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Summary

For the numerical simulation of incompressible turbulent flows using direct numerical

simulation (DNS) or large eddy simulation (LES), solving the Stokes problem efficiently

is an important component. In this context, high-order discretization methods such as

the discontinuous Galerkin (DG) method receive increasing attention because of their high

accuracy, low numerical dissipation and superior convergence properties. However, solving

DG formulations of the Stokes problem efficiently is a significant challenge due to the

structure and characteristics of the discrete system.

In theory, a multigrid algorithm should be capable of solving the problem in an amount

of work that is only proportional to the problem size, making it an attractive candidate

as a solver for the DG discretization of the Stokes problem. In this thesis, a multigrid

algorithm that can be applied to the DG discretization of the Poisson problem is developed,

implemented and analysed. In addition, the DG discretization and a suitable smoother

for the Stokes problem are derived, implemented and verified. These three topics form

the building blocks for the development of an efficient multigrid algorithm for the DG

formulation of the Stokes problem

The implementation of the discretization of the Stokes problem could be verified on a

Cartesian grid, while some unexpected results were found on curvilinear grids. Further

research should point out if this is due to a implementation error or a fundamental problem

in the discretization. Moreover, a multigrid algorithm based on polynomial and geometric

coarsening was found to be very effective, it was capable of solving the Poisson problem in an

amount cycles that was independent of the problem size. Lastly, a distributive Gauss-Seidel

smoother based on the least-squares commutator was found to be capable of smoothing the

Stokes system effectively, provided that the order of the discretization was not higher than

fourth order. Further research is needed to investigate the cause of this limitation. However,

it could also be useful to research if an alternative splitting can be defined which does not

have this limitation.
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Nomenclature

List of abbreviations
1D one-dimensional

2D two-dimensional

3D three-dimensional

CFD computational fluid dynamics

CG continuous Galerkin

CS correction scheme

DG discontinuous Galerkin

DNS direct numerical simulation

DOF degree of freedom

DSS direct stiffness summation

FAS full approximation scheme

FE finite element

FV finite volume

IMEX implicit-explicit

LES large eddy simulation

LGL Legendre-Gauss-Lobatto

MMS method of manufactured solutions

PDE partial differential equation

RANS Reynolds-averaged Navier-Stokes

RHS right-hand side

SIMPLE semi-implicit pressure-linked equations

SIP symmetric interior penalty

SPD symmetric positive definite

List of symbols
α Jacobi polynomial constant -

β Jacobi polynomial constant -

N Number of elements/nodes/DOFs (depending on subscript) -

p Polynomial order -

A Coefficient matrix -

B Iteration matrix -
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b RHS vector multiple

Dr Differentiation matrix w.r.t. r 1/m

Ds Differentiation matrix w.r.t. s 1/m

e Element |error - |multiple

E Consistency correction multiple

F Set of faces -

f External force per unit mass vector m/s2

f Face -

gD Dirichlet boundary condition vector m/s

γ Stabilization parameter m2/s

Γ Boundary of the domain multiple

hf Length scale of a face m

J Jacobian transformation matrix m

ℓ Nodal basis function |Lagrange polynomial -

L Lagrange polynomial |Lebesgue function -

L2 Error norm multiple

Λ Lebesgue constant -

M Mass matrix multiple

µ Amplification factor -

n Unit outward normal -

ν Kinematic viscosity |number of relaxation sweeps m2/s |-

Ω Domain multiple

p Kinematic pressure m2/s2

P Jacobi polynomial -

P̃ Orthonormal Jacobi polynomial -

ψ Modal basis function |Legendre polynomial -

Qh Pressure test space -

qh Pressure test function -

R Residual multiple

ρ Density |spectral radius kg/m3
|-

r Parametric coordinate -

s Parametric coordinate -

σ Penalty parameter m2/s

t Time s

u Velocity vector m/s

u Component of the velocity vector in x-direction m/s

v Component of the velocity vector in y-direction m/s

V Vandermonde matrix -

Vh (Velocity) test space -

vh (Velocity) test function -

viii



Vr Derivative of Vandermonde matrix w.r.t. r 1/m

Vs Derivative of Vandermonde matrix w.r.t. s 1/m

w Integration weight -

x Spatial coordinate vector m

x Spatial coordinate m

ξ Solution vector multiple

y Spatial coordinate m

List of operators
∇h Broken gradient operator

∇h· Broken divergence operator

∆h Broken Laplace operator

[[·]] Jump operator

{{·}} Average operator

G Gradient operator

D Divergence operator

ICF Restriction operator

IFC Prolongation operator

List of subscripts and superscripts
∂ Of the boundary

C Of the coarse grid

e Of the element

F of the fine grid

f Of the face

grid Of the grid

H Of the coarse grid

h Numerical |of the fine grid

I Of the grid standard element

i One-dimensional index |internal

int Of the/in the integration nodes

j One-dimensional index

k Two-dimensional index |iteration number

n Of the neighbour

Notation: vectors and matrices are denoted with bold symbols.
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Chapter 1

Introduction

Motivation

Turbulent flows are present everywhere in life, as most flows that occur in nature or flows

that are a result of engineering applications are turbulent. All flows become turbulent at

high Reynolds numbers, which is the dimensionless number that describes the ratio between

the inertial and viscous forces. Depending on the flow, the transition to the turbulent regime

happens for Reynolds numbers anywhere between 2000 and 1 million, [Bak08]. Turbulent

flows are highly chaotic and involve a wide range of time and length scales. An example

is the eruption of a volcano as illustrated in figure 1.1, which clearly shows the difference

Figure 1.1: A volcano eruption in 2011 on Mount Kirishima, Japan, creating a cloud of

smoke and ash up to around 1500 meters into the air, [Dai11; US 11].
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Figure 1.2: A simulation of a turbulent jet using RANS, LES and DNS, [ges19].

in scales. Other examples are all kinds of weather phenomena, oceanic and atmospheric

mixed layers, external flows over aircraft, cars, ships and wind turbines, but also blood

flow in a partially obstructed artery and many more. Therefore, the numerical simulation

of turbulent flows using computational fluid dynamics (CFD) is of great importance for

weather forecasting, navigation, energy generation, cardiology and so on.

The motion of a viscous fluid is governed by the Navier-Stokes equations. Hence,

numerical simulation of turbulent flows could in theory be done by solving these equations

which is known as direct numerical simulation (DNS). However, because even the smallest

turbulent scales need to be captured, the Navier-Stokes equations need to be solved on a

fine grid using a small time step, leading to a computational cost that is proportional to

the Reynolds number cubed in 3D, [Bak08]. Since turbulent flows occur at high Reynolds

numbers, the practical use of DNS is very limited. Therefore, for practical applications,

turbulence models must be introduced in which the number of scales that are actually solved

are reduced. Although a formal mathematical definition and some of the physical features

of turbulence itself still remain unknown, flow features can be deduced from observations

and experiments. By using these features, certain scales can be modeled and others can be

solved, which is the core of turbulence models.

There exist roughly two approaches to model turbulence, large eddy simulations (LES)

and Reynolds-averaged Navier-Stokes (RANS) models. In LES, the large-scale motions are

solved whereas the scales smaller than the grid size are modelled. In RANS models, only

the mean of the turbulent flow is described by modelling all turbulent scales. The difference

between RANS, LES and DNS is visualized in figure 1.2. The difference in the amount of

scales that are modelled is clearly visible, ranging from all in RANS to none in DNS. Even

though RANS is computationally inexpensive, its applicability is limited to attached flows

for which the models are tuned. Moreover, the turbulent scales of a flow solution obtained

with RANS only have a statistical meaning, since all scales are modelled. Therefore, the

turbulent scales can often only be represented accurately using DNS or LES.

A flow is assumed to be incompressible when the Mach number, i.e. the ratio of the flow

velocity and the speed of sound, is below 0.3, [Pan13]. As an example, consider water which

2



has a speed of sound of around 1482m/s, [The04]. The majority of the flows in water have

a flow velocity of a couple meters per second, such that the Mach number approaches zero.

When the Mach number approaches zero, solvers that are based on solving the compressible

Navier-Stokes equations suffer severe deficiencies in both accuracy as well as efficiency, as

the time step that needs to be taken for stability is proportional to the speed of sound of

the medium, [KBW04]. Therefore, solutions to low Mach number turbulent flows must be

obtained by solving the incompressible Navier-Stokes equations.

Consider the set of incompressible Navier-Stokes equations,


∂t u− ν∆u+(u ·∇)u+∇ p = f , ∀x ∈ Ω,

∇ · u = 0, ∀x ∈ Ω,

u = gD, ∀x ∈ Γ.

(1.1)

(1.2)

(1.3)

on the time interval (0, T ), with an appropriate set of initial conditions and Dirichlet bound-

ary conditions gD prescribed on the boundaryΓ of the domainΩ. Moreover, ∂t udenotes the

partial derivative of the velocity vector u = (u, v)T with respect to time, ν is the kinematic

viscosity, p the kinematic pressure (pressure divided by density) and f the external force

per unit mass. As a result of the velocity-pressure coupling, the divergence-free constraint

∇ · u = 0 is enforced on the velocity leading to a system that is in saddle point form (see

chapter 3 for more details) which must be discretized and integrated in time. Performing

the time integration using a fully explicit scheme leads to a very small time step that needs

to be taken to ensure stability, [Joh16], while integrating it fully implicitly leads to a compu-

tationally expensive non-linear system that needs to be solved for every time step, [Chr10].

For this reason, implicit-explicit (IMEX) time integration schemes are used in which the

system is split up into a Stokes part that is treated implicitly and a convective part that

is treated explicitly. The IMEX schemes have a time step restriction corresponding to the

explicit treatment of the convective terms that is comparable to the time scales that need to

be solved in the DNS and LES of turbulence. Using this time integration scheme leads to a

symmetric Stokes system with a right-hand side corresponding to the convective terms that

needs to be solved in every time step. Therefore, solving the Stokes problem efficiently is an

important component for the numerical simulation of turbulence of incompressible flows.

Due to the saddle point structure of the problem, this poses a significant challenge in the

field of scientific computing.

Several methods exist for the spatial discretization of partial differential equations

(PDEs). For example, the well-known finite difference (FD) method is based on a Tay-

lor series expansion of the PDEs in differential form. On the other hand, finite element

(FE) and finite volume (FV) methods are based on the integral form of the equations and

belong to the class of Galerkin methods. This class contains the continuous Galerkin (CG)

FE method (which is often just referred to as the FE method) and the discontinuous Galerkin

(DG) FE method. The DG method can be interpreted as an higher-order generalization of

the FV method. In contrast to the CG element method, the problem definition of the DG

method is formulated locally, leading to a both globally and locally conservative method,

[Gir20]. Instead of the constant cell value in the FV method, the local solution is approx-

imated by a polynomial expansion in the DG method. The elements are coupled to each

other using the same type of numerical fluxes that have been developed for the FV method.
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Recently, turbulence simulation using high-order spatial discretization methods such as

DG method has increased in popularity. The DG method has several advantages over FE

and FV methods which are currently widely used discretization methods for this type of

problem. The high-order accuracy of the DG method leads to a significant reduction in

numerical dissipation and dispersion errors compared to FE and FV methods, [Cha+14].

This is an important property because these errors can have a significant impact on the

solution of DNS and LES simulations, [Gho96; MM98].

The number of turbulent scales that can be solved using numerical simulation has

increased in the past years due to both the availability of more computing power and more

efficient solution algorithms. This thesis contributes to this increase with the development

of an efficient solution algorithm for DG formulations of the Stokes problem. For elliptic

problems such as the Stokes and the Poisson problem, multigrid algorithms have proven to

be very effective, [VL00]. In theory, a multigrid algorithm is capable of solving the problem

in an amount of work that is only proportional to the problem size. In contrast to for example

Krylov methods, the multigrid method requires information about the problem to work well.

While Krylov methods can also be preconditioned to incorporate some information about

the problem into the solver as was done in [BGL05], its performance is inferior compared to

the theoretical performance of a multigrid algorithm for elliptic problems. Therefore, the

focus of this thesis is on multigrid methods.

For the multigrid algorithm to work well it is important that the Stokes system possesses

good error smoothing properties (see chapter 4 for more details). For an elliptic system of

equations, it can be proven that it can be smoothed well when when its determinant pos-

sesses good smoothing properties. As the determinant of the Stokes system is the Laplace

operator squared in 2D and cubed in 3D, the Poisson equation is used as a model problem

for the Stokes problem.

The main contribution of this thesis is to develop, implement and analyze a multigrid

algorithm that can be applied to the high-order DG formulation of the Poisson problem. In

addition, the DG discretization and a suitable smoother for the Stokes problem are derived,

implemented and verified. These three topics form the building blocks for the development

of an efficient multigrid algorithm for the DG formulation of the Stokes problem.

The implementation will be done in a computer code written in Python. Even though

it is not the fastest programming language, it is very user friendly, has a large (scientific)

community and has a lot of scientific computing tools available in libraries such as numpy
and scipy. The aim of this thesis is not to program a very efficient code. In fact, this is a

scientific field on its own. In this thesis, computer code is merely used as a tool to research

the building blocks of an efficient multigrid solver for the Stokes problem.

Outline

The outline of this thesis is as follows. In chapter 2, the main concepts of the DG method

are explained in which the differences between continuous and discontinuous Galerkin

methods are highlighted. Furthermore, the theory behind nodal and modal basis functions

and the relation between them, numerical integration and the mapping to standard elements

in 1D and 2D are addressed.
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The characteristics of incompressible flows are explored in chapter 3, followed by the

construction of the model problems. Thereafter, a pressure-robust DG discretization is

derived with a focus on the practical implementation in a computer code.

Chapter 4 addresses several techniques for obtaining solutions to the discrete system

that was formed in chapter 3 with a focus on iterative methods. The concept of relaxation

is explained which is needed to understand the core principles of the multigrid algorithm.

Lastly, the components that are needed for the construction of a multigrid algorithm are

discussed.

In chapter 5, the concepts that are presented in the first chapters are combined to con-

struct the methods with which the results are obtained. Then, the results of the multigrid

algorithm for the DG formulation of the Poisson problem as well as the pressure-robust

DG discretization and smoother for the Stokes problem are presented and discussed in

chapter 6. Thereafter, the conclusions and recommendations for further research are given

in chapter 7.
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Chapter 2

Discontinuous Galerkin method

The aim of this section is to give insight in the fundamentals of the DG method, with a

focus on the practical implementation. For a complete overview of DG, refer to [HW08;

Gir20]. First, the key concepts of both the continuous and discontinuous Galerkin methods

are explained in section 2.1. After that, the focus of this chapter is shifted to the components

that are needed for the implementation of the DG method. The construction of the basis

functions is discussed in section 2.2, followed by a description of numerical integration

in section 2.3 and a mapping to standard elements in section 2.4. These components are

extended for 2D problems in section 2.5.

2.1 Key concepts

In order to explain the theory behind the CG and DG methods, consider the 1D scalar

conservation law

∂U

∂t
+
∂F

∂x
= 0, x ∈ Ω (2.1)

where U is the conserved quantity and the flux is defined as F = F (U). The continuous

domain Ω is approximated by Ne non-overlapping elements,

Ω ≃ Ωh =

Ne−1⋃
e=0

Ωeh. (2.2)

In Galerkin methods, the solution is expressed as a polynomial expansion,

Uh(x, t) =

NDOF−1∑
i=0

ŨiΨi(x), (2.3)

Fh(x, t) = F (Uh(x, t)), (2.4)

where Ũi are the expansion coefficients and Ψi are basis functions of some sort. The

polynomial expansion is generally of nodal or modal form. However, for now it suffices to

know that the basis functions Ψi exist and either of these formulations can be used. The

nodal and modal formulations and their corresponding basis functions are discussed in

more detail in section 2.2.

7



Now, substituting the expressions of equations (2.3) and (2.4) into the original PDE,

equation (2.1), yields

∂Uh
∂t

+
∂Fh
∂x

= Rh. (2.5)

Because a finite dimensional polynomial expansion is used to represent the solution, the

semi-discrete equation does not satisfy the original continuous problem exactly. Hence, the

residual Rh is nonzero.

The next step is to determine in which sense Rh should vanish. From linear algebra it

is known that, when representing a higher-dimensional space (U ) by a lower-dimensional

space (Uh), the induced error (Rh) is minimized in the least-squares sense when it is orthog-

onal to the lower-dimensional space, [TB97; Gir20]. In other words, the residual Rh must

be orthogonal to the approximation space, which is spanned by the basis functions Ψj and

can be enforced by the inner product∫
Q
RhΨj dΩ = 0, j = 0, . . . , NDOF − 1, (2.6)

where for now, Q is an arbitrary integration domain. In sections 2.1.1 and 2.1.2 specific

choices forQwill be made, depending on the type of FE method. Substituting equation (2.5)

in equation (2.6), this can be further worked out to∫
Q

∂Uh
∂t

Ψj dΩ +

∫
Q

∂Fh
∂x

Ψj dΩ = 0, j = 0, . . . , NDOF − 1. (2.7)

Using integration by parts on the second term,∫
Q

∂Uh
∂t

Ψj dΩ +

∫
Q

∂

∂x
(FhΨj) dΩ−

∫
Q
Fh
∂Ψj

∂x
dΩ = 0, j = 0, . . . , NDOF − 1 (2.8)

and working out the second term using the fundamental theorem of calculus,∫
Q

∂Uh
∂t

Ψj dΩ +

[
FhΨj

]
∂Q

−
∫
Q
Fh
∂Ψj

∂x
dΩ = 0, j = 0, . . . , NDOF − 1, (2.9)

where ∂Q denotes the boundary of Q. Equation (2.9) is referred to as the weak form.

A more general definition of the weak form is obtained by multiplying the residual Rh

with a test function belonging to a test vector space, i.e. vh ∈ Vh. In that case, Vh contains

all possible test functions vh belonging to this space. However, since the numerical solution

is expressed as a polynomial expansion with a finite number of unknowns, equations (2.3)

and (2.4), the problem is overdetermined when this weak form must hold for all vh ∈ Vh.

To overcome this, it is required to hold for projections of vh into the function space spanned

by the basis functions Ψj .

The distinction between CG and DG methods is made in the way in which equations (2.3),

(2.4) and (2.9) should hold, either locally (on Ωeh) or globally (on Ωh).
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2.1.1 Continuous Galerkin method

Interface

Left
Right

Figure 2.1: The grid points at the interface are shared between the left and right element in

the CG method.

The problem statement is global in the CG method. Therefore, the polynomial expansion

of the solution reads,

Uh(x, t) =

NDOF−1∑
n=0

Ûnψn(x)︸ ︷︷ ︸
modal

=

NDOF−1∑
i=0

Uiℓi(x)︸ ︷︷ ︸
nodal

, (2.10)

Fh(x, t) = F (Uh(x, t)), (2.11)

where Ûn are the expansion coefficients, Ui the physical values in the nodes and ψn and ℓi
are basis functions of some sort. Here, a distinction between nodal and modal formulations

is made. More details about these formulations and their basis functions ψ and ℓ will be

discussed in section 2.2. While it is possible to use modal formulations in the CG method,

nodal formulations are preferred since these enable for continuous functions over element

interfaces without the need of additional matching conditions, [Gir20].

Because the CG method is defined globally, the grid points at an element interface are

shared between the elements that make up the interface, as depicted in figure 2.1. While it is

possible to construct global basis functions, it is more practical to define basis functions with

compact support, i.e. they are zero everywhere except inside an element. This enables for

direct stiffness summation (DSS) which simply means that the global problem is constructed

by summing up the smaller local problems.

Moreover, equation (2.9) is defined globally by taking Q = Ωh. Combining this with

the nodal representation of the solution given in equations (2.10) and (2.11) such that the

approximation space is spanned by the basis functions ℓj , the weak formulation of the CG

method reads∫
Ωh

∂Uh
∂t

ℓj dΩ +

[
Fhℓj

]
Γ∂
h

−
∫
Ωh

Fh
∂ℓj
∂x

dΩ = 0, j = 0, . . . , NDOF − 1, (2.12)

where Γ∂h are the physical boundaries of Ωh. Since the basis functions are chosen in such a

way that they are continuous across element interfaces, the flux (or jump in 1D) vanishes at

all internal boundaries. In fact, since boundary conditions are imposed in strong form in

9



the CG method, equation (2.12) reduces to∫
Ωh

∂Uh
∂t

ψj dΩ−
∫
Ωh

Fh
∂ψj
∂x

dΩ = 0, j = 1, . . . , NDOF − 2. (2.13)

when Dirichlet boundary conditions F (0, t) = F (L, t) = gD are assumed for F (x, t) on the

domain x ∈ [0, L].

2.1.2 Discontinuous Galerkin method

Interface

Left
Right

Figure 2.2: The degrees of freedom at the interface are shared between the left and right

element in the DG method.

As opposed to the CG method, the DG method is defined locally, leading to a both locally

and globally conservative method, [Gir20]. This means that the expansion of the solution is

now defined within an element e,

U eh(x, t) =

NDOF−1∑
n=0

Û enψn(x)︸ ︷︷ ︸
modal

=

NDOF−1∑
i=0

U ei ℓi(x)︸ ︷︷ ︸
nodal

, (2.14)

F eh(x, t) = F (U eh(x, t)). (2.15)

Requiring equation (2.9) to hold on every element by taking Q = Ωeh, using the modal

representation given in equations (2.14) and (2.15) such that the approximation space is

spanned by the basis functions ψj , the weak formulation of the DG method reads∫
Ωe

h

∂U eh
∂t

ψj dΩ +

[
F ehψj

]
Γe
h

−
∫
Ωe

h

F eh
∂ψj
∂x

dΩ = 0, j = 0, . . . , NDOF − 1, ∀e, (2.16)

where the boundary Γeh and the domain Ωeh are now both defined locally. Equation (2.16)

can be further worked out to∫
Ωe

h

∂U eh
∂t

ψj dΩ +
∑
f∈Fe

h

nf F
e
h(xf )ψj(xf )−

∫
Ωe

h

F eh
∂ψj
∂x

dΩ = 0, j = 0, . . . , NDOF − 1, ∀e,

(2.17)

where f is a face in the set of all faces Fe
h belonging to the element e. Moreover, n denotes

the unit normal vector at f , pointing outward of e. A big difference with the CG method is

10



that the grid points are now also defined locally instead of globally, as visible in figure 2.2.

