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Abstract

Fibre reinforced composites are becoming more common in a world that demands
lightweight products. These materials play a crucial role in the aerospace and auto-
motive industries in reducing fuel consumption. Additionally, they are essential in
sustainable energy technologies, particularly for the production of improved wind tur-
bines. Fibre reinforced composites consist of high-performance fibres, such as carbon or
glass, embedded in a matrix material. The distribution of fibres in the matrix material
and the presence of defects, such as air inclusions, greatly influence the mechanical
performance of the material. Microscopic images of cross-sections of the material can
be used to visualise these characteristics so that a human can identify any possible de-
fects. However, automating this analysis would be highly beneficial and time-efficient.
Currently, image analysis techniques are mainly based on manual pixel intensity thresh-
olding, which is sensitive to illumination conditions during image generation and image
quality. Machine learning offers a potential solution to automate the analysis of the mi-
crographs. Therefore, the objective of this research is to explore the potential of using
a machine learning model to recognise fibres and voids in micrographs of composites to
determine the void and fibre volume fractions in the material. This thesis proposes a
deep learning approach with a model based on a u-net architecture. The u-net model
is trained, validated and tested with data sets composed of images of 256 x 256 pixels
cut from microscopy images of carbon fibre composites. This research also includes the
generation of these data sets with corresponding ground truth masks of the images.
Furthermore, data augmentation is used to increase diversity in these training data
sets, which was found to improve the prediction results of the trained models on the
test data. The trained models demonstrate that this deep learning approach is capa-
ble of accurately recognising voids and fibres without the need for calibration, unlike
traditional thresholding techniques. Thus, it is shown that this deep learning approach
is a promising method for identifying fibres and voids in microscopy images, despite
having a limited data set and not having ideal ground truth masks.
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1. Introduction

1 Introduction
Fibre reinforced polymer (FRP) composites are becoming more common in a world that
demands lightweight products. These materials play a crucial role in the aerospace and
automotive industries by reducing fuel consumption. Additionally, they are essential in sus-
tainable energy technologies, particularly for the production of state-of-the-art wind turbines
[1], as all wind turbines today are made up of blades made up of FRP composites [2].

Figure 1: A composite material is built up of fibres and matrix material. These can be
stacked into different layers to get a composite laminate.

FRPs are composite materials that have three major constituents: high-performance fibres,
matrix material, and voids [3]. Fibres mainly carry the load of the material and provide
strength and stiffness to it. Carbon and glass fibres are commonly used for this purpose.
The matrix material binds these fibres together and transfers loads between them, as can be
seen in Figure 1. The matrix material can be either a thermoset resin or a thermoplastic
polymer. In addition to fibres and matrix material, composites may contain voids. Voids
are gas bubbles trapped in the matrix material and can arise during the manufacturing of
the composite. They are highly unwanted, and even at a low volume percent, they can
significantly affect the properties of the FRP. A higher void content results in a decrease
in mechanical properties. Aerospace-grade composites often exhibit void contents of around
1%, while other composites can have void contents between 3 and 5%. An increase in this
void volume fraction from only 1 to 3% in highly loaded FRPs can result in a 20% loss in the
mechanical properties of the laminate [4]. The void volume fraction Vv can be calculated as:

Vv =
Vvoids

Vcomposite
, (1)

where Vvoids is the total volume of the voids inside the composite and Vcomposite is the total
volume of the whole composite.

To understand the behaviour of materials, it is crucial to understand and know the properties
of materials. In addition to analysing the void content, characterising the microstructure of
materials can help to understand the properties of the material. This is especially important
in the case of (carbon) composites, since the matrix material and the reinforcement material
can be arranged in many possible ways [5]. Therefore, the arrangement of the fibres in the
composite, like orientation and geometry, is one of the factors that typically determines the
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1. Introduction 1.1. Problem definition

(a) Schematic representation of a cross-
section of an FRP composite with voids.

(b) Cross-section of part of a laminate
made with a digital microscope showing
voids, fibres and matrix material.

Figure 2: Visual representation of voids in cross-sections of FRP material.

properties of a composite. In addition, the fibre properties, matrix properties, the fibre vol-
ume fraction and the void volume fraction [6] also determine the properties of the composite.
Similarly to the volume fraction of the void, the volume fraction of the fibres Vf of an FRP
composite can be calculated as:

Vf =
Vfibre

Vcomposite
. (2)

Here, Vfibre is the volume of all fibres in the composite and Vcomposite is the total volume of
the composite. Therefore, Vf is the percentage of the volume of the composite made up of
fibres. This ratio is typically in the range of 50-70% [7]. The Vf of an FRP composite is
highly dependent on the stacking of the fibres and the manufacturing process, especially the
pressure applied during the curing processes. The strength of the composite tends to increase
with the amount of fibre it contains since the strength of the fibres is usually greater than
that of the matrix material. However, studies show that after a certain Vf the strength can
decrease again because there is not enough matrix material to wet the fibres. This leads
to debonding of the composite and premature failure. In the paper “Effect of fiber-matrix
volume fraction and fiber orientation on the design of composite suspension system” Ali and
Anjaneyulu [8] demonstrated that this strength decreases after a Vf of 70%.

1.1 Problem definition
The fibre volume fraction is generally determined by destructive methods. According to
ASTM D3171-22 [9], the industry standard for determining the volume fraction of fibre, the
matrix is removed by digestion, ignition, or carbonisation. This leaves the fibres essentially
unaffected and can thus be used to calculate the content of the fibres and the matrix. This
method can even be used to determine the void volume fraction by comparing the compos-
ite density to the acquired matrix and fibre volume fractions. In addition to density-based
methods, microCT, ultrasonic testing, thermography, and optical or electron microscopy are
also commonly used [10].

Optical microscopy is the most widely used method to evaluate the content of the void. It is
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relatively simple and inexpensive and provides more detail than ultrasound and thermography.
Especially when spatial distributions of the fibres are required or characteristics of voids, like
their dimensions, shape, and number count. However, optical microscopy is a destructive
method. The laminate is cut to obtain a cross-section. This cross-sectional area can be anal-
ysed with an optical microscope. Analysing the fibre and void content in these micrographs
manually is a time-consuming process and, therefore, not preferred.

A commonly used analysis method is image segmentation using pixel intensity thresholding [11].
This method uses the intensities of the pixels of fibres, voids, and matrix material in the im-
ages. Thresholding values are determined for every image to identify pixels that belong to
fibres, voids, and the matrix. However, these thresholding values need to be calibrated for
every image due to variations in image quality and illumination conditions. This technique is
not effective in dealing with the differences observed in microscopy images, whereas humans
can identify fibres, gaps, and matrix material with ease, regardless of the image’s quality.

Machine learning algorithms have already been shown to be capable of automatically de-
tecting voids in micrographs. Luo et al. [12] developed a void recognition model based on
a DeepLabV3+ model. This model could effectively and automatically detect void charac-
teristics in microscopy images. Furthermore, Machado et al. [11] successfully demonstrated
that the voids in micrography samples could be automatically segmented using a machine
learning model based on a u-net architecture. These results exceeded the performance of a
thresholding-based algorithm, which requires manual calibration and can be used to deter-
mine the relative void content. However, no examples have been found that could identify
voids and fibres to analyse both contents. Therefore, this study will investigate the possi-
bilities of using a single machine learning model to identify fibres and voids to calculate the
fibre and void content.

1.2 Research goal
The goal of this thesis is to investigate the possibilities of using machine learning techniques
to analyse microscopy images of cross-sections from FRP laminates to determine the volume
fractions of the void and the fibres. Thereby, implementing, training, and validating machine
learning algorithms to explore the potential of creating a more automated image analysis
method that can overcome the thresholding problem of having variations in image quality.
This research will involve the development of a data set based on actual microscopy images
that will be used to train and evaluate machine learning algorithms.

1.3 Outline
The following chapters of this thesis are organised as follows. Chapter 2 provides the essential
background information needed to understand the rest of the thesis. Machine learning and
deep learning will be explained here, as well as the segmentation problem and the u-net
architecture. The methodology of this research is split into two parts: data and the u-net
model. Chapter 3 provides an overview of the images used to create four different data
sets and how their corresponding ground-truth masks are generated. Chapter 4 explains the
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1. Introduction 1.3. Outline

specific architecture of the u-net model and the parameters used during training, along with
the evaluation metrics used to assess the performance of the model. In Chapter 5 the results
of the three trained models are presented and compared. The best-performing model is then
studied to discuss the effect of changing certain parameters and the input training data in
Chapter 6. In this chapter, the results of the mask generation process will also be discussed.
Finally, the conclusions of this study are presented in Chapter 7 and recommendations for
further research are discussed in Chapter 8.
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2. Background

2 Background
This chapter provides a brief overview of the background knowledge necessary to comprehend
the thesis. Semantic segmentation will be discussed first, followed by the machine learning
concepts used in this study. Those with prior experience in machine learning may be able to
skip this chapter.

2.1 Semantic segmentation
The objective of this research is to analyse cross-sectional microscopy images of FRP material
and to determine which part of the image shows fibres, matrix material, and voids. This goes
beyond simply classifying which animal (e.g. dog, cat, or elephant) is visible in an image,
since it also focuses on the area of the image that contains the object, as the location of
the fibres is also important. In Figure 3 an image of two elephants is shown to compare
different computer vision technologies. Figure 3a shows the previously discussed example of
a classification problem. Object recognition attempts to identify one or more objects within
an image or video by predicting a rectangular bounding box around the object of interest, as
can be seen in Figure 3b. Image segmentation goes a step further by partitioning an image
into segments, a group of pixels, that more precisely define an object. It assigns the same
labels to pixels in images that share specific features. Semantic segmentation detects for
every pixel to which class it belongs. So in Figure 3c all pixels belonging to elephants are
detected. While instance segmentation also identifies each specific instance of an object; the
two elephants are segmented individually as can be seen in Figure 3d [13]. In this thesis,
pixels belonging to fibres, matrix material and voids are of interest, but not the fibres and
voids individually, as this would make the model overly complicated, which makes this a
semantic segmentation problem.

(a) Image
classification.

(b) Object
detection.

(c) Semantic
segmentation.

(d) Instance
segmentation.

Figure 3: Different computer vision techniques to detect elephants in an image.

2.2 Machine learning
The use of machine learning, particularly deep learning, is becoming increasingly common
in the field of image processing for image segmentation tasks [14]. Machine learning is
the technique that requires a system to learn from experience via computational methods
rather than being explicitly told what to do by a human-developed algorithm. Experience in
computer systems usually comes in the form of data. By feeding data to a learning algorithm,
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2. Background 2.3. Deep learning

a model can be obtained that can make predictions on newly observed data. The process
of machine learning algorithms to construct models from training data is known as learning
or training [15]. Machine learning can be roughly divided into three main types: supervised
learning, unsupervised learning, and reinforcement learning. With supervised learning, a
model is given both input and corresponding output during training. For example, a model
is fed images of dogs and cats and is told the output (label) of each image. The goal is
to learn a general principle that maps the inputs to the outputs, in a way that once the
model has been trained, it can accurately predict the class (e.g. cat or dogs) of unlabelled
images. In the case of unsupervised learning, no labels are given during training. The learning
algorithm needs to identify patterns and structures in the data. It can, for instance, cluster
the pictures of cats and dogs into two distinct classes by itself, but it does not have the
information that these classes contain cats and dogs. Lastly, reinforcement learning is based
on learning from interaction with an environment and rewarding desired behaviour and/or
punishing unwanted behaviour [16]. In this research, the focus is on supervised learning, for
which three main components are required to build a successful model:

• Input images,
• Expected outputs corresponding to the input images,
• Performance metrics.

First, the input data will be microscopy images of cross-sections of composite materials.
Second, examples of expected outputs are needed. Thus, a ground truth image needs to be
created of the input images that acts as a mask and tells the algorithm to which class each
of the pixels in the input image belongs. Third, performance measures are needed to connect
the input to the output and provide feedback to correct the algorithm so it better matches
the expected output.

2.3 Deep learning
Deep learning is a branch of machine learning that uses algorithms inspired by the human
brain to address a wide range of machine intelligence tasks. Many examples can be seen in
everyday life. From face detection on your phone to auto-correction on keyboards and autopi-
lots in cars [13, 17]. These algorithms are largely based on artificial neural networks, which
use mathematical functions to map a set of inputs to an output [18]. They are composed
of a large number of computing cells, known as “neurons”. Each neuron performs simple
operations and can interact with other neurons to make decisions [14]. Deep neural networks
are neural networks that have multiple layers between the input and output layers. These
complex networks have a large number of layers and learn directly from raw data; hence
the term “deep”. This is the main distinction between machine learning and deep learning;
with deep learning, the machine develops relevant features for the tasks in an automated
way instead of having to indicate these features manually, just like humans. When a child
receives illustrations of an elephant, they will quickly learn to recognise the animal, without
an adult identifying its specific features, such as the trunk, big ears, and tusks. Thus, a
human can learn from raw data and draw conclusions without explicitly identifying features.
In deep learning, the model is also provided with raw data and can identify useful features,
such as corners, edges, and ridges in images, without the need for an engineer to manually
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2. Background 2.3. Deep learning

input them. Deep learning has a downside in that it is very computationally intensive and
requires a great deal of memory and computational resources. Furthermore, to create a deep
learning model that is not prone to overfitting, which will be explained in Chapter 2.4, a
large number of labelled images are required and generally result in a long training time [19].

2.3.1 Neural networks

Figure 4: Example of a simple artificial neural network with an input layer, two hidden layers
and a final output layer.

An artificial neural network contains an input layer, several hidden layers, and an output
layer, as shown in the example in Figure 4. The data is first received by the input layer, which
then passes it through the hidden layers. These layers transform the data into useful infor-
mation for the output layer. To teach a neural network how to produce the desired results,
it must be trained. Generally, the layers of neural networks contain values called weights.
During training, the weights are updated to optimise the performance of the network. The
goal of training a network is to find the weights values that lead to the best results using
backpropagation.

