
Degree Project in Computer Science and Engineering, specialising in ICT
Innovation

Second cycle, 30 credits

Improving the user experience of
touchscreen text-based code
editor in an industrial robot
controller
XUANLING XU

Stockholm, Sweden, 2023

Improving the user experience of
touchscreen text-based code editor
in an industrial robot controller

XUANLING XU

Master’s Programme, ICT Innovation, 120 credits
Date: October 4, 2023

Supervisor: Adrian Benigno Latupeirissa
Examiner: Ylva Fernaeus
School of Electrical Engineering and Computer Science
Host company: ABB, Robotics & Discrete Automation

Swedish title: Förbättring av användarupplevelsen för textbaserad kodredigerare
med pekskärm i en industriell robotkontroller

© 2023 Xuanling Xu

Abstract | i

Abstract
This project investigated the touchscreen text-based code editor in OmniCore
FlexPendant to improve its usability and user experience. This is a powerful
but complex application used to program industrial robots. The objective
is to redesign the user interface and interactions to make them more user-
friendly and intuitive, with the goal of improving efficiency. The principles
for designing complex applications and touchscreen products are generated as
an outcome. From an academic standpoint, the research aims to fill the gap
in text-based code editors for robot controller design and inspire touchscreen
code editor design in other fields. Design thinking served as the framework
for the design process, which encompassed seven steps that ranged from
exploration to conceptualization and user testing. Guidance for improvement
is ideated by ’become a user,’ competitive analysis, and user studies. In the
design phase, a high-fidelity prototype is built upon the original design with
completely new interfaces, structures, and interactions. The user experience
and usability are evaluated during user testing by counting task completion
time, applying two standard user experience measurements, and conducting
a brief interview. The results indicate that the new design achieved better
completion efficiency in tasks, better user experience and usability scores,
and received positive feedback from participants. The new solution meets the
objectives and is considered a good reference for the design of industrial robot
programming solutions.

Keywords
Industrial Robot Programming, Code Editor, Robot Controller, Teach Pendant,
OmniCore FlexPendant, User Experience, Design Thinking

ii | Abstract

Sammanfattning | iii

Sammanfattning
Denna studie undersökte den pekskärm- och textbaserade kodeditorn i Omni-
Core FlexPendant, för att förbättra dess användbarhet och användarupplevelse.
Det är en kraftfull men komplex applikation som används för att programmera
industrirobotar. Målet är en omarbetning av användargränssnittet och
interaktionerna för att göra dem mer användarvänliga och intuitiva, med
målet att förbättra effektiviteten. Principerna för att utforma komplexa
applikationer och pekskärmsprodukter genereras som ett resultat. Ur ett
akademiskt perspektiv syftar forskningen till att fylla luckan gällande design
av textbaserade kodeditor för robotkontroller, och inspirera vid designen av
pekskärmsbaserade kodeditorer inom andra fält. ”Design thinking” tjänade
som ramverk för designprocessen, vilken omfattade sju steg som sträckte
sig från utforskning till konceptualisering och användartestning. Vägledning
för förbättringar tas fram genom ”att vara en användare”, konkurrensanalys
och användarstudier. I designfasen byggs en högupplöst prototyp baserat på
den ursprungliga designen med helt nya gränssnitt, struktur och interaktioner.
Användarupplevelsen och användbarheten utvärderas under användartestning
genom att räkna tid, tillämpa två standardmått för användarupplevelse
och genomföra en kort intervju. Resultaten visar att den nya designen
uppnådde högre effektivitet i uppgifter, bättre användarupplevelse och högre
användbarhetspoäng samt fick positiv feedback från deltagarna. Den nya
lösningen uppfyller målen och anses vara en bra referens för design av
lösningar för programmering av industrirobotar.

Nyckelord
Industrirobotprogrammering, Kodeditor, Robotkontroller, Robotpendant, Om-
niCore FlexPendant, Användarupplevelse, Design Thinking

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
First of all, I would like to thank my supervisor at ABB, Björn Löfvendahl,
for providing me with such an exciting topic, valuable insights and warm
encouragement. I spent a very nice six months at ABB Robotics and I really
appreciate the support of the Omega team, which provided me with a friendly
environment. I would also like to thank the entire UX team at Robotics,
especially Wiktor Bjellebeck, Meng Xu and Lisa Grennberg, who provided
me with fresh ideas and insightful feedback in review sessions. To Adrian
Benigno Latupeirissa, my supervisor at KTH, I am grateful for your help and
encouragement for my project. To all the participants in the user study and
testing, I really appreciate your trust and time, as your experience and feedback
guide me in the right direction. I am also thankful for Ke, my boyfriend, for
his excellent technical assistance in building the interactive prototype. Lastly,
I would also like to thank Ylva Fernaeus, my examiner from KTH, Khiet
Truong, critical observer from UTwente, and Julia Schwuchow, my opponent
and nice friend, for their helpful suggestions.

Stockholm, October 2023
Xuanling Xu

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Project Introduction . 1
1.2 Research Question . 2
1.3 Limitation . 4
1.4 Sustainability . 5

2 Background 7
2.1 Industrial Robot Programming 7
2.2 ABB Programming Solution 9

3 Methodology 11
3.1 Design Thinking . 11
3.2 Design Process . 12

3.2.1 Pre-Study . 12
3.2.2 Empathize . 13
3.2.3 Define & Ideate . 13
3.2.4 Prototype . 14
3.2.5 Test . 15

4 Execution and Analysis 17
4.1 Pre-Study . 17

4.1.1 Become a user . 18
4.1.2 ABB Portfolio Research 18
4.1.3 Competitive Analysis 20

4.1.3.1 Competitive Analysis Summary 23
4.2 Empathize . 24

4.2.1 Interview . 24
4.2.1.1 Participant 24
4.2.1.2 Interview Material 25
4.2.1.3 Procedure 25

viii | Contents

4.2.2 Contextual Inquiry 26
4.2.2.1 Participant 26
4.2.2.2 Procedure 26

4.3 Define & Ideate . 27
4.3.1 Target Audience . 28
4.3.2 Thematic Analysis 28
4.3.3 MoSCoW Analysis 31
4.3.4 Design Principle Ideation 34
4.3.5 Redesign Scope . 35

4.4 Prototype . 36
4.4.1 First Version Solution 37
4.4.2 User Experience (UX) Expert Review 38
4.4.3 High-Fidelity Prototype 39
4.4.4 Interactive Prototype 39

4.5 Test . 41
4.5.1 User Testing . 41

4.5.1.1 Participant 42
4.5.1.2 Material 42
4.5.1.3 Pilot Study 42
4.5.1.4 Procedure 43

4.5.2 Data Analysis & Findings 44
4.5.2.1 Time Consumption 44
4.5.2.2 User Experience Questionnaire 45
4.5.2.3 System Usability Scale 46

4.5.3 Interview Feedback and Discussion 48
4.6 Final Concept . 49

4.6.1 Interface Overview 49
4.6.2 Problem & Solution 53

5 Discussion 65
5.1 Customization VS Standardization 65
5.2 User Expectation VS Implementation Result 66
5.3 Reducing Familiarity Bias and User Resistance 67
5.4 Priciple of Designing Complex Application 68

5.4.1 Differentiate the level and type of information by
color-coding them. 68

5.4.2 Clear clarity for each feature 68
5.4.3 Flatten menu hierarchy levels 69
5.4.4 Prioritize the frequently used functions 69

Contents | ix

5.4.5 Providing the ability to customize the system based on
the individual and task 70

5.5 Principle of Designing Touchscreen Application 70
5.5.1 Maximize the hotspot size and distinctiveness of the

button. 70
5.5.2 Maximize the scrollable area. 70
5.5.3 Avoid interaction requires higher sensitivity of touch-

screen . 71
5.6 Research Contribution . 71
5.7 Research Methods Discussion 72

6 Conclusion 75

References 77

A Interview materials 85
A.1 Interview Structure . 86
A.2 Interview Question Sheet . 87

B Contextual Inquiry materials 91
B.1 Contextual inquiry procedure inspired by [43] 91

C User testing materials 94
C.1 User Testing Procedure . 94

x | Contents

List of Figures | xi

List of Figures

1.1 ABB OmniCore FlexPendant [1] 2
1.2 A screenshot of the code editor module in virtual OmniCore

FlexPendant . 3
1.3 OmniCore FlexPendant touchscreen size compares to iPad pro

11’s size . 4

3.1 Design Framework based on Design Thinking 12

4.1 RobotStudio [40] . 19
4.2 A screenshot from ABB tutorial [41] showing the interface of

RobotStudio Cloud . 19
4.3 Wizard Easy Programming Software [42] 20
4.4 Products involved in competitive analysis 21
4.5 Contextual Inquiry environment setting 27
4.6 Four type of target audience 28
4.7 Transcript code card and example 29
4.8 Affinity Map . 31
4.9 UX Issue Card and example 32
4.10 Function label calculation . 32
4.11 MoSCoW Prioritization Metric 34
4.12 Low-fidelity design example 37
4.13 First version design example 38
4.14 Expert design review template 39
4.15 A screenshot of interactive prototype 41
4.16 User Testing Procedure . 44
4.17 Time Consumption Calculation Box Plot 45
4.18 User Experience Questionnaire 46
4.19 System Usability Scale . 47
4.20 Program Editor New Solution 50
4.21 Program Editor Current Version 51

xii | List of Figures

4.22 Program Structure New Solution 52
4.23 Program Structure Current Version 52
4.24 Operation Panel Examples (from left to right: Add Instruction,

Data, Customization) . 53
4.25 Property Panel Examples (from left to right: Data Declaration,

Value, For Instruction) . 53
4.26 Solution 1 interface: parameter detail bar 54
4.27 Solution 2 interface: edit selection with keyboard 55
4.28 Solution 3 interface: add instruction panel 56
4.29 Solution 4 interface: check program 57
4.30 Solution 5 interface: add WaitTime instruction 58
4.31 Solution 6 interface: add Movement instruction 59
4.32 Solution 7 interface: customization shortcut 60
4.33 Solution 8 interface: horizontal menu 61
4.34 Solution 9 interface: close tab button 62
4.35 Solution 10 interface: signal option list 63

A.1 Interview Structure . 86

List of Tables | xiii

List of Tables

4.1 Problem List . 36

xiv | List of Tables

List of acronyms and abbreviations | xv

List of acronyms and abbreviations

KTH KTH Royal Institute of Technology

SUS System Usability Scale

UEQ User Experience Questionnaire
UI User Interface
UX User Experience

xvi | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

The first chapter will present the project introduction, research question
and limitation to confirm the project subject, objective and scope. The
sustainability issues will be discussed to highlight the contribution of the
deliverable to the environment.

1.1 Project Introduction
Nowadays, Industrial Robots are widely used in manufacturing industries to
automate production and increase productivity. ABB, the world’s leading
supplier of industrial robots and machine automation, offers various solutions
for different industries. In their product portfolio, ABB offers a wide range
of robots that are capable of performing specific tasks under operator control
with various control and programming solutions. While ABB provides PC
applications for programming and simulation purposes, the primary tool for
controlling the robot on-site is the teach pendant. To be detailed, the ’teach
pendant’ is the official name for the industrial robot control box, and the
’FlexPendant’ is the ABB robot controller’s brand name.

This project aims to improve the code editor module in ABB’s robot
operator, OmniCore FlexPendant (see Figure 1.1). Before the OmniCore
FlexPendant, the older model, IRC5 FlexPendant, has been the exemplar in
the market for almost 20 years. Today, the latest version of ABB’s teach
pendant, OmniCore FlexPendant, was launched in 2019, marking a significant
milestone in the evolution of industrial robot controllers. With improved
performance, OmniCore introduced an entirely new operating system and a
larger multi-touch display, complete with the latest technology [2]. However,

2 | Introduction

Figure 1.1: ABB OmniCore FlexPendant [1]

during the early stages of OmniCore’s development, the user experience design
was not given a prominent emphasis. Consequently, some user experience
challenges have arisen while operators interact with OmniCore. Therefore, it
is now pertinent to identify and address these user experience issues to enhance
work efficiency and overall performance.

1.2 Research Question
The ultimate goal of this project is to improve the user experience of robot
programmers using OmniCore FlexPendant for programming robot motion.
The main research question of this project is “How can the interface of
touchscreen text-based code editor in teach pendant be designed with regard to
user experience and usability for robot programmers?” The investigation will
focus on improving the user experience and usability of the scenario where
robot programmers control the robot by using the text-based code editor in
teach pendant. This code editor (see figure 1.2) is designed for touchscreens
and is used to generate text-based code lines. The context of users’ activities
related to manufacturing, production, welding and lab experiments, etc., that
use robots as tools to accomplish tasks in the workspace. The aim of this
project is to improve the code editor’s user experience and usability, so that
robot programmers can use it to program the robot in a more efficient, intuitive

Introduction | 3

and user-friendly way. The deliverables for this project include a novel code
editor design solution and a set of design principles to navigate touchscreen
code editor design. Additionally, conducting research to fill gaps in industrial
robot programming solutions is one of the goals.
Objectives and Measurements:

• The new code editor will be more efficient and intuitive than the current
one.

– Robot programmers can spend less time coding tasks

– Easier to find instruction, modify parameter; reduce redundant
taps, steps and navigation

• The new code editor will be more user friendly than the current one

– Obtain a higher score on User Experience Questionnaire and
receive more positive feedback in user interviews

• The new code editor will be more adaptable to the touchscreen

– Obtain a higher score on System Usability Scale

Figure 1.2: A screenshot of the code editor module in virtual OmniCore
FlexPendant

4 | Introduction

1.3 Limitation
There are three main limitations that could affect the improvement of the
user experience, but they are not considered in this project. Firstly, some of
the experience problems are caused by the hardware, such as the lag of the
touchscreen and the size of the touchscreen. For instance, the touchscreen size
of OmniCore FlexPendant is smaller than typical tablets (see Figure 1.3) which
could be hampering design innovation to some degree. However, the focus of
this study is on the improvement of the software experience. Even though
the solution could be an attempt to reduce the influence of the hardware, it
could not eliminate it. Nonetheless, it provides opportunities to explore small
touchscreen interaction design. Secondly, the code editor module is not an
independent application in the teach pendant. The programmer has to use other
applications at the same time to complete the tasks, such as the I/O setting.
Thus, the solution could not eliminate the effect of the design flaw of other
applications. In addition, some of the design could not be changed because
the entire software system was based on the Windows system. For example,
the keyboard could only be the original one, and the problems caused by the
design of the keyboard could only be solved by using other walkarounds.

Figure 1.3: OmniCore FlexPendant touchscreen size compares to iPad pro 11’s
size

Introduction | 5

1.4 Sustainability
In terms of programmer’s well-being, programming is an activity that requires
the programmer to invest much cognitive effort and attention to comprehend
tasks, program functions and solve syntax errors [3]. For industrial robot
programmers, they have to concentrate on operating controller hardware,
applications in the controller and robots for safety in their work. This
requires multitasking and results in a higher mental workload in processing
the information [4]. Regarding factors that hinder workflow, disruptions, time
pressure and stress can lead to a high cognitive load that impacts programmers’
well-being [5]. The current code editor’s unsatisfactory usability and user
experience results in a higher cognitive load and increased time pressure.
According to previous research, the time pressure was confirmed as the main
stressors in workplace [5]. With the increase of time pressure, both the
ability to recall and the task accuracy will decrease [6][7]. Programming
industrial robots is considered to be high difficulty and multitasking. When
time pressure and task difficulty are both high, user performance and mental
efficiency decrease, resulting in worse well-being [5]. However, if there is
only one factor present, there is no obvious effect [5]. Therefore, by enhancing
the code editor’s user experience to improve work efficiency and reduce time
pressure for complex tasks, individuals can experience lower perceived tension
and better well-being. The expected outcomes aim to help programmers
maintain good mental health and well-being, aligning with the themes about
working conditions promoted by the International Labor Organization [8].

6 | Introduction

Background | 7

Chapter 2

Background

This chapter provides background information on the project. The contents are
divided into two sections. First, the previous research and related work about
industrial robot programming is presented to explain the type of programming
solution and the current research trend. Then, the information about the
programming solutions provided by ABB will be shown to give a better
understanding of this project.

