot identify the middle a if the input is more than
twice as long as the look-ahead. Backtracking parsers will have to try parse every token as a middle token,
backtracking if one isn’t in the middle and then trying the next. If the input consists of an even number of
tokens, there is no valid parse tree, and a backtracking parser will have to start over at every token in the
input before concluding that there is no valid parse tree.

Grammar 4.

S→ Sa

S→ a

Grammar 4 is a simple left-recursive grammar. As our ”basic grammar” is already left-recursive, this
grammar is simply used to compare performance between left and right recursion.

Grammar 5.

A→ Ba

A→ a

B→ Ab

B→ b

Grammar 5 is an indirectly left-recursive grammar. It is included because while top-down parsers
typically already struggle with directly left-recursive grammars, indirectly left-recursive grammars pose
even more of a problem. Some parsers, like ANTLR, rewrite grammars under the hood to eliminate
left-recursion. While this is possible for both direct and indirect left-recursion, ANTLR only re-writes
directly left-recursive grammars and does not re-write indirectly left-recursive grammars.

Grammar 6.

S→ aS

S→ a

Grammar 6 is directly right-recursive. While not typically a challenge for top-down or bottom-up parsers,
it is still interesting to see how left and right recursion compare. For every rule ending with a nonterminal,
we have to introduce an epsilon transition into our FSA.

Grammar 7.

A→ aB

A→ a

B→ bA

B→ b

Grammar 7 is indirectly right-recursive, added to test whether moving from direct to indirect right-
recursion has any effect on performance.

Our relational parsing algorithm was tested on all the above grammars with the criterion benchmark
library. For these benchmarks, we generated 10 input strings. The first has an approximate length of 10
characters, increasing by 10 for every subsequent string. The final strings have a length of about 100
characters.

Before every benchmark, we load the inputs into memory, tokenised these inputs and filled the
memoization tables. We do this to compare the performance of memoized versus non-memoized parsing
with as little overhead as possible and to keep the benchmarks as consistent as possible. We ran these
benchmarks on a desktop computer with an Intel i5-10600K clocked at 4.10GHz, running Windows 10.

When performing a benchmark, every experiment is repeated 100 times to reduce the impact of
random delays by, for example, OS scheduling.

To show how relational parsing compares to ANTLR, we also attach some minor experiments with
ANTLR on some of the grammars.

21/39

RESULTS
The results of our experiments are included in the Appendix in Figures 8 until 14. The experiment for the
e-rule grammar was cut short as the execution time exploded very quickly, as can be seen in Figure 9. The
amount of tokens memoized as well as the percentage of tokens memoized can be seen in Figures 19 until
25.

DISCUSSION
As can be seen in the various figures, our non-memoized code almost always outperformed our memoized
code. The only experiment where memoization had a positive effect was when parsing strings for the
odd number of a grammar 10. When parsing for the right-recursive grammars, Figures 13 and 14, the
performance was almost equal between the memoized and non-memoized code.

Also of note is that the left-recursive grammars perform about 50 times better than the right-recursive
grammars. This has to do with two things; First, while right-recursive grammars require the insertion of
epsilon transitions into the FSA, left-recursive grammars do not. Second, when parsing right-recursive
grammars, the parser is required to call both the derive and prepend methods, whereas for left-recursive
grammars the parser can do most parsing by only calling the derive method.

We also see that parsing for the basic grammar is even faster than parsing for the direct left grammar.
This is probably a result of handling parsing information. When parsing the direct left grammar, the parser
has to add a derivation rule to the parse trace for every symbol parsed, while this happens less often for
the basic grammar.

One big stand-out in these experiments is the e-rule grammar in Figure 9. Whereas most experiments
ended up taking computation time in the microsecond to millisecond range, even at input lengths of 100
characters, the computations for the e-rule grammar jump up to take several seconds even for inputs only
60 characters long. Because of the structure and ambiguity of this grammar, the amount of possible parse
traces rise very quickly. Our implementation seems to handle a large amount of parse traces very poorly,
causing a large jump in computation time from milliseconds to seconds between inputs of lengths 52 and
61.

Comparing this to ANTLR’s performance on the 61-length input for the e-rule grammar, seen in
Figure 15, we see that the input is parsed in 177 milliseconds. This measurement is extremely unfair to
ANTLR, however, as this also includes the time for reading the input from the disk and lexing the input
into a token stream, all of which was already taken care of in our relational parsing benchmarks.

