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Abstract  

In biomechanical analysis, accurately estimating Ground 

Reaction Forces (GRFs) is crucial. Conventionally, this 

requires expensive force plates (FP) and complex gait 

laboratories. Our study explores the feasibility of estimating 

GRFs using a simplified setup of only three Inertial 

Measurement Units (IMUs): one placed on the pelvis and 

one on each foot. We investigated the accuracy of GRFs 

estimation at three different walking speeds (0.28m/s, 

0.83m/s, 1.39m/s) for both feet. To make this possible, our 

method applies the Constant Walking Speed Assumption 

(CWSA) to investigate the real-time implementation of the 

Smooth Transition Assumption (STA). Although our 

approach encounters challenges with the accuracy of GRFs 

estimation at lower speeds and with the estimation of shear 

forces, potential solutions such as advanced signal 

processing, and the use of force-sensitive resistors (FSRs) 

could offer mitigation strategies. This research contributes to 

the field of biomechanics by suggesting a cost-effective and 

simplified method for estimating GRFs, with potential 

applications in sports science, clinical rehabilitation, and the 

design of assistive devices for individuals with mobility 

impairments. 

Keywords: Ground Reaction Forces, Gait Analysis, Inertial 

Measurement Units, Smooth Transition Assumption, 

Biomechanics. 

1. Introduction 

Assessing walking capacity and gait rehabilitation is of 

utmost importance in clinical practice or sport biomechanics. 

It enables clinicians to diagnose and monitor patients' 

progress, evaluate the effectiveness of interventions, and 

design personalized rehabilitation plans. Ground reaction 

forces (GRFs) during walking are a critical measure for 

assessing motor deficits [1], providing valuable information 

about gait pattern, balance, and muscular strength [2] [3]. 

Traditional methods of measuring ground reaction forces 

(GRFs) during walking, use force plates [4] instrumented in 

treadmill or embedded in the floor [5]. However, it is 

important to note that these methods may not fully capture 

the complexity of real-life gait situations, potentially 

affecting the validity of the assessment [6].  

An alternative solution in the form of wearable technology: 

pressure insoles, embedded within the user's shoes, provide 

real-time data on the distribution of forces exerted on the feet 

during various activities [2]. The most significant advantage 

of pressure insoles is their ability to offer a non-intrusive and 

portable method for collecting data [7], while capturing 

detailed spatial and temporal pressure patterns, allowing for 

a comprehensive analysis of foot dynamics. However, 

pressure insoles have their limitations. They only focus on 

measuring plantar pressure and cannot provide insight into 

other aspects of kinematic data such as body motion and 

posture. Thus, they can’t function as a stand-alone system 

for biomechanical gait analysis and must be paired with a 

kinematic capture system such as a motion capture system or 

inertial measurement units (IMUs). 

By replacing the current gold-standard set-up, which 

typically involves a motion capture system and force plates, 

with only three IMUs, we can realize several advantages [8]. 

Firstly, IMUs are wearable and do not require a specific 

walking area, allowing for more natural and realistic gait 

assessment. Secondly, IMUs are affordable, making them 

accessible to outpatient clinics and home-based 

rehabilitation. Lastly, due to a non-restrictive walking area 

and user-friendliness, the IMU system could potentially 

promote continuity of care and reduce the need for frequent 

clinic visits, consequently improving rehabilitation plan 

adherence. Therefore, the ability to estimate GRFs using 

only three IMUs offers a less invasive, more cost-effective, 

and flexible solution for monitoring motor deficits during 

rehabilitation. IMUs are small sensors that can measure 

accelerations, angular velocities, and orientations of body 

segments [9]. These devices provide a less invasive and 

flexible means of obtaining kinematics data during any type 

of movement. In this paper, we estimate GRFs during 

walking tasks. 

Several studies have explored the use of IMUs for GRFs 

estimation. However, most of these studies have relied on 

multiple sensors, increasing both the cost and complexity of 

the setup [9,10,11,12,13]. This multi-sensor configuration 

not only introduces calibration challenges but also often 

requires a less straightforward learning curve for clinicians 

and introduces more limitations to the patients movement 

[14]. Moreover, a significant characteristic of these existing 

state of the art methodologies is that they are largely 

designed for offline data processing. In other words, the 

conventional approach involves conducting the walking or 

running experiment, collecting the data, and then post-

processing it offline to estimate GRFs. This lack of real-time 

analysis restricts its utility in immediate clinical decision-

making or real-time performance adjustments in sports 

settings. 

Our research, in contrast, aims to simplify the GRFs 

estimation process by using only three IMUs strategically 

placed on the pelvis and both feet as seen in as seen in 

Figure 2. Our methodology is designed to use data up to the 

investigated point, effectively simulating real-time usage of 

the system. 

