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Abstract
In recent years, the energy transition is posing new challenges for the Dutch electric-
ity grid and its operation. The rapid increase in the number of small scale renewable
energy sources (RESs) such as photovoltaics (PVs) has a significant effect on the
electricity network. Under specific scenarios, the power generation from these de-
vices can be so large that the grid capacity is exceeded which necessitates advanced
control solutions. In residential areas, the lack of synchronisation between peak
consumption and peak production of electrical energy can result in high currents
flowing back into the grid, which in turn leads to an increase in local voltage levels.
Since the structure of the electricity grid was not designed with these current in
mind, this increase in voltage can exceed grid codes. The problem of an increasing
voltage becomes worse with physical distance to the transformer, which may lead to
unfair situations where prosumers further away from the transformer can generate
less power compared to closer prosumers. Fair control mechanisms for this problem
are an active area of research, and often require information on the surrounding
low voltage (LV) grid. As this data is frequently unavailable, algorithms that can
estimate it become essential.

This thesis introduces a lightweight sensitivity estimator designed for the implemen-
tation of fair curtailment algorithms. The estimator’s primary objective is to esti-
mate grid parameters based on phasor measurements, utilizing GPS-synchronized,
real-time data. The design prioritizes computational efficiency to minimize imple-
mentation costs. To achieve this, a Kalman filter approach is employed, ensuring
that the estimator operates autonomously without user intervention.

The performance of the estimator is compared to a benchmark method, and ground
truth data. Using the sensitivity estimation, the voltage prediction is only up to 38mV

RMS more compared to the ground truth voltage prediction. With this marginal
increase in prediction error, this estimator presents a viable solution for applications
like PV inverters, where user interaction cannot be relied upon.
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Introduction 1
Historically, the LV electricity grid in the Netherlands has a radial structure where
power is centrally generated by large power plants connected to the high voltage
(HV) and medium voltage (MV) grids[1]. In this situation, power only flows from
there to consumers on the MV and LV grids. Recently, the energy transition has
resulted in a fundamental change in the power flow however [2]–[4]. Due to the
increase in smaller scale RESs (e.g. PV or wind generation) connected to the MV and
LV grid, a shift towards decentralised energy generation can be observed. This shift
implies that power now has to flow in both directions in the grid. Small amounts
of return currentpose not problems to the the existing electricity grid, however the
increasing number of electrical devices both that produce energy on a local level has
resulted in a significantly increased power injection into the grid which does pose
challenges. In the Netherlands, the number and severity of congestion problems is
already rising due to an increase in renewable distributed energy resources (DERs)
in residential areas [5], [6]. This effect is amplified even more due to the inflexible
nature of RESs compared to traditional power generators. Since the electricity grid
has very little storage capacity, production and consumption has to be balanced
continuously. If this balance is not maintained, blackouts will occur due to the
changing grid frequency [7]. Traditionally centralised power plants provide ancillary
services to achieve this balance, since their power output can be regulated to follow
the energy demand. Energy generation by turbines and solar farms however greatly
depends on the weather and time of the day, resulting in a bigger challenge when
maintaining the grid balance when they take up an increasing share of the energy
generation. Furthermore, balancing the grid from a central generation perspective
is easier since global power demands can be predicted more precisely than local
demands. On the global scale, deviations in power demand cancel with one another
whereas on a local scale a single device turning on or off can result in a relatively
large change in power demand.

An additional challenge with residential PV generation is in the mismatch of peak PV-
production compared to the peak power consumption, illustrated in figure 1.1. It can
be observed that during night hours from 00:00 to 06:00 the power consumption is
relatively low, which can be expected. During the day, the power demand increases,
with an observable peak around 20:00. Furthermore, the energy consumption is
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higher in darker, colder months, as more energy is required for heating and lighting.
Figure 1.1b shows an average of the solar irridiance in recent years. Solar irridiance
is low in the night, and peaks slightly after noon. Furthermore, it is highest in the
summer months and lower winter months. Figures 1.1a and 1.1b illustrate the lack
of synchronisation between solar energy generation and energy consumption in
residential areas. Since the timing of peak solar generation is at a point at which
residential electricity demand is relatively low, locally generated power can exceed
power demands resulting in current flowing back into the grid. Even more so; the
reverse flow can be much higher than the load for which the grid was originally
designed.

(a) Load profile of an average 3.500 kWh residen-
tial connection. Figure taken from[8]

(b) Average solar irridiance in Gelderland from
1991 to 2019. Data obtained from TU Delft’s
meteorological data portal[9]

Fig. 1.1.: Comparison between residential load profile and solar irridiance profile

When current flows back into the grid, local grid voltages increase. Grid codes pose
an upper limit to this increase in voltage. When PV-production is high enough,
this upper limit can be exceeded if no control mechanism is in place to enforce
it. Next to physical limitations, PV inverters are required by law to turn off if
they detect and overvoltage [10] which is often not necessary. Power generation
can be curtailed instead, to minimize the loss in production. Mechanisms that
curtail energy production instead of completely turning the inverter off do exist,
however they often lack the ability to solve the bigger issue on the scale of the
local distribution grid. Changing the power at a certain node affects the voltage
at all other nodes on the feeder. In situations where multiple PV-installations are
connected to the same feeder, the situation can be unfair among prosumers since
the voltage increase becomes more severe with greater physical distance from the
transformer. Installations located at the end of the feeder are curtailed more than
installations that are closer to the transformer. Especially in the countryside, where
distances between connected farms are larger, and PV-installations are sometimes
part of a business plan, unfair curtailment can be very problematic.
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Solutions that curtail power generation fairly among prosumers are therefore an
active topic of research. The techniques that are used for fair curtailment require
some degree of knowledge on the local grid layout and parameters. Their methods
need to know how the nodes in the system are affected by power generation changes
at other nodes. This requires knowledge on the grid layout, as well as the grid
parameters like impedance. This information is often difficult to obtain, or even
unavailable altogether. Curtailment mechanisms that try to control the fairness
as well as the voltage therefore call for additional, real-time measurements and
algorithms that are able to estimate this grid layout information. This thesis covers
such an estimation method to obtain local grid parameters.

1.1 Thesis applications

The problem addressed in this thesis is the estimation of required grid parameters in
the application of residential . This is done within the scope of a research project
titled Fairplay, which is an ongoing project with collaboration of the University of
Twente and other partners. In this project, the fairness in PV-curtailment across
connections on a single feeder is investigated, and curtailment is done as fair as pos-
sible. A test-site is available near Markelo, a village in the East of the Netherlands as
part of the project. The LV-feeder that connects multiple farms with PV-installations
is monitored, and can be used to test any theories.

The goal of this thesis is to contribute towards the fair control method developed for
this project [11] by providing the estimated grid parameters. The control method
is based on sensitivity i.e. the change in voltage at some node in the network as a
result of the change in power at another (or the same) node. With the sensitivity, the
change in voltage can be predicted for a given change in power, which is the core
concept of fair curtailment techniques. Essentially, this sensitivity unveils the relation
between grid nodes and hence the properties of the LV grid. Since the parameter
estimation method of this thesis is intended for use at the inverter, the assumption
is made that phasor measurement unit (PMU)-measurements are available. PMUs
have been used in transmission grids for a longer time, and are now becoming more
and more popular in distribution grids as well due to the challenges that come with
the adoption of RES smart grid and the electrification. The phasor information is
used to make estimations on local grid parameters. One of the project partners,
Smart State Technology (SST) [12], provides the PMUs that are used in this thesis.
This measurement system is explained in more detail in Chapter 3. Furthermore, if
multiple estimators are present at different nodes in a local grid, it is assumed for the
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content of this research that they are able to communicate and that measurement
samples are synchronized among sensors. Together they are able to estimate more
grid parameters.

1.2 Research questions

The problem illustrated above calls for an estimator that is able to determine the
sensitivity in LV grids with PV connections. The goal is for the estimator to be
installed and function in real time (i.e. online) with no additional required user
interaction. The main research question this thesis addresses is therefore:

How can the sensitivity between residential distribution grid connections be
accurately estimated in an online approach?

This problem is subdivided into the following sub-questions:

• How can the sensitivity parameter be modelled?

• What information is needed to estimate the sensitivity?

• How many samples are required to find an accurate estimation?

• To what degree of accuracy can the sensitivity be found by the estimator?

• What hardware is required to run the estimator online?

1.3 Thesis structure

The remainder of this thesis is subdivided in four chapters. First, Chapter 2 presents
background information and related work relevant to this thesis which can be used
to address the first sub-question. Chapter 3 explains the use-case of the thesis and
elaborates on the practical implementation. This section describes the test location
and the sensors that are used, and the data that they provide which is relevant for
the second sub-question. Next, Chapter 4 explains the design of the estimator and
how it functions, and explains the validation method for the results of the estimator,
after which Chapter 5 presents the results of the estimator and compares them
to benchmark results. The information of these two chapters is used to answer
sub-questions three, four, and fife. Lastly, Chapter 6 formulates the conclusions to
the research questions introduced in Section 1.2.
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Background and Related
Work

2
This section provides the background knowledge on which the content of this thesis
is build. Furthermore, related work to the problem is presented here to put the
thesis in perspective. First, some basic information about the electricity grid is
presented in Section 2.1, the three-phase system is explained in Section 2.3, and
the grid regulations are presented in Section 2.2. Next, the overvoltage problem
is explained in Section 2.4 and related work on a solution for it in Section 2.5.
Section 2.6 presents parameter and state estimation techniques, and Section 2.7
presents filtering techniques related to estimators. Lastly, Section 2.8 summarizes
and concludes this chapter.

2.1 Grid structure

To understand the problem addressed in this thesis, knowledge on the structure of the
electricity grid is required. Detailed background information on the Dutch electricity
grid is provided in [13]. Generally, the electricity network in the Netherlands consists
of the following distinct parts.

• The interconnection grid handles transport of electrical energy on a national
level. This interconnection also includes international connections to neigh-
bouring countries.

• The transmission grid connects the interconnection grid to the distribution
grids. Power plants, large turbine parks and very large industrial connections
with powers of more than approximately 10 MVA are connected to this grid.

• The regional distribution grids are the third level in grid hierarchy. These grids
traditionally receive power from the transmission grids. Connected to this
grid are generators like wind turbines and heat-power plants with powers
between 0.3 and 10 MVA. Furthermore it offers connections to large industrial
consumers. This grid provides power to the local distribution grid.

• Lastly, the local distribution grids supply power to the smallest connections in
terms of power. This grid includes all residential connections.
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2.1.1 Grid topology

Different levels of the electricity grid have adopted different network topologies
based on their usecase. In [13], these different topologies are also explained. The
existing topologies are shown in Fig. 2.1. A radial network structure shown in Fig.
2.1a only branches out from the centre. Fig. 2.1b shows a ring-shaped network
containing loops that connecting multiple branches together. Crucially, these loops
are only connected at one point. Meshed grid topologies allow more of these
connections so that the nodes are connected in a mesh structure as shown in Fig.
2.1c. Lastly, a meshed network can have an outlier like in Fig. 2.1d which can only
be reached via one specific node.