2.1 Industrial Robot Programming
Regarding the industrial robot programming method, from different per-
spectives and with development, the previous research proposed various
categorising criteria. The most common way is to classify them into offline
programming and online programming [9]. Offline programming allows
operators to control and program virtual robots in a PC application, such as
ABB’s RobotStudio, without having to interact with physical robots in the
manufacturing environment [10]. This type of application enables users to
build and simulate work cells, test programs, and make adjustments before
implementing them on real robots. However, it is necessary to use the
teach pendant to fine-tune the robot’s programs on site, as the simulation
may not achieve the desired accuracy [9], which is referred to as online
programming. With the increasing focus on user experience, the concept
of end-user programming has been introduced and gained attention. This
type of robotics programming allows the user to write a program for personal
tasks rather than a generic function [11] and reduces the difficulty for non-
professional users to program a robot with user-friendly interfaces [9].

Programming robots via ABB OmniCore FlexPendant is a combination of

8 | Background

online programming and end-user programming. The lead-through function
in the teach pendant, which is the main method of online programming, is
used to control the robot to move to the desired positions and record them.
Subsequently, with end-user programming, programmers can flexibly modify
the code through application in the teach pendant, eliminating the need for
typing code and complex actions.

The study of user-friendly end-user programming interfaces is the main
focus of this research. There are two main types of end-user programming
interfaces: manual and automatic. Automatic programming refers to the way
of programming that has little control over the code, e.g., programming robots
by voice or gesture control [12]. On the contrary, manual programming
requires the user to directly control the programming instructions in the
programming interface, whether generating codes by selecting functional
snippets and entering parameters using the code editor on the teach pendant,
or typing the code directly using an industrial programming language such as
ABB’s RAPID or KUKA’s KRL [13].

When considering manual programming interfaces, there are two main
types: text-based and graphical. In the text-based interface, the code lines
are displayed directly to users directly on the code editor. Nowadays, with
advancements in technology, programmers no longer need to manually write
everything of code, but select instructions and adjust their parameters to
generate code lines [12]. An example of such technology is the ABB
OmniCore FlexPendant’s code editor, which is the subject of this research.
The technology leads to a significant reduction in programming time and
learning cost. When it comes to the graphical programming interface, it hides
the precise code lines and instead offers action blocks that users can drag and
drop. These interfaces often present code’s execution hierarchy in a flow-
chart or diagram format [12]. This type of programming is often referred to
as ”no code” programming and is particularly user-friendly for novice users.
For example, the ABB OmniCore code editor includes an application called
Wizard, which facilitates rapid testing of a robot’s execution of simple tasks.

To reach efficient information communication between humans and robots,
the Graphical User Interface of robot controllers has attracted much attention
in recent research [14]. However, for the code editor section, there is a gap in
the research of touchscreen and text-based code editors. Relevant studies are
more focused on prevalent touchscreens, such as mobile phones and tablets,
while other research tends to explore new methods to program robots. For
example, Weintrop et al. designed experiments to compare novice robot
programming using CoBlox (block-based programming) with two widely-used

Background | 9

methods (teach pendant and Universal Robot’s tree-based programming) in
terms of usability [13], learnability, and satisfaction. Foit also developed a
hybrid programming operator to connect the computer to the robot, making
it possible to program older machines easily and efficiently with an operator
panel [15]. Therefore, the research on touchscreen text-based code editors is
essential to fill the gap in some parts of the user experience of industrial robot
programming and is also an important section in the field of the development
of industrial robots.

2.2 ABB Programming Solution
ABB was one of the best companies in the world providing robotics and
automation products and introduced their first robot in the year 1974 when
it was known as ASEA [16]. Since then, they have continued to work on the
latest and most innovative technology and have introduced a range of robots
for manufacturing processes. The ABB’s robots are programmed and operated
by RAPID, a high-level programming language. It is a Structured Test (ST)
programming language, similar to the Python or C language, and it contains
the same type of statements, such as FOR, WHILE, IF. RAPID includes
embedded functions, also called instructions in robotics programming [17].
For example, the instruction ’MoveL home, v600, fine, Tool0’ means that
the robot with ’Tool0’ will move in a linear way at 600mm/s from the initial
position to the ’home’ position. The programmer can change the parameters:
’home’, ’v600’ and ’Tool0’ to adjust the position, speed and range of the
robot’s movement. This type of programming language is easy to understand
and easy to learn. In the 1990s, RobotStudio was released with support for
offline programming and automation simulation, which was a revolution in
the industry [16]. Today, RobotStudio, as the world’s most famous offline
programming and simulation tool, allows users to accurately build, test and
refine the production process in the virtual environment, improving efficiency
and productivity [18]. In addition to the desktop application, RobotStudio
cloud, to be released in 2022, supports remote collaboration, allowing team
members to work together in real-time from anywhere.

In the 1980s, ABB introduced the S series of hand-held robot controllers,
including S2, S3, S, S4c and S4C plus, for convenient on-site control of
the robots [19]. They are equipped with a display screen, a joystick and
physical buttons. The S4C plus was introduced in the early 2000s, which is
the final version of the S series and also the first to support ABB’s RAPID
programming [19]. In 2004, the IRC5 controller was launched, the name of

10 | Background

which stands for Industrial Robot Controller. With its touchscreen, modular
application and high degree of flexibility, it was the benchmark product of its
time and is still widely used today. Its program editor allows the programmer
to edit the RAPID program file via the touchscreen, providing satisfactory
performance and ease of use. In 2019, the latest series, OmniCore, was
launched, offering a larger multi-touch interface, various scalable functions
and improved performance [19]. The controller is embedded with RobotWare
7, a powerful and intuitive operating system based on the Windows platform.
Designed with the end user in mind, RobotWare 7 provides a simplified
user experience that makes programming and operating robots easier, with
a wide range of features and functions that enable robot programmers to
operate and program robots in complex situations [2]. In addition to the
general code editor, OmniCore also supports graphical programming with
the wizard application, allowing novice users to quickly learn installation and
control. In conclusion, OmniCore FlexPendant is a powerful tool in the real
manufacturing workplace.

In summary, ABB offers leading solutions for machine automation with
comprehensive robot programming products that meet the requirements in
different contexts. RobotStudio allows users to program robots offline and
simulate the production line in a virtual environment. IRC5 and OmniCore
FlexPendant allow programmers to operate and program robots on-site.
The aim of this thesis is to refine the text-based code editor in OmniCore
FlexPendant to achieve higher productivity.

Methodology | 11

Chapter 3

Methodology

This chapter presents the methodology related to the design framework and the
methods used during the design execution. The content includes the rationale
for the selection of the methods and their characteristics and procedures.

3.1 Design Thinking
Design Thinking is considered a paradigm for solving wicked problems [20],
especially in the field of information technology [21]. The wicked problem
corresponds to the complex application in this project, which provides
broad, unstructured functions or non-linear workflows and is designed for
a specialised domain with immense and technological skills [22]. In terms
of this code editor, it requires users with industrial robotics education and
receiving technical training. At the same time, it needs to collaborate with
different applications in the teach pendant or on the desktop to carry out
the tasks. The workflows and objectives are also dependent on the type of
user and the tasks, which makes it a complex case. Therefore, the design
thinking approach is chosen as the project framework to solve the challenge.
This framework allows researchers to immerse themselves in the context to
experience, create, prototype and test in order to iterate the solutions in a
creative and analytical way [23].

According to d.school, the Design Thinking model consists of five phases:
Empathize, Define, Ideate, Prototype, Test [24]. However, it is not a concrete
and inflexible mode, but a non-linear and iterative process [24]. Therefore, this
project framework (see Figure 3.1) was based on this model and added a pre-
study to help familiarize with basic industrial programming techniques and
market trends and added review sessions in the prototype phase. Following

12 | Methodology

this, the Empathize phase aims to observe people and problems in the context
of the challenge. Therefore, interviews and contextual inquiry are chosen
as methods to reveal users’ requirements and expectations. Then, the aim
of the Define phase is to clarify the problems in order to direct the design.
Therefore, Thematic Analysis and MoSCoW Analysis are used to manage
users’ feedback and problems identified in the Empathize phase. Before
starting the prototyping work, some design principles are generated to guide
the solution design. When moving to the Prototype stage, solutions are
generated and then iterated by expert review. When the prototype is ready, in
the testing phase, users are invited to interact with the prototypes to evaluate
their usability and user experience for further iteration. The final solution is
then proposed.

Figure 3.1: Design Framework based on Design Thinking

3.2 Design Process
The rationale and benefits of the methods used in each process were presented
in these sections. The execution process and result will be described in the
chapter 4.

3.2.1 Pre-Study
In the pre-study section, in order to put oneself in the users’ shoes and
understand their experience, the first thing is to ’become a user.’ This involves
learning how to use RobotStudio and the OmniCore FlexPendant to program
the industrial robots. It is an informal research activity and aims to gain
background knowledge of this project and get a preliminary understanding of
the user workflow. The competitive analysis is then chosen to gain insight
into the features, structure and interaction logic of the competitors [25].
By understanding their drawbacks and advantages, designers can build their

Methodology | 13

unique products while avoiding the same design flaws and same scope. It
focuses on identifying factors affecting user experience and gaps in the market
to refine our design [26]. The analysis starts with the main competitors, but
covers more products related to text-based code editors [25]. The research
concludes with a map that includes a description of each product, its strengths
and weaknesses, a summary and the corresponding interface.

3.2.2 Empathize
Interview and contextual inquiry are the methods used to obtain detailed
user experience feedback. Firstly, a semi-structured interview is used to
guide the conversation between researchers and programmers, starting from
a defined set of questions and continuing with derived questions [27]. The
interviews are conducted online to reach users around the world. The aim
of the interview is to empathize with users’ experiences and to gather their
expectations for feature improvements. However, online interviews can only
collect the data that users recall, and users cannot use the real code editor to
show their issues; thus the memory limitation may conceal some defects [27].
Therefore, contextual inquiry introduced by Beyer and Holtzblatt is the method
to complement the interview [28]. It is a field study method that includes
four main settings: context, relationship, interpretation and focus [27]. The
activity should be carried out in the environment in which they perform their
daily work; the relationship between researcher and participant should be a
master-apprentice relationship where participants teach the researcher about
their activities like teaching an apprentice; the researcher should confirm their
observation and understanding of each action with the participant; finally, the
research activities should focus on the subject of this project [27]. After this
study, the user’s real-time reaction, behaviour and feedback will be collected
to make the emphasize result more reliable.

3.2.3 Define & Ideate
In the define phase, thematic analysis and MoSCoW analysis are used to
extract insights. In order to manage the interview data, the first step is
to transcribe the recordings into text. The edited transcript is created by
deleting word crutches or misstatements [27]. The researcher goes through the
transcript, highlights key passages and gives them a summary of the content
[29], and then the content corresponding to the same label is collated as a
code card. When all the code cards are prepared, the codes that have a similar

14 | Methodology

meaning or indicate the same feedback are gathered together and a theme is
created to summarise the cards in the same group. Once a set of themes has
been obtained, the researcher can begin to review the themes and categorise
them into new themes with a higher hierarchy. The final result is presented in
the form of an affinity diagram and a summary of the findings.

The thematic analysis uncovers users’ attitudes towards the overall user
experience, while the details of the User Experience (UX) challenges revealed
in the interview and contextual inquiry require MoSCoW analysis to organise
them. The MoSCoW method is a way of prioritising requirements in
application development [30]. As this code editor is a complex application
and users have different preferences and suggestions for its improvement,
MoSCoW prioritisation can help to identify the importance of requirements
to determine the design scope. The metric consists of four prioritization
categories: Must Have, Should Have, Could Have and Won’t Have [31]. To
adapt to this project, the four categories are revised as ’Must Improve,’ ’Should
Improve,’ ’Could Improve’ and ’Won’t Improve.’ To aid the analysis, a UX
Issues card is designed to describe each challenge, and then each card is
categorised into four areas based on the criteria. Must Improve’ indicates the
essential issues that need to be resolved in a short time; ’Should Improve’
indicates the things that can improve the user experience a lot but aren’t
necessary right now; ’Can Improve’ issues are those that are good to make
some changes if the resources are sufficient; ’Won’t Improve’ issues are those
that participants want but don’t fit the context. The result is represented by a
MoSCoW metric.

3.2.4 Prototype
In the prototyping phase, low-fidelity and high-fidelity prototypes are created
using Figma, and expert review helps to evaluate them for initial iteration.
The method used in low-fidelity prototyping is to draw wireframes upon the
screenshot of the current design to cover the current design elements. The
wireframes allow the designers to view the layout of the solutions quickly and
focus on the solutions and features that they have come up with [32]. Once
the layout, the content and the information architecture have been confirmed,
the next step is to create high-fidelity prototypes. The high-fidelity prototypes
look like a ’live’ editor with well-designed User Interface (UI) components and
realistic content [33]. To get reliable user testing results, interactive prototypes
are developed with external help.

When prototyping the solution, UX expert review sessions are conducted

Methodology | 15

to help perfect the design. This is a usability inspection method to evaluate
the design and identify the issues to be improved [34]. Expert in this section
refers to the senior UX designer colleagues at ABB who have solid knowledge
and practice in UX design. The aim of UX expert review is to step out of the
box to evaluate the solution, identify the things that violate the user experience
and gain new perspectives for improvement [34]. The researcher prepared a
description of the problem and the solution with interfaces. The participant
first identifies the strengths and weaknesses of the solutions, and then rates
the severity of the violation, such as high, medium or low [34]. Finally, he
gives suggestions or shows examples of good practice to guide how to solve
the problem. The result will contribute to the refinement of the high-fidelity
prototypes.

3.2.5 Test
In user testing, a within-subjects experiment is designed to evaluate whether
the solution meets subjective user experience and usability. This type of
experiment requires participants to complete tasks in more than one context to
examine how the individual experience changes when the test subject changes
to obtain the result [35]. The within-subject method only needs a small
sample of participants and does not need to consider the variations between
individuals as all participants are in the same conditions [36]. Therefore,
in user testing, all participants use two code editors to complete the same
coding tasks. There are four evaluation metrics: time taken, User Experience
Questionnaire (UEQ), System Usability Scale (SUS) and interview feedback.
The time each user takes to complete each task is recorded to analyze efficiency
improvement. The Standard User Experience Questionnaire is a survey
containing 26 items belonging to six factors to quickly assess the overall user
experience of the products [37]. However, a standard UEQ takes a lot of time
to complete [38]. Therefore, a short version with 10 items covering four factors
is used: Attractiveness, Perspicuity, Efficiency and Dependability, which are
aligned with the project objective. Then, the System Usability Scale developed
by John Brooke with ten 5-point Likert questions is used to measure usability
in industrial system evaluations in a quick and dirty way [39]. The following
interview is a short discussion about the user experience and suggestions for
improvement to support the iteration design. The iteration ideation helps to
polish the final deliverable.

16 | Methodology

Execution and Analysis | 17

Chapter 4

Execution and Analysis

This chapter presents the execution process and analysis result based on the
Design Thinking framework. The content consists of six parts: Pre-Study,
Empathize, Define&Ideate, Prototype, Test and Final Deliver. These phases
show the procedure from learning the new challenge and identifying the
problems to finding the solutions. The solution design was iterated twice
through design review and user testing to achieve the objectives. The code
editor of the OmniCore FlexPendant was redesigned to improve the user
experience and usability for robot programmers.

4.1 Pre-Study
Prior to the collection of user feedback, it was necessary to master the research
subject of this project and to analyze the related products in ABB’s portfolio
and other solutions on the market. Firstly, the ’become a use’ activity was not
only to learn about the current solutions, but also a way to put the researcher in
the user’s shoes. Then, through research into the other programming solutions
in ABB’s product portfolio, it helped to build a comprehensive understanding
of each product’s target and its design style. The researcher then identified the
design focus of this research and ensured that the solution matched its users’
and scenarios’ requirements. In addition, the market and competitor analysis
was to have an understanding of the trends and existing solutions in the market.
An in-depth analysis of their interface design was carried out to identify their
strengths and weaknesses, which served as lessons learned for future design.
This section presents the process and outcome of the preliminary study.