 



 

Figure 1: System flowchart. The flowchart represents the data processing flow. From left to right: IMU and FP data calibration procedure, total 

GRF estimation, and gait phase detection followed by STA and validation procedure. On top, there are presented the blocks' color and 

geometrical code. 

Figure 2: The placement of the three IMUs: one on the lower back, 

one on the left foot, and another one on the right foot. The picture 
has been adapted from the following source [15]. 

Our research aims to develop a method for accurately 

estimating left and right leg GRFs during walking using a 

minimal number of wearable sensors. We investigate the 

feasibility of using three IMUs: one on the pelvis to measure 

the total GRF, one on the left foot, and one on the right foot 

to detect gait phases in order to split the total GRF into the 

left and right foot GRFs as presented in Figure 1. We focus 

on determining whether these three IMUs are sufficient for 

accurate GRFs estimation.  

The following sections present our assumptions, hypothesis, 

and methodology for estimating GRFs using three IMUs. We 

also provide details about the conducted experiment, discuss 

the obtained results and the evaluation of our method's 

accuracy. Finally, we address the limitations of our approach 

and suggest areas for future research.  

2. Methods 

This section describes the approach taken to estimate GRFs 

during walking using IMUs and to validate the accuracy of 

the estimation. The method involved sensor calibration, 

estimation of total GRF, gait phase detection using foot 

contact events, and splitting the total GRF into left and right 

foot GRFs (see Figure 2). An experimental setup was 

implemented, and data collection and processing were 

performed. The validation procedure consisted of two tests 

to assess the agreement in amplitude and shape between the 

estimated and measured GRFs for each foot in 3D. This 

structured approach and validation procedure ensured a 

comprehensive analysis of the GRF estimation and its 

accuracy during walking. 

2.1. IMU Calibration 

A sensor-to-segment calibration technique described by 

Bonnet et al. [16] was used. A calibration process is required 

to transform the measurements from sensor reference to 

pelvis segment reference frame, enabling relevant analysis of 

gait kinematics using IMUs [17]. The pelvis segment 

reference frame coordinates are as follows: X-axis is the 

antero-posterior axis of the pelvis, Y-axis is the medio-

lateral axis of the pelvis and Z-axis is the vertical axis of the 

pelvis. The calibration procedure involved the following: 

Step 1: During an initial standing still position, the 

orientation estimate, vertical Z-axis (   ), for all segments 

was obtained from the 3D accelerometer data   
 ,, which 

measures only gravitational acceleration (1a). 

    
  

 

 |  
 | 

                                       (1a) 



 

 

Figure 3: The figure represents the division of the gait cycle. On the bottom are the four gait phases: Single stance left foot, Double support left 

foot trailing, Single stance right foot, and Double support right foot trailing. On top are the gait events that dictate the transition between the 
respective phases. The picture has been adapted from the following source [18].

Step 2: The orientation of Y-axis (   ) of the pelvis was 

estimated by asking the subject to bend forward. The axis 

measuring the largest angular rotation was found using 

principal component analysis (PCA) (1b), on the gyroscope 

output   
 , 

           
                                   (1b) 

which was then used to estimate the orientation of the X-axis 

(   ) of the pelvis (1c). 

                                       (1c) 

Step 3: The orientation of Y-axis was updated using the 

right-hand thumb rule (1d) in order to keep     and   

orthogonal. 

                                       (1d) 

                                                    (1e) 

The sensor-to-segment calibration was represented by the 

rotation matrix      (1e), where    ,     and     are the 

orthogonal unit vectors defining the local coordinate system 

of the segment with respect to the sensor. 

The foot IMUs are calibrated with the same method of 

sensor-to-segment calibration technique. This transforms the 

sensor reference to a foot segment reference frame, where X-

axis is the toe-heel axis, Y-axis is the lateral-medial axis and 

Z is the vertical axis.  

Instead of a bending trial, a short walking trial was 

performed in order to compute the     of the feet IMU. 

Thus, the orientation of Y-axis of each of the feet IMUs was 

estimated, using equation (1b), as the axis measuring the 

largest angular rotation, mainly due to plantar flexion and 

dorsiflexion.  

The FP data were also rotated     around the Z axis, in order 

to flip the XY plane so X becomes the walking direction and 

Y  medio-lateral, through Rseg(ForcePlates) (1f). 

                   [
    
   
   

]                  (1f) 

2.2. Estimating Total GRF 

The biomechanical assumption that the center of mass 

(CoM) is contained within the rigid pelvis is widely used to 

estimate the instantaneous 3D total GRF using a single IMU 

during gait [17]. Therefore, an IMU at the pelvis can 

measure the CoM accelerations. Using Newton's second law 

(2a), the product of body mass and CoM accelerations, we 

calculate the whole body GRF, as in the following equation: 

                                            (2a), 

where GRF is the 3D total GRF, m is the subject's mass, and 

accCoM represents the accelerations in 3D of the subject's 

center of mass. Formula (2a) is presented in Figure 2 as well 

as the process of Newton-Euler (Inv. pend. model). It is 

assumed that the feet are the only contact with the external 

world, and no additional load is carried by the body. This 

assumption allows us to focus on the dynamics of the center 

of mass during gait, considering the inverted pendulum 

model. 