(a) Radial network (b) Ring-shaped net-
work

(c) Meshed network (d) Outlier network

Fig. 2.1.: Different possible grid topologies (from [13])

Distribution grids in the Netherlands are generally radially operated like Fig. 2.1a,
meaning that it branches out from the center and does not loop around. This is
also illustrated in Fig. 2.2. In some older cities meshed networks still exist as a
leftover from older electricity grids. The transmission and interconnection grid are
of a meshed structure.

Fig. 2.2.: Structure of a LV-distribution grid in the Netherlands (from [13])
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As can be seen in Fig. 2.2, houses connect to a feeder (illustrated with black
dots on the black lines) which runs to a central transformer (illustrated as a black
square). These feeders are never connected to other feeders. Traditionally, power
was generated at a higher level, resulting in current flowing from the transformers
to the consumers. With the energy transition, DER in residential areas introduce
a shift in power flow, where power is generated locally, and any excess power is
injected back into the grid through the transformer.

2.2 Electricity grid regulations

Devices connected to the grid rely on certain power quality (PQ) assumptions
related to voltage level and balance across phases. In order to enforce PQ in the grid,
distribution system operators (DSOs) have to ensure that distribution grids adhere
to PQ-standards. The EN 50160 [14] specifies the requirements on PQ in Europe. It
incorporates regulations for both voltage limits and phase unbalance. Specifically,
the following regulations on PQ in LV networks apply:

Tab. 2.1.: PQ requirements as stated in NEN EN 50160 (from [14])

Requirement
Voltage - Unom ± 10% for 95% of 10 minute averages during one week

- Unom ± 10% and −15% for all 10 minute averages during one week
Asymmetry - The negative component of the voltage < 2% of the positive component

for 95% of 10 minutes measurements during 1 week
- The negative component of the voltage < 3% of the positive component

for all 10 minutes measurements during 1 week

2.3 Three-phase system

The LV-grid in the Netherlands is a 50Hz , three-phase, alternating current (AC)
system. This system consists of three sinusoidal voltages with a phase difference of
120◦ each. Fig. 2.3 depicts the three phase voltages over time (Fig. 2.3a) and as
phasor representation (Fig. 2.3b).

If the angle between the three phasors is indeed 120◦ and the magnitude of the
phasors is equal, the system is called a balanced system. In practice however,
these phasors can differ from the theoretical definition due to differences in loads
among phases. If the electrical load on phases is different the phase signals may be
attenuated differently resulting in a difference in magnitude, or the angle may be
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(a) Three phase signals over time (b) Three-phase phasor representation

Fig. 2.3.: Three-phase system [13]

changed due to inductive or capacitive loads, resulting in uneven angles between
the phasors. In a situation where the phasors are not equal, the system is called an
unbalanced system.

2.3.1 Fortescue Transform

Analysis on unbalanced phasor systems is difficult. To make analysis on such systems
possible, the Fortescue transform can be used as a simpler representation of the
unbalanced system. In 1918, Charles Legeyt Fortescue presented the method to
express any set of unbalanced phasors in symmetrical components [15]. The meth-
ods splits a power system into positive-, negative-, and zero-sequence components.
The technique applies to any poly-phase system. Considering the example of a
three-phase system, the voltage is subjected to transformation as:

Vabc =


Va

Vb

Vc

 =


Va,0

Vb,0

Vc,0

 +


Va,1

Vb,1

Vc,1

 +


Va,2

Vb,2

Vc,2

 (2.1)

where a, b, and c represent the three phases and 0, 1, and 2 represent the zero-,
positive-, and negative-component respectively. A phasor rotation operator α is then
defined as:

α = e
2
3 πi (2.2)

Note that, α3 = 1 and α−1 = α2. The zero-sequence components are defined to have
equal magnitude and the same angle:

V0 = Va,0 = Vb,0 = Vc,0 (2.3)
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The positive-sequence components are defined to have equal magnitude and a 120◦

phase angle in the counterclockwise direction.

V1 = Va,1 = αVb,1 = α2Vc,1 (2.4)

The negative-sequence components are defined to have equal magnitude and a 240◦

phase angle in the counterclockwise direction.

V2 = Va,2 = α2Vb,2 = αVc,2 (2.5)

Fig. 2.4 gives a visual phasor representation of the sequence components.

Fig. 2.4.: Visual representation of sequence components [13]

With the sequence components defined, Vabc can be written as:

Vabc =


V0

V0

V0

 +


V1

α2V1

αV1

 +


V2

αV2

α2V2

 =


1 1 1
1 α2 α

1 α α2




V0

V1

V2

 (2.6)

An example of how this would look is shown in Fig. 2.5.

Fig. 2.5.: Visual representation of unbalanced system[13]
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As depicted in Fig. 2.5, the unbalanced system is represented by a set of sequence
components that have equal magnitude for all phases, and only differ in angle. In
Fig. 2.5, V0 is also illustrated. In an unbalanced system, the neutral current increases
as the unbalance increases since the phase currents cancel with each other in the
neutral conductor in a balanced system.

2.4 Overvoltage problem

As explained in Section 1, the mismatch in time between peak solar generation
and peak power demand causes power to flow into the grid during periods of high
production. This can cause problems in local LV-grids where the maximum voltage
exceeds network limits. Fig. 2.6 shows a generic model of a LV-grid with houses
connected to a LV-feeder.

Fig. 2.6.: Local LV grid model

With the LV-grid model shown in Fig. 2.6 the overvoltage problem can be illustrated.
In Fig. 2.6, Vs is the transformers voltage, Zi represents the feeder impedance
between neighbouring houses, Zi,N the neutral feeder impedance, ZL,i represents
the impedance of a house to ground, which represents power consumption at a
certain point in time, and PVi represents the PV-installation of a connection i.
During periods of high solar production and low load, the power consumed by a
house is lower than the power generated by the PV-installation resulting in current
flowing from the houses back to the transformer (Ii < 0). Using Kirchhoff’s current
law (KCL) and Kirchhoff’s voltage law (KVL) it can be found that this creates an
increase in voltage at the houses due to the feeder impedance, for instance the
voltage increase at V1 as an effect of a negative I2 current can be found with:

V1 = Vs − Z1I1 (2.7)
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where:

I1 = I ′
1 + I2 (2.8)

Combining Equations 2.7 and 2.8 gives:

V1 = Vs − Z1
(
I ′

1 + I2
)

(2.9)

In Equation 2.9, it can be seen that for a given I ′
1, V1 changes due to changes in I2

proportional to Z1, and that negative I2 currents result in an increase in voltage.

This problem is most severe in rural LV-grids since the cable impedance is high
due to larger distance between connections. Furthermore, houses at the end of the
LV-feeder have a distinct disadvantage compared to houses close to the transformer.
The increase in voltage is more severe at the end of the feeder due to the larger
feeder impedance from the connection to the transformer.

With an increasing PV-penetration in local grids, current injected in the grid also
increases. This in turn increase the voltage more and more, to a point where the grid
limits explained in Section 2.2 are exceeded. Currently, PV-inverters often turn off
when this voltage limit is reached to ensure that the grid regulations are enforced.
This approach has two disadvantages however. First, the inverter generally does not
have to turn off but a reduction in power generation can be sufficient. Section 2.5
will explain this in more detail. Second, since the voltage increases with distance
to the transformer, PV-installations towards the end of the feeder will shut off or
curtail power generation first. This causes unfair production between neighbouring
prosumers.

2.5 Techniques for voltage regulation

The ideal solution to the overvoltage problem is to reduce feeder impedance, so
that any excess solar power that cannot be consumed locally can be distributed
for consumption elsewhere. This can be achieved by utilizing thicker cables, or
multiple cables in parallel. This solution is however very costly and time-consuming
to implement. Another solution is to implement local energy storage to reduce
current in the feeder and move electricity in time to where it is consumed. Various
research is being done on residential energy storage [16], [17]. While results in this
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direction are promising, storage solutions are also costly to implement. The cost
of batteries for instance adds to the cost of the total system, increasing the cost of
investment for customers.

A cost-effective solution is to reduce the output power of PV inverters when grid
limits are exceeded. This is often called active power curtailment (APC), which
requires an algorithm that minimizes curtailment, but keeps the grid within the
allowed limits. Some applications of APC will be discussed here.

In both [18] and [19], a reactive power based control strategy is proposed to regulate
the grid voltage. They only take into account single-phase inverters however, and
requires a 10% over-sizing ratio of the PV inverters. Furthermore, voltage control
based methods outperform reactive power based methods since the distribution
network is more sensitive to changes in active power due to the high R/X ratio
[20], [21]. A method based on optimal power flow (OPF) is proposed in [22]. This
method minimizes energy loss, making it an efficient solution if variations in power
delivery across multiple PV inverters is not an issue.

Previously mentioned regulation methods [18], [19], [22] achieve their goal of
adhering to voltage regulations by reducing solar power, however they all fail to
curtail individual PV installations equally. Prosumers in more sensitive parts of
the grid are curtailed more, making these algorithms unfair to some prosumers.
Solutions to this unfairness problem exist in the form of methods that regulate the
power generation while keeping this fairness among prosumers in mind. These
methods divide curtailment among contributing parties, and often work at the cost
of some additional curtailment [23]. These methods are more suited for residential
areas where stakeholders could otherwise be at a distinct disadvantage compared to
their neighbours.

[24] proposes a method to distribute curtailment fairly across all prosumers. The
method uses droop control to achieve this, and is able to realize fair curtailment.
[25] adopts a decentralized volt-watt and volt-var control scheme with equal curves
for all connections to enforce fairness. Various OPF-based methods are proposed in
[26]. It also uses Jain’s fairness index [27] to assess the achieved fairness of multiple
methods. While [24], [25], and [26] all achieve some degree of fairness among
prosumers, the energy loss of the APC methods is higher compared to other, non-fair
methods.

This research aims to contribute to the APC method proposed in [11] which is a fair
APC method that also aims to balance the phases in the grid. The method combines
overvoltage control with neutral current compensation and achieves a balanced grid
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with fair curtailments among prosumers. For an implementation of this method,
knowledge of local grid parameters is essential, which is the scope of this thesis.

2.6 Parameter and state estimation

APC algorithms can be used to control the power output of PV-generators, however
they often require the local grid parameters and/or topology to be known. These
required parameters are often unknown to the inverter, or can even be unavailable
since DSOs do no make this information publicly available. This section presents
related work on estimating the required parameters. Estimations generally fall into
either of two categories, parameter estimation or state estimation. Algorithms that
combine both estimations techniques also exist.