So while this comparison is not fair, it still shows that for this grammar and input, ANTLR is able to
parse it much faster than our implementation of relational parsing. However, ANTLR also only computes
one of the many possible parse trees for this input, whereas we try to compute all possible parse trees.

Some of the other grammars that we used to test relational parsing are not usable with ANTLR. The
odd number of a grammar is an interesting case; as seen in Figure 16, ANTLR can parse the strings ”a”
and ”aaa”. For the string ”aa” ANTLR gives a parse tree, but this string has no correct parse tree for this
grammar. ”aaaa” fails as expected, however, the string ”aaaaa” does have a parse tree but ANTLR is
unable to find it. This pattern of not being able to find a parse tree continues for larger inputs, even though
a parse tree does exist for every string with an odd number of ’a’ characters.

We believe the explanation to be that even though the grammar itself is not ambiguous, the parser
encounters an ambiguous state during parsing. When ANTLR encounters an ambiguity, it resolves the
situation by choosing one possible parse tree and continue parsing only for that tree. In the case of the odd
number of a grammar, when the input is longer than three characters, ANTLR encounters an ambiguous
state and makes a decision that will always lead to an incomplete parse tree even if the input has a valid
parse tree. It is this commitment to non-ambiguity that causes ANTLR to fail to parse this grammar.

As seen in Figure 17, ANTLR refuses to compile grammars containing indirect left recursion. Due
to the nature of ALL(*), it is unable to parse strings for any grammar with left recursion, but ANTLR
rewrites grammars containing direct left recursion to eliminate left recursion on the grammar level. For
indirect left recursion, this is not done and as such, ANTLR spits out an error.

Interestingly, for the direct right-recursive and indirect right-recursive grammars, for which parse
attempts can be seen in Figures 18 and ??, ANTLR does compile right-recursive grammars but is unable
to parse our example grammars, always seeming to expect another character to follow. While ANTLR
can parse some right-recursive grammars, it fails to parse for these toy right-recursive grammars.

22/39

A previous version of our parser was able to parse the indirectly left-recursive example grammar,
but failed for some other indirectly left-recursive grammars. The results for our example indirectly
left-recursive grammar using that older version are still included. The current version of our parser
rejects indirectly left-recursive grammars. There is space to implement support for such grammars using
relational parsing, however our support for these grammars was buggy and has therefore been scrapped.

There is another class of grammars which our implementation fails to parse:

S→ A

S→ B

A→ ax

B→ ay

Any grammar of a form similar to the grammar above will not function as expected. Whenever our
implementation encounters a situation where it can perform a derivation by at least two nonterminals and
attempts to prepend two or more atomic languages in one parsing step, it produces incorrect results. As of
now, our implementation is only able to call prep-derive and prepend once per parsing step. This is not a
limitation of relational parsing, but instead a limitation of our implementation.

RELATED WORKS
Context-free parsing
Context-free parsing is the most commonly used technique for parsing programming languages using
generated parsers. Combined with pre- and post-processing techniques, context-free grammars are
sufficient to specify commonly used programming languages. Parsing at this level also carries good
performance-guarantees: Binary Right Nulled GLR (BRNGLR) parsers have worst-case cubic run time
(with relation to input length) for all grammars with linear performance for LR(1) grammars Scott and
Economopoulus (2007). Since BRNGLR can parse any context-free grammar, this performance can
be taken as the worst-case performance for any context-free grammar with other algorithms carrying
potential performance improvements for particular context-free grammars or all context-free grammars.

Parsing algorithms can be divided into three main categories: top-down, bottom-up and others. In
top-down parsing, we start parsing with the grammar’s start symbol and try to produce the input by
matching what we produce to the input string. Bottom-up parsers, in contrast, start with the input and
try to reduce it to the start symbol by applying production rules in reverse. As mentioned before, there
exist other context-free parsing algorithms which are neither top-down or bottom-up. One example
of these is the so-called ”intersection algorithm”, which intersects a context-free grammar with the
finite-state-automaton of a given input and produces a parse tree by cleaning up this intersection. Many of
these various parsing techniques are described in detail in Parsing Techniques Grune and Jacobs (2008).

Parallel parsing
Various approaches exist to boost the performance of parsing algorithms. Some of these approaches
result in the invention of entirely new algorithms, others improve existing algorithms in some way. One
technique that may allow us to improve the performance of existing and future algorithms is that of
parallelisation. Alblas et al. (1994), Barenghi et al. (2015), van Marcellus Paulus Lohuizen (2001).

