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Summary
Many problems in applied mathematics amount to estimating an object (i.e.
some parameter, function or measure) from measurements. Examples encom-
pass regression and missing value imputation in statistics and computational
tomography (ct) and medical resonance imaging (mri) in imaging. So the object
one needs to recover is unknown and one only has access to a set of (noisy)
measurements. The goal of the small ball method is to formulate sufficient
conditions under which it is possible to (approximately) recover the unknown
object.

In order to recover the unknown object one wants to construct an estimator
using only the measurements. Of course one wants this estimator to be close
to the unknown object in a pre-specified sense. A large family of estimators
can be written as the minimizer of an empirical risk functional. The empirical
risk functional only depends on the measurements. The problem is that in
general these estimators depend in a very complicated way on the measurements.
Only in a limited number of examples it is possible to write down a closed form
expression for the estimator. The small ball method can be used to formulate
recovery guarantees for empirical risk minimizers.

In this report we first of all we describe the small ball method. The main
difference between the approach taken here and previous work is that we introduce
a delocalized small ball assumption (DSBA). This is a weaker variant of the
small ball assumption. In some situations the DSBA holds, but the classical
small ball assumption fails to hold. Examples are spaces of Sobolev and Hölder
continuous functions. Also uniformly bounded function spaces satisfy the DSBA.
We also look at some applications where we partially extend the small ball
method beyond the regression setup.
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1 Introduction

We first introduce some notation. Let Ω be a probability space. A real-valued
random variable is any measurable function f : Ω → R. For a real-valued random
variable f , we define the expected value of f as Ef =

∫
f(x)dµ(x) and given a

sample X1, ..., XN of i.i.d. random elements in Ω, we let PNf = 1
N

∑N
i=1 f(Xi)

be the empirical mean of f . For p ∈ [1,∞), let ∥f∥Lp(µ) = (Ef(X)p)1/p be the
Lp-norm of any measurable function f on Ω. In this report we will ignore any
measurability issues and assume that any minimizer exists.

1.1 Problem setting

The learning problem in regression is defined by a pair of random elements
(X,Y ) on a probability space Ω. We say that (X,Y ) is distributed according to
a law P. We let µ be the law of X. The reandom element X takes values in a
space of covariates X and Y takes values in Y . In this report Y = R. The object
we want to infer is the conditional expectation of Y given that X = x. So we
aim to reconstruct E[Y |X = x] as well as possible. The idea is that X and Y
are not independent, such that X contains information about the value of Y .

In regression, the random element X encodes covariates that can be used to
predict Y . So in regression the goal is to construct an estimator that predicts
Y as well as possible given X. In inverse problems such as computational
tomography the goal is to recover the true underlying object.

The perspective common is that the measurements are independent copies of
the random variables (X,Y ). We observe a sampleDN = ((X1, Y1), ..., (XN , YN )),
where each pair (Xi, Yi) is sampled independently and identically (i.i.d.) accord-
ing to the same distribution as (X,Y ). An estimator is any function f̂ : X → Y
that depends on the sample DN .

Since one only has access to a sample DN and does not know the under-
lying distribution P , one can only hope to recover E[Y |X = x] approximately.
Therefore we need to quantify the quality of an estimator.

A cost function is a function that measures the precision of a prediction. Let
us say we have constructed an estimator f̂ . We observe X and we predict f̂(X).
Conditionally on the value of X, we sample Y and compare f̂(X) with Y . A
real-valued function c(f̂(X), Y ) of these two variables is called a cost function.
Recall that we consider the situation where Y is a real-valued random variable.
We will almost always work with the square cost function c(y1, y2) = (y1 − y2)

2,
although it turns out this is not strictly necessary. Related to this cost function
we have a loss function lf (X,Y ) = c(f(X), Y ). The loss function corresponding
to squared cost is called squared loss. We will work with the squared loss
throughout this report and only mention how the arguments need to be changed
extended to other cost functions. In particular in the rest of this introduction
we will specialize to working with the squared cost function.

The pair (X,Y ) and the sample DN are independent. So we do not want to
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evaluate the estimator on a pair (X,Y ) in the sample, but we want to know how
it performs on a fresh pair (X,Y ) that was not used to construct the estimator
f̂ . This is the right framework for many prediction tasks.