2.6.1 Parameter estimation

Parameter estimation is the process of estimating unknown parameters in a system
based in measurements on the system. In the application of this thesis it is used
to estimate grid parameters around the point of interest. Generally, the interest
lies in knowing line impedances in a local network or the combined Thévenin grid
impedance.

An overview of existing impedance estimation methods and comparisons between
them are provided in [28]. The estimation method can be either active- or passive.
Passive methods do not disturb the system and perform measurement based analysis.
Active estimators have the ability to actively control the system. While this generally
yields more accurate results, it is invasive to the system. Furthermore, in an applica-
tion where both parameter estimation and state estimation (SE) (Section 2.6.3) is
required, typically either of two approaches is used: 1) joint estimation, in which
a single, more complex estimator for both parameters and states is used; 2) dual
estimation, where different, individual estimators tailored to either state estimation
or parameter estimation are used for both estimations [29].

A parameter estimator for supply impedance of grid-connected inverters is proposed
in [30]. It includes a sophisticated method to estimate the inductance, that includes
variations in supply inductance. An automated method to estimate all impedances
in a local network is proposed in [31]. It does however require the topology of the
local network, and computes all impedance values, so this method is better suited
to an application where one single computation unit computes the parameters for
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a whole neighbourhood. [32] analyses harmonic impedance estimation for grid
parameters. They conclude however that load models should be very accurate
for harmonic estimation to function properly, which is information that is often
unavailable. Finally, [33] proposes a hybrid event based estimation method. The
method consist of observing the voltage until a certain change in magnitude triggers
an event. The event will enable the active estimation method, which means that
PQ variations are only induced by the system shortly after events. The method
produces accurate results, and with less PQ disturbances compared to other active
methods, however since it is an active method it is not applicable in all situations.
Grid disturbances caused by the method are not always desired, and hardware for
them is also not always available.

2.6.2 Thévenin equivalent

A subclass of parameter estimation has to do with estimating the Thévenin equivalent
(TE). The grid can be modeled from the inverters perspective with the TE as shown
in Fig. 2.7. Zload represents the impedance of the house, and Vth, Ith, and Zth

represent the grid to which the house is connected.

Fig. 2.7.: Thevenin equivalent model

Various least squares based TE estimation methods exist. A robust linear method is
proposed in [34], that has increased accuracy over a classical least squares method
since it assumes additional noise in the measurements. Similarly, [35] demonstrates
both a linear and non-linear recursive least squares algorithm, where the non-linear
variant provides more accurate results at the cost of an increase in required compu-
tation power. A bigger scale TE estimator is proposed in [36], where the method
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is tested on a multiport IEEE bus system. This method is suited for a centralized
estimation application, and requires synchronised phasor measurements.

A PMU based method that is able to make an accurate estimation is proposed in
[37]. It does however require PMU measurements from all system busses. Since this
is not always possible, they propose to do a state estimation before doing the TE
estimation. A method which takes phase drift into account is proposed in [38]. This
method also only relies on a single PMU measurement at the bus of interest, making
it an interesting option for distributed systems that each compute their own estimate.
Similar to [38], the method proposed in [39] also only relies on measuring phasors
at the point of common coupling (PCC). It induces active variations in power at the
node and computes resistive and inductive line impedances based on samples with
different power delivery. It shows that the method becomes more accurate if the
difference in power between the samples is larger.

The TE provides a computationally efficient solution for some applications, since
estimating it often is relatively straightforward. It might for some applications
simplify the system too much, however. Changes in the topology of the grid will
have an immediate effect on the estimation, and especially when energy can come
from multiple DERs and/or the local transformer, only knowing the TE might not be
sufficient. A potentially problematic scenario is shown in Fig. 2.8.

Fig. 2.8.: TE problematic scenario

Suppose there is a connection of interest in a local grid as shown in Fig. 2.8 at which
the TE is estimated. In this specific scenario, the connection is relatively close to the
transformer, and there is another connection much further down the feeder with a
PV installation. The power consumed by the connection of interest is provided by
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the transformer when solar generation is low, and the PV installation further down
the feeder provides the power when solar generation is high. In both situations the
TE can be computed, however they will differ significantly, because of the difference
in feeder length to the transformer and the PV installation. Depending on the
application, this can induce problems, since the parameters no longer represent
what is expected. Algorithms that need some time to stabilize could have a period in
which the estimation is changing from one state to another when the power flow
switches. Furthermore, the application should be aware that the estimation changes
over time, and is not constant anymore.

2.6.3 State estimation

State estimation (SE) is the field of determining the state of a complex system, based
on the available measurements of the system. States can include things like the
position, orientation, and speed of a drone, or the voltages, currents, and impedances
of a network. A lot of research is available on the topic of SE. An overview of relevant
work within the field of power systems was published by an IEEE task-force on Power
System Dynamic State and Parameter Estimation, which also provides a unified
framework for future work [29]. It subdivides SE algorithms in a few distinct groups,
dynamic state estimation (DSE), forecasting-aided state estimation (FASE), tracking
state estimation (TSE), and static state estimation (SSE).

Dynamic State Estimation
In DSE, states of dynamic system are estimated using state space equations:

xk = f(xk−1, yk−1, uk, p) + wk (2.10)

zk = h(xk, uk, p) + vk, (2.11)

where xk is the system state vector, yk the algebraic state vector that includes inputs
of the system that are not tracked as states, zk the measurement vector, uk is the
system input vector, p are the model parameters, f is the non-linear state transition,
h is the non-linear measurement function, and wk and vk are the noise, usually
assumed to be normally distributed zero-mean. [29]

DSE algorithms often make predictions for the state, based on previous measure-
ments. Various filter types within the Kalman filter framework (Section 2.7) are
used for the estimation. These filters typically consist of two steps, an predict step
based on 2.10 and a update step based on 2.11.
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Forecasting-aided state estimation

FASE is an application of DSE where the dynamics of xk are sufficiently small to be
neglected, and the state-transition is assumed to be linear, resulting in:

yk = Akyk−1 + ζk−1 + wk (2.12)

zk = h(yk, p) + vk, (2.13)

where Ak is the state transition matrix, and ζk−1 is the trend vector [29].

FASE works well under Quasi-steady-state operating conditions, where states evolve
smoothly. During transient conditions however, it may take some time to adapt to
the new situation [40].

Tracking state estimation

TSE assumes Ak in 2.12 to be the identity matrix, reducing Equation 2.12 to:

yk = yk−1 + wk. (2.14)

In TSE implementations, the state remains unchanged during prediction steps except
for additive noise wk.

Static state estimation

SSE is a further simplification of TSE where the prediction step is omitted entirely.
Therefore it has no memory of previous states, and is not able to track system
dynamics like DSE. It can work very well in the presence of quick changes however.

Applications of DSE

[41] proposes a non-iterative SE algorithm for grid state estimation. Due to it being
non-iterative, the computational burden is lower compared to Monte Carlo solutions.
An overview of distribution system state estimators is presented in [42]. Differences
between various methodologies are discussed, as well as their use cases. Since a lot
of DSE methods involve some form of a state tracking filter, more applications of
DSE are mentioned in Section 2.7. Most of these state tracking solutions rely on
PMU measurements for the measurement step of the filter.
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2.7 Filtering techniques

For state estimation, state tracking filters are often used to estimated states over
time. Depending on the application these filters use measurements of the states,
or related parameters to the state they try to estimate. Since these measurements
always include noise, a filter that deals with this noise is required to make an
accurate estimation. The noise characteristics of the measurements is used in the
estimation process. Perhaps the best known filter option is the Kalman filter family.
Originally, the Kalman filter was used to track linear states in problems in which
noise is Gaussian [43]. Various advancements in the research field have extended the
filter family to much more problems, however. The following sections will elaborate
on existing filter types.

2.7.1 Traditional Kalman filter

As mentioned, the traditional Kalman filter (KF) is an optimal filter that can be used
to track states in a linear process of the form:

x(n + 1) = Fx(n) + w(n), (2.15)

where x(n) is the state vector of the process at time n, F is the state transition matrix
of the process and w(n) is the noise in the process with known covariance. The filter
models measurements of the form:

z(n) = Hx(n) + v(n), (2.16)

where z(n) is the measurement vector at time n, H is the measurement matrix
which connects the state vector x(n) to the measurement vector, and v(n) is the
measurement error with known covariance.

If the process is of the form described in 2.15 and 2.16, the Kalman filter can estimate
the states based on the measurements and using the known characteristics of the
noise. The filter works in two distinct steps, the predict step and update step.

Predict step

The predict step uses the state transition matrix F to predict the next state based on
the previous state. Equation 2.17 shows the state prediction equation where u(n)
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is the prediction control input and G is the control matrix which maps the control
input to the state vector.

x(n + 1) = Fx(n) + Gu(n) (2.17)

Additionally, the Kalman filter keeps track of the uncertainty of the state estimate.
Since the noise in both the process and the measurement is known, the uncertainty
can be updated at every filter step. Equation 2.18 shows the uncertainty prediction
equation where P (n) is the uncertainty matrix, and Q is the process noise matrix.

P (n + 1) = FP (n)FT + Q. (2.18)

With equations 2.17 and 2.18, the filter makes a prediction of the states based on
the previous state.

Update step

The update step of the Kalman filter uses a measurement to update the state estimate
and its uncertainty. Equation 2.19 shows the state update equation where K is the
Kalman gain matrix.

x(n) = x(n − 1) + K(z(n) − Hx(n − 1)) (2.19)

The Kalman gain is a measure of confidence that the filter places in both the state
prediction and the measurement. K always has a value between 0 and 1. Based on
the uncertainty of the prediction and the noise characteristics of the measurement,
K is used to determine how much confidence is placed in a new measurement. If
K is low, more confidence is placed in the prediction and/or the measurement is
considered very noisy. If K is high, more confidence is placed in the measurement
and/or the measurement is considered very accurate.

Equation 2.20 shows the update equation for the state uncertainty matrix. As shown
in equation 2.20, K is also used to update the uncertainty in the state vector.

P (n) = P (n − 1) − KHP (n − 1) (2.20)

Finally, the equation to obtain K is shown in equation 2.21 where R is the measure-
ment noise matrix.

K = P (n − 1)HT (HP (n − 1)HT + R)−1 (2.21)
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As can be seen in equation 2.21, K is essentially of the form K = P
P +R for every

state in the state vector, which shows where the value ranges from 0 to 1 comes
from. If R ≫ P then K → 0 and if R ≪ P then K → 1.

In an application the flow of the filter is as shown in Fig. 2.9.

Fig. 2.9.: Flow of the Kalman filter in an application

The filter has to be instantiated with an initial estimate. Then, predict and update
steps are taken to track the estimate. A prediction step consists of two parts; predict
the state (equation 2.17) and the uncertainty (equation 2.18). An update step
consists of three parts; compute the Kalman gain (equation 2.21), update the state
(equation 2.19) and the uncertainty (equation 2.20).