18 | Execution and Analysis

4.1.1 Become a user
’Become a user’ involved learning how to use OmniCore FlexPendant,
RobotStudio and IRC5 FlexPendant through official tutorials and YouTube
videos. OmniCore FlexPendant is the subject of this study. The main objective
was to learn how to use the real OmniCore FlexPendant to configure, operate
and program a robot to perform a simple task such as picking and dropping
objects. It was vital to go through the whole process to understand how
programmers interact with robots and teach pendant. Although RobotStudio
and IRC5 FlexPendant were not included in this research, they had a
strong connection with OmniCore FlexPendant in the real workplace. In
RobotStudio, users can run the virtual FlexPendant to stimulate the process
of using a physical controller to control robots in the work cell. Regarding the
IRC5 FlexPendant, it was still the prominent controller in the real workplace.
Therefore, it was worthwhile to gain insight into its interface and interaction
design through study. Through this learning, the author gained enough
knowledge to program a simple task for industrial robots.

4.1.2 ABB Portfolio Research
ABB offers a wide range of industrial robot programming solutions, each
tailored to different users and scenarios. The purpose of this section is to gain
a comprehensive understanding of the product strategies and ecosystem. The
analysis of each product helped the researcher to distinguish the target users
and scenarios of the research subject. Three industrial robot program editors
are presented in the following section.

RobotStudio RobotStudio is the most important programming and
stimulation application in ABB Robotics that launched in 1998 (see
Figure 4.1). It has been continuously upgraded in terms of features and
performance. RobotStudio has powerful functionalities and supports advanced
programming. For example, it can stimulate the real working environment
with models and test their feasibility before implementation in production.
Its target users are professional users, such as technical support and robotics
engineers who have knowledge of RAPID programming and robotics. The
application can only be run on the PC. To program a robot, users typically
enter code directly into the RAPID editor.

Execution and Analysis | 19

Figure 4.1: RobotStudio [40]

RobotStudio Cloud RobotStudio Cloud is the website version of
RobotStudio and was introduced in 2022 (see Figure 4.2). Compared to
RobotStudio, it does not support building stimulation cells, but provides strong
real-time collaboration and cloud storage functions. RobotStudio Cloud aims
to increase digitalization through smooth collaboration across remote teams.
Its editor supports users to modify basic data on the property panel and enter
code directly. It still requires users to have knowledge of industrial robot
programming.

Figure 4.2: A screenshot from ABB tutorial [41] showing the interface of
RobotStudio Cloud

20 | Execution and Analysis

Wizard Easy Programming Software Wizard is a graphical program-
ming application in the physical or virtual OmniCore FlexPendant (see Figure
4.3). The target user of this application is the novice user. The user does
not need to have any programming knowledge. They can drag and drop the
instruction block in the editor and address the parameter to program the robot.
The code block expression is like natural language that is easy to understand,
for example, ’move tool0 quickly to location’.

Figure 4.3: Wizard Easy Programming Software [42]

The products mentioned above cover a wide range of users and scenarios,
while OmniCore FlexPendant has a different focus. In the real workplace,
such as a factory, professional programmers cannot take their laptops with
them. It is also impossible to fully simulate the details of the real environment
in software. In such cases, OmniCore FlexPendant is a professional tool for
programmers to control industrial robots in the field.

4.1.3 Competitive Analysis
Researching existing market offerings is essential to creating a product that
meets the needs of the market and users. The process involved first identifying
other touchscreen programming solutions on the market. Then systematically
categorise and analyse the existing solutions. The main research method is
to read the user manual or watch the tutorial video and analyse the interface

Execution and Analysis | 21

and interaction design of each solution by identifying its advantages and
disadvantages. Findings and insights were then produced to support future
designs.

In this research process, nine touchscreen code editors from seven different
companies were meticulously researched (see Figure 4.4). Three categories
were proposed to classify all the solutions, including flow programming,
tree-based programming and text-based programming. For each interface
design, an in-depth analysis was carried out, listing the layout, strengths and
weaknesses of the interaction and interface design, and a summary of the
evaluation of the solution. The result of the analysis is shown below.

Figure 4.4: Products involved in competitive analysis

Flow Programming Interface This is a graphical programming solution
that allows users to drag and drop the instruction block onto a timeline and
configure the instruction in the property panel to program the robot. For
novice users, this approach is more accessible. Throughout the process, the
user does not see the code, but rather an instruction box with an icon and a
textual description. This method is similar to ABB’s Wizard programming,
with the difference that arguments and parameters are not nested within the
parent block. This category includes Mitsubishi’s RT VisualBox and Fanuc’s
CRX teach pendant. Both solutions offer clear and attractive interfaces and
user-friendly and intuitive interaction. Their property and operation panels

22 | Execution and Analysis

are compact, structured and easy to understand. Its programming experience
is streamlined, which greatly reduces the learning curve. However, these
two editors have certain limitations that make them unsuitable for advanced
programming. In terms of RT Visual Box, the layout of the interface limited
the number of instruction blocks that make the program unable to craft
complex programs. Similarly, in CRX Teach Pendant, when a new motion
instruction is added, it automatically generates a new position data, naming
it with a number. However, it is a challenge for users to remember which
number represents which position data in a complex programme. Although
the interface design is not suitable for professional programming, the design
of its property panels can provide some inspiration.

Tree-based Programming Interface Tree-based programming goes
beyond graphical programming: although it does not display the exact code, it
shows the clear hierarchy of the program structure and allows the robot’s path
to be defined directly. This method is suitable for both novice and professional
users, as the program structure is clear and easy to edit, and the properties panel
provides both basic and advanced settings. Examples in this category include
Universal Robots’ 3PE Teach Pendant and Kuka’s iiQKA. Both products have
a horizontal layout with a tree-based instruction structure on the left and the
property panel on the right, with a clean and consistent design style. They
have many advantages that are worth learning about. For example, in the 3PE
Teach pendant, its keyboard includes several preset keywords that increase the
efficiency of finding frequently used symbols. The iiQKA’s system displays
different statuses or highlights critical information using different colours.
Last but not least, its programming structure includes a function for folding
and unfolding nodes, which greatly improves the clarity of the structure.

Text-based Programming Interface The text-based programming in-
terface is the research focus, which displays code in a similar way to
conventional PC code editors, although the interactions are somewhat
different. Programmers are required to select commands from the list and edit
configurations in the properties panel to generate code. This approach allows
precise scripting and configuration to support advanced programming. As this
is the main subject of this research, the author looked at all the touchscreen
text-based code editors on the market, including Fanuc’s iRProgrammer,
Yaskawa’s Smart Pendant, Kuka’s SmartPad, Trio’s TPS and Servotronix’s
Soft TP. Yaskawa’s Smart Pendant achieved the best performance of the
five solutions. It has a vertical layout with two responsive windows and
thoughtfully places the configuration window in a finger-friendly zone. In
addition, the programming panel is responsive and remains visible when the

Execution and Analysis | 23

keyboard is engaged, a considerate design choice for uninterrupted workflow.
Compared to the other four solutions, it stands out for its user-friendly and
elegant interface design. When it comes to the other four solutions, they
all have some drawbacks that pose user experience challenges. The lessons
learned were summarised as follows:

• Interaction flow: The interaction flow should enable intuitive working
processes and streamline the workflow.

• Property panel size: If the argument configuration area is too small, it
can be a challenge to display multiple arguments and include shortcuts.

• Icon clarity: Icons should be clear and easy to understand. Whenever
possible, include a text description below the icon for added clarity.

• Limit pop-up windows: Avoid excessive use of pop-up windows and
reduce the amount of information they contain to avoid clutter. Pop-
up windows may not be the best choice as containers for instruction
configuration settings.

• Abbreviations: Minimize the use of abbreviations unless they are widely
accepted and understood.

• Button icons: Avoid using single letters as button icons as they can be
ambiguous.

• Button descriptions: Ensure that the button descriptions are clear and
unambiguous to avoid any confusion regarding their functionality.

• Reduce Redundancy: Streamline interactions by eliminating redundant
steps to improve efficiency.

4.1.3.1 Competitive Analysis Summary

This section shows that there are several excellent examples of flow and
tree-based programming on the market. They provide a commendable user
experience. Graphical programming interfaces are the current trend in the
market, as these examples are introduced in recent years. However, when
it comes to text-based programming solutions, most products on the market
also face challenges in user experience and usability. Even Yaskawa’s Smart
Pendant, which is notable for its user-friendly design, uses a vertical interface
layout, while other products in the same category use a horizontal layout, as

24 | Execution and Analysis

does the OmniCore FlexPendant. As a result, the market lacks an excellent
text-based programming interface for touch screens. This finding indicates
an opportunity for ABB to enhance the OmniCore FlexPendant to fill the gap
and capture a large market share. The results of this section, especially the
lessons learned from the interface analysis, contributed to the redesign of the
OmniCore FlexPendant code editor.

4.2 Empathize
In the Empathize phase, a deeper understanding of user requirements and UX
challenges is essential, and two research activities are leveraged to collect data.
In order to reach robot programmers around the world, online interviews were
conducted to gather first-hand feedback on user experience and preferences.
Field studies were then carried out to observe the interaction between humans,
robots and teach pendants in the workplace. The process of the activities was
described as follows.

4.2.1 Interview
The semi-structured interviews were conducted with thirteen participants.
All participants are experienced robot programmers and participated in the
interview online. The participants described their user experience and the
challenges they faced, and shared the screen to show the workflow through the
virtual FlexPendant in RobotStudio. The whole interview would take about
60 minutes. The detailed content and process is presented in the following
sections.

4.2.1.1 Participant

Thirteen robot programmers with knowledge of ABB robot programming and
experience in using the OmniCore FlexPendant participated in the interview.
The participant’s contact information was obtained from the project provider
or from the ABB Robotics Forum. These thirteen participants came from
seven countries, including the United States, Sweden, Germany, China, India,
France, and Canada; all of them were men. They had professional experience
in this field. Among them, five individuals have over 15 years of experience
using ABB’s products, eight have experience ranging from 5 to 15 years,
and the remaining two have less than 5 years of experience. In addition, the
majority of the interviewees were ABB employees, while two were external

Execution and Analysis | 25

customers, as the OmniCore FlexPendant was not yet widely used in the
market.

4.2.1.2 Interview Material

The interview question sheet is in a semi-structurde manner (see Appendix A).
It has four sections. First, in the warm-up section, the researcher introduced
the process and guided the participants to talk about their backgrounds, roles,
responsibilities and experiences in the field. In the main part of the interview,
there were two main topics: FlexPendant related and code editor related. In
the first topic, the participants were asked about their experience and workflow
in using FlexPendant in their daily work. The next topic focused on the
code editor application in FlexPendant and the discussion delved into interface
details, including menu design, error messages, keyboard and property panel
design. It should be noted that although OmniCore FlexPendant is the subject
of the research, the older version, IRC5 FlexPendant, was also mentioned as it
was well accepted by the market. Finally, in the warm-up section, the research
provided more open-ended questions to encourage participants to talk about
their expectations and ideas for improvement.

4.2.1.3 Procedure

Prior to the interview, the interview invitation emails were sent to confirm
the schedule with the participant. Once the participant agreed to participate
in the study, an online meeting was scheduled via Microsoft Teams. At the
start of the interview, the researcher began by introducing himself/herself,
providing an overview of the project, explaining the interview process,
assuring the participant of the confidentiality of the data collected, and asking
for permission to record the interview. The interview was then recorded using
Microsoft Teams. Throughout the interview, the researcher kindly listens to
their answers to the questions and, based on their feedback, pops up follow-up
questions for deeper discussion. When discussing the details of the interface
design, in order to get a nuanced understanding, the researcher or participants
would share the screen to present the interaction details using the virtual
FlexPendant in RobotStudio. At the end of the interview, the researcher
summarised the key points and thanked the interviewees for their participation.

26 | Execution and Analysis

4.2.2 Contextual Inquiry
The Contextual Inquiry, a method of field study, was carried out at the ABB
Robotics Lab on-site with three participants. This activity gave the researcher
the opportunity to go through the workflow with the robotic engineers using
the physical OmniCore FlexPendant. The aim is to go beyond the recall of the
workflow, but to experience it and fill in the gaps in the memory in the actual
working environment.

4.2.2.1 Participant

Three robot programmers located in Västerås and working in the laboratory
participated. The participant was connected via the project provider. All three
participants were male ABB employees and were familiar with the operation
of the OmniCore FlexPendant. One of them has 25 year of experience in
Robotics, and the other two within 5 years.

4.2.2.2 Procedure

The procedure consists of five sections: preparation, primer, transition,
contextual interview, and wrap-up [43]; see the appendix B for more details.
In preparation, activity schedules were arranged through Microsoft Teams and
a GoPro camera was prepared to record the interaction. The researcher and
participants met in a work cell in the ABB Robotics laboratory. Then the
study started with an introductory phase, where the researcher introduced the
project and the research procedure to establish rapport with the participants,
clarified issues related to confidentiality and obtained consent to record
behaviour and discussion. A GoPro camera was then installed above the
OmniCore FlexPendant to record the participants’ interaction with the device
(see Figure 4.5). Participants were instructed to treat the researcher as a
student and go through the workflow to mimic a teacher teaching a student a
skill by doing. The researcher informs the participants that their interaction
with the robots and the OmniCore FlexPendant will be observed and that
they should expect interruptions for discussion or questions about their
behaviour. Participants were encouraged to correct any misinterpretations
of the researcher’s speculations. Once the participants had gained sufficient
understanding of this field study, they began to perform one or two tasks
to demonstrate their daily interaction with the robots and the OmniCore
FlexPendant. During this process, they were questioned about the purpose
of certain behaviours, the reasoning behind certain decisions, the logic behind

Execution and Analysis | 27

problems encountered, and expectations for future improvements. The study
concluded with a debriefing session in which the researcher provided a
summary of the observations and the participants were asked to review the
interpretations to ensure the accuracy of the feedback.

Figure 4.5: Contextual Inquiry environment setting

4.3 Define & Ideate
In the Define phase, four target audiences were identified through user research
data, and two methods, namely thematic analysis and MoSCoW analysis, were
used for analysis. The transcript of the interview was analyzed using the
thematic analysis method, which resulted in the creation of an affinity map to
comprehend the users’ overall feedback. The MoSCoW analysis facilitated the
categorization and prioritization of all user experience issues. The outcome of
the Define phase led to the creation of design principles, which would serve
as a reference for future designs.

28 | Execution and Analysis

4.3.1 Target Audience
The Empathize phase involved a total of 16 participants, 13 of whom
were interviewed online and 3 of whom participated in the field study.
The participants came from 7 different countries and represented four key
audiences (see Figure 4.6). The first type includes integrators and technical
support personnel who deploy and commission robots, ensuring proper
configuration and calibration before integrating them into the production line.
Their concern is whether the functionality in FlexPendant can support all types
of programming tasks, especially the initial setup and debugging process.
Second, software developers are responsible for developing software for robot
controllers. They are interested in optimizing the software functionalities for
better performance and ease of use. Then, technical trainers provide training
to students and technical users. They expect the user interfaces to be well
organized to locate functions and reduce the learning curve for novice users.
Finally, robotic engineers who test robots and robotic systems in the lab
and participate in the field study, also provided a unique perspective. Teach
pendants are the most commonly used devices in their work, leading them to
expect the system to provide better guidance and run without problems. The
variety of perspectives provided a comprehensive view of user experiences and
the unique challenges faced by different users in using OmniCore FlexPendant.
In addition, the composition of the participants ensured data reliability.