2.3. Gait phase detection using Foot Contact Detection - 

Heel Strike (HS) and Toe Off (TO) Detection 

The gait cycle was divided into four phases: as seen in 

Figure 3. Each gait event (HS right, TO left, HS left, TO 

right) updates the respective phase of the gait cycle. For 

instance, when HS right is detected, the algorithm transitions 

from the double support right foot trailing phase to the single 

stance right phase. Similarly, when TO left is detected, the 

algorithm transitions from the single stance left phase to the 

double support left foot trailing phase. This information is 

needed for splitting the total 3D GRF into left and right foot 

GRFs. To detect the gait phases, the algorithm considers the 

detected gait events (HS and TO) from both the left and right 

foot.  

Following the system flowchart from Figure 2, HS and TO 

events were detected using accelerometer and gyroscope data 

obtained from the IMUs placed on the feet. The proposed 

algorithm for HS detection used antero-posterior (X) and 

vertical (Z) linear accelerations, as well as mediol-ateral (Y) 

angular accelerations. For TO detection, antero-posterior (X) 

and vertical (Z) linear accelerations, as well as medio-lateral 

(Y) and vertical (Z) angular accelerations were used. 

The approach was developed through a trial and error 

process, where different thresholds were tested and adjusted 

until a suitable formula was found. To ensure robustness 

across trials, the detected instances were compared with the 

instances detected from the force plates. The thresholds used 

in the algorithm were automatically computed based on the 

mean and standard deviation of the accelerometer or 

gyroscope data obtained during the calibration walking trial. 

This iterative process helped refine the approach and ensure 

its effectiveness in accurately detecting the events of interest. 

The thresholds used for HS and TO detection can be seen in 

Table 1.  

Table 1: HS and TO thresholds 

 

HS 
threshold 

                                

                           

           (     )    

 

 

TO 
threshold 

      
         

          
   

                 

         (     )         

                   

Where,      refers to the X-axis accelerometer 

measurements, which represent the acceleration value in the 

antero-posterior (X) direction.     , represents the Z-axis 

accelerometer measurements, indicating the acceleration 

value in the vertical direction (Z).        and       

correspond to the Y-axis and Z-axis gyroscope 

measurements, capturing the angular velocity around the Y-

axis and Z-axis.  

2.4. Split total GRF into left and right foot GRF – (Smooth 

Transition Assumption & Constant Walking Speed 

Assumption) 

The total 3D GRF is split into left and right foot GRFs using 

the Smooth Transition Assumption (STA). The system 

flowchart from Figure 2 shows that STA uses the previously 

determined four gait phases and the Constant Walking Speed 

Assumption (CWSA). The left and right foot GRFs are 

estimated based on the timing and sequence of the HS and 

TO events detected from the IMUs on the left and right feet. 

The total GRF was split in left and right GRFs assuming that 

the load is smoothly transferred from one foot to the other 

during double stance support and was modeled as an 

exponential function dependent on the duration of the double 

support phase [10]. The vertical and medio-lateral STA is 

computed using the formula (3a).  

fv&m-STA = e(-(t/Tds)^3)                                (3a), 

where t is the time elapsed during the double support phase, 

and Tds is half the duration of the double support phase [10]. 

The anterio-posterior STA function is computed using the 

formula (3b).  

fap-STA=     
 [

    

   
]
 

 
   

   
                           (3b), 

where    
    

 
 and the constants are          and 

               [10]. 

The CWSA assumes a constant walking speed of the subject 

during data collection and therefore a constant double 

support phase throughout the entire walking task. 

2.6. Experimental setup 

Participants performed various walking tasks on a treadmill 

equipped with force plates while wearing IMUs on their 

pelvis and feet, along with markers for a motion capture 

system. All tasks were recorded twice.  

The experiment began by having participants stand still with 

their feet shoulder-width apart in the middle of the treadmill 

for 10 seconds. Participants were then instructed to bend 

forward and return to their static position, in a 10 seconds 

interval. Additionally, during the calibration trial, 

participants were asked to walk for 10 seconds to calibrate 

the foot IMUs. 

Following the calibration phase, participants were asked to 

perform different walking tasks on the treadmill:  

1) Walk at 0.28m/s: Participants walked on a treadmill at a 

speed of 0.28m/s for 30 seconds. 

2) Walk at 0.83m/s: Participants walked on a treadmill at a 

speed of 0.83m/s for 30 seconds. 

