

INTEROPERABILITY SIMULATOR

FOR DATA SPACES

Aldi Doanta Kurnia

Computer Science - Software Technology

Graduation Committee:

dr. L. Ferreira Pires

dr. J.L. Rebelo Moreira

dr. M.A. Lopuhaä - Zwakenberg

D.R. Firdausy, EngD

Faculty of Electrical Engineering,
Mathematics and Computer Science

October 2023

Master’s Thesis

1

ACKNOWLEDGEMENT

I would like to express my gratitude to dr. L. Ferreira Pires, dr. J.L. Rebelo Moreira, and dr.

M.A. Lopuhaä – Zwakenberg for their guidance, critical feedback, and positive support through

this Master’s Project. Special thanks for D.R. Firdausy, EngD as my daily supervisor who

introduced me to the topics of this project, for his constant support and for helping me set the

right direction for this project. I would also like to thank the experts that gave me valuable

feedback and suggestions during the prototype validation phase, and the Ministry of

Communications and Informatics of the Republic of Indonesia for providing me with a

scholarship to pursue my Master’s degree at the University of Twente.

Studying abroad and adapting to a new environment is not an easy task for me. Therefore, I

would like to thank the communities I belong to during my studies in the Netherlands. I am

grateful to my Indonesian friends from Vriendenkring (Yesaya, Raka, Michael, Silvi, Afif, Irine)

and Karang Taruna Enschede, for the adventures, the delicious food, and the laughter we

shared together. I am grateful to my brothers and sisters at the International Christian

Fellowship Enschede for being a home away from home, especially to Yesaya, Raka, Michael,

Daniel, Yosua, Juwita, Shanti, Stephen, Marria, Nick, and Rebekah. I am also grateful to my

brothers and sisters at the Indonesian Christian Fellowship for the opportunity to share stories

and grow together in Christ.

Obtaining my Master’s degree is the result of a process that spans seven years full of struggles

and surprises. Therefore, I would like to express my gratitude to my childhood friends (Villy,

Philip, Wilson) for more than 18 years of friendship, for supporting me in their own way through

the moments spent together. I would also like to express my profound gratitude to the Ginting,

Sembiring, and Tarigan families for their unwavering emotional support, encouragement, and

prayers. Thank you for supporting my life decisions despite my stubbornness and my

(sometimes naïve) idealism.

Finally, words cannot express my gratitude to the Almighty God, for helping me celebrate my

failures, for giving me strength to live in the present moment, and for providing me assurance

about what the future holds for me.

Soli Deo gloria.

Enschede, 20 October 2023

Aldi Doanta Kurnia

2

ABSTRACT

Many modern organizations need to share meaningful data with each other to improve their

business operations. Data interoperability is the main prerequisite to achieve this goal.

However, each organization might have different data standards and schemas. This situation

is what motivates the creation of data space, a data-sharing network that enables its

participants to exchange data regardless of data formats and schemas. International Data

Spaces (IDS) is an example of a data space that prescribes a set of guidelines to make data

exchange efforts easier.

As a data space, IDS only facilitates the data exchange activities. It does not provide a way to

solve interoperability issues that might happen between two data participants, such as different

names in the data schemas and unknown total costs for data access. We propose

Interoperability Simulator as an additional IDS component to solve interoperability issues at

the syntactic level. We designed the architecture and the business processes of the

Interoperability Simulator, then analyzed how they can fit into the existing IDS architecture and

business processes. The design artifacts were used to build a prototype that consists of two

main functions, namely the Schema Matching function and the Pricing Calculation function.

We formulated three interoperability scenarios to observe the behavior of the prototype. We

also gathered opinions from several experts to validate the design and prototype of the

Interoperability Simulator. According to the validation results, we concluded that the current

prototype of the Interoperability Simulator can be used to discover initial interoperability issues

at the syntactic level. We also identified the limitations of the current prototype and proposed

several points that can be carried out as future work.

Keywords

data interoperability, syntactic interoperability, schema matching, data spaces

3

TABLE OF CONTENTS
Acknowledgement ... 1

Abstract .. 2

Table of Contents .. 3

List of Figures .. 5

List of Tables ... 6

List of Acronyms .. 7

1. Introduction .. 8

1.1 Problem Statement .. 8

1.2 Objectives and Research Question ... 9

1.3 Research Scope .. 10

1.4 Research Approach ... 10

1.5 Structure .. 11

2. Background .. 12

2.1 Data Interoperability and Data Space.. 12

2.2 International Data Spaces (IDS) Overview .. 12

2.3 IDS System Layer .. 13

2.3.1 IDS Connector ... 14

2.3.2 Vocabulary Hub ... 15

2.3.3 IDS Apps .. 15

2.4 IDS Process Layer ... 15

2.4.1 Data Offering ... 16

2.4.2 Publishing and Using IDS Apps ... 19

2.5 Information Gap ... 19

2.6 Schema Matching .. 21

2.6.1 Schema-level Individual Matchers ... 21

2.6.2 Instance-level Individual Matchers .. 22

2.6.3 Combined Matchers... 22

2.6.4 Some Matcher Approaches ... 22

3. Solution Design.. 25

3.1 Interoperability Scenario .. 25

3.2 Software Requirements ... 26

3.3 Reference Architecture and Business Processes ... 27

3.3.1 Application Usage View ... 30

3.3.2 Implementation and Deployment View .. 31

3.3.3 Business Processes .. 32

4. Prototype Development ... 36

4.1 Concrete Architecture .. 36

4

4.2 Implementation of Interoperability Simulator ... 38

4.2.1 Schema Matching Function ... 38

4.2.2 Pricing Calculation Function .. 41

4.2.3 Combining the Schema Matching and the Pricing Calculation Functions 41

4.3 Implementation of the IDS Connector ... 45

4.3.1 IDS Connector Data Model .. 45

4.3.2 IDS Connector Data Offering by Data Provider ... 46

4.3.3 IDS Connector Data Consumption by Data Consumer ... 48

4.3.4 IDS Connector Interoperability Assessment for Data Consumer 50

4.4 Deployment using Containerization ... 54

5. Interoperability Scenarios .. 57

5.1 Approach ... 57

5.2 “Academic Publication” Scenario ... 57

5.3 “Dutch to English” Scenario ... 59

5.4 “Nested Elements” Scenario .. 60

6. Prototype Validation .. 63

6.1 Approach ... 63

6.2 Validation Results .. 64

6.2.1 Validation Question Q1 .. 64

6.2.2 Validation Question Q2 .. 65

6.2.3 Validation Question Q3 .. 65

6.2.4 Other Remarks .. 66

7. Final Remarks .. 67

7.1 Conclusions ... 67

7.1.1 Research Sub-questions RSQ1 .. 67

7.1.2 Research Sub-questions RSQ2 .. 67

7.1.3 Research Sub-questions RSQ3 .. 68

7.2 Limitations and Future Work .. 68

7.2.1 Design of the Interoperability Simulator... 68

7.2.2 Input Data .. 68

7.2.3 Matchers .. 69

References .. 70

Appendix A. Interview Notes .. 72

5

LIST OF FIGURES

Figure 1 Visualization of the research scope ..10
Figure 2 The three tasks of the design cycle prescribed by Design Science Research

Methodology (excluding the Treatment Implementation task), as a part of the engineering

cycle (Wieringa, 2014) ..11
Figure 3 Overview of the IDS architecture, illustrating the relationship between data provider

and data consumer in a data space (IDSA, 2022) ..13
Figure 4 IDS Connector architecture (IDSA, 2022) ...14
Figure 5 App Store architecture (IDSA, 2022) ..15
Figure 6 BPMN diagram of the "Register Self-Description at Metadata Broker” business

process (IDSA, 2022) ...17
Figure 7 BPMN diagram of the "Register Vocabulary at Vocabulary Hub" business process

(IDSA, 2022) ..18
Figure 8 BPMN diagram of the "Use IDS App” process (IDSA, 2022)19
Figure 9 Schema matching that takes two table schemas as input, producing a list of pairs

that represent their attribute mappings (Ionescu, 2020) ..21
Figure 10 Match processing in COMA 3.0 (Database Group Leipzig, n.d.)23
Figure 11 Illustration of an interoperability scenario. The arrows above the column names

indicate the mapping from the provided data structure to the requested data structure.25
Figure 12 Application Usage View ..28
Figure 13 Implementation and Deployment View ..29
Figure 14 “Interoperability Assessment” business function ...33
Figure 15 “Interoperability Solution Recommendation” business function34
Figure 16 Proposed revision of the “Use IDS App” business process, adding Interoperability

Simulator as an alternative way to find an IDS App ..35
Figure 17 Implementation and Deployment View of the concrete architecture37
Figure 18 OpenAPI documentation of a Matcher rendered using Swagger UI39
Figure 19 OpenAPI documentation of the Interoperability Simulator rendered using Swagger

UI ...43
Figure 20 Sequence diagram of the interactions between Client, Interoperability Simulator,

and Matchers ...44
Figure 21 Domain Model diagram of an IDS Connector and its related entities45
Figure 22 Data Offering Overview page of the IDS Connector ..46
Figure 23 Pop-up page that displays the metadata of an offered resource47
Figure 24 Pop-up pages that display the metadata of a Representation and an Artifact,

respectively ..48
Figure 25 Data Consumption Overview page of the IDS Connector49
Figure 26 Pop-up pages that show the data consumption process using Resource URL50
Figure 27 The three inputs of an Interoperability Assessment process51
Figure 28 Interoperability assessment results ...52
Figure 29 Example of interoperability assessment report ...53
Figure 30 Visual representation of container configuration using Docker Compose55

https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453830
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453830
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453831
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453831
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453836
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453837
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453841
https://universiteittwente-my.sharepoint.com/personal/aldidoantakurnia_student_utwente_nl/Documents/_RT+MP%20-%20Aldi%20-%20Interoperability/aldi-master-thesis.docx#_Toc148453854

6

LIST OF TABLES

Table 1 Categorization of data incompatibilities (Nagarajan et al., 2007)20
Table 2 Software requirements of the Interoperability Simulator ...26
Table 3 Matcher API contract ...38
Table 4 Three Matcher groups in Valentine implementation ...40
Table 5 API contract of the Interoperability Simulator ...42
Table 6 Source schema and target schema of the "Academic Publication" scenario58
Table 7 Summary of interoperability assessment result of the "Academic Publication"

scenario ...58
Table 8 Source schema, target schema, and pricing information of the "Dutch to English"

scenario ...59
Table 9 Interoperability assessment result of the "Dutch to English" scenario59
Table 10 Source schema, target schema, and pricing information of the "Nested Elements"

scenario ...61
Table 11 Interoperability assessment result of the "Nested Elements" scenario61
Table 12 Experts participating in the validation interview sessions63
Table 13 The questions for the prototype validation interview that are derived from the

domain-level requirements ...64

7

LIST OF ACRONYMS

API Application Programming Interface

BPMN Business Process Model and Notation

CI Continuous Integration

CSV Comma Separated Values

DSSP DataSpace Support Platform

ERD Entity Relationship Diagram

GPT Generative Pre-trained Transformers

HTTP HyperText Transfer Protocol

ID IDentifier

IDS International Data Spaces

IDSA International Data Spaces Association

JSON JavaScript Object Notation

LAN Local Area Network

OTM Open Trip Model

RDBMS Relational DataBase Management System

REST REpresentational State Transfer

TNO Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek

(Netherlands Organization for Applied Scientific Research)

URL Uniform Resource Locator

UUID Universally Unique IDentifier

XML eXtensible Markup Language

XSD XML Schema Definition

YAML YAML Ain't Markup Language

8

1. INTRODUCTION
Improvements in storage, communication, and computing technology have enabled

organizations to utilize big data. In order to optimize its business operations, an organization

needs to use data from the other organizations it interacts with. For example, if a supermarket

wants to automatically restock its inventory under certain conditions, it needs to be able to

send the purchase request automatically to the wholesaler. To make this process possible, the

inventory levels owned by the supermarket can be processed by the wholesaler, which is a

different organization. Moreover, the supermarket also needs to check the order status by

accessing data provided by the wholesaler. This ability in which different organizations can

exchange data between each other in a meaningful way is called data interoperability.

In practice, data interoperability is not always trivial to achieve. Each organization might have

different conditions that make its data incompatible with data from the other organizations. For

example, the American retail company Target failed to expand its business to Canada because

of differences in measurement units in its systems (Gewirtz, 2016). To make data interoperable

between organizations, they need to make agreements about their data exchange practices.

The interacting organizations can agree to use formal standards published by standards

organizations. Otherwise, they can define their own data exchange rules that are written in

technical documentations. Regardless of the approach, these interacting organizations should

form a data-sharing environment where the participants agree to use a common data exchange

practice.

There are several approaches to create a data-sharing environment that enables data

interoperability for organizations. One of them is the data space, which is a decentralized

platform where qualified data participants can interact and exchange data between each other.

The most prominent example of a data space platform is the International Data Spaces (IDS)

by the International Data Spaces Association (IDSA) (IDSA, n.d.). IDS is a network of

interfaces that enables data exchange between participating organizations, where these

interfaces serve as endpoints to access the actual data held by the participating organizations.

IDS uses a decentralized approach, in which there is no single entity that hosts and controls

the entire data in a data space. However, those data space participants agree with a set of

standards that enable them to seamlessly share and exchange data with each other. In a data

space environment, the organizations that are eligible to join the data space should be able to

communicate easily because of the agreed rules of the data space.

1.1 PROBLEM STATEMENT
In a data space environment, a typical data interoperability scenario involves an organization

as a Data Consumer that needs to consume data from another organization as a Data

Provider. The data exchange process might not happen smoothly because of the

incompatibilities between the Data Provider and the Data Consumer. For example, the Data

Consumer might expect the data to have attributes named First Name and Last Name, while

the data provided by the Data Provider only contains an attribute called Name. Another

example is when the Data Provider and the Data Consumer use different units of measurement

to describe objects in the case about Target Canada mentioned before. These incompatibilities

are considered as the information gap in a data interoperability scenario. Identifying the

information gap between a Data Provider and a Data Consumer is the first step towards solving

a data interoperability scenario.

To resolve the identified information gap, both the Data Provider and the Data Consumer have

to agree on the meaning of the exchanged data. For example, if the information gap is caused

by the difference in units of measurement, both parties must choose one common unit to be

used. Data that does not use this common unit must be converted before being sent to the

9

Data Consumer. After the information gap has been resolved, the data exchange process can

be executed using the standardized components of the data space. In this state, those two

parties have solved the data interoperability scenario between them.

The example above shows that each data interoperability scenario must be solved on a case-

by-case basis. A solution for a particular data interoperability scenario might not be easily

replicated to other data interoperability scenarios. Each data interoperability scenario might

have different factors that affect the level of information gap and the costs of implementing the

data interoperability solution. For example, a data interoperability scenario can be solved by

simply converting the data attributes from uppercase to lowercase. Another scenario might

have more complex treatment because the numeric data instances have different

measurement unit and value range.

