
MSc Thesis Applied Mathematics

Reduced-order surrogate
modeling for linear-nonlinear
coupled problems

Paul Stuiver

Daily supervisor: dr. M. Guo
Committee chair: prof. dr. C. Brune
Committee member: dr. S.M. Glas

October, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science
Chair of Mathematics of Imaging & AI

Acknowledgements

I’m grateful of the chance to have been involved in this thesis project. First and fore-
most, I would like to thank Mengwu Guo for all the help over the past year. You have
given me the opportunity grow both on academic and professional level. I have always
felt extremely welcome and heard during our meetings. You have been very flexible and
shown to be closely involved in this thesis. Next, I would like to thank Christoph Brune for
the valuable feedback during this thesis. I would like to thank Dongwei Ye for providing
me feedback on my draft version. I would like to thank Andrea Manzoni for his suggestions.

Being invested in a single topic alone for a longer time was quite a new experience. I
would like to thank Feike and Sjon for keeping me company during the writing of this
thesis.

Reduced-order surrogate modeling for linear-nonlinear
coupled problems

P. Stuiver ∗

October, 2023

Abstract

Introduction: Parametrized linear-nonlinear coupled problems consist of a linear and
non-linear sub-domain that are coupled via a non-overlapping interface. Solving these
problems with a conventional full-order approach such as the finite element method
(FEM) is usually paired with prohibitive computational cost. Reduced-order models
are required to address these limitations.

Methods: We developed reduced-order surrogate models to solve parametrized linear-
nonlinear coupled problems with improved efficiency. These models utilize domain
decomposition to apply both intrusive and non-intrusive reduced-order methods with
POD-ROM and POD-NN on sub-domains separately. The choices of the reduction
techniques on the sub-domains are based on the parametric complexity and the under-
lying equations (linear or non-linear) in order to implement reduction effectively. The
designed ROMs termed hybrid-LL and surrogate-LL act as proof of concepts to solve
linear-linear coupled problems, while the hybrid-NL and surrogate-NL are designed to
solve linear-nonlinear coupled problems.

Results: We report the performance of the ROMs on three steady-state PDEs with
increased parametric complexity. While both the hybrid-NL and surrogate-NL guar-
antee solutions, the hybrid-NL is inaccurate for particular parameter locations and is
usually costly. In contrast, the surrogate-NL is successfully tested and shows minimal
errors with extremely low computational costs. Equally, in the field of uncertainty
quantification, the surrogate-NL shows promising results using Monte Carlo simula-
tions.

Conclusion: While the hybrid-NL does not perform as desired due to lacking ro-
bustness and computational gain, the surrogate-NL has shown to perform remarkably
well with low errors and computational cost.

∗Email: p.stuiver@student.utwente.nl

1

Table of Contents

1 Introduction 5
1.1 Motivation . 7
1.2 Outline of thesis . 8

2 Preliminaries 9
2.1 Finite element method . 9

2.1.1 Galerkin method . 10
2.1.2 Finite elements . 10

2.2 Multidomain formulation of the finite element approximation 12
2.3 Singular value decomposition . 14
2.4 Reduced-order modeling for parametrized PDEs 15

2.4.1 Intrusive reduced-order modeling with POD 16
2.4.2 Non-intrusive reduced-order modeling with POD and neural networks 18

2.5 Iterative solvers for minimization problems 19
2.6 Newton’s method for finding roots . 20
2.7 Forward uncertainty quantification of PDEs using Monte Carlo simulation . 20

2.7.1 Importance sampling . 21

3 Reduced-order surrogate models for coupled problems 23
3.1 Linear and non-linear Poisson problem . 23
3.2 Surrogate models for linear-linear coupled problems 24
3.3 Surrogate models for linear-nonlinear coupled problems 28
3.4 Solving techniques for a system of non-linear equations 32

3.4.1 Newton’s method . 32
3.4.2 Iterative solvers . 33
3.4.3 Remarks . 33

4 Numerical Experiments part 1: linear-linear coupled Poisson problem 34
4.1 Sample solution . 34
4.2 Numerical results of reduced-order modeling methods 34

5 Numerical Experiments Part 2: linear-nonlinear coupled problem with
non-linear diffusion 42
5.1 Domain decomposition . 42
5.2 Sample solution . 43
5.3 Numerical results of reduced-order modeling methods 43
5.4 Effect of the number of modes . 49
5.5 Comparison of Gradient Descent, Newton’s method and BFGS 51

6 Numerical Experiments Part 3: linear-nonlinear coupled problem with
non-linear reaction 54
6.1 Problem description . 54
6.2 Numerical results of reduced-order modeling methods 54

7 Numerical Experiments Part 4: Uncertainty quantification using Monte
Carlo simulation 61
7.1 Estimating statistical information . 61
7.2 Estimating failure probability . 62
7.3 Estimation of probability density function 64

2

8 Discussion and conclusions 66

9 Future research 68

3

Table of Symbols

Abbreviation Description
POD Proper orthogonal decomposition
FOM Full-order model
ROM Reduced-order model
FEM Finite element method
PDE Partial differential equation

POD-ROM Reduced-order model based on POD
RB Reduced basis

POD-NN Reduced-order model based on POD and neural networks
SVD Singular value decomposition
BFGS Broyden-Fletcher-Goldbarf-Shanno algorithm

Hybrid-LL hybrid ROM to solve linear-linear coupled problems
Surrogate-LL surrogate ROM to solve linear-linear coupled problems
Hybrid-NL hybrid ROM to solve linear-nonlinear coupled problems

Surrogate-NL surrogate ROM to solve linear-nonlinear coupled problems
OoI Output of interest
QoI Quantity of interest
PDF Probability density function

Symbol Description
µ Parameter vector
µi i-th parameter vector
µ(i) i-th element of the parameter vector
P Parameter space
1Ω Indicator function w.r.t. Ω
∆ Laplace operator
ND Non-linear diffusion operator
NR Non-linear reaction operator
Cc Space of continuous functions with first c derivatives
Lp Space of p-integrable functions
Hn n-th order Sobolev space
M Solution manifold
S Snapshot matrix
π Mapping
V Transformation matrix
γ Step size
Rk Residual in iteration k
JF Jacobian w.r.t. F
U Solution vector in full-order space
U rb Solution vector in full-order space from the ROM
u Solution vector in reduced-order space
urb Solution vector in reduced-order space from the ROM
TΓ Traction force
tΓ Reduced-order traction force

4

1 Introduction

Partial differential equations (PDEs) have been extensively investigated due to their promi-
nent role in various scientific fields such as physics and engineering. They can model quan-
tities of interest in for example heat transfer, electrostatics and fluid dynamics [1–3]. Yet
studied thoroughly, solving PDEs remains challenging along with heavy computational
demands. Starting in the 1940s, the Finite Element Method (FEM) has developed into
a general numerical method to solve PDEs and is still used today thanks to its accuracy
[4, 5]. As a full-order numerical solver, FEM involves a large amount of degrees of freedom
(DoFs) that in turn can demand a large computation time and memory cost for complex
problems. In problems requiring a single solution once and for all, FEM is a feasible ap-
proach.

In applied sciences, parameters can model material characteristics, input forces or bound-
ary conditions that are manifested in the problem [6–10]. In addition, in uncertainty
quantification one is aiming to determine a statistical quantity of interest depending on
errors in the input parameters [11, 12]. Another example is the increased popularity in
digital twins defined as ’a model that brings together the technology to map, monitor and
control real-world entities by continually receiving and integrating data from the physical
twin to provide an up-to-date digital representation of the physical entity’ [13, 14]. For
digital twins to operate effectively, computations need to be carried out within a short
amount of time. These many-query problems involving parameters require a set of solu-
tions depending on the parameters rather than just a single solution [12, 15, 16]. The
construction of the ensemble of solutions using FEM requires the corresponding problem
to be solved time and again for each parameter location, which can quickly turn out to
become prohibitive due to the paired high computational cost.

To overcome the issue of the computational requirements in the parametrized problems,
the study of reduced order modeling has gained substantial ground over the past decades
[17, 18]. The aim of reduced order modeling is to decrease the computational cost required
from full-order methods (FOMs) so that solutions can be obtained in a much smaller time
frame. Although designed to be computationally cheap, reduced order models (ROMs)
exhibit a decrease in accuracy when compared to their corresponding FOMs. The chal-
lenge lies in finding a balance between an acceptable computational cost and a satisfactory
accuracy.

Typically, ROMs consist of an offline and online stage. In the offline stage, precompu-
tations are performed once and for all to construct a simplified model. In the online stage,
the simplified model is utilized to obtain the solution for an unseen parameter location.
Usually the offline stage entails constructing a set of solutions to the FOM for different
parameter locations. With this information one tries to construct a relation between the
parameter locations and the respective solutions. Such construction can either be intrusive
in which we use the underlying mathematical formulation of the FOM, or non-intrusive in
which the construction is also based on observed data. The project-based reduced-basis
(RB) method is a well known approach in which an RB is constructed using proper or-
thogonal decomposition (POD) and the singular value decomposition (SVD) [19]. The RB
construction may also be performed by exploiting the Greedy Algorithm [20]. The RB
maps the full-order problem onto a reduced-order space on which the problem is solved
intrusively. In turn, the reduced solution is recovered to the full-order space. The strength

5

of the RB methods is motivated by various flow problems in [21, 22] complemented with
a posteriori error bounds [20, 23, 24]. In non-linear problems or problems not satisfying
the affine parametric dependence however, the projection-based RB method may perform
inadequately as the simplified model is yet computationally demanding.

Recent advances in data-driven reduced-order modeling have overcome the issue of the
still demanding computational cost to solve the problem in the reduced space. Being
non-intrusive, a mapping is constructed between the parameters and the reduced-order
solution. For example, in POD neural networks (POD-NN) the construction of an RB is
still performed but the reduced solution is determined directly using neural networks [25].
Similarly, such mapping can be constructed using a Gaussian process regression model
(GPR) [26] as is done in [27]. These mappings overcome the computational cost arising in
non-affine parametric problems.

However, this does not take into account problems for which an accurate reduced basis
is hard to construct. For that matter, in deep learning ROMs (DL-ROMs), one tries to
construct a mapping from the parameters directly to the full-order solution using neural
networks that anticipate well for non-linearities [28].

Alternative methods to reduce the computational cost in full-order models can be achieved
by utilizing domain decomposition. Here, the domain is decomposed into smaller sub-
regions that form a partition of the complete domain allowing for the solving of sub-
problems. The sub-problems are coupled to form the full problem with coupling conditions
forcing a smooth solution at the regions where the sub-problems connect. Restricting to
non-overlapping domain decomposition methods, Schwarz iterative methods [29] as well
as Schur complement methods [30] are well-known full-order techniques to solve coupled
problems. In presence of parameters, linear-linear coupled problems have shown to be ef-
fectively solved in partitioned schemes while combining ROMs [31]. Domain decomposition
methods can be extended to multi-scale physics problems where different physical models
are used in different sub-regions that behave interactively. For instance, in fluid-structure
interaction, one concurrently models both the fluid and the structure, allowing them to
interact [32]. Similarly, in Micro Electro Mechanical Systems, the modeling involves cap-
turing the interaction between the electrostatic field and the structural components [33].

In practical applications, coupled problems consist of a linear and non-linear sub-domain
that are coupled via a non-overlapping interface paired with parameters, for example in
modeling air flow around an obstacle [34]. In full-order models, the parametrized linear-
nonlinear coupled problems must be solved using non-linear solvers such as Newton’s
method due to the presence of non-linearity, even though part of the problem is linear.
Generally, non-linear solvers are computationally demanding and prone to instability. In
order to tackle these drawbacks, ROMs that combine RB methods as well as the employ-
ment of domain decomposition have been thoroughly investigated [33–37]. As a result
of domain decomposition, effective reduction can be applied on the linear and non-linear
domain respectively. While RB methods may not guarantee satisfactory cost reduction,
data-driven modeling overcomes this issue. In this thesis we propose new reduced-order
surrogate models by not only combining RB methods and domain decomposition but also
data-driven ROMs to solve parametrized linear-nonlinear coupled problems.

6

1.1 Motivation

As an example consider a steady-state heat conduction problem in a unit square domain
Ω. The domain is comprised of nine equal-sized non-overlapping blocks such that on each
block we define a different constant thermal conductivity. This gives

Ω =
9⋃

i=1

Ri, (1.1)

where Ri is a subregion with thermal conductivity µi > 0. The corresponding boundary
∂Ω is decomposed into four parts such that ∂Ω = ΓT ∪ ΓB ∪ ΓL ∪ ΓR. An illustration is
given in Figure 1.1.

Figure 1.1: Domain of interest Ω with boundaries and nine subregions.

Let ND be a non-linear diffusion operator given by

NDu = −∇ · (k(x;µ)D(x;µ)∇u) (1.2)

with D(x;µ) = 1 + u1R5(x) where 1R5(x) denotes the indicator function with respect to
R5 and the conductivity field

k(x;µ) =
9∑

i=1

µi1Ri(x) with µ = [µ1 µ2 ... µ9]
T ∈ P = [0.1 1]9. (1.3)

The problem of interest is a steady-state Poisson problem given by
−NDu = −6 in Ω,

u = 1 + x2 + 2y2 on ΓL ∪ ΓR,
∂u
∂n = 4y on ΓT ∪ ΓB,

(1.4)

to solve for the temperature u(x;µ). This means that linear Poisson equations are defined
on the outer blocks of the domain with on the middle region R5 a non-linear Poisson equa-
tion. The goal is to solve the problem for all parameter locations in the parameter space P.

7

Treating (1.4) the conventional way as a non-linear problem leads to the requirement
of non-linear PDE solvers such as Newton’s method for every parameter location. Sustain-
able for a single parameter location, the exploration of the whole parameter space using
traditional PDE solvers quickly becomes problematic due to the computational demands.
While RB methods work well for linear problems, the reduction of computational cost
here is unsatisfactory due the non-linearity in the middle region. As such, it is beneficial
to decompose the domain such that the linear and non-linear domains are separated. In
turn, RB methods can be applied on the linear domain while data-driven reduced-order
modeling can be used on the non-linear domain.

1.2 Outline of thesis

The aim of this thesis is to construct alternative reduced-order surrogate models for
parametrized linear-nonlinear coupled problems. These ROMs are intended to address
the limitations of conventional full-order techniques that demand prohibitive computa-
tional costs. Before discussing the ROMs, we consider general background that is required
throughout this thesis in Section 2. In Section 3 we explain two ROMs for parametrized
linear-linear coupled problems that establish two ROMs for linear-nonlinear case. As a
proof-of-concept, the results of the numerical experiments for a linear-linear coupled prob-
lem using the ROMs is compared with FEM in Section 4. In Section 5 and 6 we discuss
results of numerical experiments for linear-nonlinear coupled problems and investigate the
influence of slight modifications in the ROMs. To further motivate the use of reduced-
order modeling, we report numerical results on uncertainty quantification using Monte
Carlo simulation in Section 7. Regarding the numerical experiments we refer to Appendix
A for the implementation of the code using FEniCS, an open-source computing platform
for solving PDEs [38, 39].

8

2 Preliminaries

This section introduces the concepts of the finite element method, domain decomposition,
reduced-order modeling, iterative solvers and Monte Carlo simulation for PDEs. We refer
to [25, 40–49].

2.1 Finite element method

The finite element method (FEM) is a widely used full-order numerical method to solve
PDEs that approximates an unknown function on a domain. Given a PDE, the general idea
is to construct the corresponding discrete problem by means of a space discretization and
divide the domain of interest into smaller discrete cells, also known as the finite elements.
In the end, a linear system of equations is left to be solved. In this section we formulate the
finite element approximation of the Poisson equation. Appearing in numerous applications
such as in electrostatics, heat transfer and fluid dynamics, the Poisson equation forms an
important equation of interest [49].