Depending on the application, predict- and update steps are run one after the other,
or multiple predict steps are run before an update step. This is especially relevant
in applications where an accurate state estimation is needed at a much higher
frequency compared to the measurements. The state can be predicted every time it
is needed, and updated every time a measurement is available.

Applications of Kalman filter (KF)

In [44], a regular KF is used to filter a grid resistance and inductance estimate.
The authors chose to limit the number of system states, because it results in a filter
that is easier to tune for practical implementations. [45] demonstrates that a KF
is able to track impedance of the human body over time. Although the application
is different, it shows that the KF is able to track the impedance as a state. Most
applications however include more complex states in the filter, which make the
linearity constraint of the KF problematic.
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2.7.2 Extended Kalman filter

The extended Kalman filter (EKF) is as the name applies an extension to the original
filter. It enables the filter to be used in applications where the process and measure-
ment forms are nonlinear as shown in equations 2.22 and 2.23 where f and h are
nonlinear differentiable functions.

x(n + 1) = f (x(n)) + w(n) (2.22)

z(n) = h (x(n)) + v(n) (2.23)

Since the process is no longer linear, some changes have to be made to equations
2.17, 2.18, 2.19, 2.20 and 2.21 also have to change to accommodate for this. The
changes are to the state transition matrix and the measurement matrix as shown in
equations 2.24 and 2.25.

F (n) =
(

∂f

∂x

)
(2.24)

H(n) =
(

∂h

∂x

)
(2.25)

Note that F and H are now no longer constant as in the linear implementation, but
linearization in a moment in time. It should also be noted that the filter is no longer
optimal due to the linearization.

Applications of extended Kalman filter (EKF)

The EKF is a very popular state tracking filter. For many applications it strikes a
good balance between computational complexity and accurate modelling. [46]
shows an application of EKF for estimating grid impedance and voltage. However,
the filter is limited to inductive-resistive networks, as their grid model does not
include capacitive components. [47] shows a similar application, and also utilizes
an EKF to estimate impedances. Both [46] and [47] acknowledge that tuning
the filters is a trial and error procedure that could be a time-consuming task in a
practical implementation. In [48], multiple test cases of specific bus events are
tested which show that EKFs can be used in more extensive power system state
estimation applications. Similarly, [49] demonstrates the filters capabilities in a
battery impedance tracking application, which features an impedance changing over
time.
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2.7.3 Unscented Kalman filter

The EKF can be viewed as a first order approximation of the process. The unscented
Kalman filter (UKF) tries to address the problems that come with this [50]. It is an
extension of the unscented transformation where sigma points are used to calculate
the statistics of the random process and noise variables. Where in the EKF only
one point is propagated to the nonlinear process model, the unscented Kalman
filter (UKF) propagates multiple points. Usually, 2n + 1 points are used, where n is
the dimensional of the state space. When these points are propagated through the
process model, the random variable statistics are computed from the propagated
points. The fact that multiple points are used instead of only a single point makes
this filter type more accurate compared to the EKF [51].

Applications of unscented Kalman filter (UKF)
In [52], multiple variants of Kalman filters are tested for a multi-area distributed
state estimation. While both the regular KF and EKF implementations also yield
acceptable results, the UKF implementation has the lowest estimation error, since it
is better suited to the non-linear application of the large area. [53] does a similar
experiment, comparing the performance of an EKF to an UKF in a distribution net
state estimation application. The results are very similar between the two filters,
indicating that an EKF implementation can be better suited to a problem, especially
since it is computationally more efficient.

2.7.4 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a particular adaptation of the KF that is useful
applications with a lot of states to track. It is a Monte Carlo implementation that
approximates the regular KF. The state distribution is represented by a sample,
or ensemble, which is propagated through time. This ensemble is a dimension
reduction of the state, making this filter computationally feasible for very high
dimensional problems. [54]

Applications of ensemble Kalman filter (EnKF)
Since the EnKF is particularly useful in situations where a lot of states have to be
tracked, the applications here are slightly different compared to the application
of this thesis. [55] and [56] both demonstrate the benefits of an EnKF in high
dimensional applications. The EnKF is used for both parameter estimation and state
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estimation in these two papers. Additionally, [55] compares the performance to an
EKF shortly. Background information on the EnKF is explained very thoroughly in
this paper as well, so readers that are interested in the technical parts of the EnKF
are pointed to [55].

2.7.5 Particle filter

A well known alternative to the KF is the particle filter (PF). Similar to the EnKF this
is a filter that relies on sequential Monte Carlo methodology to estimate the state.
Since it does not assume linearity it is more flexible compared to a KF, however this
comes at the cost of required computation power [57].

Applications of particle filter (PF)
In [58], a particle filter is used to do parameter estimation in a non-linear process.
It demonstrates superior performance compared to an EKF, however CPU load for
the PF is almost 50% higher compared to the EKF. [59] uses a PF to estimate the
phase angles in a distribution grid. In this application, the filter is implemented on a
low cost microprocessor, demonstrating that efficient computation of such a filter is
possible.

2.8 Conclusion

As the amount of DERs increase, and PV-penetration in residential areas rises,
local overvoltage problems can occur during specific times in a day. This results in
inverters turning off if no solution to this problem is implemented. This is especially
problematic for connections towards the end of the feeder, since their inverters
experience overvoltage issues first. APC algorithms can be used to make curtailment
as efficient and fair as possible, however these algorithms often require information
of the surrounding grid. This information is often not available or very difficult to
obtain, creating a need for algorithms able to estimate the required information.
The remainder of this thesis will present a lightweight KF solution to estimate grid
parameters based on PMUs measurements.
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Use-case 3
This Chapter details the test site and sensor platform that is utilized to test the
proposed estimator this thesis. Section 3.1 elaborates on the test site layout and
what information is available on the LV cables. Sections 3.2 shows the sensors that
are used and the available data.

3.1 Test site

As part of the Fairplay project, a rural LV-feeder near the village of Markelo in
the east of the Netherlands is equipped with some PMU sensors from Smart State
Technology (SST) [12]. In the feeder, two connections are equipped with PMUs, and
unmeasured connections are present on the feeder before, in-between, and after the
measured connections. There are no sensors at the transformer. The data of these
sensors can be accessed through their internet connection. The test site is shown in
Figure 3.1.

Fig. 3.1.: Test site location
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Annotated in Figure 3.1 are the two measured connections A and B, and the MV-
LV transformer T. As can be seen in the figure, there are additional unmeasured
connections between the transformer and node A and B, in between node A and
B, and after node A and B. The information on the specific cables is available in
the form of grid documentation. The file that specifies the lengths and types of the
cables is shown in Figure 3.2.

Fig. 3.2.: Cable information file

As in Figure 3.1, in Figure 3.2 A, B, and T again depict the measured connections
and the transformer. Each of the cable segments shown in Figure 3.2 contains
information on the length and type of the cable, from which the grid parameters
can be obtained. Figure 3.3 shows a graphical model of the test site.

Since the cable type and length for ZA, ZB, ZF A, and ZF B is known, the theoretical
impedance from transformer to A and A to B can be determined. The cable infor-
mation is shown in Table 3.1. ZB consists of 2 different cable types, as indicated in
Table 3.1 by ZB1 and ZB2.

Tab. 3.1.: Cable types and lengths on site

Cable type Length (m) Cabletype Impedance (Ω/km) Cable impedance (mΩ)
ZA 1166 GPLKh 4x6mm2 Cu + 4x1.5mm2 Cu 47 3.061 + 0.1i 143.867 + 4.7i

ZB1 1182 GPLKh 4x10mm2 Cu + 4x1.5mm2 Cu 10.999 1.837 + 0.088i 20.205 + 0.968i

ZB2 1166 GPLKh 4x6mm2 Cu + 4x1.5mm2 Cu 98.435 3.061 + 0.1i 301.310 + 9.844i

ZF A 1428 VMvKh 4x50mm2 Al + 4x2.5mm2 Cu 135.585 0.641 + 0.085i 86.910 + 11.525i

ZF B 1428 VMvKh 4x50mm2 Al + 4x2.5mm2 Cu 159.603 0.641 + 0.085i 102.306 + 13.566i

This information on the cables is used in Section 5.2 to validate the results of the
estimator.
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Fig. 3.3.: Graphical model of the test site

3.2 Sensor system

The test site is equipped with GPS-synchronized PMUs made by Smart State Tech-
nology (SST). The sensors contain an Orange-PI, a Raspberry-PI like Arm single
board computer with a shield that contains an additional microcontroller. The mea-
surements are synchronized to a GPS-beacon with a phase locked loop estimation
algorithm.

On the two measured connections, the voltage and current for each phase, including
the neutral, is measured at a frequency of 4kHz. These values of voltage and current
are then used by the many available included DSP solutions to calculate phasors,
frequency, RMS, thd, and much more. For this thesis, the calibrated phasors are
used.

3.2.1 PMU data

The PMU data used for the experiments of this thesis is measured with the sensors
from SST. It consists of 4 current- and voltage-phasors for each of the two measured
LV prosumers, three for each phase and one for the neutral. The data from the
sensors can be accessed via their network connection. SST provides a web portal
shown in Figure 3.4 where the data can be visualized and downloaded. Data can
also be streamed using an API.
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Fig. 3.4.: Data portal for the PMUs (from SST [12])

Almost 12.5 million samples are gathered from all available sensors in different
times of the year 2023. The periods of data that are used are:

Tab. 3.2.: Available data periods

Start End Duration File-size (MB)
March 20 13:06:35 March 20 13:06:50 00:00:15 0.464
March 20 13:08:02 March 20 13:09:05 00:01:03 1.858
March 20 13:12:26 March 20 13:13:27 00:01:01 1.669
March 20 13:14:29 March 20 13:21:39 00:07:10 9.175
March 20 13:21:59 March 20 16:43:40 03:21:41 29.986
March 22 10:46:53 March 22 21:12:16 10:25:23 104.014

April 21 09:09:22 April 21 17:04:23 07:55:01 875.441
May 24 16:41:43 May 26 10:48:48 42:07:05 4,671.101
June 06 01:25:58 June 06 19:31:06 18:05:08 1,999.147

It can be observed in Table 3.2, that there is data missing for March 20th, with
gaps of a few minutes between the measurements. Furthermore, the file-size is
not consistent with the covered duration of the file for the data from March 22nd.
It spans almost 10.5 hours, however the file-size indicates that a lot of data is
missing.

Using these measurements, the online behaviour of the estimator is simulated in a
controlled way. The information available to the estimator is identical to the real
world application, and the same recorded data is used by benchmark estimators to
provide a fair comparison.
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Estimator design and design
choices

4
The method of the online parameter estimator is explained in this chapter. First,
in Section 4.1, the sensitivity parameter will be defined. Section 4.2 explains the
design of the estimator. Next, Section 4.3 explains the noise characteristics of the
measurements. Section 4.4 explains how the estimator is made robust to both one-
and three-phase devices. Lastly, Section 4.5 explains the benchmark estimations
techniques to which the estimator results are compared.