State-of-the-art algorithms
GLL
Top down parsers are popular because they follow the structure of the grammar they parse, making them
easy to write and debug. Recursive Descent (RD) is one such algorithm that was very popular, however
the class of grammars that it parses is very limited. This limitation could be alleviated by allowing it to
backtrack, but this could result in explosive run-times. The newer GLL algorithm also closely follows
the structure of the grammar and uses RNGLR-like machinery to allow it to parse every context-free
grammar. Unlike RD, GLL is worst-case cubic. Scott and Johnstone (2010), Scott and Johnstone (2013).
The parser combinator FUN-GLL is based on GLL. Whereas conventional parser combinators inherit the

23/39

drawbacks of RD, FUN-GLL overcomes these and similarly delivers a wors-case cubic run-time. van
Binsbergen et al. (2018), van Binsbergen et al. (2020).

SGLR
Most parsing algorithms expect a stream of tokens during parsing. The algorithms that produce these
tokens from the source texts are called scanners. Scannerless parsing algorithms allow us to combine
the lexical and context-free syntax into a single grammar and allow us to discard the lexical analysis
phase that runs before parsing can start. However, combining lexical and context-free syntax can yield
unwieldy grammars. (Visser, 1997) solves this problem by introducing grammar normalisation. He goes
on by introducing scannerless-GLR (SGLR), building upon scannerless-LR(1) and GLR. SGLR was
presented to a wider audience in 2002 van den Brand et al. (2002), included in integrated development
environments to assist in language development Kats et al. (2009) and later improved with the introduction
of incremental SGLR Sijm (2019).

Iguana
Iguana is another general parser generator introduced by (Afroozeh and Izmaylova, 2016) and runs nearly
linearly on programming language grammars and is worst-case cubic. It is built upon GLL, however
instead of producing all parse trees like GLL and relational parsing, it produces a single tree. When
using Iguana, in addition to defining a context-free grammar, the user also defines disambiguation rules to
specify (un)desired parse trees where necessary. These disambiguation rules are specified with the use of
arbitrary computation, variable binding and constraints. These features extend the context-free grammar
into what Afroozeh calls Data dependent grammars. Where relational parsing may attempt to produce an
astronomical amount of parse trees for a highly ambiguous grammar, Iguana produces only the parse tree
the user wants to be produced.

ALL(*)
Adaptive LL(*) is described at-length in subsection ”ANTLR and ALL(*)”. It is worst-case O(n4) but
performs linearly on most grammars used in practice, thereby outperforming GLL and GLR by orders of
magnitude Parr et al. (2014). ANTLR4 is the parser generator for ALL(*) and is currently the industry
standard for parser generators. Parr (2022). Unlike the generalised parsing algorithms, ALL(*) is not able
to parse every grammar. Most notably, left-recursion is dealt with by re-writing the grammar and indirect
left recursion is not supported. It is deterministic, producing only one of the possible parse trees of an
ambiguous grammar.

Packrat
Packrat parsers guarantee linear parse times, but cannot parse every grammar. Any LL(k) or LR(k)
grammar can be parsed by a packrat parser, as well as ”many languages that conventional linear-time
algorithms do not support” Ford (2002). Left-recursion is dealt with by re-writing the grammar. The
grammar S→ aSa|a is an example Packrat will not parse. Furthermore, the algorithm is deterministic, only
producing one result, even if there are other possible parse trees. Like SGLR, there is an incremental ver-
sion of packrat Dubroy and Warth (2017) and there is a version for parsing ParsingExpressionGrammars
(PEGs) Blaudeau and Shankar (2020).

Derivatives
The derivative of a language was first introduced by (Brzozowski, 1964) in the context of regular languages.
It is an operator that produces the language that remains after a string of symbols s. If the language is called
L, this remainder can be called the derivativeo f Lbys. Derivatives were introduced as a tool for analysing
the properties of regular expressions but proved to be useful for much more than that. (Might et al.,
2011) introduced a rudimentary technique for parsing context-free grammars using derivatives. (Adams
et al., 2016) later proved that Might’s technique is worst-case cubic and that with a few modifications its
performance could be sped up by a factor of 951, making it ”on par with other parsing frameworks”.