3) Walk at1.39m/s: Participants walked on a treadmill at a 

speed of 1.39m/s for 30 seconds. 



Throughout the experiment, participants were given time to 

familiarize themselves with the treadmill before starting the 

recording.  

2.7. Data collection and processing 

An instrumented treadmill (M-Gait, MotekForce Link, 

Netherlands, 1000 Hz) captured 3D GRFs. The 3D 

kinematics were obtained using both an inertial motion 

capture system (100 Hz, MVN Link, Xsens, Enschede, the 

Netherlands) and an eight-camera optical motion capture 

system (Qualisys Oqus, Göteborg, Sweden). The inertial 

motion capture system consisted of three IMUs placed on the 

participants: one at the pelvis (L5) and one on each foot. The 

IMUs were securely attached using neoprene Velcro bands. 

The IMUs collected 3D linear accelerations and 3D angular 

velocities. 

Reflective markers, following the Plug-in Gait lower-body 

marker model [19], were placed on the participants, totaling 

18 markers (128 Hz). 

Using a BNC cable, the motion capture system and IMU 

system were automatically synchronized. The pulse sent 

through the BNC cable was used to automatically initiate the 

IMU recording when the Qualisys recording was initiated 

from the software. The synchronizer ensured the proper 

synchronization of data recordings. 

The collected data were then processed in MATLAB® 

2018b (Mathworks, Natick, Massachusetts, USA). The 

acceleration and gyroscope data were filtered using a zero-

phase low-pass Butterworth filter with a cutoff frequency of 

5 Hz in the vertical direction and 4 Hz in the antero-posterior 

and medio-lateral directions to reduce high-frequency noise. 

The estimated left and right GRF was computed using the 

algorithm described earlier, sections 2.2 and 2.4.  

The force plate-recorded GRFs were filtered with the same 

cutoff frequency as the IMU data to avoid phase shift. 

2.8. Validation procedure 

Two tests were conducted to evaluate the accuracy of the 

algorithm. The statistical analysis investigated the similarity 

in amplitude and shape between the measured experimental 

and estimated GRFs using the three IMUs. 

Both tests were performed separately for the left and right 

foot GRFs in all three directions. All data analysis was 

performed in MATLAB® 2018b (Mathworks, Natick, 

Massachusetts, USA). 

Test 1 aimed to evaluate the agreement between the 

estimated and measured GRFs in all three directions for each 

foot. The root mean square error (    ) (4a), which is a 

metric that tells how far apart the predicted values are from 

the observed values in a dataset, on average, was calculated 

across the full gait gait cycle [19].  

      √
∑        

  
   

 
                           (4a), 

where    is the GRF reference and   is the estimated GRF,  ̅ 

is the mean of the GRF measurement. Lastly,   is the 

number of data points. Same notation was used for Test 2 in 

(4b). 

Test 2 focused on assessing the similarity in shape between 

the estimated and measured GRFs. The coefficient of 

determination (  ) (4b), was used to measure the proportion 

of variance explained by the estimator model. This provides 

a measure of the agreement in waveform characteristics 

between the estimated and measured GRFs [20]. 

     
∑        

  
 

∑      ̅   
 

                                    (4b) 

Furthermore, the significance of the correlation was 

determined using a two-tailed hypothesis t test [21] with a 

significance level (p-value) of 0.05. 

3. Results 

Table 3 presents the errors in estimating the 3D GRFs over 

the complete gait trial. The      % Body Weight values 

displayed in the table are the left and right foot for all 

subjects, all walking speeds and all directions  ,   and  . 

Moreover, the mean and standard deviation (±std) across all 

subjects for each speed are presented on the bottom.  

For the left foot, the mean      (%BW) for all subjects 

walking at 0.28m/s were 2.12±0.44%, 2.27±0.51% and 

10.74±1.9% for  ,   and  , respectively. At a walking speed 

of 0.83m/s, the errors increased to 5.37±2.12%, 5.44±2.50% 

and 11.98±1.29% for  ,   and  , respectively. When the 

walking speed was further raised to 1.39 m/s, the errors were 

8.04±2.33%, 6.02±1.72% and 13.67±1.24%  ,   and  , 

respectively. 

For the right foot, the mean      for all subjects walking at 

0.28m/s were 2.71±0.76%, 2.32±1.04%, and 10.55±1.65% 

for  ,   and   axes, respectively. When the walking speed 

was increased to 0.83m/s, the RMS errors rose to 

6.33±3.12%, 4.27±2.20%, and 14.15±1.32% for  ,   and  , 

respectively. Finally, at the highest tested walking speed of 

1.39m/s, the RMS errors were 7.19±1.65%, 5.73±1.48%, and 

12.50±2.33% for  ,   and  . 