4.1 Sensitivity

The method of APC that inspired this thesis utilizes the sensitivity from one LV-
connection to another. The term sensitivity is defined in [11] as:

ξkj
a,P (t) =

∆V kj
aN,P (t)

∆P j
a (t)

(4.1)

where ξkj
a,P (t) is the sensitivity at time t at phase a in the network, ∆P j

a (t) is the
change in power at node j, and ∆V kj

aN,P (t) is the change in voltage at node k. The
sensitivity is thus defined as the changed in voltage at node k due to the change in
power at node j. For this thesis, the definition of sensitivity is changed slightly, from
change in power to change in current, since it incorporates the same information
and now has a direct analogy to impedance.

ξkj
a (t) = ∆V k

a (t)
∆Ij

a(t)
(4.2)

The sensitivity ξkj
a (t) is now the change in voltage at time t in phase a and at node k

as an effect of the change in current at time t in phase a at node j. Knowing this
value enables the prediction of a certain required change in current at node j so
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that the voltage at node k reaches a desired value. Furthermore, this sensitivity is
divided in its real and imaginary part:

ξkj
a,real(t) = ∆V k

a (t)
∆Ij

a,real(t)
(4.3)

ξkj
a,imag(t) = ∆V k

a (t)
∆Ij

a,imag(t)
(4.4)

Theoretically, the sensitivity values are constant, since they represent an impedance
in the network. In real-life applications however, changes in power consumption at
other nodes add noise to the measurements.

4.2 Estimator

The estimator is an implementation of a Kalman filter, with a variable measurement
variance based on the measured difference in power. The choice for a KF is made
to keep the application deployable in an online, distributed fashion on lightweight
hardware. Furthermore, the filter should be sufficient since the sensitivity is constant.
A KF is able to estimate the value of a constant with noise in the measurements.

The filter equations are shown and explained in the following sections. In all
equations, x denotes the state vector, P the estimate uncertainty matrix, F the state
transition matrix, G the control matrix, u the prediction control input variable, Q

the process noise matrix, H the measurement matrix, and R the measurement noise
matrix. x′ and P ′ denote the state and uncertainty after the prediction step, and x

and P denote them after the update step.

4.2.1 State vector

The state vector x of the estimator is defined as:

x =


ξv,real

ξv,imag

v

 (4.5)
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where ξv,real is the sensitivity with respect to the real current, ξv,imag is the sensitivity
with respect to the imaginary current, and v is the voltage phasor at the position of
interest.

4.2.2 Predict step

The general KF equations for the predict step are:

x(n + 1) = Fx(n) + Gu(n) (4.6)

P (n + 1) = FP (n)FT + Q (4.7)

The state transition matrix F is defined as the identity matrix, which means that
Fx(n) simply copies the previous state to the next prediction. The control input u(n)
is used as:

u(n) =
[

∆Ireal

∆Iimag

]
(4.8)

The control matrix matrix G can then be defined as:

G =


0 0
0 0

ξv,real ξv,imag

 (4.9)

where ξv,real and ξv,imag are the current sensitivity estimations from the state vector.
This means that the current sensitivity estimations are used to predict the voltage
for the next step.

Lastly, the process noise matrix Q is defined as:

Q =


γξv,real

0 0
0 γξv,imag

0
0 0 γv

 (4.10)

A non-zero number for γξv,real
, γξv,imag

, and γv results in an increase in uncertainty
for the estimation every step, through Equation 4.7. This means that the estimator
cannot get stuck on a wrong parameter. The values have to be chosen sufficiently
small enough to let the filter approach to a correct estimate.
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4.2.3 Update step

The general KF equations for the update step are:

K = P (n − 1)HT (HP (n − 1)HT + R)−1 (4.11)

x(n) = x(n − 1) + K(z(n) − Hx(n − 1)) (4.12)

P (n) = P (n − 1) − KHP (n − 1) (4.13)

Measurements for the filter are defined of the following form:

z =



ξv,real

ξv,imag

v

∆Ireal

∆Iimag


(4.14)

The measurement contains the sensitivities with respect to the real and imaginary
current. The noise around these parameters is filtered out by the estimator. Next
to this, the measurement vector also contains v, which is used to update the state
vector. Lastly, the measurement vector includes ∆Ireal and ∆Iimag, which are used
to determine the confidence in the measurement.

The measurement matrix H is:

H =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


(4.15)

which copies all measured states to the state vector. The measurement noise matrix
R is defined as:

R =



α 0 0 0 0
0 β 0 0 0
0 0 σ2

v 0 0
0 0 0 0 0
0 0 0 0 0


(4.16)
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where σ2
v is the variance in the voltage measurements and α and β contain the infor-

mation on the noise as found in Section 4.3. Using this equation in the measurement
noise matrix R results in different confidence levels in the measurements based on
∆I. Measurements where the change in current is small contain more noise, so the
filter uses their information less. Measurements where the change in current is large
contain less noise, so the filter uses their information more. Therefore, a region
around 0 change in I is created with the interval:

−0.5A < ∆I < 0.5A (4.17)

in which the measurement is discarded.

4.3 Noise characteristics

A vital part of using the KF successfully means having knowledge on the noise
characteristics of the measurements. This section is dedicated to explaining the
noise in the measurements. Figure 4.1 shows typical sensitivity measurements on
the system described in Chapter 3.

(a) Full range view (b) Area around ∆i = 0

Fig. 4.1.: Measurements on the system and their noise

As can be seen in Figure 4.1a, there seems to be a clear linear relation between ∆v

and ∆i, but there is noise in the measurements. The noise increases significantly
around ∆i = 0. Figure 4.1b shows this area in more detail.

Looking at the definition of the sensitivity as presented in Equation 4.2, it becomes
clear that the increase in noise around ∆I = 0 becomes significantly worse, since re-
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sult goes to infinity for small currents. Figure 4.2 shows the sensitivity measurements
and the noise.

(a) Full range view (b) Area around ∆i = 0

Fig. 4.2.: Sensitivity measurements on the system with noise

As is depicted in Figure 4.2a, the noise goes to infinity when ∆I goes to 0. Figure 4.2b
shows a zoomed in version of the noise, which shows an exponential relation in the
noise compared to ∆I. This information on the noise present in the measurements
can be used in the filter equations to adapt the estimators behaviour to the noise.
Section 5.4.1 explains how this is done for the test case.

4.4 One-phase versus three-phase devices

To get the voltage, real current, and imaginary current used by the estimator, the
incoming phasor measurements are processed. Equation 4.18 shows the equation for
the real current. To get the real current, the angle of the voltage phasor is subtracted
from the current phasor. The angle of the current phasor is now the angle difference
between the voltage and the current. Taking the real part of this current phasor
gives the active current:

Ireal = real
(
Iphasor · e

−i·θVphasor

)
(4.18)

For the voltage, the magnitude of the phasor can simply be taken, since the phase
information is already taken into account with the current.

V = ∥Vphasor∥ (4.19)
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Next, the difference in voltage and current is taken, since the interest lies in differ-
ence in voltage as a function of difference in current.

∆Ireal = Ireal(n) − Ireal(n − 1) (4.20)

∆V = V (n) − V (n − 1) (4.21)

Figure 4.3 shows a scatter plot of ∆Vphase1 versus ∆Ireal,phase1 shows the relation.

Fig. 4.3.: Scatter plot of the sensitivity, ∆Vphase1 versus ∆Iphase1

The data in the interval −0.5A < ∆I < 0.5A is left out of the data, since the noise
increases exponentially around zero as presented in Section 4.3.

It can be observed that two lines seem to exist in the plot. These two lines indicate
single- or three-phase equipment. When a three-phase device changes power, the
neutral current remains the same, since the power in- or decrease is the same in
all phases. When a single-phase device changes power however, the current in the
neutral phase is affected since it increases with the unbalance in the system. Since
the change in current is then happening twice (both on the phase- and neutral-wire),
the resulting line is approximately 2 times steeper compared to the three-phase line.
This makes sense if the graph is translated to impedance where for a single phase
device, the found impedance would be twice as big, since the impedance of the
phase wire and the neutral wire add up.

In order to fix this, both lines can be mapped together by also taking the change
in neutral current into account. Changing the definition of sensitivity as given
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in equation 4.2 in Section 4.1 to include the neutral current gives the following
relation.

ξkj
a (t) = ∆V k

a (t)
∆Ij

a(t) + ∆Ij
N (t)

(4.22)

where ∆Ij
N (t) is the neutral current at time t and node j. Figure 4.4 shows the plot

where the neutral current is taken into account.

Fig. 4.4.: Scatter plot of the sensitivity, ∆Vphase1 versus ∆Iphase1

As can be observed in Fig. 4.4, the noise in the data has increased compared to
Fig. 4.3. This is due to the change in neutral current as an effect of the other two
phases, which is now added as noise to the denominator of the sensitivity as shown
in Equation 4.22.

Next to the change in voltage as effect of the real part of the current, the imaginary
part also has an effect. The imaginary part of the current is taken similar to the
active current in equation 4.18.

Iimag = imaginary
(
Iphasor · e

−i·θVphasor

)
(4.23)

after which the difference can be computed again, similar to 4.20.

∆Iimag = Iimag(n) − Iimag(n − 1) (4.24)
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Figure 4.5 shows a plot of Iimag.

Fig. 4.5.: Scatter plot of the sensitivity with respect to the imaginary part of the current,
∆Vphase1 versus ∆Iphase1

As can be seen in Figure 4.5, the imaginary sensitivity does not seem to have an
nearly linear relation to the change in current as observed for the real sensitivity.
The cause of this is likely phase drift [38], but further analysis is outside the scope
of this thesis. Additionally, while the imaginary part of the sensitivity does have an
effect on the voltage, its contribution is significantly less compared to the real part.
In Table 3.1, it can be seen that the imaginary part of the impedance is much smaller
than the real part.

4.5 Ground truth and benchmark estimations

In order to be able to quantify the performance of the estimator, a ground-truth- and
benchmark-estimator are used to compare the results with the estimator designed in
this thesis. These are the cable-data estimation and the linear-fit estimation.

4.5.1 Ground truth: cable-data-based estimation

This estimation is based on the known data on the cables in the system. Information
on cable length and type is often not available, however for this research project,
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the information is available to compare results to. The known cable impedance Z as
depicted in Table 3.1 in Section 3.2 is used to predict the voltage as:

v(n + 1) = v(n) + Zreal · ∆I(n) (4.25)

where ∆I is the real part of the current, and Zreal is only the real part of the
known impedance to keep the results comparable with the designed estimator. This
estimation is viewed as a ground truth estimation, however it should be noted that
impedance values this can still be wrong. In real-world applications, many factors
such as temperature and surrounding materials can affect cable impedance values.