Relational parsing
This thesis is built upon the paper on relational parsing by Herman (2020). It introduces the concept of
relational parsing which reduces parsing context free grammars to that of parsing regular languages by
leveraging derivatives. It then improves performance by introducing a non-cyclic data structure which
allows for memoizing much of the parsing effort.

24/39

Pushdown Automata
Herman cites several works as being relevant to relational parsing: (Lang, 1974) introduced the technique
of effective simultaneous simulation of possible runs of a pushdown automaton (PDA). (Tomita, 1985b)
(Tomita, 1988) introduced the graph-structured stack as a data structure for capturing its nondeterminism.
This innovation led to the developments of GLR Kats et al. (2009), GLL Scott and Johnstone (2010) and
GLC Nederhof (1993) Moore (2004).

Left Corner parsing
GLC is of particular interest: It combines top-down and bottom-up parsing with the left corner relation,
containing a pair of nonterminals whenever one can appear leftmost in some derivation of the other. The
atomic languages in relational parsing have Nondeterministic Finite Automata (NFA) states indexed in
pairs of symbols related in exactly the same way. The authors of GLC make their algorithm more efficient
by heuristically grouping some of the cases Nederhof (1993) Moore (2004). Relational parsing may be
able to use these optimisations in the same way.

Stack activity
According to Herman, the primary source of inefficiency in generalised parsers is the handling of large
graph-like data structures, offering poor cache locality. Scott and Johnstone (2005) introduced an
algorithm which limits the size of these graphs by handling most of the grammar analysis with finite
automata. Johnstone and Scott (2007) shows that appropriate PDAs can be constructed in multiple ways
and that the best one for a given parser can be selected by profiling the parser on sample inputs. Relational
parsing uses a different strategy to limit stack activity. The strategy by Johnstone limits the depth of
multiple stacks, while relational parsing limits the width of stacks to a single stack.

Derivative parsers
Herman also mentions derivative parsers by (Might et al., 2011) and (Henriksen et al., 2019). He explains
that the difference between these algorithms and relational parsing is in the way intermediate languages
are represented. Parsing-With-Derivatives and Derivative Grammars both produce intermediate grammars
that are context-free and therefore require the algorithms to handle cyclic data structures. These cyclic
data structures prevent context-free memoization, which is why Herman argues that his graph structure is
advantageous.

Memoization
When a program repeatedly performs calculations with the same input to produce the same output, this
program may benefit from memoization. Memoization is the technique of storing the results of previous
calculations so that the next time these results are requested, the program can look the results up in
a cache, which may be much quicker than performing the original calculation. Memoization can, for
example, be used to greatly speed up a recursive algorithm calculating fibonacci numbers Norvig (1991).
As demonstrated by (Hall and McNamee, 1997), memoization can even be applied automatically to a
variety of applications.

Memoization in Parsing
After demonstrating how to optimise recursive fibonacci using memoization, (Norvig, 1991) shows how
to apply memoization to Earley parsing. While Norvig’s technique of memoization broke support for left
recursion, (Johnson, 1995) was able to develop a top-down memoizing parser that handles left-recursion.

(Becket and Somogyi, 2008) shows how to build packrat parsers from Definite Clause Grammars by
memoizing. However, this nearly always results in a performance loss if everything is memoized. This
loss stems from the overhead of accessing memoization tables which is larger than the performance hit of
performing calculations from scratch. However, if memoization is carefully applied to a few parts of the
parser, memoization may provide a gain in performance. (Kuramitsu, 2015) introduced Elastic Packrat,
which adjusts the memoizing mechanism to limit the cost of memoization and improve its performance in
relation to plain packrat parsing.

Replications
(Carver et al., 2014) state that performing replications is not standard in the field of computer science
while generally being considered a necessary cornerstone to scientific study. However, there are many

25/39

open issues to address before the replication process can be fully formalised in software engineering
research.

(Juristo and Gómez, 2012) discuss the concept of replication in the field of software engineering and
identify the types of replications that are feasible to run in this discipline.

(Santos et al., 2021) show that the direct comparison of statistical data is not suitable for verifying the
results of previous software experiments. Instead, the results of replication studies should be analysed
using analytical methods such as meta-analysis. They argue that the results in baseline experiments should
not need to be reproduced, but should be regarded as small pieces of evidence in a larger picture.

(Juristo and Vegas, 2009), (Juristo and Vegas, 2011) confirm that exact replications are infeasible in
software engineering due to the complexity inherent in software development. They propose a process
allowing researchers to generate new knowledge using non-exact replications.