Because the solution and basis functions are defined within an element, the values at

the interface are different when approaching the interface from the left or right element.

Therefore, the flux at the (internal) element boundaries does not vanish as was the case for

the CG method. This becomes very clear when looking at the flux term in equation (2.17),

both F eh and ψj need to be evaluated at xf but their values will differ when approaching

the interface from the left or right element. While this seems like an unwanted feature, by

allowing discontinuous values across element interfaces, knowledge about the problem at

hand may be incorporated into the method in the form of an interface flux F ∗
h ,∫

Ωe
h

∂U eh
∂t

ψj dΩ +
∑
f∈Fe,i

h

nf F
∗
hψj(xf )−

∫
Ωe

h

F eh
∂ψj
∂x

dΩ = 0, j = 0, . . . , NDOF − 1, ∀e.

(2.18)

The simplest form of an interface flux would be the mean value of the fluxes at either side

of the interface. The construction of numerical fluxes for the discretization of convective

terms is very closely related to those used in FV methods. In fact, the DG method can be

interpreted as an higher order generalization of the FV method with the obvious difference

being that the DG solution is approximated using a polynomial expansion instead of a cell-

centered value. This has many advantages, one of which is that many techniques that have

been developed for FV methods such as Riemann solvers can be reused in DG methods.

However, since the values at the interface have been allowed to be discontinuous, extra

care needs to be taken for the discretization of diffusion terms. This is because in this case

only the gradient of the solution is solved for, such that the solution itself is not unique at

the interface. This can be resolved by using an interior penalty method, which is further

discussed in section 3.3.3.

Thus, the DG method differs in several ways from the CG method, of which the most

important are that the problem statement and solution representation are defined locally in

the DG method and globally in the CG method. In the next sections, the components that

are needed to implement the DG method are discussed.

2.2 Basis functions

Until now, the basis functions were only assumed to exist but no formal definition was given.

In the DG method, the solution can be approximated using a nodal or a modal polynomial

expansion inside an element e. In its most general form, the local nodal approximation of

the function ϕ is defined as the polynomial expansion

ϕeh(x) =

p∑
i=0

ϕiℓi(x), (2.19)

where the NDOF = p + 1 physical values ϕi and nodal basis functions ℓi are defined at

the physical nodes i = 0, . . . , p. In practice, cardinal functions are used as a nodal basis,

meaning that the function has a value of one in the corresponding node and zero in all other

nodes (i.e. Kronecker delta function). An example of a cardinal function is the Lagrange

polynomial, which oscillates as an p-th order polynomial between grid nodes, see figure 2.3.
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Figure 2.3: An example of nodal basis functions: Lagrange polynomials for p = 6.

Similarly, the local modal polynomial expansion is defined as

ϕeh(x) =

p∑
n=0

ϕ̂nψn(x), (2.20)

where ϕ̂n are the expansion coefficients corresponding to the ψn modal basis functions. As

opposed to the nodal expansion, ϕ̂n and ψn represent the amplitude and frequency of the

mode n instead of the physical value and basis function at node i. An example of a modal

basis function is the Legendre polynomial, which is illustrated in figure 2.4.

Figure 2.4: An example of modal basis functions: Legendre polynomials (not normalized)

until p = 6.

Since continuity over element interfaces is not required in DG methods, both nodal and

modal formulations can be used. Although modal expansions require the transformation

from the nodal grid points to the modal values and back, they are a popular choice when

DG methods are pared with multigrid algorithms based on p-coarsening, in which the poly-
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nomial order of the solution within the elements is decreased (as is done in this work).

The next question to address is: what makes a good basis function for use in a DG

method? A very simple approach to obtain modal basis functions is to construct a basis of

monomials. However, this basis is then constructed of non-orthogonal polynomials which

means that for higher order polynomials, one basis function cannot be distinguished from

another anymore, which leads to an ill-conditioned system of equations. So, it is important

to use a basis which ensures discrete linear independence. Therefore, the best way is to find

the natural basis for the function space, i.e. use the orthogonal polynomials derived from

the eigenvalue problem of the Sturm-Liouville operator.

Orthogonality can be checked by computing the mass matrix which originates from the

discretization of the time derivative term in equation (2.18), after substituting the modal

formulation in equation (2.14),∫
Ωe

h

dU eh
dt

ψj dΩ =M
dÛ en
dt

, n, j = 0, . . . , NDOF − 1,

=⇒ Mnj =

∫∫
Ωe

h

ψnψj dΩ .

(2.21)

The basis are orthogonal if the mass matrix is a diagonal matrix with non-zero values on its

diagonal.

2.2.1 The Sturm-Liouville operator

While only the result of the Sturm-Liouville operator is used to construct orthogonal basis

functions, some background information about the procedure is given in this section.

Most differential operators which are of interest in physical problems (e.g. conservation

equations) can be written in the form of the Sturm-Liouville operator defined on the interval

(a, b),

d

dx

[
p(x)

dϕ(x)

dx

]
+ λw(x)ϕ(x) = 0, (2.22)

where p(x) and w(x) are real-valued functions with w(x) being a weighting function, λ are

the eigenvalues and ϕ(x) the eigenfunctions. The operator is called singular when p(x)
vanishes at at least one of the boundaries.

The eigenfunctions form a complete basis in the space in which the operator is defined.

For the singular Sturm-Liouville problem, it can be proven that when the number of eigen-

functions goes to infinity, the error of the solution converges exponentially to zero, [Gir20].

Moreover, when solving a given differential equation analytically, the approximation of the

solution can be expanded in terms of the eigenfunctions ϕ(x). The solution of the singular

Sturm-Liouville operator are orthogonal polynomials which form a natural basis for rep-

resenting the solution. This highlights the importance of the eigenfunctions derived from

the singular Sturm-Liouville problem; when the eigenfunctions are used to represent the

numerical solution, semi-analytical methods are incorporated into the numerical solution.

The singular Sturm-Liouville operator can be solved with different boundary conditions

and functions p(x) and w(x), resulting in some well-known eigenfunctions. The functions
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that are defined on finite bounds include the Fourier series (periodic boundary conditions),

Legendre and Chebyshev polynomials (non-periodic boundary conditions). Both Legendre

and Chebyshev polynomials fall in the class of Jacobi polynomials. The advantage of

Legendre polynomials is that their weighting function is 1 which is convenient for the

construction of quadrature rules for numerical integration of the integrals. For this reason,

the focus of this work will be on Legendre polynomials, which will be elaborated on in the

next section. A detailed description about other solutions to the singular Sturm-Liouville

operator can be found in [Gir20].

2.2.2 Modal basis

Jacobi polynomials satisfy the solution to the singular Sturm-Liouville problem under the

conditions p(x) = (1− x2)w(x), w(x) = (1− x)α(1 + x)β and x ∈ [−1, 1], [Sze39],

d

dx

[(
1− x2

)
w(x)

d

dx
P (α,β)
n (x)

]
+ λnw(x)P

(α,β)
n (x) = 0, (2.23)

where λn = n(n + α + β + 1) are the eigenvalues of the P
(α,β)
n (x) Jacobi polynomials for

the integers α and β. The solution of equation (2.23) is represented by the set of orthogonal

Jacobi polynomials with real eigenvalues. It can be proven that the Jacobi polynomials

satisfy the following orthogonality condition (with respect to the weighting function w(x))
if α > −1 and β > −1, [Koe21],∫ 1

−1
w(x)P (α,β)

n (x)P (α,β)
m (x) dx =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1))

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
δmn, (2.24)

where Γ is the gamma function and δmn the Kronecker delta. Therefore, the Jacobi polyno-

mials can be made orthonormal by dividing by the norm

P̃n(x)
(α,β) =

P
(α,β)
n (x)√
h
(α,β)
n

, h(α,β)n =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1))

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
. (2.25)

Another useful identity is, [Sze39; HW08],

d

dx
P (α,β)
n (x) =

√
n(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x). (2.26)

Unfortunately, there does not exist a simple expression to evaluate the Jacobi polynomials.

However, expressions forP
(α,β)
n can still be obtained using recurrence relations such as those

given in [Sze39]. These relations are implemented in Python in the eval_jacobi function

of the scipy.special library, [Sci23a].

The simplest form of the Jacobi polynomials, α = β = 0, results in the Legendre

polynomials. In fact, the same set of polynomials is obtained when applying a Gram-

Schmidt orthogonalization procedure to a set of monomials. The first three normalized
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Legendre polynomials are given by

P̃0(x) =
1√
2
, (2.27)

P̃1(x) =

√
3√
2
x, (2.28)

P̃2(x) =

√
5

2
√
2

(
3x2 − 1

)
. (2.29)

From now on, the notation of the modal basis functionψn will be used to denote the Legendre

polynomial P̃n, which is more consistent with the notations used in literature.

2.2.3 Vandermonde matrix

Consider the modal approximation in the p+ 1 grid points xi inside an element Ωeh,

ϕ(xi) =

p∑
j=0

ϕ̂jψj(xi), (2.30)

which can be written in vector notation as

ϕ = V ϕ̂, (2.31)

where ϕ holds the interpolated (nodal) values of ϕ in the nodes xi, ϕ̂ the NDOF (modal)

expansion coefficients and V the generalized Vandermonde matrix

Vij = ψj(xi). (2.32)

For example, the entries of the Vandermonde matrix corresponding to NDOF DOFs and Ni

sample points are

V =


ψ0(x0) ψ1(x0) . . . ψNDOF−1(x0)

ψ0(x1)
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

ψ0(xNi−1) . . . . . . ψNDOF−1(xNDOF−1)

 . (2.33)

Note that V does not necessarily need to be square when Ni ̸= NDOF . The Vandermonde

matrix plays a critical role in the connection between the nodal values ϕ and the modes ϕ̂

ϕ̂ = V −1ϕ. (2.34)

Note that in this case it is important that V is square and invertible to be able to retrieve the

modal values from the nodal values.
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2.2.4 Nodal basis

Since equation (2.30) is an interpolant at the nodes xi, it suggests that there exists another

formulation,

ϕ(x) =

p∑
i=0

ϕ(xi)Li(x), (2.35)

which is known as the nodal formulation whereLi is the interpolating Lagrange polynomial

with the cardinal property Li(xj) = δij . The Lagrange polynomials exist and are unique

provided that all xi are distinct, [HW08] and can be computed directly with

Li(x) =

p∏
j=0
j ̸=i

x− xj
xi − xj

(2.36)

and its derivative

dLi
dx

(x) =

p∑
k=0
k ̸=i

(
1

xi − xk

) p∏
j=0
j ̸=i

x− xj
xi − xj

. (2.37)

Equations (2.36) and (2.37) can actually be derived from the modal Lagrange generating

polynomials, [Gir20], which stresses the relationship that the Vandermonde matrix estab-

lishes between the nodal and modal basis.

In practice, it is easier to construct the Lagrange polynomials from the natural functions

of the space, that is, the Legendre polynomials. Using the cardinal property of the Lagrange

polynomials the following relation holds

ψj(x) =

p∑
i=0

ψj(xi)Li(x). (2.38)

This can be illustrated by considering one of the (nodal) sample points xk, k = 0, . . . , p,

Li(xk) =

{
1 if i = k

0 if i ̸= k
(2.39)

reducing equation (2.38) to ψj(xk) = ψj(xk). Recall that Vij = ψj(xi), such that equa-

tion (2.38) can be written as

ψj(x) = VijLi(x), (2.40)

leading to

Lj(x) =

p∑
i=0

V −1
i,j ψi(x). (2.41)

Again, the notation of the nodal basis function ℓi will be used to denote the Lagrange basis

function Li to remain consistency with literature.

16



2.2.5 Lagrange polynomial interpolation

In order to assess the quality of a nodal interpolation using Lagrange polynomials, consider

the Lebesgue function, [Ibr16],

Lp(x) =

p∑
i=0

|ℓi(x)| (2.42)

and the Lebesgue constant,

Λp = max (Lp(x)) = max

(
p∑
i=0

|ℓi(x)|

)
. (2.43)

It turns out that the interpolation quality depends on the points that are used as the basis of

the interpolation functions (the Lagrange polynomials). A detailed analysis can be found

in [Gir20], from which the main findings will be covered in this section.

Consider the Runge function,

f(x) =
1

1 + 50x2
, x ∈ [−1, 1] (2.44)

which will be interpolated on the domain x ∈ [−1, 1] using various distributions of inter-

polation points. A set of equidistant and Legendre-Gauss-Lobatto (LGL) quadrature points

will be considered, of which the the endpoints ±1 are included in the latter. The LGL

quadrature points can be obtained from the roots of the derivative of the (p−1)-th Legendre

polynomials using the roots_jacobi function of the scipy.special library with n = p− 2
and α = β = 1, [Sci23b].

Evaluating the Lagrange polynomials as well as their associated Lebesgue function

(figure 2.5, dashed line) for p = 8 shows the difference in interpolation quality when

(a) Using equidistant nodes (b) Using LGL nodes

Figure 2.5: The Lagrange polynomials for p = 8 and their corresponding Lebesgue function

(dashed black line) on equidistant nodes (a) and LGL nodes (b).
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Figure 2.6: The analytical Runge function and its interpolation from Lagrange polynomials

for p = 8 on equidistant and LGL nodes.

Figure 2.7: Lebesgue constant as a function of the polynomial degree p for equidistant and

LGL interpolation points.

using equidistant nodes compared to LGL nodes. The interpolation using equidistant

nodes, figure 2.5a, clearly performs worse near the ends of the domain compared to the

interpolation using LGL nodes, figure 2.5b. Also, figure 2.6 shows significant oscillations

near the boundaries for the interpolation of the Runge function using equidistant nodes,

this effect is known as the Runge phenomenon. This especially becomes an issue for higher

orders of interpolation, since the Lebesgue constant grows with 2p for equidistant nodes

while it only grows with log p for LGL nodes, as illustrated by figure 2.7, [HW08]. For

practical applications, equidistant nodes might provide sufficient interpolation quality for

p ≤ 5. However, for p > 5 the Lebesgue constant becomes so significant that the LGL points

provide a much more robust interpolation.
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2.3 Numerical integration

The next thing to discuss is the evaluation of the integrals that arise in the DG formulations,

for example consider ∫
Ωe

h

f(x) dΩ . (2.45)

Since the function f is not known in closed form, this integral cannot be computed an-

alytically. However, because the function can be sampled at certain positions, Gaussian

quadrature rules can be used where the integral in equation (2.45) is replaced by a sum∫ 1

−1
f(x) dx ≈

pint∑
i=0

wif(xi), (2.46)

in which xi andwi are the integration points and weights, respectively. It can be proven that

whenNint = pint+1 integration nodes and weights are used, polynomials up to (2pint+1)-
th order can be integrated exactly provided that the quadrature rule is based on Legendre

polynomials, [Gir20]. Doing this leads to the weights

wi =
2

(1− x2)
(
ψ′
pint

(xi)
)2 (2.47)

where ψ
′
pint

is the derivative of the pint-th order Legendre polynomial with respect to x
and the integration nodes xi are the roots of the Legendre polynomials. Note that the

integration interval was assumed to be [−1, 1], this is because the quadrature rule is based

on the orthogonal Legendre polynomials, which were derived on x ∈ [−1, 1]. The resulting

formulation is unsurprisingly known as the Gauss-Legendre quadrature rule. The Nint

integration nodes and weights can again be computed using the roots_jacobi function of

the scipy.special library, with n = Nint and α = β = 0.

2.4 Mapping to standard elements

The Jacobi polynomials were derived to be orthogonal in the space x ∈ [−1, 1] (see sec-

tion 2.2.2) and consequently the Gauss-Legendre quadrature rule was also defined on the

same interval. In practice however, the integrals that need to be evaluated are generally

defined on any interval [a, b]. Therefore, it is useful to define a mapping from an arbitrary

element to a standard element as illustrated by figure 2.8. Here, each individual element is

mapped to a standard element with parametric coordinate r ∈ [−1, 1] on which all calcu-

lations can be done very effectively. The main advantage is that all local element matrices

can be constructed on the standard element once, and then be scaled to the true size of each

element.

An integral on the standard element is realized using coordinate transformation x→ r,∫ b

a
f(x) dx =

∫ 1

−1
f(r)

dx

dr
dr , (2.48)

19



a b

Ωeh(x)

−1 1

Ωeh(r)

Figure 2.8: Transformation from an arbitrary 1D element Ωeh(x) to a standard element Ωeh(r).
The grid points are illustrated by LGL points for p = 4.

where in one dimension,
dx
dr represents the Jacobian of the transformation. Furthermore,

for integrands containing derivatives with respect to x, the mapping from x to r introduces

the metric term
dr
dx as a result of the chain rule. Since the integrals will be evaluated using a

quadrature rule, the Jacobian of the transformation and the metric terms must be calculated

in the integration nodes. By definition, the geometry is defined by a nodal expansion and is

independent of the representation of the local solution. Let the coordinate x that describes

the geometry be defined by the nodal interpolation of grid order p

x(r) =

p∑
i=0

xiℓi(r), (2.49)

where xi are the LGL nodes of the grid and ℓi the corresponding nodal basis functions.

Equation (2.49) can be differentiated with respect to the parametric coordinate r, leading to

dx

dr
(r) =

p∑
i=0

xi
dℓi
dr

(r). (2.50)

The Jacobian of the transformation can now be computed in the integration nodes ri by

defining a differentiation matrix Dr with the entries

Dr,(ij) =
dℓj
dr

(ri) (2.51)

and applying the matrix-vector product

dx

dr
= Drx, (2.52)

wherex holds the values of x in the grid nodes. The metric of the mapping in the integration

nodes is then obtained from (
dr

dx

)
j

=
1(

dx
dr

)
j

=
1

(Drx)j
. (2.53)

The differentiation matrix can be computed directly using the definition of the Lagrange

polynomials, equation (2.36). Analogous to the construction of the Lagrange basis functions

in section 2.2.4, Dr can also be constructed from the Legendre polynomials by

Dr = VrV
−1, Vr,(ij) =

dψj
dr

(ri), (2.54)

where Vr is defined in the integration nodes and V in the grid nodes. For a detailed deriva-

tions, see [HW08]. Lastly, computing the unit outward normals is very straightforward in
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1D, at the left interface its value is −1 and at the right interface it is 1.

This section concludes the general description of a 1D DG method. The governing

equations can now be written in weak form by multiplying the residual with a test function

and integrating over the element domain Ωeh. Diffusive terms can be treated with for

example an interior penalty method while interface fluxes can be used for the discretization

of convective terms. Then, the test function can be projected into the space spanned by the

basis functions corresponding to the unknown DOFs of the solution and the polynomial

expansion of the solution can be substituted. Thereafter, each element can be mapped to a

standard element on which the integrals can be evaluated using the metric terms and the

Gauss-Legendre quadrature rule. Then, a system of equations can be assembled and solved

for the unknown expansion coefficients. If a modal approximation was used, the solution

can then be transformed back to the grid nodes using a Vandermonde matrix. In the next

section, the DG method will be extended to 2D problems.

2.5 Extension to 2D

In contrast to the 1D elements treated earlier, a choice needs to be made about the shape

of the multi-dimensional elements. A popular choice are elements that consist of simplices

(e.g. triangles) for which orthonormal basis can be constructed, which is treated in [Dub91;

HW08]. While these types of elements provide the most geometric flexibility, quadrilat-

eral elements (e.g. squares) enable for a very straightforward dimension-by-dimension

extension from a 1D to a multi-dimensional domain. As a result, the details of the multi-

dimensional DG formulations are the easiest for quadrilateral elements. Therefore, since

the fundamentals are the same for all element types and this is a conceptual study, this

thesis will focus on quadrilateral elements.

The tremendous advantage of a dimension-by-dimension approach is that all theory

behind 1D interpolation and numerical integration discussed in sections 2.2 and 2.3 also

applies to the 2D quadrilateral element. This is also the case for an extension to 3D hexa-

hedral elements. The 1D basis functions and Gauss-Legendre quadrature were defined on

the standard element r ∈ [−1, 1]. Following a dimension-by-dimension approach, the 2D

standard elements is defined as ΩI(r, s) = [−1, 1]2.

2.5.1 Basis functions

2D basis functions for quadrilateral elements are obtained by applying the tensor-product

of the 1D basis functions. For example, the 2D modal basis function ψk(r, s) is constructed

of the tensor-product of the basis ψi(r) and ψj(s),

ψk(r, s) = ψi(r)⊗ ψj(s), i, j = 0, . . . , p, k = 0, . . . , NDOF − 1. (2.55)

Here, the tensor-product baseψk(r, s) is written in monolithic form, i.e. a vector with a single

index k of length NDOF = (p + 1)2 containing the 2D basis functions. While this is a very

compact way to write the basis functions (only a single index is needed), operations such

as interpolation and differentiation can be performed more efficiently using tensor-product

basis ψij(r, s), [Gir20]. For this reason, tensor-product basis are the preferred formulation

in computer codes. However, since this significantly adds to the complexity of the code
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and the scope of this thesis is on solving the resulting discrete system efficiently, only the

monolithic formulation will be considered. The tensor-product space is mapped onto the

monolithic space using

k = j(p+ 1) + i. (2.56)

The nodal 2D basis functions are constructed in a similar fashion from the tensor-product

of ℓi(r) and ℓj(s),

ℓk(r, s) = ℓi(r)⊗ ℓj(s), i, j = 0, . . . , p, k = 0, . . . , NDOF − 1. (2.57)

2.5.2 Numerical integration

In two dimensions, the weak DG formulation will contain surface and line integrals (as a

result of applying Gauss’s divergence theorem) of the form∫∫
Ωe

h

f(x, y) dΩ and

∮
Γe
h

g(x, y) dΓ , (2.58)

where Γeh is the boundary of the domain Ωeh and x = (x, y)T . However, to keep consistency

with literature, the aforementioned integrals will be referred to as the (3D) volume and

surface integrals, respectively, during the remainder of this text.