Table 4 presents the R² values in estimating the 3D GRFs 

over the entire gait trial. The R² values included in the table 

represent both the left and right foot for all subjects, across 

varying walking speeds and in all directions  ,   and  . The 

mean R² values across all subjects for each direction and 

speed are presented at the bottom of the table. 

For the left foot, at a walking speed of 0.28m/s, the R² mean 

values across all subjects were 0.14±0.04, 0.40±0.22, and 

0.74±0.02 for  ,   and   axes respectively. When the 

walking speed was increased to 0.83m/s, the R² values 

changed to 0.32±0.13, 0.23±0.11, and 0.82±0.06 for  ,   

and  . At the maximum tested speed of 1.39m/s, the R² 

values were 0.31±0.08, 0.32±0.16, and 0.90±0.02 for  ,   

and  . 

For the right foot, at a walking speed of 0.28m/s, the R² 

values were 0.25±0.21, 0.38±0.24, and 0.75±0.01 for  ,   

and  . As the walking speed was increased to 0.83m/s, the 

R² values were 0.36±0.15, 0.19±0.08, and 0.87±0.04 for  ,   



and  . Finally, at a speed of 1.39m/s, the R² values were 

0.28±0.1, 0.28±0.15, and 0.90±0.02 for   ,   and  . 

Figure 4 provides a visual representation of the IMU 

estimated GRF (solid lines) and FP measured GRF (dotted 

lines) for the left and right foot in 3D. In the vertical -   

dimension, the estimated GRFs show a good match, although 

with slight overshoot observed at points of inflection in 

relation to the measured GRF. The antero-posterior -   

direction exhibits a fair match, as evidenced by the similar 

profiles observed in the plot. However, in the medio-lateral - 

  direction, the level of similarity is less precise, with the 

estimated and measured GRFs displaying little overlap. The 

error between the FP and IMU estimated GRFs is visually 

depicted, under each plot for each axis, in the form of a blue 

line.

 

Table 3: Comparing the Estimated and Reference GRF values: Root Mean Square Error (    ) expressed in % body weight. 

 

 
Left foot 

Walk at 0.28m/s Walk at 0.83m/s Walk at 1.39m/s 
                  

subj 1 2.93 2.60 10.72 4.76 3.93 11.49 6.49 5.54 11.44 

subj 2 2.02 1.64 10.36 7.16 8.06 12.16 9.00 7.92 13.81 

subj 3 1.60 2.59 11.94 5.41 3.71 12.21 8.44 4.02 13.88 

subj 4 2.10 2.07 9.60 8.93 9.16 9.91 12.72 7.50 15.57 

subj 5 1.84 2.33 8.09 2.35 3.29 13.72 6.18 7.75 13.12 

subj 6 2.45 3.00 14.15 4.73 6.76 11.12 6.32 5.51 13.66 
subj 7 1.93 1.64 10.34 4.27 3.17 13.24 7.16 3.89 14.18 

Mean ±std 2.12 ±0.44 2.27±0.51 10.74±1.9 5.37±2.1 5.44±2.5 11.98±1.29 8.04±2.33 6.02±1.72 13.67±1.24 

 Right foot 

Walk at 0.28m/s Walk at 0.83m/s Walk at 1.39m/s 

                   

subj 1 3.23 2.61 10.22 4.32 3.60 12.16 6.04 6.16 9.96 

subj 2 1.59 1.87 10.46 7.93 5.94 12.77 9.02 5.80 13.48 

subj 3 3.54 1.61 11.9 1.17 0.89 14.94 7.38 4.18 9.83 

subj 4 3.16 2.39 9.57 10 7.48 14.52 9.65 7.03 15.75 

subj 5 2.09 1.87 7.99 6.43 4.81 15.68 5.24 7.55 10.73 
subj 6 3.28 4.49 13.18 9.50 4.80 15.27 5.89 5.98 13.41 
subj 7 2.12 1.43 10.50 5.00 2.38 13.74 7.10 3.38 14.36 

Mean ±std 2.71±0.76 2.32±1.04 10.55±1.65 6.33±3.12 4.27±2.2 14.15±1.32 7.19±1.65 5.73±1.48 12.5±2.33 

 

 

Table 4: Comparing the Estimated and Reference GRF values:  Coefficient of determination (  ). *p < 0.05. The color code of the table 

was chosen empirically just for better visualization of the table as such: Green for very good values (   or > 0.8), Orange for 

acceptable values (0.6 <    < 0.8) and Red for not good estimation (  < 0.6). 