Given the case-by-case nature of data interoperability solutions, designing and implementing

a data interoperability solution to solve a data interoperability scenario is feasible in small scale,

where there are only two organizations that need to interoperate with each other. However,

implementing data interoperability solutions might be difficult to scale when there are several

organizations that need to interoperate with each other. Therefore, the ability to automate some

parts of the data interoperability scenario is required to improve the efficiency of data

integration efforts. For example, automatic simulation of a data interoperability scenario will

help the data participants identify the data incompatibilities and predict the required costs to

implement the scenario.

1.2 OBJECTIVES AND RESEARCH QUESTION
The objective of this research is to design, implement, and validate a prototype of an

Interoperability Simulator that can identify the information gap in an interoperability scenario.

For a given data interoperability scenario between a Data Provider and a Data Consumer, the

Interoperability Simulator assesses the information gap that hinders the data exchange

process. Both the Data Provider and the Data Consumer can view a report about the assessed

information gap, which is used to decide the required steps to solve the interoperability

scenario. The Interoperability Simulator is deployed as an extension of an existing IDS data

space, extending the IDS components as described in the IDS Reference Architecture Model

(IDSA, 2022).

To guide the research direction, a research question was formulated as follows:

“How can an Interoperability Simulator help the interacting organizations measure

costs of resolving the information gap in a data interoperability scenario in data

spaces?”

Based on the research questions, three research sub-questions were defined as follows:

RSQ1: What attributes can be gathered by an Interoperability Simulator to assess the

information gap in a data interoperability scenario? What are the limitations?

RSQ2: Using the gathered attributes from the Data Provider and the Data Consumer, how

does an Interoperability Simulator assess the information gap?

RSQ3: How does an Interoperability Simulator report the assessed information gap to the

interacting organizations?

10

1.3 RESEARCH SCOPE
In this research we applied three main constraints to narrow down the research scope:

1. The Data Provider and the Data Consumer form a data interoperability scenario that

exists inside a data-sharing environment. The data-sharing environment uses the data

space approach, which adopts the IDS architecture.

2. The Interoperability Simulator identifies the information gap at the syntactic level,

without considering the semantic level.

3. The logistics domain was chosen as case study. The terminologies, data standards,

and data schemas used in the case study are related to the logistics domain.

Figure 1 visualizes the research scope as an intersection of different aspects of this research.

The size of the shape does not indicate the importance or the complexity of each aspect.

Figure 1 Visualization of the research scope

1.4 RESEARCH APPROACH
This research was performed in accordance with the Design Science Research Methodology

by Wieringa (2014). The methodology is depicted in Figure 2 as a design cycle, consisting of

three tasks:

1. Problem Investigation. The design cycle starts from this task, where the problem is

studied, along with the related phenomena and the latest research related to the

problem. Chapter 1 and Chapter 2 show the results of the Problem Investigation task

of this research, describing the problem statement, the goals, and the background

knowledge of the problem.

2. Treatment Design. This task is the next step after the Problem Investigation task,

where the requirements and the design of the treatment are formulated. Chapter 3

reports on the results of the Treatment Design task, where the architecture design and

the technical design of the treatment are explained.

11

3. Treatment Validation. This is the last task of the design cycle, where the treatment

design is validated by developing a treatment prototype. The prototype validation

process is also included in this task. The results of the Treatment Validation task are

discussed in Chapter 4, Chapter 5, and Chapter 6.

Figure 2 The three tasks of the design cycle prescribed by Design Science Research Methodology (excluding the
Treatment Implementation task), as a part of the engineering cycle (Wieringa, 2014)

The Treatment Implementation task and the Implementation Evaluation task are outside the

scope of the research, since they are part of a larger engineering cycle. However, these two

tasks could be performed in the future research if several logistic companies are willing to treat

a real-life problem using the designed artifacts.

1.5 STRUCTURE
This thesis is further organized as follows. Chapter 2 provides the background knowledge

about data interoperability and data space. Chapter 3 describes the proposed treatment design

for both the data space and the Interoperability Simulator. The details about the prototype

development are described in Chapter 4, while Chapter 5 and Chapter 6 describe the

interoperability scenarios and the prototype validation, respectively. Chapter 7 concludes the

thesis by giving our conclusions, research limitations, and topics for future work.

12

2. BACKGROUND
This chapter explains several background concepts related to the Interoperability Simulator

and data space. Section 2.1 describes the definition of data interoperability and the overview

of the data space concept, while Section 2.2 introduces IDS as an example of data space.

Section 2.3 and Section 2.4 describe the two IDS layers that are relevant to this research,

namely the System Layer and the Process Layer. Section 2.5 explains the concept of

information gap, while schema matching as the solution to solve the information gap is

discussed in Section 2.6.

2.1 DATA INTEROPERABILITY AND DATA SPACE
Several definitions of interoperability can be found in two literature sources: IEEE (1991)

defines interoperability as the “ability of multiple systems or components to exchange

information and to use the exchanged information”, while Wegner (1996) defines

interoperability as the “ability of multiple software components to cooperate despite having

different languages, interfaces, and execution platforms”. Wegner gives more emphasis on

interoperability in the client-server paradigm. Those definitions agree in that the main keywords

that define interoperability are “multiple different systems” and “information exchange”.

These broad definitions of interoperability can be made more specific when the term is given

in a more specific context. For example, the term “data interoperability” refers to the ways of

formatting data that allow diverse datasets to be processed together in meaningful ways

(Network of the National Library of Medicine, n.d.). This definition is consistent with the

definitions of interoperability that were mentioned before. The term “diverse datasets”

corresponds to “multiple different systems”, while the term “datasets that are processed

together” corresponds to “information exchange”.

The term data space was introduced by Franklin et al. (2005), in which they describe the data

space concept as a novel approach of data management, which usually uses a centralized

Relational Database Management System (RDBMS). Data space is considered as a data co-

existence approach, where the data space accommodates all kinds of data sources regardless

of how integrated they are. To support these diverse data sources, a data space is equipped

with a DataSpace Support Platform (DSSP) that provides basic services such as data

catalogue and data search.

Halevy et al. (2006) further discussed the data space idea that was proposed by Franklin et al.

(2005). They reiterated the differences between DSSP and traditional databases and data

integration systems, giving emphasis on how the data space approach has less upfront costs

compared to the conventional data integration system. These reduced upfront costs are

possible because DSSP does not require full semantic integration from the data sources that

join the data space ecosystem. The high-effort data integration process can be postponed until

absolutely needed, such as when two data participants need to exchange data.

2.2 INTERNATIONAL DATA SPACES (IDS) OVERVIEW
IDS is an example of DSSP that is advocated by the International Data Spaces Association

(IDSA). According to IDSA (2022), IDS strives to fulfil several strategic requirements:

1. IDS must be secure and trusted. Each data space participant must pass a certification

procedure before being allowed to join the ecosystem.

2. Data sovereignty must be achieved in IDS, where each individual or organization is

able to determine what can be done with its own data.

13

3. IDS must be built as a decentralized data ecosystem, where the original data remains

with the respective data owner until the data exchange happens with the data

consumer. Data economy should emerge from this data ecosystem, where new

business models related to data services can be utilized by the data owners.

4. IDS must have standardized interoperability, allowing meaningful data exchange

between different organizations with different data interfaces.

According to IDSA (2022), the five layers of the IDS Reference Architecture Model are:

1. Business Layer, which gives an abstract description of the roles involved in IDS.

2. Functional Layer, which defines the functional requirements that must be provided by

IDS.

3. Information Layer, which describes the information model that represents the

concepts and relationships that are related to IDS.

4. Process Layer, which explains how the IDS components interact with each other.

5. System Layer, which specifies the technical details of the IDS components.

The System Layer and the Process Layer are closely related to the technical aspects of data

interoperability. These two layers are discussed in the following sections.

2.3 IDS SYSTEM LAYER
The System Layer is the technical layer that specifies the technical details of IDS. It translates

the definitions from the higher-level layers such as Business Layers and Process Layers to a

concrete data and services architecture.

Figure 3 Overview of the IDS architecture, illustrating the relationship between data provider and data consumer
in a data space (IDSA, 2022)

Figure 3 shows the architectural overview of IDS along with its main components. It illustrates

a scenario where a Data Consumer communicates with a Data Provider. Both Data Provider

14

and Data Consumer are participants of a data space. Each data space participant has an IDS

Connector that acts as an interface between the data space and the participants. Before data

exchange occurs between the two parties, Data Consumer must agree with the usage policies

set by the data owner. These policies can vary for each data owner, ranging from rules about

data access to the payment model for commercial data.

After the usage policies has been agreed, data can be transferred to the Data Consumer. Data

apps that are installed to the IDS Connector can be used to perform additional tasks with the

data, such as data transformation, data aggregation, or data analysis. These data apps can

be developed in-house or obtained from the App Store of the data space.

Some IDS components are described below.

2.3.1 IDS Connector

The IDS Connector is an interface that enables an organization to interact with other

organizations in a data space. IDS Connectors are the main entities that form a network in a

data space, similar to electronic devices that form a network in a Local Area Network (LAN).

An IDS Connector is deployed as a group of containers, where each container offers a runtime

environment to an application that executes a specific function. Figure 4 illustrates the

architecture of an IDS Connector.

Figure 4 IDS Connector architecture (IDSA, 2022)

An IDS Connector consists of these components:

1. Containers, where each container has a specialized functionality. There are a few

different types of containers in an IDS Connector:

a. Certified Core Container. This container type is related to the main

functionalities of an IDS Connector, such as data management, configuration

management, and IDS Protocol Authentication. Each container is responsible

to run a specific functionality. Therefore, there are multiple Certified Core

Containers depending on the functionalities supported by the IDS Connector.

b. Certified App Container. This is a certified container downloaded from the App

Store that runs a specific IDS App for the IDS Connector.

c. Custom Container. Most containers of an IDS Connector are certified by IDS to

ensure quality standards. However, some containers run Custom Apps that

15

were developed by organizations. These containers are for internal use and

usually require no certification.

2. Application Container Management. For scalability reasons, some containers need to

be automatically scaled depending on the workload. These containers also need to be

able to restart automatically whenever they fail. Therefore, Application Container

Management is needed to manage the container resources in an IDS Connector.

Application Container Management is optional and might not be necessary for non-

production environments.

3. Operating System that runs the container manager and the containers, along with the

virtual machine or hardware the Operating System is running on.

2.3.2 Vocabulary Hub

We recall that one of the goals of IDS is to achieve standardized interoperability. To achieve

this goal, it is necessary for a data space to use common terms to describe data models and

services. A collection of these standard terms is called a vocabulary, which is shared by every

participant in a data space. Moreover, the vocabulary can be enriched with domain-specific

terms that are used by the data space (IDSA, 2022). This vocabulary is stored in a Vocabulary

Hub that is accessible by the IDS Connectors.

2.3.3 IDS Apps

IDS Apps are reusable software applications that can be deployed and executed on an IDS

Connector. Each IDS App has a specific functionality that complements the core functionalities

of an IDS Connector. These applications are developed by the IDS participants and have

passed certification criteria set by IDS. Different types of IDS can be bundled to create a data

processing pipeline. The distribution of IDS Apps is managed by the IDS App Store (IDSA,

2022), whose architecture is depicted in Figure 5.

Figure 5 App Store architecture (IDSA, 2022)

2.4 IDS PROCESS LAYER
The Process Layer describes how an IDS component interacts with the other IDS components.

In some domains, the Process Layer is also called the Business Process Layer. The Process

Layer of IDS consists of the following steps:

1. Onboarding: what to do to be granted access to the International Data Spaces as a

Data Provider or Data Consumer.

2. Data Offering: offering data or searching for a suitable data.

3. Contract Negotiation: accept data offers by negotiating the usage policies.

16

4. Exchanging Data: transfer data between IDS Participants.

5. Publishing and using IDS Apps: interacting with an IDS App Store or using IDS Data

Apps.

The two steps related to the relationship between IDS Connector and Data Apps are explained

further below.

2.4.1 Data Offering

In typical use cases of data spaces, a Data Provider does not know the other participants that

is interested in the Data Provider’s data. Therefore, a Data Provider needs to give a meaningful

description and other metadata about its data (IDSA, 2022). When a Data Provider wants to

publish data to the data space, it can create a Self-Description of its data asset. A Self-

Description of a data asset contains metadata such as the description, the license, the

language, and the media type of the data asset. Domain-specific vocabulary can also be added

to the Self-Description. After that, the Self-Description is deployed at the IDS Connector of the

Data Provider.

To increase visibility of the IDS Connector, the Self-Description can be published to the IDS

Metadata Broker, while the vocabulary can be published to the Vocabulary Hub and linked to

the Self-Description. This way, the Data Provider becomes accessible to the other IDS

Connectors (IDSA, 2022).

On the other hand, a Data Consumer also needs to look for a suitable Data Provider. The Data

Consumer can either use the catalogs of the IDS Metadata Broker to search for metadata, or

crawl the self-descriptions that is embedded in IDS Connectors. The business processes of

registering Self-Description and Vocabulary are depicted in Figure 6 and Figure 7 using

Business Process Model and Notation (BPMN).

17

Figure 6 BPMN diagram of the "Register Self-Description at Metadata Broker” business process (IDSA, 2022)

18

Figure 7 BPMN diagram of the "Register Vocabulary at Vocabulary Hub" business process (IDSA, 2022)

19

2.4.2 Publishing and Using IDS Apps

IDS Apps are software components that can be installed on an IDS Connector to perform

certain data processing tasks. An App Provider can create IDS Apps and publish them on the

IDS App Store, making them available for all the data space participants. As part of the quality

assurance process, some IDS Apps require certification as a prerequisite for publishing.

Regardless of the certification requirement, publishing an IDS App requires the App Provider

to publish both the app image and the app metadata. The app image is published to the App

Store’s Container Registry, while the app metadata is published to the App Store’s database

(IDSA, 2022).

An App User (such as a Data Consumer) that needs to use IDS Apps can perform a search

query for the apps in the IDS App Store. The App Store then shows a list of relevant IDS Apps,

along with the relevant metadata. Some IDS App Providers might require the App User to pay

for the selected IDS Apps. Finally, the App User retrieves the IDS Apps and deploys them to

the App User’s IDS Connector. The business process of using an IDS App is shown in Figure

8.

Figure 8 BPMN diagram of the "Use IDS App” process (IDSA, 2022)

2.5 INFORMATION GAP
We recall that data exchange might not always happen immediately because the provided data

by the Data Provider is not compatible with the requested data by the Data Consumer. There

are different terms that can be used to define this situation, such as data heterogeneity (Sheth,

1998; Sheth & Kashyap, 1992) and data incompatibility (Nagarajan et al., 2007). However, we

use the term information gap as an umbrella term to describe the differences between the

provided data and the requested data.