As became clear from section 2.3, the Gauss-Legendre quadrature rule is very much

tied to the Legendre polynomials. Therefore, the Gauss-Legendre quadrature rule can be

extended to a 2D domain in a similar way as the basis functions, thus by applying a tensor

product of the 1D rule. On the standard element ΩI ∈ [−1, 1]2 this leads to the following

2D quadrature (or cubature) rule∫∫
ΩI

f(x, y) dΩ =

Nint−1∑
k=0

wk f(xk, yk), (2.59)

where wk is obtained from the tensor-product

wk = wi ⊗ wj , i, j = 0, . . . , pint, k = 0, . . . , Nint − 1. (2.60)

2.5.3 Mapping to standard elements

Similar to the 1D mapping discussed in section 2.4, an arbitrary 2D element in physical

coordinatesΩeh(x, y) can be mapped to a standard element in parametric coordinatesΩI(r, s),
which is is depicted in figure 2.9. In order to realize the mapping (x, y) → (r, s), consider

dx =
∂x

∂r
dr +

∂x

∂s
ds , (2.61)

dy =
∂y

∂r
dr +

∂y

∂s
ds , (2.62)

which can be written in matrix-vector form as[
dx

dy

]
=

[
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

][
dr

ds

]
. (2.63)
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Ωeh(x, y)

a b

c d

x

y

ΩI(r, s)

(−1,−1) (1,−1)

(−1, 1) (1, 1)

r

s

Figure 2.9: Transformation from an arbitrary 2D element ΩI(x, y) to a standard element

Ωeh(r, s).

The matrix

J =

[
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]
(2.64)

is commonly known as the Jacobian of the transformation. Conversely, writing the deriva-

tives of r and s with respect to x and y leads todr
ds

 =

 ∂r∂x ∂r
∂y

∂s
∂x

∂s
∂y

dx
dy

 . (2.65)

Comparing equations (2.63) and (2.65), it is clear that they are equal when ∂r∂x ∂r
∂y

∂s
∂x

∂s
∂y

 =

[
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]−1

=
1

|J |

 ∂y
∂s −∂x

∂s

−∂y
∂r

∂x
∂r

 , (2.66)

from which the following relations for the metric terms of the mapping are obtained

∂r

∂x
=

1

|J |
∂y

∂s
, (2.67)

∂r

∂y
= − 1

|J |
∂x

∂s
, (2.68)

∂s

∂x
= − 1

|J |
∂y

∂r
, (2.69)

∂s

∂y
=

1

|J |
∂x

∂r
, (2.70)

where |J | denotes the determinant of the Jacobian of the transformation,

|J | = ∂x

∂r

∂y

∂s
− ∂y

∂r

∂x

∂s
. (2.71)
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For the evaluation of the surface integrals, the determinant of the Jacobian of the faces, |J |f ,

is needed. For an i-face (r = ±1) this becomes

|J |fi =

√(
∂x

∂s

)2

+

(
∂y

∂s

)2

(2.72)

and similarly for a j-face (s = ±1),

|J |fj =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

. (2.73)

Writing the physical coordinates in terms of the parametric coordinates using the nodal

interpolation of grid order p with tensor-product basis,

x(r, s) =

p∑
i=0

p∑
j=0

xijℓi(r)ℓj(s), (2.74)

y(r, s) =

p∑
i=0

p∑
j=0

yijℓi(r)ℓj(s), (2.75)

with its derivatives

∂x

∂r
(r, s) =

p∑
i=0

p∑
j=0

xij
∂ℓi
∂r

(r)ℓj(s),
∂y

∂r
(r, s) =

p∑
i=0

p∑
j=0

yij
∂ℓi
∂r

(r)ℓj(s), (2.76)

∂x

∂s
(r, s) =

p∑
i=0

p∑
j=0

xijℓi(r)
∂ℓj
∂s

(s),
∂y

∂s
(r, s) =

p∑
i=0

p∑
j=0

yijℓi(r)
∂ℓj
∂s

(s). (2.77)

Extending the idea of section 2.4,
∂x
∂r ,

∂x
∂s ,

∂y
∂r and

∂y
∂s can be calculated in the integration

nodes (ri, si) by using the differentiation matrices in r- and s-direction,

Dr = VrV
−1, Vr,(ij) =

dψj
dr

(ri, si), (2.78)

Ds = VsV
−1, Vs,(ij) =

dψj
ds

(ri, si), (2.79)

leading to

∂x

∂r
= Drx, (2.80)

∂x

∂s
= Dsx, (2.81)

∂y

∂r
= Dry, (2.82)

∂y

∂s
= Dsy, (2.83)

where x and y contain the values of respectively x and y in the integration nodes. Now, the

metric terms
∂r
∂x ,

∂r
∂y ,

∂s
∂x ,

∂s
∂y can be calculated in the integration nodes using equations (2.67)

to (2.71) and (2.80) to (2.83).
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Moreover, the unit outward normal of an i-face can be calculated with

n = ± ∇r
|∇r|

= ±
(
∂r

∂x
i+

∂r

∂y
j

)/√(
∂r

∂x

)2

+

(
∂r

∂y

)2

, (2.84)

where i and j are the unit vectors in x and y direction and the ± sign is negative for a left

face and positive for a right face. Similarly for j-faces,

n = ± ∇s
|∇s|

= ±
(
∂s

∂x
i+

∂s

∂y
j

)/√(
∂s

∂x

)2

+

(
∂s

∂y

)2

. (2.85)

Now that all metric terms can be calculated in the integration nodes, volume integrals

on an arbitrary element Ωeh can be evaluated on the standard elements using

∫∫
Ωe

h

f(x, y) dΩ =

N2D
int−1∑
k=0

wk f(rk, sk)|J |. (2.86)

In a similar fashion, surface integrals over an element boundary Γeh can be evaluated with

∮
Γe
h

g(x, y) dΓ =
∑
f∈Fe

h

N1D
int−1∑
i=0

wi gint |J |f

 , (2.87)

where for i-faces equation (2.72) must be used for |J |f and gint = g(±1, si) while for j-
faces |J |f is described by equation (2.73) and gint = g(ri,±1). Remember that the index k
runs over the 2D integration nodes and weights while the indices i and j run over the 1D

integration nodes and weights.
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Chapter 3

Incompressible flow modelling

The motion of a viscous fluid subject to incompressible flow is described by the set of

incompressible Navier-Stokes equations,
∂t u− ν∆u+(u ·∇)u+∇ p = f , ∀x ∈ Ω,

∇ · u = 0, ∀x ∈ Ω,

u = gD, ∀x ∈ Γ.

(3.1)

(3.2)

(3.3)

on the time interval (0, T ), with an appropriate set of initial conditions and Dirichlet bound-

ary conditions gD prescribed on the boundary Γ of the domain Ω. Moreover, ∂t u denotes

the partial derivative of the velocity vectoru = [u, v]T with respect to time, ν is the kinematic

viscosity, p the kinematic pressure (pressure divided by density) and f the external force

per unit mass. The inertial forces are represented by the non-linear convection term (u ·∇)u
while the term ν∆u describes the viscous effects. While the incompressibility condition

seems to be a nice way to simplify the compressible Navier-Stokes problem, it is actually a

constraint for the Stokes problem which will be explained in more detail in this chapter.

Firstly, incompressible flows will be explained in more detail. This section is largely

based on [Pan13], in which a much more fundamental description about this subject can

be found. Then, the incompressible model problems will be defined and the consequences

of the incompressibility constraint for these model problems will become apparent. Lastly,

a pressure-robust DG discretization scheme for the model problems is introduced and the

characteristics of the discrete systems of equations are revealed.

3.1 Incompressible flow

Incompressible flow is characterized by fluid motion in which density changes of a particle

are negligible, which can mathematically be expressed as

1

ρ

Dρ

Dt
= 0. (3.4)

Without going into too much detail, this is the case for flows in which the Mach number,

i.e. the flow velocity with respect to the speed of sound, is below 0.3, [Pan13]. Rewriting

the (compressible) continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0, (3.5)
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using product rule and the material derivative
D
Dt gives

1

ρ

Dρ

Dt
= −∇ · u . (3.6)

Therefore, the incompressibility condition denoted by equation (3.4) reduces the continuity

equation to

∇ · u = 0. (3.7)

which is also referred to as the kinematic divergence-free constraint. This is a constraint be-

cause the continuity equation does not have a time derivative anymore while the divergence

of the velocity field must be zero. A physical interpretation of ∇ · u is the rate of change of

volume ∂V of a moving particle V ,

∇ · u =
1

∂V

D(∂V )

Dt
, (3.8)

So, in incompressible flows, the rate of change of volume of a particle is zero.

A globally constant fluid density is often assumed to be a requirement for incompressible

flow, since this also leads to the reduced continuity equation in equation (3.7). However,

it is not true that incompressible flow only occurs when the density of the fluid is globally

constant. While it is the case that a fluid with a globally constant density is subject to

incompressible flow, a fluid with variable density can also experience incompressible flow,

as long as the density of each fluid particle remains constant. For example, the density of the

air in the atmosphere depends on the spatial location but, under the right flow conditions,

each individual fluid particle can have a constant density. Thus, the compressible fluid air

can be subject to incompressible flow. Hence, incompressible flow is not to be confused with

an incompressible fluid.

3.2 Model problems

The Stokes problem is considered as the main model problem of this thesis. The Stokes equa-

tions are obtained by non-dimensionalization of the incompressible Navier-Stokes equations

and requiring the viscous forces to be dominant, i.e. Re ≪ 1. In dimensional form, the

Stokes equations read


−∆u+∇ p = f , ∀x ∈ Ω,

∇ · u = 0, ∀x ∈ Ω,

u = gD, ∀x ∈ Γ.

(3.9)

(3.10)

(3.11)

Note that without loss of generality, the kinematic viscosity is set to ν = 1 since the momen-

tum equation, pressure p and forcing term f can always be scaled by ν, [BGL05]. Also, in

contrast to the non-linear incompressible Navier-Stokes system, the Stokes system is linear.

Since only the gradient of the pressure is present in equation (3.9), the pressure is defined
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up to a constant. A unique pressure solution is obtained by requiring the mean pressure to

be zero,

p̄ =

∫∫
Ω p dΩ∫∫
Ω dΩ

= 0. (3.12)

Writing equations (3.9) and (3.10) as a block linear system of equations of the form

Aξ = b, [
−∆ G
D 0

] [
u
p

]
=

[
f
0

]
, (3.13)

where ∆ denotes the (vector) Laplace operator which acts on the velocity u, G the gradient

operator which acts on the pressure and D the divergence operator which acts on the

velocity. As a result of the divergence-free constraint ∇ · u = 0 in the continuity equation,

the block coefficient matrix is in saddle point form. Saddle point problems arise in many

computational science and engineering applications, often when a certain quantity must be

minimized. Due to their indefiniteness and poor spectral properties, saddle point problems

pose a serious challenge for (iterative) solvers, [BGL05].

Lastly, for a multigrid method to work well, it is important that the Stokes system

possesses good smoothing properties (see chapter 4 for more details). For elliptic systems

of equations, it can be proven that when the determinant of a system can be smoothed

well, the system itself also possesses good smoothing properties, [TDB03; OL06]. Since the

determinant of the Stokes system is associated with the Laplacian, det(A) = ∆2
in 2D and

det(A) = ∆3
in 3D, the Poisson problem is used as a model problem for the Stokes system,

−∆u = f . (3.14)

3.3 Discretization scheme

Before the model problems defined in the previous section can be solved using a computer,

they first must be discretized. This section mainly focuses on the discretization of the Stokes

problem. Since the Poisson problem is a subset of the Stokes problem, the discretization

of the Poisson equation is found by taking the discretization of the diffusion and source

terms of the Stokes (x-)momentum equation. Literature on the discretization of the Stokes

problem is widely available in the field of computational mathematics, such as for example

[GLS19]. However, these contributions are often written very compactly which makes the

implementation in computer code difficult. Therefore, in this section it is attempted to

present the discretization of the Stokes problem in more engineering-like notation which

should be closer to the practical implementation.

It is important that the discretization of the Stokes equations is stable, convergent and

robust. In recent years, it has been brought to attention that the discretization of the

divergence constraint in equation (3.10) plays a critical role in achieving robust spatial

discretization schemes of the (Navier-)Stokes equations, [Joh+17; Sch19; GLS19]. It turns

out that in most mixed element methods such as the DG method, the divergence constraint

is relaxed by only enforcing it discretely, i.e. up to the level of the truncation error of the DG

scheme. This means that the discrete velocity solution is not necessarily divergence-free, but

only discretely divergence-free. While these methods are still stable and convergent, this
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introduces a pressure-dependent consistency error which can pollute the velocity solution

when large and complicated pressures are present, [Joh+17]. In this case, a contribution

from the right-hand side which only influences the pressure in the continuous equations

influences both the velocity and pressure in the discrete equations. This is referred to as a

lack of pressure-robustness.

A popular method for improving pressure-robustness is grad-div stabilization which

is based on penalization of the divergence error. While it does not completely remove the

lack of pressure-robustness, its main advantage is that it is very straightforward to apply

the technique to existing mixed element discretizations. Another technique that is used to

completely remove the lack of pressure robustness is to choose appropriate test functions

for some terms in the DG formulation that reestablishes the properties from the continuous

problem into the discretization, [Joh+17]. Following this approach, a so-called H(div)-
conforming scheme is obtained which is proven to be exactly divergence-free, meaning

that the divergence constraint is always satisfied. However, the generalization to arbitrary

element types is very difficult.

Since grad-div stabilization can be added to existing discretizations, this method is cho-

sen to reduce the lack of pressure-robustness of the existing Stokes discretization. Details on

this technique are given in section 3.3.4. However, first an overview of the DG formulations

is given in section 3.3.1 followed by the description of the discretization of the continuity

equation and momentum equations, sections 3.3.2 and 3.3.3, respectively.

3.3.1 DG formulations

A stable DG formulation for the Stokes equations can be found by solving for the local

solution (ph,uh) belonging to the mixed trial space

(ph,uh) ∈ Qh × Vh, (3.15)

where the approximation space is spanned by the piece-wise smooth velocity and pressure

test functions qh ∈ Qh and vh ∈ Vh, [Hil13]. Odd-even decoupling is avoided by choosing

the polynomial order of the pressure space one order lower than the velocity space and by

multiplying the weak form of the continuity equation with the pressure test functions and

the weak form of the momentum equations with the velocity test functions, [GLS19]. The

solution is sought on the discretized 2D domain Ωh ≃
⋃Ne
e=0Ω

e
h.

The local velocity and pressure solutions within an element are defined using a modal

expansion,

ueh =

Nu
DOF−1∑
n=0

ûenψ
u
n, peh =

Np
DOF−1∑
n=0

p̂enψ
p
n, (3.16)

where the vectors ueh and ûen hold the solution and the expansion coefficients for the velocity

components u and v and Nu
DOF = (pu + 1)2 and Np

DOF = (pp + 1)2 are the velocity and

pressure DOFs, respectively. The assumption is made that the same basis functions ψu
can

be used for all components of ueh. In total, there are Nu
DOF unknown expansion coefficients

ûen andNp
DOF unknown expansion coefficients p̂en to be solved per element1. The number of

1Since ûe
n is a vector, this equals a total of 2Nu

DOF unknown expansion coefficients, Nu
DOF expansion

coefficients for ûe
n and Nu

DOF expansion coefficients for v̂e
n.
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DOFs per element depend on the polynomial order of the solution. Although the notation

might suggest that the number of DOFs for the velocity and pressure solutions is the same

for all elements, this does not have to be the case.

Furthermore, a surface integral over the boundary of an element e can be written as the

summation over the faces f , i.e.∫
∂Ωe

h

(. . . ) =

∫
Γe
h

(. . . ) =
∑
f∈Fe

h

∫
Γe
hf

(. . . ). (3.17)

The faces f of the elements e belong to the set Fe
h which can be split into interior faces Fe,i

h

and boundary faces Fe,∂
h , Fe

h = Fe,i
h ∪Fe,∂

h . For any piece-wise smooth function ϕ, consider

the jump [[·]] and average {{·}} operator across the interior element faces,

[[ϕ]] = ϕe − ϕn, {{ϕ}} =
1

2
(ϕe + ϕn) , ∀f ∈ Fe,i

h , (3.18)

while for the boundary faces,

[[ϕ]] = ϕe, {{ϕ}} = ϕe, ∀f ∈ Fe,∂
h , (3.19)

where the superscript e and n denote that the value of the function ϕ is approached from

the element e and the neighboring element n, respectively, see figure 3.1. The interface unit

normal nf is defined to point outward of e, into n.

ϕe ϕn

nf

Figure 3.1: The values of ϕ when approaching the interface (thick line) from the element e
and neighboring element n. The interface unit normal is defined to be pointing outward of

e.

3.3.2 Continuity equation

The locally defined weak formulation of the Stokes continuity equation given in equa-

tion (3.10) reads ∫∫
Ωe

h

(∇h · ueh) qh dΩ = 0, ∀qh ∈ Qh, ∀e, (3.20)

where ∇h· is the broken (i.e. defined within an element) divergence operator. The dis-

cretization of the continuity equation follows from the weak formulation in equation (3.20)

and additional surface integrals which enable coupling of the elements by describing the
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normal velocity jump over the (boundary) faces, [GLS19],

−
∫∫

Ωe
h

qh(∇h · ueh) dΩ +
∑
f∈Fe

h

∫
Γe
hf

([[uh]] · nf ) {{qh}}dΓ

=
∑

f∈Fe,∂
h

∫
Γe
hf

([[gD]] · nf ) {{qh}}dΓ , ∀qh ∈ Qh, ∀e.
(3.21)

By adding these terms, a discrete pressure-velocity coupling is obtained, [GLS19; Sch19].

The surface integral terms can be added because in the limit of the exact solution, the normal

velocity jump over the faces goes to zero, such that these integrals vanish. The minus sign

in front of the volume integral is there to obtain a symmetric discretization. As will become

clear in section 3.3.3, the pressure gradient term is integrated by parts leading to a minus

sign in front of the volume integral in equation (3.30). By also putting a minus sign in front

of the surface integral in the discretization of the continuity equation, equation (3.21), a

symmetric discretization is obtained, i.e. the discretization of the divergence operator D is

equal to the discretization of the gradient operator transposed, GT .

Working out the jump and average operators using equations (3.18) and (3.19),

[[uh]] = ueh−unh, {{qh}} =
1

2
qh, ∀f ∈ Fe,i

h ,

[[uh]] = ueh, [[gD]] = gD, {{qh}} = qh, ∀f ∈ Fe,∂
h .

(3.22)

After splitting the set Fe
h in the second term of equation (3.21) into interior and boundary

faces, substituting the expressions from equation (3.22) for the jump and average operators

and rearranging terms, the discretization of the continuity equation reads

−
∫∫

Ωe
h

qh (∇h · ueh) dΩ

+
∑
f∈Fe,i

h

∫
Γe
hf

1

2
qh (u

e
h−unh) · nf dΓ

+
∑

f∈Fe,∂
h

∫
Γe
hf

qh (u
e
h−gD) · nf dΓ = 0, ∀qh ∈ Qh, ∀e.

(3.23)

Finally, projecting qh into the function space spanned by the unknowns, i.e. the basis

functionsψp
j , a set ofNp

DOF discrete continuity equations corresponding to the discretization

of the D-block in equation (3.13) is obtained

−
∫∫

Ωe
h

ψp
j (∇h · ueh) dΩ

+
∑
f∈Fe,i

h

∫
Γe
hf

1

2
ψp
j (u

e
h−unh) · nf dΓ

+
∑

f∈Fe,∂
h

∫
Γe
hf

ψp
j (u

e
h−gD) · nf dΓ = 0, j = 0, . . . , Np

DOF − 1, ∀e.

(3.24)
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3.3.3 Momentum equations

The weak formulation of the momentum equations given in equation (3.9) is given by

−
∫∫

Ωe
h

∆h u
e
h vh dΩ︸ ︷︷ ︸

diffusion term

+

∫∫
Ωe

h

∇h p
e
h vh dΩ︸ ︷︷ ︸

pressure gradient term

−
∫∫

Ωe
h

f vh dΩ︸ ︷︷ ︸
source term

= 0, ∀ vh ∈ Vh, ∀e,

(3.25)

where ∆h is the broken Laplace operator and ∇h the broken gradient operator (both defined

within an element). The discretization of the momentum equations will be split up into

several parts which is treated in the next sections.

Diffusion term

The discretization of the diffusion term follows from applying Green’s first identity2 to the

weak formulation of the diffusion term in equation (3.25). For the x-momentum equation,

this results in the following discretization, [GLS19]∫∫
Ωe

h

∇h u
e
h ·∇hvh dΩ−

∑
f∈Fe

h

∫
Γe
hf

{{∇h uh}}nf · [[vh]] dΓ , ∀ vh ∈ Vh, ∀e.
(3.26)

However, if only these terms were to be used for the discretization of the diffusion term,

the velocity solution at the interfaces would be multiply defined, as only the gradient of the

velocities are solved for. Therefore, the symmetric interior penalty (SIP) method is used to

ensure unique solutions at the interfaces. The SIP method consists of adding a penalty term

and a symmetrizing term. The penalty term forces the velocities at the interfaces together

while the symmetrizing term ensures that the resulting discretization becomes symmetric.

For the x-momentum equation, i.e. for a single velocity component uh of the velocity vector

uh and scalar component gx of gD, this leads to the following discretization for the diffusion

term, [GLS19]∫∫
Ωe

h

∇h u
e
h ·∇hvh dΩ︸ ︷︷ ︸

volume term

+
∑
f∈Fe

h

σ

hf

∫
Γe
hf

[[uh]] · [[vh]] dΓ︸ ︷︷ ︸
penalty term

−
∑
f∈Fe

h

∫
Γe
hf

{{∇h uh}}nf · [[vh]] dΓ︸ ︷︷ ︸
flux term

−
∑
f∈Fe

h

∫
Γe
hf

[[uh]] · {{∇hvh}}nf dΓ︸ ︷︷ ︸
symmetrizing term

−
∑

f∈Fe,∂
h

σ

hf

∫
Γe
hf

gx ·vh dΓ

︸ ︷︷ ︸
penalty boundary term

+
∑

f∈Fe,∂
h

∫
Γe
hf

gx ·(∇hvh)nf dΓ

︸ ︷︷ ︸
symmetrizing boundary term

,

∀ vh ∈ Vh, ∀e,
(3.27)

where σ is the penalty parameter which penalizes the velocity jump over the element faces

and hf is a length scale of the face. The penalty parameter determines how much the

2Green’s first identity is equivalent to using ∇· (ab) = ∇a · b+a∇· b followed by applying Gauss’ divergence

theorem
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velocities at the element interfaces are forced to each other and has a critical value, which

will be discussed at the end of this section.