Let Ω ⊂ R2 be an open bounded and connected set with Lipschitz-continuous bound-
ary ∂Ω. Consider the strong form of the Poisson equation given by{

−∆u = f in Ω,

u = g on ∂Ω,
(2.1)

with g = 0 and where ∆ denotes the laplace operator and the second equation a ho-
mogeneous Dirichlet boundary condition. The equations model the displacement u of a
membrane due to a force with intensity f with no displacement on the boundary. Other
boundary conditions such as Neumann or Robin conditions are possible but not treated
here. Due to the laplace operator, the solution u is required to be twice differentiable and
so u ∈ C2(Ω) ∩ C(Ω) where Ω denotes the closure of Ω. Moreover, f ∈ C(Ω). In physical
cases, the solution u does not necessarily satisfy the differentiability conditions imposed
by the strong form. An alternative formulation of the problem is required to allow for less
smooth solutions. This is called the weak form. It is obtained by multiplying (2.1) by
a so-called arbitrary test function v and integrating over the domain Ω and applying the
Green formula for the divergence operator. This gives the following weak formulation:

find u ∈ H1
0 (Ω) :

∫
Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ ∀v ∈ H1

0 (Ω), (2.2)

with f ∈ L2(Ω), which is the space of square integrable functions

L2(Ω) := {f : Ω −→ R such that
∫
Ω
|f |2 dΩ < ∞}

and consequently we introduce the Sobolev spaces of order 1, that is

H1(Ω) := {u : Ω −→ R such that u,
∂u

∂xi
∈ L2(Ω), i = 1, 2},

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω}.

Using functional analysis, it can be proven that the solutions to the weak form are also
solutions to the strong form in an almost everywhere setting. By letting V = H1

0 (Ω), the
weak form (2.2) can be formulated in a more compact form with bilinear form

a : V × V −→ R, a(u, v) =

∫
Ω
∇u · ∇v dΩ

9

and functional

F : V −→ R, F (v) =

∫
Ω
fvdΩ.

This yields

find u ∈ V : a(u, v) = F (v) ∀v ∈ V (2.3)

Thanks to the coercivity of and continuity of the bilinear form and continuity of the
functional in (2.3), the existence and uniqueness of the weak form is guaranteed thanks to
the Lax-Milgram Theorem, a well-known result from functional analysis [48].

2.1.1 Galerkin method

Having the weak formulation (2.3) at hand, we now aim to construct a discrete formulation.
We start with a finite dimensional subspace depending on a parameter h:

Vh ⊂ V such that dim(Vh) = Nh < ∞ ∀h > 0.

Substituting the above in the weak form in (2.3) gives the so-called Galerkin Problem

find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (2.4)

It can be proven that this form still retains the useful properties such as existence, unique-
ness, stability and convergence of the solution when h −→ 0. They are based on results
from functional analysis. For a chosen basis {φ1, φ2, ..., φNh

}, we express the solution in
terms of the basis functions:

uh(x) =

Nh∑
j=1

ujφj(x)

and vh similarly. In this way, the Galerkin Problem can be reformulated such that

a(uh, φi) = F (φi), i = 1, 2, ..., Nh (2.5)

giving rise to the linear system

Au = f (2.6)

with stiffness matrix A ∈ RNh×Nh and f ∈ RNh whose elements are given by

aij =

∫
Ω
∇φj∇φi dΩ and fi =

∫
Ω
fφi dΩ.

2.1.2 Finite elements

With the Galerking Problem in (2.4) at hand, the remaining question is what kind of
basis to choose. Ideally, a basis that promotes sparsity in matrix A in (2.6) ensures a low
computational cost. Before constructing a suitable basis, we will first discretize the domain
with a cover of triangular elements such that

Ωh = int

 ⋃
K∈Th

K

 ,

10

where Th is a partition consisting of elements K that make up Ω and int denotes the
interior part of the set. Th is often referred to as the mesh. The parameter h refers to the
spacing of the mesh.

Figure 2.1: Possible mesh Ωh to approximate the original domain Ω.

Let P1 denote the space of polynomials up to degree 1, that is

P1 = {p(x1, x2) = a+ bx1 + cx2, with a, b, c ∈ R}.

We introduce the finite element space

Xh = {vh ∈ C0(Ω) : vh
∣∣
K

∈ P1 ∀K ∈ Th}, (2.7)

which is the space of continuous polynomials of degree 1 on Ω on single triangles of the
triangulation Th. Next, we define

◦
Xh = {vh ∈ Xh : vh

∣∣
∂Ω

= 0}. (2.8)

The latter forms an approximation of H1
0 (Ω) and therefore by setting Vh =

◦
Xh, the finite

element problem becomes

find uh ∈ Vh :

∫
Ω
∇uh · ∇vh dΩ =

∫
Ω
fvh dΩ ∀vh ∈ Vh. (2.9)

As a basis for Vh we choose the characteristic Lagrangian functions φj ∈ Vh, j = 1, ..., Nh

such that

φj(Ni) = δij =

{
0 if i ̸= j,

1 if i = j,
i, j = 1, ..., Nh (2.10)

In turn, the functions uh and vh can be expressed by a linear combination of the basis
vectors:

vh(x) =

Nh∑
i=1

viφi(x) ∀x ∈ Ω with vi = vh(Ni) (2.11)

uh(x) =

Nh∑
j=1

ujφj(x) ∀x ∈ Ω with uj = uh(Nj) (2.12)

Inserting (2.11) and (2.12) into the finite element problem in (2.9) yields the linear system
in (2.6). By choice of the basis functions, the stiffness matrix A is sparse.

11

2.2 Multidomain formulation of the finite element approximation

In multi-physics, there exist multiple partial differential equations (PDEs) defined in dif-
ferent subdomains of the computational domain [32, 33]. For these problems, numerical
methods such as the finite element method (FEM) allow for a discretization of the complete
domain. As such, it may be desirable to divide the computational domain into subregions
on which each subregion a single PDE is defined, while taking care of the boundaries. This
allows for solving smaller subregions and thereby possibly saving the total computational
cost. This concept is known as domain decomposition. Decomposing a domain can be done
using overlapping and non-overlapping subdomains [29, 30]. Here we concentrate on the
latter. We will start with a finite element approximation of the Poisson equation in (2.1)
on a single domain and then split the domain in two subregions to construct an equivalent
formulation [41].

Let Ω ∈ R2 be the region that is subdivided into two non-overlapping subdomains such
that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ = Ω1 ∩ Ω2. (2.13)

The boundary Γ that connects the two domains is often referred to as the interface. See
Figure 2.2 below.

Figure 2.2: A non-overlapping domain decomposition of Ω.

The multidomain formulation in which ui = u
∣∣
Ωi

, i = 1, 2 is as follows:

−∆u1 = f in Ω1,

u1 = 0 on ∂Ω1\Γ,
−∆u2 = f in Ω2,

u2 = 0 on ∂Ω2\Γ,
u1 = u2 on Γ, (continuity of the interface)
∂u1
∂n = ∂u2

∂n on Γ. (continuity of normal derivatives)

(2.14)

The last two equations in (2.14) are the so-called interface conditions and are imposed to
have continuity on the boundary. The nodes on domain Ω are partitioned into sets such

12

that {x(1)j , 1 ≤ j ≤ N1}, {x(2)j , 1 ≤ j ≤ N2}, {x(Γ)j , 1 ≤ j ≤ NΓ} contain the nodes on
domain Ω1, Ω2 and the interface respectively. Similarly, we split the basis functions such
that φ

(1)
j , φ(2)

j and φ
(Γ)
j correspond to the nodes on the respective domain. Consequently,

the finite element problem in (2.9) can be reformulated: find uh ∈ Vh such that
a(uh, φ

(1)
i) = F (φ

(1)
i) ∀i = 1, ..., N1,

a(uh, φ
(2)
i) = F (φ

(2)
i) ∀i = 1, ..., N2,

a(uh, φ
(Γ)
i) = F (φ

(Γ)
i) ∀i = 1, ..., NΓ.

(2.15)

Let

ai(uh, vh) =

∫
Ωi

∇uh∇vhdΩ ∀uh, vh ∈ Vi,h, i = 1, 2 (2.16)

be the linear forms respective to domain i with suitable function space Vi,h = {v ∈
H1(Ωi)

∣∣v = 0 on ∂Ωi\Γ} (i = 1, 2). The problem is reformulated again: find u
(1)
h ∈

V1,h, u
(2)
h ∈ V2,h such that
a1(u

(1)
h , φ

(1)
i) = F1(φ

(1)
i) ∀i = 1, ..., N1,

a2(u
(2)
h , φ

(2)
j) = F2(φ

(2)
j) ∀j = 1, ..., N2,

a1(u
(1)
h , φ

(Γ)
k) + a2(u

(2)
h , φ

(Γ)
k) = F1(φ

(Γ)
k) + F2(φ

(Γ)
k) ∀k = 1, ..., NΓ.

(2.17)

Next, we rewrite the solution vector uh in terms of the basis functions on their respective
domain such that

uh(x) =

N1∑
j=1

uh(x
(1)
j)φ

(1)
j (x) +

N2∑
j=1

uh(x
(2)
j)φ

(2)
j (x) +

NΓ∑
j=1

uh(x
(Γ)
j)φ

(Γ)
j (x). (2.18)

To ease notation, we let uh(x
(α)
j) = u

(α)
j for α = 1, 2,Γ and j = 1, ..., Nα. Substituting the

rewritten solution vector into (2.17) gives

N1∑
j=1

u
(1)
j a1(φ

(1)
j , φ

(1)
i) +

NΓ∑
j=1

u
(Γ)
j a1(φ

(Γ)
j , φ

(1)
i) = F1(φ

(1)
i) ∀i = 1, ..., N1,

N2∑
j=1

u
(2)
j a2(φ

(2)
j , φ

(2)
i) +

NΓ∑
j=1

u
(Γ)
j a2(φ

(Γ)
j , φ

(2)
i) = F2(φ

(2)
i) ∀i = 1, ..., N2,

NΓ∑
j=1

u
(Γ)
j

(
a1(φ

(Γ)
j , φ

(Γ)
i) + a2(φ

(Γ)
j , φ

(Γ)
i)
)

+

N1∑
j=1

u
(1)
j a1(φ

(1)
j , φ

(Γ)
i) +

N2∑
j=1

u
(2)
j a2(φ

(2)
j , φ

(Γ)
i)

= F1(φ
(Γ)
i

∣∣
Ω1
) + F2(φ

(Γ)
i

∣∣
Ω2
) ∀i = 1, ..., NΓ.

(2.19)

13

We will now formulate the algebraic formulation by introducing the following arrays:

(A11)ij = a1(φ
(1)
j , φ

(1)
i), (A1Γ)ij = a1(φ

(Γ)
j , φ

(1)
i),

(A22)ij = a2(φ
(2)
j , φ

(2)
i), (A2Γ)ij = a2(φ

(Γ)
j , φ

(2)
i),

(A(1)
ΓΓ)ij = a1(φ

(Γ)
j , φ

(Γ)
i), (A(2)

ΓΓ)ij = a2(φ
(Γ)
j , φ

(Γ)
i),

(AΓ1)ij = a1(φ
(1)
j , φ

(Γ)
i), (AΓ2)ij = a2(φ

(2)
j , φ

(Γ)
i),

(f1)i = F1(φ
(1)
i), (f2)i = F2(φ

(2)
i),

(f
(1)
Γ)i = F1(φ

(Γ)
i), (f

(2)
Γ)i = F2(φ

(Γ)
i).

Moreover, let

u1 = u
(1)
j , u2 = u

(2)
j and uΓ = u

(Γ)
j such that u = (u1,u2,uΓ)

T (2.20)

giving the linear system

Au =

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 A(1)
ΓΓ + A(2)

ΓΓ

u1

u2

uΓ

 =

 f1
f2

f
(1)
Γ + f

(2)
Γ

 (2.21)

This linear system is in fact equivalent to the linear system in (2.6) with characteristic
Lagrangian functions of first order. It gives a rearrangement of the linear system such that
all DoFs belonging to each domain are stacked together. This means that u1 contains all
DoFs that belong strictly to domain 1, u2 the DoFs that belong strictly to domain 2 and
uΓ the DoFs that belong to the interface.

Rather than solving the complete linear system in (2.21) at once, we can use the block
structure to solve multiple smaller problems to save computational cost. The first two
lines of (2.21) can be interpreted as two separate discretizations on domain Ω1 and Ω2

respectively, with common value uΓ as a Dirichlet boundary condition on the interface.
On the other hand we can obtain the so-called traction force (or flux) [41] relation from
the third line in (2.21):

tΓ := AΓ1u1 + A(1)
11 uΓ − f (1)

Γ = f
(2)
Γ − AΓ2u2 − A(2)

ΓΓuΓ. (2.22)

The traction force relates the interaction between the two domains. The first line of
(2.21) is a discretization for domain Ω1 with a Neumann boundary condition of tΓ on the
interface. Similarly the second line is a discretization for domain Ω2 with Neumann data
tΓ on the interface. Schur complement methods use these different perspectives to solve
smaller subsystems and thereby saving computational cost.

2.3 Singular value decomposition

In linear algebra, the singular value decomposition (SVD) is a matrix factorization process
allowing for low-rank approximations. This is useful in the applications of image and data
compression [42].

Definition 2.1 (Singular Value Decomposition). If A ∈ Rm×n is a real matrix, there exist
two orthogonal matrices

U = [ζ1| ... |ζm] ∈ Rm×m, Z = [ψ1| ... |ψn] ∈ Rn×n

14

such that

A = UΣZT , with Σ = diag(σ1, ..., σp) ∈ Rm×n (2.23)

and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, for p = min(m,n).

Proof. See [42].

With the following core result, the best low-rank approximation of a matrix can be guar-
anteed.

Definition 2.2 (Schmidt-Eckart-Young). Given a matrix A ∈ Rm×n of rank r, the matrix

Ak =

k∑
i=1

σiζiψ
T
i , 0 ≤ k ≤ r,

satisfies the optimality property

∥A− Ak∥F = min
B∈Rm×n

rank(B≤k)

∥A− B∥F =

√√√√ r∑
i=k+1

σ2
i

Proof. See [42].

2.4 Reduced-order modeling for parametrized PDEs

Consider a well-posed parametrized PDE that is solved using the numerical scheme of
FEM. Let µ ∈ P ⊂ Rp be the parameter vector in parameter space P. For a given
parameter location µ, the finite element approximation is given by

Ah(µ)uh(µ) = fh(µ) (2.24)

with Ah(µ) ∈ RNh×Nh and fh(µ) ∈ RNh . When aiming to solve (2.24) over the complete
parameter space, we are required to solve the equation repeatedly for every parameter
location. For large parameter spaces this can quickly become unsustainable. Over the past
decades, ROMs have been studied to overcome this issue. The main idea of reduced-order
modeling for parametrized PDEs is to construct a relation between the parameters and
their solutions, often referred to as the parametric map. This translates to discovering the
collection of all solutions to the parametrized PDE under variation of the parameters, also
known as the solution manifold given by (in algebraic form):

Mh = {uh(µ)}µ∈P (2.25)

The manifold holds information on how the parameters influence their corresponding so-
lution. Typically, reduced order modeling methods consist of two stages:

1. The offline stage
This is the stage in which we perform precomputations usually related to an ap-
proximation of the solution manifold that are needed to construct the ROM. These
computations are done once and for all.

2. The online stage
For a new parameter input we exploit the precomputations from the offline stage to
construct and solve the ROM

Two projection-based ROMs will be explained that revolve around a proper orthogonal
decomposition (POD).