(Kitchenham, 2008) argues that replications are best performed independently. Dependent replications
conflict with the underlying assumptions of meta-analysis, which may be our best tool to compare
experimental results in software engineering. Furthermore, proposes that the purpose of performing
software engineering experiments is to help improve industry practice. When the results of experiments
are consistent even when the subjects, materials and setting change, then these results become much more
applicable to the industry setting.

Parser evaluation
There are multiple metrics used to test parsers: Parser speed, memory consumption and parser correctness.

Parseval is a popular evaluation technique in the field of natural language processing and was
introduced in 1991. It works by measuring the degree to which parser outputs match analyses assigned to
sentences in a manually annotated test corpus. These annotations are relatively simple, consisting of only
brackets. However, this simplicity results in some limitations: The level of detail in analyses can be low
for some corpuses, making it more difficult to distinguish between a good and bad parser. Furthermore,
there can be incompatibilities between parsing systems and parseval.

In response, (Carroll and Briscoe, 2001) and (Carroll et al., 2003) introduce a different technique called
grammatical relation annotation. In this style of annotation, sentences are annotated with grammatical
relations. These relations give a more fine-grained evaluation compared to parseval, allowing researchers
to pinpoint with greater accuracy where the problems with a given parser lie.

(Zaytsev, 2018) describes a testing methodology used to verify programming language parser correct-
ness and performance. This methodology was used throughout the development of the compiler used
in the described case study. They argue that implementing some sort of testing framework during the
construction of a parser or compiler aids in the development process by protecting against regressions and
indicating the progress of the implementation effort and list some types of tests that may be of particular
use.

REFLECTION AND FUTURE WORK
Recreating relational parsing proved much more difficult than at first anticipated. The description provided
by Herman (2020) is very abstract, and sparse with details and examples. It took a lot of trial and error to
arrive at a result that resembles Herman’s description. As our intention was to independently recreate
relational parsing, we did not contact Herman, nor did we look at his source code. While this decision
made the process more difficult than it otherwise could have been, it did help to identify what parts of
relational parsing may be difficult to understand and implement. In the end, multiple unsolved challenges
impacted the performance of our algorithm.

Firstly, the way we keep track of generated languages during parsing and parse traces probably slows
down performance more than is necessary. Whenever the parser encounters an ambiguity, all active parse
traces are duplicated so that it can create variants for every option in the ambiguity. Therefore, a highly
ambiguous grammar will force the algorithm to do a lot of bookkeeping, severely slowing down the
parser.

One possible solution is to alter the LanguageList data structure so that it no longer operates like a
stack but more like a fixed list. When implementing this change, it is possible to keep partial parsing
information in older languages, making it so that no one language has to keep track of a majority of the
parsing information. The full parse traces could then be retrieved by visiting every language used during
parsing and concatenating any partial parse traces. The drawback of this approach is that every language

26/39

generated during parsing has to be kept around, meaning that the list of languages grows linearly with the
length of your parsing input and that there is an additional cost for finishing the parse traces.

The second challenge we encountered but did not fully overcome is that of memoization. In many of
our test cases, recalling from memoization was slower than computing from scratch. This issue may have
arisen because our test cases are not suitable for memoization, maybe because the grammars we tested are
too small. Another option is that memoization is simply not worth it for relational parsing. However, as
memoization yielded massive positive results in Herman (2020)’s experiments, we find it more likely that
our implementation is limiting the usefulness of memoization.

When our algorithm is applying some memoization data, it accesses four or five different hashmaps.
We believe this is the biggest source of our inefficiency. It should be possible to merge these hashmaps
into one if we build a data structure that can unify the memoization data scattered across these several
hashmaps. This would then greatly reduce the amount of hashing and lookup operations our algorithm
performs during memoization and should therefore increase performance.

The final challenge where the need for improvement is obvious is the LanguageList data structure or
the algorithms surrounding it. As discussed in the Results section, our algorithm is unable to correctly call
prep-derive and prepend more than once during a parsing step. This is because of an assumption made
early on in the project when attempting to reverse-engineer Herman’s data structure for storing languages.
The mismatch occurs because languages created by prep-derive need to be separate from each other but
languages created while languages created get merged. Keeping multiple separate prep-derive languages
is currently not possible.