The jump and average operators are obtained from equations (3.18) and (3.19),

[[uh]] = ueh−unh, [[vh]] = vh, {{∇h uh}} =
1

2
(∇h u

e
h+∇h u

n
h) , {{∇hvh}} =

1

2
(∇hvh) , ∀f ∈ Fe,i

h ,

[[uh]] = ueh, [[vh]] = vh, {{∇h uh}} = ∇h u
e
h, {{∇hvh}} = ∇hvh, ∀f ∈ Fe,∂

h .

(3.28)

Analogous to the derivation of the discretization of the continuity equation given in sec-

tion 3.3.2, the faces Fe
h are split into interior and boundary faces, the jump and average

operators are substituted in equation (3.27), the terms are rearranged and finally the test

function vh is projected into the space spanned by the velocity basis functions ψu
j , such that

for discretization of the diffusion term in the x-momentum equation the Nu
DOF equations

are obtained∫∫
Ωe

h

∇h u
e
h ·∇hψ

u
j dΩ︸ ︷︷ ︸

volume term

+
∑
f∈Fe,i

h

σ

hf

∫
Γe
hf

ψu
j (u

e
h−unh) dΓ +

∑
f∈Fe,∂

h

σ

hf

∫
Γe
hf

ψu
j (u

e
h− gx) dΓ

︸ ︷︷ ︸
penalty terms

−
∑
f∈Fe,i

h

∫
Γe
hf

1

2
ψu
j (∇h u

e
h+∇h u

n
h) · nf dΓ−

∑
f∈Fe,∂

h

∫
Γe
hf

ψu
j (∇h u

e
h) · nf dΓ

︸ ︷︷ ︸
flux terms

−
∑
f∈Fe,i

h

∫
Γe
hf

1

2
(ueh−unh)

(
∇hψ

u
j

)
· nf dΓ−

∑
f∈Fe,∂

h

∫
Γe
hf

(ueh− gx)
(
∇hψ

u
j

)
· nf dΓ

︸ ︷︷ ︸
symmetrizing terms

,

j = 0, . . . , Nu
DOF − 1, ∀e.

(3.29)

The same can be done for the discretization of the y-momentum equation by replacing u
by v and gx by gy in equation (3.29). The set of discrete x- and y-momentum equations

corresponds to the discretization of the −∆-block of the Stokes system in equation (3.13)

and the discrete x-momentum equations to the (minus) Laplacian in the Poisson equation

in equation (3.14).

The stability of the discretization of the diffusion term depends on the penalty parameter

σ. The critical value of σ depends on the element size and shape. Choosing an arbitrarily

high value forσ is generally not a good idea since it will negatively impact the conditioning of

the resulting system of equations, making it more difficult to solve. An analytical derivation

of the critical value of σ for different element types, including quadrilateral elements, is done

in [Hil13]. A critical value of (p+ 1)2 is found for quadrilateral elements. The author notes

that the derivations are done for elements with a constant mapping. For curved elements,

the derivation is much more complex and depends on the precise mapping, making it

difficult to derive a general critical value. However, provided that the elements are not too

distorted, the values should be very similar.
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Pressure gradient term

The discretization of the pressure gradient term in equation (3.25) follows from applying

integration by parts on it, followed by Gauss’ theorem, which in terms of the jump and

average operators give [GLS19],

−
∫∫

Ωe
h

peh (∇hvh) dΩ +
∑
f∈Fe

h

∫
Γe
hf

([[vh]] · nf ) {{ph}}dΓ , ∀ vh ∈ Vh, ∀e, (3.30)

where the jump and average operators are defined as

[[vh]] = vh, {{ph}} =
1

2
(peh+pnh) , ∀f ∈ Fe,i

h ,

[[vh]] = vh, {{ph}} = peh, ∀f ∈ Fe,∂
h .

(3.31)

Combining equations (3.30) and (3.31), splitting the faces and projecting vh into the space

spanned by the velocity basis functions ψu
j , the discretization of the pressure gradient term

is given by the set of Nu
DOF equations

−
∫∫

Ωe
h

peh
(
∇hψ

u
j

)
dΩ +

∑
f∈Fe,i

h

∫
Γe
hf

1

2
(peh+pnh)ψ

u
j nf dΓ +

∑
f∈Fe,∂

h

∫
Γe
hf

peh ψ
u
j nf dΓ ,

j = 0, . . . , Nu
DOF − 1, ∀e.

(3.32)

Since equation (3.32) is in vector-form, a total of 2Nu
DOF equations (corresponding to the

discretization of the pressure gradient term in the x- and y-momentum equations) are

obtained for the discretization of the G-block in equation (3.13).

Source term

The discretization of the source term in equation (3.25) is as straightforward as projecting

vh into the space spanned by the basis functions ψu
j , leading to the set of Nu

DOF equations

−
∫∫

Ωe
h

f ψu
j dΩ , j = 0, . . . , Nu

DOF − 1, ∀e, (3.33)

Again, equation (3.33) is in vector-form leading to a total of 2Nu
DOF equations for the

discretization of the Stokes source f in equation (3.13) and Nu
DOF equations (by only taking

x-momentum into account) for the discretization of the Poisson source f in equation (3.14),

which can be added to the right-hand side by multiplying them by −1.

3.3.4 Divergence-free constraint stabilization

A property that is tied to the divergence-free condition is the continuity of the normal

velocity components over an element face. In fact, continuity of the normal velocities is

a necessary requirement for an exactly (so not only in a discrete sense) divergence-free

method, [Sch19]. Pressure-robustness can be improved by using the stabilization given by
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given by [Sch19],∫∫
Ωe

h

γ (∇h · ueh) (∇hvh) dΩ +
∑
f∈Fe

h

γ

hf

∫
Γe
hf

([[uh]] · nf ) ([[vh]]nf ) dΓ

−
∑

f∈Fe,∂
h

γ

hf

∫
Γe
hf

(gD ·nf ) (vh nf ) dΓ∀ vh ∈ Vh, ∀e,
(3.34)

which must be added to the discretization of the momentum equations discussed before.

This stabilization includes a grad-div stabilization in the first term which arises from adding

0 = −γ∇(∇·u) to the continuous momentum equations and a normal velocity penalization.

As a result, the element-wise divergence-free constraint and normal velocity continuity

property are fulfilled more accurately. The stabilization parameter γ determines how much

the normal velocities at the interface of an element are forced to each other.

The jump and average operators in this case correspond to the vector equivalent of those

written in equation (3.28). Working out these operators in equation (3.34), splitting the faces

and projecting vh into the space spanned by the basis functions ψu
j ,∫∫

Ωe
h

γ (∇h · ueh)
(
∇hψ

u
j

)
dΩ +

∑
f∈Fe,i

h

γ

hf

∫
Γe
hf

(ueh−unh) · nf ψu
j nf dΓ

+
∑

f∈Fe,∂
h

γ

hf

∫
Γe
hf

(ueh−gD) · nf ψu
j nf dΓ ,

j = 0, . . . , Nu
DOF − 1, ∀e

(3.35)

Looking at the dimensions of equation (3.35), the stabilization parameter γ must have a

dimension of m2/s, i.e. a kinematic viscosity. Therefore, a logical choice would be to base

the value of γ on ν. In this specific case however, the dimensions of γ do not really matter

as the viscosity has been set to 1 (see section 3.2), such that the Stokes problem is essentially

dimensionless. Ideally, γ is chosen as high as possible, since a large value leads to an (almost)

exactly divergence-free solution, or in other words, pressure-robustness. However, choosing

an arbitrarily large γ also increases the condition number of the system of equations, making

it harder to solve, [Joh+17]. A study of optimal values of γ with respect to different error

norms is done in [Jen+14]. It turns out that the optimal value depends on multiple factors

and is difficult to estimate a priori. However, [Jen+14] has observed that for certain cases

taking γ = O (1) leads to an enormous improvement of pressure-robustness.

Lastly, it could also be argued that choosing a high value of the penalty parameter σ has

the same effect on pressure-robustness as this forces the velocities over the faces to be closer

to each other, thus also forcing continuity of the normal velocity over the faces.

3.3.5 Characteristics of the discrete systems

Combining equations (3.24), (3.29), (3.33) and (3.35), substituting the modal polynomial ex-

pansion of the local solutions using equation (2.20) and evaluating the integrals by mapping

each element to the standard element and applying an appropriate quadrature rule, a set

discrete linear system of algebraic Stokes equations of the form Aξ = b is obtained where

A is the coefficient matrix, ξ are the unknown modal expansion coefficients and b is the
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right-hand side (RHS) vector. Analogously, a similar system of equations for the Poisson

problem is obtained by combining equations (3.29) and (3.33) and evaluating the integrals.

The aim is to solve the modal expansion coefficients from these systems of equations.

The coefficient matrix holds the contributions from the elements and the connection to

their neighboring elements. All known quantities such as for example prescribed values

on the boundary (Dirichlet boundary conditions) or the contribution of external forces are

added to the RHS vector b. The coefficient matrix A has size of M ×M and the RHS vector

b has a length of M , where M = NeNDOF . In two dimensions, NDOF = (p + 1)2 for the

Poisson problem and NDOF = (pu + 1)2 · 2 + (pp + 1)2 for the Stokes problem.

In order to illustrate how the system of equations is assembled, consider the Cartesian

4 × 4 grid depicted in figure 3.2 with numbering k = j(Nei + 1) + i, k = 0, . . . ,K − 1
consisting of 16 2D elements, where Nei is the number of elements in i-direction. Adding

i

j

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.2: Illustration of a two-dimensional Cartesian grid with numbering k = j(Nei +
1) + i.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 3.3: Illustration of the coefficient matrix corresponding to the discretization on a

two-dimensional grid with order p elements.
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the contributions of the elements and its neighbors results in the coefficient block matrix

illustrated in figure 3.3. Each block row corresponds to an element and each block column to

a contribution to it from itself and its neighbors. For example, element 0 has a contribution

from element 0 (itself), 1 and 4. Each block stores the coefficients corresponding to the DOFs

of the element. For pu = pv = 2 and pp = 1 in 2D, a block contains (2+1)2 · 2+(1+1)2 = 22
DOFs and 222 = 484 coefficients. The RHS vector is partitioned very similar to the coefficient

block matrix, i.e.

b = [b̄u0 , b̄
v
0, b̄

p
0 , b̄u1 , b̄

v
1, b̄

p
1 . . . b̄u14, b̄

v
14, b̄

p
14, b̄u15, b̄

v
15, b̄

p
15]

T
(3.36)

where b̄uk, b̄vk and b̄pk hold the RHS entries corresponding to respectively the u, v and p DOFS,

for the element k.

Storing the system of equations in this "local" order (ξ = [ū0, v̄0, p̄0, . . . ūNe−1, v̄Ne−1, p̄Ne−1]
T

with ū = [u0, . . . ,uNu
DOF−1]

T
) is straightforward and simple. However, another possibility is

to first store all entries for u, followed by all entries for v and lastly all entries for p. This leads

to a "global" ordering (ξ = [ū0, . . . ūNe−1, v̄0 . . . v̄Ne−1, p̄0 . . . p̄Ne−1]
T

) in which the discrete

equivalent of the continuous saddle point problem in equation (3.13) is formed,[
A G
D 0

] [
u
p

]
=

[
f
0

]
. (3.37)

Here,A encompasses the discretization of the Laplace operator −∆,G that of the gradient

operator G and D that of the divergence operator D. Since A is the result of a mimetic

discretization of the Laplace operator, it must be symmetric positive definite (SPD), mean-

ing that it must be symmetric and all its eigenvalues must be positive. This is because

the Laplacian has a maximum principle whose discrete equivalent is a symmetric positive

definite system. This property is also important because it dictates the convergence of re-

laxation methods, which will become clear in section 4.2. These properties also apply to the

coefficient matrix of the Poisson equation, since that is also a discretization of the Laplace

operator. Since the SIP method was used for the discretization of the Laplace operator, A
should be SPD. However, for the reasons mentioned earlier it is an important property to

verify. Moreover, as a result of the design of the discretization of the continuity equation

and the pressure gradient term in the momentum equations, D = GT
, such that also the

block-coefficient matrix in equation (3.37) is symmetric.

Since the number of neighboring elements is generally relatively small compared to the

total number of elements, the coefficient matrix is sparse which is illustrated in figure 3.4.

This is a property that is specific to a coefficient matrix arising from the discretization of

any PDE, [Maz16]. Storing the coefficient matrix in full form is generally not a good idea.

Consider for example the coefficient matrix resulting from the discretization of the Stokes

problem on a 3D grid with 16 elements in each direction and a polynomial order of 2 for

the velocity solutions and 1 for the pressure solution, i.e. 22 DOFs per element. This matrix

will have a size of (16× 16× 16× 22)2 = 8.1 · 109, for which 8.1 · 109 × 8 = 6.5 · 1010 bytes

or 65 GB needs to be allocated to store it with double precision. This shows that for a rather

small and low order case, already a lot of memory is required to store this matrix which

is simply not practical. A much better alternative is to store it in block compressed sparse

row (CSR) format. This way, only three arrays need to be stored, one containing the values
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Figure 3.4: The sparsity pattern of the globally ordered coefficient matrix of a Stokes dis-

cretization.

of the non-zero blocks, one containing the column indices of the non-zero blocks and one

containing pointers to the beginning of each row in the first two arrays. For more details

about the block CSR format and other storage schemes for sparse matrices, see [Saa03].

The structure and sparsity of the coefficient matrices resulting from the discretization

of the Stokes and Poisson problems makes it challenging to efficiently compute solutions to

these systems. This will be addressed in the next chapter.
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Chapter 4

Solving the discrete system

Performing the discretization as explained in the previous chapter results in a system of

linear algebraic equations of the form Aξ = b, where A is the coefficient matrix, ξ is the

solution vector and b is the right-hand side vector. Methods for solving such a system can

generally be divided into two categories, direct and iterative methods.

Direct methods are designed to obtain exact solutions to linear systems of equations. The

solutions are exact in the sense that the system of equations resulting from the discretization

are solved exactly, which however does not necessarily mean that the governing PDE is

solved exactly. An example of a direct method is by simply left-multiplying the right-hand

side vector with the inverse of the coefficient matrix, ξ = A−1b. Another option is to perform

Gaussian (or Gauss-Jordan) elimination in which the equations are successively substituted

into each other, until only the unknowns are left. A variant of Gaussian elimination is the LU

factorization method which has the advantage that when the LU factorization is performed,

the linear system can be solved for different values of the right-hand side vector b, without

performing additional elimination, [MMD16]. These methods are straightforward, often

easy to implement and require no assumption about the nature of the coefficient matrix.

Key properties of the coefficient matrices that arise from the FE discretization of PDEs

are that they are large and sparse, which was illustrated for the DG discretization in sec-

tion 3.3.5. Alternative direct methods exist that exploit the sparsity and structure of the

coefficient matrix such as the banded linear system solvers given in [Maz16; MMD16].

While these solvers are already more efficient than direct solvers that use the full coefficient

matrix, the memory and computational requirements for solving systems arising in CFD

applications can seriously challenge the most efficient direct solvers, [Saa03]. Therefore,

iterative methods are generally better suited for solving this kind of systems efficiently.

Moreover, the implementation of parallel computing can be done more easily in iterative

methods than in direct methods, [Saa03]. Hence, the focus of this text will be on iterative

solvers.

First a general description of an iterative method is given in section 4.1. Thereafter, Jacobi,

Gauss-Seidel and distributive Gauss-Seidel relaxation methods are introduced in section 4.2.

While relaxation methods possess excellent error smoothing capabilities, they are almost

never used as standalone iterative solvers because of their slow convergence. Multigrid

methods aim to exploit these smoothing properties which is explained in section 4.3.
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4.1 Iterative methods

In an iterative method, the solution to the system of equations is obtained by computing

a sequence of approximate solutions, starting from an initial guess ξ(0), where the new

approximation ξ(k+1)
is calculated from the previous approximation ξ(k). Depending on

the linear system and the method used, an iterative solver will converge to the exact solution.

However, in practical applications it often suffices to solve until a certain accuracy is reached,

for example measured by a Lp-norm of the residual R = b−Aξ.
Decomposing the coefficient matrix as A = M − N , the system of equations Aξ = b

can be rewritten as

(M−N )ξ = b. (4.1)

Next, applying a fixed point iteration solution procedure, equation (4.1) yields

Mξ(k+1) = Nξ(k) + b, (4.2)

which can be further rewritten to

ξ(k+1) = M−1Nξ(k) +M−1b. (4.3)

For the iterative method to be convergent, the spectral radius of B = M−1N must be

smaller than 1, i.e. ρ(B) = max (|λi(B)|) < 1, where λi are the eigenvalues of B. The

asymptotic speed of convergence of an iterative method is also determined by the spectral

radius. If ρ (B) is bounded away from 1, only a few iterations are needed to obtain sufficient

error reduction leading to fast convergence. On the contrary, if ρ (B) is close to unity, the

error is only reduced by a very small amount leading to slow convergence.

Different choices for M and N will lead to different iterative methods which will be

treated in the next section.

4.2 Relaxation methods

Relaxation methods are iterative methods where, given a current approximation to the

solution in each grid point, a new approximation is computed by changing the value in each

grid point such that the local equation in that grid point is satisfied. In other words, the

local residual in each grid point should vanish. One relaxation - or sweep - is completed

when a new approximation to the solution is computed in all grid points.

Well-known relaxation methods are Jacobi and Gauss-Seidel relaxation, which are very

similar but differ in which points are used to compute the new approximation. Jacobi

relaxation always uses the old values in the surrounding grid points to compute the new

approximation whereas Gauss-Seidel relaxation takes already relaxed points into account.

Therefore, the order in which the grid points are relaxed does not matter for Jacobi relaxation,

but it does make a difference for Gauss-Seidel relaxation. In Gauss-Seidel relaxation the

grid points are often relaxed using lexicographic ordering, i.e. in order of increasing grid

indices, [VL00].

For the sake of illustration, define the splitting of the coefficient matrix A =D−E−F ,

where D is the diagonal part of A, −E its strict lower part and −F its strict upper part, as

depicted in figure 4.1.
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D

-E

-F

Figure 4.1: The splitting of the matrix A intoD, −E and −F

4.2.1 Jacobi

D uk+1 b −E − F uk

= −

Figure 4.2: Illustration of the Jacobi relaxation method.

Provided that the diagonal elements of the coefficient matrix are nonzero, each i-th equation

can be used to solve for the new approximation of the solution ξ
(k+1)
i , which is illustrated

in figure 4.2.In Jacobi relaxation, the old values ξ
(k)
i (the off-diagonal elements) are used to

approximate the new solution ξ
(k+1)
i . This procedure leads to the following equation for

ξ
(k+1)
i

ξ
(k+1)
i =

1

aii

bi − M∑
j=1
j ̸=i

aijξ
(k)
j

 , i = 1, . . . ,M, (4.4)

where M = NeNDOF is the total number unknowns. Combining equations (4.3) and (4.4)
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gives the Jacobi relaxation in vector-form

ξ(k+1) =D−1(E + F )ξ(k) +D−1b, (4.5)

with

BJ =D−1(E + F ). (4.6)

Consequently, Jacobi relaxation converges when ρ (BJ) < 1. It can be proven that this

condition is satisfied when both A and 2D−A are symmetric and positive definite matrices

(SPD), [QSS07]. In an attempt to influence convergence rates, the Jacobi method may be

adjusted by taking a relaxation factor ω into account, where ω < 1 is referred to under-

relaxation or damped Jacobi,

ξ(k+1) = ω(D−1(E + F )ξ(k) +D−1b) + (1− ω)ξ(k). (4.7)

As new approximations are computed solely from the old approximations in the Jacobi

method, two solution vectors need to be stored in memory, one for the old approximations

ξ(k) and one for the new approximations ξ(k+1)
.

4.2.2 Gauss-Seidel

D −E uk+1 b −F uk

= −

Figure 4.3: Illustration of the Gauss-Seidel relaxation method.

Similar to the Jacobi method, the Gauss-Seidel method approximates the new solution ξ(k+1)

using the the previous approximation ξ(k). However, previously relaxed points are now

also taken into account (the below-diagonal elements), as illustrated in figure 4.3. When the

equations are relaxed in lexicographic order, i.e. with increasing i = 1, . . . ,M , the following

equation for ξ
(k+1)
i is obtained

ξ
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijξ
(k+1)
j −

M∑
j=i+1

aijξ
(k)
j

 , i = 1, . . . ,M, (4.8)
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which is referred to as forward Gauss-Seidel relaxation. Similar to the Jacobi method, the

Gauss-Seidel method can be written in vector-form by combining equations (4.3) and (4.8)

yielding

ξ(k+1) = (D −E)−1Fξ(k) + (D −E)−1b, (4.9)

with

BGS = (D −E)−1F , (4.10)

which shows that the method is convergent when ρ (BGS) < 1.

Moreover, A backward Gauss-Seidel relaxation scheme is obtained when the equations

are relaxed with decreasing i, i.e. i =M, . . . , 1, leading to

ξ(k+1) = (D − F )−1Eξ(k) + (D − F )−1b, (4.11)

which is convergent when ρ
(
(D − F )−1E

)
< 1. A symmetric Gauss-Seidel scheme is ob-

tained by performing one forward followed by one backward Gauss-Seidel sweep.

The Gauss-Seidel method can be proven to be convergent When A is SPD, [QSS07].

Gauss-Seidel relaxation generally convergences faster than Jacobi relaxation, [VL00; QSS07;

MMD16]. Moreover, since the most recent values of the approximate new solution are

used, only a single solution vector is needed to perform Gauss-Seidel relaxation. Therefore

less memory needs to be allocated to perform the Gauss-Seidel method compared to the

Jacobi method. Moreover, the discussed so-called point relaxation methods of Jacobi and

Gauss-Seidel can be extended to block relaxation schemes by using the block decomposition

of A =D −E − F for non-singular invertible block diagonal matricesD.