4.5.2 Benchmark: linear-fit-based estimation

A benchmark method is used since information for the cables is often not available.
This method consist of a linear fit through the estimation data. As Section 4.4
already showed, the relation for the sensitivity seems to be linear. The linear fit
is made with a least-squares algorithm through the data of April 21st. This day
is chosen since the amount of data of this day is enough to determine the linear
relation. Shorter time periods do not provide enough data, and longer would result
in less data to test the filter on. This linear fit is then used to predict the voltage for
the remainder of the data.
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Performance of the estimator 5
This section explains how the performance of the designed estimator is tested and
discusses the results. The estimator estimates the sensitivity ξkj

a on a voltage in phase
a at node k with respect to the current in phase a at node j as defined in Section 4.1.
Since there are two measured connections on the feeder with three phases, the
estimator can estimate for a ∈ 1, 2, 3 where 1, 2, 3 represent the three phases and
k, j ∈ A, B where A and B are the two individual connections as indicated in
Section 3.2.

First, Section 5.1 explains the error comparison method used to assess the per-
formance of the estimator. Section 5.2 and Section 5.3 explain the ground-truth-
and benchmark estimation results respectively. Section 5.4 shows the results of
the online estimator, after which the three estimation methods are compared in
Section 5.5. Section 5.6 shortly discusses the magnitude of the error and Section 5.7
looks at the computational efficiency and options to deploy the estimator for online
applications in the field. Finally, Section 5.8 concludes this chapter and summarizes
the results.

5.1 Error comparison method

This section describes how the errors of the three methods will be compared. Figures
in this sections are merely there to illustrate how the error figures are generated,
and why that choice is made. Actual results can be found beyond this section.

To quantify the performance of the estimator, the error in voltage prediction is
compared to the error of the voltage prediction of the ground-truth- and benchmark
estimators. For all three methods, the voltage at time n + 1 is predicted based on the
voltage at time n and the change in current from n to n + 1. The error is given as

Error(n) = |Vmeasured(n) − Vpredicted(n)| (5.1)
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where the error is thus the absolute value of the difference between the predicted
voltage Vpredicted(n) and the actual measured voltage Vmeasured(n). An example plot
of such an error is shown in Figure 5.1.

Fig. 5.1.: Error figure example, error in the cable-data estimation ξBB
1

As can be seen in Figure 5.1, the large number of samples makes these figures
difficult to interpret. To make interpretation possible, the individual error samples
are ordered from small to large. The result is an increasing line, which shape can
be compared to other estimation methods. Figure 5.2 shows the sorted error of the
example Figure 5.1.

(a) Complete range of error (b) Zoomed image

Fig. 5.2.: Sorted error figure example, error in the cable-data estimation ξBB
1

As is visible in Figure 5.2, the error is now a clear line. The x-axis has been changed
from samples to percentage of samples. For all three methods such error graphs are
created, and the performance is compared in Section 5.5. Lastly, to make comparison
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between the methods concrete, the root-mean-square error (RMSE) is also computed
as:

RMSE =

√∑N
n=1 (Error(n))2

N
(5.2)

where Error(n) is the error at sample n as given by Equation 5.1 and N is the total
number of samples.

5.2 Ground truth - cable-data estimation

To find the theoretical sensitivity for the cable-data estimation, the data on the test
site as presented in Section 3.2 can be recalled. Figure 5.3 shows the model of the
test site.

Fig. 5.3.: Graphical model of the test site

Since there are two measured nodes, there are four different sensitivity options,
as shown in Table 5.1. The values in the table are taken from Table 3.1 accord-
ing to what impedance the sensitivity represents and converted from mΩ to Ω.
They only include the real part to keep results comparable with the online filter
implementation.

Tab. 5.1.: Sensitivity values for cable-data benchmark estimation

Sensitivity (Ω)
ξAA

a -0.230777
ξAB

a -0.08691
ξBA

a -0.08691
ξBB

a -0.510731

The sorted error curves are generated as explained in Section 5.1. These curves can
be seen in Appendix A.1 and will be used and discussed in Section 5.5.
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5.3 Benchmark - linear fit estimation

For the benchmark estimation, a linear relation is estimated using a linear fit in
Matlab as explained in Section 4.5.2. Two examples of such linear fits are shown in
Figure 5.4, all linear fit plots can be found in Appendix A.2.

(a) Linear fit for ξBB
2 (b) Linear fit for ξBB

1

Fig. 5.4.: Linear fit results

As can be seen in Figure 5.4, the fitting a linear curve sometimes does not yield
the expected result. In Figure 5.4a, a linear fit for the sensitivity ξBB

2 for phase 2
is made. As can be seen, the data can be described by the linear fit. In Figure 5.4b
however, the same is done for the sensitivity ξBB

2 at phase 3. An unknown event
which was not visible in phase 2 caused numerous data points that cannot be covered
by a linear relation. The linear fit therefore does not represent the data that it was
supposed to, and the results may give a larger error.

Tab. 5.2.: Linear fit sensitivity estimation

Linear-fit sensitivity Cable-data sensitivity
ξAA

1 -0.1309
-0.230777ξAA

2 -0.3036
ξAA

3 -0.1722
ξAB

1 -0.1008
-0.08691ξAB

2 -0.0446
ξAB

3 -0.0397
ξBA

1 -0.0379
-0.08691ξBA

2 -0.0953
ξBA

3 -0.0566
ξBB

1 -0.6959
-0.510731ξBB

2 -0.3248
ξBB

3 -0.3194
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The resulting sensitivity value from the linear fit for each of measurements is shown
in Table 5.2. The table also shows the value that was expected from the cable-data.

As can be observed from Table 5.2, the linear fit can result in quite different sensitivity
values compared to the expected value from the cable data. All linear fit figures
can be seen in Appendix A.2, together with the error between the predicted and
measured voltage as explained in Section 5.1.

5.4 Online Kalman estimator

The estimator design is ran on the datasets for each of the possible combinations
of a, k, and j. The data from April 21st is not used to keep the benchmark results
comparable to the estimator result.

5.4.1 Estimator parameters

The choice for the estimator parameters that model the noise is explained here.
Specifically, α and β that include the measurement noise characteristics, and γξv,real

,
γξv,imag

, and γv that specify the process noise are explained here.

Process noise

The values of γξv,real
, γξv,imag

, and γv can be used to set the filters sensitivity to
disturbances and speed of convergence. If the values are chosen larger the filter
increases the uncertainty of the estimate more every predict-step, meaning that
the filter tracks variations in system state more. Keeping the value lower, means
that the filter is slower to change, so noisy outliers in the measurements don’t
throw the filter off. For the results in this thesis, the following values are used:
γξv,real

= γξv,imag
= 1e−15, which ensures that the sensitivity estimates are gradually

adapting to the measurements. γv = 0.002, which means that the filter tracks
changes in voltage quicker. These values are obtained empirically by sweeping these
values until the filter adapts to state changes at the desired speed.
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Measurement noise

The values of α and β should reflect the noise characteristics of the measurements
as explained in Section 4.3. To achieve this, an exponential fit is made with Matlab
through the variance of this noise, which can be used in the KF to better estimate
the noise. The sensitivity samples are divided in bins with an equal number of
samples. The relation is fitted through the variance of these bins. The fitted relation
is depicted in Figure 5.5.

Fig. 5.5.: Exponential fit on the measurement noise

The relation that is found for α is:

α = 100 ∗ (0.0601∆I−1.429
real ) (5.3)

Since the imaginary part of the estimation does not yield the expected results as
explained in Section 4.4, the fit for β is discarded. To keep the computational load
for the estimator as if it would work, the relation for β is set equal to that of α as
shown in Equation 5.4.

β = 100 ∗ (0.0601∆I−1.429
imag ) (5.4)
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5.4.2 Estimation results

Using the parameters as described above, the filter is tested on the data. Figure
5.6 shows estimations of the sensitivity that is predicted using the filter. All other
estimations can be found in Appendix A.3. The expected value of these estimations
is the real part of the cable impedance, as shown in Table 5.1, and is shown in the
caption of the figures.

(a) Sensitivity estimate of ξBA
2 with 3σ confidence,

expected value from cable data: −0.08691
(b) Sensitivity estimate of ξBB

3 with 3σ con-
fidence, expected value from cable data:
−0.510731

Fig. 5.6.: Kalman estimations

As can be observed in Figure 5.6, the behaviour of the filter differs between scenarios.
In Figure 5.6a the filter converges, however in Figure 5.6b the estimation moves
around much more. Furthermore, the confidence bounds are much more narrow for
the estimation in Figure 5.6a compared to Figure 5.6b. This is due to the fact that
the data for Figure 5.6b contains much less changes in power. Since the confidence
in the measurement increases with an increase in change in current, the filter relies
on larger changes in power to get to a more certain estimate.

5.4.3 Estimator startup behaviour

Initially, the sensitivity estimate of the filter is very uncertain. After a while, the KF
will use the measurements to increase the certainty on the estimate, which can be
observed in Figure 5.7.

As is depicted by the red 3σ confidence bounds in Figure 5.7, the confidence in
the estimation increases after some time. Eventually, the filter reaches a certain
steady state in which the confidence stays approximately constant. In Figure 5.7
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Fig. 5.7.: Startup behaviour of the estimator for ξBB
3 with 3σ confidence

this can be seen at approximately 1.2 · 105 samples, which equals 40 minutes, given
the 50Hz rate of the PMUs. How many samples are required to reach this steady
state is dependant on the chosen filter parameters, and on the measurements. Since
measurements with a high change in power increase the confidence most, a few of
these samples are required to reach steady state. Obtaining these measurements is
purely chance based, since there is no way of predicting the change in power. The
longest observed time is 1.5 · 105 samples, or 50 minutes.

5.5 Comparing the results

To compare the results of the three estimation methods, the sorted errors are plotted
together. Figure 5.8a shows the comparison for two sensitivity estimations. The
comparison figures for all other estimations can be found in Appendix A.4.

As can be seen in Figure 5.8, the cable-data error and linear-fit error are approxi-
mately identical. The error from the estimator is different compared to these two.
For some experiments the errors cross around 99% samples (as in Figure 5.8a),
and for some experiments the online filter error always stays above the other two
(as in Figure 5.8b). Specifically, this crossover of the errors is happening for the
experiments where the voltage sensor of node A was used. The crossover is not
present in the experiments where the voltage sensor of node B was used.
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(a) ξAB
3 comparison (b) ξBB

1 comparison

Fig. 5.8.: Comparison of errors in prediction

Figure 5.9 shows how close the cable-data- and linear-fit errors are. The figure
shows approximately the first 80% of the figure, since the difference can then be
observed.

Fig. 5.9.: Comparison of cable-data and linear-fit error for ξAA
1

To allow concrete comparison between the methods, the RMSE is shown in Ta-
ble 5.3.