Backpropagation is a fundamental building block of neural networks and is used to effec-
tively train a network by backpropagating errors. Before training, the weights of the neural
network are randomly selected, making it unlikely that it will generate meaningful predic-
tions on the inputs. The input data is first fed through the network, and the predictions for
the given inputs are calculated, which is called a forward pass. After these predictions are
made, a loss function is used to minimise the difference between the predicted outputs and
the ground truth outputs and to determine how well the network is performing. The form
of loss functions can vary and must be carefully selected for each individual use. The loss
function selected for this segmentation problem is shown in Equation 9 and will be discussed
in Chapter 4.3. The weights are then adjusted so that the loss function values decrease by
calculating the gradient of the loss function for the weights during the backward pass. This
is called a backward pass, as it proceeds backwards through the network, moving from the
output layer to the input layer. Once all gradients have been calculated in the network, a
gradient descent algorithm or one of its variants (e.g. the Adam algorithm) is used to modify
the weights so that the loss function is minimised.
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2. Background 2.4. Overfitting

This process is repeated for multiple epochs during training. One epoch is when the entire
training data set is passed through the network. This is often done in batches, a subset of the
data set. Therefore, in this research, batch size refers to the number of images used in each
forward and backward pass during training. Using smaller batches for training leads to more
frequent updates of the weights; however, it can also cause more noise during the process.
On the other hand, larger batches can provide smoother updates, but require more memory.
Therefore, the batch size is a hyperparameter, which is a value that is used to control the
learning process. Another hyperparameter that must be selected is the learning rate, which
determines the size of the step taken when the neural network updates the weights during
training. The learning rate has a value between zero and one. Networks with small learn-
ing rates generally take more epochs to converge, however, larger learning rates can lead to
overshooting the optimal weights.

2.4 Overfitting
In machine learning overfitting is a behaviour that occurs when a model produces accurate
predictions for the training data but not for new data. This problem arises when the model
has been trained on the data, including the noise, to such an extent that it has not been able
to capture the underlying general knowledge. Instead, it has learnt to remember the train-
ing examples and fails to generalise and thus performs poorly on unseen data. For example,
when an overfitted model should identify images that contain elephants, it may not be able to
identify those that show elephants in a desert if it has only been trained with pictures of ele-
phants in forests. This is because it may have learnt to use trees as a feature for classification.

When the training data set is too small, it can lead to overfitting, as the training data does
not have enough samples to accurately represent all possible input data values. Overfitting
can also be caused by having too much irrelevant information in the training data or by
having a model that is too complex. In this case, the model will learn the noise in the
training data. Additionally, when the model is trained for an extended period of time on a
single data set, it can also result in overfitting, as the model can memorise the samples in
the training data, which does not generalise well on unseen data.

2.5 Regularisation
Regularisation techniques are frequently used to prevent overfitting and improve the general-
isation performance of a model. Regularisation methods used during training add a penalty
term to the loss function, which helps to prevent the model from becoming too complex and
having excessively large parameter values. A good regulariser is able to balance the variance
and bias of the model, resulting in a more reliable model with improved generalisation. There
are different regularisation techniques in deep learning. L2 regularisation and dropout will
be explained in this sub-chapter, as these techniques are used in this research.
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2. Background 2.6. Convolutional neural networks

2.5.1 L2 regularisation

L2 regularisation is a weight regularisation technique that updates the loss function by adding
a regularisation term:

Loss function = Loss + λ
N∑
i=1

w2
i . (3)

The regularisation parameter λ is multiplied by the sum of the squares of the weights wi to
form the regularisation term. L2 regularisation encourages the weights to diminish towards
zero and is also referred to as weight decay as it forces the weights to take on smaller
values. This prevents the weights from getting out of control and thereby avoids an exploding
gradient.

2.5.2 Dropout

Another way to prevent overfitting in neural networks is to use dropout layers. In these
layers, random nodes are set to the value zero; i.e. nodes and their connections are randomly
dropped from the network and do not influence the prediction. The dropout rate determines
the proportion of the input units to drop. Dropout limits the network’s ability to adapt to
the training set, thus preventing the weights from overfitting to the training data.

2.6 Convolutional neural networks

Figure 5: Example of a CNN made for the classification of vehicles with different convolutional
layers and pooling layers [20].

Convolutional neural networks (CNNs) are a type of artificial neural networks that are com-
monly used for computer vision tasks in deep learning. CNNs have been successfully used
to improve current state-of-the-art methods on many image classification, object detection,
and segmentation tasks [21] and are therefore of interest in this study. They are designed to
process data in the form of multiple arrays [22], which is ideal for handling images. Colour
images can be represented as three 2D arrays that contain the pixel intensities of each of the
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three colour channels (red, green, and blue). CNNs can successfully capture temporal and
spatial dependencies of images using relevant filters. They can learn patterns in one section
of an image and can recognise that pattern in other parts of the image. CNNs reduce the
size of images throughout the network, making them easier to process while still retaining
the essential features necessary for successful learning. The earlier layers of the CNN will be
able to identify small local patterns, which will then be combined to form larger patterns in
the subsequent layers. Compared to traditional artificial neural networks, CNNs can have
various types of layers, such as convolutional layers, activation layers, and pooling layers, an
example of a CNN with different layers is shown in Figure 5. These layers will be explained
in the following sub-chapter, Chapter 2.6.1.

2.6.1 Convolutional layers

Figure 6: Example of the first step of a 3 x 3 filter convolving across an input of 6 x 6. The
first value of the output is calculated by multiplying the weights element-wise in the kernel
with the values in the same-sized image patch.

In a convolution layer, various filters slide, convolve, across the input data. These filters,
also known as kernels, contain a collection of weights that can be learnt. The weights are the
trainable parameters of the model and therefore will change during training until they reach
their optimal state. Relevant features of the input images, such as horizontal lines or other
specific shapes, will be represented by these kernels. Figure 6 shows an input image and a
3 x 3 kernel that convolves across the input image resulting in an output tensor, called a
feature map. The value of the hidden state in the next layer, the feature map, is determined
by the product of the weights in the kernel and an image patch of the same size as the kernel.
The kernel moves across the entire input image until all elements of the 4 x 4 feature map
are filled. This figure illustrates the reduction in the size of the feature maps; the input size
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of 6 x 6 is reduced to an output of 4 x 4 after the convolutional operation. This reduction
depends on the size of the filter, the stride, and the padding applied, which will be explained
next. The stride is the number of pixels that the kernel shifts after each multiplication of
the input image. The kernel in Figure 6 will move one step to the right to calculate the
next value in the output and thus has a stride of one. When a larger stride is used, the
kernel makes bigger steps during convolving, resulting in a smaller output size. Padding also
influences the output size of the feature maps; however, no padding is used in Figure 6. By
padding, additional pixels are added to the border of the input images. These extra pixels
often have a value of zero, which is referred to as zero-padding.

Transposed convolutional layers
General convolutional layers can thus reduce the output size, but it is also possible to in-
crease the output size by using the transpose of these layers, which is useful in upscaling
images. Transposed convolutional layers apply padding to the input feature map and then
perform a convolution to increase the size of the feature map. Upsampling can also be done
with interpolation techniques instead of transposed convolutions. An example of this is an
upsampling layer that enlarges images using the nearest-neighbour method, also used in this
study.

Depthwise separable convolutional layers
Another kind of convolutional layer used in this research are depthwise separable convolu-
tions. These layers first perform a depthwise spatial convolution followed by a pointwise
convolution. A depthwise spatial convolution is a spatial convolution performed separately
for each input channel. The pointwise convolution is a 1 x 1 convolution that projects
the channels produced by the depthwise convolution into a new channel space [23]. This
decreases the number of parameters and computations in the model in comparison to us-
ing regular convolutional layers, which reduces training time and can assist in regularising
models.

2.6.2 Activation functions

Convolutional layers are commonly followed by a non-linear activation function, to add non-
linearity to models, allowing it to learn and carry out complex tasks. Without this, the neural
network is equal to a linear regression model. The rectified linear unit (ReLU) activation
function, Figure 7, is often used in CNNs, as shown in Figure 5. This piece-wise linear
function will return the input value if it is positive, and will output zero if it is not:

f(x) =

{
0 for x < 0
x for x ≥ 0.

(4)

ReLUs keep a lot of the characteristics that make linear models generalise well, due to their
near linearity. They are easy to use, fast, and achieve good performance [24].
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Figure 7: The ReLU activation function.

The softmax activation function is often used in the last layer of a deep learning model for
multiclass problems. In this research, there are three classes, namely fibres, matrix, and
voids, making it a multiclass problem. The softmax function, Equation 5, normalises the
output of a neural network to a probability distribution across the predicted output classes
[18].

Softmax(y)i =
eyi∑n
j=1 e

yj
. (5)

Here, y is the input vector that contains n elements, the number of classes, and yi is the i-th
element of the input vector. The elements of the output vector softmax(y)i add up to 1, and
the probability of each class is in the range 0 to 1.

2.6.3 Pooling layers

Figure 8: Example of a max pooling operation with a 2 x 2 kernel and a stride of two.

Pooling layers are used to reduce the size of a feature map, thereby decreasing the number of
parameters that need to be learnt and thus the amount of computational work [15]. These
layers summarise the features present in an area of the feature map created by the previous
layer, making the model more robust to variations in the locations of the features in the
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input image and thereby decreasing the chance of overfitting. This is done by moving a
two-dimensional kernel across the feature map and summarising the features located within
the area covered by the kernel. There are several pooling operations such as max pooling,
average pooling, and global pooling. With max pooling, the maximum value of the region
covered by the kernel is selected for the output feature map. Figure 8 shows a max-pooling
operation with a 2 x 2 kernel and a stride of two. The first region of the input in the upper
left corner that is covered by the kernel has a maximum value of four. The kernel shifts two
places to the right, selecting the maximum value of nine. This procedure is repeated for the
entire input.

2.6.4 Batch normalisation layers

Training deep neural networks with multiple layers can be challenging, as the inputs of
each layer are altered during the training process due to changes in the parameters of the
preceding layers. These ever-changing inputs lead to layers needing to constantly adapt to
the new distributions. This phenomenon of changes in the distribution of inputs to layers
in networks is called internal covariate shift and slows down the training process because
lower learning rates are needed and the parameters need to be carefully initialised. Batch
normalisation addresses this problem by normalising the layer inputs. These layers can be
used in networks to increase the stability and speed of the learning process [25].

2.7 U-net

Figure 9: Original u-net model as proposed by Ronneberg et al. [26].

A u-net model is a convolutional neural network that was developed specifically for the image
segmentation of biomedical images by Ronneberger et al. [26]. This architecture is created
to be effective with limited training data and provides precise segmentation outcomes. The
original u-net architecture follows a typical encoder-decoder architecture and is shown in Fig-
ure 9. The encoder-decoder architecture is applicable for this purpose, as it yields outputs
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with the same size as the inputs. An encoder-decoder is a deep learning model that consists
of two neural networks. The encoder extracts significant features from the images, while the
decoder takes the extracted features and reconstructs the segmented image.

Figure 9 shows that the encoder part follows a contracting path and the decoder follows an
expansive path, resulting in a u-shaped architecture. The encoder in this u-net consists of re-
peating convolutional layers with 3 x 3 kernels followed by a ReLU activation function. Then
the feature maps are downsampled by using max pooling layers with a filter size of 2 x 2 and a
stride of two. This increasingly reduces the spatial dimensions of the input and increases the
number of feature maps. The decoder part of the model uses 2 x 2 up-convolutional layers,
which now halve the number of feature maps again. The u-net architecture is characterised
by doubling the number of feature maps in the decoder part of the model by concatenating
the feature maps from the encoder part of the model. The concatenating method helps the
network capture the positions of significant features in the images. Then 3 x 3 convolutions
are performed, each time followed by ReLU operations. The final layer is a 1 x 1 convolu-
tional layer with a softmax activation function, which gives the probability distribution over
all predicted classes.

This architecture enables the network to be trained with smaller data sets than other convo-
lutional neural networks, making it a desirable choice for this research. Furthermore, several
studies demonstrated that u-net architectures are effective in addressing segmentation issues.
Zhang et al. [27] showed that a u-net structure performed better than four other commonly
used image segmentation methods for the segmentation of purple rapeseed leaves. Further-
more, Chen et al. [21] investigated the number of articles published from January 2016 to
August 2019 on deep learning methods for cardiac image segmentation and found that most
state-of-the-art segmentation methods are based mainly on CNNs that use a fully convolu-
tional network or a u-net architecture. Therefore, the model used in this research will also
be largely based on the u-net architecture.

Figure 10 visualise some feature maps within the final network, as described in Chapter 4.1,
for an example microscopy image with carbon fibres and a void. The exact number of feature
maps in each stage is indicated above the four feature maps shown, as it is impossible to
show all feature maps in one image. As can be seen in the first stage of the u-net 32 feature
maps are created by the convolutional layers in the network. This increases to 256 at the
bottom of the u-net where the input image is barely recognisable. Then in the encoder part,
the feature maps are decreased again at every stage and the input image is reconstructed
with the relevant features captured by the model. The last convolutional layer has as many
feature maps as classes present, three in this case: matrix, fibres, and voids. These three
feature maps are used to create the final segmented output where each pixel indicates to
which of the three classes it belongs.
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Figure 10: Overview of the feature maps in a trained u-net model for the segmentation
problem of the fibres and voids. Only four examples of possible feature maps are shown in
this image for clarity, the right number of feature maps is indicated above each stage in the
u-net.
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3. Data

3 Data
In this chapter, the methods used to create different data sets with training data are ex-
plained. A schematic overview can be seen in Figure 11. First, 30 micrographs are obtained
and cut into images of 256 x 256 pixels. These square images are divided into 14 image sets
with similar-looking images that can undergo the processing steps in the mask generation
process with the same parameters. During mask generation, first fibres are identified in the
images, and then voids are detected, as described in Chapter 3.3. Three different training
data sets are made with these images and their corresponding masks. Additionally, a test
set is created with images not included in the training data. The training data sets will be
augmented with seven different methods as explained in Chapter 3.5. Then different u-net
models will be trained with the augmented data sets and the non-augmented data sets to
see the difference using the metrics during evaluation. Lastly, the trained models are tested
with the test data set. These results are also evaluated with evaluation metrics; the accuracy
and the Intersection over the Union (IoU).