Figure 4.6: Four type of target audience

4.3.2 Thematic Analysis
Thematic analysis was the method of choice for the analysis of the interview
data. The recording was first transcribed by Microsoft Teams and organized
as a Summarized Transcript by picking up the important content. The analysis
focused on the assessment of user experience and usability. Due to the large
size of the data set, a code card was created to visualize the transcripts. The

Execution and Analysis | 29

card listed participant numbers, attitudes, theme, and transcript content related
to the theme (see Figure 4.7). User types and attitudes were highlighted
using different colors to facilitate identification. Regarding user types, blue
represented internal users, while brown denoted external users. As for
attitudes, light blue indicated a neutral stance, light green represented positive
feedback, and yellow denoted negative sentiments. The transcripts were
then examined thoroughly to gather related content and assign corresponding
themes to produce code cards. The transcript analysis concluded with 44 code
cards that were categorized into different themes to create an affinity map. The
affinity map was composed of four main themes and 17 sub-themes (see Figure
4.8). This method clearly illustrates the general attitudes and the number of
participants who corresponded with the same topics.

Figure 4.7: Transcript code card and example

Based on the overview, the affinity map reveals that users expect a better
experience from OmniCore, as indicated by the predominance of cards with
yellow highlights. In terms of the overall user experience, a prominent finding
was that participants favoured the user experience of the previous version
(IRC5) over that of OmniCore. It must be noted, however, that the reasons
behind this preference went beyond the user experience. Users’ familiarity
with the IRC5 version was the major contributing factor that the theory of
baby duck syndrome and familiarity bias could explain [44][45], as further
discussed in the section 5.4. OmniCore was launched four years ago with
a new interface, which led to users’ reservations because they had to spend
significant time learning and getting used to it. It is important to acknowledge
that the OmniCore FlexPendant is still in its early stages of development,
and further improvements are required to enhance its performance and user
experience. For example, one participant noted that it took more time to
navigate and find features compared to the previous version. Therefore, it

30 | Execution and Analysis

is worth considering bringing back some of the good features of the previous
version. Apart from ABB’s product portfolio, competitors in various markets
also offer a range of robotic solutions that seem to better suit local users’
requirements in terms of logic and price. In addition to the drawbacks, some
participants expressed satisfaction with ABB’s product, particularly with the
modern interface and state-of-the-art device. It should be noted that while
one participant mentioned the interface was user-friendly for novice users, our
target audience primarily comprises experienced users.

The second theme discusses the problem of user experience and its
impact on productivity. A major issue affecting the user experience was the
absence of necessary functionalities. Interviewees highlighted that OmniCore
FlexPendant’s performance could be significantly enhanced if it included
all the functionalities present in the IRC5 version. In addition, participants
were concerned about the redundancy present in workflow and navigation
design. The primary objective of robot programmers is to quickly access
functions and execute tasks efficiently. In addition, the complex data format
of industrial programming makes it challenging to present a clear structure of
data information. Moreover, the interface design emphasizes mouse-keyboard
interaction, rather than touchscreen. For instance, some hotspots were too
small to activate using fingers. To summarize, a visually appealing user
interface is not a priority, but retaining high productivity is crucial.

When it comes to the role of the teach pendant in work processes, it was
certain that the teach pendant played an indispensable role, particularly in
factories or labs where using a laptop is restricted, making the teach pendant
the only available option. The teach pendant is primarily utilized for fine-
tuning and installation purposes. It is notable that customers usually use the
OmniCore FlexPendant to control specific models exclusively compatible with
the OmniCore version while opting for IRC5 for other models. ABB expects
that programmers will soon adopt the OmniCore FlexPendant because of its
market strategy and its revolutionary effect on the industry. It is, therefore,
crucial for ABB to prioritize the user experience of OmniCore.

Finally, in the expectations section, several participants mentioned their
desire for efficiency, such as wanting handy, simple, and easy access. It
can be inferred that users expect the focus of improvement to be on reducing
cumbersome interactions to make task execution more efficient. Overall, the
primary aim to achieve in the design section should be to improve productivity
and efficiency.

Execution and Analysis | 31

Figure 4.8: Affinity Map

4.3.3 MoSCoW Analysis
In order to dive into the UX challenge, an exhaustive MoSCoW analysis was
conducted by thoroughly reviewing all the interview and field study transcripts
to identify, list and categorize each issue related to UX. To easily manage
the issues, a ’UX problem card’ template was created. This card recorded
the problem details, the affected interfaces, comments, and the solutions
suggested by the participants (see Figure 4.9). In addition, Two distinct labels,
represented by different colors, were used to categorize the problems. One of
them described the type of UX issue, while the other indicated the function it
related to. The first label set includes categories such as interaction, interface
& layout, and information display, among others. The ‘other’ label referred to
problems related to robot programming that did not occur in the code editor,
and therefore were not included in the MoSCoW analysis. The second label
set categorized the related functions into six types, including menu and tab,
instruction, debug and edit, code line, data, and others. By analyzing all the
recorded user research, 27 issue cards related to UX were generated.

32 | Execution and Analysis

Figure 4.9: UX Issue Card and example

Prior to the management of UX problem prioritization, the quantity of
function labels on the cards was counted. The outcomes demonstrated that
the majority of issues were caused by the menus and tabs’ designer, which
resulted in complex interactions. Issues in instructions, code lines, and data
followed. Therefore, navigation will be the main focus of redesign (see Figure
4.10).

Figure 4.10: Function label calculation

Afterward, all the cards were systematically arranged in the MoSCoW
coordinate system, with four areas: Would Improve, Should Improve, Could

Execution and Analysis | 33

Improve and Won’t Improve. The classification is based on the number of
participants reporting the problem and the extent to which it disrupts the
workflow. For example, a problem that was observed in only one field study,
but significantly impeded the updating position data, would be categorized
under the ’Must improve’ category. The category ’Should Improve’
included features that would significantly enhance the user experience through
redesigning, although they were not immediately necessary. The ’Could
Improve’ category includes issues that may or may not directly improve the
user experience and may require significant time to redesign. The ’Won’t
Improve’ category included features that were incompatible with the context
and the OmniCore FlexPendant, such as those unique features found in other
teach pendants. For instance, Kuka implemented a feature that enabled split-
screen functionality, which was appreciated by a customer. Nonetheless,
this feature was incompatible with the interface structure of the OmniCore
FlexPendant and, therefore, was not taken into account.

Once the MoSCoW metric was created, it was observed that over half of
the cards in the ’Must Improve’ and ’Should Improve’ categories pointed to
issues related to menu and tab design, and 9 out of 19 problems were caused
by interaction design (see Figure 4.11). The improvement of the design of tabs
and the reduction of redundant steps are essential to enhancing user experience
and usability.

34 | Execution and Analysis

Figure 4.11: MoSCoW Prioritization Metric

4.3.4 Design Principle Ideation
Five key design principles were formulated based on the results of user
research to guide design iterations before starting the design process. These
principles were formulated to aid in designing an intuitive and user-friendly
interface.

’big and bigger’ buttons for finger: The first principle to facilitate touch
interaction was to maximize button size. When interacting with a mouse
and keyboard, buttons should be larger than 42 pixels [46]. However, some
buttons in the current interface were around 30 pixels, making them difficult to
access and easy to accidentally touch. Thus, a bigger button size was deemed

Execution and Analysis | 35

necessary. Buttons should have a width or height larger than 42 pixels. Due
to screen size limitations, a size of at least 50 pixels is recommended.

Replace drop down menu: It is best to avoid using drop-down menus
in the tablet application [47]. This decision was driven by issues that arose
from interacting with the data list. There were many options for each type
of data, but the scrolling space in the drop-down menus was limited, making
it inconvenient for users to view and find options. Users would also often
accidentally tap the space around the menu area, causing the drop-down menus
to close. Using a fixed-size option list could eliminate this inconvenience.

Shortcuts and Customization: Enabling users to personalize the code
editor based on their unique preferences and workflows is worth considering.
Users have different working styles, and the functions and data they frequently
use vary from project to project. Similar to customized workplaces in graphic
design software, enabling users to define their own code editor can enhance
productivity.

Design for touchscreen with limited size and sensitivity: Optimizing the
design for touchscreen interfaces was critical given the constraints of screen
size and sensitivity. The current design was deemed reasonable by participants
when using the virtual OmniCore FlexPendant in RobotStudio. However,
components need to be optimized for the physical device.

4.3.5 Redesign Scope
After thoroughly analyzing the transcript and prioritizing UX challenges,
the issues that require improvement were identified. Before starting the
design process, the types of issues were defined, whether they were bugs or
user experience-related. Next, considering the available time and support,
a set of issues to be tackled was selected. Other issues were deferred as
they may require more extensive research or have minimal impact on the
typical workflow. For instance, issues related to the ’Edit Expression’ page
encompassed several sections that required additional user research to identify
specific details. Here is a list of the problems to be addressed and organized
based on the MoSCoW Metric.

36 | Execution and Analysis

Must Improve Should Improve Could Improve
Users do not want to
view all the parameters
when modifying one
parameter

Users do not want to
view all the parameters
when modifying one
parameter

Users do not want to
view all the parameters
when modifying one
parameter

Keyboards need
improvement for
quickly typing in

Code line without color
to identify different el-
ements

Configuration data is
not readable for human
beings

‘View Value’ function
takes several steps to
access

The module title does
not indicate which task
it belongs to

Users cannot efficiently
find the instructions

Long press to close the
window is not intuitive

Users make some effort
in searching and find-
ing the function in the
menu

The structure of the
program is not conve-
nient for finding rou-
tines

The ’check program’
function does not in-
dicate the location of
syntax error

Switch to another rou-
tine needs a quick way

The number input
function is hidden deep
in the menu

The right side panel
covers part of the code

Update position func-
tion needs quick access
It is inconvenient to
view the data value

Table 4.1: Problem List

4.4 Prototype
Once the problem has been defined, the following step is to design solutions
for addressing them. The design process began with the creation of wireframes
and the first version of a high-fidelity interface. Expert review sessions were
then conducted to evaluate the design. In response to feedback, I created high-
fidelity and interactive prototypes for user testing. Figma was the primary
design tool in this project.

Execution and Analysis | 37

4.4.1 First Version Solution
The solution concept was ideated using the screenshot of the current interface
as a reference. This method involved building low-fidelity wireframes on top
of the screenshots to showcase a rough solution without investing time in
perfecting aesthetic details (see Figure 4.12). The preliminary solution was
discussed with the supervisor to gather initial feedback. Subsequently, the
initial version of a high-fidelity interface design was developed. The Figma
page displayed various blocks, including a series of redesigned interfaces (see
Figure 4.13). Each title indicated the content being redesigned and attached
notes described the changes made. The interfaces utilized assets from the latest
ABB Robotics design system to align its design style with other products. The
interface design aims to be realistic and precise by standardizing font size,
color, margin and component sizes. Because precision played a crucial role in
implementing design while creating interactive prototypes. One more reason
is the touchscreen’s limitations in size and sensitivity. Therefore, the design
details became crucial to evaluate in the subsequent process.

Figure 4.12: Low-fidelity design example

38 | Execution and Analysis

Figure 4.13: First version design example

4.4.2 UX Expert Review
Following the initial redesign, the first round of evaluation with UX colleagues
was conducted to refine the design. Three UX designers responsible for
different programming solutions at ABB were invited to this phase and the
review meeting was held online. The Figma file for design review was
prepared prior to the review meeting. The page is divided into three main
sections (see Figure 4.14). The left block displays the description of each
problem and the affected interface, whereas the central block shows the
solutions and their corresponding interface. The right side is a table that
records the evaluation result of each design solution, including whether it
has UX violations, the severity of the violation, and the recommendation to
modify the design. The review meetings commenced with an introduction
to the process, confirmation of data confidentiality and the request to record.
The author then presented problems and solutions one by one, soliciting
suggestions from the participants. In regard to design violating user experience
and usability, participants demonstrated other products’ design solutions and
proposed their own ideas. Since all participants were experienced designers,
they paid close attention to the details of each element, including color, shape,
size, component type, and consistent design, which is essential in creating a
realistic user interface. Since there were more than 50 interfaces to evaluate,

Execution and Analysis | 39

Figure 4.14: Expert design review template

the three participants didn’t assess all the solutions. Two designers reviewed
each solution to gain diverse perspectives. Expert feedback instructed to
perfect the high-fidelity prototype.

4.4.3 High-Fidelity Prototype
The High-Fidelity Prototypes were created based on feedback from the UX
Expert review session. During this phase, the design aimed to achieve
pixel-perfection. To maintain design consistency, components with various
variants and statues were constructed, and their sizes were adjusted to fit the
touchscreen. The main outcome includes two main interfaces, five operation
panels, eight instruction configuration panels, and two types of keyboards.
There are four significant changes in the solutions. Firstly, the vertical menu
was replaced with a horizontal one, which allows quick switching between
panels. Next, the accordion list was widely used to replace the drop-down
menus or menus with submenus in order to reduce navigating between pages.
Predefined and customization functions were introduced to allow users to
define their own code editors for improving efficiency. Once the High-Fidelity
prototype was completed, the redesigned interface was realistic and accurate
enough to be turned into interactive prototypes for future testing in the next
phase. The interfaces can be viewed in the Section 4.6.

4.4.4 Interactive Prototype
After confirming the prototype details, an interactive prototype was created
to provide an immersive experience during user testing. Due to time and
programming constraints, the interactive prototype was developed with the

40 | Execution and Analysis

help of a front-end programmer. This prototype was a web-based code editor
that used the React library and the Monaco Editor. The functions were
hardcoded. Monaco Editor is a browser-based code editor that is also utilized
in RobotStudio Cloud. Finally, the prototype can be loaded in the tablet’s
browser and interacted with using a finger. The prototype’s fundamental
interface and interaction designs have been implemented, enabling users to
perform basic programming tasks. However, some interactions necessitate
specific workflows to be triggered. The following list presents all the supported
functions:

• Add instruction & Modify instruction: MoveL, MoveJ, WaitTime,
ProcCall, Set, Reset

• ’Add instruction’ panel: navigate among menus, search for instruction,
favorite instruction, set up instruction panel

• ’Data’ panel: view data detail, modify data detail

• ’Edit line’ panel: cut, copy, paste code

• ’Debug’ panel: Check program & modify syntax error

• ’Customization’ panel: order menu buttons, add new menu button, add
& order shortcuts.

• Switch routine/module through the drop down menu in the title tab.

• View routine/module/task on the program structure page

• Edit IF expression with keyboard;

• Change value with number keyboard

• Add new data with specific name: jposA, jposB, jposC

• Double tab position/speed/zone data to trigger detail bar

• View specific data detail

• Update predefined position data

Execution and Analysis | 41

Figure 4.15: A screenshot of interactive prototype

4.5 Test
Once the prototype was complete, it was time to test whether the design had
addressed the challenges identified in the user research. A within-subject
experiment was used in which all participants were required to program a robot
using both two code editors. The comparison between the two code editors
shows the impact of the redesign. The goal of the user testing is to collect
feedback and determine which parts need further adjustment. The subsequent
sections will detail the test methodology and results.

4.5.1 User Testing
A within-subjects study was carried out with 7 participants, 1 for pilot study
and another 6 for contributing to the final result. All participants completed
three programming tasks of varying levels using two code editors. Two
questionnaires and a short interview were used to gather feedback about their
experiences. The study’s focus was on identifying design defects causing

42 | Execution and Analysis

confusion and interruption in the workflow.

4.5.1.1 Participant

The study recruited robot programmers who could take part in the user test
on-site. In the end, seven participants comprising four user profiles were
selected. These included two PhD candidates in robotics, one novice with
only IRC5 training, two software developers, and two experienced OmniCore
FlexPendant users. Regarding gender, two were female, and the remaining five
were male. In terms of composition, two were customers who are experienced
user of OmniCore FlexPendant. One participant who is a PhD candidate in
robotics participated in the pilot study. Apart from these three individuals,
the other four participants were employees of ABB. This diverse group was
selected to comprehensively evaluate the new design.