 Left foot 

Walk at 0.28m/s Walk at 0.83m/s Walk at 1.39m/s 
                  

subj 1 0.14* 0.16* 0.75* 0.41* 0.15* 0.84* 0.33* 0.18* 0.90* 

subj 2 0.10* 0.55* 0.75* 0.53* 0.14* 0.83* 0.35* 0.50* 0.91* 

subj 3 0.21* 0.10* 0.73* 0.21* 0.36* 0.71* 0.20* 0.16* 0.92* 

subj 4 0.10* 0.58* 0.76* 0.17* 0.18* 0.82* 0.39* 0.36* 0.86* 

subj 5 0.12* 0.57* 0.75* 0.38* 0.15* 0.88* 0.19* 0.31* 0.91* 

subj 6 0.11* 0.29* 0.71* 0.30* 0.23* 0.88* 0.38* 0.54* 0.89* 

subj 7 0.19* 0.57* 0.75* 0.23* 0.41* 0.82* 0.30* 0.17* 0.92* 

Mean(±std) 0.14±0.04* 0.40±0.22* 0.74±0.02* 0.32±0.13* 0.23±0.11* 0.82±0.06* 0.31±0.08* 0.32±0.16* 0.90±0.02* 

 Right foot 
 Walk at 0.28m/s Walk at 0.83m/s Walk at 1.39m/s 
                   

subj 1 0.29* 0.12* 0.75* 0.46* 0.16* 0.83* 0.37* 0.15* 0.91* 
subj 2 0.38* 0.30* 0.75* 0.57* 0.13* 0.93* 0.35* 0.45* 0.92* 
subj 3 0.64* 0.09* 0.73* 0.37* 0.28* 0.81* 0.14* 0.14* 0.92* 
subj 4 0.13* 0.64* 0.76* 0.15* 0.13* 0.85* 0.42* 0.37* 0.86* 
subj 5 0.11* 0.53* 0.77* 0.42* 0.13* 0.88* 0.19* 0.13* 0.91* 
subj 6 0.09* 0.31* 0.72* 0.36* 0.15* 0.89* 0.22* 0.49* 0.90* 
subj 7 0.09* 0.66* 0.75* 0.19* 0.33* 0.91* 0.26* 0.25* 0.91* 

Mean(±std) 0.25±0.21* 0.38±0.24* 0.75±0.01* 0.36±0.15* 0.19±0.08* 0.87±0.04* 0.28±0.10* 0.28±0.15* 0.90±0.02* 

 



 

 

 

 

Figure 4: Snapshot of the 3D FP measured (dotted lines) and IMU estimated (solid lines) GRF for left and right foot for the 1.39m/s walking 

speed trial. The top figures are the X axis, in the middle are the Y axis and on bottom are the Z axis. The vertical dotted lines (blue for left foot 

and green for right foot) represent heel strike instances. Underneath each plot, with blue line are the error difference between the measured and 

estimated GRF. 

 

 



 

 

Figure 5: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for the left foot across all 

subjects as % of the gait cycle for the 0.28m/s walking speed 

 

Figure 6: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for the right foot across all 

subjects as % of the gait cycle for the 0.28m/s walking speed 

 

Figure 7: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for the left foot across all 

subjects as % of the gait cycle for the 0.83m/s walking speed 

 

Figure 8: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for right foot across all subjects 
as % of the gait cycle for the 0.83m/s walking speed 

 



 

 

Figure 9: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for left foot across all subjects 

as % of the gait cycle for the 1.39m/s walking speed 

 

Figure 10: The figure represents the FP measured and IMU estimated GRF mean and standard deviation as shaded for right foot across all 

subjects as % of the gait cycle for the 1.39m/s walking speed 

The error is oscillating between -20% and +20% to 0% and 

0% to +15% in the medio-lateral and -15% to +15% for the 

anterior posterior. 

Figures 5 to 10 present the mean and standard deviation 

(represented as the shaded area) of the GRFs for the left and 

right foot at different walking speeds (0.28m/s, 0.83m/s, and 

1.39m/s), respectively. Each figure is divided into three plots 

corresponding to the  ,  , and   components of the GRF. 

For the 0.28m/s it can be seen the biggest variation as the 

shaded graph has the biggest area of all, especially for shear 

forces. There is a better correlation between estimated and 

measured forces in all three directions for 0.83m/s, even if 

the variation is still bigger than for 1.39m/s. And for 1.39m/s 

we observed the smallest variation in shear forces and the 

highest correlation for vertical and posterior-anterior forces, 

but for the latero-medial plots, the bigger accelerations result 

in a lower correlation as the 40% to 60% region significantly 

deviates from the true GRF.  