Figure 11: Schematic overview of the data generation steps needed to train and test the u-net
model.

3.1 Micrographs
First, data needs to be obtained to train the u-net model. Different micrographs from cross-
sections of FRPs are needed that include voids. It is important that the data is as diverse
as possible, so that the model can learn from different situations during training to be able
to make better predictions.

For this research, 30 different carbon fibre reinforced polymers (CFRP) micrographs were
collected from the ThermoPlastic composites Research Center (TPRC). Micrographs were
made by cutting small samples from composite laminate specimens with a diamond saw.
These samples were embedded in Struers EpoFix epoxy. When hardened, the surfaces of
the cross-sections were polished with a Struers Tegramin 30 machine to obtain clear micro-
graphs with the Keyence vhx-7000 confocal microscope. The CFRPs used in this research are
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made of carbon-reinforced low-melting polyaryletherketone (LM-PAEK) or carbon-reinforced
polyetheretherketone (PEEK). However, the type of matrix material and the laminate de-
tails of the micrographs are irrelevant for this study, but are explained in more detail in
Appendix A. The presence of voids in the micrographs is relevant. Unfortunately, not all
micrographs contain voids. Figure 12 shows examples of micrographs of different laminates
that are used. Figure 12c clearly shows the voids indicated by the darker spots; however, the
other examples barely contain any voids.

(a) Micrograph (“speci-
men_37_left”, 2048 x 1536
pixels) of a one layer tape of
LM-PEAK specimen without
voids [28].

(b) Stitched micrograph (“G02_3”, 20495 x 8121 pixels) of a
PEEK specimen with a [0]16s lay-up.

(c) Stitched micrograph (“2_6_2_R”, 15701 x 1222 pixels) of a friction tested PEEK specimen with
visible voids [29].

(d) Stitched micrograph ( “0_press_375_R2_300x”, 16235 x 3638 pixels) of a LM-PEAK specimen
without voids and a [0/90]6s lay-up with an extra top-layer [30].

Figure 12: Examples of different micrographs used in this research.

3.2 Image sets
To create training data from the 30 micrographs, large images need to be cut into smaller
images. The micrographs were cropped to 256 x 256 pixels with a Python script using the
itertools module and the Python Imaging Library (PIL). This size was chosen because larger
sizes of images would drastically increase the number of computations and memory needed
to train the models. From a set of 30 micrographs, 1582 training images were obtained. The
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locations of where the images are cut from the micrograph are stored in the name of each
separate image, since each image is labelled in the form NAME_Y_X. Where NAME is the
original name of the micrograph and X is the starting location on the X-axis of the original
micrograph from where that specific image is taken. Y is the starting location looking at
the Y-axis of the original image from which the training image was cut. So, the example
image bounded by the blue dotted line in Figure 13 is called EXAMPLE_0_0, since the cut
started at the top of the image at the location (0,0). These names can be found in the data
sets which are made available online [31].

Figure 13: Example of how an image is cut from a micrograph. The blue dotted square
indicates a 256 x 256 image called EXAMPLE_0_0.

The training images are cut from the relevant regions of the micrographs, with the fibres in
the zero direction, which point outwards of the paper as shown in Figure 14a. Therefore,
images with fibres in directions other than the zero direction or images showing a clear edge
of the composite are not used for training data, as shown in Figures 14b and 14c. This is
because these images are not useful for determining the void and fibre volume fractions, and
thus only make the learning process of the u-net models unnecessarily difficult.

(a) Useful training image
of 256 x 256 pixels.

(b) Image showing both a
0° and 90° layer, not used

as a training image.

(c) Image showing the edge
of the laminate, not used

as a training image.

Figure 14: Three different images of 256 x 256 pixels that are cut from the micrograph shown
in Figure 12d.
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Table 1: Overview of the 14 created image sets with their image source, fibre radius, total
number of images and images containing voids.

Image set Image
source

Fibre
radius
[pixels]

Number of images Number of images
with voids

LM-PAEK 5 2 5 100 0
LM-PAEK 6 5 6 100 9
LM-PAEK 7 1 7 16 2
LM-PAEK 10 2 10 250 0
LM-PAEK 11 5 11 100 7
LM-PAEK 14 3 14 100 0
LM-PAEK 22 5 22 100 4
PEEK 2 4 2 100 42
PEEK 3A 1 3 356 305
PEEK 3B 1 3 68 42
PEEK 3C 1 3 76 58
PEEK 3D 4 3 100 19
PEEK 4 4 4 100 36
PEEK 7 1 7 16 2

All useful images cut from the 30 micrographs are divided into different image sets that con-
tain images that appear the same, that is, a similar fibre size and similar lighting conditions.
Therefore, these sets of images can undergo the same post-processing steps, as explained in
Chapter 3.3. Thus, the images can be handled in batches and do not need to be analysed
one by one, which facilitates mask generation by speeding up the process. Each image set is
labelled with the material and the size of the fibres in pixels of the images. For example, the
image set PEEK 4 includes images of fibres with a radius of four pixels that consist of PEEK
matrix material. When multiple sets of images are taken from the same specimen with the
same fibre size, a letter is added to the end of the name in alphabetical order, for example,
PEEK 3A. An overview of all the image sets created is shown in Table 1. This overview
provides the total number of images per image set and the proportion of them that contain
voids, as well as the fibre radius and their original image source, as explained in Chapter 3.1.

3.3 Mask generation
The images from the different image sets needed to be annotated before they could be used
for training purposes. In this annotation process, each pixel of all images is labelled to in-
dicate to which class it belongs. Label encoding is used to represent the matrix material
with a value of zero, fibres with a value of one, and voids with a value of two. These anno-
tated images are saved separately and are used as ground truths (segmented output) for the
original input images. The annotation process is performed using ImageJ [32], which is an
open-source image processing programme, and the Python scripts developed in this study.
Note that these annotated images initially appear black, due to the use of the discrete labels
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zero, one, and two for each pixel. To make the masks visible, the labels are converted to
clearly distinguishable pixel values with the help of the numpy, PIL, and TensorFlow pack-
ages in Python. These converted images are presented in this report.

3.3.1 Fibres

The centres of all the fibres present in each image are found using image processing functions
using ImageJ. The images in a given set are evaluated together using the same parameters,
which is possible because the images in a set share similar features. The centres of the fibres
are extracted by using the “Find maxima” function in ImageJ. This function determines the
local maxima in the pixel values present in an image, and the coordinates of these maxima
can be saved in a list for each image for further use. To achieve acceptable results using the
“Find maxima” function, the sets of images needed to be preprocessed to remove noise.

Table 2: ImageJ parameters that are used in the mask-making process of different subsets of
data.

Image set Smooth filter [times] Prominence greyscale Noise
LM-PAEK 5 6x >3 Yes No
LM-PAEK 6 3x >2 Yes No
LM-PAEK 7 5x >10 Yes No
LM-PAEK 10 10x >5 Yes No
LM-PAEK 11 10x >5 Yes No
LM-PAEK 14 15x >20 Yes Yes
LM-PAEK 22 10x >15 Yes Yes
PEEK 2 1x >2 Yes No
PEEK 3A 3x >2 Yes No
PEEK 3B 4x >2 Yes No
PEEK 3C 5x >2 Yes No
PEEK 3D 4x >1 Yes No
PEEK 4 5x >2 Yes No
PEEK 7 7x >15 No No

Blurring images before using the “Find maxima” has been shown to help increase the accu-
racy of local maximum detection [33]. This is done using the “smooth” filtering function in
ImageJ, which blurs the image by replacing each pixel with the average value of the 3 x 3
neighbourhood of that specific pixel [34]. A 3 x 3 filter is a commonly used size for this
filtering method and is a fixed parameter in the ImageJ program. This operation can be
executed multiple times on one image, depending on the specific needs of the particular set
of images. The specific number of times this filtering function has been used for each of the
different sets of images is shown in Table 2. Figure 15 illustrates how blurring the image
improves the number of correctly predicted fibre centres. The predicted centres of the fibres
are indicated by a white cross with a yellow circle in the middle. The prominence, a param-
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eter of the “Find maxima” function, has been fixed to show the effect of multiple executions
of the smoothening filter.

(a) Original image of
256 x 256 pixels.

(b) Results of the “Find
maxima” function with

prominence > 20.

(c) Results of the “Find
maxima” function with
prominence > 20 after

using the smooth filter 15
times.

Figure 15: Influence of blurring the image before searching for local maxima.

(a) Original image of
256 x 256 pixels.

(b) Results of the “Find
maxima” function with

prominence > 1 after using
the smooth filter 15 times.

(c) Results of the “Find
maxima” function with
prominence > 20 after

using the smooth filter 15
times.

Figure 16: Influence of the prominence parameter while searching for local maxima.

Furthermore, the “Prominence” parameter is a noise tolerance parameter that defines by
what values maxima should stand out from its surroundings to become a local maximum.
Thus, a local maximum does not contain any point with a value higher than its maximum in
the area specified by this parameter [34]. This means that when this value increases, fewer
local maxima are detected, and this value is generally higher for images that contain fibres
with a larger radius. The influence this parameter has on the process is shown in Figure 16,
where the number of times the smooth filter is used is fixed. Thus, this parameter of the
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“Find maxima” function must be carefully chosen. The final values selected for each set of
images are shown in Table 2.

Lastly, to decrease the number of fibres that are incorrectly predicted, noise can be added.
Noise adds unevenness to the images. This first increases the local maxima, but after using
the smoothening filter, fewer local maxima are found at locations where no fibres are present.
This was done using the “Add noise” function in ImageJ, This function adds random noise
to the image, which is Gaussian distributed with a mean of zero and a deviation of 25 [34].
Two image sets with large fibre sizes showed better results when this noise was first added
to the images, as can be seen in Table 2. To furthermore increase the number of correctly
predicted fibre centres, the subsets of images could be converted to greyscale. The sets of
images in which this leads to better performance are shown in Table 2.

All these different parameters are tuned for each image set based on trial and error. In this
tuning process, a representative image of each subset was used to check the accuracy of de-
tecting all fibres while minimising false detection of fibres. Hereafter, these parameters have
been applied to each image of that subset, while carefully monitoring the accuracy of correctly
detecting fibre centres. All the parameters used in each set of images can be found in Table 2.

Now that the locations of the centres of the fibres are known, these centres will be used to
create the masks. It is assumed that the fibres are perfect circles that have the same radius
in each set of images. The radius of these fibres is analysed by counting the radius in pixels
in the image for some fibres and averaging this number. However, for the mask-making
process, the radius will need to be a natural number, as a pixel either belongs to a fibre or
not, in the mask. Due to the chosen image size of 256 x 256, this limits the accuracy of the
masks. This is especially the case for data that contains fibres with smaller radii, as there
will be fewer pixels per fibre, which makes it more difficult to closely resemble a circle. This
is illustrated in Figure Figure 17. Three example images are shown here from three different
image sets with fibre radii of two, three, and 22 pixels. It can be seen that smaller radii
result in a diamond-shaped fibre, Figures 17c and 17f, while a larger radius comes closer to
a circle-shaped fibre, Figure 17i. It should be noted that the fibre size of Figure 17a and
17d does not differ much, but since this process is restricted to natural numbers for the fibre
radii, the total area covered by pixels belonging to the fibres changes significantly. The radii
used for the masks of each image set are already given in Table 1.
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(a) Original image. (b) Mask with a fibre diame-
ter of five pixels.

(c) “Circle” with a diameter
of five pixels.

(d) Original image. (e) Mask with a fibre diameter
of seven pixels.

(f) “Circle” with a diameter of
seven pixels.

(g) Original image. (h) Mask with a fibre diame-
ter of 45 pixels.

(i) “Circle” with a diameter of
45 pixels.

Figure 17: Example images with their corresponding mask and fibre size.

3.3.2 Voids

The masks now contain fibres and matrix material, but there are still no voids. Therefore,
all images that contain voids will be sorted and will undergo a separate thresholding process.
First, the images will be converted to greyscale images. Then, a Gaussian filter, also called a
Gaussian kernel, will be applied to smooth and reduce noise in the images. This filter modifies
the input by a convolution with a Gaussian function. This process is shown in Figure 18,
where one step of this process is visualised. The two-dimensional Gaussian function is given
in Equation 6.
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Figure 18: A discrete Gaussian 3 x 3 kernel shown in the middle that is used to transform the
input image (left) into an output image (right) by convolving the weighted values from the
kernel over the input image to form the centre’s pixel value as shown in the output image.

G(x, y) =
1

2πσ2
e

−x2+y2

2σ2 , (6)

where x and y are the x- and y-coordinates respectively and σ is the standard deviation of the
Gaussian distribution. This function can then be used to calculate a Gaussian kernel. For
getting a 3 x 3 kernel, the x- and y-coordinates will range from minus one to one, with (0,0)
being the centre of the kernel. Thus, the kernel has rotational symmetry, as shown in Figure
18. This distribution is assumed to have a mean of zero and shows that the kernel coefficients
closer to the centre of the kernel have higher values. To maintain the Gaussian nature of the
filter, the filter size should increase with an increasing standard deviation. Therefore, the
kernel size, Skernel, along each axis will be calculated based on the chosen standard deviation
σ,

Skernel = 2r + 1, (7)
with r the fibre radius:

r = tσ, (8)
where the parameter t thus indicates when to truncate the filter; at how many standard de-
viations. This parameter is set to four in this research, and thus only the standard deviation
needs to be chosen per image set. The results of applying a Gaussian filter with different σ
values of one and three to an image from the data set are shown in Figure 19. The values
chosen for σ for each set of images are shown in Table 3. Note that the image sets containing
no voids are not present in this table.
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(a) Greyscale image of
256 x 256 pixels.

(b) Result after applying a
Gaussian filter with σ = 1.

(c) Result after applying a
Gaussian filter with σ = 3.

Figure 19: Influence of applying a Gaussian filter to a greyscale image.

Table 3: The different parameters used for detecting voids in the annotation process for the
different image sets.