15

2.4.1 Intrusive reduced-order modeling with POD

Consider the problem described in (2.24). Typically in full-order models, the size Nh is
large. In POD reduced order modeling (POD-ROM) the full-order problem is projected
onto a lower-order space using a constructed POD basis using an approximated solution
manifold. The resulting reduced-order problem of size N such that N ≪ Nh. In turn the
reduced-order problem is solved and its solution is projected onto the full-order space.

Offline stage
The solution manifold introduced in (2.25) is unattainable because the problem would
be solved otherwise. Instead we generate a collection of solutions (also called snapshots)
for different parameter locations that acts as an approximation to the solution manifold.
For ns different parameter locations that are stored in Ξ = [µ1,µ2, ...,µns] ∈ Rns×p, we
construct the corresponding snapshot matrix S ∈ RNh×ns such that

S = [uh(µ
1) | uh(µ

2) | ... | uh(µ
ns)] (2.26)

contains the high-fidelity solutions for each parameter vector corresponding in Ξ. The
snapshot matrix acts as an approximation to the solution manifold. We wish to extract as
much information as possible of S while using only a few basis vectors. This translates to
finding a low-rank approximation and is done by performing the SVD, allowing to represent
the snapshot matrix as

S = UΣZT (2.27)

with U = [ζ1 | ζ2 | ... | ζNh
] containing the left singular vectors, Σ = diag(σ1, σ2, ..., σr)

with r = min{Nh, ns} containing the singular values in decreasing order and ZT contain-
ing the right singular vectors. The POD basis V ∈ RNh×N is given by taking the first N
columns of U.

Online stage
Given a new parameter location µ we construct the FOM giving (2.24) (without solving
it) and approximate the high-fidelity solution vector by

uh(µ) ≈ VuN (µ) (2.28)

with uN (µ) ∈ RN the so-called reduced-basis (RB) coefficients or modes. We left-multiply
(2.24) by VT and substitute (2.28). This gives

AN (µ)uN (µ) = fN (µ) (2.29)

with AN (µ) = VTAh(µ)VuN (µ) ∈ RN×N and fN (µ) = VTfh(µ) ∈ RN . Notice that
(2.29) is a system of only N ×N equations whereas (2.24) is Nh ×Nh. We solve (2.29) to
obtain the RB coefficients and use (2.28) to project to the higher order space.

The POD-ROM procedure is summarized in the Algorithm 2.1.

16

Algorithm 2.1 POD-ROM
1: Offline Stage
2: Create snapshot matrix S = [uh(µ

1) | uh(µ
2) | ... | uh(µ

ns)] corresponding
to random parameter locations Ξ = [µ1,µ2, ...,µns]

3: Perform an SVD on S: U and Σ obtained
4: Take N columns of U: V obtained
5: Online Stage
6: For the new parameter location µ, construct the FOM: Ah(µ)uh(µ) = fh(µ)
7: Let uh(µ) ≈ VuN (µ) and left-multiply the FOM by VT to get

AN (µ)uN (µ) = fN (µ)

and solve for uN (µ).
8: Project uN (µ) to the full-order space.

Left unanswered in the construction of the POD basis is to choose how many vectors should
be included. Choosing too few basis vectors will result in relatively large errors compared
to taking more basis vectors, but this comes with the price of a larger computational cost.
Closely related to the Eckart-Young Theorem, consider the following result:

Proposition 2.1. Let VN = {W ∈ RNh×N : WTW = IN} be the set of all N -dimensional
orthonormal bases. Then,

ns∑
i=1

∥ui − VVTui∥22 = min
W∈VN

ns∑
i=1

∥ui −WWTui∥22 =
r∑

i=N+1

σ2
i .

Proof. See [42].

In other words, the error in the POD basis compared to the snapshot matrix is equal to
the sum of the squares of the singular values corresponding to the left-singular vectors
that are not included in the construction of V. Given a chosen tolerance ϵPOD, the relative
information content of the POD basis is given by

I(N) =

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ϵ2POD. (2.30)

The higher the relative information content, the more information from the snapshot ma-
trix is included in the POD basis. This allows us to choose a suitable N in the construction
of the POD basis. In order to get desired reduction in computational cost while maintain-
ing good accuracy, we need the solution manifold Mh to be low-rank approximable. This
translates to a fast decay of the singular values in the SVD. If this property is not satisfied
the POD-ROM remains computationally expensive.

The construction of (2.29) has a complexity depending on Nh. In particular problems,
we can exploit the so-called affine parametric dependence property. This means we can
remove the dependency of µ on AN (µ) and fN (µ) and write them as a linear combination.
The low-fidelity problem becomes

Qa∑
q=1

(
θqa(µ)A

q
N

)
uN (µ) =

Qf∑
q′=1

θq
′

f (µ)f
q′

N (2.31)

17

where {θqa(µ)}Qa
q=1 and {θq

′

f (µ)}
Qf

q′=1 are two sets of Qa (and Qf respectively) scalar functions

θqa(µ), θq
′

f (µ) : P −→ R. In this way, the matrices and vectors Aq
N (for q = 1, ..., Qa) and

f q′

N (for q′ = 1, ..., Qf) are computed once and for all in the offline stage which saves a
substantial amount of computational cost for every calculation in the online stage. When
this property is not satisfied, the online stage remains computationally expensive. Using
POD and neural networks, we can overcome this issue.

2.4.2 Non-intrusive reduced-order modeling with POD and neural networks

Before explaining the reduced-order method using neural networks, we give a brief expla-
nation of neural networks.

Neural Networks

A neural network consists of multiple layers that allow for a mapping between two state
spaces. Consider V1 ∈ Rn1 and V2 ∈ Rn2 and an activation function ρ : R −→ R. A layer
L is a mapping L : V1 −→ V2 such that

L(v) = ρ(Wv + b) (2.32)

with weights W ∈ Rn1×n2 and biases b ∈ Rn2 . A neural network with l ≥ 0 hidden layers
is a mapping of the form

Φ := Ll+1 ◦ Ll ◦ ... ◦ L1 (2.33)

with Li : Rni −→ Rni+1 for i = 1, 2, ..., l. The depth of a neural network is defined as l.

Proper orthogonal decomposition and neural networks

Instead of solving the reduced-order linear system in (2.29) for POD-ROM in the online
stage, we directly approximate the mapping from the parameters to the RB coefficients.
Consider the mapping

π : Rp −→ RN such that π : µ −→ VTuh(µ). (2.34)

The high-fidelity solution is then recovered by left-multiplying by V:

uh(µ) = Vπ(µ) (2.35)

We approximate the mapping in (2.34) by π̂(µ) which is trained using a neural network.
In this way, the offline stage consists of the construction of V as well as training the neural
network for π̂(µ). In the online stage, we only have to use (2.35) to recover the solution.
The method is abbreviated with POD-NN. See Algorithm 2.2.

Algorithm 2.2 POD-NN
1: Offline Stage
2: Do POD algorithm (see Offline Stage in Algorithm 2.1): S, Ξ and V obtained
3: Create a database {VTuh(µ)}ns

i=1 for the outputs of the neural network
4: Train the mapping π(µ) using a neural network: π̂(µ) obtained
5: Online Stage
6: For a new parameter location µ, we approximate the high-fidelity solution by

Vπ̂(µ).

18

2.5 Iterative solvers for minimization problems

Consider f : Rn −→ R and f ∈ C1 and its minimization problem of the form

min
x

f(x) (2.36)

The gradient descent algorithm is a first-order method to solve the minimization problem
above:

Algorithm 2.3 Gradient Descent
1: Inputs : f , x0, γ, ϵ

Output : xk

2: Set δ := ϵ
3: Repeat until δ < ϵ:
4: xk+1 = xk − γ∇f(xk)
5: δ = ∥xk+1 − xk∥2
6: xk = xk+1

In every iteration k at the given point xk, one moves into the oppositve direction of the
gradient with a fixed step size γ. In practice, finding a suitable step size is an important
problem. A step size too small would lead to slow convergence, while a step size too large
might lead to divergence. Given a descent direction p, line search algorithms find a suitable
step size to move into that direction. A common line search algorithm is the backtracking
line search algorithm:

Algorithm 2.4 Backtracking Line Search
1: Inputs : f , x, p, γ0 > 0 and control parameters τ, c ∈ (0, 1)

Output : γk
2: Set m = ∇f(x)Tp and t = −cm
3: Repeat until f(x)− f(x+ γkp) ≥ γkt:
4: γk+1 = τγk
5: γk = γk+1

Another method approximate (2.36) is the Broyden-Fletcher-Goldbarf-Shanno algorithm
(BFGS) in which we approximate the inverse of the Hessian iteratively:

Algorithm 2.5 BFGS
1: Inputs : f , x0, H0, ϵ

Output : xk

2: Set yk = ϵ
3: Repeat until ∥yk∥2 < ϵ:
4: Solve pk = −Hk∇f(xk)
5: Find a suitable step size γk using a line-search algorithm
6: Set sk = γkpk and update xk+1 = xk + sk
7: Set yk = ∇f(xk+1)−∇f(xk)

8: Hk+1 = Hk +
(sTk yk+yT

k Hkyk)(sks
T
k)

(sTk sk)2
− Hkyks

T
k +sky

T
k Hk

sTk yk
.

9: Hk = Hk+1

10: xk = xk+1

19

2.6 Newton’s method for finding roots

Consider F : Rn −→ Rn and F ∈ C1 and its rootfinding problem

F (x) = 0 (2.37)

This problem can be solved using Newton’s Method for finding roots:

Algorithm 2.6 Newton’s Method for finding roots
1: Inputs : F , x0, ϵ

Output : xk

2: Set δ = ϵ
3: Repeat until δ < ϵ:
4: Solve JF (xk)(xk+1 − xk) = −F (xk) for (xk+1 − xk)
5: δ = ∥xk+1 − xk∥2
6: xk = xk+1

2.7 Forward uncertainty quantification of PDEs using Monte Carlo sim-
ulation

In the application of PDEs in fields such as physics and biology, the inputs required for
the real physical model are usually measured and therefore contain uncertainty. The inac-
curate inputs propagate through the model and may lead to large errors. In uncertainty
quantification, the task is to obtain statistical information of the output of the model given
the uncertainties in the inputs. This can be of great importance in high-impact decisions
such as in hurricane forecasting. Usually, it is not just the solution to the PDE that is of
interest but rather another output of interest using the solution. This is called the output
of interest (OoI).

Uncertain input
parameters

Post Processing

Uncertain
 solutions

Uncertain quantities
of interest

PDE

Figure 2.3: Uncertain inputs propagate through the model leading to uncertain
quantities of interest.

Consider the non-linear problem in (1.4) and suppose the OoI is given by a function of the
solution, that is F (u). Let the quantity of interest (QoI) be the statistical information of
interest denoted by G such that

QoI =
∫
P
G(u(x;µ);x,µ)ρ(µ) dµ, (2.38)

where ρ(µ) denotes the probability density function (PDF) of the input parameters. Most
prominent examples of desired statistical information are to compute the expectation (so
that G = F) or the variance (in which G = (F − E[F])2). Generally, the integrals above
cannot be evaluated exactly and must therefore be approximated. A common method is to
use Monte Carlo simulation. The first step is to construct a set of random parameter loca-
tions {µq}Qq=1 whose are independent and identically distributed (i.i.d.). Second, using the

20

random parameter locations, we generate a set of approximated solutions {uh(x;µ
q)}Qq=1

such that

u(x;µq) ≈ uh(x;µ
q), q = 1, 2, ..., Q. (2.39)

These approximations can be achieved by performing numerical schemes to solve PDEs such
as finite element method explained in Section 2.1. Third, we compute the corresponding
approximated statistical information:

G(u(x;µq);x,µq) ≈ G(uh(x;µ
q);x,µq), q = 1, 2, ..., Q. (2.40)

This gives the approximation

QoI ≈ QoIMC =
1

Q

Q∑
q=1

G(uh(x;µ
q);x,µq). (2.41)

The Monte Carlo simulation for PDEs is summarized in the algorithm below.

Algorithm 2.7 Monte Carlo simulation for PDEs
1: Inputs: PDE, F , G

Output : QoIMC

2: Generate a set of i.i.d. random parameter locations {µq}Qq=1

3: Compute the corresponding set of approximate solutions {uh(x;µ
q)}Qq=1 and in turn

the set of approximate integrands {G(uh(x;µ
q);x,µq)}Qq=1

4: Compute the quantity of interest:

QoI(x, t) ≈ QoIMC =
1

Q

Q∑
q=1

G(uh(x;µ
q);x,µq)

The ubiquitous use of Monte Carlo simulation in practice is mainly motivated by the
simplicity of the algorithm. A bottleneck however is the slow convergence behaviour. As
we have seen before, the computations to solve a PDE numerous times can be an expensive
task and we might need a lot of sample points. For that matter, reduced-order modeling
(see Section 2.4) can be a great application in the field of uncertainty quantification. In that
case, the set full-order solutions {uh(x;µ

q)}Qq=1 can be replaced by a set of reduced-order
solutions {urb

h (x;µq)}Qq=1 which can be computed much faster.

2.7.1 Importance sampling

In light of failure analysis, rare event simulations are an important tool to get better insight
in the behaviour of the corresponding model when failures are drastic. Suppose a failure
occurs when

F (u(x, y;µ);µ) > F0,

with F0 given. This means the QoI is now the failure probability given by (2.38) with

G(u(x;µ);x,µ) =

{
1 if F (u(x, y;µ);µ) > F0,

0 else,
(2.42)

21

This means we assign a 1 (failure) for when the OoI is larger than a threshold F0 and
0 (success) else. Failure probabilities are often very small. If we were to approximate
the failure probability using regular Monte Carlo simulation, the failure region is often
not reached for random sampling. For that reason we use a method called importance
sampling. Importance sampling is a technique that pushes the simulations to favor the
rare events of interest so that they will occur more frequently than they would otherwise.
In other words, we will change the probability distributions of the input parameters so as
to make the rare events happen more often. We consider a biasing distribution q(µ) that
favours events in the failure region.

Figure 2.4: Importance sampling in one dimension: the biasing distribution q(µ)
favours inputs µ that lie in the failure region.

Given the new distribution q(µ), we get that

QoI =
∫
P
G(u(x;µ);x,µ)ρ(µ) dµ

=

∫
P

(
G(u(x;µ);x,µ)

ρ(µ)

q(µ)

)
q(µ) dµ

≈ 1

Q

Q∑
i=1

G(uh(x;µ
i);x,µi)

ρ(µi)

q(µi)
.

Notice that we can now sample from the biasing distribution to favour the failures.

22

3 Reduced-order surrogate models for coupled problems

This section covers our main contribution: reduced-order surrogate models for coupled
problems. Being proof of concept, the first two ROMs can only be applied to linear-linear
coupled problems. As we will see later, the first two ROMs are useful in situations in
which one part of the problem is paired with a high parametric complexity while the other
part is rather simple. On the contrary, the other two ROMs can be used to solve both
linear-linear and linear-nonlinear coupled problems. To explain the ROMs, we will use a
linear and non-linear Poisson problem described in the next section.

3.1 Linear and non-linear Poisson problem

Consider the unit square domain Ω = (0, 1)×(0, 1) with Ω = Ω1 ∪ Ω2 such that the domain
is horizontally split into two equal parts, that is

Ω1 = {(x, y) | x ∈ Ω ∧ 0.5 < y < 1}, Ω2 = {(x, y) | x ∈ Ω ∧ 0 < y < 0.5}.