There are at least two approaches to solve the information gap problem. The first approach

uses custom rules or mappings to transform the provided data into the requested data, while

the second approach involves creating mappings to a generic domain model and using it to

transform the data (Nagarajan et al., 2007). Both approaches require creation of rules and

mappings to transform the data into another format that is acceptable by the Data Consumer.

In an interoperability scenario that involves two parties, Nagarajan et al. (2007) classified data

incompatibilities into three categories:

1. Attribute-level incompatibilities, which occur when semantically similar attributes are

described using different descriptions.

20

2. Entity-level incompatibilities, which occur when semantically similar entities are

described using different descriptions, such as different number of attributes and

different type of attributes.

3. Abstraction-level incompatibilities, which are a mix of attribute-level and entity-level

incompatibilities. They occur when semantically similar attributes and/or entities are

described at different levels of abstraction.

Table 1 shows the different types of data incompatibility with a few examples for each

incompatibility type, where the conflicting attributes/entities are highlighted in red.

Table 1 Categorization of data incompatibilities (Nagarajan et al., 2007)

Incompatibilities Provided Data Requested Data

Attribute-level Incompatibilities

Naming conflict
Semantically similar attributes have
different names (synonyms).

Semantically unrelated attributes have
the same name (homonyms).

Student (Id, Name)

Student (Id, Name)

Student (SSN, Name)

Book (Id, Name)

Data representation conflict
Semantically similar attributes have
different data types or
representations.

Student (Id, Name)
Id is defined as a 4-digit
number.

Student (Id, Name)
Id is defined as a 9-
digit number.

Data scaling conflict
Semantically similar attributes are
represented using different scales.

Score 1-100 Score A-F

Entity-level Incompatibilities

Naming conflict
Semantically similar entities have
different names (synonyms).

Semantically different entities have
the same name (homonyms).

Employee (Id, Name)

Ticket (Id, MovieId,
MovieName)

Worker (Id, Name)

Ticket (Id, FlightId,
Departure, Arrival)

Schema isomorphism conflict
Semantically similar entities have
different structure because of different
number and/or type of attributes.

Person (Name, Address,
HomePhone,
WorkPhone)

Person (First Name,
Last Name, Address,
Phone)

Abstraction-level Incompatibilities

Generalization conflict
Semantically similar entities are
represented at different levels of
generalization.

Grad-Student (Id, Name,
Major)

Student (Id, Name,
Major, Type)

Entity Student is a
more general form of
entity Grad-Student.

Aggregation conflict
Semantically similar entities where
one entity is represented as an
aggregate of the other entity.

Professor (Id, Name,
Dept)

Faculty (Id, ProfId,
Dept)

Entity Faculty is an
aggregate entity of
multiple Professor
entities.

21

Attribute entity conflict
A semantically similar entity is
represented as an entity in one
version and as an attribute in the
other version.

Course (Id, Name,
Quartile)

Dept (Id, Course,
Quartile)

2.6 SCHEMA MATCHING
A schema is a description of the logical structure of a database (IEEE, 1991). Even though this

early definition of schema associates the term with relational databases, the term schema has

been being used to describe a structure of any kind of data object. A schema represents the

information about a data object’s structure, such as attribute names, attribute types, and their

value constraints. For example, the JSON schema of the trip data in the logistics domain can

contain attribute names such as trip_status, transport_mode, and

destination_coordinate, where each attribute has its own data type and constraints.

Schema matching is a process of detecting similarities of elements between multiple schemas

and find a mapping among their elements. Figure 9 shows a simple schema matching scenario

that aims to find a mapping between the elements of a table schema with the elements of

another table schema (Ionescu, 2020). Rahm & Bernstein (2001) classifies the schema

matching approaches, which are also called matchers, into two different categories, namely

individual matchers and combined matchers. The individual matchers use a single matching

criterion to match the schemas, while the combined matchers use a combination of different

individual matchers to perform the schema-matching task. The individual matchers are further

classified into two categories based on the representation of the input.

Figure 9 Schema matching that takes two table schemas as input, producing a list of pairs that represent their

attribute mappings (Ionescu, 2020)

2.6.1 Schema-level Individual Matchers

Schema-level matchers rely on the information contained in the schema, without using the

information contained in the instance data. Schema information usually consists of properties

of schema elements, such as name, data type, type constraints, and schema structure.

Depending on the match granularity, schema-level matchers can be further categorized into

two matching approaches (Rahm & Bernstein, 2001):

1. Element-level matching, which is a matching approach that only considers the

individual schema elements, such as columns in a database schema or properties in a

JSON schema. The examples of element-level matching are matching database

columns based on name similarity or type similarity.

22

2. Structure-level matching, which is a matching approach that considers the

combination of schema elements that form the schema structure. The approach can

use graphs or trees to model the structure of the schemas, then compare the structures

to find appropriate mappings.

2.6.2 Instance-level Individual Matchers

Instance-level matchers use the data instances of the schemas to perform the schema

matching process. For example, instance-level matchers can match two schema elements

based on the similarity of their data instances. Some element-level matchings that are used in

schema-level matchers can be used in instance-level matchers, because some element-level

matchings can be applied to data instances.

2.6.3 Combined Matchers

The individual matchers explained above can be combined to improve the accuracy of the

schema mapping. According to Rahm and Bernstein (2001), there are two different types of

matchers:

1. Hybrid matcher, which combines different matching criteria to generate a single

mapping result. Each matching criterion can be handled by a specific schema-matching

algorithm, generating a partial mapping that can be combined with partial mappings

from the other schema-matching algorithms.

2. Composite matcher, which combines the results of independently executed schema-

matching matchers. The schema-matching matchers can be performed either

sequentially or simultaneously. If they are performed in a sequential way, the mapping

results from a schema-matching algorithm are used as input parameters for the next

schema-matching algorithm. One of the examples of the composite matcher is COMA,

a generic schema-level matcher developed at the University of Leipzig (Do & Rahm,

2002).

2.6.4 Some Matcher Approaches

There are different types of matchers that apply different schema-matching strategies. This

section gives three examples of matcher that are relevant to this research.

COMA
COMA is an ontology matching tool and a composite matcher that comprises several schema

matching strategies. A schema in COMA is represented as a rooted directed acyclic graph,

while its schema elements are represented as graph nodes that might have referential

relationships with the other schema elements (Do & Rahm, 2002).

23

Figure 10 Match processing in COMA 3.0 (Database Group Leipzig, n.d.)

Figure 10 shows the overview of match processing in COMA 3.0, which is the latest version of

COMA. The initial step starts with importing the schema pairs S1 and S2 and creating a graph

representation for each schema. The graphs are used in the match iteration loop, in which the

schema elements are identified and passed as input to the individual matchers. Every schema

matching operation that consists of a matching strategy, an element from S1, and an element

from S2 is then stored in a similarity cube. The results of schema matching operations in the

similarity club are combined at the end of the match iteration loop. The matching process can

be repeated using different matching strategies to improve the mapping results. Otherwise, the

resulting mapping is returned as the final mapping.

Cupid
Cupid is a schema-level individual matcher that uses a tree representation to model a schema.

The schema elements and their hierarchical relationships are modeled as several

interconnected tree nodes. The tree nodes are used to calculate the similarity coefficients

between the schema elements. These similarity coefficients are used to formulate the final

schema matching result. According to Madhavan et al. (2001), the schema matching process

in Cupid is divided into three phases:

1. Linguistic matching phase, in which linguistic approaches are applied to match the

schema elements. For example, the schema elements can be matched based on the

name similarity, the data types, or the domain context of the term. A thesaurus is

employed to help Cupid identify abbreviations and synonyms. This phase produces a

linguistic similarity coefficient between each element pair.

2. Structural matching phase, in which the schema elements are matched based on the

similarity of the schema structure. A schema structure contains information about the

context of the schema elements and their neighbors. This phase gives an output of

structural similarity coefficient for each element pair.

3. Mapping generation phase, in which a mapping is generated by selecting schema

element pairs based on a formula of weighted similarity.

24

Similarity Flooding

Similarity Flooding is a matcher that utilizes graphs to model data schemas and data

instances. Similarity Flooding performs the schema matching operation that consists of four

sequential steps (Melnik et al., 2002):

1. Schemas transformation from their native representation into directed labeled graphs.

The schema elements are modeled as graph nodes. The transformation process uses

an import filter that preserves the definitions of the relational schemas.

2. Creation of the initial mapping between the two schema graphs. The initial mapping is

created using a string matcher that compares prefixes and suffixes of literals in the

schemas.

3. An execution of the iterative Similarity Flooding algorithm, producing a similarity

propagation graph that is derived from the schema graphs. The Similarity Flooding

algorithm is based on an assumption that each pair of schema elements (which are

modeled as graph nodes) propagates its similarity to its neighbors. The iterative

propagation process will eventually converge at one point, resulting in the final similarity

score.

4. A filtering step, in which a subset of node pairs is selected as the best matching results

according to the algorithm.

25

3. SOLUTION DESIGN
As described in Section 2.2, IDS strives to follow four strategic requirements to enable a

decentralized data ecosystem. One of these strategic requirements is standardized

interoperability, where data participants can communicate and exchange data with each other

using a set of agreed standards. The Interoperability Simulator is one of the proposed solutions

to realize standardized interoperability.

This chapter reports on the Treatment Design task of the design cycle, in which the solution

design of the Interoperability Simulator is proposed and its relationship with the IDS data space

is explained. The chapter starts with the definition of interoperability scenario in Section 3.1,

followed by Section 3.2 that describes the software requirements specification of the

Interoperability Simulator. Section 3.3 discusses the proposed reference architecture and how

the solution would fit in the existing business processes of IDS. The proposed architecture and

the revised business processes are based on the software requirements specification and our

research scope defined in Section 1.3.

3.1 INTEROPERABILITY SCENARIO
We define an interoperability scenario as a situation where a Data Consumer requests a data

resource from a Data Provider, where the data structure requested by the Data Consumer is

possibly different from the data structure provided by the Data Provider. Figure 11 illustrates

an example interoperability scenario with two different data structures as tabular data.

Figure 11 Illustration of an interoperability scenario. The arrows above the column names indicate the mapping

from the provided data structure to the requested data structure.

In the example scenario above, three adjustments are needed to transform the Provided Data

to the Requested Data:

1. Rename the student_id attribute to id.

2. Remove the cohort attribute.

3. Translate the data instances of score attribute from numeric scale to letter-based

scale.

Interoperability scenarios are not explicitly mentioned in the IDS Reference Architecture Model.

However, according to IDS Process Layer, it can be inferred that an interoperability scenario

can happen during the Data Offering step, when the Data Consumer is searching for suitable

data in the data space. During this step, the Data Consumer do not have access to the data

yet, since the usage policies agreement has not been reached between the Data Provider and

the Data Consumer. The Data Consumer must rely on metadata such as data description, file

format, and data schema. Therefore, an interoperability scenario in IDS can only be solved

26

using schema-level matchers, as explained in Section 2.6.1. As a consequence, step 3 in the

previous example scenario cannot be performed, since the transformation of data instances

can only happen after the Data Consumer gains access to the actual data.

Chapter 5 presents the examples of interoperability scenario that have been considered in this

research.

3.2 SOFTWARE REQUIREMENTS
To achieve the IDS strategic goal of standardized interoperability, we formulated the software

requirements of the Interoperability Simulator using the Goal-Design Scale approach by

Lauesen (2002). Table 2 shows the software requirements of the Interoperability Simulator

from different levels, ranging from the high-level business requirements to the application-

specific requirements.

Table 2 Software requirements of the Interoperability Simulator

Reference Requirement

Goal-Level Requirements: business requirements that the solution users want to achieve

GR1 The Interoperability Simulator should ease the integration effort of data
participants in a data space.

Domain-Level Requirements: support the solution users to achieve a particular task

DoR1 The Interoperability Simulator should help the Data Consumer gather the
required information to assess the information gap.

DoR2 The Interoperability Simulator should support the Data Consumer in
assessing the information gap using the gathered information.

DoR3 The Interoperability Simulator should be able to report the assessed
information gap to the Data Consumer.

DoR4 The Interoperability Simulator should help the Data Provider comply with the
existing standard data models in a data space.

Product-Level Requirements: requirements about the functionalities of the solution

PR1 The Interoperability Simulator should collect the provided schema from the
Data Provider and the requested schema from the Data Consumer.

PR2 The Interoperability Simulator should collect the standard schema from the
standard data model, which is managed by the Vocabulary Hub.

PR3 The Interoperability Simulator should collect the pricing information of the
data offered by the Data Provider in case of commercial data.

PR4 The Interoperability Simulator should assess the information gap by
comparing the schemas of the Data Provider, the Data Consumer, and the
data space’s standard data model.

PR5 Based on the pricing information from the Data Provider, the Interoperability
Simulator should calculate the total costs of accessing the commercial data.

PR6 The Interoperability Simulator should report the assessed information gap
and the total costs to the Data Consumer.

Design-Level Requirements: requirements that are related to the user interface of the
solution

DeR1 The Interoperability Simulator should enable the Data Consumer to create
an interoperability scenario by selecting a data resource from a Data
Provider.

DeR2 The Interoperability Simulator should show the assessed information gap
and the possible costs to the Data Consumer.

The domain-level requirements are derived from the research sub-questions in Section 1.2.

These requirements are the interoperability-related tasks that need to be accomplished by the

stakeholders. There is only one type of stakeholder with two different roles, as mentioned in

27

Section 1.3. Therefore, there is at least one domain-level requirement for each role. The

product-level requirements (indicated by PR1-PR6) are derived from the research sub-

questions in Section 1.2, by replacing attributes by more specific terms such as schema and

data space.

3.3 REFERENCE ARCHITECTURE AND BUSINESS PROCESSES
We defined a reference architecture based on the specified research scope given in Section

1.3 and the software requirements of Section 3.2. It serves as the template architecture of the

Interoperability Simulator, as it is used to define a more specific and concrete architecture in

Chapter 4. The reference architecture was defined using ArchiMate 3.2 language (The Open

Group, 2022), and it models the Interoperability Simulator from three different architectural

layers, namely the Business Layer, the Application Layer, and the Technology Layer.

The relationship between the three layers can be depicted by ArchiMate views, each

representing a system from a particular perspective. Each view is defined in accordance with

a viewpoint, which specifies the conventions for this particular kind of view (The Open Group,

2022). There are several standard viewpoints that can be used as guidelines, as well as

custom viewpoints that use standard ArchiMate elements.

The reference architecture has been defined from two views, which are illustrated in Figure 12

and Figure 13. The components in yellow belong to the Business Layer, the components in

blue belong to the Application Layer, and the components in green belong to the Technology

Layer.

The components in white are considered out of scope of this research, and therefore will not

be discussed in detail in the subsequent chapters. This also means that the functionalities

indicated in these white components are not included in software requirements specification in

Section 3.2. However, they are part of the complete vision of the Interoperability Simulator as

an interoperability solution in a data space environment.

Each view is explained further in the sequel.