Data subset Gaussian σ Median filter size
LM-PAEK 6 2 3
LM-PAEK 7 3 3
LM-PAEK 11 3 3
LM-PAEK 22 3 3
PEEK 2 1 1
PEEK 3A 3 3
PEEK 3B 3 3
PEEK 3C 3 3
PEEK 3D 3 3
PEEK 4 3 3
PEEK 7 3 3

Figure 20: Process of applying a 3 x 3 median filter to a 3 x 3 image.

Next, a median filter will be applied to the already filtered image to remove noise. This filter
replaces a pixel value with the median value of its neighbouring pixels. Again, the filter size
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has to be chosen for each specific set of images by trial and error. An example with a 3 x 3
filter is shown in Figure 20. Here, a 3 x 3 image containing pixels with values ranging from 1
to 9 is used. To be able to slide the filter, pixel by pixel, over the entire image, zero-padding
will be applied. This is a way to extend the borders outside the image with zeros. Then
starting at the top left corner, all values inside the filter are sorted from smallest to greatest.
The median of these values is then taken as a new value for the output. This is then done for
all pixels in the image. An example of applying a median filter of two different sizes (3 x 3
and 10 x 10) is shown in Figure 21. As can be seen, noise is removed around the voids. The
filter size chosen for each set of images is also shown in Table 3. Figure 23 shows the process
of getting from an image to a ground truth mask including voids. After the preprocessing
steps explained here, the resulting image will look like Figure 23b for the original image
shown in Figure 23a.

(a) Greyscale image of
256 x 256 pixels.

(b) Result after applying a
median filter of 3 x 3.

(c) Result after applying a
median filter of 10 x 10.

Figure 21: Influence of applying a median filter to a greyscale image.

After preprocessing the images for detecting voids, a threshold algorithm will be used. The
chosen thresholding method is based on the minimum method. For this, the histogram of
the input images is computed and smoothed until there are only two maxima. The minimum
value between these two maxima is then the threshold value [35]. This threshold value
determines which pixels will belong to voids and which pixels will not belong to voids. Figure
22 shows a training image with voids and its appearance after applying the two filters. This
image, Figure 22b, is used to calculate the histogram of the intensities of the pixels, which
is shown in Figure 22c. As can be seen, there are already two main peaks; one below 50
indicating the darker pixels belonging to voids and one between 150 and 200 indicating the
grey pixels of the fibres and matrix material. The minimum between those two maxima,
after smoothing the histogram, is calculated to be 106, which will be the threshold value. All
pixels with a value less than or equal to this threshold value will be labelled as voids (label
2) in the masks already made with fibres and matrix material, see Figure 23d, to create the
final ground truth mask with voids. The entire process is shown in Figure 23.
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(a) Original image
with voids.

(b) Result after
applying a

Gaussian filter
with σ = 3 and a
median filter of 3

x 3.

(c) Calculated histogram of Figure 22b.

Figure 22: Process of using thresholding based on the minimum method. The calculated
histogram will be smoothed until there are two maxima. The minimum value between this
two maxima is 106, which will be the threshold value.

(a) Original image
of 256 x 256 pixels.

(b) Greyscale image
after applying a

Gaussian filter with
σ = 3 and a median

filter of 3 x 3.

(c) Detected voids
(blue) after
applying the

minimum threshold
algorithm.

(d) Final result of a
mask including
fibres and voids.

Figure 23: The process of creating the ground truth masks including voids, fibres and matrix
material.
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3.4 Data sets
Different data sets have been created using the images and the corresponding masks of the
image subsets of Chapter 3.2. Three data sets are used to train the u-net model to achieve
good performance results. An overview of the created data sets is shown in Table 4. The
data set I is created from the first available image sets and is used to find out if it is possible
for a u-net model to recognise fibres, voids, and matrix material. Data set II and data set
III are created to include more diverse data. Finally, a smaller data set is assembled to
test the models with new data that is not included in the training data. This is done to
mimic how the model performs when receiving images of a new micrograph of composite
material. The structure of these four data sets is explained further in this chapter, and more
detailed explanations can be found in Appendix B. All data sets can be found online at the
4TU.ResearchData data repository [31].

Table 4: Overview of the three training data sets and the test data set.

Data set name Number of images Purpose
I 500 First tests, with first images available.
II 500 Adds a different fibre size to the training data.
III 1000 Adds even more diversity to the training data.

Test 32 Data set to test a trained model with
completely new images.

3.4.1 Data set I

This data set is created with the first available images and consists of 500 training images,
from three different image sets, as shown in Table 5. All training images come from PEEK
specimens with a fibre radius of three. These image sets are chosen because they contain a
lot of voids. As can be seen in Table 5, 81% of the training images include voids. Examples
of these training images are shown in Figure 24.

Table 5: Composition of data set I from three different image set.

Image set Number of training
images

Number of images
with voids

PEEK 3A 356 305
PEEK 3B 68 42
PEEK 3C 76 58
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(a) Training image
with large void at
the top from the
data subset “PEEK
3A”.

(b) Training image
with several smaller
voids from the data
subset “PEEK 3A”.

(c) Training image
without voids from

the data subset
“PEEK 3B”.

(d) Training image
with one void from

the data subset
“PEEK 3C”.

Figure 24: Examples of training images from data set I.

3.4.2 Data set II

To include images with a different fibre size, data set II is created. This data set contains
again 500 training images with their ground truth masks. For this data set, 250 images and
their corresponding masks from data set I are reused, as can be seen in Table 6. Additionally,
250 new 256 x 256 images were selected from the LM-PAEK 10 image set. Note that these 250
images unfortunately do not contain voids, so only 41% of the training images now contain
voids. Some examples of images in this data set are shown in Figure 25.

Table 6: Composition of data set II from three different image sets.

Image set Number of training
images

Number of images
with voids

PEEK 3A 174 146
PEEK 3C 76 58
LM-PAEK 10 250 0

(a) Training image
from the sub data
set “PEEK 3A”

with voids.

(b) Training image
from the sub data
set “PEEK 3C”

with voids.

(c) Training image
from the sub data

set “LM-PAEK 10”
with no voids.

(d) Training image
from the sub data

set “LM-PAEK 10”
with no voids.

Figure 25: Examples of training images from data set II from different image sets.
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3.4.3 Data set III

(a) Training
image from the

sub data set
“LM-PAEK 5.”

.

(b) Training
image from the

sub data set
“LM-PAEK 6”

with a void.

(c) Training
image from the

sub data set
“LM-PAEK
10” with no

voids.

(d) Training
image from the

sub data set
“LM-PAEK

11”.

(e) Training
image from the

sub data set
“LM-PAEK

14”.

(f) Training
image from the

sub data set
“LM-PAEK

22”.

(g) Training
image from the

sub data set
“PEEK 2” with

a void.

(h) Training
image from the

sub data set
“PEEK 3A”
with voids.

(i) Training
image from the

sub data set
“PEEK 3D”
with voids.

(j) Training
image from the

sub data set
“PEEK 4” a

void.

Figure 26: Examples of training images from data set III from different image sets.

To create a more diverse and larger data set, more images from different image sets were
selected to create a data set of 1000 images. All these image sets used in this data set are
given in Table 7, as well as the number of images per set. An attempt was made to create
ten distinct groups of 100 training images each. However, 11 image sets were used in the
end, but the PEEK 3A and 3B image sets appear similar. They just have slightly different
parameters in the post-processing process as explained in Chapter 3.3 and can therefore be
seen as a distinct group of images. In total, this data set contains 1000 images, of which
19.1% contain voids. However, because of the unpredictability of the occurrence of voids in
the laminates, these voids are not evenly spread over the data subset. Example images of
each of the ten main different subsets consisting of 100 images are shown in Figure 26 and a
detailed overview of this data set can be found in Appendix B.
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Table 7: Composition of data set III from 11 different image sets.

Image set Number of training
images

Number of images
with voids

LM-PAEK 5 100 0
LM-PAEK 6 100 9
LM-PAEK 10 100 0
LM-PAEK 11 100 7
LM-PAEK 14 100 0
LM-PAEK 22 100 4
PEEK 2 100 42
PEEK 3A 75 60
PEEK 3B 25 14
PEEK 3D 100 19
PEEK 4 100 36

3.4.4 Test data set

This small test data set is not used for training the u-nets, but is used as a test case to
illustrate a real-life example of what would happen when the model needs to analyse a new
micrograph. This data set contains 32 images originating from two different image sets. As
can be seen in Table 8 18.75% of the images contain voids. This is comparable to the number
of images with voids in the data set 1000. Examples of these images with and without voids
are shown in Figure 27.

Table 8: Composition of the test data set from two different image sets.

Image set Number of training
images

Number of images
with voids

LM-PAEK 7 16 2
PEEK 7 16 4

(a) Image from the
sub data set

“LM-PAEK 7”.

(b) Image from the
sub data set

“LM-PAEK 7” with
void.

(c) Image from the
sub data set “PEEK

7”.

(d) Image from the
sub data set “PEEK

7” with void.

Figure 27: Examples of images from the test data set from the two different image sets.
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3.5 Data augmentation
The created data sets lack diversity because they mainly consist of smaller images cropped
from the same original micrograph. When only a few training images are available, data aug-
mentation can be essential to teach a network the desired invariance and network properties
and prevent overfitting [36]. Therefore, it will be investigated whether data augmentation
can be used to improve the performance of trained models. Data augmentation is a way to
intentionally increase the amount and diversity of data from the original data, by slightly
transforming the data and preserving the corresponding output labels [37, 38].

Simple data augmentation techniques, summarised in Table 9, will be used to transform
training images. The seven transformations are applied with a probability of 50%, which
means that not all transformations are applied to every image. The transformed images and
their corresponding transformed masks with a size of 256 x 256 will be used as input data
for the u-net model. As an example of what these seven transformations can do, they are
applied to one example image and are applied separately with a probability of 1, as can be
seen in Figure 28. The transformations will be explained in more detail in the remainder of
this chapter.

Table 9: The seven transformations and their parameters. All transformations have a prob-
ability of 0.5 to be applied to one image.

Methods Parameters
Horizontal flip -
Vertical flip -
Random sized crop Crop size between 128 and 250 pixels
Random brightness Max ±20%
Random contrast Max ±20%
CLAHE Clip limit between 1 and 4, tile size 8 x 8
Guassian blur Kernel size between 3 and 7

Geometric transformations
It is of importance that the augmented data is generated in a way that represents a more
comprehensive set of possible data. Therefore, important features of the fibres should remain
visible, and it is chosen to perform some geometric transformations that do not influence the
circular shape of the fibres. So, no elastic transformations are applied, but the images can
be flipped horizontally and vertically. A random sized crop can also be applied that crops a
random square part of the input image of a size between 128 and 250 pixels. This does not
influence the output size of the images, as it is resized to 256 x 256 pixels. This results in
different sizes of fibres, since the size of the fibre will increase when a crop is made.
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(a) Original image. (b) Horizontal
flipped image.

(c) Vertical flipped
image.

(d) Cropped image
at 128 x 128 pixels.

(e) Image with a
20% higher
brightness.

(f) Image with a
20% lower contrasts.

(g) CLAHE Image
with clip limit of 4.

(h) Image with a
gaussian blur with a

7 x 7 kernel.

Figure 28: Example results of the seven used transformations compared to an original image.

Photometric augmentations
Second, some photometric augmentations are applied that leave the geometry of the images
intact, but alter the RGB channels of the images. The brightness and contrast of the images
will be randomly altered with a randomly chosen value between -20% and 20%. The con-
trast can also be enhanced in the images by applying Contrast Limited Adaptive Histogram
Equalisation (CLAHE) to equalise the images. Adaptive histogram equalisation methods
calculate multiple histograms that correspond to different parts of an image and use them to
rearrange the luminance values of the image. Each pixel is then transformed according to the
cumulative distribution function (CFD) of the histogram of a square area surrounding that
pixel to obtain a new equalised image. However, the contrast can be overapplified in regions
of the image that are near constant. The use of CLAHE helps to reduce this, as contrast
amplification is limited by the use of a clip limit [39]. In the histograms the number of pixels
is counted for each pixel intensity, this method then loops through all intensities with indices
from zero to 255 to check if their occurrence is larger than the clip limit. For example, a clip
limit of four is selected, and the count of pixels with an intensity of zero is 11. This is greater
than four; thus, the count of pixels with intensity zero is clipped at four and the excess pixels
counts are stored. This means that, in the end, not a single intensity from zero to 255 has
a pixel count higher than the clip limit. Then the excess pixel counts are evenly distributed
across all bins in the histogram of the image, as shown in Figure 29. For example, every
pixel intensity gets 20 counts extra; then the maximum difference in pixel counts between
different intensities after clipping and redistributing is four, which means that the maximum
slope of the CDF is also four. This CDF is used to transform the pixels in the initial image
into a new, equalised image. The clip limit used for data augmentation ranges from one to
four, while the tile size is 8 x 8. This means that the square area around each pixel on which
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3. Data 3.5. Data augmentation

a histogram is calculated is eight by eight.

Figure 29: A schematic representation of how pixels above the clip limit are redistributed
across bins in the histogram by applying CLAHE. This redistribution will cause some bins
to exceed the clip limit again (shown in red).

Blur augmentation
Finally, a Gaussian blur transformation will be applied to imitate parts of the micrograph
that are not good in focus. The kernel size used for the Gaussian blur is randomly chosen
between three and seven with a sigma value of zero.
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4 U-net model
In this chapter, the final design of the model will be discussed, as well as the metrics used to
evaluate this model.

4.1 U-net architecture

Figure 30: Architecture of the designed u-net model with depthwise seperable convolutions
and residual connections. In this figure convolutional layers are indicated by “conv” and the
depthwise seperable convolutional layers are called “seperable conv”. The number of filters
in the relevant layers are indicated by the numbers above or below these layers.