When Jacobi and Gauss-Seidel relaxation are applied to discretizations of the Poisson

equation, it can be derived that the largest eigenvalue of their iteration matrices, ρ(BJ) and

ρ(BGS) increases with the mesh size hwith order 1−O
(
h2
)
, [VL00]. So, for increasing grid

sizes, the spectral radius of the iteration matrices goes to 1 leading to slow convergence.

Due to the local nature of the process, the relaxation schemes are very effective in reduc-

ing high-frequency error components, while smooth error components are hardly effected.

This is the case for many iterative solvers applied to systems of equations resulting from the

discretization of elliptic partial differential equations, [VL00]. Therefore, relaxation meth-

ods are almost never used as standalone iterative solvers. However, their error smoothing

properties can be exploited to design solvers of optimal complexity, where the problem is

solved in an amount of operations comparable to the problem size. The algorithm behind

this is explained in section 4.3.

4.2.3 Distributive Gauss-Seidel

Applying Gauss-Seidel relaxation to the Stokes problem requires special attention. The

smoother should smooth the error for all unknowns in the equations, which is not the case

for the saddle point system of the Stokes equations, [OL06]. A solution to this is to decouple

the original system and perform Gauss-Seidel relaxation on the decoupled system on which

relaxation is known to be effective, which is known as distributive Gauss-Seidel relaxation.
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To this end, consider the discrete Stokes system

L
[
u
p

]
=

[
f
0

]
, L =

[
A G
D 0

]
(4.12)

and the updates

uk+1 = uk+∆u, (4.13)

pk+1 = pk+∆p, (4.14)

to write [
A G
D 0

] [
∆u
∆p

]
=

[
f −Auk−Gpk

−D uk

]
. (4.15)

Now, define the transformation [
∆u
∆p

]
= M

[
∆u∗

∆p∗

]
, (4.16)

where M now denotes the transformation matrix which must be chosen such that the

transformed system

LM
[
∆u∗

∆p∗

]
=

[
f −Auk−Gpk

−D uk

]
(4.17)

can be solved effectively using Gauss-Seidel relaxation.

Classical splitting

A well-known classical solver for the Navier-Stokes equations is the SIMPLE (semi-implicit

method for pressure-linked equations) algorithm, [PS83]. This splitting can also be used

to decouple the Stokes system and is often used as a preconditioner for Krylov subspace

methods, [BGL05]. The classical splitting corresponds to

M =

[
I −A−1G
0 I

]
, (4.18)

leading to

LM =

[
A 0

D −DA−1G

]
, (4.19)

where S = −DA−1G is known as the Schur complement. Often, LM is approximated by

S =

[
Â 0

D Ŝ

]
, (4.20)

where Â and Ŝ are approximations of theA-block matrix and the Schur complement S. In

the original SIMPLE algorithm,A is approximated by its diagonalAD and Ŝ = −DA−1
D G.
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For DG formulations, the block diagonal is approximated. Combining equations (4.17)

and (4.20) gives two decoupled systems on which Gauss-Seidel relaxation can be applied,

Â∆u∗ = f −Auk−Gpk, (4.21)

Ŝ∆p∗ = −D(uk+∆u∗), (4.22)

which can be transformed back to the original system using equations (4.16) and (4.18),

A∆u = A∆u∗−G∆p, (4.23)

∆p = ∆p∗, (4.24)

by applying a few Gauss-Seidel relaxation sweeps on equation (4.23) after which the solution

can be updated with equations (4.13) and (4.14).

Least-squares splitting

The classical splitting requires the existence of good approximations to the A-block and

the Schur complement S, which is the case when A is strongly diagonally dominant,

[BGL05]. A possibly better splitting, that does not require approximations to A and S and

the computation ofA−1
, is based on the least-squares commutator as proposed by [WC13],

M =

[
I G

0 −(DG)−1DAG

]
, (4.25)

leading to

LM =

[
A PAG
D DG

]
(4.26)

where the commutator P = I −G(DG)−1D is minimum in the Frobenius-norm. IfD and

G were square matrices, P would be a zero matrix since G = DT
. An efficient scheme is

obtained by approximating LM by

S =

[
Â 0

B Âp

]
, (4.27)

leading to

Â∆u∗ = f −Auk−Gpk, (4.28)

Âp∆p∗ = −D(uk+∆u∗), (4.29)

where the approximate solutions can be found by performing a few Gauss-Seidel relaxation

sweeps on the systems

A∆u∗ = f −Auk−Gpk, (4.30)

(DG)∆p∗ = −D(uk+∆u∗). (4.31)

The transformation back to the original system is realized using equations (4.16) and (4.25),

∆u = ∆u∗+G∆p∗
(4.32)

(DG)∆p = −DAG∆p∗, (4.33)

by performing a few Gauss-Seidel sweeps on equation (4.33) and using the updates, equa-

tions (4.13) and (4.14).
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4.3 Multigrid methods

In section 4.2 it was mentioned that the error smoothing properties of relaxation methods

can be used to design an algorithm of optimal complexity. Generally, error components

with wavelengths comparable to the grid size are reduced very effectively. When the high

frequency components of the error are reduced sufficiently, i.e. the error is smooth on the

scale of the grid size, a fine grid is not needed to accurately represent it. Hence, with little

loss of accuracy it can be represented on a coarser grid where it can be solved much cheaper.

This two-level concept forms the basis of multigrid methods, which aim to exploit the error

smoothing properties of the relaxation methods by solving the error on a coarser grid and

using it as a correction for the fine grid problem.

4.3.1 Correction scheme

The problem on the fine grid h is given by

Ahξh = bh. (4.34)

After performing ν1 relaxation sweeps on the fine grid problem, the high frequency compo-

nents are removed from the error and an approximation ξ̃h to ξh is obtained. The residual

on the fine grid after ν1 sweeps reads

Rh = bh −Ahξ̃h. (4.35)

Since Ah is linear, equation (4.35) can be combined with the definition of the exact solution

bh = Ahξh to obtain

Rh = Aheh, eh = ξh − ξ̃h. (4.36)

So, an equation for the error in the approximation ξ̃h is obtained which is the same as the

original fine grid problem but with a different right-hand side vector. Equation (4.36) can

be solved by using the residual vector given in equation (4.35). As noted earlier, after a few

relaxation sweeps on the fine grid, the error eh is smooth and can be represented on a coarse

grid. Therefore the coarse grid problem is formulated as

AHeH = RH , RH = IHh Rh, (4.37)

where H denotes the coarse grid. The restriction operator IHh transforms the residual from

the fine grid to the coarse grid. After solving the coarse grid problem of equation (4.37) to

obtain a solution to eH , it can be used to correct the approximation ξ̃h on the fine grid using

ξ̄h = ξ̃h + eh, eh = IhHeH , (4.38)

followed by ν2 relaxation sweeps to remove high-frequency components introduced by the

interpolation of the error. The operator IhH is the prolongation (or interpolation) operator

which transforms the error from the coarse grid to the fine grid. The procedure outlined

above is called a correction scheme (CS). The simplest form of a correction scheme is a two-

level coarse grid correction cycle, which is depicted in figure 4.4. The coarse grid problem is

assumed to be solved exactly. This cycle pattern is carried out until after a number of cycles

the approximate solution is within a certain predefined accuracy.
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ν1 Ahξh = bh Rh = bh −Ahξ̃h

AHeH = RH

ξ̄h = ξ̃h + eh Ahξ̄h = bh ν2

restriction prolongation

Figure 4.4: Overview of a two-level coarse grid correction cycle.

The correction scheme is applicable to linear systems of equations. For non-linear sys-

tems, an extension to a full approximation scheme (FAS) can be made. However, since the

Poisson and Stokes problems are linear systems, this will not be considered in this thesis, as

a FAS will reduce to a CS for linear problems.

The multigrid algorithm as explained here is based on the reduction of unknowns by

geometric coarsening, which is also known as geometric multigrid, or h-multigrid. In a DG

method, the number of unknowns can also be reduced by decreasing the polynomial degree

of the solution, which is known as polynomial multigrid, or p-multigrid. As mentioned

in section 3.3, the penalty parameter σ and stabilization parameter γ that are present in

the Stokes and Poisson discretizations negatively impact the conditioning of those systems.

Therefore, although it is not a reduction in unknowns but an improvement in conditioning,

coarsening based on decreasing penalty parameters can also be beneficial. This will be

referred to as penalty-multigrid.

A combination of penalty- p- and h-multigrid is also possible. The multigrid algorithms

are typically combined by first performing penalty-multigrid until minimum (or critical)

values of σ and γ are obtained. Then, p-multigrid is carried out until the order of the solution

is decreased to p = 1. Thereafter, the p = 1 problem is solved using h-multigrid. More

details about the motivation behind a combined multigrid algorithm and its implementation

are given in section 4.3.4.

Thus far, the transfer of the residual and correction between the fine and coarse grid and

the formulation of the coarse grid problem were treated as a given. These concepts will be

elaborated on in more detail in the upcoming sections.

4.3.2 Coarse grid problem

In order to formulate the coarse grid problems for geometric, polynomial and penalty

multigrid methods, some choices need to be made. Recall that the representation of the

grid is also a local nodal expansion of a given polynomial order pgrid. If the coarsened

grids (obtained by either geometric or polynomial coarsening) were to be used to construct

the coarse grid problems, a lot of information about the geometry would be lost. This is

illustrated in figure 4.5, where a part of a circular 8X8 grid with pgrid = 4 is illustrated

in figure 4.5a, a geometric coarsened 4X4 pgrid = 4 grid in figure 4.5b and a polynomial
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(a) 8X8, pgrid = 4 (b) 4X4, pgrid = 4 (c) 8X8, pgrid = 1

Figure 4.5: Representation (nodal) of a part of a circular geometry for different number of

elements and polynomial orders.

coarsened 8X8 pgrid = 1 grid in figure 4.5c. The loss of accuracy in the representation of the

geometry is clearly visible on the coarsened grids (figures 4.5b and 4.5c). To prevent this,

the geometry of the fine grid can be used to formulate the coarse grid problems.

For penalty parameter coarsening, only the penalty parameters are decreased when

defining coarser grids. Hence, the information about the fine grid geometry is automatically

preserved. For polynomial coarsening, the coarse grids can be formulated by decreasing

the polynomial order of the expansion of the local solution, while keeping the polynomial

order of the representation of the geometry the same. Lastly, for geometrical coarsening, the

geometry of the fine grid can be retained by grouping fine grid elements into coarse elements,

which is also referred to as agglomeration-based geometric multigrid. One advantage of this

approach is that it can easily be extended to unstructured grids. An example of geometric

multigrid based on agglomeration is illustrated in figure 4.6.

4.3.3 Intergrid transfer

The intergrid transfer operators are obtained by finding the optimal representations of the

coarse solution on the fine grid and vice versa. A useful property of the transfer operators

is that they are each others transpose multiplied by a constant, [VL00]. Therefore only the

restriction or the prolongation operator needs to be found, from which the other operator

immediately follows. For a scalar component ξ of ξ, the optimal representations can be found

by minimizing the L2 norm of the difference between the fine and coarse representations of

the solution,

L2
2 =

∫
Ωe

(
ξFe − ξCe

)2
dΩ , (4.39)

with respect to the coarse solution ξCe or fine solution ξFe and where the subscript h has been

omitted for clarity. Since the expansions of the coarse and fine solutions can be worked

using the symbolic expressions, the L2-minimization can be performed using the sympy
library in Python, [Sym23].

It is important to mention that in all derivations of intergrid operators the influence of

the shape of the elements has been neglected. The motivation for this is that the coarse levels
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only serve as a correction for the fine grid problem. So, if the elements are not too distorted,

neglecting the mapping of the curved elements should not influence the correction too much

while it takes away the need to store these operators for every element. The multigrid results

should verify if this assumption is indeed justified.

Penalty parameter coarsening

In case of penalty parameter coarsening, the optimal representations of the solutions can

very easily be determined. Since only the penalty parameters are decreased when coarsening

whereas the grid definition as well as the local expansion stays the same, the restriction and

prolongation operators reduce to the identity matrix.

Polynomial coarsening

Consider the coarsening from a p = 2 (fine) to a p = 1 1D solution, given by the expansions

ξFe = ξ̂F0 ψ0 + ξ̂F1 ψ1 + ξ̂F2 ψ2, (4.40)

ξCe = ξ̂C0 ψ0 + ξ̂C1 ψ1, (4.41)

with

ψ0 =
1√
2
, (4.42)

ψ1 =

√
3

2
r, (4.43)

ψ2 =

√
5

2
√
3
r. (4.44)

The optimal representation of the fine solution on the coarse grid is found by combining

equations (4.39) to (4.44) and minimizing L2
2 with respect to the expansion coefficients of

the coarse solution,

∂L2
2

∂ξ̂C0
=
∂L2

2

∂ξ̂C1
= 0. (4.45)

After implementation in Python using sympy, it turns out that the best coarse grid approx-

imation is obtained by neglecting the contribution of the highest polynomial degree, i.e.

by neglecting the term ξ̂F2 ψ2 in this example. This underlines the huge advantage that the

modal formulation has for p-multigrid. This yields the following restriction operator

ICF =

[
1 0 0
0 1 0

]
. (4.46)

The prolongation operator is found by IFC = (ICF )
T

.

The extension to the polynomial coarsening of 2D tensor-product elements requires

some extra attention. For example, consider the coarsening from a p = 2 (fine) to a p = 1
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(coarse) 2D solution polynomial for which the expansions of the fine and coarse solutions,

respectively, read

ξFe = ξ̂F0 ψ
F
0 + ξ̂F1 ψ

F
1 + ξ̂F2 ψ

F
2 + ξ̂F3 ψ

F
3 + ξ̂F4 ψ

F
4 + ξ̂F5 ψ

F
5 + ξ̂F6 ψ

F
6 + ξ̂F7 ψ

F
7 + ξ̂F8 ψ

F
8 , (4.47)

ξCe = ξ̂C0 ψ
C
0 + ξ̂C1 ψ

C
1 + ξ̂C2 ψ

C
2 + ξ̂C3 ψ

C
3 , (4.48)

with corresponding basis functions

ψF0 = 1
2 , ψC0 = 1

2 , (4.49)

ψF1 =
√
3
2 r, ψC1 =

√
3
2 r, (4.50)

ψF2 =
√
5
4

(
3r2 − 1

)
, ψC2 =

√
3
2 s, (4.51)

ψF3 =
√
3
2 s, ψC3 = 3

2rs, (4.52)

ψF4 = 3
2rs, (4.53)

ψF5 =
√
15
4

(
3r2s− s

)
, (4.54)

ψF6 =
√
5
4

(
3s2 − 1

)
, (4.55)

ψF7 =
√
15
4

(
3rs2 − r

)
, (4.56)

ψF8 = 5
8 (9rs− 3r − 3s+ 1) , (4.57)

Which shows that ψC0 corresponds to ψF0 , ψC1 to ψF1 , ψC2 to ψF3 and ψC3 to ψF4 . Therefore,

neglecting the highest polynomial degree in this case yields the restriction operator

ICF =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 . (4.58)

Again, the prolongation operator is found by IFC = (ICF )
T

.

Geometric coarsening

Consider the grouping of the fine grid elements 0, 1, 2 and 3 together to form the coarse

element as depicted in figure 4.6. Geometric multigrid is typically performed after the

polynomial degree has been coarsened to p = 1. For p = 1, the coarse and fine local

solutions are obtained via the expansion,

ξFe,j = ξ̂F0,jψ0,j + ξ̂F1,jψ1,j + ξ̂F2,jψ2,j + ξ̂F3,jψ3,j , j = 0, 1, 2, 3, (4.59)

ξCe = ξ̂C0 ψ0 + ξ̂C1 ψ1 + ξ̂C2 ψ2 + ξ̂C3 ψ3, (4.60)

with the basis functions

ψ0 =
1
2 , (4.61)

ψ1 =
√
3
2 r, (4.62)

ψ2 =
√
3
2 s, (4.63)

ψ3 =
3
2rs. (4.64)
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Figure 4.6: Geometric coarsening based on agglomeration of fine grid elements (dashed

lines) into coarse grid elements (solid lines).
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Figure 4.7: An illustration of the mapping of the coarse grid coordinates rC and sC to the

fine grid coordinates rFj and sFj .

The basis functions ψi,j are defined in the fine grid coordinates by mapping the coarse grid

rC and sC to the fine grid rFj and sFj , see figure 4.7, using

rF0 = 2rC + 1, sF0 = 2sC + 1, (4.65)

rF1 = 2rC − 1, sF1 = 2sC + 1, (4.66)

rF2 = 2rC + 1, sF2 = 2sC − 1, (4.67)

rF3 = 2rC − 1, sF3 = 2sC − 1. (4.68)

Combining equations (4.39), (4.59), (4.60) and (4.65) to (4.68) and minimizingL2
2 with respect

to the expansion coefficients of the coarse solution using sympy, i.e.

∂L2
2

∂ξ̂C0
=
∂L2

2

∂ξ̂C1
=
∂L2

2

∂ξ̂C2
=
∂L2

2

∂ξ̂C3
= 0, (4.69)
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leads to the restriction operator

ICF =


1
4 0 0 0 1

4 0 0 0 1
4 0 0 0 1

4 0 0 0

−
√
3
8

1
8 0 0

√
3
8

1
8 0 0 −

√
3
8

1
8 0 0

√
3
8

1
8 0 0

−
√
3
8 0 1

8 0 −
√
3
8 0 1

8 0
√
3
8 0 1

8 0
√
3
8 0 1

8 0

3
16 −

√
3

16 −
√
3

16
1
16 − 3

16 −
√
3

16

√
3

16
1
16 − 3

16

√
3

16 −
√
3

16
1
16

3
16

√
3

16

√
3

16
1
16

 , (4.70)

which can be applied to the (fine) residual vector of each element ordered as

RF
e =

[
RF

0,0,RF
1,0,RF

2,0,RF
3,0,RF

0,1,RF
1,1,RF

2,1,RF
3,1,RF

0,2,RF
1,2,RF

2,2,RF
3,2,RF

0,3,RF
1,3,RF

2,3,RF
3,3

]T
,

(4.71)

where the first index in the subscript denotes the corresponding DOF and the second the

corresponding fine grid element as illustrated in figure 4.6.

As a result of the agglomeration of four fine elements into one coarse element, the

restriction operator in equation (4.70) can only be applied to the residual if the residual is

multiplied by the inverse of the mass matrix of the fine elements, defined in terms of the

coarse grid coordinates rC and sC . This can be seen by writing equation (4.34) as a transient

problem with the mass matrix of the fine elementsMh,

Mh
dξh
dt

+Ahξh = bh =⇒ dξ

dt
= (Mh)

−1Rh, (4.72)

where Rh = bh − Ahξh. Using equation (2.21), the mass matrix of the fine elements can

be calculated to be
1
4I , where I is the identity matrix (note that the effect of mapping has

been neglected). This means that if the residual is not multiplied by the inverse of the

mass matrix, equation (4.70) must be multiplied by a factor 4. Moreover, the prolongation

operator of the error can hence be found by IFC = 4(ICF )
T

.

4.3.4 Final multigrid algorithm

The two-level coarse grid correction cycle explained in section 4.3.1 may still be quite inef-

ficient. This is because the coarse grid problem is solved exactly which can be very costly

when the coarse grid contains many unknowns (even though it is reduced with respect to

the fine grid). It is important to note that after a few relaxation sweeps on the coarse grid,

the error components with wavelengths comparable to that grid are smooth which means

that it can be solved using the coarse grid correction cycle itself. A multi-level coarse grid

correction cycle can be designed by applying the coarse grid correction cycle recursively

until the coarse grid problem can be solved inexpensively using relaxation. Taking into ac-

count penalty- p- and h-multigrid, the scheme depicted in figure 4.8 is obtained. Relaxation

on each level is indicated by a νi, restriction by a downwards arrow and prolongation by an

upwards arrow. As an example, the fine grid has a mesh size of Ωh, solution polynomial

degree of p = 3 and penalty parameter of σ = 64. Note that the penalty parameter σ is

coarsened here, the same procedure applies for the stabilization parameter γ or a combi-

nation of both. This example can be extended to arbitrary problems by taking a variety of

coarse levels into account. Because of its recursive pattern, the scheme presented here is

known as a V -cycle. For specific problems, other patterns such as a W-cycle can be used.
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Ωh, p = 3, σ = 64

Ωh, p = 3, σ = 32

Ωh, p = 3, σ = 16

Ωh, p = 2, σ = 9

Ωh, p = 1, σ = 4

Ω2h, p = 1, σ = 4

Ω4h, p = 1, σ = 4

ν1

ν1

ν1

ν1

ν1

ν1

ν0

ν2

ν2

ν2

ν2

ν2

ν2

penalty-multigrid

p-multigrid

h-multigrid

Figure 4.8: An example of a coarse grid correction cycle for penalty- p- and h-multigrid.

However, since the the V-cycle is known to work well with the Poisson problem, [VL00], the

focus of this work is on the V-cycle.

The question remains how accurate the problem must be solved on the coarse grid to

provide a good enough prediction of the correction of the error. It is unnecessary to solve

the coarse grid problem exactly. Since the solution of the coarse grid problem is used as a

correction, it is sufficient to solve it with at least the same accuracy as the problems on the

other levels. On a sufficiently coarse grid, ν0 = O(10) is generally good enough, [VL00].
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Chapter 5

Methodology

This chapter describes how the concepts that were discussed in chapters 2 to 4 are combined

to research the building blocks of a multigrid algorithm that can be applied to a DG formu-

lation of the Stokes problem. The chapter starts in section 5.1 with a description of the mesh

types that will be used in this study. Thereafter, the specifics of the DG discretization are

discussed in section 5.2, followed by a description of a method to verify the implementation

of the DG discretizations of the Poisson and Stokes problems in section 5.3. The design of

the multigrid algorithm for the Poisson problem and a smoother for the Stokes problem are

addressed in sections 5.4 and 5.5, respectively.