28

Figure 12 Application Usage View

29

Figure 13 Implementation and Deployment View

30

3.3.1 Application Usage View

The Application Usage View depicted in Figure 12 shows the relationship between the

Business Layer and the Application Layer. More specifically, it shows how the applications

support the business processes, and how the applications interact with each other. The

Application Usage View uses a basic ArchiMate viewpoint called the Application Usage

Viewpoint (The Open Group, 2022).

The Data Space Participants are the only stakeholders who are relevant to the Interoperability

Simulator. These participants are the individual or organizations that have interests to interact

with each other in the data space. In an interoperability scenario, each Data Space Participant

can assume a role as either a Data Provider or a Data Consumer. Regardless of the role, each

Data Space Participant uses the IDS Connector application component to interact with the

data space entities. The IDS Connector also serves as an interface between the Data

Resource owned by Data Provider and the data space. The Data Resource is stored in Data

Provider’s private repository, preserving Data Provider’s sovereignty over its own data.

The Business Layer of the Application Usage View consists of two main business functions:

1. A business function that groups several business processes that are related to

interoperability assessment, which starts from the business process of collecting

schemas from Data Participants and ends at the business process of showing the

information gap to Data Consumer.

2. A business function that groups the business processes for interoperability solution

recommendation, which uses the interoperability assessment results from the previous

business function.

A Data Consumer starts the interoperability scenario by requesting a specific Data Resource

from a Data Provider. The Data Consumer also specifies the expected schema of the Data

Resource, which might be incompatible with the current schema specified by the Data

Provider. Each schema is stored as Data Self-Description object inside the IDS Connector of

each Data Space Participant. If the Data Provider sets the Data Resource as commercial data,

the pricing information is also collected by the Interoperability Simulator. These schemas and

pricing information are collected as inputs to assess the information gap.

The inputs are further processed by two application functions. The Schema Matching function

compares the schemas and creates a mapping from the elements of one schema to the

elements of the other schema. Besides comparing schemas between two Data Participants, it

is possible to compare a schema with the Standard Data Model stored in Vocabulary Hub. This

is useful in an interoperability scenario where a Data Participant needs to convert a Data

Resource to a standardized format. The Pricing Calculation function calculates the total costs

using the given pricing information. The results from both functions are collected and reported

to the Data Consumer, showing the schema mapping results and the total cost to access the

Data Resource.

At this point, the Data Consumer can view the interoperability assessment results and needs

to find the available solutions for the interoperability scenario. The Interoperability Simulator

can use the assessment results to find suitable IDS Apps in the App Store. The assessment

results are converted to search criteria that can be used to query the App Store. The query

results from the App Store are then forwarded to Data Consumer as solution recommendation

results from the Interoperability Simulator.

31

3.3.2 Implementation and Deployment View

Figure 13 shows the Implementation and Deployment View that describes the relationship

between the Application Layer and the Technology Layer. The view shows how the technology

infrastructure can realize the application components, without prescribing specific technologies

for the technology infrastructure. The Implementation and Deployment View uses another

basic ArchiMate viewpoint named the Implementation and Deployment Viewpoint. ArchiMate

elements from the Technology Layer that are related to physical objects are not included in the

viewpoint, such as the Communication Network element and the Device element (The Open

Group, 2022).

The Implementation and Deployment View refers to the same Application Layer components

of the Application Usage View. Two additional elements are added to the App Store application

component to show the relationship between these App Store’s sub-components and the

Technology Layer.

As discussed in Section 2.3, IDS Connectors and their sub-components are deployed using

containerization. Each sub-component is deployed in a separate container with a separate

runtime. The relationship between the IDS Connector and containerization is shown in Figure

13, where the IDS Connector App in the Technology Layer realizes the IDS Connector

component in the Application Layer. This relationship also applies to the other IDS components

such as Vocabulary Hub and App Store, where each IDS component is realized by its own

application component in the Technology Layer. These containers are run in a container

runtime environment. Container orchestration is not used to manage the containers,

considering the small number of the deployed containers and that we did not consider

requirements related to system scalability and reliability in this research.

Data objects in the Application Layer that need a permanent storage are realized by the

Relational Database Management System (RDBMS). Data objects that are not realized by

RDBMS, such as those that reside in the Interoperability Simulator, are produced and

accessed during runtime. Therefore, they do not need permanent storage and are discarded

after the Interoperability Simulator finishes its job.

The Interoperability Simulator App performs the schema-matching operation using Matcher

Apps chosen from the available Matchers. Each Matcher represents a distinct schema-

matching implementation that is deployed in a separate container from the Vocabulary Hub

App container. The Interoperability Simulator App can communicate with each Matcher App

using a web service that follows a specification that applies to all Matchers, enabling the

Interoperability Simulator to have a standard interface to communicate with all Matchers.

Deploying each Matcher in a separate container offers more flexibility to the architecture, since

the implementation details of the Matcher can be decoupled from the implementation details

of the Interoperability Simulator. This architecture design also considers that every Matcher

implementation might be developed by different people with different technology preferences.

The only requirements that must be fulfilled by each Matcher are to offer a web service that

can be used by the Interoperability Simulator and that the Matcher App is deployed in a

container.

Even though the decoupled design of Matchers gives more flexibility to the Matcher

implementation and deployment, it also adds more complexity to the deployment phase. The

Interoperability Simulator has to make sure that the Matchers are always accessible and give

the expected response. Moreover, using a web service as an interface between the Matcher

and the Interoperability Simulator adds more latency to the response time of the Interoperability

Simulator, compared to using direct procedure calls if the Matcher is implemented as an

32

application module of the Interoperability Simulator. However, the added latency is not

expected to give a significant performance degradation to the Interoperability Simulator, while

the flexibility offered by the decoupled Matcher design outweighs the inherent drawbacks.

3.3.3 Business Processes

The Business Layer in Figure 12 shows the sequence of business processes of the

Interoperability Simulator. However, this sequence only describes high level business

processes and their relationships to the other elements in the architecture, and does not

describe the specific activities that happen in a business process and the parties involved for

each activity. To address this issue, we drew the BPMN diagrams to specify the business

processes of the Interoperability Simulator.

The business processes in Figure 12 are grouped into two distinct business functions. The

business processes for each business function can be represented in a BPMN diagram. Figure

14 represents the Interoperability Assessment business function, showing a process where a

Data Participant (either Data Consumer or Data Provider) needs to perform interoperability

assessment using Interoperability Simulator. Figure 15 represents the Interoperability Solution

Recommendation business function, describing how the interoperability assessment results

from the previous business function can be used to query the IDS App Store. The query results

give a list of IDS Apps that can be used to address the specific interoperability scenario.

As mentioned in Section 3.1, an interoperability scenario in IDS can happen during the Data

Offering step, when the Data Consumer is searching for a suitable data resource in the data

space. However, an interoperability scenario can also happen in another step. IDSA (2022)

presents a business process called Use IDS App, where a data participant needs to find the

suitable Data Apps to perform data transformation tasks. The Use IDS App business process

has been depicted earlier in Figure 8. The Interoperability Simulator can assist the Data

Participant to find the Data Apps if the required task is related to data interoperability with the

other data participant. Figure 16 illustrates the proposed revision of the Use IDS App business

process, where the new business process gives the user a new option to use the

Interoperability Simulator to find the relevant IDS Apps. The new business process in Figure

16 incorporates the two business functions in Figure 14 and Figure 15 as subprocesses.

Figure 15 shows the Interoperability Solution Recommendation business function, which

relates to the components in white in Figure 12 and Figure 13. Therefore, this function is out

of scope of this research and will not be discussed further in this thesis.

33

Figure 14 “Interoperability Assessment” business function

34

Figure 15 “Interoperability Solution Recommendation” business function

35

Figure 16 Proposed revision of the “Use IDS App” business process, adding Interoperability Simulator as an alternative way to find an IDS App

36

4. PROTOTYPE DEVELOPMENT
To demonstrate that the solution design specified in Chapter 3 can solve the identified

problems, we perform the Treatment Validation task of the design cycle. This task produces a

validation model that consists of a model of the solution and the model of the problem context

(Wieringa, 2014). This chapter explains how a prototype that represents a model of the solution

was developed.

This chapter begins with Section 4.1 that explains the concrete architecture used to implement

the solution. Section 4.2 shows the development of Interoperability Simulator and its Matchers

as web services, which are used by the Data Participants to assess an interoperability

scenario. Section 4.3 gives details about the integration of the Interoperability Simulator

prototype into an existing data space prototype, while Section 4.4 covers the deployment of

the Interoperability Simulator using containerization.

4.1 CONCRETE ARCHITECTURE
A concrete architecture was developed based on the reference architecture in Section 3.3. The

concrete architecture realizes the Implementation and Deployment view of the reference

architecture in Figure 13, excluding the components that are related to IDS App Store.

Compared to the reference architecture, the Application Layer of the concrete architecture

remains unchanged. However, the Technology Layer of the concrete architecture uses a more

specific technology stack that replace the general elements specified in the reference

architecture. The Implementation and Deployment view of the concrete architecture is

illustrated in Figure 17.

The concrete architecture uses Docker as container runtime environment, in which the

application components are deployed as Docker containers. The details of the deployment

aspect of the prototype are covered further in Section 4.4. Two groups of application

components form our prototype:

1. The Interoperability Simulator and the four Matchers, which form the core part of the

interoperability assessment functionality. Each component is deployed either as a

Python Django web application or as a Java Spring Boot web application. These web

applications communicate with each other using REST APIs. Further details about the

Interoperability Simulator and the Matchers are given in Section 4.2.

2. The IDS Connectors and their databases, which provide the data Resources and the

user interface for the Interoperability Simulator. The user interface of the IDS

Connectors (both the Data Provider and the Data Consumer) are implemented using

Mendix1, with PostgreSQL as Database Management System. The IDS Connectors

communicate with the Interoperability Simulator using a REST API. Section 4.3

discusses the implementation of the IDS Connectors and the databases in more depth.

1 https://www.mendix.com/

https://www.mendix.com/

37

Figure 17 Implementation and Deployment View of the concrete architecture

38

4.2 IMPLEMENTATION OF INTEROPERABILITY SIMULATOR
As a standalone application component, the Interoperability Simulator has been developed as

a web application that receives user input to solve an interoperability scenario and gives the

assessment results back to the user. According to the Application Function of the concrete

architecture, the Interoperability Simulator has two distinct functions, which are the schema

matching function and the pricing calculation function. These main functionalities are further

explained in the sequel.

4.2.1 Schema Matching Function

The purpose of the schema matching function is to perform schema matching operations

based on user input. To perform the schema matching operations, the Interoperability

Simulator utilizes several schema-matching approaches called Matchers. For each schema

matching operation, the user supplies two input strings that represent the source schema and

the target schema. These two schemas are forwarded to each Matcher, which return a

mapping of elements from the source schema to the target schema. The mapping is

represented by a list of pairs of source element and target element, along with the similarity

score. The Interoperability Simulator aggregates the mapping from each Matcher to be

returned as output. The representation of the mapping is similar to the schema matching

depicted in Figure 9.

Each Matcher provides a REST API that can be used by the Interoperability Simulator. Each

Matcher conforms to the same API contract, which defines things such as the available API

endpoints, the expected structure of the request body, and the possible responses. Currently

one API endpoint needs to be implemented by all Matchers and its specification is shown in

Table 3. This API endpoint is used exclusively by the Interoperability Simulator and cannot be

used directly by the Data Consumer.

Table 3 Matcher API contract

Endpoint POST /matcher/match-schemas

Description Given a source schema and a target schema, returns a schema mapping
along with the similarity score.

Request
Headers

Content-Type: application/json

Request
Body

source_schema: String. Required. Comma Separated Values (CSV)

header that contains the source schema elements.
target_schema: String. Required. Comma Separated Values (CSV)

header that contains the target schema elements.

Example:
{

 "source_schema": "EID,Writers,Cited by,Title,Year,zipcode",

 "target_schema": "EID,cited-by,Schrijvers,Country,postcode"

}

Response Array of JSON objects that consists of these attributes:
source_element: String. The source element that is mapped to

target_element.

target_element: String. The target element that is mapped from

source_element.

score: Decimal String. The similarity score of the element mapping,

ranging from 0 to 1.

Example:

39

[

 {

 "source_element": "EID",

 "target_element": "EID",

 "score": "0.807"

 },

 {

 "source_element": "Cited by",

 "target_element": "cited-by",

 "score": "0.645"

 }

]

The API contract of a Matcher has been written using OpenAPI version 3.0.32 and is stored as

a JSON file. The schema file is rendered using Swagger UI3 and is accessible using the

following URL:

http://matcher-host:port/docs

where matcher-host and port represent the host address and the port number of the

Matcher, respectively. Figure 18 shows the example of Matcher API documentation rendered

using Swagger UI.

Figure 18 OpenAPI documentation of a Matcher rendered using Swagger UI

Using the API contract, a new Matcher can be developed and integrated into the

Interoperability Simulator. A Matcher can be developed using any programming language or

framework as long as it conforms to the REST API contract. A Dummy Matcher has been

2 https://spec.openapis.org/oas/v3.0.3
3 https://swagger.io/tools/swagger-ui/

https://spec.openapis.org/oas/v3.0.3
https://swagger.io/tools/swagger-ui/

40

implemented for demonstration purposes using the Spring Boot framework4. It conforms to the

API contract by accepting the endpoint and the request body as specified in the contract.

However, it does not perform any meaningful schema matching operation since it always gives

an empty array as the output.

Besides the Dummy Matcher, we used an existing Matcher implementation called Valentine,

which was developed by TU Delft Data Management Group5. The Matcher is implemented as

a Python package and is based on research that aims to evaluate schema matching

techniques using tabular data (Koutras et al., 2021). Valentine has the three Matcher groups

shown in Table 4.

Table 4 Three Matcher groups in Valentine implementation

Matcher Group Matcher Name

Schema-based Matchers Cupid, Similarity Flooding

Instance-based Matchers Distribution-based, Jaccard-Levenshtein

Schema-based and Instance-based
Matcher

COMA

As explained in Section 3.1, an interoperability scenario in IDS can only be solved using

schema-level Matchers. Therefore, only COMA, Cupid, and Similarity Flooding from the

Valentine implementation that are relevant to our research. Section 2.6.4 explains how each

of these three Matchers works. In the Valentine project repository, each Matcher is

implemented as a separate Python module, making the codebase easier to extract. To enable

CSV processing using the Valentine Matchers, the extracted codebase still needs a few

adjustments, as Valentine processes the inputs as pandas DataFrame6. For example, two

new Python classes are implemented to serialize data from user input to the Matcher’s internal

representation. The two classes replace the existing serialization implementation that utilize

pandas DataFrame instead of CSV. These adjustments remove the dependency of the

pandas package, which is not used anywhere else in the Matcher.

After the Matcher codebase has been extracted from Valentine, the next step is to create an

interface to enable communication between the Matcher and the Interoperability Simulator.