The deep learning model in this research is based on the u-net architecture proposed by Ron-
neberger et al. [26] and the research on depthwise seperable convolutions by Chollet [23].
It follows the typical u-net encoder-decoder architecture, as can be seen in Figure 30, which
shows the detailed network. The encoder part follows a contracting path, where the input
image is reduced in size and the feature channels are increased. This is done by first using
a convolutional layer with a 3 x 3 kernel and 32 filters followed by a batch normalisation
layer, a ReLU non-linear activation function, and a dropout layer. This is followed by a new
module consisting of a ReLU layer, a separable convolutional layer with a 3 x 3 kernel and
64 filters, which uses L2 regularisation with a regularisation parameter of 0.01, and a batch
normalisation layer. This module has a linear residual connection around it that consists of a
convolutional layer with a 1 x 1 kernel and again 64 filters. Then these two paths are added
together. This process is repeated twice more, with the filter size increasing to 128 and then
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256 for each step. The decoder part of the model starts with a ReLU layer, followed by a
transposed convolutional layer with a 3 x 3 kernel and 256 filters. Then a batch normalisa-
tion layer is used followed by an up-sampling layer. The residual connection consists of an
up-sampling layer and a convolutional layer with a 1 x 1 kernel and 256 filters. The two paths
are combined, and this module is repeated three more times, each time with a decreasing
number of filters, from 128 to 64 and finally to 32. The final layer is a 3 x 3 convolutional
layer with a softmax activation function, which gives the probability distribution over all
predicted classes.

The original u-net model, as shown in Chapter 2.7 Figure 9, is modified to increase the per-
formance of the model and reduce training time. Depthwise separable convolutional modules
with linear residual connections around them, based on the Xception architecture of Chol-
let [23], are used to reduce the number of parameters of the model. The current model as
shown in Figure 30 has a total of 2058403 parameters of which 3776 are non-trainable, while
the original model has more than 15 times as many trainable parameters. The reduction in
the number of kernels in the different convolutional layers compared to the original number
also decreased the number of parameters. Furthermore, it is chosen to transform the im-
ages to greyscale, which has only one channel instead of the red, green, and blue channels
in coloured images. It is assumed that the colours in the image are not significant for the
outcomes, so they are disregarded to reduce the number of parameters in the model and
increase generalisation capability.

4.2 Training, validating and testing
The deep learning network will be trained with a training data set to fit the parameters of
the model. Successively, the fitted model is used to validate the performance and tune the
hyperparameters by using it to make predictions on observations in a second data set; the
validation data set. This data is seen by the model, but the model will never learn from
this data. The three data sets created in Chapter 3.4 will be used to create the training
and validation data set. From each shuffeled data set 80% of the images will be used for
training and 20% for validation. The three data sets will be used to train three different
models, each of which is trained with a different data set. The fourth data set, the test set,
created in Chapter 3.4 will be used to test the fully trained model on new data from different
micrographs.

During training the model is optimised with the Adam optimiser with a learning rate of 0.001.
This optimiser uses a stochastic gradient descent method based on the adaptive estimation
of first-order and second-order moments. This optimiser was selected for its computational
effectiveness and its ability to handle large data sets and a large number of parameters [40].
The loss function used during training is the categorical cross-entropy, which will be ex-
plained in the next chapter, Chapter 4.3. Furthermore, a batch size of 16 is used and the
models are trained for a total of 500 epochs. The models were implemented with Keras using
Tensorflow and trained on a high-performance computing cluster that consists of one head
node and eight compute nodes. Each node has 32 processor cores, these processors are In-
tel(R) Xeon(R) Silver 4216 CPUs. Note that this cluster is not optimised for training neural
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networks as it does not contain a GPU and, therefore, the focus of this research is not on
optimising the training time.

4.3 Categorical cross-entropy
The u-net model will predict to which class a pixel in the image belongs. To evaluate how
good this prediction is, loss functions are used. Loss functions should return higher values
when predictions are reasonable and lower values when bad predictions are made. These
functions are used to optimise the model during training, as explained in Chapter 2.3.1.
When the loss is lower, the model should perform better. Cross-entropy loss LCE is a widely
used loss function for segmentation problems [18] and is given in Equation 9.

LCE = −
n∑

i=1

ti log(pi). (9)

Here ti is the target value and pi is the predicted value for the ith class, while n indicates the
total number of classes. Thus this loss function compares each probability of the predicted
class to the actual class and penalises the probability of the predicted class by how far it
is from the expected value corresponding to the actual class. This penalty is logarithmic;
thus assigning a higher value for larger differences approaching one, while assigning a lower
value to smaller differences close to zero. Therefore, the cross-entropy loss is also known as
logarithmic loss, and the closer the cross-entropy loss is to zero, the better the model.

For example, a pixel belonging to a fibre in the ground truth mask is predicted to have a
probability of 0.7 being a fibre, 0.2 belonging to the matrix, and 0.1 being a void. Thus,
this pixel is predicted as a fibre, since this class has the highest probability. The loss is
then calculated with t = [0, 1, 0], since the ground truth class of the pixel is the second class
(fibres), and p = [0.2, 0.7, 0.1]. This gives a loss value of 0.15, which is the value that will
be minimised by the model. After each prediction the u-net makes, the loss is calculated for
every pixel in an image. This is done for every image in the train and test set. The average
loss can then be plotted over the number of epochs to observe the training progress of a
model’s training.

4.4 Evaluation metrics
The u-net will be evaluated during training, validation, and testing with different metrics.
This chapter explains the accuracy and IoU metrics used to assess the model’s performance.

4.4.1 Accuracy

The accuracy of the model will be calculated to evaluate the performance of the u-net models.
Accuracy measures the frequency of predictions that match the integer labels of the ground
truth masks and is calculated as shown in Equation 10.
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Accuracy =
Ncorrect

Ncorrect +Nincorrect
. (10)

Thus, the accuracy divides the number of the correctly predicted pixels, Ncorrect, by the total
number of analysed pixels, Ncorrect + Nincorrect. This is a good metric to evaluate the u-net
models, as higher accuracy indicates a model that is better at correctly predicting labels.
However, accuracy can also be sensitive to unbalanced data sets where one class is more
representative than other classes. This is shown in Figure 31. Here, a ground truth mask
is shown, with a white fibre located just off the centre. Below this ground truth mask, four
different predictions are shown. Prediction 1 perfectly matches the ground truth mask. Then,
in prediction 2, the fibre location is slightly shifted. In prediction 3 this is shifted even further
down. And prediction 4 shows a fibre completely predicted in a different corner. Below the
predictions, a visualisation is shown of what a subtraction of the predicted masks from the
ground truth mask would look like. Here, black pixels indicate correctly predicted pixels
(TP), and red pixels indicate pixels that should belong to fibres but are incorrectly predicted
(FN). Lastly, blue pixels indicate pixels that are predicted to belong to fibres but are not
indicated as fibres in the ground truth image (FN). The calculated accuracy of each of the
four predictions is shown at the bottom of the figure. As can be seen, prediction 1 has an
accuracy of 1.00. However, prediction 4 still has an accuracy of 0.95, whereas the prediction
of the location of the fibre is completely off. This illustrates that, in this case, accuracy is
not a good measure because not all classes are evenly represented in this example. This is
also the case for FRP micrographs, as the void volume fraction is often below 5%.

Figure 31: Accuracy and mean IoU calculated and compared for four different predictions of
a single fibre.
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Figure 32: Visual representation of the Intersection over the Union calculation.

4.4.2 Intersection over Union

A metric that is less sensitive to unbalanced classes in data sets is the Intersection of the
Union (IoU) metric, which is commonly used in the evaluation of image segmentation results
[41]. This metric divides the overlap area by the union area, Figure 32, per class by looking
at the predicted class of a pixel and the ground truth class of a pixel. Per class, the IoU can
be calculated as:

IoU =
TP

TP + FP + FN
. (11)

Here, the true positive (TP) pixel represents the pixels that are predicted correctly. The false
positive (FP) pixels are pixels that are predicted as the relevant class but are not indicated
as that class in the ground truth mask. The false negative (FN) pixels are pixels in the
ground truth mask that are not predicted as that class by the algorithm. Thus, if the IoU is
1, then the prediction is completely correct, and the worse the prediction, the lower the IoU.
For multiclass predictions, the IoU is calculated for every class and then the mean of these
values is calculated to get a mean IoU for one prediction. This is illustrated in Figure 31.
Here, prediction 1 is completely correct, which gives an IoU of 1. Since both the IoU of the
fibres and the matrix material class are 1. Prediction 2 is almost correctly predicted and gets
a mean IoU of 0.75. Then when the prediction of the fibres gets more off in prediction 3 the
mean IoU drops down to 0.55. Finally, when the two fibres are not even close to each other
anymore in prediction 4 the mean IoU becomes 0.48. This is because the IoU of the matrix
material class is 0.95 and the IoU of the fibre class is 0, since the fibres are not predicted
correctly. This gives a mean IoU of 0.48.
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5 Results
In this chapter, the results of three u-net models trained with the three different augmented
data sets are discussed. Table 10 shows an overview of the three different models with their
corresponding accuracy and IoU during training, validation, and testing. During training, the
models are saved after every ten epochs. The best-performing model of these saved models
is used as a final model for testing and presented here. All models will be discussed in the
rest of this chapter and compared with each other. The results of the models trained with
the non-augmented data sets can be found in Appendix C.

Table 10: The three models trained with the different data sets and their accuracy and IoU
results for training, validation and testing.

Accuracy IoUModel Training Validation Test Training Validation Test
Augmented data set I 0.90 0.85 0.87 0.84 0.73 0.73
Augmented data set II 0.93 0.87 0.68 0.88 0.76 0.50
Augmented data set III 0.93 0.87 0.90 0.85 0.66 0.79
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5.1 Model I: Augmented data set I

(a) Accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 33: Plots of the u-net model trained with the augmented data set I.

Data set I is augmented using the augmentation method described in Chapter 3.5 and used
to train the u-net model for 500 epochs. Figure 33 shows the accuracy, IoU and loss plots
made during training the model for the train and validation data. As can be seen in the
figure, the model converges after approximately 200 epochs. Figure 33c shows that the loss
of training data decreases to a value of approximately 0.23, while the validation loss converges
to a value of approximately 0.39. The training loss has a steeper slope and can still decrease
more when the model is run for more epochs. However, this decrease in loss is mostly caused
by overfitting the model. Overfitting often occurs because of a limited number of (diverse)
images. The network is able to remember and learn features from the training data; however,
it cannot use this knowledge on an unobserved data set [36]. After 500 epochs, the training
accuracy has reached a value of 0.90 and the validation accuracy a value of 0.85, as shown in
Table 10. Additionally, the training set has reached an IoU value of 0.84 and the validation
set has an IoU of 0.73. These results are as expected, as the validation accuracy is typically
lower than the training accuracy, since the model has not seen the validation images before.
That is, the validation images are used to calculate the validation accuracy, IoU and loss in
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each epoch, but they are not used to modify the model and will thus not be remembered.
Thus, the model demonstrates good results on the training and validation data. However, it
is of great interest if the model also performs well on a completely new micrograph. There-
fore, the model will make predictions on the test data set. As shown in Table 10 the accuracy
reached during the testing is 0.87 and the IoU is 0.73. These results are close to the validation
results, which can be explained by the test data that contain images similar to images present
in the augmented data set I. The fibres in the test data set have a fibre radius of seven pixels,
while the fibres in data set I have a radius of three pixels. However, data augmentation also
added images with larger fibre sizes because of the random crop method. This crops part
of the image and scales it back to the image size of 256 x 256 pixels, which enlarges the fibres.

Figure 34 shows an example of a prediction of the test data set with this trained model. As
can be seen, the predicted fibres are slightly smaller than the fibres in the ground truth mask.
This is probably due to the data set mainly containing smaller fibre sizes than those present
in the test set. Furthermore, the voids in the images are overdetected; predicted to be larger
than it actually is. All of the test images demonstrate this, and even two additional voids are
predicted, which are not present in the input images. This is most likely because the images
in the data set contain more and sometimes larger voids. Thus, the void predictions need to
be improved in this model. Note that in images that contain voids the fibres are indicated
by a grey colour, whereas the voids are white and the matrix material is black. However,
if no voids are present, the fibres are white and the matrix material black. The colours in
Figure 34d is used to illustrate the difference between the prediction and the ground truth
image, these images are used throughout this thesis. Here, red pixels indicate pixels that are
predicted as matrix material but belong to fibres in the ground truth mask. The blue pixels
are pixels that are predicted as fibres but are actually matrix material. Yellow pixels indicate
pixels that are predicted as voids, but are matrix material in the ground truth mask. Pink
pixels are the opposite; pixels that are predicted as matrix material, but belong to voids in
the ground truth masks. However, in this example, no pink pixels are present.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 34: Prediction of the trained u-net model with data set I augmented for a test image
with an accuracy of 0.88 and an IoU of 0.70.
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5.2 Model II: Augmented data set II
Another u-net model is trained with the augmented data set II, containing images with two
different sizes of fibres. Figure 35 shows that this model converges after approximately 200
epochs. The accuracy reached with the train data is 0.93 and the IoU is 0.88. With the
validation data, an accuracy of 0.87 is reached, while the IoU reaches a value of 0.76, which
is also summarised in Table 10. Furthermore, the loss decreases to a value of 0.16 for the
training data and 0.33 for the validation data.