One is not really interested in the performance of our estimator on a single
new measurement, but rather wants to know how well an estimator performs
on average. The expected loss is the expected value of the loss function under
repeated sampling of X,Y according to the underlying model. The expected
loss is defined as

Elf = E
[
(f(X)− Y )2

]
, (1)

where the expectation is taken with respect to (X,Y ).
The expected value of Y given X = x minimizes the expected loss. Therefore

it is natural to measure the performance of an estimator relative to the minimizer
of this criterion. We denote f̄(x) = E[Y |X = x]. Denote the excess risk of f
relative to g as L(f, g) = lf − lg and the excess expected risk of f relative to g
is defined as EL(f, g).

1.2 Estimation-approximation trade-off
We will see later that it is necessary to restrict attention to a function class F of
functions f : X → Y. When F is too large, it becomes impossible to construct
an efficient estimator in a sense that we will make precise later.

On the other hand, when the size of F is restricted, it is not necessarily true
that the function f̄(x) is in F . So we do not only incur an error due to not
having access to P . We also incur an error due to the fact that the function f̄(x)
is not in F . It is quite easy to see that

EL(f, f̄) = EL(f, f∗) + EL(f∗, f̄), (2)

where f∗ is the minimizer of Elf over the function class F . EL(f, f∗) is
called the excess expected risk over F . EL(f∗, f̄) is the approximation error.

Thus the choice of F implies a trade-off. Making F larger decreases the
approximation error, but makes it more difficult to estimate f̂ . Making F
smaller decreases the excess expected risk, but might make the approximation
error larger. For example, it is easier to estimate a second degree polynomial
than a third degree polynomial, but if the data is generated by a third degree
polynomial then one can necessarily not recover f̄ when only fitting a second
degree polynomial.

Rather than working with EL(f, f∗), we can introduce a metric called the
estimation error. Recall that µ is the law of X. We define the L2(µ) norm of
a function to be ∥f∥L2(µ) = (E[f(X)2])1/2 = (

∫
f(x)2dµ(x))1/2 and the space

L2(µ) to be the set of all measurerable functions f : X → R such that ∥f∥L2(µ)

is finite.
The estimation error is
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∥f̂ − f∗∥L2(µ). (3)

The excess expected risk and the estimation error are related. These two
similarity measures are both zero if f̂ − f∗ is supported on a set of measure 0.
Thus only the contribution of f̂ − f∗ on the support of the measure µ matters.
Furthermore when F has certain structural properties, then these two quantities
are related.

Lemma 1.1. Let F ⊂ L2(µ).

1. If F is a closed subvectorspace of L2(µ), then L(f, f∗) = ∥f − f∗∥L2(µ) for
any f ∈ F .

2. If F is a closed convex subset of L2(µ), then L(f, f∗) ≥ ∥f − f∗∥L2(µ) for
any f ∈ F .

So if F is a subvectorspace bounding the excess expected risk and the esti-
mation error are equivalent.

The proof of this lemma is provided in the Appendix. In this report we
assume that F ⊂ L2(µ) is a closed convex set.

1.3 Types of estimators

Remember that we want to approximate the minimizer of

Elf = E
[
(f(X)− Y )2

]
(4)

over the function class F without knowing the distribution of (X,Y ). We only
have access to the sample DN . Thus it is natural to replace the risk in the
previous equation by the empirical risk given by

PN lf =
1

N

N∑
i=1

(f(Xi)− Yi)
2. (5)

This approach is called empirical risk minimization. We select the function
f̂ that minimizes the empirical risk. This is the most straightforward approach,
but sometimes there is good reason to amend this estimator.

The first reason is when some prior information about the function f̄ is
known. For example the following types of prior information might be reasonable
in practice.

1. f̄ has a certain degree of smoothness. Then it is sensible to approximate f̄
by a smooth function as opposed to a very rough function.

2. maybe some structural properties of f̄ are known and one wants to select
an estimator that satisfies such a structural property.
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It can also happen that one has no prior information on f̄ , but it is still
necessary to make concessions on the size of F . For example when one has
insufficient data so that the empirical risk minimizer is non-unique. In that case,
it is useful as a tie-breaker, to select a "low-complexity" estimator.