The boundary is given by ∂Ω = ΓT ∪ ΓB ∪ ΓL ∪ ΓR, that is top, bottom, left and right
boundary respectively. Let NL be a linear operator resembling linear diffusion so that

NLu = −∇ · (k̃(x)∇u) with k̃(x) =

2∑
i=1

1Ωi(x). (3.1)

The linear parametrized Poisson problem is given by
−NLu = f(x;µ) in Ω,

u = 1 on ΓL ∪ ΓR,
∂u
∂n = 1 on ΓT ,
∂u
∂n = −1 on ΓB,

(3.2)

with outward unit normal n and

f(x,µ) = 1Ω2(x) 100 exp

(
0.5

(
(x− µ1)

2 + (y − µ2)
2

µ3

)2
)

(3.3)

with µ ∈ P = [0, 1] × [0, 0.5] × [0.001, 0.1]. The source term describes a Gaussian-like
function that varies in position and intensity on domain Ω2. The goal is to solve the prob-
lem over the whole parameter space.

The non-linear Poisson equation is similar to (3.2) but with non-linear diffusion opera-
tor

ÑD = −∇ · (k̃(x)D̃(x;µ)∇u) with D̃(x;µ) = (1 + u1Ω2(x)), (3.4)

so that the equation on domain Ω2 is non-linear. For these problems, the parametric com-
plexity is solely present on domain Ω2. We anticipate that the solution within domain Ω2

will exhibit greater variation for distinct parameter placements when contrasted with the
solution within domain Ω1. In context of reduced-order modeling, this means that solu-
tion manifold on domain Ω1 can be approximated by only a few basis functions. On the
other hand, on domain Ω2 more basis functions are required to effectively approximate the
solution manifold. This leads to the utilization of domain decomposition so that reduction

23

can be applied separately.

Using domain decomposition, the problem can be rewritten such that the DoFs are or-
dered in the solution vector per domain by following the procedure in Section 2.2. See
Figure 3.1. The multidomain formulation in which ui = u

∣∣
Ωi

, i = 1, 2 is given by

−∆u1 = 0 in Ω1,

u1 = 1 on ΓL1 ∪ ΓR1,
∂u1
∂n = 1 on ΓT ,

−∆u2 = f(x,µ) in Ω2,

u2 = 1 on ΓL2 ∪ ΓR2,
∂u2
∂n = −1 on ΓB,

u1 = u2 on Γ,
∂u1
∂n = ∂u2

∂n on Γ.

(3.5)

Figure 3.1: Original domain (left) and decomposed domain (right) for the Poisson
problem in (3.2).

3.2 Surrogate models for linear-linear coupled problems

Consider the linear Poisson problem in (3.2). The ROMs will be explained in the offline
and online setting.

Offline stage
By performing domain decomposition, we obtain the rearranged algebraic formulation as
in (2.21) but now with dependency of the parameters, that is the linear system

AU = F (µ), (3.6)

with A ∈ RN×N and F (µ) ∈ RN . The offline stage begins by constructing a set of
sample solutions. Specifically, we generate ns full-order solutions to (3.6) for random
parameter locations µi ∈ P (i = 1, 2, ..., ns). The parameter locations are stored in a set
Ξns = {µ1,µ2, ...,µns}. Moreover, we store all the matrices and vectors for each parameter
location in databases

Ans = {A11, A1Γ, A22, A2Γ, AΓ1, AΓ2, A(1)
ΓΓ, A(2)

ΓΓ} (3.7)

24

and

Fns =
{
F1, F

(1)
Γ , F2(µ

i), F
(2)
Γ (µi)

}ns

i=1
(3.8)

Note that for this particular problem, the dependence of µ is only present in the set
Fns . For more general problems, we may need to save the matrices and vectors for every
parameter location in Ans too. Every solution vector is composed of three vectors that
correspond to the solutions on domain Ω1, Ω2 and the interface Γ. Therefore, each solution
vector can be represented as

U(µi) =

U1(µ
i)

U2(µ
i)

UΓ(µ
i)

 ∈ RN , i = 1, 2, ..., ns. (3.9)

The dimension of the solution vector is a sum of three integers corresponding to dimensions
of the respective domains such that N = N1+N2+NΓ. The full-order solutions are collected
in the snapshot matrix S, that is

S =
[
U(µ1) | U(µ2) | ... | U(µns)

]
∈ RN×ns . (3.10)

The rearranged solution vector allows us to perform reduced basis methods on the decom-
posed domains separately. On domain Ω1 and the interface Γ we perform a POD-ROM as
in Section 2.4.1 to obtain the transformation matrices V1 ∈ RN×n1 and VΓ ∈ RN×nΓ with
n1 ≪ N1 and nΓ ≪ NΓ, so that

U1(µ) ≈ V1u1(µ) and UΓ(µ) ≈ VΓuΓ(µ). (3.11)

Next, consider the transformation matrix V̂T given by

V̂T =

VT
1 0 0
0 IN2 0
0 0 VT

Γ

 ∈ R(n1+N2+nΓ)×Nh . (3.12)

We left-multiply V̂T on both sides of (3.6) and substitute the approximations from (3.11).
This gives the so-called hybrid model, that is

aû =

a11 0 a1Γ
0 A22 a2Γ

aΓ1 aΓ2 a
(1)
ΓΓ + a

(2)
ΓΓ

û1

Û2

ûΓ

 =

 f1
F2

f
(1)
Γ + f

(2)
Γ

 = f̂(µ), (3.13)

with

a11 = VT
1 A11V1, a1Γ = VT

1 A11VΓ, a2Γ = A2ΓVΓ, aΓ1 = VT
ΓAΓ1V1,

aΓ2 = VT
ΓAΓ2, a

(1)
ΓΓ = VT

ΓA
(1)
ΓΓVΓ, a

(2)
ΓΓ = VT

ΓA
(2)
ΓΓVΓ, f1 = VT

1 F1,

f
(1)
Γ = VT

ΓF
(1)
Γ , f

(2)
Γ = VT

ΓF
(2)
Γ .

Note that this is similar to the first step of the online stage in the POD-ROM procedure
but now only applied to domain Ω1 and the interface. To ease notation, we omit the
dependence of the parameter µ but it is important to remember that the matrices and
vectors may still depend on µ. With the reduction applied, the hybrid model is a system
of (n1+N2+nΓ) equations. Using the hybrid model we generate another snapshot matrix

25

Ŝ ∈ R(n1+N2+nΓ)×ns containing the solutions to the hybrid model with the same parameter
locations as in Ξ. In addition, we generate a matrix and vector database

T̃ns = {a(1)11 , aΓ1, a11, a1Γ, f1, f
(1)
Γ } (3.14)

which will be needed later. Note again that for more general problems, we may need to
compute these matrices and vectors for every parameter location.

Now that we have applied reduction on Ω1 and the interface, we will apply reduction
on domain Ω2 too. The reason for not applying this reduction at the same time as on
domain Ω1 and the interface is due to the possible error increase. With the hybrid model,
we aim to minimize the error on domain Ω2. This is especially effective in this particular
problem in which the parametric complexity is only present on domain Ω2. Similar to
the POD-NN procedure in Algorithm 2.2, we apply a POD-NN using the hybrid model
to obtain V2 so that û2 ≈ VT Û2. This time, we train separate neural networks for each
mode:

π̂
(i)
2 : {ûΓ,µ2} −→ û

(i)
2 , i = 1, 2, ..., n2. (3.15)

Note that this mapping inputs both the parameters µ2 on domain Ω2 and the interface
values ûΓ of the hybrid model. The reason for training separate neural networks for each
mode is as follows. In a regular POD-NN, one maps to all modes at once in a single
neural network. In that case, the loss is the error of all modes together. Recall that the
first modes correspond to the highest singular values in the singular value decomposition
(see Section 2.3). By the well-known results from Schmidt-Eckart-Young (Definition 2.2),
we know that the first singular values contribute to the most information of the low-rank
approximation. By training separate neural networks, each mode is optimized separately,
instead of optimized together.

Similar to the traction force derived in the rearranged system of equations in (2.21), we
obtain a reduced-order traction force deducted from the hybrid model, that is

tΓ = (a
(1)
ΓΓ − aΓ1a

−1
11 a1Γ)ûΓ + aΓ1a

−1
11 f1 − f

(1)
Γ . (3.16)

Note that this is similar to (2.22) and relates the interaction between domain Ω1 and Ω2.
For all snapshots, we store the traction forces in the database {tΓ(µi)}ns

i=1. The final step
of the offline stage is to construct the mapping for the traction force by training a neural
network so that

t̂Γ : {ûΓ,µ2} −→ tΓ. (3.17)

Online stage
For an unseen parameter location, we construct the algebraic system as in (3.6) and mul-
tiply the corresponding parts of the system by the transformation matrices V1 and VΓ to
obtain the hybrid model. Without solving it, the next step is to solve for the modes on
the interface uΓ. From the algebraic system we obtain the traction force for the unseen
parameter location in terms of the unknown ûΓ similar to (3.16). By equating this to the
mapping of the traction force t̂Γ we obtain a non-linear function (due to t̂Γ) given by

F (ûΓ) := (a
(1)
ΓΓ − aΓ1a

−1
11 a1Γ)ûΓ + aΓ1a

−1
11 f1 − f

(1)
Γ − t̂Γ(ûΓ,µ2) = 0. (3.18)

26

There are various ways to solve (3.18) that are explained in more detail in Section 3.4.
Given the reduced-order solution urb

Γ , we advance by computing the reduced-order solution
urb
1 using the first line in (3.13) such that

û1 = a−1
11 (f1 − a1ΓûΓ). (3.19)

The reduced-order solution urb
2 is determined through the neural networks

π̂
(i)
2 , i = 1, 2, ..., n2. Using the transformation matrices to the corresponding domain, we

project the reduced-order solutions to the full-order space to recover the full-order solution
per domain so that

U rb
1 = V1u

rb
1 , U rb

2 = V2u
rb
2 , U rb

Γ = VΓu
rb
Γ .

This ROM is a method to solve linear-linear coupled problems such that the reduced-
interface vector is determined through a combination of data-driven and intrusive mod-
eling. For that reason, we refer to this ROM as the hybrid-LL. The general algorithm is
summarized below.

Algorithm 3.1 Hybrid-LL
1: Offline Stage
2: Generate parameter set Ξns = {µ1,µ2, ...,µns};
3: Generate full-order solution database {U(µ1), U(µ2), ..., U(µns)} of ns solutions

and store

Ans =
{
A11, A1Γ, A22, A2Γ, AΓ1, AΓ2, A(1)

ΓΓ, A(2)
ΓΓ

}ns

i=1

Fns =
{
F1, F

(1)
Γ , F2, F

(2)
Γ

}ns

i=1

possibly dependent on µi;
4: Apply POD-ROM on domain Ω1 and Γ to obtain V1 and VΓ;
5: Generate solution set {û(µ1), û(µ2), ..., û(µns)} containing ns solutions

to the hybrid model and store

T̃ns =
{
a
(1)
11 , aΓ1, a11, a1Γ, f1, f

(1)
Γ

}ns

i=1

possibly dependent on µi;
6: Apply POD-NN on domain Ω2 to obtain V2 and train separate neural networks

π
(i)
2 : {ûΓ,µ2} −→ û

(i)
2 , i = 1, 2, ..., n2;

7: Generate the training set of traction forces {tΓ(µi)}ns
i=1;

8: Use a neural network to train t̂Γ : {ûΓ,µ2} −→ tΓ;
9: Online Stage

10: Construct the hybrid model;
11: Obtain urb

Γ using F (ûΓ) = 0;
12: Obtain urb

2 using π̂
(i)
2 (ûΓ,µ2), i = 1, 2, ..., ns;

13: Obtain urb
1 using û1 = a−1

11 (f1 − a1ΓûΓ);
14: Transform the reduced-order solutions to the full-order space:

U rb
1 = V1u

rb
1 , U rb

2 = V2u
rb
2 , U rb

Γ = VΓu
rb
Γ .

27

In the hybrid-LL, the neural network for the traction force is ultimately used to solve the
non-linear equation in (3.18) to determine the modes on the interface Γ. Rather than this
approach, we can also directly train a neural network for the modes on the interface. The
matrices and vectors to compute the traction forces no longer need to be stored. This way,
the reduced interface vector is determined completely through data-driven modeling. For
that reason we refer to this ROM as surrogate-LL. The neural network is given by

π̂Γ : {µ} −→ ûΓ, (3.20)

so it is a mapping from the parameter vector to the modes on the interface. In the online
stage, one can directly use this mapping to determine the modes on the interface instead
of solving the non-linear equation in (3.18). The procedure of the surrogate-LL is given
below in Algorithm 3.2.

Algorithm 3.2 Surrogate-LL
1: Offline Stage
2: Generate parameter set Ξns = {µ1,µ2, ...,µns};
3: Generate full-order solution database {U(µ1), U(µ2), ..., U(µns)} of ns solutions

and store

Ans =
{
A11, A1Γ, A22, A2Γ, AΓ1, AΓ2, A(1)

ΓΓ, A(2)
ΓΓ

}ns

i=1

Fns =
{
F1, F

(1)
Γ , F2, F

(2)
Γ

}ns

i=1

possibly dependent on µi for ns parameter locations;
4: Apply POD-ROM on domain Ω1 and Γ to obtain V1 and VΓ;
5: Create a database {û(µ1), û(µ2), ..., û(µns)} containing ns solutions

to the hybrid model;
6: Apply POD-NN on domain Ω2 to obtain V2 and train separate neural networks

π
(i)
2 : {ûΓ,µ2};−→ û

(i)
2 , i = 1, 2, ..., n2

7: Use a neural network to train π̂Γ : {µ} −→ ûΓ;
8: Online Stage
9: Construct the hybrid model;

10: Obtain urb
Γ using π̂Γ(µ);

11: Obtain urb
2 using π̂

(i)
2 (ûΓ,µ2), i = 1, 2, ..., ns;

12: Obtain urb
1 using û1 = a−1

11 (f1 − a1ΓûΓ);
13: Transform the reduced-order solutions to the full-order space:

U rb
1 = V1u

rb
1 , U rb

2 = V2u
rb
2 , U rb

Γ = VΓu
rb
Γ

3.3 Surrogate models for linear-nonlinear coupled problems

So far we have discussed two ROMs to solve linear-linear coupled problems. Now suppose
that on the decomposed domain Ω2, we define a non-linear Poisson equation so that the
problem becomes a linear-nonlinear coupled problem. We consider the Poisson problem in
(3.2) but with (3.4).

28

In the full-order method, this forces the problem to be solved as a full non-linear problem
even though part of the problem is linear. As a result, it is no longer possible to construct
a linear system of equations to be solved such as in (2.21). The finite element problem can
be represented as

AU(µ) =

A11 0 A1Γ

0 N22 N2Γ

AΓ1 NΓ2 A(1)
ΓΓ + N(2)

ΓΓ

U1

U2

UΓ

 =

 F1

F2

F
(1)
Γ + F

(2)
Γ

 = F (µ),

for which A∗∗ are linear operators, while N∗∗ are non-linear. In the offline stages of the
hybrid-LL and surrogate-LL, we multiply the linear system of equations by a transforma-
tion matrix to obtain the hybrid model in (3.13). This is now no longer possible since the
non-linear operators are unknown.

Even for linear-linear coupled problems, the hybrid-LL and surrogate-LL may still re-
quire a substantial amount of computational and memory cost. This is because during
the offline stage, next to the generation of a full-order solution database, we generate an-
other solution database for the hybrid solutions. For every solution, this requires solving
a system of equations for n1 + N2 + nΓ which can still be cost-inefficient. Rather than
constructing this database, one can approximate the reduced-order solutions by applying
the transformation matrices on the full-order solutions directly. This also allows us to solve
linear-nonlinear coupled problems. The idea is worked out in the ROMs hybrid-NL and
surrogate-NL that follow the procedure of the hybrid-LL and surrogate-LL respectively.
We will now explain the surrogate-NL in further detail.

Offline stage
We construct a full-order solution database {U(µ1), U(µ2), ..., U(µns)} such that each
solution is again composed of three vectors corresponding to each domain. At the same
time, on the linear domain Ω1 we construct the system of linear equations - without solving
it - with no boundary conditions specified on the interface Γ. The matrices and vectors in

Tns =
{
A(1)
11 , AΓ1, A11, A1Γ, F1, F

(1)
Γ

}ns

i=1
(3.21)

possibly depending on µi are stored and later needed in the computation of the traction
force as in (3.16).