4. Discussion 

Our research aimed to innovate in the field by investigating 

the feasibility of estimating left and right foot GRFs through 

a simple setup of three IMUs placed as such: one IMU on the 

pelvis for total GRF assessment and one IMU each on the 

left and right foot for detecting gait phases. Although the 

estimations weren’t conducted in real-time during the 

experiment, where we solely collected IMU and FP data, the 

uniqueness of our approach lies in its exploration of potential 

real-time applications. The feasibility of real-time GRF 

estimation emerges from our methodology, which utilizes 

processes that consider data only up to the currently 

estimated instance. This included the application of the 

CWSA for STA implementation and avoiding post-

processing. For the successful application of STA, it's 

necessary to have initial knowledge of the double stance 

duration [10]. However, our approach bypasses this 

requirement through the use of CWSA, by assuming 

constant walking speed STA used a subject-specific 

predefined duration, computed during a short walking 

calibration trial, for all double stance GRF estimations 

during the trial. This strategy aimed to decrease both the 

expense and complexity related to experimental GRF 

measurement. 

Our findings from GRF estimations show that the accuracy 

of the estimation increased in variability as walking speeds 

rose. The      values from Table 3, when measured for 

both feet at different speeds (0.28m/s, 0.83m/s, and 1.39m/s), 

exhibited a clear trend of increasing variability as the speed 

of walking increased. This increase in variability can be 

attributed to the higher accelerations resulting in higher 

reaction forces, present at increased speeds. At higher 

walking speeds, the forces acting on the body increase, 

which in turn leads to greater variability in the GRFs, 

causing the estimation accuracy to be more inconsistent. As 

a result, the      (%BW) becomes larger.  

Thus, the increase in variability in the accuracy of GRF 

estimations with higher walking speeds is a significant 

finding that could have implications for the future design and 



application of IMU-based GRF estimation systems. Given 

this variability, it could be beneficial to create systems 

equipped with more advanced filtering or signal processing 

techniques. 

Despite the increased variability in accuracy with higher 

walking speeds, a trend can be identified where the 

correlation between the estimated and actual GRFs actually 

increases with speed. Looking at the    results, it becomes 

apparent that with increasing walking speeds, the correlation 

coefficients consistently show an upward trend, implying an 

enhanced estimation accuracy despite the larger variability. 

The correlation increases with speed, demonstrating that 

estimating GRF at lower speeds is more challenging [17]. 

This challenge could arise due to the lower contact forces 

and smaller accelerations at slower speeds, which can make 

it more difficult to estimate the more nuanced dynamics. In 

other words, slower speeds might present less distinct 

patterns, making the estimation task more complex. 

The results obtained from our research, mainly the 

correlation coefficients    from Table 4, demonstrate lower 

values for shear forces compared to vertical forces. Figure 4, 

further corroborates these findings, depicting higher 

discrepancies for estimated shear force. This is suggestive of 

a weaker relationship between actual and estimated shear 

forces, thus, estimating shear GRF using IMUs is the most 

challenging aspect [14]. This is mainly because the position 

of the IMU on the human body significantly influences the 

accuracy of the measurements. Since the IMUs were affixed 

to the body's center of mass (the pelvis), accurately capturing 

shear forces, which are inherently distributed and variable 

across the foot-ground interface [22], was a challenge. 

Further post-processing for removing impact impulse, or soft 

tissue artifacts is necessary for improved   . 

Compared to the models developed by Ren et al. and 

Karatsidis et al., our study showed varying degrees of 

correlation in different components. In the vertical 

component, our model demonstrated comparable 

performance, with an    value of 0.9, matching the    value 

of 0.9 reported in both Ren et al. [10] and Karatsidis et al. 

[11]. However, our study lagged in the anterior and lateral 

planes, recording    
 values of 0.3 in both cases. In contrast, 

Ren et al. [10] reported    values of 0.9 and 0.7 for the 

anterior and lateral components, respectively. Karatsidis et 

al. [11] also showed higher    values, with 0.9 in the 

anterior and 0.8 in the lateral components. Ren et al. and 

Karatsidis et al. likely benefit from more complex sensor 

configurations or computational methods, which could 

account for their higher correlation coefficients in these 

planes. While our method is robust for estimating vertical 

GRFs, it may require more work to improve its accuracy in 

the anterior and lateral planes.  

The feasibility of real-time estimation of GRFs using IMUs 

is currently limited, primarily due to difficulties associated 

with processing the signal to effectively remove noise. The 

noise can be seen in Figures 7 and 8 – on the  

  axis at 50% of the cycle, can considerably distort the data 

and undermine its reliability. It may arise from an improper 

coupling of the IMU to the pelvis. Noise on the  

  axis from Figures 5 and 6 may arise from impact impulse 

and improper coupling. 

Improper coupling can occur due to several factors, most 

notably due to the process of securing the IMU to the subject 

which leaves room for human error. This can include 

incorrect positioning, and insufficient securing leading to 

movement of the IMU during gait. Soft tissue artifacts are 

also impacting the accuracy of estimating GRFs. 

These issues present significant challenges for real-time 

GRF estimation. Without effective signal processing to 

eliminate these peaks and mitigate the effects of improper 

coupling, the use of IMUs for this purpose may deliver data 

that lack the necessary accuracy for dependable 

biomechanical analysis. 