4.5.1.2 Material

For user testing, an interactive prototype, three predefined programming
tasks, a physical OmniCore FlexPendant, a recording device, and online
questionnaires were prepared. The interactive prototype was loaded in the
browser of an iPad Pro. The OmniCore FlexPendant was updated to the
latest software version. It was then connected to a laptop and RobotStudio to
power the device and synchronize documents. The three programming tasks
included drawing a triangle, fine-tuning, and picking up and dropping objects.
The tasks ranged in difficulty from easy to mid-level. The code for both
the initial and expected finish programs was pre-set. Based on the provided
code sample, users are expected to modify the initial program accordingly.
Recordings of each task’s robot movement in RobotStudio were made to aid
in explaining the tasks. The interaction process and interview were recorded
using the camera and voice recorder on a phone. Two online questionnaires,
the short version of the User Experience Questionnaire and the Standard
System Usability Scale, were created using Qualtrics. The short version of the
User Experience Questionnaire includes 10 questions to evaluate the metrics
related to attractiveness, efficiency, clarity, and dependability.

4.5.1.3 Pilot Study

The pilot study took place in a study room at KTH Royal Institute of
Technology (KTH) library with a PhD candidate in robotics. The aim was
to assess whether the whole process could be well controlled by the researcher

Execution and Analysis | 43

and to get a chance to familiarize with the procedure. The data collected
during the pilot study would not contribute to the result due to changes in the
process and recording mistakes. The pilot study revealed a major problem:
the researcher was not able to pay attention to several devices at the same
time, such as a mobile phone, a laptop, a second screen and two code editors.
Multitasking can interfere with the researcher’s observation. Therefore, in the
modified user testing procedure, some parts were cut out for better observation.
For example, participants did not need to simulate the robot movement process
but could only focus on the coding section. As a result, both participants
and researchers were not required to look at the second screen every time a
movement instruction was added. The pilot study lasted for 60 minutes, which
is deemed appropriate for this research activity.

4.5.1.4 Procedure

Seven steps make up the entire process: introduction, exploration, task 1,
task 2, task 3, questionnaire, and interview (see Appendix C). The invitation
was sent via email and the schedule was arranged using Microsoft Teams. In
preparation, the test devices and files were carefully set up in advance in the
meeting room. The testing began with an introduction to the testing procedure,
the two code editors, and the confirmation of the consent form and recording
request. The test sequence was randomly assigned to ensure objectivity. Later,
participants were given five minutes to explore two code editors with the
’playground’ module. When performing the first two tasks, the participants
were allowed to ask the researcher any questions they had if they encountered
difficulties to help them become familiar with the code editor. For the third
task, the participants were required to complete it individually. Throughout the
test, the participant skipped the jogging process and only had to concentrate
on the programming part.

The first task was to control a robot to draw a triangle. More specifically,
the participant was required to create three new position data and program
the robot using ’MoveJ,’ ’MoveL’ and ’WaitTime’ actions. This task was
designed because drawing a shape is the first program that learners write
during training. The second challenge was to fine-tune a previously created
program. Participants must use functions and features, such as the keyboard,
to refine a program with syntax errors. This includes checking, modifying
instructions, updating positions and changing data options. Fine-tuning was
the most common task for a robot programmer when working with a teach
pendant. In the last task, participants were required to create a program for

44 | Execution and Analysis

’pick and drop’ objects from scratch. Writing programs for this type of action
was one of the main tasks performed by industrial robot programmers.

Upon completing all tasks, participants should complete an online
questionnaire containing the UEQ and SUS and subsequently engage in a brief
discussion with the researchers. In the short interview, the researcher enquired
about their code editor preference, preferred and disliked features, as well
as their overall user experience and suggestions for improvement. Next, the
interruption during user testing is discussed, including participants’ workflow,
behavioral intentions, and expected solutions. The user testing concludes with
a section expressing gratitude.

Figure 4.16: User Testing Procedure

4.5.2 Data Analysis & Findings
The data analysis consists of four parts: time spent, user experience
questionnaire, system usability scale and interview feedback. This section will
detail the analysis of each metric.

4.5.2.1 Time Consumption

The box plot showed that the new design reduces the time required for
programming, making the workflow more efficient. Overall, the ’New Design’
required less time compared to the ’Current Design’. Furthermore, there
is a visible trend of median time increasing from Task 1 to Task 3, which
corresponds to the level of task complexity. Both editors took longer to
complete more complex tasks, but the increase was less pronounced for
the ’New Design,’ indicating that it handled increasing complexity better.
However, participants might have completed Task 2 more quickly than Task 1

Execution and Analysis | 45

because they had become more familiar with the code editor after performing
Task 1. To assess the time-saving performance of the new design, the average

Figure 4.17: Time Consumption Calculation Box Plot

Current Design completion time of each task minus the average New Design
completion time, the result showed 12.09%, 15.59%, and 17.13% time savings
for Task 1, Task 2, and Task 3, respectively. The size of the boxes suggests
that the time consumption variability of the ’Current Design’ is greater than
that of the ’New Design.’ Overall, the results indicate that the ’New Design’
outperformed the ’Current Design’ for all participants and across all tasks. To
summarize, the ”New Design” shows lower median times and less variability
than the ”Current Design,” indicating its potential to provide more efficient
solutions for robot programmers.

4.5.2.2 User Experience Questionnaire

This Short-Version Experience Questionnaire evaluated ten metrics based
on user ratings that range from 1 to 7, with a higher score indicating
better performance. The metrics include ”Enjoyable,” ”Friendly,” ”Efficient,”
”Practical,” ”Organized,” ”Easy to learn,” ”Easy,” ”Clear,” ”Predictable,” and
”Meets Expectations”. The mean was calculated for each metric to analyze
the data.

All metrics indicate that the New Design consistently outperforms the
Current Design. The ’Efficient’ and ’Organized’ metrics show the most

46 | Execution and Analysis

Figure 4.18: User Experience Questionnaire

significant improvements, with a difference of 2.83 points corresponding
to a percentage increase of 94.4%. Therefore, users considered the New
Design to be significantly more efficient and better organized than the
Current Design. The metrics ’Enjoyable’ and ’Meets Expectation’ showed
significant improvement, with an average increase of 2.5 and 2.67 points
respectively. These findings indicate that users perceived the New Design
to be more enjoyable and satisfactory than the Current Design and better
meeting their expectations. Other metrics indicate an improvement of scores
ranging from 1.8 to 2.17. However, the ’Easy to learn’ metric showed the
smallest increase with a mean difference of 0.5 points. This outcome was not
unexpected since it aligns with the user study’s conclusion that the OmniCore
FlexPendant is novice user-friendly. These improvements indicate that the
design changes were positively received by users and effectively addressed
some UX obstacles.

4.5.2.3 System Usability Scale

The standard SUS was used to measure the usability of two code editors.
The SUS comprises ten metrics that are grouped into positive expression

Execution and Analysis | 47

(odd-numbered) and negative expression (even-numbered) categories [39]. I
separated two types of expressions and calculated the score for each metric as
well as the SUS score for the tool to obtain the result.

Figure 4.19: System Usability Scale

The analysis of the positive metrics shows that the New Design performs
better than the Current Design in all five metrics. A mean difference of
1.33 to 1.67 points was observed in all metrics, indicating a 50% to 83.33%
percentage improvement. The results imply that users found the New Design
easier to learn, more user-friendly, better integrated and more confident to use
compared to the Current Design.

Regarding the negative items, the New Design also performed better. The
statement, ”The system was unnecessarily complex,” showed a significant

48 | Execution and Analysis

mean difference of 2.17 points, equating to a 56.52% improvement. This
emphasised that the users found the New Design less complex and simpler to
use compared to the Current Design. Furthermore, the other negative points,
such as ”Requiring technical support,” ”Inconsistent interface” and ”Awkward
to use system,” had better results also. The item with the least difference of 0.5
points, ’Needed to learn a lot of things before I could get going,’ demonstrates
the consistency with the result in the User Experience Questionnaire that
the current OmniCore FlexPendant is user-friendly for novice users. These
findings demonstrate that the New Design is less inconsistent, less awkward
to use, and requires less prior learning.

Finally, according to the SUS score calculation rule, the New Design
gained 72.92 points. The SUS score graphs interpreted the score of the
new design as a B-, indicating satisfactory usability, although room for
improvement still remains [48]. The next sections will detail the defects
identified.

4.5.3 Interview Feedback and Discussion
Discussions with participants revealed a consensus that the new design
provides a more user-friendly solution. The elimination of redundant
steps enabled participants to accomplish tasks efficiently, indicating that
the design was moving in the right direction. The positive feedback
from interviews corresponded with the questionnaires and time consumption
results. Participants expressed appreciation for some features, notably the
reintroduction of the horizontal menu, the ability to customize the interface,
the quick ways to locate instructions and syntax errors, and the shortcuts.
In conclusion, the changes in New Design significantly improved the user
experience and usability of the code editor.

It is worth noting that users of OmniCore and IRC5 have developed
their own workflows, which has led to the emergence of various ideas in the
discussion. A debate arose regarding whether a single or double tap should
be used to activate the parameter detail bar. Although some participants
were used to double-tapping on the parameter or code line to select it, others
preferred to double-tap to trigger the modification panel. Moreover, certain
users exhibited distinct preferences in terms of prioritizing frequently-used
instructions and data when compared to favouring specific options. While
some users would like the system to automatically recognize and prioritize
frequently used options, others wish to have the independence to define
their option lists. The possibility of providing users with more flexibility to

Execution and Analysis | 49

customize their interaction behaviour was considered. However, increasing
freedom might lead to reduced efficiency and elevated complexity. Therefore,
in this case, it is better to guide users towards a specific workflow in this
solution.

In addition to acceptance and debate, participants have identified a few
areas that could be improved further. Within the WaitTime instruction
configuration panel, the participants agreed that having a number input box
streamlined the process of entering numbers. Nevertheless, they found
it tedious to repeatedly type in the same number and suggested having a
predefined number button. Additionally, the participants appreciated the
shortcut to edit the code without opening the ’Edit Line’ panel. However, they
found that the shortcut buttons’ size was small and the meaning of the icons
was confusing. A plausible solution would be to enlarge the button and add
a text label to clarify its functions. In addition, the ’MoveJ’ and ’MoveL’ are
the two most frequently used instructions that can be input through shortcuts,
as per their preference. Regarding the configuration panel for the Movement
instruction, the long list of data options always causes parameter titles to be
hidden, leading to users missing some of the parameter settings and having to
make modifications later. Hence, a sidebar menu could be a better solution
than an accordion list in this context. The exact value of each option was not
deemed important by the users. Therefore, in the iteration design, the decision
was made not to show the exact value of most data types, keeping them only
for numbers and signals. This is because it can be challenging for users to
remember associations, such as the number ’7’ being assigned to the letter ’a’.

To summarise, all participants accepted the new design, and the direction
for future improvements was confirmed. The outcome contributed to the final
concept and the iteration version of the solution will be shown in the final
design.

4.6 Final Concept
The final phase is the presentation of new solutions. The two main pages of the
new code editor and examples of panels were presented, along with solutions
to ten key issues.

4.6.1 Interface Overview
The Program Editor page is composed of four main components (see Figure
4.20). In the middle section, there is an area designated for displaying code.

50 | Execution and Analysis

The code was colour-coded to improve its readability. The tab bar with
program details is located above. Each tab clearly displays the name of the
module, task, or routine and includes a button to view the list of routines.
Below the code holder is a horizontal menu that allows quick panel switching,
which is the most significant change from the current version (see Figure 4.21).
Once the button on the menu is tapped, the corresponding operation panel will
appear on the right side of the code containers.

Figure 4.20: Program Editor New Solution

Execution and Analysis | 51

Figure 4.21: Program Editor Current Version

The Program Structure page consists of three main parts (see Figure 4.22).
On the top bar, there is a hamburger button on the left side, which enables
users to open a side menu for quick switching to the Program Editor page. On
the left side of the page, there is a fixed menu which presents the task list.
Users can tap on this menu to view the files associated with different robots.
A list of files is placed on the right side, arranged in an accordion style. The
user can expand or collapse the list of procedures to view procedures from
different modules. This reduces redundant clicking compared to the current
version, where users have to jump back and forth (See Figure 4.23). Users
can also open the program with Program Pointer by tapping on the blue quick
access button.

52 | Execution and Analysis

Figure 4.22: Program Structure New Solution

Figure 4.23: Program Structure Current Version

What’s more, five operation panels and various property panels have been
redesigned to support programming tasks. The design details can be viewed
in the following sections.

Execution and Analysis | 53

Figure 4.24: Operation Panel Examples (from left to right: Add Instruction,
Data, Customization)

Figure 4.25: Property Panel Examples (from left to right: Data Declaration,
Value, For Instruction)

4.6.2 Problem & Solution
Issue 1: When users double-tap on the parameter to change it, the instruction
will show all parameters. However, users want to view only the selected
parameter.
Solution 1: The feature has been updated so that users can double-tap on the
desired parameter to open a detailed bar. This bar will only show information

54 | Execution and Analysis

about the selected parameter and provide a list of options to modify it.

Figure 4.26: Solution 1 interface: parameter detail bar

Issue 2: To type symbols or logic words on keyboards, users have to go
through three or more steps to find them.
Solution 2: In order to make it easier to access symbols or logic words, the
new design has positioned frequently used symbols or logic words above the
keyboard.

Execution and Analysis | 55

Figure 4.27: Solution 2 interface: edit selection with keyboard

Issue 3: The user found it bothersome to locate instructions efficiently because
it was hard to remember which group an instruction belonged to. As a result,
users had to flip between pages to search for the desired instruction. The button
to clear search words is too small to access.
Solution 3: The new Instructions panel incorporates four tabs. Under the
Common tabs, users can view their favorite instructions and the frequently
used instructions detected by the system. On both the Common and Groups
pages, the general menu has been replaced by an accordion list, reducing the
time needed to check each group’s subpage. Furthermore, the button to clear
input on the search page has been made larger and more easily accessible.
Lastly, on the Settings page, users can manage their instruction groups and
favorite instructions.

56 | Execution and Analysis

Figure 4.28: Solution 3 interface: add instruction panel

Issue 4: When checking a program to detect errors, only one error can be
displayed at a time in the notification bar. As a result, users need to check
multiple times to ensure there are no remaining errors. In addition, the error
location was presented by a two-dimensional array, making it difficult for users
to locate and address the issue.
Solution 4: The new solution highlights all errors in orange, enabling users
to identify the location of all errors at once. Furthermore, users can tap on a
button in the notification bar to directly open the edit page with a keyboard.
After each modification, the program automatically checks for errors again.

Execution and Analysis | 57

Figure 4.29: Solution 4 interface: check program

Issue 5: While adding WaitTime instruction, the data options list only displays
the name of the number data, making it inconvenient to identify which number
is assigned to it. If users want to input the number, the number keyboard is
located deep inside the menu.
Solution 5: In the new WaitTime property panel, the number input box is
prominently displayed. To input the number, users can tap on the input box
to trigger the number keyboard or tap on the predefined number buttons for
the corresponding number to be quickly input instead of typing it manually.
Underneath the input box, users can view the exact name and value of the
number data, and select them by tapping on them.

58 | Execution and Analysis

Figure 4.30: Solution 5 interface: add WaitTime instruction

Issue 6: When adding a movement instruction, the property panel displays
various drop-down menus for selecting data. However, the drop-down menu
is not suitable for touchscreens. The data is presented in alphabetical order,
which makes it inconvenient to find the desired option when there are hundreds
of them.
Solution 6: In the revised version, the sidebar menu replaces the drop-down
menu. In this case, the titles of the parameters are always visible, and the
option lists are fixed to prevent accidental tapping. There is a preview of the
code at the top of the screen before the configuration is applied, which is handy.
In addition, the ability to pin favourite options to the top of the options list
makes it quick and easy for users to find and select their preferred options.

Execution and Analysis | 59

Figure 4.31: Solution 6 interface: add Movement instruction

Issue 7: The clipboard functions are located on the ’Edit Line’ page. To copy
or cut the code, users must first open the ’Edit Line’ panel, which also covers
a part of the code.
Solution 7: Now, users can customize their shortcuts in the ’Customization’
panel. The shortcuts will be prominently displayed at the top right of the code
editor, and will feature large buttons and text labels for ease of use. When the
right-side panel is displayed, only the shortcuts icon remains attached to its
left side.