Since the three Matchers are already implemented in Python, the Django REST framework7

was chosen as REST API application framework. Django was chosen over other Python

frameworks such as Flask due to our familiarity with the framework. Each Matcher is wrapped

as a Django application, using the API contract as a guide to implement the API. Together with

the Dummy Matcher, four Matchers can therefore be used by the Interoperability Simulator as

web services.

The following steps summarize the actions taken to extract a Matcher from Valentine:

1. Copy the Python module of the Matcher along with its dependencies such as Valentine

serialization classes.

2. Modify the Matcher dependencies to enable data serialization using CSV instead of

pandas DataFrame.

4 https://spring.io/projects/spring-boot
5 https://github.com/delftdata/valentine
6 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
7 https://www.django-rest-framework.org/

https://spring.io/projects/spring-boot
https://github.com/delftdata/valentine
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://www.django-rest-framework.org/

41

3. Put the Matcher Python module into an empty Django app, then use the module to

perform schema matching based on the input values of the API requests.

4.2.2 Pricing Calculation Function

A Data Consumer that wants to access a commercial Data Resource needs to be aware of the

price incurred by the Data Provider. As mentioned in Section 3.3.1, the Interoperability

Simulator needs to collect this pricing information and calculate the total cost so that the Data

Consumer can be informed with the monetary cost of accessing the Data Resource. The

pricing calculation function is performed by the Interoperability Simulator, which receives

pricing information as input and uses it to calculate the total cost.

The IDS Reference Architecture Model does not specify the details about this pricing

information. Therefore, this research proposes two simple payment models as starting points:

1. One-time payment model, in which the Data Consumer performs a single payment to

the Data Provider. For example, a Data Consumer needs to pay €500 upfront before

being granted access to a dataset of shipping companies.

2. Recurring payment model, in which the Data Consumer performs a repeated

payment over a set interval such as months or years. For example, a Data Consumer

is required to pay €50 per month over two years (24 months) to gain access to transport

consignment data from the Data Provider’s company, resulting in a total cost of €1200

to access the data for two years.

We assume that each payment model does not consider additional parameters such as taxes

and discounts. Currently the pricing calculation function is not implemented as a separate

application component due to its simple calculation logic, so it is coupled with the main logic

of the Interoperability Simulator. However, it is possible to create a dedicated application

component for the pricing calculation function when more realistic and sophisticated payment

models are incorporated to the IDS environment.

4.2.3 Combining the Schema Matching and the Pricing Calculation Functions

After the schema matching function and the pricing calculation function are finished with their

respective processes, their results are aggregated by the Interoperability Simulator. For each

Matcher, the Interoperability Simulator creates two groups of schema elements, namely the

matched elements that have been identified by the Matcher, and the unmatched elements that

do not have any potential matches according to the Matcher. The relationship between the

matched elements and the unmatched elements can be expressed using the following

formulas

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ∪ 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑

𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ∩ 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = ∅

where elements refers to the set of all the schema elements, matched refers to the set of the

matched elements, and unmatched refers to the set of the unmatched elements. The matched

elements and the unmatched elements are mutually exclusive, therefore one schema element

cannot be identified as both a matched element and an unmatched element. The above

formulas apply to both the elements of the source schema and the target schema.

The entire process of combining the schema matching function and the pricing calculation

function is performed when the Data Consumer calls an API endpoint to perform an

interoperability assessment. This API endpoint provided by the Interoperability Simulator is

described in Table 5.

42

Table 5 API contract of the Interoperability Simulator

Endpoint POST /isim/simulate

Description Given a source schema, a target schema, and optional pricing information,
returns interoperability assessment results that consist of schema mapping
results and total price of the data resource.

Request
Headers

Content-Type: application/json

Request
Body

source_schema: String. Required. Comma Separated Values (CSV) header

that contains the source schema elements.
target_schema: String. Required. Comma Separated Values (CSV) header

that contains the target schema elements.
pricing_info: Object. Optional. Pricing information of the data resource

represented by source_schema. The object consists of the following

attributes:
interval: Integer. Required if pricing_info is present. The number of

payment intervals, such as months or years.
price_per_interval: Integer. Required if pricing_info is present.

The price for each payment interval.

Example:
{

 "source_schema": "EID,Writers,Cited by,Title,Year,zipcode",

 "target_schema": "EID,cited-by,Schrijvers,Country,postcode",

 "pricing_info": {

 "intervals": 2,

 "price_per_interval": 50

 }

}

Response A JSON object that consists of these attributes:
matcher_results: Array of JSON objects. Each item consists of:

matcher: String. The name of the Matcher.

matched_elements: Array of JSON objects. Each item consists of:

source_element: String. The source element of source_schema that

is mapped to target_element.

target_element: String. The target element of target_schema that is

mapped from source_element.

score: Decimal String. The similarity score of the element mapping,

ranging from 0 to 1.
unmatched_elements: JSON object that consists of:

source_elements: String. The unmatched elements of

source_schema, separated by comma.

target_elements: String. The unmatched elements of

target_schema, separated by comma.

Example:
{

 "matcher_results": [

 {

 "matcher": "coma",

 "matched_elements": [

 {

 "source_element": "EID",

 "target_element": "EID",

43

 "score": "0.807"

 },

 {

 "source_element": "Cited by",

 "target_element": "cited-by",

 "score": "0.645"

 },

],

 "unmatched_elements": {

 "source_elements": "Title,Year",

 "target_elements": "Country"

 }

 }

],

 "total_price": 100

}

The API contract of the Interoperability Simulator is also specified using OpenAPI version

3.0.3. The schema file is also rendered using Swagger UI and is accessible through the

following URL:

http://isim-host:port/docs

where isim-host and port represent the host address and the port number of the

Interoperability Simulator application, respectively. Figure 19 shows the Interoperability

Simulator API documentation rendered using Swagger UI.

Figure 19 OpenAPI documentation of the Interoperability Simulator rendered using Swagger UI

44

Figure 20 presents the interactions that happen when a Client send an interoperability

assessment request to the Interoperability Simulator. The term Client is used because the

actual entity that initiates the request might be a human user or a software component (such

as a front-end web application). The interaction starts when the Client consumes the API

endpoint of the Interoperability Simulator by sending an HTTP POST request, along with the

required request headers and request body as specified in Table 5. If pricing information is

present in the request body, the Interoperability Simulator calculates the total price of the data

resource based on the pricing information. The pricing calculation step is optional, as indicated

by the Opt fragment in the sequence diagram.

Regardless of the presence of pricing information, the Interoperability Simulator proceeds to

interact with the available Matchers. For each Matcher, the Interoperability Simulator requests

a schema matching operation by sending an HTTP POST request to the Matcher, as specified

before in Table 3. After receiving a response from the Matcher, the Interoperability Simulator

processess the response further by grouping the matched and the unmatched schema

elements. This process is repeated for each available Matcher, resulting in a loop as indicated

by the Loop fragment in the sequence diagram.

The processed responses from all Matchers are then aggregated into a single response, which

is combined with the pricing information (if available). Finally, the combined result is returned

to the Client as an Interoperability Simulator API response.

Figure 20 Sequence diagram of the interactions between Client, Interoperability Simulator, and Matchers

45

The current prototype implementation uses a synchronous approach to call the API endpoints

of the Matcher. This approach is straightforward and can ensure the order of the API

responses. However, the synchronous approach blocks the Interoperability Simulator after

each API call until a response returns, preventing the Interoperability Simulator from doing

other tasks in the meantime. This means that, other API calls can only be executed after the

response from the blocked API call has been received. Since in this research we ignored the

scalability aspect of the solution, synchronous approach is acceptable.

4.3 IMPLEMENTATION OF THE IDS CONNECTOR
The reference architecture of Figure 13 prescribes a few application components that form an

IDS data space. The IDS Connector is an application component that serves as an interface

between data space participants who want to interact with each other. The IDS Reference

Architecture Model does not provide a working prototype of the IDS Connector, so in this

research we reused an existing IDS prototype implementation that was developed for an

Engineering Doctorate project at the University of Twente (Firdausy, 2023).

The IDS prototype comprises several components, such as IDS Connector, IDS Data Apps,

and a new component called Connector Store that is not an official IDS component. In this

research, we only reuse the IDS Connector implementation, as IDS Data Apps and Connector

Store are out of scope. Since the IDS Connector prototype has been already implemented

using Mendix, it would be more efficient to extend the existing Mendix implementation to

support the functionalities of the Interoperability Simulator. The decision of using PostgreSQL

as the RDBMS of the IDS Connector is also influenced by the existing IDS Connector

implementation.

The different functionalities that are related to the Interoperability Simulator are further

discussed in the sequel.

4.3.1 IDS Connector Data Model

Mendix uses a data model called Domain Model to describe the entities in a Mendix

application. This model is similar to the Entity Relationship Diagram (ERD) that describes the

tables in a database, along with the constraints and relationships with other tables.

Figure 21 Domain Model diagram of an IDS Connector and its related entities

46

Figure 21 presents a Mendix Domain Model diagram of the IDS Connector according to the

prototype described in Firdausy (2023). The diagram only covers the most relevant entities

such as IDSConnector, Resource, and Artifact. An arrow between two entities

represents a relationship. For example, an arrow labelled a represents a one-to-many

relationship between IDSConnector and Resource. In the sequel we explain how the

Domain Model is used to realize some functionalities of an IDS Connector.

4.3.2 IDS Connector Data Offering by Data Provider

In a data space, a Data Provider can publish data resources through the IDS Connector by

using the Data Offering functionality. Figure 22 shows the Data Offering Overview page that

lists all the resources offered by the Data Provider. The Data Provider can perform content

management tasks such as creating a new resource, editing an existing resource, or deleting

a specific resource. When editing a resource, a pop-up page that shows the metadata of the

resource is shown to the Data Provider, as displayed in Figure 23. The metadata contains

information such as the UUID, title, description, and version number of the offered resource.

These metadata attributes are based on the specification of the Resource entity, as depicted

in the domain model diagram in Figure 21.

Figure 22 Data Offering Overview page of the IDS Connector

47

Figure 23 Pop-up page that displays the metadata of an offered resource

Besides the metadata, an offered resource might also have data usage policies attached to it,

which are set by the Data Provider, and define how the offered resource can be used by the

Data Consumer. For example, the Data Provider can either grant an unlimited access to the

resource or set an expiration date. To simplify the prototype implementation, it is assumed that

the Data Provider always provides unlimited access to the offered schemas. In the domain

model of Figure 21, a data usage policy is represented by the Contract and Rule entities.

Besides general metadata and usage policies, an offered resource can also have one or more

Representations. A Representation describes another set of metadata, such as media type

(e.g., application/json or application/xml), language, and standard descriptions

(e.g., Open Trip Model (OTM) or GS1) (Firdausy, 2023). If an offered resource has multiple

Representations, this means that the resource is being offered in multiple forms. For example,

a data schema about logistics transportation can be offered in either Dutch or English using

JSON or XML format.

Each Representation comprises one or multiple Artifacts that contain the metadata to access

the actual offered resource. For example, an Artifact metadata can contain the access URL of

the data, along with authentication credentials such as API Key, username, and password.

The prototype implementation assumes that an offered resource always has exactly one

Representation, which has exactly one Artifact. Figure 24 shows two pop-up pages that display

the metadata of a Representation and an Artifact.

48

Figure 24 Pop-up pages that display the metadata of a Representation and an Artifact, respectively

4.3.3 IDS Connector Data Consumption by Data Consumer

Once the offered resources have been published by the Data Provider, the Data Consumer

can access the resources by issuing a data consumption request. Figure 25 shows the Data

Consumption Overview page that lists all the consumed resources by the Data Consumer. The

Data Consumer can use this page to request a new resource or to view the details of the

existing consumed resources.

49

Figure 25 Data Consumption Overview page of the IDS Connector

The prototype implementation of Firdausy (2023) allows a Data Consumer to request an

offered resource using three different ways, namely by using the IDS Connector URL, using

the Resource URL, or by using a Metadata Broker. It is assumed that the Data Consumer

already knows the URLs of the offered resources. Therefore, the Metadata Broker is not

necessary and the Data Consumer can request an offered resource directly using the

Resource URL. Figure 26 shows the user interface of the data consumption process using the

Resource URL, in which the Data Consumer is presented with the information about the

Representation and the usage policy of the requested resource. After the Data Consumer

accepts the usage policies of the resource, the Data Consumer gains access to the resource

and the resource is added to the Data Consumption Overview page.

50

Figure 26 Pop-up pages that show the data consumption process using Resource URL

4.3.4 IDS Connector Interoperability Assessment for Data Consumer

After the Data Consumer has gained access to the data resource offered by the Data Provider,

the Data Consumer may wish to assess the interoperability between the consumed data

resource and another data resource owned by the Data Consumer. In this case, the Data

Consumer can perform the interoperability assessment process using the Interoperability

Assessment menu of the IDS Connector web application. Figure 27 shows the Interoperability

Assessment page with the required inputs to perform the interoperability assessment process.

51

Figure 27 The three inputs of an Interoperability Assessment process

The first step of the interoperability assessment process is to select the source schema from

a list of consumed resources. The list of consumed resource is identical to the list in the Data

Consumption Overview page depicted in Figure 25. If a specific resource is missing from the

list, the Data Consumer needs to initiate a new data consumption process as explained in

Section 4.3.3.

After the source schema has been selected, the Data Consumer uploads a target schema that

is matched with the source schema. The uploader only accepts CSV as the file type. However,

the uploaded CSV file is not validated until the interoperability assessment is performed. The

Data Consumer has to make sure that the uploaded file only contains comma-separated table

headers that conform to a proper CSV format.

The last input of the interoperability assessment process is the payment information about the

offered data resource. The Data Consumer provides the payment information only if

commercial data is offered. The payment information consists of the two payment models that

can be selected in our prototype, along with the fields that correspond to each payment model.

For example, the recurring payment model requires the Data Consumer to provide the number

of payment intervals and the price per payment interval. The term payment interval is a general

52

term for payment periods, such as weekly, monthly, or annually. This term is used because

the actual payment period may vary across data resources, depending on the usage policies

set by the Data Provider.

After the Data Consumer provides all the required inputs, the interoperability assessment can

be performed by calling the Interoperability Simulator API endpoint described in Table 5. The

assessment results are depicted in Figure 28. The results are composed of the assessment

result from each Matcher. For each Matcher, the result page is divided into two sections that

describe the schema matching result and the pricing calculation result, respectively.

Figure 28 Interoperability assessment results

The schema matching result is further divided into two sections for the matched elements and

the unmatched elements. The Matched Elements section contains a table that lists the

matched pairs from the source schema to the target schema. Each table row represents a pair

of matched elements and its similarity score. The similarity score indicates the syntactic

similarity of the matched pair according to the Matcher, having a value range between 0 and

1. A similarity score of 0 indicates no similarity at all, while a similarity score of 1 indicates an

identical pair.