Using the full-order solution database, we apply POD-ROM on domains Ω1 and Γ to
obtain the transformation matrices V1 ∈ RN×n1 and VΓ ∈ RN×nΓ with n1 ≪ N1 and
nΓ ≪ NΓ. These are directly applied on the corresponding full-order solutions so that

u1(µ
i) = VT

1U1(µ
i) and uΓ(µ

i) = VT
ΓUΓ(µ

i), i = 1, 2, ..., ns.

The reduced-order solutions are collected in the databases {u1(µ
1), u1(µ

2), ..., u1(µ
ns)}

and {uΓ(µ
1), uΓ(µ

2), ..., uΓ(µ
ns)}. In this way, the reduced-order solutions are retrieved

much faster than solving the hybrid model every time in the hybrid and surrogate-LL, al-
beit with some loss of accuracy.

Similar to the hybrid and surrogate-LL, we apply a POD-NN to obtain V2 ∈ RN×n2

with n2 ≪ N2 and construct and store the reduced-order solutions in a database
{u2(µ

1), u2(µ
2), ..., u2(µ

ns)}. We train separate neural networks for the modes on

29

domain Ω2 but with inputs and outputs from the reduced-order solution database, that is

π̂
(i)
2 : {uΓ,µnlin} −→ u

(i)
2 , i = 1, 2, ..., n2, (3.22)

where µnlin corresponds to the parameters on the non-linear domain Ω2.

In order to compute the reduced-order traction forces, we first determine the reduced-
order matrices and vectors such that

a11 = VT
1 A11V1, a1Γ = VT

1 A11VΓ, aΓ1 = VT
ΓAΓ1V1,

a
(1)
ΓΓ = VT

ΓA
(1)
ΓΓVΓ, f1 = VT

1 F1, f
(1)
Γ = VT

ΓF
(1)
Γ ,

for every parameter location. The reduced-order matrices and vectors are stored in a
database T̃ns as in (3.14) possibly depending on µi. The above collection of matrices and
vectors together with the transformation matrices V1 and VΓ and reduced-order solutions
on the interface allow us to determine the collection of reduced traction forces such as in
(3.16) to obtain {tΓ(µi)}ns

i=1. In this way, we train a neural network for the reduced-order
traction force, that is

t̂Γ : {uΓ,µnlin} −→ tΓ. (3.23)

Online Stage
For an unseen parameter location, we construct the system of linear equations on domain
Ω1 to extract the matrices as in (3.21). Using the transformation matrices V1 and VΓ

we compute the reduced-order traction force in terms of uΓ. The rest of the procedure is
similar to the online stage of the hybrid-LL in Algorithm 3.1. The hybrid-NL algorithm is
given below.

30

Algorithm 3.3 Hybrid-NL
1: Offline Stage
2: Generate parameter set Ξns = {µ1,µ2, ...,µns};
3: Generate full-order solution database {U(µ1), U(µ2), ..., U(µns)} of ns solutions

and store

Tns =
{
A(1)
11 , AΓ1, A11, A1Γ, F1, F

(1)
Γ

}ns

i=1

possibly dependent on µi for ns parameter locations;
4: Apply POD-ROM on domains Ω1 and Γ to obtain V1 and VΓ so that

U1(µ) ≈ V1u1(µ) and UΓ(µ) ≈ VΓuΓ(µ)

to create the reduced-order solution database {u1(µ
1), u1(µ

2), ..., u1(µ
ns)} and

{uΓ(µ
1), uΓ(µ

2), ..., uΓ(µ
ns)};

5: Apply POD-NN on domain Ω2 to obtain V2 and construct reduced-order solution
database {u1(µ

1), u1(µ
2), ..., u1(µ

ns)} and train separate neural networks

π̂
(i)
2 : {uΓ,µnlin};−→ u

(i)
2 , i = 1, 2, ..., n2;

6: Generate reduced-order database

T̃ns =
{
a
(1)
11 , aΓ1, a11, a1Γ, f1, f

(1)
Γ

}ns

i=1
,

possibly depending on µi;
7: Generate the training set for the traction force with the reduced-order traction

forces {tΓ(µi)}ns
i=1;

8: Train a neural network for the traction force

t̂Γ : {uΓ,µnlin} −→ tΓ;

9: Online Stage
10: Construct the reduced-order system of linear equations on domain Ω1 using V1

and VΓ;
11: Obtain urb

Γ using F (uΓ) = 0;
12: Obtain urb

2 using π̂
(i)
2 (uΓ,µnlin), i = 1, 2, ..., ns;

13: Obtain urb
1 using û1 = a−1

11 (f1 − a1ΓuΓ);
14: Transform the reduced-order solutions to the full-order space:

U rb
1 = V1u

rb
1 , U rb

2 = V2u
rb
2 , U rb

Γ = VΓu
rb
Γ .

The last method to discuss is the surrogate-NL. Here, we follow the procedure of the
surrogate-LL but construct the reduced-order solution directly as explained earlier. See
Algorithm 3.4.

31

Algorithm 3.4 Surrogate-NL
1: Offline Stage
2: Generate parameter set Ξns = {µ1,µ2, ...,µns};
3: Generate full-order solution database {U(µ1), U(µ2), ..., U(µns)} of ns solutions
4: Apply POD-ROM on domains Ω1 and Γ to obtain V1 and VΓ so that

U1(µ) ≈ V1u1(µ) and UΓ(µ) ≈ VΓuΓ(µ)

to create the reduced-order solution database {u1(µ
1), u1(µ

2), ..., u1(µ
ns)} and

{uΓ(µ
1), uΓ(µ

2), ..., uΓ(µ
ns)};

5: Apply POD-NN on domain Ω2 to obtain V2 and construct reduced-order solution
database {u1(µ

1), u1(µ
2), ..., u1(µ

ns)} and train separate neural networks

π̂
(i)
2 : {uΓ,µnlin};−→ u

(i)
2 , i = 1, 2, ..., n2;

6: Use a neural network to train π̂Γ : µ −→ uΓ;
7: Online Stage
8: Obtain urb

Γ using π̂Γ(µ);
9: Obtain urb

2 using π̂
(i)
2 (uΓ,µnlin), i = 1, 2, ..., ns;

10: Construct the reduced-order system of linear equations on domain Ω1 using V1

and VΓ;
11: Obtain urb

1 using u1 = a−1
11 (f1 − a1ΓuΓ);

12: Transform the reduced-order solutions to the full-order space:

U rb
1 = V1u

rb
1 , U rb

2 = V2u
rb
2 , U rb

Γ = VΓu
rb
Γ

3.4 Solving techniques for a system of non-linear equations

For the hybrid-LL and hybrid-NL, it remains to solve the non-linear equations in (3.18).
In the next subsections, we will discuss a few methods.

3.4.1 Newton’s method

One way is to view (3.18) as a root-finding problem that can be solved using Newton’s
method. Since the Jacobian cannot be determined exactly we have to approximate it. The
Jacobian with respect to uΓ is given by

JF (uΓ) =


∂F1
∂uΓ,1

. . . ∂F1
∂uΓ,nΓ

...
. . .

...
∂FnΓ
∂uΓ,1

. . .
∂FnΓ
∂uΓ,nΓ

 . (3.24)

The entries of the Jacobian are approximated using forward finite differences. Let
H = diag(h) ∈ RnΓ×nΓ with h > 0 but small. Column-wise, this gives

JF (uΓ) ≈
1

h

[
F (uΓ +He(1))− F (uΓ) | . . . | F (uΓ +He(nΓ))− F (uΓ)

]
, (3.25)

where e(i) ∈ RnΓ , i = 1, 2, ..., nΓ is the ith unit vector. Algorithm 2.6 can readily be
applied.

32

3.4.2 Iterative solvers

Another option is to view (3.18) as a minimization problem. This means that we construct
the corresponding least squares problem

G(uΓ) =
1

2
∥F (uΓ)∥22 (3.26)

and find its minimum using iterative solvers explained in Section 2.5. For gradient descent,
this gives the following iterative scheme

u
(k+1)
Γ = u

(k)
Γ − γkJF (u

(k)
Γ)TF (u

(k)
Γ), k = 0, 1, ...,K. (3.27)

with suitable step-size γk and K iterations. Note that ∇G(u
(k)
Γ) = JF (u

(k)
Γ)TF (u

(k)
Γ) and

its Jacobian can be approximated using finite differences just as in (3.25). In each iteration,
the step-size is optimized using Backtracking Line Search in Algorithm 2.4.

Another option to solve the minimization problem is to use the BFGS algorithm (see
Algorithm 2.5). As initial condition for the Hessian, we choose the identity matrix.

3.4.3 Remarks

In each of the methods to solve the non-linear equations in (3.18), we require an initial
condition. This is of great importance as it may occur that a bad initial condition finds
the wrong solution or even fails to find a solution. It may also influence the rate of conver-
gence. To ensure we start with a suitable initial condition, we have constructed a method
aiming to find a good solution. We explain how to find a suitable initial condition for the
hybrid-NL.

In the online stage, we solve the coupled problem for an unseen parameter location µ∗.
During the offline stage, the reduced-order solutions {uΓ(µ

i)}ns
i=1 are given. We choose

the initial condition u∗
Γ by taking the reduced interface vector that corresponds to the

parameter location that is closest to µ∗, that is

u∗
Γ := uΓ(µ

i) such that ∥µ∗ − µi∥2 ≤ ∥µ∗ − µj∥2 ∀j, i, j = 1, 2, ..., ns. (3.28)

A similar approach holds for the hybrid-LL but instead we take the reduced-order solutions
from the hybrid model.

33

4 Numerical Experiments part 1: linear-linear coupled Pois-
son problem

In this section, we will show performance results of the surrogate models explained in
Section 3 compared with the full-order FEM applied on the linear-linear coupled Poisson
problem given in (3.2). We start by computing a sample solution and later work out the
surrogate models and give an overview in terms of accuracy and computation time.

4.1 Sample solution

Regarding the discretization in the FEM we used first-order Lagrangian elements (see
Section 2.1) that are consistent with the domain decomposition such that the total DoFs
is N = 10201 with N1 = N2 = 5050 and NΓ = 101 denoting the DoFs corresponding to
respective domains. A sample solution of the FOM is depicted in Figure 4.1 below.

Figure 4.1: Sample solution with µ = [0.682 0.314 0.0530]. The first two elements
of µ correspond to the center location of the source term while the last element
corresponds to the intensity.

4.2 Numerical results of reduced-order modeling methods

Offline stage
We generate ns = 500 snapshots of the FOM with uniformly randomized parameter lo-
cations. This gives the snapshot matrix S ∈ RN×ns of which we extract S1, S2 and SΓ
containing the DoFs corresponding to domains respectively. On each of the snapshot ma-
trices we apply a POD analysis and plot the singular values. See Figure 4.2 below.

34

Figure 4.2: The singular values are denoted by σΩ1,i for i = 1, 2, ..., N1, σΩ2,j

for j = 1, 2, ..., N2 and σΩΓ,k for k = 1, 2, ..., NΓ for each domain respectively. The
singular values are plotted in blue, orange and green respectively. We see that the
decay on domain Ω2 is the slowest due to the parametric complexity.

We choose n1 = nΓ = n2 = 5 modes for each domain, resulting in relative information
contents greater than 0.93 on all domains (see equation (2.30)). Regarding the neural
networks, the data from the snapshot matrix is split into 80%, 10% and 10% training,
validation and testing data respectively and use LeakyReLU activation functions. For the
optimization we use the Adam optimizer and mini-batches of size 16. The loss function
is given by the mean squared error. Each neural network is trained for 1000 epochs and
utilizes the early stopping algorithm. The loss curves can be found in Appendix B. The
neural network architectures are given in Tables 4.1, 4.2 and 4.3 below.

Layer Input Output
Dense 8 20
Dense 20 20
Dense 20 1

Table 4.1: Neural Network
architectures for π̂

(i)
2 ,

i = 1, 2, ..., n2.

Layer Input Output
Dense 8 50
Dense 50 50
Dense 50 50
Dense 50 50
Dense 50 5

Table 4.2: Neural Network
architecture of t̂Γ.

35

Layer Input Output
Dense 3 50
Dense 50 50
Dense 50 50
Dense 50 50
Dense 50 5

Table 4.3: Neural Network
architecture of π̂Γ.

Online Stage
We solve a new Poisson problem for the unseen parameter locations

µ1
test = [0.550 0.386 0.0271] and µ2

test = [0.920 0.169 0.0120].

For the hybrid-LL and hybrid-NL, we solve the non-linear equation in (3.18) using gradient
descent with backtracking line search. We took an initial stepsize γ = 10, threshold
ϵ = 1e−7 and approximated the jacobian using forward finite differences with h = 1e−5.
The control parameters for the backtracking line search are τ = c = 0.5. See Figure 4.4
below.

36

Figure 4.4: For µ1
test (top) and µ2

test (bottom) we show a residual plot for the
hybrid-LL (left) and hybrid-NL (right) respectively. The residuals in the k-th iter-
ation are given by Rk = ∥F (u

(k)
Γ)∥2 (see equation (3.18)). The target residual is

denoted by R0 := ∥F (uexact
Γ)∥2 which is based on the FOM solution on the inter-

face. Due to the errors of the mapping t̂Γ from the training stage, this target value
is not exactly 0.

For µ1
test we see that the residuals start already below the target value. The choice of the

initial condition is designed to start close to the optimal value. As the traction mapping
t̂Γ minimizes the error over the complete training set, it may occur that the residuals start
under the target value and in turn finds even smaller residuals as the gradient descent
algorithm optimizes over just one data point. It should be noted that smaller residuals
do not necessarily lead to better results. After all, the output of the gradient descent
algorithm should be close to uexact

Γ . We report the relative errors compared to the exact
reduced-order solutions uexact

Γ in Table 4.4 below.

Reduced relative error on Γ
white

Hybrid-LL Surrogate-LL Hybrid-NL Surrogate-NL
µ1

test 0.0670 0.0106 0.0671 0.0184
µ2

test 0.345 0.0164 0.345 0.0214

Table 4.4: Relative errors compared to their exact reduced-order solutions uexact
Γ

for µ1
test and µ2

test. We note high errors for the hybrid-LL and hybrid-NL for µ2
test.

Next, we plot the solutions for all methods in Figures 4.5 and 4.6 below.

37

Figure 4.5: Solutions for µ1
test (top) using FOM and the ROMs from left to right.

The absolute errors (bottom) are compared with the FOM. All ROMs show decent
correspondence.

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-LL 0.0493 0.0932 0.0672 0.0790
Surrogate-LL 0.00470 0.0527 0.0116 0.0412
Hybrid-NL 0.0492 0.0943 0.0672 0.0798

Surrogate-NL 0.0115 0.0594 0.0189 0.0468

Table 4.5: Relative errors for each domains for all ROMs for µ1
test. The surrogate-

LL performs best, followed by the surrogate-NL, hybrid-LL and the hybrid-NL.

Figure 4.6: Solutions for µ2
test (top) using FOM and the ROMs from left to right.

The absolute errors (bottom) are compared with the FOM. We remark high errors
in the hybrid-LL and hybrid-NL.

38

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-LL 0.192 0.627 0.345 0.463
Surrogate-LL 0.00778 0.104 0.0168 0.0732
Hybrid-NL 0.192 0.633 0.345 0.467

Surrogate-NL 0.00997 0.106 0.0215 0.0747

Table 4.6: Relative errors for each domains for all ROMs for µ2
test. Clearly, the

surrogate-LL and surrogate-NL perform better than the hybrid-LL and hybrid-NL.