60 | Execution and Analysis

Figure 4.32: Solution 7 interface: customization shortcut

Issue 8: The right side panel unavoidably overlaps the right side of the code,
but when users want to close the panel, they can only go back to the main page
to find the close window button.
Solution 8: The main menu is modified from a vertical to a horizontal layout
to facilitate quick switching of the operation panel by users. Additionally, a
close button has been included at the bottom-right corner of each panel to
enable users to quickly close the window.

Execution and Analysis | 61

Figure 4.33: Solution 8 interface: horizontal menu

Issue 9: Users have no clue how to close the application tab. Although users
are aware of the need to long-press the tab to trigger the close button, the screen
is not sensitive enough to promise the response.
Solution 9: The tab bar has been updated to be more like a browser’s tab
bar. The close button will be displayed only when the relevant application
is opened. This enables users to intuitively and easily find the way to close
applications.

62 | Execution and Analysis

Figure 4.34: Solution 9 interface: close tab button

Issue 10: When adding instructions with signal data, it was sometimes
challenging to find the desired signal among hundreds of signals.
Solution 10: The new design displays two tabs in the signal settings area:
one for favourite signals and another for displaying all signals. Users can now
define their own favourite signal and select it under the first tab, or search for
all signals by groups under the second type.

Execution and Analysis | 63

Figure 4.35: Solution 10 interface: signal option list

64 | Execution and Analysis

Discussion | 65

Chapter 5

Discussion

This chapter presents the reflection on the whole design process and final
outcomes. The content includes the discussion about the debate among users
and contribution to the industry and limitations within the process.

5.1 Customization VS Standardization
Indeed, accommodating the diverse preferences and habits of users is one
of the challenges in user interface design. In the user study, participants
expressed their expectations towards getting quick access to various functions
and instructions. Therefore, in the solutions, customization is allowed in
the menu tab bar, shortcuts, and data lists. However, as mentioned in the
user testing feedback, different preferences emerged, such as prioritizing
frequently used options versus favorite ones, and double-tapping or single-
tapping to select code lines. They presented the expectation towards advanced
customization function. The fact is mass customization has perverse effects,
leading to chaotic, time-consuming and suboptimal workflow [49]. Thinking
about the interface design from a big picture, what designer should allow
the customization for what matters most instead of tailoring to specific
user preference [50]. To find the right balance between customization and
standardization, the designer should understand the context, the users, and the
real need of target audience to design hybrid approach. It is also important to
remember that it is impossible to cater to everyone’s habits. A standardized
workflow can lead to higher productivity. The balance in the final solution
is to allow users the freedom to customize the things that have changed a
lot along with the different projects, such as frequently used data options,
instructions, and shortcuts. Things related to user habits, such as double-

66 | Discussion

tapping or single-tapping behavior, are not allowed to be customized to avoid
increasing complexity and decreasing productivity.

5.2 User Expectation VS Implementation Re-
sult

The user testing result indicates that the findings from the user study
sometimes could not lead to the right answer, highlighting the cesssary of
user testing to evaluate the hypothesis. In a field study, the participants showed
strong expectations to know the exact value of each data option because he/she
was a robotics engineer based on the position data to estimate the robot
position. In the interview, several users also indicated the function ’view
value’ is hidden deep in the menu, making it not convenient to reach. Thus,
their feedback was interpreted as viewing the value of each data quickly and
easily should be put in a high priority. Then, in the solution, various ways
of getting access to view the value data were provided, including a parameter
detail bar, options list and data list. However, in user testing, participants
indicated that they felt the value preview in the data list was confusing and not
needed, especially in the position data. They usually remember the name of
the data but do not read the value. What led to this wrong decision is that the
problem was put in the wrong prioritization and provided too many solutions
to solve one problem and more information and choice lead the system more
complicated. From this case, there are two lessons learned. Firstly, user testing
is quite important to evaluate whether the design meets users’ expectations and
fulfills the tasks’ requirements [51]. In this project, user testing greatly helps
find the solution’s defect to refine it. The second thing is that whenever a
user expresses a strong desire to have a feature, the designer should evaluate
its prioritization carefully. Decision making should not be influenced by a
specific user or user’s emotions to avoid overestimating its urgency. When
seeking solutions, the designer can consider the workaround to solve similar
issues together and avoid introducing too many new features to make the
system more complex. In summary, user expectation is not always the best
solution; prudent evaluation and consideration are needed to define the real
problem and level of urgency for finding a more suitable solution.

Discussion | 67

5.3 Reducing Familiarity Bias and User Re-
sistance

Based on interview analysis, a part of users’ dissatisfaction stems from the
change that the interface of OmniCore FlexPendant differs significantly from
IRC5 FlexPendant, which most of the participants have used for over 5 years.
This situation can be attributed to both baby duck syndrome and familiarity
bias that users tend to use what they are accustomed to and reject new changes
[44][45]. Thus, when the interface of OmniCore FlexPendant significantly
varies from the old version, the audience may describe the maladjustment as
confusion or problem [44]. This situation interferes with the transition to a
new system with resistance [44]. The primary causes of resistance reflected in
this project are the decreased productivity, reliability issues and transition cost
[52] [53] [54]. Therefore, if the learning cost of adopting the new system is
high and it does not offer an improved user experience, it becomes a challenge
for a company to promote the new system. At the same time, it influences
users to make a rational decision about the transition.

In order to reduce familiarity bias and user resistance effect, one solution
suggested by Peter Seebach is to offer users more compatibility by supporting
old features in the new version [44]. For example, when Windows XP was
launched, it allowed the user to continue using the interface structure of
Windows 95/98’s. Nevertheless, in this project, the OmniCore FlexPendant
is not a personal laptop, but rather it is connected to the robot and not owned
by a specific user. The hardware of IRC5 version and OmniCore version
are different, which makes the interface cannot be compatible. Additionally,
introducing compatibility will make the interface excessively personalized.
Therefore, it is more reasonable to maintain the good design of the IRC5
version along with eliminating UX violation in the OmniCore version to allow
for a smoother transition. As shown in the final solution, the vertical menu
and fixed list in the IRC5 version have been reintroduced along with new
features aimed at enhancing productivity. Additionally, interface redesign is
not sufficient and supplementing with participatory and supportive approaches
can be considered in future research [55]. For instance, in the early stage
of design, involving users in the redesign process by hosting co-design
workshops to encourage communication and information sharing can increase
the acceptance of change [56]. Later, providing comprehensive training
or onboarding features to help users become familiar with the new system
is also an effective approach to relieve the effect of familiarity bias[57].

68 | Discussion

In conclusion, reducing user resistance cannot be achieved solely through
redesign. Offering supportive training, encouraging user involvement and
respecting user feedback are also beneficial in building a smooth transition,
which points out the direction for future work [55].

5.4 Priciple of Designing Complex Applica-
tion

Complex applications are defined as software used in a professional domain
that differs from generalist applications for non-specialized users to finish
casual tasks. These types of applications require complicated technological
support, present various types of data and information, offer multiple solutions
to accomplish tasks, are used in a specialized environment, and necessitate
technical training [22]. In this case, UX designers always need to spend a lot
of time conducting user research to have a comprehensive understanding of the
context and problems before starting the design process. This project extracts
five recommendations regarding interface design to guide the improvement of
complex applications’ user experience.

5.4.1 Differentiate the level and type of information by
color-coding them.

A complex application displays various types of information on the interface.
For identifying the type of information, coloring it is a good solution. For
instance, in code editors, color-coding is used to enable programmers to
quickly recognize different elements in the code, like instruction names in blue
and data in black. In the case of messages with different levels of urgency,
color indications such as red for a warning, blue for a notification, and green
for a task completion are helpful. For example, as shown in Figure 4.29, when
checking for syntax errors, the code with such errors is highlighted with a red
background.

5.4.2 Clear clarity for each feature
Given the variety of functions in the complex application, it takes time for
users to become familiar with them. Thus, each feature’s button and label
should present its function clearly to enable users to quickly identify its use.
One reason for confusion is that the button contains only an icon without a

Discussion | 69

text description. During user testing, users appreciated the clipboard shortcuts.
However, they struggled to identify the meaning of the icons, particularly those
of the copy and paste buttons. Therefore, the revised solution shown in the
Figure 4.32 adds a shortcut button with descriptive text. Another reason is that
the function’s name is ambiguous. In the current design, users were confused
by a feature called ’select range,’ which is a feature that allows users to select
multiple lines of code. ‘Select multiples line’ could be a good example to
replace it with. Therefore, it is necessary to use a simple, general, and clear
description to present this feature.

5.4.3 Flatten menu hierarchy levels
Complex applications often feature menus with multiple layers to accommo-
date options. However, multiple layers lead to clutter. This makes it harder
for users to remember and find options. For instance, in the original design,
when searching for instructions by groups, users had to navigate back and forth
between several subpages to check every detail. Consequently, the solution
(see Figure 4.28) implemented the accordion to reduce the hierarchy of group
menus, which enables users to view all instructions under different groups on
a single page. Moreover, menu hierarchy reduction led to fewer taps required.

5.4.4 Prioritize the frequently used functions
Although complex applications provide diverse functions to complete tasks, it
is necessary to organize them into different hierarchies for high productivity.
Identifying the frequently used functions of the target audience is crucial
in reducing cumbersome interactions. For example, when adding a new
instruction, users usually need to select the data for parameters from an option
list. However, for the WaitTime instruction, it is more common for users to
manually type the waiting time data. Therefore, the solution (Figure 4.30)
shows the number input box in a prominent location instead of hiding it in
the ’More Options’ menu. In conclusion, based on the typical workflow to
optimize the panel and menu structure helps reduce the effort to access the
desired functionality.

70 | Discussion

5.4.5 Providing the ability to customize the system
based on the individual and task

As previously stated, complex applications are not designed to solve general
tasks; hence, the structure within the application should be flexible. Offering
the function to customize the system’s shortcut, menu, and options list
promotes productivity. If a user must add an instruction more than ten
times, it is worth spending a minute setting up a shortcut for that interaction.
Customization is a way to enhance the efficiency of repetitive tasks.

5.5 Principle of Designing Touchscreen Ap-
plication

The code editor for this subject is embedded in a touchscreen with a resolution
of 1024 x 768. The interaction with the touchscreen is substantially different
from that with a mouse and keyboard, and it comes with limitations in terms
of screen size and sensitivity. Three design suggestions for constructing fluid
interactions within a tablet application are provided.

5.5.1 Maximize the hotspot size and distinctiveness
of the button.

According to research by the MIT Touch Lab, the average width of the index
finger can cover 45 to 57 pixels on the touchscreen [58]. As the size is
considerably larger than the cursor, if the button size is kept consistent with
mouse-keyboard interaction, it may result in frequent accidental taps on other
areas or difficulty in detecting the tap. Therefore, each button’s size and
hotspot should be at least 50px to allow for precise detection. Moreover,
buttons with only one icon and without border and background should be
avoided. Because touchscreens can not show the hover effect to denote the
button’s active status and meaning, which can lead to confusion.

5.5.2 Maximize the scrollable area.
In tablet interface design, scrolling interactions should generally be avoided
[59]. However, for this project, where users need to quickly view all options
within limited space, scrolling remains the best solution. If scrolling is
necessary, designers should aim to maximize and fit the scrolling areas to

Discussion | 71

avoid accidental tapping. In the current design, the scrolling dropdown menu
always leads to the mistaken selection of options and the accidental closure of
the menu. Therefore, the solution (Figure 4.31) includes replacing the drop
menu with a fixed sidebar menu to provide a better scrolling experience while
searching for data.

5.5.3 Avoid interaction requires higher sensitivity of
touchscreen

When interacting through a mouse or keyboard, users can receive tactile
and auditory feedback to confirm their actions. However, when users tap
on the touchscreen, they can only rely on visual cues to identify their
actions, resulting in lower accessibility. As a result, the detection of complex
interaction on the touchscreen is difficult due to the need for high resolution
and sensitivity. For instance, the current design requires users to long-press
the application tab to activate the ’close application’ button. However, it is
challenging for users to differentiate whether they press or long press the
button and whether they are tapping on the hotspot areas. To make the
interaction more intuitive, as shown in the Figure 4.34, the long press actions
have been removed in the solution. In conclusion, ’single tap’ should be the
primary method of interacting with elements in tablet interface design.

5.6 Research Contribution
The outcomes of this project contribute to the research on the interface
for programming industrial robots. Current research aims to reduce the
gap between novice and professional programming by introducing graphical
programming solutions. Insufficient research has been undertaken to enhance
user experience for professional programmers. The project deals with a
complex application intended for use by experts. The results fill the gap
in text-based and touch-based research on industrial robot programming
solutions, present new solutions for project providers, and summarize the
design principles for touchscreen and complex interfaces. The principles can
be applied to designing applications for touchscreens with limited resolution
and tactile detection. They can also inspire the design of complex applications
in an industrial context.

Typically, programmers use a general code editor on their laptops to
complete coding tasks and programming on a touchscreen is not an efficient

72 | Discussion

approach worth considering. The touch-based code editor in the field of
industrial robotics has the potential to make tablets a viable programming tool
with high productivity. The touch-based code editor could become a powerful
and convenient tool for providing flexible programming solutions in the future.

Text-based programming, a type of traditional programming method
that allows advanced programming [60], still stands out as the most
used and widespread coding method. Although it takes more time and
effort to master than visual programming, its advantages should not be
overlooked. This solution shows the potential to reduce the complexity of
text-based programming interfaces, offering a more user-friendly experience
for professionals and reducing the learning curve for novices. Generating
code without the need for typing enables programmers to inspect the code
details and enhance programming efficiency on a tablet. As a result, the
research outcomes for industrial robot programming can be leveraged to
enhance programming solutions in the future, including general touch-based
code editors.

5.7 Research Methods Discussion
The design process presents both limitations and strengths in its methods. As
a first step in the prestudy section, learning programming techniques as a user
is a good method to become familiar with the challenges quickly. One of
the challenges of designing a complex system is caused by its high domain
exclusivity [22]. Many users who are experts in this domain have over 10 years
of experience. To better understand the context and persuade them to accept
a new solution, one must speak the same language as them. This informal
research activity can lead to success in user studies. Competitive research also
helps in understanding market trends and learning lessons from other products.

When it comes to interviews, it is good to collect a large amount of
data, even though some limitations may occur. One of the biggest issues
is the time consumption in dealing with the large amount of data. It takes
a lot of time to go through all the data and categorize it. One reason
is that programming robots in the teach pendant has to collaborate with
various applications, leading to complicated issues. The participants’ diverse
backgrounds and experiences may lead them to view the same problem
from different perspectives, increasing the difficulty of interpreting the data
objectively. For future studies, a pre-research questionnaire can be considered
to pre-screen participants and narrow down their focus on specific problems.
During field studies, contextual inquiry can be a useful approach to uncover

Discussion | 73

issues that were not remembered during the interviews. Due to confidentiality
issues, all participants are ABB employees, but it may be worthwhile to
consider inviting customers to participate in the research to gather more
valuable insights. During the analysis phase, both semantic analysis and
MoSCoW metric can benefit in providing results to build a comprehensive
understanding of user experience and UX challenges.

In terms of the design process, since this is an individual project with a
limited time, co-creation sessions were not conducted. As a result, solutions
may be limited by individual perspectives. To compensate for this, UX
expert review sessions were conducted with UX Designer colleagues to
obtain professional assessments of the design. These design reviews were
helpful in identifying and rectifying design elements that violated usability
requirements. Utilizing realistic prototypes in user testing significantly
contributes to the success of this project. Directly comparing the current
and new design showcases the differences and provides an opportunity to
emulate the actual workflow. The feedback from this user testing is reliable
and assists significantly in the iterative design process. One minor limitation
is that the prototype cannot control real or virtual robots and is not permitted
to collaborate with other applications. As mentioned earlier, collaboration
with various applications is inevitable in the real programming context; thus,
it should be considered. Moreover, from an academic perspective, the
user testing lacks the measurement of cognitive load, user resistance and
perspective bias to prove that it can build a smooth transition and help reduce
time pressure in the workplace. A deeper evaluation is worth conducting in
future work to provide a more comprehensive understanding.