53

The Matched Elements section also contains another column that can be used by the Data

Consumer to annotate the schema matching results. For each matched pair, the Data

Consumer can decide to accept or reject the matched pair as the correct mapping. By default,

the Interoperability Simulator sets the highest similarity score for each source element mapping

as the correct mapping. Currently the Interoperability Simulator does not have a threshold for

the similarity score as a criterion for a correct mapping. Therefore, it is possible for the

Interoperability Simulator to choose a mapping with low similarity score as a correct pair.

The Unmatched Elements section lists all the source schema elements and the target schema

elements that do not have matches according to the Matcher. The Data Consumer can set an

action to be performed on each unmatched source element. There are two possible actions,

either to leave the source element in its current state or to match the source element with

another unmatched target element. We use the unmatched source element companies.id

in Figure 28 as an example: the Data Consumer can choose to either match it with the target

element actors.entity.id, or to take no action at all.

For each Matcher result, the Data Consumer can generate an interoperability assessment

report that shows a summary of the interoperability assessment result. The report summary

lists all the source elements that have been set as correct mappings, as well as the remainder

source elements that do not have any match with the target elements. An example of an

interoperability scenario report is shown in Figure 29.

Figure 29 Example of interoperability assessment report

54

4.4 DEPLOYMENT USING CONTAINERIZATION
As discussed in Section 2.3, IDS Connectors and their sub-components are deployed using

containerization. The IDS Reference Architecture Model does not prescribe a specific

container runtime for the IDS Connectors (IDSA, 2022), however, we chose Docker Engine as

the container runtime for this research because it is popular8 and because it has supporting

tools, such as facilities for running multiple containers and a dedicated container registry.

According to the concrete architecture in Figure 17, each application component has a specific

set of containers. The IDS Connector application component has two containers that consist

of one IDS Connector application container and one database container. In contrast, the

Vocabulary Hub application component has five containers to run four Matcher applications

and a Vocabulary Hub application that contains the Interoperability Simulator application.

A Docker image is required to run each container. Our prototype uses custom Docker images

for most of the containers. Each custom Docker image is built using a collection of commands

stored in a Dockerfile. For example, the Vocabulary Hub container uses a custom Docker

image named aldidoanta/vocabulary-hub that contains a Django application. The code

snippet below shows the Dockerfile that defines the aldidoanta/vocabulary-hub Docker

image.

FROM python:3.10.12-slim-bullseye

WORKDIR /vocabulary_hub

ENV PYTHONUNBUFFERED 1

ENV PYTHONPATH /vocabulary_hub:$PYTHONPATH

COPY . /vocabulary_hub/

EXPOSE 8000

RUN pip install -r requirements.txt

CMD ["python", "/vocabulary_hub/manage.py", "runserver", "0.0.0.0:8000"]

The custom Docker images are pushed to a public container registry called Docker Hub, under

the namespace aldidoanta9. These Docker images can be downloaded to be reused in

future projects, enabling other software engineers to try the custom Docker images in their own

development environment.

Most containers of the prototype are built using custom Docker images. The only exception is

the database containers that use an existing PostgreSQL Docker image provided by the

Docker Hub10.

The prototype consists of 9 different containers that support different application components

and are automatically deployed using Docker Compose, facilitating the deployment process11.

A Compose YAML file is used as a configuration file in our prototype. The configuration file

8 https://www.statista.com/statistics/1224618/container-platforms-deployed-runtime/
9 https://hub.docker.com/u/aldidoanta
10 https://hub.docker.com/_/postgres
11 https://docs.docker.com/compose/

https://www.statista.com/statistics/1224618/container-platforms-deployed-runtime/
https://hub.docker.com/u/aldidoanta
https://hub.docker.com/_/postgres
https://docs.docker.com/compose/

55

contains information such as the container names, the associated Docker images, the port

mapping for each container, and the environment variables configuration for each container.

Figure 30 shows the container configuration using Docker Compose.

Docker Compose is already sufficient for local deployment of Docker containers, since it only

requires a single configuration file and a few command lines to execute the deployment

process. However, Docker Compose is not suitable for a production-level deployment that

requires fault tolerance and high scalability, since it does not have built-in tools that can support

these requirements.

Each time the codebase of a software component is updated, the corresponding Docker image

needs to be rebuilt and pushed to the container registry. The entire process requires several

command lines that are tedious to execute, especially when rebuilding the Docker image

aldidoanta/mendix-ids-connector that has another dependency to containerize a

Figure 30 Visual representation of container configuration using Docker Compose

56

Mendix application12. To automate the process of building and publishing the Docker images,

the Continuous Integration (CI) approach has been employed.

All artifacts produced in this project, namely the design diagrams, a codebase of the prototype,

a slide deck of the research, and this thesis document, are published as two mirror Git

repositories hosted on the GitLab server of the University of Twente1314.

12 https://github.com/mendix/docker-mendix-buildpack
13 https://gitlab.utwente.nl/aldidoanta/mp-isim
14 https://gitlab.utwente.nl/aldidoanta/mp-isim-frontend

https://github.com/mendix/docker-mendix-buildpack
https://gitlab.utwente.nl/aldidoanta/mp-isim
https://gitlab.utwente.nl/aldidoanta/mp-isim-frontend

57

5. INTEROPERABILITY SCENARIOS
This chapter reports on the Treatment Validation task of the design cycle, in which a validation

model was developed to validate the solution design. More specifically, this chapter describes

how a model of the problem context was developed to support the model of the solution that

has been explained in Chapter 4.

5.1 APPROACH
In a validation model, the model of the solution interacts with a model of the problem context.

This interaction attempts to simulate a situation where a real-life solution interacts with real-life

cases (Wieringa, 2014). In this research, the model of the problem context is the

interoperability scenario that can be assessed using the Interoperability Simulator prototype.

Each interoperability scenario is composed of the following inputs:

1. A CSV file that represents the source schema offered by the Data Provider

2. A CSV file that represents the target schema uploaded by the Data Consumer

3. An optional pricing information

The main goal of this research has been to design and develop an Interoperability Simulator

prototype that can be integrated into an existing data space. In this research, we did not

consider measuring the performance of the Matchers. Therefore, this research does not apply

a quantitative approach by calculating metrics such as precision and recall against a ground

truth.

Three different interoperability scenarios were formulated, each having a unique pair of

schemas (source schema and target schema). Each interoperability scenario assessment

produces both the pricing calculation result and the schema matching results. The Dummy

Matcher is excluded from the schema matching results since it does not perform a proper

schema matching operation as its only purpose is to demonstrate that a Matcher using any

technology can be integrated with the Interoperability Simulator. The schemas for each

scenario have been published on GitHub and can be accessed publicly15.

The schema-matching result has been divided into three sections, where each section

corresponds to the result from a specific Matcher. In a scenario that involves m source elements

and n target elements, the Similarity Flooding Matcher always returns m x n matches. The

interoperability assesment result is be too long to report if a scenario involves a lot of schema

elements. Therefore, the interoperability assessment results presented in this chapter are the

condensed version of the actual results.

Each interoperability scenario is discussed in the sequel.

5.2 “ACADEMIC PUBLICATION” SCENARIO
The first scenario uses flat schemas that are usually found in tabular data. The schemas were

adapted from the example schemas provided by Valentine’s Git repository16. The terms in the

schema elements are related to academic publications, as displayed in Table 6. The

“Academic Publication” scenario simulates a non-commercial data resource. Therefore, pricing

information is not considered in this scenario.

15 https://gist.github.com/aldidoanta/9cdd33787ae90a5401bc0d18957dfb32
16 https://github.com/delftdata/valentine/tree/master/examples/data

https://gist.github.com/aldidoanta/9cdd33787ae90a5401bc0d18957dfb32
https://github.com/delftdata/valentine/tree/master/examples/data

58

Table 6 Source schema and target schema of the "Academic Publication" scenario

Source Schema Target Schema Pricing Information

ID id None

AuthorFirstName author_name

AuthorLastName title

CitedBy cited_by

Title city

Year document-type

DOI

Table 7 Summary of interoperability assessment result of the "Academic Publication" scenario

COMA

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

Title title 0.864 Year document-type

ID id 0.858 DOI city

CitedBy cited_by 0.719 AuthorFirstName

AuthorLastName author_name 0.691

Cupid

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

Title title 1 DOI document-type

ID id 1

CitedBy cited_by 1

AuthorLastName author_name 0.94

AuthorFirstName author_name 0.94

Year city 0.815

Similarity Flooding

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

Title title 0.276 (none) (none)

CitedBy cited_by 0.253

AuthorLastName author_name 0.248

AuthorFirstName author_name 0.244

Year author_name 0.183

ID id 0.136

DOI id 0.136

Table 7 presents the summary of interoperabilty assessment results of the “Academic

Publication” scenario. According to the table, all Matchers can correctly match schema

elements that have identical spelling such as title, id, and cited_by. The Matchers can

59

match these words even though they are written in different case and different order in each

schema.

However, the Matchers show different behaviors when attempting to find a match for

author_name. Cupid and Similarity Flooding match both AuthorFirstName and

AuthorLastName with author_name, while COMA only match AuthorLastName with

author_name. Moreover, Cupid and Similarity Flooding make a mistake by matching Year

with another target element, while Year actually does not have any matches in the target

schema. The matches made by Similarity Flooding also have low similarity scores compared

to the matches made by the other Matchers.

5.3 “DUTCH TO ENGLISH” SCENARIO
The second scenario attempts to simulate a situation in the Dutch logistics domain, in which

the Data Provider provides a schema in Dutch, while the Data Consumer needs to use the

schema in English. This “Dutch to English” scenario uses flat schemas that are common in

tabular data, similar to the previous scenario. The difference from the previous scenario is that

this scenario uses schema elements that are related to the logistics domain, as presented in

Table 8. This scenario also simulates a commercial data resource that requires the Data

Consumer to perform a one-time payment before accessing the actual data.

Table 8 Source schema, target schema, and pricing information of the "Dutch to English" scenario

Source
Schema

 Target Schema

Pricing Information

reisnummer trip_number Payment Model Price

bedrijfsnaam company_name One-time Payment 100

omschrijving company_profile

land company_adress

adres company_status

telefoonnummer company_phone
 company_email

Table 9 Interoperability assessment result of the "Dutch to English" scenario

COMA

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

adres company_adress 0.355 reisnummer company_name

telefoonnummer trip_number 0.308 omschrijving company_phone

land company_email 0.207 bedrijfsnaam company_status

 company_profile

Cupid

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

adres company_adress 0.729 reisnummer trip_number

land company_status 0.791 omschrijving

land company_name 0.787 telefoonnummer

60

land company_email 0.784 bedrijfsnaam

land company_profile 0.752

land company_phone 0.75

land company_adress 0.733

Similarity Flooding

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

reisnummer trip_number 0.249 (none) (none)

adres company_adress 0.225

telefoonnummer trip_number 0.217

telefoonnummer company_name 0.201

bedrijfsnaam trip_number 0.194

land company_adress 0.192

omschrijving company_phone 0.189

adres company_profile 0.186

omschrijving company_status 0.174

omschrijving company_email 0.176

Total Price 100

Table 9 shows the results of the “Academic Publication” scenario. The price calculation result

gives the correct amount of the total price. However, all Matchers have difficulties in matching

the schema elements. COMA and Similarity Flooding give low similarity scores for their

matches, while Cupid gives a higher similarity score even though most of the matches are

incorrect.

The reason behind this behavior is that the Matchers do not have a dedicated dictionary to

translate Dutch words to English words, and vice versa. COMA and Cupid rely on linguistic

approaches that are limited to English word. Therefore, the Matchers can only detect adres

- company_adress as the correct match because the two elements have similar structure

on letters in both languages.

5.4 “NESTED ELEMENTS” SCENARIO
The third scenario simulates a situation where a Data Consumer needs to transform an

arbitrary schema into another schema that uses a standard data model. In this scenario, the

source schema is loosely based on a logistic-domain data model named The Open Trip Model

(OTM)17. Therefore, some of the target schema elements use logistics-related terms such as

trip. The data model specified in OTM is formatted in JSON, while the current prototype only

supports CSV table headers. Therefore, a workaround was applied by flattening the nested

JSON structure using a dot (‘.’) delimiter.

This scenario also simulates a commercial data resource that requires the Data Consumer to

perform recurring payments. Table 10 describes the inputs of the “Nested Elements” scenario,

which consist of the source schema, the target schema, and the pricing information.

17 https://www.opentripmodel.org/

https://www.opentripmodel.org/

61

Table 10 Source schema, target schema, and pricing information of the "Nested Elements" scenario

Source Schema Target Schema Pricing Information

trip_id id

Payment
Model

Payment
Intervals

Price per
Payment
Interval

companies.id status

Recurring
Payment

12 50

companies.name actors.entity.id

companies.description actors.entity.name

companies.role actors.roles

status actors.associationType

Table 11 Interoperability assessment result of the "Nested Elements" scenario

COMA

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

status status 0.782 companies.id actors.entity.id

trip_id id 0.411

companies.name actors.entity.name 0.36

companies.role actors.roles 0.358

companies.description actors.associationType 0.234

Cupid

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

status status 1 companies.name actors.entity.name

trip_id id 0.84 companies.id actors.associationType

 companies.description actors.entity.id

 companies.role actors.roles

Similarity Flooding

Matched Elements Unmatched Elements

Source Target
Similarity

Score
Unmatched

Source
Unmatched

Target

status status 0.319 (none) (none)

companies.role actors.roles 0.251

companies.name actors.entity.name 0.241

companies.description actors.associationType 0.232

companies.id actors.entity.id 0.23

trip_id id 0.22

Total Price 600

62

Table 11 shows the results of the “Academic Publication” scenario. The calculated total price

is correct can be verified by multiplying the number of payment intervals by the price per

payment interval. Compared to the previous scenario that uses a language other than English,

the Matchers in this scenario display a better performance by correctly matching most of the

schema elements. The only exception is the Cupid Matcher that only matches two pairs of

schema elements, while discarding the other pairs as unmatched elements. However, the

Similarity Flooding Matcher still shows the same behavior by giving low similarity scores to its

matches.

63

6. PROTOTYPE VALIDATION
After the potential solution has been developed as a prototype, the next step of the Treatment

Validation task of the design cycle is to validate the proposed solution. This is the last part of

the Treatment Validation task, in which the solution prototype is validated against the intended

goals to solve the identified interoperability problems. Section 6.1 describes the approach

taken to validate the solution, followed by Section 6.2 that reports the results of the validation

approach.

6.1 APPROACH
This research uses the expert opinion approach to validate the prototype (Wieringa, 2014).

Several experts from both the academia and the industry were interviewed for their opinions

about the functionalities of the Interoperability Simulator. They were contacted via email to

schedule the validation interview sessions, which were conducted either in-person and online.