For each ROM, the values on domain Ω2 and the Γ are determined independently, which
results in a discontinuity on the interface. The values on the interface are used to intru-
sively determine the values on domain Ω1. From the figures, it can immediately be seen
that the surrogate methods perform better than the hybrid methods. In the computation
of the reduced interface vector, we already reported large errors in the hybrid methods (see
Table 5.1). To determine u2, we use the reduced interface vector as input. This means
that if the error is already large on the reduced interface vector, the error is propagated
in the computation of u2. This explains the large errors for the hybrid methods. On the
other hand, the solution on the interface acts as a Dirichlet boundary condition. This
means that the errors on the interface are propagated in the computation of the solution
on domain 1.

The offline computation times can be seen in Table 4.7 below.

Hybrid-LL Surrogate-LL Hybrid-NL Surrogate-NL
Offline CPU (s) 220 221 207 209

Table 4.7: Offline computation times per ROM. We note that the hybrid-LL and
surrogate-LL take longer due to the fact that we need to solve a hybrid model for
each parameter location.

For 100 test samples, we computed the average relative errors for each domain and for
each method. See Figure 4.7. In Figure 4.8 we reported the online computation times with
their relative errors.

39

Figure 4.7: Average relative errors over 100 test samples for each method. We
note high relative errors on domain Γ and Ω2 for the hybrid methods. Overall, the
surrogate-LL performs best. We see that the solutions for the hybrid methods take
substantially longer to compute than for the surrogate methods. Regularly, the
online computation time is even longer than that of the FOM. The computation
times of the surrogate models is much faster than the FOM. Moreover, they show
small variance of the relative error indicating more robustness in contrast to the
hybrid models.

Figure 4.8: For the 100 test samples, we report the online computation time
against the total relative error for each method. The vertical blue dashed line
represents the computation time using the FOM. We see that the solutions for
the hybrid methods take substantially longer to compute than for the surrogate
methods. Regularly, the online computation time is even longer than that of the
FOM. The computation times of the surrogate models is much faster than the FOM.
Moreover, they show small variance of the relative error indicating more robustness
in contrast to the hybrid models.

40

To conclude, we have seen that all ROMs can provide tolerable solutions closely related to
the FOM. For the hybrid ROMs however, we note that in some cases the reduced-interface
vector is determined poorly, resulting in errors propagating in the computation of domain
Ω2. Moreover, the online computation times frequently exceed that of the FOM. On the
other hand, the surrogate ROMs indicate better performance in terms of accuracy with
low computational cost and a high level of robustness. The surrogate-LL takes longer in
the offline stage and performs slightly better than the surrogate-NL in terms of accuracy.

41

5 Numerical Experiments Part 2: linear-nonlinear coupled
problem with non-linear diffusion

In this section we report numerical results of the linear-nonlinear coupled problem with
non-linear diffusion described in Section 1.1. We compare the hybrid-NL and surrogate-
NL with the full-order FEM. Next, we investigate the influence of the number of modes in
the reduced-order spaces and the performance of different algorithms with various initial
conditions to solve the non-linear equation in (3.18) for the hybrid-NL.

5.1 Domain decomposition

Consider the domain described by (1.1) with the steady-state Poisson problem in (1.3).
We decompose the domain of the problem in order to separate the linear and non-linear
equations on respective domains. Specifically, we split the domain into two non-overlapping
regions Ω1 and Ω2 such that Ω1 is the linear domain and Ω2 the non-linear domain with

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω1 =
⋃
i∈I

Ω1,i,
⋂
i∈I

Ω1,i = ∅, I = {1, 2, 3, 4, 6, 7, 8}.

Let the boundary that connects domains Ω1 and Ω2 be called the interface Γ such that

Γ = ∂Ω1 ∩ ∂Ω2,

where ∂Ω1 and ∂Ω2 denote the boundaries on domain Ω1 and Ω2 respectively. See Figure
5.1 on the right.

Figure 5.1: Original problem (left) and its decomposed problem (right). The
decomposed domain allows for a distinction of the linear and non-linear effects on
the domains respectively.

The domain decomposition approach leads to the following equations
−∇ · (kD(x,µ)∇u1) = −6 in Ω1,

−∇ · µ5D(x;µ)∇u2 = −6 in Ω2,

u1 = 1 + x2 + 2y2 on ΓL ∪ ΓR,
∂u1
∂n = 4y on ΓT ∪ ΓB,

(5.1)

42

with D(x;µ) = (1 + u1R5(x)) and restricted solutions u1 and u2 to domain Ω1 and Ω2

respectively, and

kD(x;µ) =
∑
i∈I

µi1Ω1,i with µ = [µ1 µ2 ... µ9]
T ∈ P = [0.1 1]9. (5.2)

On the interface we impose two coupling conditions forcing a smooth solution:{
∂u1
∂n1

= − ∂u2
∂n2

on Γ, (continuity of normal derivatives)
u1 = u2 on Γ. (continuity of the interface)

(5.3)

The domain decomposition has lead to the presence of the non-linearity only on domain
Ω2. The equations (5.1) and (5.3) form the same problem described in (1.3) but with
decomposed domains.

5.2 Sample solution

Starting with a sample solution of the FOM, the discretization of FEM is performed with
first-order Lagrangian elements with N = 10 000 DoFs such that N1 = 8844, N2 = 1024
and NΓ = 132 with N = N1 +N2 +NΓ.

Figure 5.2: Sample solution to (1.3) with
µ = [0.395 0.325 0.958 0.997 0.140 0.874 0.643 0.443 0.355].

5.3 Numerical results of reduced-order modeling methods

Offline stage
Using the FOM we generate ns = 500 snapshots and perform a POD analysis on each of
the domains. See Figure 5.3.

43

Figure 5.3: The singular values are denoted by σΩ1,i for i = 1, 2, ..., N1, σΩ2,j

for j = 1, 2, ..., N2 and σΩΓ,k for k = 1, 2, ..., NΓ for each domain respectively. The
singular values are plotted in blue, orange and green respectively. We see that the
decay on domain Ω1 is the slowest due to the parametric complexity.

Since the singular value decay is the slowest on domain Ω1, we choose n1 = 10, n2 = nΓ = 5
for the modes on each domain respectively, resulting in relative information contents greater
than 0.96 on all domains. Regarding the neural networks, we used the same hidden layers
described in Section 4.2 with Tables 4.1, 4.2 and 4.3.

Online Stage
For unseen parameter locations

µ3
test = [0.280 0.142 0.558 0.549 0.926 0.951 0.748 0.229 0.409], (5.4)

µ4
test = [0.901 0.274 0.981 0.429 0.278 0.131 0.345 0.592 0.203] (5.5)

we evaluate the performance of the hybrid-NL and surrogate-NL. Note that the fifth ele-
ment of the parameters indicate the level of non-linearity: µ3

test has more non-linearity as
opposed to µ4

test. To solve the non-linear equation in (3.18) for the hybrid-NL, we used
gradient descent with backtracking line search using similar hyperparameters described in
Section 4.2.

44

Figure 5.4: Gradient Descent for hybrid-NL for µ3
test (left) for µ4

test (right). Shown
is a plot of the residuals such that Rk = ∥F (u

(k)
Γ)∥2 is the residual in the k-th

iteration. The target residual is denoted by R0 := ∥F (uexact
Γ)∥2 which is based on

the FOM solution on the interface. Due to the error of the mapping t̂Γ from the
training stage, this target value is not exactly 0. For both parameters we see that
the algorithm terminates below the target value.

We report the reduced-order relative errors for the interface in Table 5.1.

Reduced-order relative error on Γ
test

Hybrid-NL Surrogate-NL
µ3

test 0.0163 0.0164
µ4

test 0.246 0.00491

Table 5.1: Relative errors compared to their exact reduced-order solutions uexact
Γ

for µ3
test and µ4

test. We note a high relative error for the hybrid-NL for µ4
test.

We remark for µ4
test that even though the gradient descent algorithm terminates below the

target value, the output still has a high relative error. Next, we plot the reconstructed
solutions of the ROMs together with the FOM and plot the absolute errors for both unseen
parameter locations. See Figures 5.5 and 5.6 below. The relative errors per domain are
given in Tables 5.2 and 5.3.

45

Figure 5.5: Solutions for µ3
test (top) using FOM and the hybrid-NL and surrogate-

NL from left to right. We see a good correspondence between the FOM and both
ROMs.

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-NL 0.0258 0.00740 0.0615 0.0252
Surrogate-NL 0.0291 0.00548 0.0616 0.0285

Table 5.2: Relative errors for each domains for the hybrid-NL and surrogate-NL
for µ3

test. Both show low errors.

46

Figure 5.6: Solutions for µ4
test (top) using FOM and the ROMs from left to right.

The absolute errors (bottom) are compared with the FOM. We remark relatively
high errors in the hybrid-NL as opposed to the surrogate-NL.

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-NL 0.102 0.257 0.247 0.111
Surrogate-NL 0.0236 0.0337 0.0523 0.0241

Table 5.3: Relative errors for each domain for the hybrid-NL and surrogate-NL
with µ4

test. We remark high relative errors for the hybrid-NL on the interface Γ and
domain Ω2.

We remark that the error in the computation of the reduced interface vector is propagated
in the computation of the reduced vector on domain Ω2 for the hybrid-NL. For 100 test
samples, we computed the average relative errors for each domain for methods 3 and 4.

47

Figure 5.7: Average relative errors per domain over 100 test samples. Both models
provide low relative errors on all domains. The surrogate-NL yields slightly better
results than the hybrid-NL on all domains.

The offline computation times can be seen in Table 5.4

Hybrid-NL Surrogate-NL
Offline CPU (s) 372 323

Table 5.4: Offline computation times per ROM. We note that the hybrid-NL takes
longer since for every snapshot we also require to extract the matrices and vectors
to generate Tns and T̃ns .

In Figure 5.8 we report online computation time against relative error over the same 100
test samples.

48

Figure 5.8: For the 100 test samples, we report the online computation time
against the total relative error for the hybrid-NL and surrogate-NL. The vertical
blue dashed line represents the computation time using the FOM. We see that
the solutions for the hybrid-NL take substantially longer to compute than for the
surrogate-NL. Regularly, the online computation time is even longer than that of
the FOM. The computation times of the surrogate-NL is much faster than the FOM.
Moreover, they show small variance of the relative error indicating more robustness
in contrast to the hybrid-NL.

We conclude that both the hybrid-NL and surrogate-NL provide tolerable solutions. With
high variance in the relative errors of the hybrid-NL, the robustness may not be satisfactory.
The offline computation time is also substantially longer than the surrogate-NL. Moreover,
the online computation time is larger than the computation time of the FOM. In contrast,
the surrogate-NL shows a high level of robustness with low relative errors and an extremely
small online computation time. Even with the higher level of non-linearity for µ3

test than
for µ4

test, the hybrid-NL performs better in the latter case. It remains open why some
parameter locations perform poorly in the computation of the reduced interface vector in
the hybrid-NL.

5.4 Effect of the number of modes

While it may seem natural that adding more modes on each domain increases the accuracy,
this is not necessarily true for the reduced-order surrogate models. This is because of error
propagation. The reduced-order interface vector obtained either by solving the non-linear
equation in (3.18) or via the mapping in (3.20) is paired with some error. This reduced-
order interface vector with error is then served as input for computing the reduced-order
vector on domain Ω2 which can cause even larger errors. Regarding robustness of the
methods, this may be undesirable. We can make a few changes to improve the robustness
although this can decrease the accuracy. For the hybrid-NL and surrogate-NL, we change
the input of the neural network for the modes on domain Ω2, that is

π
(i)
2 : {µnlin} −→ u

(i)
2 , i = 1, 2, ..., n2. (5.6)

49

This prevents error propagation as we remove the input of the reduced interface vector.
Further, for the surrogate-NL we train separate neural networks for the modes on the
interface so that

π
(i)
Γ : {µ} −→ u

(i)
Γ , i = 1, 2, ..., nΓ. (5.7)

With the above changes, we will now look at what influence the number of modes on
domain Ω2 and the interface have on the accuracy with the hybrid-NL and surrogate-NL
on the linear-nonlinear coupled problem with non-linear diffusion as in (1.3). The ROMs
are constructed with the same set-up described in 5.3. All relative errors are based on an
average of 100 test samples. First, we look at the relative errors on domain Ω2. See Figure
5.9 below.

Figure 5.9: Relative errors on domain Ω2 while increasing the number of modes
on domain Ω2 and Γ with the old setting (left) for the hybrid-NL (left-left) and
surrogate-NL (left-right) and new setting (right) as in (5.6) for both ROMs.

Figure 5.9 shows that in the old setting the relative errors do not strictly decrease as we
increase the number of modes for both ROMs. On the other hand, in the new setting the
strict decay is guaranteed. However, the relative error now is much larger than in the old
setting. Second, we look at the relative erros on domain Γ for the surrogate-NL in the old
setting and new setting as in (5.7) in Figure 5.10.

Figure 5.10: Relative errors on domain Γ while increasing the number of modes
on domain Ω2 and Γ with the old setting (left) for the hybrid-NL (left-left) and
surrogate-NL (left-right) and new setting (right) as in (5.6) for the surrogate-NL.

For the surrogate-NL we see that the old and new setting barely differ in terms of relative
error. For the hybrid-NL, we see that increasing the modes on domain Γ does not result in
lower relative errors. Lastly, we look at the total relative error in the old and new setting
for both ROMs in Figure 5.11.

50

Figure 5.11: Total relative errors while increasing the number of modes on domain
Ω2 and Γ with the old setting (left) for the hybrid-NL (left-left) and surrogate-NL
(left-right) and new setting (right) as in (5.6) for the hybrid-NL (right-left) and
surrogate-NL (right-right).

With the new changes, the surrogate-NL is now guaranteed to decrease strictly in total
relative error, although at the cost of some accuracy. On the contrary, the hybrid-NL
strict relative error decay does not guarantee this property because of the non-strict error
decay on domain Γ. The accuracy gain of the surrogate-NL while increasing the number
of modes is minimal.

To conclude, have seen that the new neural networks in (5.6) to determine the reduced
vector on domain Ω2 are paired with significant error increase for this particular prob-
lem. The new neural networks in (5.7) to determine the reduced-interface vector did not
show significant differences. The total relative errors with the new setting are only slightly
higher than in the old case but this is because domain Ω2 is much smaller than domain Ω1.
Generally, increasing the size of the reduced-order spaces in the ROMs only contributes
minimally to the error decrease. Strict error decay benefits the robustness yet it must be
carefully investigated per problem to prevent significant error loss.

5.5 Comparison of Gradient Descent, Newton’s method and BFGS

In the hybrid-NL, the non-linear equations in (3.18) need to be solved. This can be done
using methods such as Gradient Descent, Newton’s method for finding roots and the BFGS
algorithm as explained in Section 3.4. Here, we look more into detail of the performance
of these methods for different initial conditions.

With the same training procedure in Section 5.3 we have trained the hybrid-NL. For the
unseen parameter locations µ3

test described in (5.4) and

µ5
test = [0.620 0.697 0.769 0.164 0.694 0.528 0.360 0.541 0.762],

we solve the non-linear equations using the different solvers. During the offline stage,
we obtained the set of reduced-order interface vectors {uΓ(µ

i)}ns
i=1. Using this data, we

construct 4 different initial conditions: ’Good IC’, ’Max IC’, ’Min IC’ and ’Avg IC’. The
’Good IC’ corresponds to the choice as in (3.28). The ’Max IC’, ’Min IC’ and ’Avg IC’
correspond to the maximum, minimum and average values over each element of the uΓ(µ

i),
i = 1, 2, ..., ns. In Figure 5.12 we have plotted for each method the residuals against the
iterations. In tables 5.5, 5.6 and 5.7 we reported the relative errors.