To solve this, the ParseRound and LanguageList data structures would need to be rewritten. One
possible solution for the LanguageList is that we completely do away with storing a single list of languages.
Instead we could use some recursive data structure where every language exists on its own and new
languages contain a pointer to an old one. We then keep track of a list of current languages and mutate
these to produce new languages.

This would allow us to have multiple languages side-by-side with the full language of symbols
accepted by the grammar at that point being the union of these current languages. The advantage here is
that this solution is much more flexible, but may be more difficult to reason about.

With this change, it may also be possible to do away with the ParseRound data structure.
To add support for indirectly left-recursive grammars, we need an algorithm which can recursively

traverse atomic languages and keep track of which ones it has already visited. This algorithm has not been
implemented due to time constraints. When a user attempts to input an indirectly left-recursive grammar,
they receive a message that these grammars are not supported at the moment.

CONCLUSION
We built a re-implementation of Relational parsing to investigate the intricacies of the parsing algorithm
and to test its effectiveness at parsing. We did not manage to replicate the algorithm in its full scope, but
did arrive at a result that resembles it in most respects. The limitations of our implementation seem to
stem from our implementation rather than being a limitation inherent in Herman’s algorithm.

In our experiments, memoization slows down parsing for most grammars, but does produce correct
results. This shows that it could be useful if its performance were improved. Furthermore, we showed
that relational parsing is able to parse grammars that most other parsers find tricky. However, our
re-implementation is not yet a generalised parser.

There is still room for improvement in the world of context-free parser generators. ANTLR, being the
current industry standard, is quick at what it does. However, it provides only one of the potentially many
possible parse trees for ambiguous grammars. Additionally, it may silently fail to parse some grammars
by producing incorrect parse trees or rejecting input that should produce correct parse trees.

A stable, user-friendly implementation of relational parsing may solve these problems for some use
cases.

REFERENCES
Adams, M. D., Hollenbeck, C., and Might, M. (2016). On the complexity and performance of parsing

with derivatives. SIGPLAN Not., 51(6):224–236.
Afroozeh, A. and Izmaylova, A. (2016). Iguana: a practical data-dependent parsing framework.

27/39

Alblas, H., op den Akker, R., Luttighuis, P. O., and Sikkel, K. (1994). A bibliography on parallel parsing.
SIGPLAN Not., 29(1):54–65.

Aycock, J. and Horspool, N. (2001). Directly-executable earley parsing. In Wilhelm, R., editor, Compiler
Construction, pages 229–243, Berlin, Heidelberg. Springer Berlin Heidelberg.

Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., and Pradella, M. (2015). Parallel parsing
made practical. Science of Computer Programming, 112:195–226.

Becket, R. and Somogyi, Z. (2008). Dcgs + memoing = packrat parsing but is it worth it? In Hudak,
P. and Warren, D. S., editors, Practical Aspects of Declarative Languages, pages 182–196, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Blaudeau, C. and Shankar, N. (2020). A verified packrat parser interpreter for parsing expression
grammars. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, page 3–17, New York, NY, USA. Association for Computing Machinery.

Brzozowski, J. A. (1964). Derivatives of regular expressions. J. ACM, 11(4):481–494.
Carroll, J. and Briscoe, T. (2001). Parser evaluation: a survey and a new proposal.
Carroll, J., Minnen, G., and Briscoe, T. (2003). Parser Evaluation, pages 299–316. Springer Netherlands,

Dordrecht.
Carver, J., Juristo, N., Baldassarre, M., and Vegas, S. (2014). Replications of software engineering

experiments. Empirical Software Engineering.
Chomsky, N. (1956). Three models for the description of language. IRE Trans. Inf. Theory, 2:113–124.
Cooper, K. D. and Torczon, L. (2012). Chapter 4 - context-sensitive analysis. In Cooper, K. D. and

Torczon, L., editors, Engineering a Compiler (Second Edition), pages 161–219. Morgan Kaufmann,
Boston, second edition edition.

DeRemer, F. (1969). Practical translators for lr(k) languages.
Dubroy, P. and Warth, A. (2017). Incremental packrat parsing. In Proceedings of the 10th ACM SIGPLAN

International Conference on Software Language Engineering, SLE 2017, page 14–25, New York, NY,
USA. Association for Computing Machinery.