These metrics are slightly better than the model trained with the augmented data set I, but
without significant improvement. However, the predictions of this model on the test set are
worse than those of the previous model trained with the augmented data set I. The test
accuracy is 0.68 and the test Iou is 0.50. Figure 36 shows a poor prediction of this trained
model. As can be seen, the fibre sizes in the predicted mask are larger than those in the
ground truth mask. This is also seen in the test results of a model trained with the non-
augmented data set II, as outlined in Appendix C.2. This is likely because there are very few
training images in the augmented data set II that contain fibres with a radius of seven pixels,
which is the fibre size present in the test data set. Half of the images present in data set II
namely have a fibre radius of three pixels and the other half have a fibre radius of 10 pixels.
The data augmentation method is used to bring more variety in these fibre sizes. However,
the fibre radius can only be increased by random cropping in the data augmentation process.
This cropped part of the image is then scaled back to the image size of 256 x 256 pixels,
which enlarges the fibres in the image. Therefore, at least half of the training images have
a fibre radius larger than 7 pixels. The other half of the image can experience a random
enlargement of the fibres; however, this means that fewer images will contain fibres with a
radius of seven pixels than in the augmented data set I, where this was possible for all 500
images. Therefore, the model trained with the augmented images from data set II performs
worse on the test data than the model trained with the augmented images from data set I.
Furthermore, because all images with a fibre radius of 10 pixels in the II data set do not
contain any voids, this model also has more difficulty correctly predicting voids compared
to the model trained with the augmented data set I, which contains 405 images with voids.
Figure 36 shows such an underpredicted void.
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(a) Accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 35: Plots of the u-net model trained with the augmented data set II.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 36: Prediction of the trained u-net model with augmented data set II for a test image
with an accuracy of 0.67 and an IoU of 0.35.
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5.3 Model III: Augmented data set III
A third model is trained with augmented data set III. Figure 37 shows the evaluation plots
of the u-net model trained with these augmented images for 500 epochs. As can be seen, the
model converges after approximately 100 epochs. As can be seen in Figure 37a the training
accuracy increases to a value of approximately 0.93 after 500 epochs and the validation
accuracy converges to 0.87. The IoU during training increases to a value of 0.85, while it
converges to 0.66 during validation. Lastly, the loss during training drops to a value of 0.15
while during validation it only reaches 0.36. The model performs approximately the same on
the train and validation data, except that the validation IoU is significantly lower than the
previous two models. This is because the data in data set III contains more variety, making
it harder for the model to make a good prediction.

(a) Accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 37: Plots of the u-net model trained with augmented data set III.

This trained model III is used to predict the segmented masks of the 32 images in the test
data set. The average accuracy achieved is 0.90, and the mean IoU is 0.79, as shown in
Table 10. This is significantly better than models I and II. This shows that having a more
diverse data set containing images of multiple micrographs does increase the performance on
the test data set. However, it should be noted that the test data set is relatively small due
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to a lack of available data. It is not guaranteed that the model will produce the same results
when applied to data other than the test set. Figure 38 shows the image that achieved the
best IoU score by testing the model. The void is well predicted and the fibres are also mostly
in accordance with the fibres in the input image. Figure 39 shows the image that scored the
worst during the testing of this model. As can be seen, the fibre prediction is still pretty
accurate, but because the void is not recognised at all, the IoU is only 0.54. A reason for this
can be the small amount of training data that contains voids, as only 19.1% of the images in
data set III contain voids. Furthermore, there are a few fibres predicted completely wrong,
indicated by clear blue spots that are the size of a fibre in Figure 39d. However, this does
not always indicate that the model does not perform well. For example, when zoomed in on
the two blue fibres in the top right corner of the image, as shown in Figure 40, it can be seen
that the model’s prediction can be better than the ground truth mask. The two encircled
fibres visible in the input image, Figure 40a, are not in the ground truth mask, Figure 40b,
but are predicted by the model in Figure 40c. The average predicted fibre volume fraction
is 0.36 and the average void volume fraction is 0.002, while these values of the ground truth
masks are respectively 0.37 and 0.003. This again demonstrates that the fibres and voids are
slightly underestimated, but that the model is able to make accurate predictions that can
approximate the fibre and void volume fractions.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 38: Prediction of the u-net model trained with augmented data set III for an example
image with the best achieved Iou of 0.84 and an accuracy of 0.91.
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(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 39: Prediction of the u-net model trained with augmented data set III for an example
image with the worst achieved IoU of 0.54 and an accuracy of 0.89.

(a) Zoomed in area
of the input image.

(b) Zoomed in area
of the ground truth

mask.

(c) Zoomed in area
of the predicted

mask.

(d) Zoomed in area
of the difference

between prediction
and ground truth.

Figure 40: Zoomed in images of 85 x 85 pixels of the same area of the images shown in Figure
39. These images show that the prediction of the model can be better than the ground truth
mask, as the two encircled fibres are not present in the input image.
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5.4 Comparison of the three models

(a) Accuracy results of the three different
models.

(b) IoU results of the three different models.

Figure 41: Bar graphs comparing the training, validation and test results of Model I, II and
III.

Figure 41 compares the training, validation, and test results of the three models. When
looking at the accuracy results, it is clearly visible that model III scores best on all three
phases. For the IoU results model II scores best in the training and validation phase, however,
it scores worst in the test phase. After all, the test phase is the most important, as this
indicates how well the model performs on new data. The high results during training and
validation can be caused by overfitting. Therefore, model III has the best overall performance
as expected, as it is trained with the data set that has the highest diversity. Thus, this model
will be the final outcome of this research. Some feature maps of this model are visualised
in Appendix F to see what happens inside the model; these figures are enlarged versions of
the feature maps shown in Figure 10. Furthermore, to determine whether this model can
correctly predict an image with a single fibre when trained with images containing multiple
fibres, an additional test was performed and the results are presented in Appendix E. In
Chapter 6.2, the effects of various parameters on this model will be demonstrated to justify
the decisions taken to design this model.
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6 Discussion
In this chapter the mask generation procedure is discussed as well as a justification of how
parameters for the final model were chosen.

6.1 Mask generation
Masks were required from the input images to train and test the model. The masks need
to indicate which pixels belong to fibres, matrix material, and voids. The semi-automatic
process used for this, as described in Chapter 3.3, is less accurate than labelling pixels by
hand due to various reasons. Figures 42 and 43 illustrate errors made in the mask caused by
the mask generation process.

(a) Image after preprocessing steps in ImageJ
with the local maxima indicated by white
crosses with yellow circles in it.

(b) Corresponding mask made by using the
local maxima as fibre centres and plotting cir-
cles with a radius of 14 pixels around them.

Figure 42: Example of an image and corresponding mask that show imperfections.

First, the “Find maxima” function in ImageJ indicates the local maxima in the pixel inten-
sity in an image. In some locations, the local maxima do not belong to the fibres, and, in
general, these local maxima do not precisely describe the centres of the fibres. This means
that fibres can appear in the masks at places where they are not present in the original image
and that many fibres are shifted a bit in the mask because the predicted centres are off. As
can be seen in Figure 42, circle number 1 shows an imperfect fibre that resulted in two local
maxima; therefore, two fibres were plotted in the mask instead of one. During the polishing
process of the specimens, some fibre ends can become damaged and are therefore not visible
as circles. The mask generation process currently is unable to handle the recognition of the
broken edges of fibres or imperfect fibres with the chosen parameters and method. Circle 2
shows a fibre of which the local maximum does not overlap the centre of the fibre, making
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the fibre in the mask shift too far to the left.

(a) Image after preprocessing steps in ImageJ
with the local maxima indicated by white
crosses with yellow circles in it.

(b) Corresponding mask made by using the
local maxima as fibre centres and plotting cir-
cles with a radius of 14 pixels around them.

Figure 43: Example of an image and corresponding mask that show imperfections.

The opposite also occurs, a fibre in the original image does not have a local maxima with
the chosen parameters. Therefore, when the centre is not recognised, no fibre will appear
in the corresponding mask, as shown by circle 4 in Figure 43. However, this is observed to
occur less often than to predict more fibres that are actually present. Another problem that
this mask generation process cannot handle well is the recognition of fibres that are partially
present at the edges of an image, which arises as a result of cropping the micrographs. When
only a part of the fibre is shown in the original image, a local maximum is often recognised,
but this maximum mostly does not correspond to the fibre centre. For example, when only
one third of the fibre is present in the original image, the local maximum will not accurately
pinpoint the centre of the fibre, as it is not even in the image. Then, in the mask generation
process, a circle is drawn around this maximum with a fixed radius, resulting in a larger
area being assigned to the fibre than is necessary, as shown by circle 3 in Figure 42. Here,
half a fibre shows up in the mask, whereas this fibre is barely visible in the original image.
Therefore, in the majority of cases more pixels are classified as fibre than is actually the case.

In Figure 43, some fibres are cut off at the edges, making them appear larger in the mask
than their actual size. Furthermore, this leads to fibres overlapping in the mask, which is
not possible in reality. An example of this is shown by the fifth red circle in Figure 43. This
overlap also often occurs when the local maxima are not located in the centres of the maxima.

Lastly, in the mask generation process it is assumed that the fibres are perfectly circular
and all have the same fibre size when looking at their cross-section. When looking at the
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training images, it is clear that this is not the case. This is because the fibres do not always
lay completely straight in one direction, the fibres might be a bit curved or the cross-section
is not made perpendicular to the fibres, which can make their cross-section more ellipse
shaped. Moreover, depending on the manufacturing process, the cross-sections of carbon
fibres do not always turn out perfectly circular. In addition, the ends of the fibres can also
be chipped off at the sides during the polishing process before making a microscopy image.
However, these defects also influence the fibre volume fraction in an unfavourable way. The
fibre volume fraction in the mask will become higher or lower than the actual fibre volume
fraction. Therefore, it is not expected that these generalisations that do not include these
defects in the masks would have a significant negative influence on the results in the fibre
volume fractions.

6.1.1 Fibre and void volume fraction

The fibre and void volume fraction can be calculated directly from the ground truth masks
and the predicted masks from the models later on. When looking at the fibre volume fractions,
it is noticed that these are relatively low. The fibre volume fraction of the test set is 0.37 and
the void volume fraction is 0.003, while the fibre volume fraction is expected to be above 0.5.
However, when looking at the masks they correspond relatively well to the corresponding
images. It is noted that increasing the fibre radius by one pixel significantly increases the
fibre volume fraction. When the fibre radius of the fibres in the test set is increased from
seven to eight, the fibre volume fraction goes from 0.37 to 0.48. Thus, this method of using
perfect circles with a fixed diameter is quite sensitive to small changes.

6.2 Effect of various parameters on model III
To develop the best performing model, model III from Chapter 5.3, several parameters, such
as data augmentation, amount of data, learning rate and batch size, were studied. It was
observed that the performance of the model improved when the parameters were adjusted
accordingly. This sub-chapter discusses the influence of some of these parameters on the
results. The different models resulting from the use of different parameters will be compared
with the best-performing model III as described in Chapter 5.3. This model has also been
compared with the original u-net model proposed by Ronneberger et al. [26], the results of
which can be found in Appendix D.

6.2.1 Data augmentation

Data augmentation is used to add variablility in the training images in all three models from
Chapter 5. To investigate the influence of the data augmentation method used, another
model will be trained with the same parameters but with the non-augmented data set III.
Table 11 shows the results of training, validating, and testing this model and compares it
with the model that was trained with augmented data. The model with non-augmented data
scores higher on the tracking and validation data, but significantly lower on the test data.
This is caused by the difference in variety in the train data. The non-augmented data appears
very similar, because the 256 x 256 images come from only a few larger micrographs. Thus,
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the model performs well on these images, since it has seen many similar looking examples.
However, the model knows the training data and noise too well, which is a sign of overfitting,
as it cannot make a good prediction on the new data from the test set.

Table 11: The accuracy and IoU results of a model trained with a non-augmented version of
data set III and the original augmented version.

Accuracy IoUModel Training Validation Test Training Validation Test
Non-augmented data set III 0.95 0.92 0.65 0.87 0.78 0.48
Augmented data set III 0.93 0.87 0.90 0.85 0.66 0.79

Figure 44 shows a prediction of the model trained with non-augmented data on the test set.
Most of the fibres in the prediction, Figure 44c, are predicted to be larger than they actually
are. This is also seen in the prediction of the model trained with data set II in Chapter 5.2.
Therefore, the augmentation method does add the variety to the data that is needed to make
more general predictions on different RFP micrographs.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 44: Prediction of the u-net model trained with the non-augmented data set III for an
example image with an accuracy of 0.69 and an Iou of 0.53.

6.2.2 Amount of data

In generally deep learning models need a lot of training data, but u-net models are known
to require very few augmented annotated images during training [26]. Therefore, it is inter-
esting to see how a model trained with fewer images than the 1000 that are included in the
augmented data set III performs. For this, the data set is reduced to 100 augmented images
by taking 10 images from each set of images with a different fibre size, as shown in Figure
26. Furthermore, data augmentation makes it relatively easy to increase the size of a data
set by adding additional augmented images. This is done with data set III; every image is
now augmented twice, which increases this data set to 2000 images. Both trained models
are compared with the final model from Chapter 5.3. Table 12 shows the accuracy and IoU
results of all tree models. As expected, the model trained with only 100 images performs
worse than the other two models, because it has seen fewer data to learn from.However, the
model trained with 2000 images does not perform significantly better than the model with
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1000 images. This is most likely because data set III contains 10 batches of 100 images that
look similar. The data augmentation method adds variability to these images to some ex-
tent. However, when more of these images are added, the images again begin to look similar.
Another reason could be that the limit of the optimal result has been reached. The ground
truth masks are not perfect, as explained in Chapter 6.1, thus, the predictions can also never
be perfect.

Table 12: The accuracy and IoU results of a model trained with 100 and 2000 augmented
images of data set III compared to the original model trained with 1000 augmented images.

Accuracy IoUModel Training Validation Test Training Validation Test
Augmented data set III
100 images 0.89 0.79 0.50 0.81 0.83 0.66

Augmented data set III
1000 images 0.93 0.87 0.90 0.85 0.66 0.79

Augmented data set III
2000 images 0.93 0.90 0.90 0.85 0.70 0.76

6.2.3 Model hyperparameters

The models contains several hyperparameters that can be tuned to get better results or speed
up the training process. The learning rate and batch size are two of these hyperparameters
that will be discussed here. The final model uses a learning rate of 0.001, but values of 0.01
and 0.0001 were also tested, as shown in Table 13. The results in accuracy and IoU values
are not significantly different, making all learning rates tested usable. However, the training
process is highly influenced by this parameter and, for effective deep neural network training,
the learning rate is an import parameter to tune [42, 43]. Large learning rates can skip the
optimal solution and result in unstable training. This happened with the model that used a
learning rate of 0.01. Figure 45 shows the accuracy and loss plots during training. After 200
epochs the model reaches its highest accuracy and lowest lost values, and the saved model at
this time is used for the results shown in Table 13. However, after 200 epochs the accuracy
suddenly goes down again and does not increase any more for the remaining 300 epochs. This
is a typical behaviour that is seen in models with a too high learning rate. The weights change
a lot due to this learning rate and are moving away from the global minimum, which results
in a lower accuracy. The model can even get stuck at a local minimum and fails to improve
, which is what happened in this case after 200 epochs. Too small a learning rate can lead
to slow convergence and longer training times [42]. Figure 46 shows the accuracy and loss
plots of the trained model with a learning rate of 0.0001. This model indeed converges slower
than the model with learning rate 0.001 from Chapter 5.3. Since the accuracy continues to
improve around 500 epochs in Figure 46a. Therefore, the final model uses a learning rate of
0.001, as this gave the best training results.
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Table 13: Comparison of models trained with the augmented data set III with different
learning rates.