51

Figure 5.12: Residual plots of Gradient Descent (left), BFGS (middle) and New-
ton’s method (right) for different initial conditions for µ3

test (top) and µ5
test (bot-

tom). The initial condition greatly affects the outputs of the algorithms. Regarding
convergence, we see that in some cases Newton’s method fails to get convergence.
On average, the BFGS algorithm converges after the fewest iterations, followed by
Newton’s method and gradient descent.

Reduced-order relative error on Γ
white

Good IC Max IC Min IC Avg IC
µ3

test 0.0163 0.475 0.225 0.266
µ5

test 0.0104 0.411 0.492 0.259

Table 5.5: Reduced-order relative errors on Γ for different initial conditions for
µ3

test and µ5
test using gradient descent

Reduced-order relative error on Γ
white

Good IC Max IC Min IC Avg IC
µ3

test 0.145 0.601 0.335 0.256
µ5

test 0.0201 0.397 0.437 0.258

Table 5.6: Reduced-order relative errors on Γ for different initial conditions for
µ3

test and µ5
test using the BFGS algorithm.

52

Reduced-order relative error on Γ
white

Good IC Max IC Min IC Avg IC
µ3

test 0.0163 2.75e8 0.0163 2.67e8
µ5

test 0.0104 3.38e6 0.0104 0.0104

Table 5.7: Reduced-order relative errors on Γ for different initial conditions for
µ3

test and µ5
test using Newton’s method.

From Table 5.5, Table 5.6 and 5.7 we see that for the ’Good IC’ the gradient descent
algorithm and Newton’s method achieve the lowest relative errors. In Newton’s method
however, the convergence is not always guaranteed for different initial conditions. Regard-
ing robustness, this is not desired. The BFGS algorithm stops after very few iterations
and performs poorly when the initial condition is far away. We conclude that the Gradient
Descent algorithm performs best among the methods.

53

6 Numerical Experiments Part 3: linear-nonlinear coupled
problem with non-linear reaction

In this section we report numerical results of the linear-nonlinear coupled problem with non-
linear Rayleigh-Bénard reaction. Starting with the problem description and corresponding
domain decomposition, we evaluate the surrogate models by comparing them to the full-
order FEM through the finite element method.

6.1 Problem description

Let NR be a non-linear reaction operator given by

NRu = −∇ · (k(x;µ)∇u) +R(u;µ) (6.1)

with R(u;µ) = µ10u(1+u2)1R5(x). This term is referred to as Rayleigh-Bénard convection
which is a form of convection existing in fluid dynamics [50]. Consider the domain described
by (1.1) with the steady-state Poisson problem in (1.3) but now with the non-linear reaction
operator in (6.1). We decompose the domain of the problem in order to separate the linear
and non-linear equations on respective domains. In particular, we have that

−∇ · (kD(x;µ)∇u1) = −6 in Ω1,

−∇ · (µ5∇u2) +R(x;µ) = −6 in Ω2,

u1 = 1 + x2 + 2y2 on ΓL ∪ ΓR,
∂u1
∂n = 4y on ΓT ∪ ΓB,

(6.2)

with µ10 ∈ [0.01, 10] and µ ∈ [0.1, 1]9 × [0.01, 10] and the coupling conditions described
in (5.3).

6.2 Numerical results of reduced-order modeling methods

Offline stage
Again, using the FOM we generate ns = 500 snapshots and perform a POD analysis on
each of the domains. The singular value decay is given in Figure 6.1 below.

54

Figure 6.1: The singular values are denoted by σΩ1,i for i = 1, 2, ..., N1, σΩ2,j

for j = 1, 2, ..., N2 and σΩΓ,k for k = 1, 2, ..., NΓ for each domain respectively. The
singular values are plotted in blue, orange and green respectively. We see that the
decay on domain Ω1 is the slowest due to the parametric complexity.

We choose n1 = 10, n2 = nΓ = 5 for the number of modes on each domain respectively.
The set-up of the neural networks is similar to the ones described in Section 4.2 with Tables
4.1, 4.2 and 4.3.

Online stage
For the unseen parameter locations

µ4
test = [0.788 0.935 0.160 0.208 0.233 0.854 0.573 0.835 0.639 1.43]

µ5
test = [0.224 0.221 0.760 0.227 0.193 0.233 0.231 0.456 0.199 6.13]

we compare the FOM with the hybrid-NL and surrogate-NL. Note that the last element
of the parameter locations corresponds to the non-linearity. Regarding the hybrid-NL,
the reduced-order interface vector is determined by solving (3.18) using gradient descent
with backtracking line search using similar hyperparameters described in Section 4.2. See
Figure 6.2.

55

Figure 6.2: Gradient Descent for hybrid-NL for µ4
test (left) for µ5

test (right). Shown
is a plot of the residuals such that Rk = ∥F (u

(k)
Γ)∥2 is the residual in the k-th

iteration. The target residual is denoted by R0 := ∥F (uexact
Γ)∥2 which is based on

the FOM solution on the interface. Due to the error of the mapping t̂Γ from the
training stage, this target value is not exactly 0. For both parameters we see that
the algorithm terminates below the target value.

The reduced-order relative errors for the interface are given in Table 6.1.

Reduced-order relative error on Γ
test

Hybrid-NL Surrogate-NL
µ4

test 0.0534 0.0125
µ5

test 0.364 0.0757

Table 6.1: Relative errors compared to their exact reduced-order solutions uexact
Γ

for µ4
test and µ5

test. We note a high relative error for the hybrid-NL for µ5
test.

We remark that for µ5
test that even though the gradient descent algorithm terminates well

below the target value, the output still shows a high relative error. The reconstructed
solutions of the ROMs are compared with the FOM for both parameter locations in Figure
6.3 and 6.4 with relative errors reported in Tables 6.2 and 6.3.

56

Figure 6.3: Solutions for µ4
test (top) using FOM and the hybrid-NL and surrogate-

NL from left to right. We see a good correspondence between the FOM and both
ROMs.

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-NL 0.0381 0.0403 0.0616 0.0385
Surrogate-NL 0.0289 0.0231 0.0332 0.0287

Table 6.2: Relative errors for each domains for the hybrid-NL and surrogate-NL
for µ4

test. Both show low errors.

57

Figure 6.4: Solutions for µ2
test (top) using FOM and the ROMs from left to right.

The absolute errors (bottom) are compared with the FOM. We remark relatively
high errors in the hybrid-NL as opposed to the surrogate-NL.

ϵ1 ϵ2 ϵΓ ϵ

Hybrid-NL 0.0967 0.579 0.364 0.113
Surrogate-NL 0.0444 0.101 0.0830 0.0454

Table 6.3: Relative errors for each domains for the hybrid-NL and surrogate-NL
for µ5

test. There is a high relative error for the hybrid-NL on the interface that is
propagated in the computation on domain Ω2.

For 100 test samples, we computed the average relative errors for each domain for the
hybrid-NL and surrogate-NL. See Figure 6.5.

58

Figure 6.5: Average relative errors per domain over 100 test samples. Both models
provide tolerable relative errors on all domains. The surrogate-NL performs better
on all domains compared to the hybrid-NL.

The offline computation times can be seen in Table 6.4

Hybrid-NL Surrogate-NL
Offline CPU (s) 348 295

Table 6.4: Offline computation times per ROM. We note that the hybrid-NL takes
longer since for every snapshot we also require to extract the matrices and vectors
to generate Tns and T̃ns .

In Figure 6.6 we have plotted the relative errors against the online computation time for
the 100 test samples.

59

Figure 6.6: For the 100 test samples, we report the online computation time
against the total relative error for the hybrid-NL and surrogate-NL. The vertical
blue dashed line represents the computation time using the FOM. We see that
the solutions for the hybrid-NL take substantially longer to compute than for the
surrogate-NL. The online computation times are even longer than that of the FOM.
The computation times of the surrogate-NL is much faster than the FOM. Moreover,
they show small variance of the relative error indicating more robustness in contrast
to the hybrid-NL.

The conclusion is similar to that in previous section. Both the hybrid-NL and surrogate-NL
provide tolerable solutions but for the hybrid-NL the computational gain is unsatisfactory
and the relative erros are on average higher compared to the surrogate-NL.

60

7 Numerical Experiments Part 4: Uncertainty quantification
using Monte Carlo simulation

In this section we perform several uncertainty quantification tasks for PDEs using Monte
Carlo simulation. While this is an expensive task for full-order models in terms of compu-
tational cost, reduced-order models address this issue.

7.1 Estimating statistical information

This section covers the estimation of an expected value. Consider the linear-nonlinear
coupled problem with non-linear reaction described in (6.2). Let the output of interest be
given by the average value on domain 2, i.e.

F (u(x;µ)) =
1

|Ω2|

∫
Ω2

u(x;µ) dΩ2 (7.1)

≈ 1

N2

N2∑
i=1

U
rb,(i)
2 , (7.2)

which is approximated by the average value of the elements of the vector U rb
2 . Suppose

the quantity of interest is given by the expectation, that is

E[F] =

∫
P
F (u(x;µ))ρ(µ) dµ. (7.3)

Using Monte Carlo Simulation, we aim to approximate (7.3) using the surrogate-NL from
Algorithm 3.4 and compare the results with the FOM. We investigate the influence of the
number of modes on domain Ω2 and the interface. Specifically, we construct a reduced-
order model using n2 = nΓ = 2 denoted by ROM-2 and one using n2 = nΓ = 5 denoted
by ROM-5. Iterating over Q = 1000 samples, we compute E[F] for both the ROMs and
FOM.

Figure 7.1: Convergence of the quantity of interest E[F] for both the FOM and
two ROMs using different RB sizes. After every iteration q ≤ Q we compute the
quantity of interest and the 95% confidence interval of the FOM. Between the FOM
and ROMs there is a small bias as the ROMs slightly overestimate the quantity of
interest. We note that ROM-5 performs slightly better than ROM-2.

61

7.2 Estimating failure probability

In this section, we will approximate a failure probability using Monte Carlo simulations
with and without importance sampling described in Section 2.7.1. As approximating the
failure probability using the FOM is too costly, we instead utilize the surrogate-NL.

Consider the linear-linear coupled Poisson problem described in (3.2) but with
P = [0 0.5]× [0 0.25]× [0.001 0.1]. Let the output of interest be given by the average value
on the interface. This can be approximated using the solutions from the surrogate model,
that is

F (u(x;µ)) =
1

|Γ|

∫
Γ
u(x;µ) dΓ (7.4)

≈ 1

NΓ

NΓ∑
j=1

U
rb,(i)
Γ .

Suppose we assign a 1 (failure) for when the output of interest is greater than 3.9 and
assign 0 (success) else. This gives

G(u(x;µ)) =

{
1 if F (u(x;µ)) > F0 = 3.9,

0 else.
(7.5)

The quantity of interest is the failure probability, that is

PF0 = P [F (u(x;µ)) ≥ F0] =

∫
P
G(u(x;µ))ρ(µ) dµ. (7.6)

Using regular Monte Carlo simulation, the failure probability is approximated such that

PF0 ≈ PF0,MC =
1

Q

Q∑
q=1

G(U rb(x;µq)).

As we have seen in Section 2.7.1, estimating small probabilities is more effectively accom-
plished through the utilization of importance sampling. For that, we first construct a
suitable biasing distribution q(µ). Prior, the parameter locations were taken from inde-
pendent uniform distributions so that the original distribution is a multiplication of three
uniform distributions, that is

p(µ) = p1(µ
(1))p2(µ

(2))p3(µ
(3)), (7.7)

p1(µ
(1)) =

{
2 for 0 ≤ µ(1) ≤ 0.5,

0 else,
p2(µ

(2)) =

{
4 for 0 ≤ µ(2) ≤ 0.25,

0 else,

p3(µ
(3)) =

{
1

0.099 for 0.001 ≤ µ(3) ≤ 0.1,

0 else.

For parameter location µq = [0.482 0.213 0.0918], we know that F (u(x;µq)) > 3.9. Note
that this parameter resides towards the extremity of the parameter space. To favour more

62

samples around this parameter location, we ensure that the biasing distribution is centered
around µq. This leads to the following biasing normal distributions

q(µ) = q1(µ
(1))q2(µ

(2))q3(µ
(3)), (7.8)

q1(µ
(1);µ(1)

q , σ1) =
1

σ
√
2π

exp

−1

2

(
µ(1) − µ

(1)
q

σ1

)2
 ,

q2(µ
(2);µ(2)

q , σ2) =
1

σ
√
2π

exp

−1

2

(
µ(2) − µ

(2)
q

σ2

)2
 and

q3(µ
(3);µ(3)

q , σ3) =
1

σ
√
2π

exp

−1

2

(
µ(3) − µ

(3)
q

σ3

)2
 .

In Figure 7.2 we have depicted the prior and biasing distributions.

Figure 7.2: From left to right, plotted are the original uniform distributions with
biasing distributions for σ1 =

√
0.1, σ2 =

√
0.05 and σ3 =

√
0.01 respectively.

When sampling from the biasing distribution, we take samples that are more at the
extremity of the parameter space.

Using importance sampling, the failure probability is approximated so that

PF0 ≈ PF0,IS =
1

Q

Q∑
i=1

G(U rb(x;µi)
ρ(µi)

q(µi)
.

With the same training strategy explained in Section 4.2, we have train the surrogate-
NL. For Q = 60 000 Monte Carlo samples we approximate the failure probability after
every sample for both regular Monte Carlo simulation and with importance sampling. The
results are depicted in Figure 7.3

63

Figure 7.3: Estimates PF0,MC , PF0,IS of failure probabilities using both regular
Monte Carlo simulation and with importance sampling respectively. Even though
we are unable to compare the failure probability by utilizing full-order models, we
can still see that the approximated failure probability using importance sampling
converges to the same failure probability using regular Monte Carlo simulation.
With importance sampling, we see that we converge faster than in the regular case.
The failure probabilities are given by PF0,MC = 0.00222 and PF0,IS = 0.00233.

7.3 Estimation of probability density function

Consider the linear-nonlinear coupled problem with non-linear diffusion described in (1.3).
Let the output of interest be given by the average value on domain Ω2 as in (7.1) and the
quantity of interest the expected average value on domain Ω2, similar to (7.3) and denoted
by E[F]. We aim to approximate the probability density function (PDF) of E[F] using the
surrogate-NL.

Let the PDF estimate be denoted by f̂X . A natural approach would be to run multi-
ple Monte Carlo simulations to obtain sample expectations and construct a discrete PDF.
This requires a high computational cost. For that reason we use another method called
bootstrapping. Instead of running multiple Monte Carlo simulations, we generate one sim-
ulation of Q samples. By taking a random sub-sample of size M of the Q samples K times,
we compute estimate sample expectations Êi[F] for i = 1, 2, ...,K. From these samples,
we generate a histogram of equal-sized intervals of length ∆ and note that

P (Êi[F] ≤ X ≤ Êi[F] + ∆) =
ki
K

, i = 1, 2, ...,K (7.9)

where ki denotes the frequency corresponding to the interval [Êi[F], Êi[F] +∆]. At Êi[F]
the approximate PDF value is given by

f̂X(Êi[F]) =
P (Êi[F] ≤ X ≤ Êi[F] + ∆)

∆
, i = 1, 2, ...,K. (7.10)

Before estimating the PDF, we run a Monte Carlo simulation of Q = 1000 samples for
both the FOM and ROM (in this case surrogate-NL). We report the average values on

64

domain Ω2 in a histogram and in each iteration calculate the estimated expected value.
See Figures 7.4 and 7.5 below.