As is depicted in Table 5.3, the linear-fit benchmark estimation performs similar
to the cable-data ground truth, with a maximum deviation of 2.1mV for ξBB

1 . For
estimations BA and BB, the crossover behaviour is not present, and the online
estimator has up to 30.8mV (for ξBA

3 and ξBB
1 ) more RMSE compared to the ground
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Tab. 5.3.: RMS of the errors

Cable-data (V Linear-fit (V) Online estimator (V)
ξAA

1 0.2734 0.2735 0.2615
ξAA

2 0.2709 0.2711 0.2548
ξAA

3 0.2633 0.2632 0.2484
ξAB

1 0.2748 0.2748 0.2615
ξAB

2 0.2719 0.2719 0.2549
ξAB

3 0.2650 0.2651 0.2485
ξBA

1 0.0599 0.0604 0.0895
ξBA

2 0.0620 0.0620 0.0878
ξBA

3 0.0654 0.0653 0.0962
ξBB

1 0.0587 0.0608 0.0895
ξBB

2 0.0636 0.0625 0.0881
ξBB

3 0.0670 0.0662 0.0962

truth. For AA and AB however, the crossover behaviour is present, and the online
estimator has up to 17.0mV (for ξAB

2 ) less RMSE compared to the ground truth.
This does not provide the full picture however, since two distinct regions are present
in the experiments where the errors cross. Therefore, additionally to the RMSE
values presented in Table 5.3, Table 5.4 shows the RMSE of the data left and right of
the split.

Tab. 5.4.: RMS of the errors with crossover behaviour where L and R denote the data left
and right of point where the errors cross respectively

Cable-data (V Linear-fit (V) Online estimator (V)

ξAA
1

L 0.1010 0.1018 0.1273
R 3.1024 3.1000 2.7903

ξAA
2

L 0.0844 0.0844 0.1087
R 2.9796 2.9824 2.669

ξAA
3

L 0.0838 0.0837 0.1058
R 2.8544 2.8540 2.5713

ξAB
1

L 0.0986 0.0986 0.1220
R 2.8760 2.8759 2.5946

ξAB
2

L 0.0874 0.0874 0.1091
R 2.9203 2.9203 2.6138

ξAB
3

L 0.0808 0.0808 0.1006
R 2.6597 2.6599 2.3950

As can be seen in the table, for the data left of the crossover point the online
estimator has up to 26.3mv more RMSE (for ξAA

1 ). For the data right of the crossover
however, the online estimator has up to 312.1mv less RMSE (for ξAA

1 ).
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5.6 Magnitude of the error

Regardless of the estimation method, the error can reach relatively high values. This
can be seen best in the unsorted error figures, as shown in Figure 5.10.

(a) Error for ξAA
3 (b) Error for ξBB

3

Fig. 5.10.: Error in the cable-data estimations

Figure 5.10 shows that the error reaches relatively high values. For estimations
where the voltage sensor at node A is used, the errors all look similar to Figure 5.10a
with multiple peaks around 70V , whereas for estimations where the voltage sensor
at node B is used, the errors all look similar to Figure 5.10b, with peaks around 8V .
To explain where these large errors come from, Figure 5.11 shows ∆V and ∆I for
the data with which Figure 5.10 was generated.

(a) Data for ξAA
3 (b) Data for ξBB

3

Fig. 5.11.: Delta v and Delta I comparison

In Figure 5.11b, the maximum peaks in the ∆V data are approximately 5 to 10V,
and a peak in can be seen in the ∆I data at the same time. In Figure 5.11a however,
the voltage peaks have a much greater magnitude, of up to approximately 70V ,

5.6 Magnitude of the error 49



and the ∆I data does not always show a peak at the same time. Furthermore, the
data for ∆I sometimes shows fairly high peaks, where ∆V is approximately 0. This
results in the situation where sometimes a high change in voltage is predicted due
to a high change in current, but not measured with the voltage sensors. Or the other
way around, where it is not predicted, since the change in current is low, however
the voltage sensor reports a very high peak. This data explains the high errors that
can be found in some of the results.

5.7 Hardware requirements

Deploying the estimator on device is out of scope of this thesis, however the design is
such that it can be deployed on lower level hardware like single board computers or
microcontrollers. To analyze the hardware requirements, the required computational
power and the memory requirement are investigated.

5.7.1 Computational load

This can be explained by looking at the required calculations for a filter iteration as
specified in Section 4.4 and 4.2. In general, a distinction can be made between a
naive- and optimized implementation. This distinction is explained with Equation 5.5
below.

x(n + 1) = Fx(n) + Gu(n) (5.5)

Since x is a vector of length 3, F a 3x3 matrix, u a vector of length 2 and G a 3x2
matrix, the naive implementation would result in 15 multiplications (9 for the Fx

and 6 for Gu) and 3 additions. Looking more closely to the designed estimator
however shows that this is not necessary. Since F is an identity matrix, and G has a
value of 0 for 4 out of its 6 positions, the optimized implementation would result in
2 multiplications (for Gu) and 3 additions.

Table 5.5 shows the required number of operations for both a naive- and optimized
implementation of the algorithm. For the total analysis, the concept of floating point
operations (FLOPs) is used as an estimate of the computational complexity. The
assumption is made that additions, multiplications, divisions, exponents, and arctan
calculations consist of 1, 1, 5, 15, and 30 FLOPs respectively [60].

As is depicted in Table 5.5, the difference between a naive and optimized imple-
mentation can be substantial. Especially the matrix calculations for the predict- and
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Tab. 5.5.: FLOPs for each calculation

Naive Optimized
Equation number Addition Multiplication Division Exponent Arctan Matrix inversion Addition Multiplication Division Exponent Arctan

Phasor processing

4.4 0 1 0 15 30 0 0 1 0 15 30
4.18 and 4.23 1 2 0 0 0 0 1 2 0 0 0

4.19 1 0 0 0 0 0 1 2 0 0 0
4.20 1 0 0 0 0 0 1 0 0 0 0
4.21 1 0 5 0 0 0 2 0 0 0 0
4.22 1 0 0 0 0 0 1 0 5 0 0
4.24 0 0 5 0 0 0 1 0 0 0 0

Predict step
4.6 3 15 0 0 0 0 3 2 0 0 0
4.7 45 54 0 0 0 0 0 3 0 0 0

Update step

4.11 290 245 0 0 0 225 5 3 25 0 0
4.12 30 30 0 0 0 0 6 3 0 0 0
4.13 63 72 0 0 0 0 3 3 0 0 0
5.3 0 1 0 15 0 0 0 1 0 15 0
5.4 0 1 0 15 0 0 0 1 0 15 0

FLOPs per iteration 1167 152
kFLOPs per second 58.35 7.6

update step can be optimized very efficiently since many matrix positions contain 0.
Additionally, the 5x5 matrix inversion that has to be done for Equation 4.11 can be
replaced by 5 divisions since it is a diagonal matrix.

The number of FLOPs per second is obtained by multiplying the FLOPs per iteration
with the data rate, which is 50Hz as explained in Section 3.2. Comparing this to the
performance of the Raspberry-PI 4, it becomes clear that running the estimator on
smaller scale hardware is possible. A list of FLOP rates of some hardware platforms
is available at [61], where it can be seen that modern hardware platforms can
reach in the range of GFLOPs per second, with the a Raspberry-Pi 4 that can reach
approximately 9 to 10 GFLOPs per second. Compared to the required rate of 58.35
kFLOPs for the estimator or even 7.6 kFLOPs for an optimized implementation, the
power that a single board computers provides is sufficient for this implementation.

5.7.2 Memory requirement

To have an estimate on the memory requirement of the estimator, all elements that
need to be stored in memory can be summed. For this, the assumption is made that
all numbers are stored as 32-bit floating point numbers. For this estimation, again a
naive implementation is evaluated, where all required parameters are stored at the
same time. In practice, a more optimized implementation is again feasible. Table 5.6
shows the required number of floating point numbers for the estimator.

Tab. 5.6.: Number of floating point numbers

Variable x P F G u Q H R z Vphasor Iphasor V Ireal Iimag I0 ∆V ∆Ireal ∆Iimag ∆I0
No. floats 3 9 9 6 2 9 15 25 5 2 2 1 1 1 1 1 1 1 1

Total 95

Multiplying the total number of floating point numbers from Table 5.6 with 32 bits,
it becomes clear that there is a memory requirement of:
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95 ∗ 32bit = 3.04kbit = 0.38kB (5.6)

Comparing this memory requirement to the same device list as presented in Sec-
tion 5.7.1 [61], it can be seen that the memory requirement can also be satisfied.
The Raspberry Pi 4 comes in multiple models which all have > 1GB RAM avail-
able, showing that deployment of this estimator design is feasible on smaller scale
hardware.

5.8 Conclusion

To summarize the results, looking at the error comparison it becomes clear that the
online estimator performs worse than the linear-fit benchmark. Only in situations
where the crossover in errors can be seen, the estimator outperforms the benchmark
estimation in approximately the last 1% of samples. This behaviour is suspicious
however, since it is only present in the situations where the ∆V peaks are very
high, as explained in Section 5.6. Next to that, it also outperforms the ground
truth estimation in this situation. While this is certainly possible because there is no
guarantee that the ground truth is completely correct as explained in Section 4.5.1,
understanding why the estimation is better than ground truth is required. Further
investigation on any relation between these observations is needed, but out of scope
of this thesis.

Although the online estimator does not perform as well as the linear-fit benchmark,
the value of the error is not so high that the estimation is always unusable. The
increase in error might be acceptable in certain use-cases, where other benefits
of the method might be more important. Since the estimator keeps tracking the
sensitivity, it can never get stuck on a completely wrong estimation for ever, whereas
other methods might need user interaction to prevent this. Combined with the fact
that the implementation is indeed lightweight and tailored towards deployment
on smaller-scale hardware, this estimator can be a adequate solution for specific
applications.
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Conclusion 6
In this study, the sensitivity between residential distribution grid connections was
estimated using an online Kalman filter approach. The results of this thesis are used
to answer the main research question:

How can the sensitivity between residential distribution grid connections be
accurately estimated in an online approach?

To best answer the main research question, all sub-questions are addressed individu-
ally first.

How can the sensitivity parameter be modelled?
In literature, various definitions of the sensitivity parameter are defined. The
definition as given in [11] is used for the estimator in this thesis with the adaptation
of changing the power to the current as explained in Section 4.1:

ξkj
a,real(t) = ∆V k

a (t)
∆Ij

a,real(t)
(6.1)

ξkj
a,imag(t) = ∆V k

a (t)
∆Ij

a,imag(t)
(6.2)

What information is needed for estimating the sensitivity?
The parametric definition of the sensitivity requires voltage and current phasors,
real-time PMU measurements at 50Hz from synchronised sensors are sufficient to
make the estimation.