Accuracy IoULearning
rate Training Validation Test Training Validation Test

0.01 0.89 0.87 0.88 0.78 0.60 0.75
0.001 0.93 0.85 0.90 0.89 0.66 0.79
0.0001 0.89 0.86 0.87 0.81 0.65 0.73

(a) Accuracy over 500 epochs. (b) Loss over 500 epochs.

Figure 45: Plots of the u-net model trained with augmented data set III with a learning rate
of 0.01, which show an unstable training process due to a too high learning rate.

(a) Accuracy over 500 epochs. (b) Loss over 500 epochs.

Figure 46: Plots of the u-net model trained with augmented data set III with a learning rate
of 0.0001, which shows a slower convergence due to a too low learning rate.
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Secondly, the batch size is adjusted. The original u-net model proposed by Ronneberger et
al. [26] uses a small batch size of one. Small batch sizes can be computationally expensive
and time consuming, but achieve high accuracy. However, small batch sizes can also be more
susceptible to random fluctuations in the training data. This is also observed when using a
batch size of one with the model trained with the augmented data set III, as shown in Table
14 and Figure 47. The valdiation and test results are significantly lower than the higher batch
sizes of eight, 16 and 32. The accuracy and loss graphs demonstrate that the performance
begins to decline after 20 epochs and fluctuates heavily with each epoch. The gap between
the training and validation data results is significant and shows that the model is not resistant
to the fluctuations in the data. The results between the other three batch sizes do not differ
much, but a choice has been made to use a batch size of 16, as this scores the best on the IoU.
A difference in training time was also observed between the four options. Training the model
with batch size one took approximately 13 hours, while training the other three models took
six to seven hours. However, it should be noted that the models were not run on a GPU,
meaning that the training times could potentially be decreased by using different hardware.

Table 14: Comparison of models trained with the augmented data set III with different batch
sizes.

Accuracy IoUBatch size Training Validation Test Training Validation Test
1 0.95 0.60 0.80 0.85 0.28 0.60
8 0.94 0.87 0.88 0.83 0.65 0.79
16 0.93 0.85 0.90 0.89 0.66 0.79
32 0.93 0.87 0.90 0.85 0.65 0.78

(a) Accuracy over 500 epochs. (b) Loss over 500 epochs.

Figure 47: Plots of the u-net model trained with augmented data set III with a batch size of
one, which shows a slower convergence due to a too low learning rate.
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7 Conclusion
The aim of this research was to automate the analysis of microscopy images of CFRP lami-
nate cross-sections using deep learning. In this way, manual tuning for each new micrograph,
which is done with thresholding techniques, is no longer required. The main goal for analysing
these micrographs is to determine the fibre and void volume fractions, as well as the distri-
butions of the fibres. It has been shown that the u-net model is a powerful deep learning
architecture for this problem, as it does not require a large number of training images and
can learn quickly, even when the hardware used is not optimised for deep learning techniques.

The u-net models trained with the three different data sets show that the performance of a
model is highly dependent on the diversity of the training data set. For the model to be able
to perform well on all different types of microscopy images with different fibre sizes, lighting
settings, and void contents, a high variety of training images is needed. However, there were
not many different micrographs available and collecting images from additional micrographs
is a time-consuming process. Fortunately, data augmentation has become a viable solution
to enhance the variety of microscopy images and increase the robustness of the models.

While the ground truth masks generated may not be completely accurate, the mask genera-
tion method is still preferable to manually annotating the images, which is time-consuming
or requires expensive software. The models are often able to make predictions that are more
accurate than the actual masks of the input image. However, this illustrates the main pitfall
of this research; the predictions are evaluated based on comparisons with ground truth masks
that already contain errors. Therefore, it is advised not only to focus on accuracy and IoU
results, but also to visually inspect the predictions. This visual inspection revealed that the
final model usually performs better than the ground truth masks generated.

The fibre and void volume fractions in the ground truth masks are relatively low, as a result
of the mask generation process, which may not reflect reality. However, the trained model
demonstrates its ability to accurately predict the fibre and void volume fractions, which are
in close agreement with the values of the ground truth masks.

Overall, the final u-net model trained with data set III successfully demonstrates that the
micrographs used can be well automatically segmented to calculate their fibre and void con-
tent with an accuracy of 0.90 and an IoU of 0.79 on the test data set. Furthermore, the
centres can be extracted from the predicted output images to determine the fibre distribu-
tions. Thus, this is a promising method to replace thresholding methods that need to be
manually calibrated for each micrograph, given that the analysed micrographs are partially
similar to the training images, and that the ground truth masks represent the input images
well.
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8 Recommendations
This chapter will discuss the recommendations for further research based on three main com-
ponents of this study: the data sets, the ground truth masks and the model.

Data sets
As shown in this research, the performance of the u-net model is highly dependent on the
quality of the training data set. It was tried to create a data set that was as diverse as possi-
ble, data set III, with still having images left to use for the test set. However, only a limited
amount of suitable data was available during the time span of this research. Therefore, it is
recommended to collect more data from various new micrographs and include other mate-
rials, such as glass fibres, to increase the training data set with distinctive training images.
This will make the model better equipped to handle a wider range of micrographs. To further
test the prediction capabilities of the model on new data, it is also advised to evaluate the
model with a larger test set containing images that come from different micrographs as the
images present in the training data set.

As collecting new data is a time-consuming process, the option of using synthetic data as
training data is also considered. One way to create synthetic data is with a generative ad-
versarial network (GAN), which is a machine learning framework composed of two networks.
A generator network that produces new data with the same statistics as the data used for
training. And a discriminator network that needs to tell if the data is synthetic or real.
The generator is then trained to fool the discriminator so that the generated data will look
authentic to human observers. However, GANs usually require between 50,000 and 100,000
training images to get high-quality results. Therefore, this option was not useful in this re-
search, and data augmentation is preferred. However, there is research being done on GANs
that only need a few thousand training images by using adaptive discriminator augmentation
[44, 45]. This is an interesting option, which could be explored in further research when more
training images are collected.

Ground truth masks
The quality of the ground truth masks of the training data can also be improved; however,
it is unlikely that the benefit gained from this will be worth the additional time and effort
required. Nevertheless, there are two options that are suited to increase the quality without
manually labelling every pixel. First, the current mask generation process can be improved
by manually checking the predicted fibre centres in ImageJ and removing and adding the
ones that are predicted incorrectly. Rather than relying on centre point predictions, the
thresholding values can be used to determine which pixels belong to which class. Second,
paid software, including AI-assisted labelling, can be used to label images. When money is
not an issue, this is the preferred option, because these software programmes are developed
to solve annotation problems fast and efficiently.

Model
The current model’s accuracy can be enhanced by improving the data and ground truth
masks, as well as by altering the model itself. Much research has already been done on the
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number of layers and hyperparameters in the model, but the influence of different loss func-
tions and optimisers can be further investigated. The IoU metric has been shown to provide
a more accurate assessment of the performance of the model for this task. Therefore, it is
interesting to investigate whether a loss function based on this IoU metric can improve the
model’s performance.

Another recommendation is to improve the semantic segmentation accuracy results using
transfer learning. With transfer learning, the knowledge learnt from one task is transferred
to a new target task. This is done by using a pre-trained model instead of building one
from scratch. Pre-trained models contain pre-trained weights that are used as a starting
point. This is possible since lower-level features, such as curves, edges, and circles, are often
similar for most computer vision tasks [13]. These primitive features contained in the early
layers of a neural network can be easily reused in other arbitrary applications. Pre-trained
models are trained with large existing data sets. These models can then be retrained with
a significantly smaller data set that contains images for the target task. Therefore, transfer
learning from a pre-trained model trained with a large image data set can be beneficial in
preventing overfitting, improving accuracy results, and reducing training time on a limited
image data set [12, 21]. This makes using a pre-trained model another suitable approach for
this semantic segmentation problem with limited data.
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A. Micrograph details

Appendices

A Micrograph details
In this appendix, the origin of the different micrographs and their sources are explained in
detail. In total, 30 micrographs from five different sources were used to create the 14 image
sets. Table 15 shows an overview of all micrographs and the image set to which they belong.
Also, from which specimen the micrographs are taken and the number of 256 x 256 images
that have been acquired. Note that each 256 x 256 images in the online data set [31] can be
recovered by means of the name of the micrograph as shown in this table. As the name of
each image starts with the name of the micrograph image in the form NAME_Y_X. Where
X and Y are locations of where the 256 x 256 image is taken from in the larger original
micrograph.

Table 15: All 30 micrographs used in this research and their corresponding images sets and
number of images.

Micrograph Image set Image
source Zoom Specimen

Number
of
training
images

Number
of
images
with
voids

2_3_1_R PEEK 3A 1 200x 1-A 72 64
2_3_2_L PEEK 3A 1 200x 1-A 70 58
2_3_2_R PEEK 3A 1 200x 1-A 72 65
2_3_3_R PEEK 3A 1 200x 1-A 66 52
2_6_3_R PEEK 3A 1 200x 1-B 76 58
2_6_1_R PEEK 3B 1 200x 1-B 68 422
2_6_2_R PEEK 3C 1 200x 1-B 76 58
2-6-1_mid PEEK 7 1 400x 1-B 16 4
17-5-2_zoom_mid LM-PAEK 7 1 400x 1-C 16 2
0_press_375_R2_300x_xsf LM-PAEK 5 2 300x 2-press-A 100 0
0_ISC_400_R2 LM-PAEK 10 2 500x 2-ISC 137 0
0_press_375_R2_500x_xs_L LM-PAEK 10 2 500x 2-press-A 36 0
0_press_375_R2_500x_xs_R LM-PAEK 10 2 500x 2-press-A 30 0
90_press_375_R4_500x_surfxs_R LM-PAEK 10 2 500x 2-press-B 47 0
specimen_33_left LM-PAEK 14 3 500x 3-A 8 0
specimen_33_middle LM-PAEK 14 3 500x 3-A 12 0
specimen_33_right LM-PAEK 14 3 500x 3-A 7 0
specimen_35_left LM-PAEK 14 3 500x 3-B 10 0
specimen_35_middle LM-PAEK 14 3 500x 3-B 16 0
specimen_35_right LM-PAEK 14 3 500x 3-B 8 0
specimen_37_left LM-PAEK 14 3 500x 3-C 13 0
specimen_37_middle LM-PAEK 14 3 500x 3-C 16 0
specimen_37_right LM-PAEK 14 3 500x 3-C 9 0
specimen_43_middle LM-PAEK 14 3 500x 3-D 1 0
G02_1 PEEK 2 4 100x 4-A 100 42
G02_2 PEEK 3D 4 200x 4-A 100 19
G02_3 PEEK 4 4 500x 4-A 100 36
Start_M LM-PAEK 6 5 300x 5-A 100 9
Stop_R LM-PAEK 11 5 500x 5-A 100 7
Middle_R LM-PAEK 22 5 800x 5-A 100 4

68



A. Micrograph details A.1. Source 1

A.1 Source 1

Figure 48: Schematic overview of the friction tester used [46].

From this source, nine different micrographs are used to create five different image sets.
These micrographs are taken from three different specimens: 1-A, 1-B, and 1-C, as shown in
Table 15. Specimens 1-A and 1-B are made from three UD plies of semi-crystalline PEEK,
Toray TC1200. And specimen 1-C is made of Toray TC1225 UD carbon LM-PAEK. All
specimens are tested on a friction tester before being analysed with a microscope. The setup
used in the friction tester is shown in Figure 48 and is used in the research by E.R. Pierik
[46] to characterise the ply-ply friction response of the UD tape. This is done by forcing the
central ply, which is clamped at the upper clamp of the testing machine, to slide against the
two stationary outer plies that are clamped at the bottom, which is done at a constant rate.
Specimen 1-A is tested at a speed of 25 mm/min on the friction tester, and specimens 1-B
and 1-C are tested at a speed of 5 mm/min. All of the carbon fibres used are aligned in the
longitudinal direction. This is also the sliding direction in which the specimens are tested
in the friction tester. After these tests, the two specimens are cut at three locations where
the three plies meet, for example, the location indicated in Figure 49, to be able to analyse
different cross-sections with a Keyence digital microscope.

Figure 49: Schematic overview of a location where a cut is made in the 3-ply laminate to
create a micrograph of the cross-sectional area [46].
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A.2 Source 2
Source 2 provided five micrographs that were used to create two image sets, as shown in
Table 15. These micrographs came from research toward a robust automated in situ fibre
placement process by Luis F. Conzalez Camacho [30]. The four different micrographs are
made from three distinct specimens. All specimens are made from unidirectional carbon fibre
reinforced polymers: TC1225 low-melting polyaryletherketone (LM-PAEK) from Toray. The
specimens consist of 12 unidirectional layers with an alternating stacking of 0° and 90° layers
and finally an additional unidirectional tape on top of the specimens which was of interest
for the specific research. Specimens 2-press-A and 2-press-B are fully consolidated through a
press cycle. Whilst sample 250-ISC is partially consolidated through a press cycle, but with
the extra top layer in-situ consolidated.

A.3 Source 3
Source 3 comprised 10 micrographs of specimen 3-A, 3-B, 3-C and 3-D, shown in Table 15,
which were analysed with a microscope to investigate the adhesion between thermoplastic
tapes by Thijs Rouwmaat [28]. The cross-sections are made from the one-layer “as received”
tapes from Toray TC1225 UD C/LM-PAEK.