Earley, J. (1970). An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102.
Ford, B. (2002). Packrat parsing: Simple, powerful, lazy, linear time, functional pearl. SIGPLAN Not.,

37(9):36–47.
Grune, D. and Jacobs, C. (2008). Parsing Techniques. Springer New York.
Grzegorz, H. (2023). Relational Parsing.
Hall, M. R. and McNamee, J. P. (1997). Improving software performance with automatic memoization.
Henriksen, I., Bilardi, G., and Pingali, K. (2019). Derivative grammars: A symbolic approach to parsing

with derivatives. Proc. ACM Program. Lang., 3(OOPSLA).
Herman, G. (2020). Faster general parsing through context-free memoization. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020, page
1022–1035, New York, NY, USA. Association for Computing Machinery.

Johnson, M. (1995). Memoization in top-down parsing. Comput. Linguist., 21(3):405–417.
Johnstone, A. and Scott, E. (2007). Automatic recursion engineering of reduction incorporated parsers.

Science of Computer Programming, 68(2):95–110. Special Issue on ETAPS 2005 Workshop on
Language Descriptions, Tools, and Applications (LDTA ’05).

Juristo, N. and Gómez, O. S. (2012). Replication of Software Engineering Experiments, pages 60–88.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Juristo, N. and Vegas, S. (2009). Using differences among replications of software engineering experiments
to gain knowledge. In 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, pages 356–366.

Juristo, N. and Vegas, S. (2011). The role of non-exact replications in software engineering experiments.
Empirical Software Engineering.

Kats, L. C., de Jonge, M., Nilsson-Nyman, E., and Visser, E. (2009). Providing rapid feedback in
generated modular language environments: Adding error recovery to scannerless generalized-lr parsing.
SIGPLAN Not., 44(10):445–464.

Kitchenham, B. (2008). The role of replications in empirical software engineering-a word of warning.
Empirical Software Engineering.

Kuramitsu, K. (2015). Packrat parsing with elastic sliding window. Journal of Information Processing,
23(4):505–512.

28/39

Lang, B. (1974). Deterministic techniques for efficient non-deterministic parsers. In Proceedings of
the 2nd Colloquium on Automata, Languages and Programming, page 255–269, Berlin, Heidelberg.
Springer-Verlag.

Laurent, N. and Mens, K. (2016). Taming context-sensitive languages with principled stateful parsing. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2016, page 15–27, New York, NY, USA. Association for Computing Machinery.

Lewis, P. M. and Stearns, R. E. (1968). Syntax-directed transduction. J. ACM, 15(3):465–488.
Might, M., Darais, D., and Spiewak, D. (2011). Parsing with derivatives: A functional pearl. SIGPLAN

Not., 46(9):189–195.
Mitchell, D. C. (1994). Sentence parsing. In Handbook of psycholinguistics, chapter 11, pages 375 – 409.

Academic Press.
Moore, R. C. (2004). Improved Left-Corner Chart Parsing for Large Context-Free Grammars, page

185–201. Kluwer Academic Publishers, USA.
Nederhof, M.-J. (1993). Generalized left-corner parsing. In Proceedings of the Sixth Conference on

European Chapter of the Association for Computational Linguistics, EACL ’93, page 305–314, USA.
Association for Computational Linguistics.

Norvig, P. (1991). Techniques for automatic memoization with applications to context-free parsing.
Comput. Linguist., 17(1):91–98.

Parr, T. (2022). About the antlr parser generator. https://www.antlr.org/about.html. Accessed: 2022-06-23.
Parr, T. and Fisher, K. (2011). Ll(*): The foundation of the antlr parser generator. SIGPLAN Not.,

46(6):425–436.
Parr, T., Harwell, S., and Fisher, K. (2014). Adaptive ll(*) parsing: The power of dynamic analysis.

SIGPLAN Not., 49(10):579–598.
Santos, A., Vegas, S., Oivo, M., and Juristo, N. (2021). Comparing the results of replications in software

engineering. Empirical Software Engineering.
Scott, E. and Johnstone, A. (2005). Generalized Bottom Up Parsers With Reduced Stack Activity. The

Computer Journal, 48(5):565–587.
Scott, E. and Johnstone, A. (2010). Gll parsing. Electronic Notes in Theoretical Computer Science,

253(7):177–189. Proceedings of the Ninth Workshop on Language Descriptions Tools and Applications
(LDTA 2009).

Scott, E. and Johnstone, A. (2013). Gll parse-tree generation. Science of Computer Programming,
78(10):1828–1844. Special section on Language Descriptions Tools and Applications (LDTA’08 & ’09)
& Special section on Software Engineering Aspects of Ubiquitous Computing and Ambient Intelligence
(UCAmI 2011).