The ultimate solution significantly improved user experience and usability.
However, this did not solve all the UX challenges. There are some debates and
expectations in user testing regarding its design. Constrained by limited time,
knowledge, and techniques, some sections are still waiting to be improved,
such as the ’Expression Editor’. As the target audience is not homogeneous,
balancing different users’ preferences and requirements is a topic worth
exploring in the future.

74 | Discussion

Conclusion | 75

Chapter 6

Conclusion

The objective of this project is to investigate how the touchscreen text-
based code editor in the robot controller can be redesigned to improve user
experience and usability. The design thinking framework is applied to develop
solutions and design principles that answer the research questions: How can
the interface of the touchscreen text-based code editor in teach pendant be
designed with regard to user experience and usability for robot programmers?
During user research, participants expressed a strong desire to efficiently
access desired features and options. Therefore, the solution focused on
reducing redundant interactions and providing customization capabilities to
improve productivity. By prioritizing UX issues, the main solutions are to
increase the prominence of frequently used options and provide the ability
to define shortcuts. Touchscreen accessibility is also improved by resizing
components, using appropriate color contrasts, and providing clear clarity for
functions. By incorporating feedback from users and UX colleagues, a final
solution was created that results in less time spent and higher UX measurement
scores. For the design of complex applications and touchscreen products, the
principles can be summarized that user-friendly products should have a clear
and simple hierarchy to present information and functions without confusion,
and interactions should be easy to learn and easily recognized by the device.
In addition, the solution provides a research reference to fill the gap in text-
based code editor research in the field of industrial robots. It also provides
inspiration for the design of the tablet code editor.

The project had gone through the process of design thinking. However,
this process is not linear; designers can repeat the user research, testing, and
iteration to achieve a better solution. Regarding limitations, some areas can
be improved in future work. The first area is the composition of participants.

76 | Conclusion

Most participants in the user study and testing are ABB employees, which
means the data lacks customer feedback. Even though employees are also
main users, they are more familiar with the ABB product portfolio and
its functions than the customers, who have to use various products from
different companies. Thus, it is worth gaining a different perspective
from the customers. Secondly, although color coding is used to improve
code readability and enable easy identification of different notifications,
accessibility for users with visual impairment is not considered. For color-
blind individuals, color cannot be identified. Additionally, the font size is
not adjusted, making it challenging and time-consuming for those with poor
eyesight to read the content. How to improve web content accessibility on
tablets with limited resolution is a topic worthy of research. Last but not least,
due to limited time, the user testing primarily focused on user experience and
usability. Thus, further evaluation is recommended to obtain more reliable
evidence to investigate to what extent the new system can reduce familiarity
bias, alleviate time pressure, and enhance well-being in the workplace.

Considering implementation, the solutions should be evaluated for
feasibility. The current solution proposes an entirely new structure and
interaction, which is impossible to implement at once in the real development
process. Moving forward, the designer should prioritize the identified
problems once again and determine which ones can be immediately addressed
within the current context. The solution must be modified to fit within the
current design, similar to a workaround. Furthermore, this project is centered
on the code editor, which is merely an application within the operating system
as a whole. In the real workflow, the code editor must collaborate with other
applications, particularly those involved in Data and I/O signal, which can
complicate tasks. Thus, improving the collaboration experience could be
considered in the future.

In terms of the general lesson learned, complex applications have no one-
size-fits-all solution to address UX issues. The design direction is based on
the current feedback to design a relatively better solution. Expert users in
specialized domains are not eager to a fancy interface, but rather a tool that
can help them complete tasks with higher productivity. In conclusion, this
project successfully met its objectives through comprehensive user research
activities and an iterative design process.

References | 77

References

[1] “ABB’s OmniCore™ robot controller nominated for prestigious IERA
innovation award,” 5 2019. [Online]. Available: https://new.abb.com/ne
ws/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestig
ious-iera-innovation-award [Pages xi and 2.]

[2] Omnicore controller. [Online]. Available: https://new.abb.com/products
/robotics/controllers/omnicore [Pages 1 and 10.]

[3] L. Gonçales, K. Farias, B. da Silva, and J. Fessler, “Measuring
the cognitive load of software developers: A systematic mapping
study,” in 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). IEEE, 2019. doi: 10.1109/ICPC.2019.00018
pp. 42–52. [Page 5.]

[4] �. Örün and Y. Akbulut, “Effect of multitasking, physical environment
and electroencephalography use on cognitive load and retention,”
Computers in Human Behavior, vol. 92, pp. 216–229, 3 2019. doi:
10.1016/j.chb.2018.11.027 [Page 5.]

[5] E. Galy, M. Cariou, and C. Mélan, “What is the relationship between
mental workload factors and cognitive load types?” International
journal of psychophysiology, vol. 83, no. 3, pp. 269–275, 2012. doi:
https://doi.org/10.1016/j.ijpsycho.2011.09.023 [Page 5.]

[6] R. W. Backs and K. A. Seljos, “Metabolic and cardiorespiratory
measures of mental effort: the effects of level of difficulty in a working
memory task,” International Journal of Psychophysiology, vol. 16, no. 1,
pp. 57–68, 2 1994. doi: 10.1016/0167-8760(94)90042-6 [Page 5.]

[7] C. M. Inzana, J. E. Driskell, E. Salas, and J. Johnston, “Effects
of preparatory information on enhancing performance under stress.”
Journal of Applied Psychology, vol. 81, no. 4, pp. 429–435, 8 1996. doi:
10.1037/0021-9010.81.4.429 [Page 5.]

https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/products/robotics/controllers/omnicore
https://new.abb.com/products/robotics/controllers/omnicore

78 | References

[8] “Working Conditions (Decent work for sustainable development
(DW4SD) Resource Platform).” [Online]. Available: https://www.ilo.or
g/global/topics/dw4sd/themes/working-conditions/lang--en/index.htm
[Page 5.]

[9] D. Fogli, L. Gargioni, G. Guida, and F. Tampalini, “A hybrid approach
to user-oriented programming of collaborative robots,” Robotics and
Computer-integrated Manufacturing, vol. 73, p. 102234, 2 2022. doi:
10.1016/j.rcim.2021.102234 [Page 7.]

[10] S. Mitsi, K.-d. Bouzakis, G. Mansour, D. Sagris, and G. Maliaris,
“Off-line programming of an industrial robot for manufacturing,” The
International Journal of Advanced Manufacturing Technology, vol. 26,
no. 3, pp. 262–267, 9 2004. doi: 10.1007/s00170-003-1728-5 [Page 7.]

[11] D. Blank, D. Kumar, L. Meeden, and H. A. Yanco, “The Pyro toolkit for
AI and robotics,” Ai Magazine, vol. 27, no. 1, pp. 39–50, 3 2006. doi:
10.1609/aimag.v27i1.1862 [Page 7.]

[12] G. Biggs and B. MacDonald, “A Survey of Robot Programming
Systems,” In Proceedings of the Australasian conference on robotics and
automation, vol. 1, pp. 1–3, 1 2010. [Page 8.]

[13] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. Shepherd, and
D. Franklin, “Evaluating CoBlox: A Comparative Study of Robotics
Programming Environments for Adult Novices,” In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 4 2018.
doi: 10.1145/3173574.3173940 [Pages 8 and 9.]

[14] B. Argall and A. Billard, “A survey of Tactile Human–Robot
Interactions,” Robotics and Autonomous Systems, vol. 58, no. 10, pp.
1159–1176, 10 2010. doi: 10.1016/j.robot.2010.07.002 [Page 8.]

[15] K. Foit, “Visual interface for hybrid programming of the
industrial robot,” Advanced Materials Research, 10 2014. doi:
10.4028/www.scientific.net/amr.1036.743 [Page 9.]

[16] History of abb robots. [Online]. Available: https://robotsdoneright.com/
Articles/history-of-abb-robots.html [Page 9.]

[17] S. Dietrich, “Introduction to ABB Robot Programming Language,”
Technical Articles, 2 2022. [Online]. Available: https://control.com/

https://www.ilo.org/global/topics/dw4sd/themes/working-conditions/lang--en/index.htm
https://www.ilo.org/global/topics/dw4sd/themes/working-conditions/lang--en/index.htm
https://robotsdoneright.com/Articles/history-of-abb-robots.html
https://robotsdoneright.com/Articles/history-of-abb-robots.html
https://control.com/technical-articles/introduction-to-abb-robot-programming-language/

References | 79

technical-articles/introduction-to-abb-robot-programming-language/
[Page 9.]

[18] Robotstudio suite. [Online]. Available: https://new.abb.com/products/r
obotics/robotstudio [Page 9.]

[19] Abb teach pendants. [Online]. Available: https://robotsdoneright.
com/Robotic-Equipment/ABB-robot-parts/abb-teach-pendants.html
[Pages 9 and 10.]

[20] T. Brown and B. M. Katz, Change by design : how design thinking
transforms organizations and inspires innovation, 1 2009. [Online].
Available: http://biblioteca.iednetwork.com/files/2011/06/change-by-d
esign.pdf [Page 11.]

[21] F. P. Brooks, “The design of design: essays from a computer scientist,”
Choice Reviews Online, vol. 48, no. 04, pp. 48–2104, 12 2010. doi:
10.5860/choice.48-2104 [Page 11.]

[22] K. Kaplan, “Application complexity: a 5-Layer framework,” 8 2020.
[Online]. Available: https://www.nngroup.com/articles/complex-appli
cation-design-framework/ [Pages 11, 68, and 72.]

[23] R. Razzouk and V. J. Shute, “What is design thinking and why is it
important?” Review of Educational Research, vol. 82, no. 3, pp. 330–
348, 9 2012. doi: 10.3102/0034654312457429 [Page 11.]

[24] R. Balcaitis, “Design Thinking models. Stanford d.school,” Empathize
IT, 6 2019. [Online]. Available: https://empathizeit.com/design-thinkin
g-models-stanford-d-school/ [Page 11.]

[25] J. DaSilva, “A Guide to Competitive Analysis for UX Design -
Bootcamp,” 5 2023. [Online]. Available: https://bootcamp.uxdesig
n.cc/a-guide-to-competitive-analysis-for-ux-design-1ddafeb9a3e7
[Pages 12 and 13.]

[26] R. Lee, “When, why, and how to conduct competitive analysis for
UX research,” 11 2022. [Online]. Available: https://www.userinterv
iews.com/blog/competitive-analysis-ux-research-vs-market-research
[Page 13.]

[27] K. Baxter, C. Courage, and K. Caine, Understanding Your Users: A
Practical Guide to User Research Methods, 5 2015. [Page 13.]

https://control.com/technical-articles/introduction-to-abb-robot-programming-language/
https://control.com/technical-articles/introduction-to-abb-robot-programming-language/
https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio
https://robotsdoneright.com/Robotic-Equipment/ABB-robot-parts/abb-teach-pendants.html
https://robotsdoneright.com/Robotic-Equipment/ABB-robot-parts/abb-teach-pendants.html
http://biblioteca.iednetwork.com/files/2011/06/change-by-design.pdf
http://biblioteca.iednetwork.com/files/2011/06/change-by-design.pdf
https://www.nngroup.com/articles/complex-application-design-framework/
https://www.nngroup.com/articles/complex-application-design-framework/
https://empathizeit.com/design-thinking-models-stanford-d-school/
https://empathizeit.com/design-thinking-models-stanford-d-school/
https://bootcamp.uxdesign.cc/a-guide-to-competitive-analysis-for-ux-design-1ddafeb9a3e7
https://bootcamp.uxdesign.cc/a-guide-to-competitive-analysis-for-ux-design-1ddafeb9a3e7
https://www.userinterviews.com/blog/competitive-analysis-ux-research-vs-market-research
https://www.userinterviews.com/blog/competitive-analysis-ux-research-vs-market-research

80 | References

[28] H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-
Centered systems, 7 1997. [Online]. Available: http://ci.nii.ac.jp/ncid/
BA34227099 [Page 13.]

[29] J. Caulfield, “How to do thematic analysis | Step-by-Step Guide
038; Examples,” Scribbr, 6 2023. [Online]. Available: https:
//www.scribbr.com/methodology/thematic-analysis/ [Page 13.]

[30] D. Clegg and R. Barker, CASE Method fast-track. Addison Wesley
Longman, 1 1994. [Page 14.]

[31] “The moscow prioritization method explained.” [Online]. Available:
https://monday.com/blog/project-management/moscow-prioritizatio
n-method/ [Page 14.]

[32] R. F. Dam and T. Y. Siang, “5 Common Low-Fidelity prototypes
and their best practices,” 3 2023. [Online]. Available: https:
//www.interaction-design.org/literature/article/prototyping-learn-eight
-common-methods-and-best-practices [Page 14.]

[33] K. Pernice, “UX Prototypes: Low Fidelity vs. High Fidelity,” 12 2016.
[Online]. Available: https://www.nngroup.com/articles/ux-prototype-h
i-lo-fidelity/ [Page 14.]

[34] A. Harley, “UX Expert Reviews,” 2 2018. [Online]. Available:
https://www.nngroup.com/articles/ux-expert-reviews/ [Page 15.]

[35] G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental methods:
Between-subject and within-subject design,” Journal of Economic
Behavior and Organization, vol. 81, no. 1, pp. 1–8, 1 2012. doi:
10.1016/j.jebo.2011.08.009 [Page 15.]

[36] P. Bhandari, “Within-Subjects Design | Explanation, Approaches,
Examples,” Scribbr, 6 2023. [Online]. Available: https://www.scribbr.
com/methodology/within-subjects-design/ [Page 15.]

[37] B. Laugwitz, T. Held, and M. Schrepp, Construction and evaluation of a
user experience questionnaire, 1 2008. [Page 15.]

[38] M. Schrepp, “User experience questionnaire handbook version 10,” 05
2023. doi: 10.13140/RG.2.1.2815.0245 [Page 15.]

[39] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, 11 1995. [Pages 15 and 47.]

http://ci.nii.ac.jp/ncid/BA34227099
http://ci.nii.ac.jp/ncid/BA34227099
https://www.scribbr.com/methodology/thematic-analysis/
https://www.scribbr.com/methodology/thematic-analysis/
https://monday.com/blog/project-management/moscow-prioritization-method/
https://monday.com/blog/project-management/moscow-prioritization-method/
https://www.interaction-design.org/literature/article/prototyping-learn-eight-common-methods-and-best-practices
https://www.interaction-design.org/literature/article/prototyping-learn-eight-common-methods-and-best-practices
https://www.interaction-design.org/literature/article/prototyping-learn-eight-common-methods-and-best-practices
https://www.nngroup.com/articles/ux-prototype-hi-lo-fidelity/
https://www.nngroup.com/articles/ux-prototype-hi-lo-fidelity/
https://www.nngroup.com/articles/ux-expert-reviews/
https://www.scribbr.com/methodology/within-subjects-design/
https://www.scribbr.com/methodology/within-subjects-design/

References | 81

[40] “ABB’s OmniCore™ robot controller nominated for prestigious IERA
innovation award,” 5 2019. [Online]. Available: https://new.abb.com/ne
ws/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestig
ious-iera-innovation-award [Pages xi and 19.]

[41] “RobotStudio Desktop.” [Online]. Available: https://new.abb.com/prod
ucts/robotics/robotstudio/robotstudio-desktop [Pages xi and 19.]

[42] “ABB industrial robots get Wizard Easy Programming software,” 12
2020. [Online]. Available: https://new.abb.com/news/detail/72178/ab
b-industrial-robots-get-wizard-easy-programming-software [Pages xi
and 20.]

[43] K. Salazar, “Contextual inquiry: Inspire design by observing and
interviewing users in their context,” 12 2020. [Online]. Available:
https://www.nngroup.com/articles/contextual-inquiry/ [Pages ix, 26,
and 91.]

[44] P. Seebach, “The cranky user: Baby duck syndrome – Imprinting on
your first system makes change a very hard thing,” 3 2005. [Online].
Available: https://web.archive.org/web/20120419150252/http://ww
w.ibm.com/developerworks/web/library/wa-cranky50/index.html
[Pages 29 and 67.]