5.1 Mesh types

Since the focus of this thesis is on solving the discretized systems of equations, it should not

matter whether the results are obtained on structured or unstructured grids, as long as the

algorithms that are used are applicable to both grids. This is the case for penalty-multigrid

as well as p- and agglomeration based h-multigrid. Although the discretization scheme

becomes more complex, the results obtained on structured grids should be extendable to

unstructured grids. Therefore, for simplicity, only structured grids are considered.

Two different types of structured meshes are considered, namely Cartesian and curvi-

linear which is illustrated in figure 5.1. The difference between the two is that the mapping

from the Cartesian elements to the standard element is constant while this is not the case for

the curvilinear elements. By defining these two grid types, the influence of the mapping on

the results can be identified. A square grid with dimensions [−1, 1]2 is used for the Cartesian

grid and a so-called circular O-grid with an inner radius of 0.1 and an outer radius of 1 is

used for the curvilinear grid. The grids are generated based on the number of elements and

the degree of the Lagrange polynomials. Note that by definition, the representation of the

geometry is in nodal formulation, see equations (2.74) and (2.75). For the reasons explained

in section 2.2.5, LGL nodes are used for the interpolation points.
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(a) Cartesian (b) Curvilinear

Figure 5.1: Illustrations of the structured grid geometries, 8X8, p = 3.

5.2 DG formulations

While the geometry is described using a nodal formulation, the DG solution is approxi-

mated by a modal expansion for the use of p-adaption. To minimize the influence of the

geometry representation, the polynomial order of the solution will be kept equal to that of

the geometry. For example, a p = 5 grid will be used for a p = 5 DG solution approxima-

tion. The Poisson and Stokes problems will be discretized using the discretization given in

section 3.3, where for the discretization of the Poisson problem only the scalar equations for

diffusion and source terms are taken into account. The integrals will be evaluated using a

Gauss-Legendre quadrature that is able to integrate polynomials up to order 3p exactly.

This should lead to exact integration of all the integrals on the Cartesian grids. As a result

of the non-constant Jacobian of the mapping on curvilinear grids, it might not be possible to

evaluate these integrals exactly. However, an integration rule of order 3p accuracy should be

able to evaluate the integrals with sufficient accuracy. If it turns out that this is insufficient,

the accuracy of the quadrature rule can further be increased.

5.2.1 Parameter choice

In the discretization scheme given in section 3.3, there are some parameter choices to be

made. First of all, the stability of the discretization of the diffusion term in equation (3.29)

depends on the penalty parameter σ. As discussed in section 3.3.3, the critical value for

stability derived by [Hil13] for quadrilateral elements is (p + 1)2. While this critical value

is derived for elements with a constant mapping, the penalty parameter will initially be set

to this value, regardless of the shape of the physical elements. If it turns out that this is

insufficient for the construction of a stable discretization of the diffusion term, it can always

be increased. However, before increasing σ and weakening the conditioning of the system,

there is something else that could be worth investigating.
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In the construction of the DG method, the basis functions were defined to be orthonor-

mal on the standard element, so in the parametric space spanned by r and s. However, this

does not guarantee that the basis functions are orthonormal - or at least orthogonal - on

physically curved elements because the Jacobian of the mapping is not constant. In fact,

according to [Bot12], the mapping from curved elements to the standard element can spoil

the convergence properties of the discrete approximation space of the standard element

(which is spanned by the basis functions on the standard element). To investigate if the

stabilization of the discretization of the diffusion term on curved elements can be fixed by

orthonormalizing the basis functions in the physical space, a Gram-Schmidt orthogonaliza-

tion procedure can be done on all curved elements. If this is the case, there is no need to

increase σ and consequently the worsen the conditioning of the system. More information

regarding the Gram-Schmidt procedure can be found in appendix B.1.

Another parameter that needs to be chosen in the discretization of the diffusion term is

the length scale hf . Since it is not always easy to calculate this value, especially for curved

elements, it will be approximated by the square root of the area of the element, hf =
√
A.

The area can easily be computed using the Gauss-Legendre quadrature.

Lastly, the stabilization parameter γ that influences the stabilization of the divergence-

free constraint must be chosen. Ideally it is chosen as large as possible to create an exactly

divergence-free solution. However, since this weakens the conditioning of the system and

because the an optimal value depends on a lot of factors. The value of γ = 1 proposed by

[Jen+14] is used.

5.2.2 Error measurements

A measure for the error in the solution u is obtained with the L2-norm

L2(u) =

√√√√( 1

NDOF

NDOF−1∑
n=0

|un−uexn |

)
, (5.1)

where un and uexn are the numerical and the exact solution in the n-th DOF, respectively.

Similarly, the L2-norms of the error in v and p are obtained using L2(v) and L2(p), respec-

tively.

5.3 Verification

Before diving deeper into the development of a multigrid algorithm that can be applied to

the DG formulation of the Stokes problem, it is important that the implementation of the

discretization schemes, but also the schemes themselves work as expected. This can be done

using the method of manufactured solutions (MMS), which is a very straightforward and

robust way of verifying codes that approximate solutions of partial differential equations,

[BS19]. The method works by prescribing a solution and setting a source term accordingly,

followed by a grid refinement study. Since the convergence rate of the discretization schemes

are known, order hp+1
for the Stokes velocity and Poisson solution and hp for the Stokes

pressure solution, the code implementation as well as the discretization itself can be tested.

As an example, suppose that the implementation of the one-dimensional Laplace equation
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is to be tested with the exact solution u = sin(πx), the source term

fMMS =
d2

dx2
(sin(πx)) = −π2 sin(πx) (5.2)

must be included in the code. The manufactured solutions (the solutions that are prescribed)

do not necessarily have to have any physical meaning, the MMS is a purely mathematical

procedure. What is important though, is that the solution must include all ordered deriva-

tives in the error expansion, e.g. cross-derivative terms. To avoid bugs in the Python code,

sympy is used to generate symbolic expressions of the source terms for different manufac-

tured solutions, which then can be included in the code by converting the sympy objects to

numpy objects.

In case of the Stokes problem, since the stabilization of the divergence-free constraint is

added to the discretization (see section 3.3.4), it is convenient to prescribe a solution that

is also divergence-free (∇ · u = 0). While it is possible to perform the MMS procedure

for arbitrary (non divergence-free) exact solutions, this leads to more complex formulations

of the divergence-free constraint stabilization. Taking this into account, the manufactured

solutions proposed by [BB15] will be used to verify the Stokes implementation,

u = −2 sin(πx)2 sin(πy) cos(πy), (5.3)

v = 2 sin(πx) cos(πx) sin(πy)2, (5.4)

p = sin(πx) sin(πy)− p̄, (5.5)

where p̄ is the mean pressure given in equation (3.12). The manufactured solutions are

infinitely differentiable and divergence-free. For the Poisson problem, only equation (5.3)

will be used.

In order to verify that the code implementation and discretizations are correct, a direct

solver will be used. As mentioned in chapter 4, direct solvers are only applicable to smaller

problems, because they require an impractical amount of computing resources to solve

larger systems. Therefore, the grid convergence study will be carried out using Cartesian

and curvilinear grids with 4X4 to 64X64 (Poisson) and 32X32 (Stokes) elements and solution

polynomial degrees ranging from p = 1 (Poisson) and p = 2 (Stokes, pressure is p = 1) to

p = 5.

Care needs to be taken when solving the Stokes system with a direct solver because

physically, the pressure is determined up to a constant leading to a singular system. The

problem can be made regular by fixing the first pressure DOF of one element to 0, which

can be done by putting a 1 in the zero-block of the coefficient matrix at the location that

corresponds to that pressure DOF. This is done for the first DOF of the first element. This

means that the numerical pressure solution must be shifted afterwards by subtracting 2
times (because the expansion coefficient of the first DOF is

1
2 ) the numerical mean pressure

from all elements. Moreover, for solutions that cannot be integrated exactly, the right-

hand side vector of the continuity equation must be corrected to ensure that the system is

consistent, i.e. it does not matter for the final solution in which element the first pressure
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DOF has been fixed to 0. This can be done by integrating the continuity equation as follows∫∫
Ωe

h

∇ · udΩ =

∫∫
Ωe

h

MMScontinuity dΩ (5.6)

=⇒
∮
∂Ωe

h

u ·ndΩ =

∫∫
Ωe

h

MMScontinuity dΩ (5.7)

where Gauss’ divergence theorem has been used. When these terms are not integrated

exactly, they are not equal such that

EΩ =

∫∫
Ωe

h

MMScontinuity dΩ−
∮
∂Ωe

h

u ·ndΩ , (5.8)

where E is the correction and Ω the area of the element. Of course, MMScontinuity was set to

0 which means that

E = −

∮
∂Ωe

h
u ·ndΩ

Ω
, (5.9)

which must be added as the continuity source. Although the stabilization of the divergence-

free constraint requires that the continuity source is 0, the correction E is assumed to be

small. The effect, if any, will become even smaller with grid refinement.

5.4 Multigrid algorithm for the Stokes problem

One of the building blocks of this thesis is to develop a multigrid algorithm to solve the

systems of equations arising from the DG discretization of the Poisson problem. Since

multigrid is not a plug-and-play solution method, some choices need to be made.

Firstly, since the penalty parameter σ has been set to the minimum (critical) value,

penalty-multigrid has been left out of the scope of this research. However, if the penalty

parameter is taken larger than the critical value, the solution algorithm must certainly be

expanded with penalty multigrid to reduce the dependency on the conditioning of the

systems.

Moreover, developing a multigrid algorithm based on polynomial coarsening only will

not be sufficient since the coarse grid problem (the original grid with p = 1) will still be

of significant size, such that the low frequency components of the error cannot be solved

efficiently. Therefore, after to p = 1, geometric multigrid is added to solve the coarse

grid problem arising from the p-coarsening. The geometric multigrid is carried out by the

agglomeration of elements described in section 4.3.3 until a grid of 4X4 elements is obtained.

A V-cycle pattern will be used.

Because the discrete system resulting from a DG discretization is in block-form, also a

block-type smoother will be used. Because the convergence properties of the Gauss-Seidel

method are generally superior to the Jacobi method, as discussed in section 4.2, the block

Gauss-Seidel method will be used as the smoother for both polynomial and geometric multi-

grid. The number of pre-relaxation and post-relaxation sweeps is set to respectively ν1 = 2
and ν2 = 1. The coarse grid problem is solved by applying ν0 = 10 sweeps of the same

smoother. Both the coefficient matrix as well as the right-hand side vector will be multiplied

with the inverse of the mass matrix, such that the intergrid transfer operators derived in
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section 4.3.3 do not need to be manipulated.

When assessing a multigrid algorithm, it is important to be able to monitor the reduction

in the residual. Since it is difficult to judge when the problem is solved up to the level of

the discretization error of the DG scheme, the algorithm will be monitored based on the

number of V-cycles that are needed to reduce theL2-norm of the residual by at least 6 orders

of magnitude. The L2-norm of the residual is defined using equation (5.1) as

L2(R) =

√√√√( 1

NDOF

NDOF−1∑
n=0

|Rn|

)
, (5.10)

where the n-th DOF of the residual is defined as Rn = (b−Aξ)n. All residuals have been

normalized by the value of the initial residual.

5.4.1 Smoother performance

As a way of monitoring the smoothing properties of a given relaxation method on a certain

discrete system, an amplification factor can be computed from the response of the smoother

on a Fourier component. Recall that at any point in the approximation, the error can be

decomposed in its Fourier components,

ẽh =
∑
θx,θy

Ã(θx, θy)e
i(θxk+θyl), −π ≤ θx, θy ≤ π, (5.11)

where A is the amplitude of the component with angular frequencies θx and θy in x- and

y-direction, respectively. Moreover, i denotes the imaginary unit with the well-known

property i2 = −1 and the indices k and l are related to the LGL nodes of the grid in x- and

y-direction, respectively. The numbering of k and l takes the discontinuous nature of the

elements into account, see figure 5.2, as the nodes at the interfaces are not shared in a DG

method.

k

l
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l

Figure 5.2: Numbering of the k and l indices related to the LGL nodes of the grid, illustrated

on a 2X2 p = 2 grid.

When the right-hand side of the linear system is set to zero, the current approximation
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Figure 5.3: Illustration of the four elements that make up the midpoint in a DG method.

equals the error ẽh. The new approximation then reads

ēh =
∑
θx,θy

Ā(θx, θy)e
i(θxk+θyl), −π ≤ θx, θy ≤ π, (5.12)

such that the amplitude amplification factor µ can be written as

µ(θx, θy) =

∣∣∣∣∣Ā(θx, θy)Ã(θx, θy)

∣∣∣∣∣, −π ≤ θx, θy ≤ π. (5.13)

Thus, when setting the initial solution to a Fourier component with a grid related frequency,

the performance of the relaxation method can be monitored when performing a single

relaxation sweep. It is convenient to set the initial solution to a Fourier component with

an amplitude of 1, such that µ =
∣∣Ā(θx, θy)∣∣. By ranging the frequencies between −π and

π, the amplification factor as a function of the frequency components of the error can be

visualized. To reduce the interference of boundaries, it is useful to do this for a point that is

in the middle of the domain of a sufficiently fine grid.

Since the initial solution is set to a frequency that is related to the (nodal) grid, this

must first be transformed to a modal formulation before it can be used to monitor the

smoothing performance of a DG discretization. Thereafter, it must be transformed back to

the nodal formulation before the amplification factor of equation (5.13) can be calculated.

Both transformations can be done using a Vandermonde interpolation matrix. Moreover,

since the grid points are not shared in a DG method, the response needs to be monitored in

the four elements that make up the midpoint as illustrated in figure 5.3.

5.5 Smoother for the Stokes problem

The Distributive Gauss-Seidel smoother based on both the classical and least-squares split-

tings described in section 4.2.3 will be applied to the Stokes problem. The inner sweeps are

done by a single symmetric block Gauss-Seidel sweep on the systems in equations (4.21)

to (4.23) (classical splitting) and equations (4.30), (4.31) and (4.33) (least-squares splitting). To

determine if the relaxation schemes converge, the L2-norm of the residual, equation (5.10),

will be monitored.
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Chapter 6

Results and Discussion

The results are presented and discussed in this chapter. First, the verification of the dis-

cretizations of both the Poisson as well as the Stokes problem is addressed in section 6.1.

Thereafter, the results of the multigrid algorithm for the Poisson problem as well as the

results of the distributive Gauss-Seidel relaxation for the Stokes problem are discussed in

sections 6.2 and 6.3, respectively.

6.1 Verification

6.1.1 Poisson

First of all, it is important that the discrete system of equations resembles the continuous

problem and is stable. As explained in sections 3.3.5 and 5.2.1, this means that the coefficient

matrix of the discretized Poisson equation must be symmetric positive definite (SPD) and

the penalty parameter σ must be sufficiently high. Moreover, it was shown in section 4.2

that the convergence of the relaxation methods depend on the SPD property as well. This

property can be verified by looking at the eigenvalues of the coefficient matrix A and the

spectral radius (i.e. the largest absolute eigenvalue) of the Gauss-Seidel iteration matrix.

In table 6.1, the minimum and maximum eigenvalues of the coefficient matrix and the

spectral radius of the Gauss-Seidel iteration matrix have been computed for different grid

sizes and solution polynomial orders for both a Cartesian as well as a curvilinear grid. These

results show that on a Cartesian grid, the eigenvalues of A are positive and the spectral

radius ofBGS is smaller than 1, meaning that the coefficient matrix is positive definite and

Gauss-Seidel relaxation converges. However, there are curvilinear grids (see figure 5.1b) for

which the eigenvalues of A have a different sign and consequently ρ (BGS) > 1 (indicated

with red), meaning that the discretization is unstable and Gauss-Seidel relaxation will not

converge. Additional checks show that all discrete systems are symmetric (A = AT
) and

not diagonally dominant (|Aii| ≱
∑

j ̸=i |Aij |). This means the coefficient matrices on the

Cartesian grids are not only positive definite, but in fact symmetric positive definite.

As was discussed in section 5.2.1, the critical value of the penalty parameter derived by

[Hil13], σ = (p + 1)2, does not apply for curved elements. It is however very similar when

the elements are not too much distorted, which can be observed on the 32X32 p = 3 grid.

Before increasing σ and consequently weakening the conditioning of the coefficient matrix,
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Table 6.1: Eigenvalues of the Poisson coefficient matrix and the spectral radius of the Gauss-

Seidel iteration matrix on the Cartesian and curvilinear grids (as illustrated in figure 5.1).

Grid size Order

Cartesian grid Curvilinear grid

min (λA) max (λA) ρ (BGS) min (λA) max (λA) ρ (BGS)

4X4 1 3.23 · 10−1 1.69 · 101 8.590 · 10−1 5.53 · 10−1 1.95 · 101 7.937 · 10−1

8X8 1 7.81 · 10−2 1.77 · 101 9.623 · 10−1 1.14 · 10−1 1.80 · 101 9.515 · 10−1

16X16 1 1.93 · 10−2 1.79 · 101 9.904 · 10−1 2.70 · 10−2 1.79 · 101 9.882 · 10−1

32X32 1 4.82 · 10−3 1.80 · 101 9.976 · 10−1 6.63 · 10−3 1.78 · 101 9.971 · 10−1

4X4 3 3.08 · 10−1 2.03 · 102 9.638 · 10−1 −1.27 · 101 2.01 · 102 2.088 · 100
8X8 3 7.71 · 10−2 2.08 · 102 9.905 · 10−1 −3.86 · 100 2.00 · 102 2.251 · 100
16X16 3 1.93 · 10−2 2.10 · 102 9.976 · 10−1 −7.22 · 10−1 1.98 · 102 1.243 · 100
32X32 3 4.82 · 10−3 2.10 · 102 9.994 · 10−1 6.60 · 10−3 1.98 · 102 9.993 · 10−1

4X4 5 3.08 · 10−1 9.60 · 102 9.838 · 10−1 −1.51 · 102 9.17 · 102 2.109 · 103
8X8 5 7.71 · 10−2 9.77 · 102 9.958 · 10−1 −1.02 · 102 9.11 · 102 8.021 · 100
16X16 5 1.93 · 10−2 9.81 · 102 9.989 · 10−1 −8.18 · 101 9.12 · 102 3.133 · 100
32X32 5 4.82 · 10−3 9.82 · 102 9.997 · 10−1 −7.22 · 101 9.15 · 102 2.296 · 100

Table 6.2: Eigenvalues of the Poisson coefficient matrix and the spectral radius of the Gauss-

Seidel iteration matrix on curvilinear grids (as illustrated in figure 5.1b).

Grid size Order

Orthonormalized basis σ = 2 · (p+ 1)2

min (λA) max (λA) ρ (BGS) min (λA) max (λA) ρ (BGS)

4X4 5 −6.76 · 104 2.45 · 105 2.109 · 103 4.46 · 10−1 2.27 · 103 9.888 · 10−1

8X8 5 −1.80 · 105 1.15 · 106 8.021 · 100 1.07 · 10−1 2.52 · 103 9.973 · 10−1

16X16 5 −5.77 · 105 5.33 · 106 3.133 · 100 2.65 · 10−2 2.57 · 103 9.993 · 10−1

32X32 5 −2.04 · 106 2.33 · 107 2.296 · 100 6.60 · 10−3 2.59 · 103 9.998 · 10−1

it is attempted to stabilize the discretization by orthonormalizing the basis functions in the

physical space using a Gram-Schmidt procedure, see appendix B.1 for more details.

The resulting eigenvalues for the most problematic curvilinear grids (5-th order solution

polynomial) are shown in table 6.2. Clearly, orthonormalizing the basis functions in the

physical space does not fix the issue. The eigenvalues of A still have a different sign and

ρ (BGS) is still larger than 1. In fact, the spectral radii of the Gauss-Seidel iteration matrix

remain unchanged compared to the non-orthonormalized curvilinear grids in table 6.1.

Increasing σ by a factor 2 (σ = 2 · (p + 1)2) gives the desired results. Apparently, the dis-

cretization is only stable when σ is sufficiently high and is not impacted by the properties

of the basis functions in the physical space. Finding the critical σ for stability on curved

elements is not of interest at this moment since the derivation is complex and depends

on the precise mapping. Therefore the penalty parameter on all curvilinear grids will be

increased by a factor 2, which is sufficient for all cases considered in this work. However, if

it turns out that that a factor 2 leads to unstable results for specific cases, the value for σ can

be further increased until stability is found.
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Looking at the Cartesian grids and the curvilinear grids with increased σ, ρ (BGS) in-

creases with increasing grid sizes. In section 4.2 it was mentioned that this increases with

1−O
(
h2
)

for discretizations of the Poisson problem. Displaying 1−ρ (BGS) against the grid

size on a log-log scale, see figure 6.1, shows that this is also the case for the DG discretization

of the Poisson problem. Since ρ (BGS) is very close to unity on fine grids, the error is only

reduced by a very small amount per iteration, leading to slow convergence. This motivates

why relaxation methods are not suitable as standalone solvers. However, their smoothing

properties can still be exploited for the design of a multigrid algorithm.

Figure 6.1: One minus the spectral radius of the Gauss-Seidel iteration matrix. The triangle

indicates quadratic behavior.

The next thing to consider is whether the solution of the discretized system of equations

converges to the exact solution and if so, with which order. The DG solutions on the

Cartesian and curvilinear coarse and fine grids are given in figures 6.2 and 6.3. The solutions

on the coarse grids elegantly illustrate the discontinuous nature of the DG method, the

solution is free to jump between elements. On the fine grids the solution visually resembles

the features of the prescribed exact solution very well. An overview of the exact solutions

to the model problems can be found in appendix A. Figure 6.4 shows the decrease in the L2-

norm of the solution with grid refinement. From this it can be confirmed that the solutions

on the fine grids in figures 6.2b and 6.3b are already very close to the exact solutions. Even

though it takes some more grid refinement on the curvilinear grids before the asymptotic

convergence rate is obtained, the theoretical asymptotic convergence rate of hp+1
is often

more than achieved on both grids. The convergence rate on the coarsest curvilinear grids is

probably not yet in asymptotic range because the influence of the mapping is quite significant

for coarse curved elements.