Table 12 lists the participating experts and their affiliations. An ID is used to refer to each

specific expert when explaining the validation results in Section 6.2. Three researchers from

TNO are considered as one single expert (E4), since all of them were interviewed in one

meeting and the meeting notes did not separate the opinions given by each individual.

Table 12 Experts participating in the validation interview sessions

ID Role Affiliation

E1 Researcher and PhD candidate
Department of Industrial Engineering and
Business Information Systems (IEBIS),
University of Twente (UT)

E2 Expert Services eMagiz B.V.

E3 Expert Services eMagiz B.V.

E4

1. Senior Business Consultant - Data
Ecosystem

2. Scientist Innovator
3. Senior Advisor - Data Sharing and

Interoperability

TNO

A validation interview session began with a short presentation about the Interoperability

Simulator and the overview of its architecture. The presentation was followed by a prototype

demonstration using one of the interoperability scenarios discussed in Chapter 5. The expert

played the role of a Data Consumer who wanted to assess the information gap wih a data

asset from the Data Provider. After that, a discussion was conducted to elicit the opinion from

the experts using several questions as discussion pointers.

The validation questions have been derived from the domain-level requirements of the

Software Requirements Specification, which is described in Section 3.2. Table 13 shows the

formulated validation questions based on the domain-level requirements. Domain-level

requirement DoR4 is not included even though it is related to Data Provider’s tasks, because

the requirement has not been fulfilled by the current prototype.

64

Table 13 The questions for the prototype validation interview that are derived from the domain-level requirements

Req-Ref Domain-Level
Requirement

Q-Ref Validation Question

DoR1 The Interoperability
Simulator should help the
Data Consumer gather
the required information
to assess the information
gap.

Q1 Is the gathered information by the
Interoperability Simulator already
sufficient to assess the
information gap in a data space?
To what extent?

DoR2 The Interoperability
Simulator should support
the Data Consumer in
assessing the information
gap using the gathered
information.

Q2 Are the schema matching results
and the cost calculation result of
the Interoperability Simulator
helpful enough for the Data
Consumer to assess the
information gap of the
interoperability scenario? To what
extent?

DoR3 The Interoperability
Simulator should be able
to report the assessed
information gap to the
Data Consumer.

Q3 Is the interoperability assessment
report helpful enough for the Data
Consumer to understand the
required actions to follow up on
the interoperability scenario? To
what extent?

6.2 VALIDATION RESULTS
This section reports on the expert opinions that were elicited during the validation interview

sessions. The opinions are grouped by validation question and are outlined in the following

sections. An additional section is also added to report expert opinions that are not directly

related to the three validation questions. Moreover, the notes taken during the validation

interview sessions are compiled in Appendix A.

6.2.1 Validation Question Q1

Is the gathered information by the Interoperability Simulator already sufficient to

assess the information gap in a data space? To what extent?

The experts stated that the inputs for the Interoperability Simulator prototype are already

sufficient. The displayed user interface for the inputs is logical and straightforward. However,

they agreed that the current inputs are possible under the assumption that the Data Consumer

has already found the Data Provider. If the Data Consumer still needs to discover and find the

Data Providers who are willing to publish their schemas, the inputs of the prototype need to be

revised.

If the prototype uses a standard data model in the interoperability scenario, E1 suggested to

explicitly indicate the usage of the data model, either in the source schema or in the target

schema. Regarding the user interface, E2 recommended an updated user interface that

represents the source schema and the target schema as tables, with the schema elements as

the table rows. E3 mentioned that the current prototype requires the Data Consumer to upload

a new target schema for each scenario. It would be more efficient if the Data Consumer is

allowed to reuse the target schemas that have been uploaded before.

E2 and E3 had differing opinions on the pricing information. E2 argued that the payment

information should be provided by the Data Provider, instead of being provided manually by

65

the Data Consumer. The payment information might be added as additional metadata in the

data resource’s usage policy. On the other hand, E3 argued that the payment information

should be asked after the interoperability assessment report, because the interoperability of

the schema elements has a higher priority than calculating the total price. However, E3 also

agreed with E2 in that the pricing information can also be part of the source schema’s

metadata.

E4 did not make significant remarks regarding the Interoperability Simulator inputs. They

suggested to improve the prototype by handling syntactic metadata such as the data types of

the schema elements and the value constraints for each schema element. They argued that

these syntactic metadata would be useful to improve the prototype performance on the

Schema Matching function.

6.2.2 Validation Question Q2

Are the schema matching results and the cost calculation result of the Interoperability

Simulator helpful enough for the Data Consumer to assess the information gap of the

interoperability scenario? To what extent?

Each expert answered this question by pointing out a specific aspect. E1 made remarks about

how the prototype can compare schemas and show the similarity scores for each mapping. E1

added that it would be better if the prototype displayed a general interoperability score to the

Data Consumer. In this way, the Data Consumer would have a general idea about how

interoperable the scenario is, and the Data Consumer would be able to make adjustments to

the data schema. E1 also commented about the scalability issue that needs to be addressed

by the prototype, once it needs to handle big schemas. However, scalability was out of the

scope of this research. Instead, it has been considered as one of the topics for future work.

E2 argued that a data type definition for each schema element is important to improve the

schema matching results. However, E2 also understood the technical limitations of the current

prototype. This data type definition would be useful for the next iteration of the prototype, in

which the data instances are also used to perform the schema matching operation. E2 also

argued that the Data Consumer should be able to add some notes about the required data

transformation for each matched pair.

Similar to E1, E3 also considered the similarity score on the interoperability assessment results

as useful information to display. However, E3 also gave feedback about the visual

representation of the assessment results. The differences between Matchers should be

highlighted by the prototype to help the Data Consumer decide on the best Matcher to use.

E4 suggested that the prototype should have used context-aware capabilities for its Schema

Matching function. Examples of context would be the data types of the schema elements, or

domain-specific context from IDS Vocabulary Hub that can help match the elements from the

two schemas. Moreover, the interoperability assessment results might be confusing for the

user since they only consist of schema matching results and the similarity scores. The

prototype should interpret the meaning of the results and explain it to the user, so the user can

understand the interoperability assessment results.

6.2.3 Validation Question Q3

Is the interoperability assessment report helpful enough for the Data Consumer to

understand the required actions to follow up on the interoperability scenario? To what

extent?

E1 and E3 had a similar opinion about the interoperability assessment report. E1 said that the

prototype would be more useful if the Data Consumer could specify a list of mandatory and

66

non-mandatory schema elements. This mandatory and optional specification is necessary

because the Data Consumer needs to know if the mandatory requirements for the scenario

have been fulfilled. E3 commented that the Data Consumer needs to know if the schema

matching results have covered all the required elements, either from the source elements or

from the target elements. This schema matching coverage might help the Data Consumer to

understand how interoperable the source schema and the target schema are. E3 also

suggested the usage of dots and arrowed lines to improve the assessment report visualization.

E2 followed up on the answer to Validation Question Q2. In the assessment report, E2

suggested to add another column that describes the transformation steps for each matched

element pair. If this functionality is added, this prototype has more potential to be used as a

semi-automatic schema matching tool that can complement eMagiz current tools.

E4 approved the information representation on the interoperability assessment report.

However, they also argued that data interoperability is a complex problem that cannot be

naively solved using a single software solution. The Schema Matching function of the prototype

is not the final solution to solve all the challenges of data interoperability. Therefore, they

recommended to treat the prototype as a helper tool rather than as the final solution. As a

helper tool, the Interoperability Simulator could give the initial results of the interoperability

scenario that can be understood by the users.

6.2.4 Other Remarks

E2 recommended two approaches to present the Interoperability Simulator idea: to explain the

Interoperability Simulator functionalities as they are, similar to what has been done in the

validation interviews, and to present the Interoperability Simulator functionalities and mention

the potential real-life cases that can be solved by the simulator. For example, a hypothetical

scenario can be presented in which IDS becomes a standard in the European Union. In this

scenario, the Interoperability Simulator can play a role to make data integration processes

more efficient.

E4 are familiar with the IDS business processes. Therefore, they gave feedback about the

position of the Interoperability Simulator inside the IDS business processes. They commented

that the Simulator should belong in the Data Exchange process rather than in the Use IDS App

process. They also argued that the Pricing Calculation function does not fit well with the current

architecture of the prototype. They suggested to use the Pricing Calculation function as a

separate function that works at the business/legal interoperability level.

E4 concluded the validation interview by mentioning potential ideas that can improve the

Schema Matching function of the prototype. One idea is to use domain-specific data together

with large language models such as Generative Pre-trained Transformers (GPT). Another idea

is to use federated learning solutions with CSV files, which is another semi-supervised schema

matching approach similar to what has been demonstrated with the prototype.

67

7. FINAL REMARKS
This chapter concludes the research on the Interoperability Simulator that is reported in this

thesis. Section 7.1 outlines the conclusions of the research, and Section 7.2 points out the

limitations of the current design and prototype of the Interoperability Simulator, along with the

topics for future work.

7.1 CONCLUSIONS
This section gives the conclusions of this research by answering the research sub-questions

that have been formulated in Section 1.2. Each research sub-question is answered in the

sequel.

7.1.1 Research Sub-questions RSQ1

What attributes can be gathered by an Interoperability Simulator to assess the

information gap in a data interoperability scenario? What are the limitations?

The Interoperability Simulator aims to solve an information gap in a data interoperability

scenario, whose definition has been defined in Section 3.1. The definition serves as one of the

references to formulate the software requirements specification, which is subsequently used

to design a reference architecture for the Interoperability Simulator. According to the reference

architecture specified in Section 3.3, the inputs of an Interoperability Simulator consist of the

provided schema from the Data Provider, the requested schema provided by the Data

Consumer, and the optional pricing information that is also provided by the Data Consumer.

The Schema Matching function of the Interoperability Simulator accepts the source schema

from the Data Provider and the target schema from the Data Consumer. Each schema has a

representation of a CSV string that contains table column names as schema elements. Besides

the name of the schema elements, no additional information is provided by the schema.

Moreover, the data instances of the schema elements (the table column names) are also not

taken into account in the Schema Matching function.

The Pricing Calculation function accepts the pricing information that is filled in by the Data

Consumer. We implemented two different payment models, namely the one-time payment

model and the recurring payment model. Each payment model has slightly different pricing

information that must be provided by the Data Consumer. However, the pricing information in

our prototype is very limited and does not reflect the pricing information of commercial data in

real-world cases. Additionally, an expert made a remark that the payment information should

be provided directly by the Data Provider (see Section 6.2.1).

7.1.2 Research Sub-questions RSQ2

Using the gathered attributes from the Data Provider and the Data Consumer, how does

an Interoperability Simulator assess the information gap?

As described in Section 4.2, our Interoperability Simulator consists of the Schema Matching

function and the Pricing Calculation function. Each function is responsible for a specific

calculation and accepts some specific inputs. The Schema Matching function uses the source

schema and the target schema to perform schema matching operations using Matchers. In the

reference architecture presented in Section 3.3.2, each Matcher is deployed as a separate

container from the Interoperability Simulator’s container. The design allows the data space

maintainer to add new Matchers or remove available Matchers, decoupling the Matchers

implementation from the internal workings of the Interoperability Simulator.

The Pricing Calculation function uses the pricing information provided by the Data Consumer

to calculate the total price for the data resource. As mentioned in Section 4.2.2, the current

68

prototype employs a simple multiplication operation to calculate the total cost, depending on

the selected payment model. Moreover, expert suggested to move the Pricing Calculation

function to outside the Interoperability Simulator prototype, as this function is more suitable to

solve legal and business interoperability issues than syntactic interoperability issues.

7.1.3 Research Sub-questions RSQ3

How does an Interoperability Simulator report the assessed information gap to the

interacting organizations?

In our Interoperability Simulator prototype, the results from the Schema Matching function and

the Pricing Calculation function are combined as the interoperability assessment results. The

results are composed of the schema matching results from each Matcher that are grouped by

the matched elements and the unmatched elements. The assessment results allow the Data

Consumer to annotate the schema matching results, both on the matched and the unmatched

elements. The report also shows the total costs of the data resource, in case pricing information

is provided by the Data Consumer.

The annotated schema matching results and the information about the total cost can be

summarized into a single Interoperability assessment report, as depicted in Figure 29. The

report presents the mapping results from the source schema to the target schema, along with

the action that needs to be performed for each source element.

7.2 LIMITATIONS AND FUTURE WORK
This section discusses the limitations of our research from different perspectives and the

potential topics for future work.

7.2.1 Design of the Interoperability Simulator

Regarding the use case of the Interoperability Simulator, there are two intended use cases: to

assess interoperability when a Data Consumer requests data to a Data Provider, and to assess

interoperability when a Data Provider wants to standardize its data resource using a standard

data model. This prototype focuses on the first use case, since it is more general and can be

applied to any data space, even to a data sharing environment that is not based on the data

space concepts. The second case is potential to be realized in a data space where standards

are important. For example, the “Nested Elements” scenario used in Section 5.4 can form a

use case that involves the Vocabulary Hub as the provider of the standard data model.

Figure 12 shows that our Interoperability Simulator has two main business functions. The first

business function (interoperability assessment) has been realized by the design and prototype

of this research. However, the current prototype still lacks the functionality to follow up on the

interoperability assessment results and to recommend the actual interoperability solutions.

This missing functionality is represented as a second business function in Figure 12, which is

out of scope of this research. Additional research can be carried out to investigate this second

business process, to realize a more complete Interoperability Simulator for data spaces.

7.2.2 Input Data

Section 3.1 mentions that an interoperability scenario in an IDS environment happens during

the Data Offering step. Therefore, an interoperability scenario in IDS can only be solved using

schema-level matchers because the Data Consumer has not gained access to the actual data

instances. This research uses CSV table headers to represent schemas because the Matchers

only accepts string-based schema elements without additional metadata such as data type

and type value constraints. These limitations are reflected in the results of different

interoperability scenarios presented in Chapter 6.

69

To improve the schema matching performance of the Matchers, there are some options: (1) to

involve data instances in the schema matching operation, the three instance-level Matchers in

the Valentine implementation can be used as starting point. (2) to use another schema format

that supports metadata, such as JSON schema or XML schemas that use XML Schema

Definition (XSD). These two options can help the Matchers differentiate similar schema

elements based on the differences in their data instances and metadata. However, the two

options require changes to the business process of the Interoperability Simulator, as well as

on the implementation logic of the Matchers.

7.2.3 Matchers

As mentioned in Section 7.1.2, the Matchers are designed to be loosely coupled from the

Interoperability Simulator. However, the Matchers integration with the Interoperability

Simulator is still hardcoded by manually listing the list of the Matchers inside the Interoperability

Simulator codebase. Adding or removing a new Matcher requires minor changes to the

Interoperability Simulator source code. Alternatively, it is possible to use service discovery that

can automatically detect changes to the available Matchers. The service discovery mechanism

does not require the entire system to be restarted, making it a suitable addition to production-

ready solutions.