Scott, J. and Economopoulus (2007). Brnglr: a cubic tomita-style glr parsing algorithm. Acta Informatica,
44:427–461.

Shepperd, M. (2018). Replication studies considered harmful. In Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’18, page 73–76,
New York, NY, USA. Association for Computing Machinery.

Shi, Z. (2021). Chapter 6 - language cognition. In Shi, Z., editor, Intelligence Science, pages 215–266.
Elsevier.

Sijm, M. P. (2019). Incremental scannerless generalized lr parsing. In Proceedings Companion of the 2019
ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity, SPLASH Companion 2019, page 54–56, New York, NY, USA. Association for
Computing Machinery.

Tomita, M. (1985a). Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers, USA.

Tomita, M. (1985b). Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers, USA.

Tomita, M. (1988). Graph-structured stack and natural language parsing. In Proceedings of the 26th Annual
Meeting on Association for Computational Linguistics, ACL ’88, page 249–257, USA. Association for
Computational Linguistics.

van Binsbergen, L. T., Scott, E., and Johnstone, A. (2018). Gll parsing with flexible combinators. In
Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2018, page 16–28, New York, NY, USA. Association for Computing Machinery.

29/39

van Binsbergen, L. T., Scott, E., and Johnstone, A. (2020). Purely functional gll parsing. Journal of
Computer Languages, 58:100945.

van den Brand, M. G. J., Scheerder, J., Vinju, J. J., and Visser, E. (2002). Disambiguation filters for
scannerless generalized lr parsers. In Horspool, R. N., editor, Compiler Construction, pages 143–158,
Berlin, Heidelberg. Springer Berlin Heidelberg.

van Marcellus Paulus Lohuizen (2001). Parallel natural language parsing: From analysis to speedup.
Visser, E. (1997). Scannerless generalized-lr parsing.
Zaytsev, V. (2018). An industrial case study in compiler testing (tool demo). In Proceedings of the 11th

ACM SIGPLAN International Conference on Software Language Engineering, SLE 2018, page 97–102,
New York, NY, USA. Association for Computing Machinery.

30/39

APPENDIX

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

tim
e

(µ
s)

Input

ParseParse no memo

basic grammar: Comparison

Figure 8. Comparison between memoized and non-memoized parsing for basic grammar

31/39

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70

A
ve

ra
ge

tim
e

(s
)

Input

ParseParse no memo

e-rule grammar: Comparison

Figure 9. Comparison between memoized and non-memoized parsing for e-rule grammar

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

tim
e

(m
s)

Input

ParseParse no memo

odd number of a grammar: Comparison

Figure 10. Comparison between memoized and non-memoized parsing for odd number of a grammar

32/39

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

tim
e

(m
s)

Input

ParseParse no memo

direct left recursive grammar: Comparison

Figure 11. Comparison between memoized and non-memoized parsing for direct left-recursive grammar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 30 40 50 60 70 80 90 100 110

A
ve

ra
ge

tim
e

(m
s)

Input

ParseParse no memo

indirect left grammar: Comparison

Figure 12. Comparison between memoized and non-memoized parsing for indirect left-recursive
grammar (older version of application)

33/39

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

tim
e

(m
s)

Input

ParseParse no memo

direct right recursive gramar: Comparison

Figure 13. Comparison between memoized and non-memoized parsing for direct right-recursive
grammar

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

tim
e

(m
s)

Input

ParseParse no memo

indirect right recursive: Comparison

Figure 14. Comparison between memoized and non-memoized parsing for indirect right-recursive
grammar

34/39

Figure 15. ANTLR lex and parse time of 61 character test input for e-rule grammar

Figure 16. ANTLR parse attempts for odd number of a grammar

Figure 17. ANTLR grammar compilation attempt for indirect left-recursive grammar

35/39

Figure 18. ANTLR parse attempt for direct right-recursive grammar

Figure 19. Memoization statistics for basic grammar

36/39

Figure 20. Memoization statistics for e rule grammar

Figure 21. Memoization statistics for odd number of a grammar

37/39

Figure 22. Memoization statistics for direct left grammar

Figure 23. Memoization statistics for indirect left grammar

38/39

Figure 24. Memoization statistics for direct right grammar

Figure 25. Memoization statistics for indirect right grammar

39/39

	References