Figure 6.4 also shows how accurate the higher-order solutions actually are. For example,

the L2-norm of the error of the p = 1 solution on the 16X16 Cartesian grid is approximately

1.6 ·10−2
, while it is already 6.5 ·10−8

for the p = 5 solution on the same grid. Also, following

the p = 1 convergence rate of h2, if the grid of the p = 1 problem were to be refined until

the error in the p = 1 solution is comparable to that of the 16X16 p = 5 solution, a grid size

of at least 4096X4096 elements would be needed. This corresponds to 4096× 4096× 4 ≈ 67
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million DOFs, opposed to 16 × 16 × 36 = 9216 DOFs for the 16X16 p = 5 solution. While

this is not an entirely fair comparison because the convergence rates are not perfectly in

asymptotic range on the 16X16 grids, it still emphasizes the huge advantage of higher-order

solutions in both accuracy and problem size.

So, since the discrete systems resemble the continuous problem and the solution con-

verges with the correct rate to the exact solution on both Cartesian and curvilinear grids,

the results of the Poisson problem are verified.

(a) 8X8, p = 1 (b) 32X32, p = 5

Figure 6.2: DG solutions of the Poisson problem on the Cartesian coarse (left) and fine

(right) grids. For clarity, the grid lines on the fine grid (right) are not shown.

(a) 8X8, p = 1 (b) 32X32, p = 5

Figure 6.3: DG solutions of the Poisson problem on the curvilinear coarse (left) and fine

(right) grids. For clarity, the grid lines on the fine grid (right) are not shown.

68



Figure 6.4: The L2-norm of the error in u as a function of the grid size for the Poisson

problem on the Cartesian grid (left) and the curvilinear grid (right). The triangles indicate

the expected convergence rate hp+1
.

6.1.2 Stokes

Looking at the convergence rates for the Stokes solutions in figure 6.5, it shows that the

solutions on the Cartesian grid show the expected behavior of hp+1
for the velocity and

hp for the pressure. However, on the curvilinear grid this is not the case, especially for

the pressure solutions. Moreover, looking at the pressure solutions and the absolute errors

|pn−pexn |, figure 6.6, shows pressure spikes at the boundaries. Even though this effect is

reduced with grid refinement from a 8X8 p = 5 grid to 16X16 p = 5, it is still present. This

is an unexpected result, even more so because a 16X16 p = 5 grid is already quite fine.

These pressure spikes could be the result of two things, an error in the implementation

or a fundamental problem in the discretization. Clearly, something in the mapping has an

effect on either of these causes because the solutions are correct on the Cartesian grid. The

mapping from circular elements to the standard element is not exact. However, for grids

where the mapping was exact and non-constant, as is the case for a square O-grid, the same

results are observed, see figure 6.7. More details about the geometry of a square O-grid and

the exact Stokes solution on this grid are given in section A.2.1.

Also, with increasing stabilization parameter γ, the results changed marginally and the

pressure spikes were still present. Therefore, further research should identify if this effect

is due to a implementation error or due to a fundamental issue in the DG formulation of the

Stokes problem.
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Figure 6.5: The L2-norm of the error in u, v and p as a function of the grid size for the Stokes

problem on the Cartesian grid (left) and the curvilinear grid (right). The triangles indicate

the expected convergence rate hp+1
for the velocities and hp for the pressure.
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(a) 8X8, p = 5 (b) 8X8, p = 5

(c) 16X16, p = 5 (d) 16X16, p = 5

Figure 6.6: DG solutions of the pressure (left) and the absolute error in the pressure (right)

of the Stokes problem on the curvilinear grid.
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(a) 4X4, p = 5 (b) 4X4, p = 5

(c) 8X8, p = 5 (d) 8X8, p = 5

Figure 6.7: DG solutions of the pressure (left) and the absolute error in the pressure (right)

of the Stokes problem on a quarter of a square O-grid.
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6.2 Multigrid algorithm for the Poisson problem

6.2.1 Smoother performance

The amplitude amplification factors µ as a function of the frequencies θx and θy for a

DG discretization are given in figure 6.8 for the elements 0, 1, 2 and 3 which share the

midpoint of the grid, see figure 5.3. It immediately stands out that the response to the

Fourier component is different in all 4 elements. This is because the Fourier component is

a function that cannot be represented exactly. Hence, the solution after relaxation may be

discontinuous over element boundaries, which is exactly what is observed here. This effect

is smaller if the polynomial degree of the solution is increased, because this gives a more

accurate solution. However, this does not mean that the smoothing behavior is the same at

that polynomial order, which can be observed from figure 6.9 where µ is plotted for a p = 6
DG discretization.

The smoothing of the high frequency components (on which the principle of multigrid

algorithms is based) is not optimal for a DG discretization compared to a FV discretization,

which is plotted in figure 6.10. For a p = 1 DG discretization the minimum value of µ in the

high frequency domain for the elements 0, 1, 2 and 3 is still around respectively 0.47, 0.38, 0.38
and 0.23, whereas the minimum goes to zero for a FV discretization. Moreover, convergence

- and hence the smoothing performance - will be dictated by the worst component, which in

this case is element 0. Also, for increasing polynomial orders the DG smoothing properties

are even worse.

This means that the error reduction per relaxation sweep is much less for a DG dis-

cretization compared to a FV discretization and as a consequence, more sweeps will be

needed to smooth the high frequency components of the error. This also motivates the use

of p-multigrid before moving to geometric multigrid, because the smoothing performance

is much better for a p = 1 solution than for example the p = 5 solution shown in figure 6.9.

However, because even for a p = 1 DG discretization the smoothing performance is not

optimal, symmetric block Gauss-Seidel will be used as the smoother for the multigrid al-

gorithm. By doing a forward sweep followed by a backward sweep, essentially double the

amount of relaxation is done. The number of pre- and post-relaxation sweeps will still be

kept as ν1 = 2 and ν2 = 1.
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(a) Element 0 (b) Element 1

(c) Element 2 (d) Element 3

Figure 6.8: The amplitude amplification factor µ as a function of the grid frequencies θx and

θy using a p = 1 DG discretization on a 64X64 grid.
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(a) Element 0 (b) Element 1

(c) Element 2 (d) Element 3

Figure 6.9: The amplitude amplification factor µ as a function of the grid frequencies θx and

θy using a p = 6 DG discretization on a 64X64 grid.

Figure 6.10: The amplitude amplification factor µ as a function of the grid frequencies θx
and θy using a cell-centered FV discretization on a 64X64 grid.
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6.2.2 Multigrid algorithm performance

In theory, a multigrid algorithm should be of optimal complexity, i.e. the total workload

should scale with the number of unknowns, leading to a complexity of O (NDOF ). This

implies that the number of multigrid cycles needed to solve the problem should remain

constant with grid refinement. In table 6.3 the number of V-cycles that the hp-multigrid

algorithm needs to reduce the L2-norm of the residual by at least 6 orders of magnitudes

is shown for both the Cartesian and curvilinear problems. The polynomial multigrid part

is carried out in two ways, by decreasing the polynomial order of the solution with one

order at a time, referred to as the p− 1 strategy and by halving the polynomial order in each

coarsening step, referred to as the p/2 strategy1.

Table 6.3: Number of V-cycles of the hp-multigrid algorithm needed to reduce the L2-norm

of the residual by at least 6 orders of magnitude.

Grid size p
Cartesian grid Curvilinear grid

p− 1 p/2 p− 1 p/2

16X16 4 9 9 23 25
32X32 4 10 10 26 28
64X64 4 11 11 26 27
128X128 4 11 11 24 25

16X16 6 9 12 21 30
32X32 6 10 12 24 29
64X64 6 11 12 24 27
128X128 6 11 13 22 25

Firstly, the number of cycles remains relatively constant in all cases. This means that using

these forms of the multigrid algorithm, each problem can be solved in roughly O (NDOF )
operations. It can also be observed that a p − 1 polynomial coarsening strategy only offers

a small improvement compared to a p/2 strategy, which is a similar result as reported by

[HA08]. It is more computationally expensive to coarsen each level by a single polynomial

order and more memory needs to be allocated to store more levels. Therefore, a p − 1
coarsening strategy provides no added benefit over a p/2 strategy.

Secondly, quite a lot more cycles are needed on the curvilinear grids compared to the

Cartesian grids. The difference in convergence rates between these grid types is also clearly

visible in figure 6.11, in which the L2-norm of the residuals are plotted as a function of the

number of V-cycles on the p = 6 Cartesian and curvilinear grids. The lower convergence

rates on curvilinear grids can partly be attributed to the increased penalty parameter σ,

which must be increased on curvilinear grids to retain stability. As a result, the condition-

ing of the linear systems on all multigrid levels are weakened, leading to decreased smoother

performance. This can be confirmed by the fact that the number of cycles increases from 9
to 17 when σ is increased with a factor 2 on the 16X16 p = 4 Cartesian grid, following a p−1
coarsening strategy. Moreover, in the derivation of the restriction and prolongation opera-

tors the influence of the mapping was neglected. While this removes the need to calculate

1The p/2 coarsening is implemented as an integer division. So for p = 6 the p-levels are 6, 3, 1.
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(a) Cartesian grid (b) Curvilinear grid

Figure 6.11: The L2-norm of the residual as a function of the number of V-cycles of the

hp-multigrid algorithm using a p/2 polynomial coarsening.

and store these operators for every element, this also has an effect on the accuracy of the re-

striction of the residual and prolongation of the correction between the multigrid levels. This

is underlined by the observation that the number of cycles actually decreases when the fine

grid elements become less distorted, which occurs when increasing the number of elements.

Even though the multigrid algorithm already scales with the number of unknowns, the

smoothing properties of the DG discretization probably hamper the overall efficiency of the

algorithm. The difference in smoothing performance of a DG and FV discretization was

already touched upon in section 6.2.1. Since the geometric multigrid part only serves as a

correction for the fine grid problem, it is not strictly necessary to use a DG discretization for

these levels. Therefore, to exploit the smoothing properties of the FV method, it is attempted

to use a FV discretization for the geometric multigrid levels. This is done by applying the

well-known cell-centered FV discretization to the Poisson problem and using the same

agglomeration based geometric coarsening as before. Since the focus of this work is on DG

formulations, the reader is referred to literature for more details about a cell-centered FV

discretization, for example consider [Maz16; MMD16]. First, the DG problem is coarsened

to p = 1 before applying one last polynomial coarsening step to the p = 0 FV problem. Then,

the geometric multigrid using the FV discretization is carried out using respectively 2 and 1
pre- and post-relaxation forward (instead of symmetric) Gauss-Seidel sweeps, since the FV

method is known to smooth very well. The intergrid transfer operators for the geometric

multigrid levels using the FV discretization are very similar to those derived for the DG

discretization in section 4.3.3 and are worked out in more detail for the FV discretization in

appendix B.2. The results for a p = 4 problem are shown in figure 6.12.

These results seem unexpected, why are so many cycles needed and why does the

algorithm not scale with the number of unknowns anymore? As it turns out, the transition

from the discontinuous p = 1 space to the continuous p = 0 space spoils the convergence of

the algorithm. This was also observed by [HA08] and they claim this is due to the fact that

the long wavelength eigenfunctions of the p = 1 discontinuous system are not represented
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(a) p− 1 (b) p/2

Figure 6.12: The L2-norm of the residual as a function of the number of V-cycles of the

hp-multigrid algorithm on a Cartesian grid using a FV discretization for the h-levels.

well in the p = 0 space. This can indeed be observed by the fact that in this case there

is a significant difference between the coarsening strategies p − 1 and p/2, whereas there

was no difference for the fully DG-based multigrid algorithm on a p = 4 Cartesian grid.

This certainly hints in the direction of a poor representation of the continuous FV-space,

since this was not observed for the DG-based algorithm. To overcome this, [HA08] propose

a method to couple p multigrid to geometric multigrid by transitioning from the p = 1
discontinuous space to a p = 1 continuous space, i.e. a vertex-based FV discretization.

Geometric multigrid is well defined for a p = 1 FV discretization, therefore they are able to

obtain an efficient algorithm.

The question to be asked is if all this complexity is worth the gain. As seen in table 6.3

and figure 6.11, the hp-multigrid algorithm based on the geometric coarsening of a p = 1
DG discretization already performs independently of the problem size. Moreover, only the

smoothing is slightly improved by the FV discretization. The argument that the construction

of the FV discretization is cheaper than a DG discretization does not hold in this context

since it is constructed for the coarse grids only, on which the work is assumed to be negligible

compared to the work on the fine grid anyway. Therefore, using the existing hp-multigrid

algorithm where the p = 1 DG based geometric multigrid algorithm is coupled to the

p-multigrid algorithm could still be a viable option.

6.3 Smoother for the Stokes problem

To determine if the relaxation schemes converge, the L2-norm of the residuals are given

as a function of the number of single grid distributive Gauss-Seidel relaxation iterations in

figure 6.13 for the classical splitting and in figure 6.14 for the least-squares splitting. Since

only the capability of convergence is of interest at this moment, the results are plotted on

a log-log scale such that convergence can be monitored for different problem sizes in one

picture. The results are obtained on the Cartesian grid since the results for the Stokes prob-

lem on the curvilinear grids could not be verified in section 6.1.2. Moreover, to determine

78



Figure 6.13: The L2-norm of the residual as a function of the number of distributive Gauss-

Seidel sweeps using the classical splitting on Cartesian grids.

Figure 6.14: The L2-norm of the residual as a function of the number of distributive Gauss-

Seidel sweeps using the least-squares splitting on Cartesian grids.

if a distributive Gauss-Seidel relaxation scheme is applicable to the DG discretization of

the Stokes problem, the characteristics of the coupled system of only the Cartesian grid are

representative as well.

The results show that the relaxation using the classical splitting does not converge. As

mentioned in section 4.2.3, good approximations forA andS only exist whenA is diagonally

dominant. In the verification of the Poisson problem in section 6.1.1, it was observed that

the discrete system of the Poisson problem, which corresponds to the discretization ofA in

the Stokes problem, was not diagonally dominant. Hence, the approximations of A and S
in the classical splitting are poor, leading to divergence.

The relaxation based on the least-squares splitting shows to converge, provided that the

polynomial order of the velocity solution is not higher than fourth order (and consequently

that of the pressure solution not higher than third order). In the splitting the assumption

is made that the commutator P = I −G(DG)−1D is minimum in the least-squares sense
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and therefore it is neglected. While the commutator could still be minimum, it might be too

significant to neglect for higher order solutions such that the relaxation does not converge

anymore. Moreover, the influence of the number of sweeps on the decoupled systems could

play a role in this. Currently a single symmetric block Gauss-Seidel sweep is used as the

inner smoother but this could be insufficient for higher order problems.

Regardless of the fact that relaxation based on the classical splitting does not even

converge in this case, it would be quite computationally expensive because the Schur com-

plement S requires the inverse of A to be computed. Although it is tried to alleviate this

by approximatingAwith its block diagonal, it will still be more expensive compared to the

least-squares based splitting because of the multiplication −DA−1G. Therefore, it would

be beneficial to research the possibilities of a distributive Gauss-Seidel relaxation scheme

based on the least-squares splitting that is also applicable to higher order discretizations of

the DG method, or a distributive scheme that is based on a different splitting that does not

have these higher-order limitations.
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Chapter 7

Conclusions and Recommendations

Multiple building blocks for the construction of an efficient algorithm for DG formulations

of the Stokes problem were considered in this thesis. A multigrid algorithm for the DG

discretization of the Poisson problem and the DG discretization as well as a smoother for

the Stokes problem were developed, implemented and tested.

Firstly, the hp-multigrid algorithm based on the polynomial and geometric coarsening

of the problem using DG formulations was found to be capable of solving the problem in

an amount of cycles that was independent of the problem size. Moreover, a p-coarsening

strategy of p − 1 led to only a minor improvement compared to a p/2 strategy. Since it is

more computationally expensive to coarsen the polynomial order with one order at a time,

it is a better choice to use a coarsening strategy of p/2. Based on the observation that the

smoothing of the DG system was inferior compared to a FV discretization, it was attempted

to couple a geometric multigrid algorithm based on a cell-centered FV discretization to the

polynomial multigrid algorithm. It turned out that this lead to poor convergence rates due to

the fact that the long wavelength eigenfunctions of the p = 1 discontinuous DG scheme are

not represented well in the p = 0 space. For future research, the performance of a multigrid

algorithm for the DG formulation of the Poisson problem where the p = 1 discontinuous

space is coupled to a p = 1 continuous space using a vertex-based FV discretization as

proposed by [HA08] could be investigated.

Secondly, the DG formulation of the Stokes problem was derived and verified. For the

Cartesian grids the results show the correct convergence behavior of hp+1
for the velocities

and hp for the pressure. However, incorrect results in the form of pressure spikes near the

boundaries were observed on the curvilinear grids. This could be due to an implementation

error or a fundamental problem in the discretization scheme. Further research should

identify the underlying cause of these pressure spikes on curvilinear grids. Moreover, to

avoid odd-even decoupling, the polynomial order of the pressure space was taken one order

lower than the velocity space, leading to a decreased accuracy for the pressure solution

compared to the velocity solution. Further research could be done to investigate if it is

possible to stabilize the discretization when the polynomial order of the pressure and

velocity spaces are equal, such that there is no accuracy difference between the solutions.

Lastly, a distributive Gauss-Seidel smoother based on the classical SIMPLE splitting was

found incapable of solving the system. Because theA-block, although positive definite, is not

diagonally dominant, the approximations to A and S are poor, which leads to divergence.
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Convergence was observed for the smoother based on the least-squares commutator for

p < 4. For higher order problems the assumption that the commutator-block could be

neglected is probably not correct anymore. Since the least-squares based splitting does not

require the computation of the inverse of the A-block (or an approximate of it), it will be

computationally less expensive. Therefore, it could be useful to conduct further research on

the distributive Gauss-Seidel smoother based on the least-squares splitting that can also be

applied to higher order, p ≥ 4, DG discretizations. Also, the effect of the number and type

of inner sweeps on the decoupled systems could be of importance in this context. Moreover,

it may be possible to define an alternative splitting that does not have these limitations for

higher order DG discretizations.

82



Bibliography

[Bak08] Andre Bakker. “Lectures on Applied Computational Fluid Dynamics”. en. In:

(2008).

[BS19] Claus Beisbart and Nicole J. Saam, eds. Computer Simulation Validation: Funda-
mental Concepts, Methodological Frameworks, and Philosophical Perspectives. en. Sim-

ulation Foundations, Methods and Applications. Cham: Springer International

Publishing, 2019. isbn: 978-3-319-70765-5 978-3-319-70766-2. doi: 10.1007/978-
3-319-70766-2. url: https://link.springer.com/10.1007/978-3-319-
70766-2 (visited on 10/02/2023).

[BGL05] Michele Benzi, Gene H. Golub, and Jörg Liesen. “Numerical solution of sad-

dle point problems”. en. In: Acta Numerica 14 (May 2005), pp. 1–137. issn:

0962-4929, 1474-0508. doi: 10.1017/S0962492904000212. url: https://www.
cambridge . org / core / product / identifier / S0962492904000212 / type /
journal_article (visited on 03/28/2023).

[BB15] Bruno Blais and François Bertrand. “On the use of the method of manufac-

tured solutions for the verification of CFD codes for the volume-averaged

Navier–Stokes equations”. en. In: Computers & Fluids 114 (July 2015), pp. 121–

129. issn: 00457930. doi: 10.1016/j.compfluid.2015.03.002. url: https:
//linkinghub.elsevier.com/retrieve/pii/S0045793015000675 (visited on

08/01/2023).

[Bot12] Lorenzo Botti. “Influence of Reference-to-Physical Frame Mappings on Ap-

proximation Properties of Discontinuous Piecewise Polynomial Spaces”. en. In:

Journal of Scientific Computing 52.3 (Sept. 2012), pp. 675–703. issn: 0885-7474,

1573-7691. doi: 10.1007/s10915-011-9566-3. url: http://link.springer.
com/10.1007/s10915-011-9566-3 (visited on 04/24/2023).

[Cha+14] J.-B. Chapelier et al. “Evaluation of a high-order discontinuous Galerkin method

for the DNS of turbulent flows”. en. In: Computers & Fluids 95 (May 2014),

pp. 210–226. issn: 00457930. doi: 10.1016/j.compfluid.2014.02.015. url:

https://linkinghub.elsevier.com/retrieve/pii/S0045793014000784
(visited on 09/26/2023).

[Chr10] Lehrenfeld Christoph. “Hybrid Discontinuous Galerkin Methods for Solving

Incompressible Flow Problems”. PhD thesis. Rheinisch-Westfälischen Tech-

nischen Hochschule Aachen, May 2010. url: https:%20//www.igpm.rwth-
aachen.de/Download/reports/lehrenfeld/DA_HDG4NSE_1_0.pdf.

83

https://doi.org/10.1007/978-3-319-70766-2
https://doi.org/10.1007/978-3-319-70766-2
https://link.springer.com/10.1007/978-3-319-70766-2
https://link.springer.com/10.1007/978-3-319-70766-2
https://doi.org/10.1017/S0962492904000212
https://www.cambridge.org/core/product/identifier/S0962492904000212/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492904000212/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492904000212/type/journal_article
https://doi.org/10.1016/j.compfluid.2015.03.002
https://linkinghub.elsevier.com/retrieve/pii/S0045793015000675
https://linkinghub.elsevier.com/retrieve/pii/S0045793015000675
https://doi.org/10.1007/s10915-011-9566-3
http://link.springer.com/10.1007/s10915-011-9566-3
http://link.springer.com/10.1007/s10915-011-9566-3
https://doi.org/10.1016/j.compfluid.2014.02.015
https://linkinghub.elsevier.com/retrieve/pii/S0045793014000784
https:%20//www.igpm.rwth-aachen.de/Download/reports/lehrenfeld/DA_HDG4NSE_1_0.pdf
https:%20//www.igpm.rwth-aachen.de/Download/reports/lehrenfeld/DA_HDG4NSE_1_0.pdf


[Dai11] Daily. “Lightning and fire: Japan on alert after volcano’s biggest eruption in 50

years”. In: Mail Online (Jan. 2011). Section: News. url: https://www.dailymail.
co.uk/news/article-1351064/Japan-raises-alert-following-volcanos-
biggest-eruption-50-years.html (visited on 10/01/2023).