How many samples are required to find an accurate estimation?
The estimators accuracy converges to its best value after approximately 1.2 · 105

samples, with a maximum observed value of 1.5 · 105 samples as explained in
Section 5.4.3. Since the phasor measurements are sampled at 50Hz, this means a
maximum observed time of 50 minutes before the filter reaches its stable accuracy.

To what degree of accuracy can the sensitivity be found by the estimator?
The performed experiments showed that the online estimator is able to provide
the estimation with up to 38mV additional RMSE over all datasets, however the
estimator performs better compared to the benchmark in specific scenarios. In
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experiments where the sorted errors cross, the online estimator has lower estimation
errors for approximately the last 1% of samples.

What hardware is required to run the estimator online?
Finally, the fourth sub-question is addressed with the results of Section 5.7. De-
ploying the estimator on device was out of scope of this thesis due to the available
time, however theoretically this question can be answered. Since the estimator is
a regular Kalman filter, estimator steps consist of a few matrix/vector calculations.
Furthermore, the estimator tracks only 3 states for a given sensitivity, which means
that these matrix calculations are relatively lightweight, especially when a more op-
timized implementation is constructed. Additionally, the fact that the filter combines
all previous knowledge in the current estimate means that no additional data has to
be stored, keeping the memory requirement low as well. Altogether, this estimator
is very lightweight, and low level hardware platforms such as microcontrollers or
single board computers are more than capable to facilitate deployment.

In conclusion, coming back to the main research question; accurately estimating the
sensitivity between residential distribution grid connections in an online approach
requires a comprehensive understanding of the grid’s behavior, the use of real-time
data, and appropriate modeling techniques. The findings of this research offer
valuable guidance for designing effective sensitivity estimators, which can play a
crucial role in ensuring fairness in residential PV-curtailment applications. As the
field of smart grids continues to evolve, the insights gained from this study facilitate
further advancements and optimizations in grid management and operation.

6.1 Future work and Recommendations

This section presents ideas and directions for future work based on observations
done in this thesis for the field of estimating LV-grid parameters.

6.1.1 Active estimation

In this thesis, a passive, non-invasive estimation method is used by utilizing PMUs.
In applications where some grid disturbance is tolerated, active estimation methods
are a really nice fit to the PV-inverter application. Active methods can be applied
very efficiently in the case of a PV-inverter since all required hardware for achieving
this is in-place in the form of solar panels and their inverter. Generating discrete
steps in output power for instance yields minimal grid disturbance, since the power
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consumption or production might change during normal operation as well, and can
give significant information to the estimator.

6.1.2 Required sensors

For this research, PMU measurements have been used to make the estimation. While
these measurements are becoming more and more common in the distribution grid
as an effect of the energy transition, an estimator relying on more easily obtainable
data might be possible. Experiments with e.g. smart meter data could provide the
insight in whether or not this is possible, potentially simplifying the estimator and
making an implementation less expensive.

6.1.3 Imaginary part of impedance estimation

As shown in Section 5.3, the method does not function as expected for the imaginary
part of the impedance estimation. This is likely a result of phase drift in the PMU
measurements. A part of the change in phase in the measurements is an effect of
the imaginary part of the feeder impedance, however another part is due to the
difference in sample rate and grid frequency. This problem is addressed in the paper
on parameter estimation with compensation for phase drift [38].

This implementation was not feasible for this thesis unfortunately due to time
constraints. Furthermore, the data used for the estimator in this thesis does not
include the required frequency information. The sensors that are used in the project
are capable of outputting this data however, so testing this solution is possible with
the current measurement setup.

6.1.4 Separate or combined estimation

For this work, the PMU measurements are separated in a real and imaginary part
before the estimator. It might also be worthwhile to investigate if a combined
estimator works better compared to a separate estimator. A combined estimator
would track the complex sensitivity as a single state, as opposed to the two separate
sensitivities as presented in this thesis.
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Appendix A
A.1 Cable-data results figures

(a) Unsorted error (b) Sorted error

Fig. A.1.: Error in the cable-data estimation ξAA
1

(a) Unsorted error (b) Sorted error

Fig. A.2.: Error in the cable-data estimation ξAA
2
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(a) Unsorted error (b) Sorted error

Fig. A.3.: Error in the cable-data estimation ξAA
3

(a) Unsorted error (b) Sorted error

Fig. A.4.: Error in the cable-data estimation ξAB
1

(a) Unsorted error (b) Sorted error

Fig. A.5.: Error in the cable-data estimation ξAB
2
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(a) Unsorted error (b) Sorted error

Fig. A.6.: Error in the cable-data estimation ξAB
3

(a) Unsorted error (b) Sorted error

Fig. A.7.: Error in the cable-data estimation ξBA
1

(a) Unsorted error (b) Sorted error

Fig. A.8.: Error in the cable-data estimation ξBA
2
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(a) Unsorted error (b) Sorted error

Fig. A.9.: Error in the cable-data estimation ξBA
3

(a) Unsorted error (b) Sorted error

Fig. A.10.: Error in the cable-data estimation ξBB
1

(a) Unsorted error (b) Sorted error

Fig. A.11.: Error in the cable-data estimation ξBB
2
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(a) Unsorted error (b) Sorted error

Fig. A.12.: Error in the cable-data estimation ξBB
3

A.1 Cable-data results figures 73



A.2 Linear-fit results figures

Fig. A.13.: Linear-fit estimation ξAA
1

(a) Unsorted error (b) Sorted error

Fig. A.14.: Error in the linear-fit estimation ξAA
1
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Fig. A.15.: Linear-fit estimation ξAA
2

(a) Unsorted error (b) Sorted error

Fig. A.16.: Error in the linear-fit estimation ξAA
2

Fig. A.17.: Linear-fit estimation ξAA
3
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(a) Unsorted error (b) Sorted error

Fig. A.18.: Error in the linear-fit estimation ξAA
3

Fig. A.19.: Linear-fit estimation ξAB
1

(a) Unsorted error (b) Sorted error

Fig. A.20.: Error in the linear-fit estimation ξAB
1
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Fig. A.21.: Linear-fit estimation ξAB
2

(a) Unsorted error (b) Sorted error

Fig. A.22.: Error in the linear-fit estimation ξAB
2

Fig. A.23.: Linear-fit estimation ξAB
3
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(a) Unsorted error (b) Sorted error

Fig. A.24.: Error in the linear-fit estimation ξAB
3

Fig. A.25.: Linear-fit estimation ξBA
1

(a) Unsorted error (b) Sorted error

Fig. A.26.: Error in the linear-fit estimation ξBA
1
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Fig. A.27.: Linear-fit estimation ξBA
2

(a) Unsorted error (b) Sorted error

Fig. A.28.: Error in the linear-fit estimation ξBA
2

Fig. A.29.: Linear-fit estimation ξBA
3
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(a) Unsorted error (b) Sorted error

Fig. A.30.: Error in the linear-fit estimation ξBA
3

Fig. A.31.: Linear-fit estimation ξBB
1

(a) Unsorted error (b) Sorted error

Fig. A.32.: Error in the linear-fit estimation ξBB
1
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Fig. A.33.: Linear-fit estimation ξBB
2

(a) Unsorted error (b) Sorted error

Fig. A.34.: Error in the linear-fit estimation ξBB
2

Fig. A.35.: Linear-fit estimation ξBB
3
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(a) Unsorted error (b) Sorted error

Fig. A.36.: Error in the linear-fit estimation ξBB
3
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A.3 Online estimator results figures

Fig. A.37.: Sensitivity estimate ξAA
1 with 3σ confidence, expected value from cable data:

−0.230777

(a) Unsorted error (b) Sorted error

Fig. A.38.: Error in the online estimation ξAA
1
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Fig. A.39.: Sensitivity estimate ξAA
2 with 3σ confidence, expected value from cable data:

−0.230777

(a) Unsorted error (b) Sorted error

Fig. A.40.: Error in the online estimation ξAA
2

Fig. A.41.: Sensitivity estimate ξAA
3 with 3σ confidence, expected value from cable data:

−0.230777
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(a) Unsorted error (b) Sorted error

Fig. A.42.: Error in the online estimation ξAA
3

Fig. A.43.: Sensitivity estimate ξAB
1 with 3σ confidence, expected value from cable data:

−0.08691

(a) Unsorted error (b) Sorted error

Fig. A.44.: Error in the online estimation ξAB
1
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Fig. A.45.: Sensitivity estimate ξAB
2 with 3σ confidence, expected value from cable data:

−0.08691

(a) Unsorted error (b) Sorted error

Fig. A.46.: Error in the online estimation ξAB
2

Fig. A.47.: Sensitivity estimate ξAB
3 with 3σ confidence, expected value from cable data:

−0.08691
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(a) Unsorted error (b) Sorted error

Fig. A.48.: Error in the online estimation ξAB
3

Fig. A.49.: Sensitivity estimate ξBA
1 with 3σ confidence, expected value from cable data:

−0.08691

(a) Unsorted error (b) Sorted error

Fig. A.50.: Error in the online estimation ξBA
1
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Fig. A.51.: Sensitivity estimate ξBA
2 with 3σ confidence, expected value from cable data:

−0.08691

(a) Unsorted error (b) Sorted error

Fig. A.52.: Error in the online estimation ξBA
2

Fig. A.53.: Sensitivity estimate ξBA
3 with 3σ confidence, expected value from cable data:

−0.08691
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(a) Unsorted error (b) Sorted error

Fig. A.54.: Error in the online estimation ξBA
3

Fig. A.55.: Sensitivity estimate ξBB
1 with 3σ confidence, expected value from cable data:

−0.510731

(a) Unsorted error (b) Sorted error

Fig. A.56.: Error in the online estimation ξBB
1
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Fig. A.57.: Sensitivity estimate ξBB
2 with 3σ confidence, expected value from cable data:

−0.510731

(a) Unsorted error (b) Sorted error

Fig. A.58.: Error in the online estimation ξBB
2

Fig. A.59.: Sensitivity estimate ξBB
3 with 3σ confidence, expected value from cable data:

−0.510731
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(a) Unsorted error (b) Sorted error

Fig. A.60.: Error in the online estimation ξBB
3
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A.4 Errors comparison figures

Fig. A.61.: Comparison of the errors for ξAA
1

Fig. A.62.: Comparison of the errors for ξAA
2
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Fig. A.63.: Comparison of the errors for ξAA
3

Fig. A.64.: Comparison of the errors for ξAB
1

Fig. A.65.: Comparison of the errors for ξAB
2
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Fig. A.66.: Comparison of the errors for ξAB
3

Fig. A.67.: Comparison of the errors for ξBA
1

Fig. A.68.: Comparison of the errors for ξBA
2
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Fig. A.69.: Comparison of the errors for ξBA
3

Fig. A.70.: Comparison of the errors for ξBB
1

Fig. A.71.: Comparison of the errors for ξBB
2
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Fig. A.72.: Comparison of the errors for ξBB
3
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