[45] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics
and Biases,” Science, vol. 185, no. 4157, pp. 1124–1131, 9 1974. doi:
10.1126/science.185.4157.1124 [Pages 29 and 67.]

[46] M. Gearon, “Level up — How to design better buttons - Michael Gearon
- Medium,” 10 2019. [Online]. Available: https://michaelgearon.medi
um.com/level-up-designing-better-buttons-6c0e2571b1d1 [Page 34.]

[47] I. Apple Computer, Macintosh Human Interface Guidelines. USA:
Addison-Wesley Publishing Company, 1992. ISBN 0201622165
[Page 35.]

[48] J. Sauro, PhD, “5 Ways to Interpret a SUS Score,” 9 2018. [Online].
Available: https://measuringu.com/interpret-sus-score/ [Page 48.]

[49] C. A. Sinsky, H. Bavafa, R. G. Roberts, and J. W. Beasley,
“Standardization vs Customization: Finding the Right Balance,” Annals
of Family Medicine, vol. 19, no. 2, pp. 171–177, 3 2021. doi:
10.1370/afm.2654 [Page 65.]

https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/news/detail/23999/abbs-omnicore-robot-controller-nominated-for-prestigious-iera-innovation-award
https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop
https://new.abb.com/products/robotics/robotstudio/robotstudio-desktop
https://new.abb.com/news/detail/72178/abb-industrial-robots-get-wizard-easy-programming-software
https://new.abb.com/news/detail/72178/abb-industrial-robots-get-wizard-easy-programming-software
https://www.nngroup.com/articles/contextual-inquiry/
https://web.archive.org/web/20120419150252/http://www.ibm.com/developerworks/web/library/wa-cranky50/index.html
https://web.archive.org/web/20120419150252/http://www.ibm.com/developerworks/web/library/wa-cranky50/index.html
https://michaelgearon.medium.com/level-up-designing-better-buttons-6c0e2571b1d1
https://michaelgearon.medium.com/level-up-designing-better-buttons-6c0e2571b1d1
https://measuringu.com/interpret-sus-score/

82 | References

[50] J. H. Gilmore and B. J. Pine, “The four faces of mass customization.”
PubMed, vol. 75, no. 1, pp. 91–101, 12 1996. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/10174455 [Page 65.]

[51] J. Nielsen and J. Levy, “Measuring usability: Preference vs.
performance,” Commun. ACM, vol. 37, no. 4, p. 66–75, apr 1994. doi:
10.1145/175276.175282 [Page 66.]

[52] M. N. Ngafeeson and V. Midha, “An exploratory study of user resistance
in healthcare IT,” International Journal of Electronic Finance, vol. 8,
no. 1, p. 74, 1 2014. doi: 10.1504/ijef.2014.064003. [Online]. Available:
https://doi.org/10.1504/ijef.2014.064003 [Page 67.]

[53] R. Hirschheim and M. Newman, “Information Systems and user
Resistance: Theory and practice,” The Computer Journal, vol. 31, no. 5,
pp. 398–408, 5 1988. doi: 10.1093/comjnl/31.5.398 [Page 67.]

[54] H.-W. Kim, “The effects of switching costs on user resistance to
enterprise systems implementation,” IEEE Transactions on Engi-
neering Management, vol. 58, no. 3, pp. 471–482, 8 2011. doi:
10.1109/tem.2010.2089630 [Page 67.]

[55] M. Ali, L. Zhou, L. C. Miller, and P. Ieromonachou, “User
resistance in IT: A literature review,” International Journal of
Information Management, vol. 36, no. 1, pp. 35–43, 2 2016. doi:
10.1016/j.ijinfomgt.2015.09.007 [Pages 67 and 68.]

[56] D. Waddell and A. S. Sohal, “Resistance: a constructive tool for change
management,” Management Decision, vol. 36, no. 8, pp. 543–548, 10
1998. doi: 10.1108/00251749810232628 [Page 67.]

[57] V. Chang and G. Wills, A University of Greenwich case study of cloud
computing, 1 2013. [Page 67.]

[58] K. Dandekar, B. Raju, and M. Srinivasan, “3-d finite-element models
of human and monkey fingertips to investigate the mechanics of tactile
sense,” Journal of biomechanical engineering, vol. 125, pp. 682–91, 11
2003. doi: 10.1115/1.1613673 [Page 70.]

[59] C. Tong, “How to design for tablet interfaces - Crystal Tong - medium,”
8 2018. [Online]. Available: https://medium.com/@crystaltong618/tab
let-user-interface-guideline-ac8216c7a3f6 [Page 70.]

https://pubmed.ncbi.nlm.nih.gov/10174455
https://doi.org/10.1504/ijef.2014.064003
https://medium.com/@crystaltong618/tablet-user-interface-guideline-ac8216c7a3f6
https://medium.com/@crystaltong618/tablet-user-interface-guideline-ac8216c7a3f6

References | 83

[60] “Visual Programming vs Traditional Programming: Full Guide,”
nandbox, 6 2023. [Online]. Available: https://nandbox.com/visual-pro
gramming-vs-traditional-programming-full-guide/ [Page 72.]

https://nandbox.com/visual-programming-vs-traditional-programming-full-guide/
https://nandbox.com/visual-programming-vs-traditional-programming-full-guide/

84 | References

Appendix A: Interview materials | 85

86 | Appendix A: Interview materials

Appendix A

Interview materials

A.1 Interview Structure

Figure A.1: Interview Structure

Appendix A: Interview materials | 87

A.2 Interview Question Sheet
Warm up and introduction

• hello, [participant name] I am Xuanling (what can I call you?) , and
currently doing my master thesis in ABB Robotics. Thank you very
much for taking the time to speak with us today. I am working on the
project to redesign the code editor in FlexPendant, so I am appreciated
if you could tell me about your user experience with code editor. This
interview aims at understanding your workflow, the problems you’ve
encountered, and areas that can be improved. Does that sound good to
you?

• What’s more. The participation in this interview is entirely voluntary.
We’ll treat your information, the interview recording, and transcripts
with confidentiality, and only the research team will have access to them.
I am going to record this interview, is it okay with you?

• Could you tell me about your background and previous experience?

• Could you tell me a bit about the work your do at “company”?

– What are the main responsibilities as a [work role]?

– What kind of customers do you work for? (for integrator)

FlexPendant Related

• How long have you been working with FlexPendant? Which version
are you using (IRC5 or OmniCore)? [choose the questions list based on
which version of FlexPendant they used]

• Could you describe your user experience and how you feel about using
FlexPendant?

• How frequently do you use FlexPendant in your work?

• What is the main tasks for you to use the FlexPendant.

– In which scenario you have to use FlexPendant to operate the
robots

– Could you tell me about the process when you do [tasks mentioned
previously]?

88 | Appendix A: Interview materials

• Have you used other companies’ teach pendants before?

– If so, which one did you prefer and why? Can you describe the
reasons for your preference?

Code Editor Related

• How long have you been working on Robot Programming?

• How often do you work with code editor in FlexPendant?

• Do you also use RobotStudio for robot programming?

– How about other ABB internal product? such as Wizard
Programming or Robot Control Mate to program robot?

• Do you also use other companies product to program robot now or
before? Could you show me some examples?

– As a robot programmer, which programming method do you prefer
more? Graphic or Text-based? Which companies? Could you
explain why?

• Could you describe your user experience and your feelings about using
the code editor in FlexPendant?

– Could you compare the difference of two code editor? (if
interviewee used two)

– Whose interface and interaction more intuitive, user friendly, easy
to understand and learn? Could you explain why?

• What do you usually use the code editor for? such as change position

– Does the needed information appropriately presented? such as
program name

– Does the the code editor help to quickly and efficiently finish the
work?

• Could you tell us what do you use the menu panel for? (share screen to
interviewee)

– Which functions in the menu you use frequently?

– Does it work well? What works poorly?

Appendix A: Interview materials | 89

– Does the menu structure clear? Could you quickly access the
functions you need?

• Could you tell us which methods/workflow you usually used to update
the position data?

• Could you tell us your user experience about typing number or text using
the keyboard in FlexPendant?

• What are the main tasks that you typically perform using code editor?

– Could you tell me about the process when you do [tasks mentioned
previously]?

– Would you be willing to share your screen with us to show us your
workflow?

– What are the most frequently used instructions that you use in the
code editor?

– What errors do you often make when using the code editor
regarding the interaction and RAPID programming?

∗ How do you resolve the error?

• Do you have opportunity to collaborate with others to program robot
using code editor? If yes, could you tell me more about the workflow of
reusing the code?

• What are you/your customers (for integrator) most want to complain
when using the code editor? / What do you dislike the most about using
the code editor?

– Could you tell me more about that? Explain the reason.

– Do you have any suggestions on how to improve it?

• What do you like the most and least about using the code editor?

Wrap up

• What are your expectations regarding how the code editor should be like
within FlexPendant?

• Do you have any suggestions on how we can improve the code editor in
FlexPendant?

90 | Appendix A: Interview materials

• Is there anything that we have missed to ask that you think is relevant to
code editor user experience?

• Thanks a lot for your time today. If you have any further questions or if
you would like to learn more about my project, please do not hesitate to
contact me.

Appendix B: Contextual Inquiry materials | 91

Appendix B

Contextual Inquiry materials

B.1 Contextual inquiry procedure inspired
by [43]

Preparation

• information sheet and consent form

• Notebook: jot down the discussion as soon as possible

• Phone: recording audio

• Go Pro: recording the video that how they interact with FlexPendant

Primer

• Hello, [Participant Name]. Nice to see you! My name is Xuanling, a
thesis worker in Robotics UX team. Thank you very much for taking
the time to join my research activity today. The project I am working on
is to redesign the code editor in OmniCore FlexPendant. I will mainly
focus on the User Experience and Interface of using the code editor in
real work place, so your ideas must be important.

• In this field study, I hope you can show me how operate and program
the robot using OmniCore FlexPendant during your daily work. It will
be great if you can show me two or three tasks like a craftsman teach a
student a skill through doing. After this activity, I hope I can understand
the role of FlexPendant in your daily work, how you will use it for and the
problems you encountered. If I misunderstand your purpose of specific

92 | Appendix B: Contextual Inquiry materials

action, please correct my misinterpretations. It is quite important for
me to understand your each decision and action.

• What’s more. The participation in this interview is entirely voluntary.
We’ll treat your information, the recording, and transcripts with
confidentiality, and only the research team will have access to them.
I am going to audio record our conversation, is it okay with you?

• I am more interested how the code editor is involved in your daily work.
So, before showing me your work flow, could you describe how do you
use code editor during your work or in which scenario you need to use
code editor in the FlexPendant?

The Transition

• Thanks for your explanation. Also, I would like to let you know, when
you are performing the tasks, I will observe you behavior. When I find
something interesting to discuss or something make me confuse, I will
interrupt you. If it is not a good timing for interruption, please let me
know. We will continue the discussion until a better stopping point.

• I am interested in the fine details of your work, it will be better you
complete your tasks as normal, without I am here

The Contextual Interview
Question:

• Could you elaborate more on what you mean by A?

• I am not quite sure I understood the purpose of that step. Can you explain
it to me again in simpler terms

• I noticed you used a particular setting. Can you tell me more about why
you chose that specific setting

• Can you show me an example of what you mean when you say?

• When you said you needed to X the robot, what exactly did you mean
by that

• I am not familiar with that term, can you explain what X means?

• Can you explain the purpose or function of this button/interface for a
given tasks?

Appendix B: Contextual Inquiry materials | 93

• Can you walk me through your thought process when you were
programming the robot for this task?

• when you made that adjustment to the robot’s program, what was your
reasoning behind that decision?

• When you encounter X problem while programming the robot, how do
you determine the root cause of the issue?

• What is the standard steps to do this? any other option?

Confirm:

• I noticed that you did X, Could you tell me more about why you did
that?

• Just to confirm, when you tap on X button, it does Y function, right?

• If I a, understanding correctly, you did X to achieve Y, is that correct?

• Can you show me again how you did X? I want to make sure I understand
the steps.

• Did you mean that you need to do X before Y, or was it the other way
around?

• To clarify, you are saying that if we do X, it will cause Y to happen. Is
that correct?

The Wrap-up

• The teach pendant is mainly used for

• Your typical workflow to finish is task is.... begin by... then....

• You must be ensure ... to do

• I understand

• Is there anything that I misunderstood/missing?

• Thanks for your time!

94 | Appendix C: User testing materials

Appendix C

User testing materials

C.1 User Testing Procedure
Introduction (5 min)

• Introduce Usability Test Procedure (assist first two tasks, and finish the
final one by themselves)

• Introduce Two code editors

• Determine the test sequence (current or new)

Exploration (5 min)

• User read the user manuals

• Explore the code editor through ‘playground’ module

• Customize your favorite/frequent used menu button/shortcut

Task 1: Familiarize how to use (5+5 min)

• Add Movement and WaitTime instructions to draw a triangle in
‘main/Module1/T_ROB1’.

Task 2: Fine Tuning - Waving hand (7.5+7.5 min)

• Modify Routine detail in ‘main2/Module2/T_ROB1’ and ‘waving/Mod-
ule2/T_ROB1’

• Position parameter - Update Position

Appendix C: User testing materials | 95

• Position parameter - View Value: change value

• WaitDI - change signal and value

• Check program - edit selection with keyboard

• IF <EXP> - Edit Expression with Keyboard

• Procall - View Value - Open Routine

• Zone parameter - switch to

• For loop - Edit Value

Task 3: A simple pick up workobject program (10+10 min)

• Finish the ‘main/MainModule/T_ROB2’ and ‘PickAndDrop/Main-
Module/T_ROB2’

• Move to homeposition and wait one second

• Call routine PickAndDrop

• Move to position 1 (above the workobject) and then open gripper

• Wait 1 second and then move to position 2 (workobject location) and
close gripper

• wait 1 second and then Move to position 3 (destination)

• wait 0.5 second and then Open gripper

• wait 0.5 second and then move to position 4 (above destination)

• go back mainroutine and select first two lines and copy and paste

Questionnaire (5 min)

• Finish 2 questionnaire, One for current code editor, another for new
design

Short Interview (5 min)

• Short interview for getting user feedback

96 | Appendix C: User testing materials

	Introduction
	Project Introduction
	Research Question
	Limitation
	Sustainability

	Background
	Industrial Robot Programming
	ABB Programming Solution

	Methodology
	Design Thinking
	Design Process
	Pre-Study
	Empathize
	Define & Ideate
	Prototype
	Test

	Execution and Analysis
	Pre-Study
	Become a user
	ABB Portfolio Research
	Competitive Analysis
	Competitive Analysis Summary

	Empathize
	Interview
	Participant
	Interview Material
	Procedure

	Contextual Inquiry
	Participant
	Procedure

	Define & Ideate
	Target Audience
	Thematic Analysis
	MoSCoW Analysis
	Design Principle Ideation
	Redesign Scope

	Prototype
	First Version Solution
	UX Expert Review
	High-Fidelity Prototype
	Interactive Prototype

	Test
	User Testing
	Participant
	Material
	Pilot Study
	Procedure

	Data Analysis & Findings
	Time Consumption
	User Experience Questionnaire
	System Usability Scale

	Interview Feedback and Discussion

	Final Concept
	Interface Overview
	Problem & Solution

	Discussion
	Customization VS Standardization
	User Expectation VS Implementation Result
	Reducing Familiarity Bias and User Resistance
	Priciple of Designing Complex Application
	Differentiate the level and type of information by color-coding them.
	Clear clarity for each feature
	Flatten menu hierarchy levels
	Prioritize the frequently used functions
	Providing the ability to customize the system based on the individual and task

	Principle of Designing Touchscreen Application
	Maximize the hotspot size and distinctiveness of the button.
	Maximize the scrollable area.
	Avoid interaction requires higher sensitivity of touchscreen

	Research Contribution
	Research Methods Discussion

	Conclusion
	References
	Interview materials
	Interview Structure
	Interview Question Sheet

	Contextual Inquiry materials
	Contextual inquiry procedure inspired by salazar-2020

	User testing materials
	User Testing Procedure