By manually selecting appropriate thresholds for HS 

detection, we expected our method to deliver good accuracy 

in estimation. However, the HS detector may fail to detect 

HS accurately due to suboptimal threshold optimization. As 

each subject has a specific walking pattern and furthermore, 

not all steps are identical; finding one formula to detect all 

HS is hard.  This failure to identify the HS leads to 

inaccuracies when splitting the total estimated GRF into left 

and right GRF. Fine-tuning the threshold for detecting HS is 

crucial for improving the accuracy of this method, as the 

automatically detected thresholds aren’t reliable. Further 

investigation could involve the use of advanced artificial 

intelligence (AI) and machine learning (ML) techniques to 

address these challenges. ML algorithms could be trained to 

recognize and adapt to individual gait patterns, providing a 

more personalized and accurate HS detection. By feeding a 

deep-learning neural network large amounts of data from 

various walking patterns, they can learn to recognize the HS 

of individual gaits [23]. This could potentially allow for the 

automatic and dynamic adjustment of thresholds for each 

individual and each step, thereby significantly improving HS 

detection. 

However, while these AI-based methods could potentially 

improve the accuracy of HS detection and, consequently, 

GRF estimation, they would require substantial amounts of 

data and significant computational resources.  

Apart from AI and ML techniques, there are several 

alternative automatic approaches that could be considered 

for improved gait pattern recognition and accurate HS 

detection. For instance, using the polar radius extracted from 

the phase portraits produced from the IMU-measured thigh 

angular position and velocity [24] could be employed to 

identify gait parameters, which could then be utilized to 

predict HS and also double support duration. 

Signal processing techniques, including wavelet analysis 

[25], might also be beneficial. These methods can help 

identify and extract important features from the gait data, 

potentially improving the accuracy of HS detection. 

Moreover, the use of adaptive thresholding methods that 

adjust the detection thresholds based on the gait parameters 



of an individual could be explored. This method avoids the 

need for manual selection and could provide a more 

personalized and precise HS detection. 

While traditional methods or signal processing methods 

might not possess the complex algorithms and learning 

abilities that make AI and ML models 'advanced', these 

traditional techniques can still potentially offer an effective 

solution for enhancing HS detection and understanding 

individual gait patterns. The term 'advanced' here refers to 

the capacity of AI and ML models to continuously evolve 

and improve their performance as they process new data. 

This constant learning and adaptability is a distinctive 

feature of AI and ML models, making them highly suitable 

for tasks where change and adaptability are essential. 

However, in scenarios where implementing AI or ML might 

not be practicable or preferred, these more traditional 

methods could serve as robust alternatives. 

A more approachable solution in terms of cost-effectiveness 

and simplicity, would be the utilization of a system 

comprising force-sensitive resistors (FSR). Placing FSRs on 

the heel and toe regions of both feet would enable accurate 

detection of HS and TO events. This approach eliminates the 

need for foot IMUs and can potentially reduce the overall 

cost of the system. The feasibility and effectiveness of this 

approach should be further investigated, taking into account 

the specific requirements of the system, such as the need for 

joint angle information.   

By simplifying the measurement process and reducing the 

costs associated with conventional methods, our work paves 

the way for more accessible and affordable biomechanical 

analysis. Our method is not without limitations. There are 

challenges associated with the limited real-time processing 

of signals to improve estimation accuracy. The accuracy of 

estimating GRFs, particularly at lower speeds poses 

difficulties, and for shear forces further processing is needed. 

The incorporation of advanced signal processing techniques 

and algorithmic optimizations may help to overcome these 

challenges, thus investigating how to mitigate the “offline” 

processing integration in biomechanical analysis might yield 

better results. 

5. Conclusion  

In conclusion, this research contributes to the field of 

biomechanics, specifically in estimating GRFs with a 

minimal setup using three IMUs. Our strongest performance 

lies in the vertical component of GRFs, comparable to more 

complex state of the art methods. However, those 

considering the application of our method should be cautious 

of its current limitations. Most important, the method is less 

accurate in the anterior and lateral components, where our 

system needs improvements for more robust gait analysis. 

Furthermore, our method is best suited for conditions where 

the CWSA can be maintained. The assumption may not fully 

capture the complexities of gait in real-world scenarios 

where walking speed varies, potentially limiting the method's 

applicability in those cases. 

The implications of our work span across various domains. 

For instance, our method could be implemented in sports 

science for performance analysis, in clinical settings for gait 

analysis in rehabilitation, and in the design and optimization 

of assistive devices for individuals with mobility 

impairments. Future work can aim to improve the accuracy 

of the method by integrating advanced AI techniques or cost-

effective FSR. By harnessing the power of machine learning 

and deep learning, the system could learn to adapt to 

individual gait patterns, providing more personalized and 

accurate estimations of GRFs. 
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