A.4 Source 4
Source 4 contains three micrographs made from specimen 4-A. Micrographs are created
specifically for this research and are made with different zoom settings to create more diverse
data. Thus, three different image sets were created, as shown in Table 15. The consolidated
laminate used was made from carbon-reinforced PEEK(Toray TC1200) with a [0]16s lay-up.

A.5 Source 5
With source 5, again three image sets are created with three micrographs. The micrographs
were made specially for this research with different zoom settings, as can be seen in Table 15,
and were obtained from specimen 5-A. This specimen is a 3-ply UD laminate with a [0/0/0]
lay-up, which was made with fibre placement and in-situ consolidation. The specimen was
cut at three different locations, indicated by “Start”, “Middle”, and “Stop” in the name of
the micrographs. With the assumption that more voids would appear at the beginning and
end of the laminate when the fibre placement method did not work optimally. However, this
was not observed when analysing the micrographs. Unfortunately, there were no significant
differences in the number of voids at the three locations and there were fewer voids than
expected.
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B. Data sets

B Data sets
Here, a more detailed structure of each of the data sets presented in Chapter 3.4 is given.
Tables 16 to 19 indicate which micrographs are used for each data set and how many images
are taken of each source. The data sets are available online at the 4TU.ResearchData data
repository [31].

Table 16: Composition of data set I from seven stitched micrographs.

Micrograph Image set Image
source Zoom Specimen

Number
of
training
images

Number
of
images
with
voids

2_3_1_R PEEK 3A 1 200x 1-A 72 64
2_3_2_L PEEK 3A 1 200x 1-A 70 58
2_3_2_R PEEK 3A 1 200x 1-A 72 65
2_3_3_R PEEK 3A 1 200x 1-A 66 52
2_6_1_R PEEK 3B 1 200x 1-B 68 42
2_6_2_R PEEK 3C 1 200x 1-B 76 58
2_6_3_R PEEK 3A 1 200x 1-B 76 66

Table 17: Composition of data set II from eight different micrographs.

Micrograph Image set Image
source Zoom Specimen

Number
of
training
images

Number
of
images
with
voids

2_3_1_R PEEK 3A 1 200x 1-A 72 64
2_3_2_R PEEK 3A 1 200x 1-A 36 30
2_3_3_R PEEK 3A 1 200x 1-A 66 52
2_6_2_R PEEK 3C 1 200x 1-B 76 58
0_ISC_400_R2 LM-PAEK 10 2 500x 2-ISC 137 0
0_press_375_R2_500x_xs_L LM-PAEK 10 2 500x 2-press-A 36 0
0_press_375_R2_500x_xs_R LM-PAEK 10 2 500x 2-press-A 30 0
90_Press_375_R4_500x_surfxs_R LM-PAEK 10 2 500x 2-press-B 47 0
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C. Results of models trained with non-augmented data sets

Table 18: Composition of data set III from 22 different micrographs.

Micrograph Image set Image
source Zoom Specimen

Number
of
training
images

Number
of
images
with
voids

2_3_1_R PEEK 3A 1 200x 1-A 25 20
2_3_2_L PEEK 3A 1 200x 1-A 25 20
2_3_3_R PEEK 3A 1 200x 1-A 25 20
2_6_1_R PEEK 3B 1 200x 1-B 25 14
0_ISC_400_R2 LM-PAEK 10 2 500x 2-ISC 100 0
0_press_375_R2_300x_xsf LM-PAEK 5 2 300x 2-press-A 100 0
specimen_33_left LM-PAEK 14 3 500x 3-A 8 0
specimen_33_middle LM-PAEK 14 3 500x 3-A 12 0
specimen_33_right LM-PAEK 14 3 500x 3-A 7 0
specimen_35_left LM-PAEK 14 3 500x 3-B 10 0
specimen_35_middle LM-PAEK 14 3 500x 3-B 16 0
specimen_35_right LM-PAEK 14 3 500x 3-B 8 0
specimen_37_left LM-PAEK 14 3 500x 3-C 13 0
specimen_37_middle LM-PAEK 14 3 500x 3-C 16 0
specimen_37_right LM-PAEK 14 3 500x 3-C 9 0
specimen_43_middle LM-PAEK 14 3 500x 3-D 1 0
G02_1 PEEK 2 4 100x 4-A 100 42
G02_2 PEEK 3D 4 200x 4-A 100 19
G02_3 PEEK 4 4 500x 4-A 100 36
Start_M LM-PAEK 6 5 300x 5-A 100 9
Stop_R LM-PAEK 11 5 500x 5-A 100 7
Middle_R LM-PAEK 22 5 800x 5-A 100 4

Table 19: Composition of the test data set from two different micrographs.

Micrograph Image set Image
source Zoom Specimen

Number
of
training
images

Number
of
images
with
voids

2-6-1_mid PEEK 7 1 400x 1-B 16 4
17-5-2_zoom_mid LM-PAEK 7 1 400x 1-C 16 2

C Results of models trained with non-augmented data
sets

C.1 Data set I
Data set I with non-augmented images is used to train the network, as it contains a lot of
images with voids. The model is trained for 500 epochs. As can be seen in Figure 50 the
accuracy, mean IoU and loss are again plotted during training for the train and validation set.
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C. Results of models trained with non-augmented data sets C.1. Data set I

Figure 50a shows that a train accuracy of almost 0.94 is reached and a validation accuracy of
around 0.92. An example of how a prediction looks on a validation image is shown in Figure
51. In Figure 51d yellow pixels indicate pixels that are predicted as voids, but are matrix
material in the ground truth mask. Pink pixels are the opposite; pixels that are predicted as
matrix material, but belong to voids in the ground truth masks. However, in this example,
only two pink pixels are present, and are thus barely visible.

(a) Categorical accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 50: Evaluation plots of the trained u-net model with data set I including voids.
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(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 51: Prediction of the trained u-net model with data set I with voids for an example
image with an accuracy of 0.92 and an IoU of 0.82.

The model that achieved the best results during training is used to make predictions on the
test data. The average accuracy achieved is 0.67 and the mean IoU is 0.32. This mean
IoU is lower than the previous model, which is expected because of the higher complexity of
the images including voids. An example prediction of an image from the test set is shown in
Figure 52. As can be seen, the same problem arises with the fibre sizes of the predicted image
as with the model without voids. However, the void is predicted quite well, a bit larger than
it actually is. But the model also predicted an extra void in the middle, where fewer fibres
are present, which is not actually there. It could be that it learnt to indicate large spots
where no fibres are present as voids, which is undesirable. In conclusion, this trained model
can easily predict voids in the train and validation data. With test data, voids can also be
identified, however, there is also a risk of false positives being detected. Now a more diverse
data set needs to be used to overcome the problem of incorrectly predicting fibre sizes.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 52: Prediction of the trained u-net model with data set I with voids for an test image
with a void with an accuracy of 0.67 and an IoU of 0.42.

C.2 Data set II
Next, data set II (without data augmentation) is used to train the u-net model. After 500
epochs, the loss has converged to a training value of 0.12 and a validation value of 0.25. The
trained model achieved an accuracy of 0.95 on the training set and 0.91 on the validation
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set. And an IoU of 0.90 on the training set and 0.83 on the validation set. These results are
comparable to the previous two trained models. And, as can be seen in Figures 54 and 55,
the images of both data subsets are well predicted.

(a) Categorical accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 53: Evaluation plots of the trained u-net model with data set II.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 54: Prediction of the trained u-net model with data set II with voids for an example
image with an accuracy of 0.95 and an IoU of 0.90.
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(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 55: Prediction of the trained u-net model with data set II with voids for an example
image with an accuracy of 0.86 and an IoU of 0.78.

However, it is interesting to see if this model performs better on the test data set. The model
that performed best during training is used on the test data. This gives a mean accuracy of
0.65 and a mean IoU of 0.48 on the 32 images. The IoU actually improved significantly from
the models trained with data set I. However, as can be seen in Figure 56, the fibre size is
still not correctly predicted. The fibres are predicted to be too large because of the size of
the larger fibres present in the data set. The fibres present in the training data have a radius
of three and 10 pixels. However, the fibres in the test data have a fibre size of seven pixels.
Thus, it can be concluded that the model is not yet able to interpolate fibre sizes with these
training data. Therefore, more variation is needed in the training data, which will be done
by using data set III in Appendix C.3.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 56: Prediction of the trained u-net model with data set II for an test image with a
void with an accuracy of 0.65 and an IoU of 0.44.

C.3 Data set III
This u-net model is trained with the most diverse data set containing 1000 images. As can
be seen in Figure 57 the model converges earlier than the previously trained models. After
200 epochs, the validation accuracy, mean IoU and loss are converged to training values of
respectively 0.95, 0.87 and 0.12 and validation values of 0.92, 0.78 and 0.27.
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(a) Accuracy over 500 epochs. (b) Mean IoU over 500 epochs.

(c) Loss over 500 epochs.

Figure 57: Plots of the u-net model trained with data set III.

The accuracy results are comparable to those of the previous models; however, the IoU
is lower than that of these models. This can be explained by the model being worse at
predicting voids in images with voids from image sets that contained a relatively low number
of voids. An example of such a prediction of an image with a void is shown in Figure 58.
Here, the small void in the bottom left corner is not predicted in Figure 58c. Note that in
this figure, the white colour indicates the class “fibres” while in Figure 58b the white colour
represents the “voids” class and the grey represents the “fibres” class. Because this one class
is completely mispridcted, the IoU becomes lower. The model is able to predict bigger voids
as can be seen in Figure 59. However, the model does predict the void smaller than in the
ground truth mask, resulting in an IoU of 0.72. The best prediction of this validation data
is shown in Figure 60 and has an accuracy of 0.96 and an IoU of 0.92.

77



C. Results of models trained with non-augmented data sets C.3. Data set III

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 58: Prediction of the trained u-net model with data set III for an example image with
an accuracy of 0.86 and an IoU of 0.47.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 59: Prediction of the u-net model trained with data set III for an example image with
voids and an accuracy of 0.87 and an IoU of 0.72.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 60: The best prediction from the test set of the u-net model trained with data set III
with an accuracy of 0.96 and an IoU of 0.92.

The u-net model that achieved the best performance during training is used on the validation
data set of 192 images. The average accuracy achieved is 0.65, and the mean IoU is 0.85.
Unfortunately, these results are the same as the model achieved while training with the II
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data set. Therefore, increasing the diversity by adding images from more image sets did
not improve the test results. This may be because the fibre size of the test data is still not
present in the training data and the data is still not diverse enough to handle images with
different spectra. In Figure 62 another prediction is shown on the test data that includes a
void. This void is predicted to be smaller than it is in the ground truth image, which was
also noticed in the validation training set. However, the model is able to correctly recognise
the images with voids in the test set. In conclusion, to improve the test results, the data set
1000 is not good enough and needs to be improved by data augmentation.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 61: Prediction of the trained u-net model with data set III for an test image with an
accuracy of 0.65 and an IoU of 0.48.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 62: Prediction of the trained u-net model with data set III for an test image with a
void with an accuracy of 0.63 and an IoU of 0.47.

D Comparison of model III and the original u-net model
The architecture used in the research is based on the original u-net of Ronneberger et al.
[26] and adapted as explained in Chapter 4.1. To illustrate that the adaptations are an
improvement of the model for this specific segmentation problem, both models are compared.
The accuracy and IoU results are shown in Table 20. Both models achieve approximately
the same results with the training and validation data. However, a significant difference is
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seen in the test results. The original model did not find a general solution that works as
well as the adapted model designed for this research. It is also noteworthy that the original
model took 55 hours to train for 500 epochs, while training the final model of this research
only took six hours.

Table 20: The accuracy and IoU results of the original model as proposed by Ronneberger
et al. [26] trained with data set III and the final adapted model of this research.

Accuracy IoUModel Training Validation Test Training Validation Test
U-net by Ronneberger et al. [26]
Augmented data set III 0.93 0.86 0.68 0.88 0.70 0.34

Augmented data set III 0.93 0.85 0.90 0.89 0.66 0.79

E One fibre prediction
A test is performed to determine if the model trained with data set III is capable of recognising
a single fibre when the model is trained with only images containing multiple fibres. From
an example image, all fibres are deleted except one, using Photoshop. Figure 63a shows the
result that is used as the input image. The predicted mask of the model has an accuracy
of 0.997 and an IoU of 0.88 and is shown in Figure 63. This shows that the model can also
make a good prediction on one fibre.

(a) Input image. (b) Ground truth
mask.

(c) Predicted mask. (d) Difference
between prediction
and ground truth.

Figure 63: Prediction of the u-net model trained with augmented data set III for an example
image with only one fibre with an accuracy of 0.997 and an IoU of 0.88.

F Feature maps final model
This appendix provides an enlarged view of the feature maps from Figure 10 in Chapter 2.7.
The input image used for these visualisations is shown in Figure 64. Figure 65 to 73 show
examples of feature maps of the specific layers with this input image. Finally, the output,
the predicted mask of the model is shown in Figure 74.
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Figure 64: Input image used to visualise the feature maps of the final model trained with
augmented data set III.

Figure 65: Four random feature maps of the first 3 x 3 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.

81



F. Feature maps final model

Figure 66: Four random feature maps of the first 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.

Figure 67: Four random feature maps of the second 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.
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Figure 68: Four random feature maps of the third 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.

Figure 69: Four random feature maps of the fourth 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.
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Figure 70: Four random feature maps of the fifth 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.

Figure 71: Four random feature maps of the sixth 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.
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Figure 72: Four random feature maps of the last 1 x 1 convolutional layer of the model
trained with augmented data set III visualised with Figure 64 as input image.

(a) Feature map for the
first class: matrix mate-
rial.

(b) Feature map for the
second class: fibres.

(c) Feature map for the
third class: voids.

Figure 73: The three feature maps of the last 3 x 3 convolutional layer with a softmax
activation function of the model trained with augmented data set III visualised with Figure
64 as input image.
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Figure 74: Output image of the final model trained with augmented data set III visualised
with Figure 64 as input image.
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