[Dub91] Moshe Dubiner. “Spectral methods on triangles and other domains”. en. In:

Journal of Scientific Computing 6.4 (Dec. 1991), pp. 345–390. issn: 0885-7474, 1573-

7691. doi: 10.1007/BF01060030. url: http://link.springer.com/10.1007/
BF01060030 (visited on 08/07/2023).

[GLS19] Nicolas R. Gauger, Alexander Linke, and Philipp W. Schroeder. “On high-order

pressure-robust space discretisations, their advantages for incompressible high

Reynolds number generalised Beltrami flows and beyond”. en. In: The SMAI
journal of computational mathematics 5 (Sept. 2019), pp. 89–129. issn: 2426-8399.

doi: 10.5802/smai-jcm.44. url: https://smai-jcm.centre-mersenne.org/
item/SMAI-JCM_2019__5__89_0 (visited on 03/28/2023).

[ges19] gestione. Turbulence models in CFD - RANS, DES, LES and DNS. en-GB. Aug.

2019. url: https://www.idealsimulations.com/resources/turbulence-
models-in-cfd/ (visited on 10/01/2023).

[Gho96] Sandip Ghosal. “An Analysis of Numerical Errors in Large-Eddy Simulations of

Turbulence”. en. In: Journal of Computational Physics 125.1 (Apr. 1996), pp. 187–

206. issn: 00219991. doi: 10.1006/jcph.1996.0088. url: https://linkinghub.
elsevier.com/retrieve/pii/S0021999196900881 (visited on 10/01/2023).

[Gir20] Francis X. Giraldo. An Introduction to Element-Based Galerkin Methods on Tensor-
Product Bases: Analysis, Algorithms, and Applications. en. Vol. 24. Texts in Com-

putational Science and Engineering. Cham: Springer International Publishing,

2020. isbn: 978-3-030-55068-4 978-3-030-55069-1. doi: 10.1007/978- 3- 030-
55069-1. url: http://link.springer.com/10.1007/978-3-030-55069-1
(visited on 03/28/2023).

[HA08] Brian T. Helenbrook and H. L. Atkins. “Solving Discontinuous Galerkin For-

mulations of Poisson’s Equation using Geometric and p Multigrid”. en. In:

AIAA Journal 46.4 (Apr. 2008), pp. 894–902. issn: 0001-1452, 1533-385X. doi:

10.2514/1.31163. url: https://arc.aiaa.org/doi/10.2514/1.31163
(visited on 09/25/2023).

[HW08] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. en.

Ed. by J. E. Marsden, L. Sirovich, and S. S. Antman. Vol. 54. Texts in Applied

Mathematics. New York, NY: Springer New York, 2008. isbn: 978-0-387-72065-4

978-0-387-72067-8. doi: 10.1007/978-0-387-72067-8. url: http://link.
springer.com/10.1007/978-0-387-72067-8 (visited on 03/28/2023).

[Hil13] Koen Hillewaert. Development of the discontinuous Galerkin method for high-resolution,
large scale CFD and acoustics in industrial geometries. en. Presses univ. de Louvain,

2013.

84

https://www.dailymail.co.uk/news/article-1351064/Japan-raises-alert-following-volcanos-biggest-eruption-50-years.html
https://www.dailymail.co.uk/news/article-1351064/Japan-raises-alert-following-volcanos-biggest-eruption-50-years.html
https://www.dailymail.co.uk/news/article-1351064/Japan-raises-alert-following-volcanos-biggest-eruption-50-years.html
https://doi.org/10.1007/BF01060030
http://link.springer.com/10.1007/BF01060030
http://link.springer.com/10.1007/BF01060030
https://doi.org/10.5802/smai-jcm.44
https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2019__5__89_0
https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2019__5__89_0
https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://doi.org/10.1006/jcph.1996.0088
https://linkinghub.elsevier.com/retrieve/pii/S0021999196900881
https://linkinghub.elsevier.com/retrieve/pii/S0021999196900881
https://doi.org/10.1007/978-3-030-55069-1
https://doi.org/10.1007/978-3-030-55069-1
http://link.springer.com/10.1007/978-3-030-55069-1
https://doi.org/10.2514/1.31163
https://arc.aiaa.org/doi/10.2514/1.31163
https://doi.org/10.1007/978-0-387-72067-8
http://link.springer.com/10.1007/978-0-387-72067-8
http://link.springer.com/10.1007/978-0-387-72067-8


[Ibr16] Bayram Ali Ibrahimoglu. “Lebesgue functions and Lebesgue constants in poly-

nomial interpolation”. en. In: Journal of Inequalities and Applications 2016.1 (Dec.

2016), p. 93. issn: 1029-242X. doi: 10.1186/s13660-016-1030-3. url: http:
//www.journalofinequalitiesandapplications.com/content/2016/1/93
(visited on 07/31/2023).

[Jen+14] Eleanor W. Jenkins et al. “On the parameter choice in grad-div stabilization for

the Stokes equations”. en. In: Advances in Computational Mathematics 40.2 (Apr.

2014), pp. 491–516. issn: 1019-7168, 1572-9044. doi: 10.1007/s10444-013-9316-
1. url: http://link.springer.com/10.1007/s10444-013-9316-1 (visited on

09/12/2023).

[Joh16] Volker John. Finite Element Methods for Incompressible Flow Problems. en. Vol. 51.

Springer Series in Computational Mathematics. Cham: Springer International

Publishing, 2016. isbn: 978-3-319-45749-9 978-3-319-45750-5. doi: 10.1007/978-
3-319-45750-5. url: http://link.springer.com/10.1007/978-3-319-
45750-5 (visited on 10/03/2023).

[Joh+17] Volker John et al. “On the Divergence Constraint in Mixed Finite Element Meth-

ods for Incompressible Flows”. en. In: SIAM Review 59.3 (Jan. 2017), pp. 492–

544. issn: 0036-1445, 1095-7200. doi: 10.1137/15M1047696. url: https://epubs.
siam.org/doi/10.1137/15M1047696 (visited on 05/30/2023).

[KBW04] I J Keshtiban, F Belblidia, and M F Webster. “Compressible flow solvers for low

Mach number flows”. en. In: (2004).

[Koe21] Roelof Koekoek. Special Functions – Orthogonal polynomials – Jacobi polynomials.
2021. url: https : / / homepage . tudelft . nl / 11r49 / teaching / specfunc /
orthopoly/jacobi.html (visited on 07/28/2023).

[Maz16] Sandip Mazumder. Numerical methods for partial differential equations: finite differ-
ence and finite volume methods. en. OCLC: ocn913556966. Amsterdam: Academic

Press, 2016. isbn: 978-0-12-849894-1.

[MM98] Parviz Moin and Krishnan Mahesh. “DIRECT NUMERICAL SIMULATION: A

Tool in Turbulence Research”. en. In: Annual Review of Fluid Mechanics 30.1 (Jan.

1998), pp. 539–578. issn: 0066-4189, 1545-4479. doi: 10.1146/annurev.fluid.
30.1.539. url: https://www.annualreviews.org/doi/10.1146/annurev.
fluid.30.1.539 (visited on 10/01/2023).

[MMD16] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Compu-
tational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab.

en. Vol. 113. Fluid Mechanics and Its Applications. Cham: Springer International

Publishing, 2016. isbn: 978-3-319-16873-9 978-3-319-16874-6. doi: 10.1007/978-
3-319-16874-6. url: https://link.springer.com/10.1007/978-3-319-
16874-6 (visited on 09/05/2023).

[OL06] C.W. Oosterlee and F.J.G. Lorenz. “Multigrid Methods for the Stokes System”.

en. In: Computing in Science & Engineering 8.6 (Nov. 2006), pp. 34–43. issn: 1521-

9615. doi: 10.1109/MCSE.2006.115. url: http://ieeexplore.ieee.org/
document/1717313/ (visited on 06/26/2023).

[Pan13] Ronald Lee Panton. Incompressible flow. eng. 4. ed. Hoboken, NJ: Wiley, 2013.

isbn: 978-1-118-01343-4.

85

https://doi.org/10.1186/s13660-016-1030-3
http://www.journalofinequalitiesandapplications.com/content/2016/1/93
http://www.journalofinequalitiesandapplications.com/content/2016/1/93
https://doi.org/10.1007/s10444-013-9316-1
https://doi.org/10.1007/s10444-013-9316-1
http://link.springer.com/10.1007/s10444-013-9316-1
https://doi.org/10.1007/978-3-319-45750-5
https://doi.org/10.1007/978-3-319-45750-5
http://link.springer.com/10.1007/978-3-319-45750-5
http://link.springer.com/10.1007/978-3-319-45750-5
https://doi.org/10.1137/15M1047696
https://epubs.siam.org/doi/10.1137/15M1047696
https://epubs.siam.org/doi/10.1137/15M1047696
https://homepage.tudelft.nl/11r49/teaching/specfunc/orthopoly/jacobi.html
https://homepage.tudelft.nl/11r49/teaching/specfunc/orthopoly/jacobi.html
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1146/annurev.fluid.30.1.539
https://www.annualreviews.org/doi/10.1146/annurev.fluid.30.1.539
https://www.annualreviews.org/doi/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1007/978-3-319-16874-6
https://doi.org/10.1007/978-3-319-16874-6
https://link.springer.com/10.1007/978-3-319-16874-6
https://link.springer.com/10.1007/978-3-319-16874-6
https://doi.org/10.1109/MCSE.2006.115
http://ieeexplore.ieee.org/document/1717313/
http://ieeexplore.ieee.org/document/1717313/


[PS83] S.V. Patankar and D.B. Spalding. “A CALCULATION PROCEDURE FOR HEAT,

MASS AND MOMENTUM TRANSFER IN THREE-DIMENSIONAL PARABOLIC

FLOWS”. en. In: Numerical Prediction of Flow, Heat Transfer, Turbulence and Com-
bustion. Elsevier, 1983, pp. 54–73. isbn: 978-0-08-030937-8. doi: 10.1016/B978-0-
08-030937-8.50013-1. url: https://linkinghub.elsevier.com/retrieve/
pii/B9780080309378500131 (visited on 10/02/2023).

[QSS07] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. “Iterative Methods for

Solving Linear Systems”. In: Numerical Mathematics. Vol. 37. Series Title: Texts

in Applied Mathematics. New York, NY: Springer New York, 2007, pp. 123–181.

doi: 10.1007/978-0-387-22750-4_4. url: http://link.springer.com/10.
1007/978-0-387-22750-4_4 (visited on 09/10/2023).

[Saa03] Y. Saad. Iterative methods for sparse linear systems. 2nd ed. Philadelphia: SIAM,

2003. isbn: 978-0-89871-534-7.

[Sch19] Philipp W. Schroeder. “Robustness of High-Order Divergence-Free Finite Ele-

ment Methods for Incompressible Computational Fluid Dynamics”. en. PhD

thesis. Georg-August-University Göttingen, 2019. doi: 10 . 53846 / goediss -
7330. url: https://ediss.uni-goettingen.de/handle/11858/00-1735-
0000-002E-E5BC-8 (visited on 05/30/2023).

[Sci23a] SciPy. scipy.special.eval_jacobi — SciPy v1.11.1 Manual. 2023. url: https : / /
docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_
jacobi.html#scipy.special.eval_jacobi (visited on 07/28/2023).

[Sci23b] SciPy. scipy.special.roots_jacobi — SciPy v1.11.1 Manual. 2023. url: https://
docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_
jacobi.html#scipy.special.roots_jacobi (visited on 07/28/2023).

[Sym23] SymPy. SymPy 1.12 documentation. 2023. url: https : / / docs . sympy . org /
latest/index.html (visited on 10/14/2023).

[Sze39] Gábor Szegő. Orthogonal polynomials. 4th ed. Colloquium publications - Amer-

ican Mathematical Society v. 23. Providence: American Mathematical Society,

1939. isbn: 978-0-8218-1023-1.

[The04] The Engineering Toolbox. Liquids - Speed of Sound. 2004. url: https://www.
engineeringtoolbox.com/sound-speed-liquids-d_715.html (visited on

10/11/2023).

[TDB03] James L. Thomas, Boris Diskin, and Achi Brandt. “Textbook Multigrid Effi-

ciency For Fluid Simulations”. en. In: Annual Review of Fluid Mechanics 35.1 (Jan.

2003), pp. 317–340. issn: 0066-4189, 1545-4479. doi: 10.1146/annurev.fluid.
35.101101.161209. url: https://www.annualreviews.org/doi/10.1146/
annurev.fluid.35.101101.161209 (visited on 10/12/2023).

[TB97] Lloyd N. Trefethen and David Bau. Numerical linear algebra. en. Philadelphia:

Society for Industrial and Applied Mathematics, 1997. isbn: 978-0-89871-361-9.

[US 11] U.S. Geological Survey. 2011 Eruption of Shinmoedake, Japan. Note the eruption
plume being ... | U.S. Geological Survey. 2011. url: https://www.usgs.gov/
media/images/2011-eruption-shinmoedake-japan-note-eruption-plume-
being (visited on 10/04/2023).

86

https://doi.org/10.1016/B978-0-08-030937-8.50013-1
https://doi.org/10.1016/B978-0-08-030937-8.50013-1
https://linkinghub.elsevier.com/retrieve/pii/B9780080309378500131
https://linkinghub.elsevier.com/retrieve/pii/B9780080309378500131
https://doi.org/10.1007/978-0-387-22750-4_4
http://link.springer.com/10.1007/978-0-387-22750-4_4
http://link.springer.com/10.1007/978-0-387-22750-4_4
https://doi.org/10.53846/goediss-7330
https://doi.org/10.53846/goediss-7330
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-002E-E5BC-8
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-002E-E5BC-8
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html#scipy.special.eval_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html#scipy.special.eval_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html#scipy.special.eval_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi
https://docs.sympy.org/latest/index.html
https://docs.sympy.org/latest/index.html
https://www.engineeringtoolbox.com/sound-speed-liquids-d_715.html
https://www.engineeringtoolbox.com/sound-speed-liquids-d_715.html
https://doi.org/10.1146/annurev.fluid.35.101101.161209
https://doi.org/10.1146/annurev.fluid.35.101101.161209
https://www.annualreviews.org/doi/10.1146/annurev.fluid.35.101101.161209
https://www.annualreviews.org/doi/10.1146/annurev.fluid.35.101101.161209
https://www.usgs.gov/media/images/2011-eruption-shinmoedake-japan-note-eruption-plume-being
https://www.usgs.gov/media/images/2011-eruption-shinmoedake-japan-note-eruption-plume-being
https://www.usgs.gov/media/images/2011-eruption-shinmoedake-japan-note-eruption-plume-being


[VL00] C. H. Venner and A. A. Lubrecht. Multilevel methods in lubrication. en. 1st ed.

Tribology series 37. Amsterdam ; New York: Elsevier, 2000. isbn: 978-0-444-

50503-3.

[WC13] Ming Wang and Long Chen. “Multigrid Methods for the Stokes Equations

using Distributive Gauss–Seidel Relaxations based on the Least Squares Com-

mutator”. en. In: Journal of Scientific Computing 56.2 (Aug. 2013), pp. 409–431.

issn: 0885-7474, 1573-7691. doi: 10.1007/s10915- 013- 9684- 1. url: http:
//link.springer.com/10.1007/s10915-013-9684-1 (visited on 06/26/2023).

87

https://doi.org/10.1007/s10915-013-9684-1
http://link.springer.com/10.1007/s10915-013-9684-1
http://link.springer.com/10.1007/s10915-013-9684-1


88



Appendices

89





Appendix A

Exact solutions

This section contains the exact solutions to the Poisson and Stokes problems. These solutions

correspond to the manufactured solutions explained in section 5.3

A.1 Poisson

The manufactured solution that is used for the Poisson problem is defined by equation (5.3)

and is repeated:

u = −2 sin(πx)2 sin(πy) cos(πy). (A.1)

The exact solution u is presented in figure A.1.

Figure A.1: Exact solution u of the Poisson problem on a 32X32 p = 5 Cartesian grid (left)

and curvilinear grid (right).
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A.2 Stokes

The manufactured solutions that are used for the Stokes problem are defined by equa-

tions (5.3) to (5.5) and are repeated:

u = −2 sin(πx)2 sin(πy) cos(πy), (A.2)

v = 2 sin(πx) cos(πx) sin(πy)2, (A.3)

p = sin(πx) sin(πy)− p̄, (A.4)

The exact solutions u, v and p are presented in figures A.2 to A.4, respectively.

Figure A.2: Exact solution u of the Stokes problem on a 32X32 p = 5 Cartesian grid (left)

and curvilinear grid (right).

Figure A.3: Exact solution v of the Stokes problem on a 32X32 p = 5 Cartesian grid (left)

and curvilinear grid (right).
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Figure A.4: Exact solution p of the Stokes problem on a 32X32 p = 5 Cartesian grid (left)

and curvilinear grid (right).

A.2.1 Square O-grid

The square O-grid depicted in figure A.5a is very similar to the circular O-grid illustrated

in figure 5.1b. The difference is that the mapping from the elements of the square O-grid

to the standard elements is exact (which is not the case for the standard curvilinear grid

in figure 5.1b). The dimensions of the square O-grid are similar to the curvilinear grid in

figure 5.1b. The square O-grid is further simplified by taking a quarter of it, resulting in the

grid depicted in figure A.5b. The exact solution given in equation (A.4) is represented on a

quarter of the square O-grid in figure A.6.

(a) Square O-grid (b) Trapezoidal grid

Figure A.5: Square O-grid (left) and a quarter of the square O-grid (right).
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Figure A.6: Exact solution p of the Stokes problem on a quarter of a 32X32 p = 5 square

O-grid.
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Appendix B

Mathematical concepts and
derivations

B.1 Gram-Schmidt orthogonalization

The Gram-Schmidt process can be used to orthonormalize a set of basis functions ψ. An

orthogonal set of basis functions ψ̂ is obtained by subtracting the projections of the basis

functions ψj on ψ̂j from it, where j = 0, . . . , i− 1, leading to

ψ̂i = ψi −
j=i−1∑
j=0

projψ̂j
ψj = ψi −

j=i−1∑
j=0

〈
ψi, ψ̂j

〉
〈
ψ̂j , ψ̂j

〉 ψ̂j , (B.1)

where ⟨a, b⟩ denotes the inner product

∫∫
Ωe

h

abdΩ. As an example, the first 3 orthogonal

basis functions read

ψ̂0 = ψ0, (B.2)

ψ̂1 = ψ1 −

〈
ψ1, ψ̂0

〉
〈
ψ̂0, ψ̂0

〉 ψ̂0, (B.3)

ψ̂2 = ψ2 −

〈
ψ2, ψ̂0

〉
〈
ψ̂0, ψ̂0

〉 ψ̂0 −

〈
ψ2, ψ̂1

〉
〈
ψ̂1, ψ̂1

〉 ψ̂1. (B.4)

Furthermore, the set of orthonormal basis functions ψ̃ is obtained by scaling the orthogonal

basis functions using

ψ̃i =
ψ̂i√〈
ψ̂i, ψ̂i

〉 (B.5)

Due to the finite precision of a computer, the "classical" Gram-Schmidt method as de-

scribed here might not yield accurate results for higher polynomial orders. In this case, the

modified Gram-Schmidt method or even an algorithm based on Householder transforma-

tions can be used.
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B.2 FV multigrid operators

Before the geometric FV multigrid algorithm can be performed, the p = 1 DG solution must

be represented on a cell-centered p = 0 grid which can be used for the FV discretization.

This is done by one polynomial coarsening step, leading to the restriction operator

ICF =
[
1 0 0 0

]
(B.6)

and corresponding prolongation operator IFC =
(
ICF
)T

. The restriction operator must be

multiplied by a factor 2 and the prolongation operator by a factor
1
2 to account for the fact

that the first modal DG basis function is
1
2 .

Similar to the geometric coarsening using the DG formulation, the geometric coarsening

of the FV representation is done the agglomeration of fine elements. In this case, 16 fine

elements are merged together to form 4 coarse elements, which is depicted in figure B.1. As a

result of the cell-centered FV discretization, the solutions at the cell-centers are represented

by the nodal formulation, which for the coarse grid cells read

ξCe = ξ0ℓ0 + ξ1ℓ1 + ξ2ℓ2 + ξ3ℓ3, (B.7)

with corresponding basis

ℓ0 =
(1− r)(1− s)

4
, (B.8)

ℓ1 =
(1 + r)(1− s)

4
, (B.9)

ℓ2 =
(1− r)(1 + s)

4
, (B.10)

ℓ3 =
(1 + r)(1 + s)

4
. (B.11)

The prolongation of the coarse grid solution to a fine grid cell can now be obtained by

evaluating equation (B.7) in the (r, s)-location of the fine grid cell centers. For example, the

fine grid cell 5 with (r, s) = (−1
2 ,−

1
2) has contributions from the coarse grid cells 0, 1, 2 and

3, leading to

ξF5 = ξ0ℓ0(−1
2 ,−

1
2) + ξ1ℓ1(−1

2 ,−
1
2) + ξ2ℓ2(−1

2 ,−
1
2) + ξ3ℓ3(−1

2 ,−
1
2) (B.12)

= 9
16ξ0 +

3
16ξ1 +

3
16ξ2 +

1
16ξ3. (B.13)
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0 1
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Figure B.1: Geometric coarsening based on agglomeration of fine grid elements (dashed

lines) into coarse grid elements (solid lines). The cell centers of the fine elements are

illustrated by an open circle and those of the coarse elements by a filled circle.

Doing this for all fine grid cells leads to the prolongation operator

IFC =



9 0 0 0
9 3 0 0
3 9 0 0
0 9 0 0
9 0 9 0
9 3 3 1
3 9 1 3
0 9 0 3
3 0 9 0
3 1 9 3
1 3 3 9
0 3 0 9
0 0 9 0
0 0 9 3
0 0 3 9
0 0 0 9



/16. (B.14)

In this case, the contributions of the boundaries are neglected but these could be added by

using a layer of ghost cells. The restriction operator follows from ICF = 4
(
IFC
)T

.
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