This research aims to demonstrate the technical feasibility of an Interoperability Simulator for

data spaces. Therefore, this research started at the most technical interoperability layer, which

is the syntactic interoperability layer. In a next iteration of this research, one can consider the

semantic level, utilizing context-aware measures such as using domain-specific vocabularies.

By using vocabularies, the Vocabulary Hub of the current prototype can have an actual

functionality rather than just act as a container for the Interoperability Simulator. Research

should be carried out to investigate the possibility of using domain-specific vocabularies for

schema-matching operations in a domain-specific data space.

70

REFERENCES
Database Group Leipzig. (n.d.). COMA 3.0 | Database Group Leipzig. Retrieved

September 21, 2023, from https://dbs.uni-leipzig.de/Research/coma.html

Do, H.-H., & Rahm, E. (2002). COMA — A system for flexible combination of schema

matching approaches. In VLDB ’02: Proceedings of the 28th International

Conference on Very Large Databases. https://doi.org/10.1016/b978-155860869-

6/50060-3

Firdausy, D. (2023). Designing Essential Components For Logistics Data Spaces:

Connecting Logistics interfaces, Converters, Knowledge, and Standards [University

of Twente]. https://doi.org/10.3990/1.9789036557177

Franklin, M., Halevy, A., & Maier, D. (2005). From databases to dataspaces: A new

abstraction for information management. SIGMOD Record, 34(4).

https://doi.org/10.1145/1107499.1107502

Gewirtz, D. (2016, February 11). Billion-dollar mistake: How inferior IT killed Target

Canada. ZDNET. https://www.zdnet.com/article/billion-dollar-failures-how-bad-

decisions-and-poor-it-killed-target-canada/

Halevy, A., Franklin, M., & Maier, D. (2006). Principles of dataspace systems.

Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems. https://doi.org/10.1145/1142351.1142352

IDSA. (n.d.). International Data Spaces. Retrieved April 4, 2023, from

https://internationaldataspaces.org/

IDSA. (2022). International-Data-Spaces-Association/IDS-RAM_4_0.

https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0

IEEE. (1991). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries. IEEE Press. https://doi.org/10.1109/IEEESTD.1991.106963

Ionescu, A. (2020). Reproducing state-of-the-art schema matching algorithms [Delft

University of Technology]. http://resolver.tudelft.nl/uuid:9f8056e6-cfdf-4240-99e3-

5f45947d1fa7

Koutras, C., Siachamis, G., Ionescu, A., Psarakis, K., Brons, J., Fragkoulis, M., Lofi, C.,

Bonifati, A., & Katsifodimos, A. (2021). Valentine: Evaluating matching techniques

for dataset discovery. Proceedings - International Conference on Data Engineering,

2021-April. https://doi.org/10.1109/ICDE51399.2021.00047

Lauesen, S. (2002). Software Requirements: Styles & Techniques: Styles and

Techniques. In Pearson Education, Essex.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema matching with

cupid. VLDB 2001 - Proceedings of 27th International Conference on Very Large

Data Bases.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching. 18th International

Conference on Data Engineering (ICDE’02).

https://doi.org/10.1109/ICDE.2002.994702

71

Nagarajan, M., Verma, K., Sheth, A. P., & Miller, J. A. (2007). Ontology driven data

mediation in Web services. International Journal of Web Services Research, 4(4).

https://doi.org/10.4018/jwsr.2007100105

Network of the National Library of Medicine. (n.d.). Data Interoperability. Retrieved

March 21, 2023, from https://www.nnlm.gov/guides/data-glossary/data-

interoperability

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema

matching. VLDB Journal, 10(4). https://doi.org/10.1007/s007780100057

Sheth, A. (1998). Changing Focus on Interoperability in Information Systems:From

System, Syntax, Structure to Semantics. In Interoperating Geographic Information

System. https://doi.org/10.1007/978-1-4615-5189-8_2

Sheth, A., & Kashyap, V. (1992). So far (schematically) yet so near (semantically). In

IFIP Transactions A: Computer Science and Technology (Issue A-25).

https://doi.org/10.1016/b978-0-444-89879-1.50022-1

The Open Group. (2022). ArchiMate 3.2 Specification. In Opengroup.org.

https://pubs.opengroup.org/architecture/archimate3-doc/ch-Definitions.html

Wegner, P. (1996). Interoperability.

Wieringa, R. J. (2014). Design science methodology: For information systems and

software engineering. In Design Science Methodology: For Information Systems

and Software Engineering. https://doi.org/10.1007/978-3-662-43839-8

72

APPENDIX A. INTERVIEW NOTES

Expert: Researcher and PhD candidate at IEBIS-UT

Date: 12 September 2023

Is the gathered information by the Interoperability Simulator already sufficient to assess

information gap in a data space? To what extent?

Yes, it is sufficient. The approach is straightforward. I assume the Data Consumer already has

knowledge about IDS and has been onboarded to the data space. And I assume the Data

Consumer has already found the Data Provider, so the required metadata have been present

in the data space. However, if you want to use standard data models such as OTM, you need

to indicate that the Interoperability Simulator is using those data models as the source or the

target data.

Are the schema matching results and the cost calculation result of the Interoperability

Simulator helpful enough for the Data Consumer to assess the information gap of the

interoperability scenario? To what extent?

I like that the prototype can compare schemas, and that it shows the similarity scores for the

schema mappings. It would be nice to visualize the mapping like how eMagiz does in their

software product, so the user can see the schema mapping results and the relationship

between the schema elements better.

For small schemas, this prototype would do enough. However, it needs to have a better

representation to handle big schemas. For example, by having a bigger screen, or only

showing mapping possibilities for one specific schema element. For big schemas, a Data

Consumer might only be interested in a few schema elements instead of the entire schema

elements.

Moreover, it would be nice to have a general interoperability score, to show how interoperable

the scenario is. It will help the Data Consumer assess the interoperability scenario and make

adjustments to the target schema.

Is the interoperability assessment report helpful enough for the Data Consumer to

understand the required actions to follow up on the interoperability scenario? To what

extent?

As I said before, it would be good to put the general interoperability score in the report. It would

be better to have a list of mandatory and non-mandatory elements. These mandatory and non-

mandatory elements might be specified by the Data Consumer at the beginning of the

interoperability scenario. This is necessary because the Data Consumer needs to know if the

mandatory requirements have been fulfilled.

73

Expert: First Expert Services at eMagiz B.V.

Date: 14 September 2023

Is the gathered information by the Interoperability Simulator already sufficient to assess

information gap in a data space? To what extent?

Regarding user interface, the source and the target schemas should be represented as tables.

The source schema as one table, and the target schema as another table. This way, it would

help the user to check the inputs. Moreover, the payment information should be provided by

the Data Provider instead of being provided manually by the Data Consumer.

Are the schema matching results and the cost calculation result of the Interoperability

Simulator helpful enough for the Data Consumer to assess the information gap of the

interoperability scenario? To what extent?

It is essential to have a data type definition for the schema, but I can understand the technical

limitations because you are only using CSV table headers. This data type definition is essential

to differentiate the CSV fields, especially if you are using matcher algorithms that take into

account the data instances. There are real-life cases where the two fields have exactly the

same name (such as ID), but they use different data type (for example one uses string, while

the other one uses integer).

It would also be useful to add options about data transformation, about what exactly should be

done for each matched pair. For example, there is a match for the field Country. One schema

might use two-letter country code, while the other schema uses three-letter country code. It

would be useful if the user can add some notes about the required data transformation for this

case.

Is the interoperability assessment report helpful enough for the Data Consumer to

understand the required actions to follow up on the interoperability scenario? To what

extent?

You can add another column that shows the description of the transformation step that we

discussed in the previous question. This interoperability report is something that can be used

before the actual integration step happens, like what we do at eMagiz. This prototype is

potential to be used for semi-automated matching that can help eMagiz users with their

schema matching tasks, which are usually done manually by the users.

Other remarks

There are two directions for your thesis pitch. The first one is by explaining about the prototype

functionalities like what you just did here, which is a straightforward approach. The second one

is by also mentioning the added value or the potentials for the real-life cases, which would be

more interesting. For example, imagine if IDS becomes a standard in the European Union, and

every organization needs to interact with each other through IDS. The Interoperability

Simulator can play a role in this situation to make data integration processes more efficient.

74

Expert: Second Expert Services at eMagiz B.V.

Date: 18 September 2023

Is the gathered information by the Interoperability Simulator already sufficient to assess

information gap in a data space? To what extent?

The prototype design and the displayed information is quite logical. Regarding the target

schema, it might be useful if the Data Consumer can also choose from a list of the previously

uploaded target schemas. That would make the process more efficient since the Data

Consumer might use the same schema for different interoperability scenarios.

The payment information input should be asked after the final interoperability report, because

the Data Consumer needs to focus on the schema-matching results first, rather than worrying

about the price to access the actual data. Otherwise, as the other expert suggested in the

previous interview, the pricing information should be part of the metadata of the source

schema. It is the responsibility of the Data Provider to provide the pricing details for their own

data.

Are the schema matching results and the cost calculation result of the Interoperability

Simulator helpful enough for the Data Consumer to assess the information gap of the

interoperability scenario? To what extent?

Yes. It is good that you put the similarity scores on the report. Maybe you can improve the

visualization of the schema matching results or show how the schema elements were matched

in a more visual way. Currently your schema matching results are grouped by the Matchers.

However, the user needs to understand the differences between the Matchers, so they can

choose the best Matcher for their use case. You should highlight the differences between the

schema-matching results to help the user spot the differences and decide the best Matcher for

their scenario.

Is the interoperability assessment report helpful enough for the Data Consumer to

understand the required actions to follow up on the interoperability scenario? To what

extent?

As a Data Consumer, you need to make sure that the requirements you set for your target

elements have been fulfilled. You need to know how many of the source elements that have

been matched with the target elements. These numbers might help you as the end-user to

quickly understand how interoperable the source schema and the target schema are. You can

also give a general interoperability score on the report.

To improve the user interface of the report, you can create a representation similar to eMagiz’s

product, where you can use dots and arrowed lines to show the relationship between the

source schema and the target schema. If possible, you can also have a single report combined

from different Matchers. It would help the Data Consumer read all the interoperability

assessment results instead of having to generate a report for each Matcher.

75

Expert: Three researchers at TNO

Date: 26 September 2023

Is the gathered information by the Interoperability Simulator already sufficient to assess

information gap in a data space? To what extent?

Currently it is already sufficient. However, it would be better if the Simulator can handle more

syntactic metadata such as JSON attributes along with the data types and the constraints.

Are the schema matching results and the cost calculation result of the Interoperability

Simulator helpful enough for the Data Consumer to assess the information gap of the

interoperability scenario? To what extent?

It would be good if context-aware results could be provided by the Matchers. The schema

context would improve the performance of the interoperability assessment results. The context

could be anything, such as data types (that was mentioned in the previous question) or domain-

specific context that can give more meaning to the schema elements. This functionality to

involve schema context would be a promising future work for this Interoperability Simulator.

It would also be good if the Simulator can help the end-user understand the results by

interpreting the meaning of the interoperability assessment results. Currently it only shows the

results between the Matchers, without giving a user-friendly explanation about the results.

Is the interoperability assessment report helpful enough for the Data Consumer to

understand the required actions to follow up on the interoperability scenario? To what

extent?

We like your approach on how to present the information in the Interoperability Assessment

Report. However, data interoperability is a complex problem. We cannot be too naive in how

we approach the problem. A schema matching solution is not the final solution to solve data

interoperability problem. Therefore, in an interoperability scenario, we would position your

Interoperability Simulator as a “quick scanner” to show an overall result rather than a detailed

result. We recommend you to focus on this high-level, overall result.

Other remarks

Regarding Interoperability Simulator’s position in the business processes of IDS, the Simulator

should belong in the Data Exchange process rather than in the other processes. Moreover, the

Pricing Calculation function does not fit in the Interoperability Simulator. We suggest removing

the Pricing Calculation function from the Interoperability Simulator and use it as a separate

function that works at the business/legal level of interoperability. The Schema Matching

function of the Simulator can still fit at the semantic/technical level of interoperability.

There are other promising approaches that can be used to improve the schema-matching

results. Domain-specific training data can be trained on large language models such as GPT,

which can be used as a Matcher. There is also this idea of using federated learning solutions

with CSV files. It might not solve the interoperability problem completely, but you can correct

the errors made by the automatic Matcher.

76

UNIVERSITY OF TWENTE

Drienerlolaan 5

7522 NB Enschede

P.O.Box 217

7500 AE Enschede

P +31 (0)53 489 9111

info@utwente.nl

www.utwente.nl

	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	1.1 Problem Statement
	1.2 Objectives and Research Question
	1.3 Research Scope
	1.4 Research Approach
	1.5 Structure

	2. Background
	2.1 Data Interoperability and Data Space
	2.2 International Data Spaces (IDS) Overview
	2.3 IDS System Layer
	2.3.1 IDS Connector
	2.3.2 Vocabulary Hub
	2.3.3 IDS Apps

	2.4 IDS Process Layer
	2.4.1 Data Offering
	2.4.2 Publishing and Using IDS Apps

	2.5 Information Gap
	2.6 Schema Matching
	2.6.1 Schema-level Individual Matchers
	2.6.2 Instance-level Individual Matchers
	2.6.3 Combined Matchers
	2.6.4 Some Matcher Approaches

	3. Solution Design
	3.1 Interoperability Scenario
	3.2 Software Requirements
	3.3 Reference Architecture and Business Processes
	3.3.1 Application Usage View
	3.3.2 Implementation and Deployment View
	3.3.3 Business Processes

	4. Prototype Development
	4.1 Concrete Architecture
	4.2 Implementation of Interoperability Simulator
	4.2.1 Schema Matching Function
	4.2.2 Pricing Calculation Function
	4.2.3 Combining the Schema Matching and the Pricing Calculation Functions

	4.3 Implementation of the IDS Connector
	4.3.1 IDS Connector Data Model
	4.3.2 IDS Connector Data Offering by Data Provider
	4.3.3 IDS Connector Data Consumption by Data Consumer
	4.3.4 IDS Connector Interoperability Assessment for Data Consumer

	4.4 Deployment using Containerization

	5. Interoperability Scenarios
	5.1 Approach
	5.2 “Academic Publication” Scenario
	5.3 “Dutch to English” Scenario
	5.4 “Nested Elements” Scenario

	6. Prototype Validation
	6.1 Approach
	6.2 Validation Results
	6.2.1 Validation Question Q1
	6.2.2 Validation Question Q2
	6.2.3 Validation Question Q3
	6.2.4 Other Remarks

	7. Final Remarks
	7.1 Conclusions
	7.1.1 Research Sub-questions RSQ1
	7.1.2 Research Sub-questions RSQ2
	7.1.3 Research Sub-questions RSQ3

	7.2 Limitations and Future Work
	7.2.1 Design of the Interoperability Simulator
	7.2.2 Input Data
	7.2.3 Matchers

	References
	Appendix A. Interview Notes