Figure 7.4: Histogram of the out-
puts of interest F for both the FOM
and ROM for Q = 1000 samples with
relative frequency on the y-axis. We
see a high level of correspondence but
the ROM seems to slightly overesti-
mate the outputs of interests. this is
to align the figures. Align figures fig-
ures gifues gues dsdfudsfusdfsfsdf

Figure 7.5: Convergence of the es-
timate Ê[F] for both the FOM and
surrogate-NL. After every iteration
q ≤ Q we estimate the quantity of in-
terest and the 95% confidence interval
of the FOM. Between the FOM and
the surrogate-NL there is a small bias
as the surrogate-NL slightly overesti-
mates the quantity of interest.

Proceeding with the PDF estimation, in the bootstrapping phase we generate Q = 50000
samples and take K = 30000 random sub-samples of size M = 4000. See Figure 7.6.

Figure 7.6: PDF estimation of E[F] with the surrogate-NL using bootstrapping.
The length of the intervals are given by ∆ = 0.000311.

65

8 Discussion and conclusions

In this thesis, we developed reduced-order surrogate models for linear-nonlinear coupled
problems. The aim of these models is to address the limitations when utilizing conven-
tional full-order techniques such as FEM that require prohibitive computational costs.
The hybrid-LL and surrogate-LL are two developed reduced-order methods for linear-
linear coupled problems acting as proof of concepts, while the ROMs termed hybrid-NL
and surrogate-NL are intended to solve linear-nonlinear coupled problems. The four ROMs
combine the use of both intrusive and non-intrusive methods with POD-ROM, POD-NN
and domain decomposition on sub-domains respectively. The choices of the reduction
techniques on the sub-domains are based on the parametric complexity and the underlying
equations (linear or non-linear) in order to apply reduction effectively.

Starting with the linear-linear coupled problem discussed in Section 4, we have seen that
all ROMs guarantee solutions. The surrogate ROMs consistently achieve low relative er-
rors contributing to a high level of robustness. In contrast, the hybrid ROMs are unable
to achieve suitable relative errors compared to the FOM. Equally, the error deviations are
much larger in the hybrid ROMs. For particular parameter locations, the hybrid ROMs
fail to find a good estimate for the reduced interface values of which their error propagates
through the computations on domain Ω1 and especially Ω2. Regarding computational cost,
the offline stage is clearly expensive for all methods and especially for the hybrid ROMs
as they require a substantial amount of memory cost at the same time. For the surrogate
ROMs however, the expensive offline stage is easily compensated for in the extremely fast
online stage.

Continuing with the linear-nonlinear coupled problems in Section 5 and 6, we see similar
behaviour of the performance of the hybrid-NL and surrogate-NL. Although guaranteeing
solutions, the hybrid-NL fails to fulfill the purpose of a ROM with often larger online
computations than the full-order method. The issue on error propagation on domain Ω2

for both ROMs could be resolved by omitting the reduced interface vector as input for the
neural networks although this significantly reduces accuracy of the solution. Generally,
increasing the size of the reduced-order spaces in the ROMs only contributes minimally to
the error decrease.

In Section 7, the power of the surrogate-NL is successfully tested in uncertainty quan-
tification tasks in Monte Carlo simulations. Showing a small bias compared to the FOM
for particular statistical quantities, this is readily counteracted by the noticeably more
rapid online computation time.

While the ROMs have shown to work in our numerical experiments, it should be important
to note that there exist numerous hyperparameters that need to be optimized depending
on the problem. For example, the number of snapshots required in the offline stage as well
as the tuning of the hyperparameters in the neural networks is highly dependent on the
parametric complexity. Tuning the hyperparameters per problem may be a challenging
task.

In conclusion, this thesis has made progress in solving linear-nonlinear coupled problems
effectively by constructing ROMs that employ domain decomposition and both regular and
data-driven reduced-order modeling techniques. Especially the surrogate-NL has shown to

66

be promising under our numerical experiments and it will be interesting to see the perfor-
mance on more challenging tasks.

67

9 Future research

First, one could aim to address the limitations of the hybrid-NL. As the hybrid-NL fails
to find an accurate reduced-interface vector at times with high computational cost, future
work could focus on this issue. The key is to find out why the hybrid-NL underachieves for
particular parameter locations. A comparison of some iterative solvers such as the BFGS
algorithm and Newton’s method has already been discussed in Section 5.5 which may lead
to new insights.

Second, the numerical results for the surrogate-NL are promising. It will be interesting
to see how the surrogate-NL performs under more challenging problems by adding time
dependence for advection-diffusion-reaction equations such as in [36]. Another common
problem of interest is the modeling of fluid flow around a cylinder and investigated in [34].

Lastly, while most ROMs in literature are paired with a posteriori error bounds which
may be important in practical applications, this has been left unaddressed here. This is
useful to control the participating errors.

68

10 References

[1] J. Parry, “Mathematical modelling and computer simulation of heat and mass transfer
in agricultural grain drying: A review,” Journal of Agricultural Engineering Research,
vol. 32, no. 1, pp. 1–29, 1985.

[2] W.-C. Chuang, H.-L. Lee, P.-Z. Chang, and Y.-C. Hu, “Review on the modeling of
electrostatic mems,” Sensors, vol. 10, no. 6, pp. 6149–6171, 2010.

[3] H. Mohammed, G. Bhaskaran, N. Shuaib, and R. Saidur, “Heat transfer and fluid flow
characteristics in microchannels heat exchanger using nanofluids: a review,” Renewable
and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1502–1512, 2011.

[4] T. Belytschko, R. Gracie, and G. Ventura, “A review of extended/generalized finite el-
ement methods for material modeling,” Modelling and Simulation in Materials Science
and Engineering, vol. 17, no. 4, p. 043001, 2009.

[5] S. S. Rao, The finite element method in engineering. Butterworth-heinemann, 2017.

[6] A. Nouy, “Recent developments in spectral stochastic methods for the numerical solu-
tion of stochastic partial differential equations,” Archives of Computational Methods
in Engineering, vol. 16, no. 3, pp. 251–285, 2009.

[7] G. Alfonsi, “Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling,”
Applied Mechanics Reviews, vol. 62, p. 040802, 06 2009.

[8] R. Benzi, S. Succi, and M. Vergassola, “The lattice boltzmann equation: theory and
applications,” Physics Reports, vol. 222, no. 3, pp. 145–197, 1992.

[9] H. Bhabha, “Relativistic wave equations for the elementary particles,” Reviews of
Modern Physics, vol. 17, no. 2-3, p. 200, 1945.

[10] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, “Supremizer stabilization
of pod–galerkin approximation of parametrized steady incompressible navier–stokes
equations,” International Journal for Numerical Methods in Engineering, vol. 102,
no. 5, pp. 1136–1161, 2015.

[11] R. C. Smith, Uncertainty quantification: theory, implementation, and applications,
vol. 12. Siam, 2013.

[12] T. Bui-Thanh, C. Burstedde, O. Ghattas, J. Martin, G. Stadler, and L. C. Wilcox,
“Extreme-scale uq for bayesian inverse problems governed by pdes,” in SC’12: Pro-
ceedings of the international conference on high performance computing, networking,
storage and analysis, pp. 1–11, IEEE, 2012.

[13] D. Hartmann and H. van der Auweraer, “Digital twins,” 2020.

[14] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins from
the artisanal to the industrial,” Nature Computational Science, vol. 1, no. 5, pp. 313–
320, 2021.

[15] R. Yondo, E. Andrés, and E. Valero, “A review on design of experiments and surro-
gate models in aircraft real-time and many-query aerodynamic analyses,” Progress in
aerospace sciences, vol. 96, pp. 23–61, 2018.

69

[16] D. J. Knezevic and A. T. Patera, “A certified reduced basis method for the fokker–
planck equation of dilute polymeric fluids: Fene dumbbells in extensional flow,” SIAM
Journal on Scientific Computing, vol. 32, no. 2, pp. 793–817, 2010.

[17] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model reduction
methods for parametric dynamical systems,” SIAM review, vol. 57, no. 4, pp. 483–531,
2015.

[18] D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: new approaches
for computational physics,” Progress in aerospace sciences, vol. 40, no. 1-2, pp. 51–117,
2004.

[19] F. Chinesta, P. Ladeveze, and E. Cueto, “A short review on model order reduction
based on proper generalized decomposition,” Archives of Computational Methods in
Engineering, vol. 18, no. 4, pp. 395–404, 2011.

[20] G. Rozza, D. B. P. Huynh, and A. T. Patera, “Reduced basis approximation and a
posteriori error estimation for affinely parametrized elliptic coercive partial differential
equations: application to transport and continuum mechanics,” Archives of Compu-
tational Methods in Engineering, vol. 15, no. 3, pp. 229–275, 2008.

[21] A. E. Løvgren, Y. Maday, and E. M. Rønquist, “A reduced basis element method for
the steady stokes problem,” ESAIM: Mathematical Modelling and Numerical Analysis,
vol. 40, no. 3, pp. 529–552, 2006.

[22] A. Manzoni, “An efficient computational framework for reduced basis approximation
and a posteriori error estimation of parametrized navier–stokes flows,” ESAIM: Math-
ematical Modelling and Numerical Analysis, vol. 48, no. 4, pp. 1199–1226, 2014.

[23] M. A. Grepl and A. T. Patera, “A posteriori error bounds for reduced-basis approxima-
tions of parametrized parabolic partial differential equations,” ESAIM: Mathematical
Modelling and Numerical Analysis, vol. 39, no. 1, pp. 157–181, 2005.

[24] A. T. Patera, G. Rozza, et al., “Reduced basis approximation and a posteriori error
estimation for parametrized partial differential equations,” 2007.

[25] J. S. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of nonlinear
problems using neural networks,” Journal of Computational Physics, vol. 363, pp. 55–
78, 2018.

[26] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[27] M. Guo and J. S. Hesthaven, “Data-driven reduced order modeling for time-dependent
problems,” Computer methods in applied mechanics and engineering, vol. 345, pp. 75–
99, 2019.

[28] N. Franco, A. Manzoni, and P. Zunino, “A deep learning approach to reduced or-
der modelling of parameter dependent partial differential equations,” Mathematics of
Computation, vol. 92, no. 340, pp. 483–524, 2023.

[29] P.-L. Lions et al., “On the schwarz alternating method. i,” in First international sym-
posium on domain decomposition methods for partial differential equations, vol. 1,
p. 42, Paris, France, 1988.

70

[30] Y. Maday and F. Magoules, “Absorbing interface conditions for domain decomposi-
tion methods: A general presentation,” Computer methods in applied mechanics and
engineering, vol. 195, no. 29-32, pp. 3880–3900, 2006.

[31] A. de Castro, P. Kuberry, I. Tezaur, and P. Bochev, “A novel partitioned approach for
reduced order model—finite element model (rom-fem) and rom-rom coupling,” Earth
and Space 2022, pp. 475–489, 2022.

[32] Y. Wu and X.-C. Cai, “A fully implicit domain decomposition based ale framework
for three-dimensional fluid–structure interaction with application in blood flow com-
putation,” Journal of Computational Physics, vol. 258, pp. 524–537, 2014.

[33] A. Corigliano, M. Dossi, and S. Mariani, “Domain decomposition and model order
reduction methods applied to the simulation of multi-physics problems in mems,”
Computers & Structures, vol. 122, pp. 113–127, 2013.

[34] I. Martini, B. Haasdonk, and G. Rozza, “Certified reduced basis approximation for
the coupling of viscous and inviscid parametrized flow models,” Journal of Scientific
Computing, vol. 74, pp. 197–219, 2018.

[35] I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori
error estimation for the coupled stokes-darcy system,” Advances in Computational
Mathematics, vol. 41, pp. 1131–1157, 2015.

[36] N. Discacciati and J. S. Hesthaven, “Localized model order reduction and domain
decomposition methods for coupled heterogeneous systems,” International Journal
for Numerical Methods in Engineering, 2023.

[37] L. Iapichino, A. Quarteroni, and G. Rozza, “A reduced basis hybrid method for the
coupling of parametrized domains represented by fluidic networks,” Computer Methods
in Applied Mechanics and Engineering, vol. 221, pp. 63–82, 2012.

[38] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M. E. Rognes, and G. N. Wells, “The FEniCS project version 1.5,” Archive
of Numerical Software, vol. 3, 2015.

[39] A. Logg, K. Mardal, G. N. Wells, et al., Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012.

[40] A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory,
vol. 34. Springer Science & Business Media, 2004.

[41] A. Quarteroni and S. Quarteroni, Numerical models for differential problems, vol. 2.
Springer, 2009.

[42] A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential
equations: an introduction, vol. 92. Springer, 2015.

[43] S. T. Tokdar and R. E. Kass, “Importance sampling: a review,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no. 1, pp. 54–60, 2010.

[44] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

71

[45] M. Al-Baali, E. Spedicato, and F. Maggioni, “Broyden’s quasi-newton methods for
a nonlinear system of equations and unconstrained optimization: a review and open
problems,” Optimization Methods and Software, vol. 29, no. 5, pp. 937–954, 2014.

[46] S. Amat, S. Busquier, and S. Plaza, “Review of some iterative root-finding methods
from a dynamical point of view,” Scientia, vol. 10, no. 3, p. 35, 2004.

[47] J. Zhang, “Modern monte carlo methods for efficient uncertainty quantification and
propagation: A survey,” Wiley Interdisciplinary Reviews: Computational Statistics,
vol. 13, no. 5, p. e1539, 2021.

[48] M. Haase, Functional analysis: an elementary introduction, vol. 156. American Math-
ematical Society Providence, RI, USA, 2014.

[49] É. Pardoux and Y. Veretennikov, “On the poisson equation and diffusion approxima-
tion. i,” The Annals of Probability, vol. 29, no. 3, pp. 1061–1085, 2001.

[50] A. C. Newell and J. A. Whitehead, “Finite bandwidth, finite amplitude convection,”
Journal of Fluid Mechanics, vol. 38, no. 2, pp. 279–303, 1969.

72

A Implementation

Implementation of the numerical results can be found on Github: https://github.com/
PaulStuiver/FP.

B Loss curves numerical Experiments part 1: linear-linear
coupled Poisson problem

We report the loss curves of the neural networks that were trained for the linear-linear
coupled Poisson problem. The learning rate is given by l.

Figure B.1: Loss curve of π̂(1)
2 with

l = 0.03 for hybrid-LL and surrogate-
LL.

Figure B.2: Loss curve of π̂(2)
2 with

l = 0.003 for hybrid-LL and surrogate-
LL.

Figure B.3: Loss curve of π̂(3)
2 with

l = 0.003 for hybrid-LL and surrogate-
LL.

Figure B.4: Loss curve of π̂(4)
2 with

l = 0.003 for hybrid-LL and surrogate-
LL.

73

https://github.com/PaulStuiver/FP
https://github.com/PaulStuiver/FP

Figure B.5: Loss curve of π̂(5)
2 with

l = 0.003 for hybrid-LL and surrogate-
LL.

Figure B.6: Loss curve of t̂Γ
with l = 0.0005 for hybrid-LL and
surrogate-LL.

Figure B.7: Loss curve of π̂(1)
2 with

l = 0.03 for hybrid-NL and surrogate-
NL.

Figure B.8: Loss curve of π̂
(2)
2

with l = 0.003 for hybrid-NL and
surrogate-NL.

74

Figure B.9: Loss curve of π̂
(3)
2

with l = 0.003 for hybrid-NL and
surrogate-NL.

Figure B.10: Loss curve of π̂
(4)
2

with l = 0.003 for hybrid-NL and
surrogate-NL.

Figure B.11: Loss curve of π̂
(5)
2

with l = 0.003 for hybrid-NL and
surrogate-NL.

Figure B.12: Loss curve of t̂Γ
with l = 0.0005 for hybrid-NL and
surrogate-NL.

75

Figure B.13: Loss curve of π̂(5)
2 with

l = 0.001 for hybrid-LL and surrogate-
LL.

Figure B.14: Loss curve of t̂Γ
with l = 0.001 for hybrid-NL and
surrogate-NL.

76