So now we want to amend Equation5 in order to include prior information.
A popular way to do this is through adding a complexity penalty to Equation5.
Then the estimator f̂ minimizes

PN l
λ
f :=

1

N

N∑
i=1

(f(Xi)− Yi)
2 + λC(f). (6)

where C(f) is a complexity function and λ is a trade-off parameter. λ
determines by how much the complexity of f is penalized. This approach is
called regularization and any minimizer of Equation 6 is called a penalized
empirical risk minimizer.

The properties of this estimator depend heavily on the properties of the
complexity function C(f).

Finally we would like to mention the following estimator, which is the limiting
estimator of the estimator defined in Equation6 as λ→ 0. This estimator is the
minimal complexity interpolating estimator which is defined (if it exists) as the
minimizer of

C(f)

over all functions f ∈ F such that f(Xi) = Yi for all (Xi, Yi) in the sample DN .

1.4 Examples

In this report we assume that C(f) is a norm 1 on a vectorspace.

There are a lot of different models that promote smoothness of the estimator.

1. The most simple example of an estimator of the type of Equation6 is called
smooting spline. Here a function f : R → R is estimated. The complexity
function

C(f) =

∫
R

(
f (p)(x)

)2
dx,

where f (p) is the p-th (weak) derivative of f .

2. A very general construction is the following. For a (say) locally integrable
function f : Rd → R, we define the Fourier transform F(f) : Rd → R by

1We state our results when C(f) is a norm on a vectorspace. A lot of the examples in this
chapter do not directly fit into this framework, but the results can be amended to also apply
to all of these examples.
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F(f)(ω) =

∫
Rd

exp (−2πiω · x)f(x)dx

.

The smoothness of f is related to the rate of decay of F(f) at infinity.
Thus we can choose C(f) to be the Lq-norm of the function

ω 7→ ∥ω∥kpF(f)(ω)

for some (p, q, k) ∈ [1,∞] × [1,∞] × R+. When q = 2, this corresponds
to an inner product on L2(µ). When (p, q, k) = (1, 1, 2), then this type of
regularization has a strong connection with neural network models with a
single hidden layer Ma et al. [2022].

3. A general construction that can be used to promote smoothness of the
estimator f̂ is through Reproducing kernel Hilbert spaces. Moreover, this
approach leads to an efficient algorithm (computing the estimator requires
solving a system of N linear equations in N variables).

The second class of functions are linear functions. So we let X = F = Rd

and f(x) = x · f . This setup is called linear regression.

1. (Ridge regression) The first example that we consider is Ridge regression.
Here C(f) = ∥f∥22 is the Euclidean norm squared. This is the most impor-
tant example of a linear regression model. It is the "must unstructured"
linear regression model in the sense that the norm is rotation invariant.
Compared to the empirical risk minimizer, this estimator perturbs all
coefficients in the direction of the origin.

2. (LASSO) Consider now the same setting, but now suppose that f̄ has few
non-zero coefficients. One would be inclined to choose C(f) = ∥f∥0 = |{i :
fi ̸= 0}|. But it turns out that this optimization problem is difficult to
solve. Moreover, when for example f̄ only approximately has few non-zero
coeffients, then this also turns out to be sub-optimal.

In the LASSO one chooses C(f) = ∥f∥1 =
∑

i |fi|.

When we consider matrix completion or matrix recovery, we let X = F =
Rd×d. F acts on X by

f(x) = Tr(fx),

where fx is matrix multiplication of f and x. This is a special case of
the linear regression setup by embedding Rd×d into Rd2

, but it leads to some
interesting choices of complexity function C(f).

Recall that any d× d-matrix f can be decomposed as

f = UTΣV,
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where U and V are orthogonal matrices and Σ is a diagonal matrix with diagonal
σ1 ≥ σ2 ≥ ... ≥ σd ≥ 0. The σi are invariant under conjugation of the matrix X.
If X has rank r, then σi = 0 for all i ≥ r + 1.

1. Analogously with the LASSO, we can for any matrix f choose C(f) =
Tr(f) = ∥diag(Σ)∥1, where diag(Σ) is the diagonal of the matrix Σ. This
choice of complexity function promotes low-rank minimizers of f in the
same way as the LASSO promotes sparsity.

2. Likewise, we can choose C(f) = ∥diag(Σ)∥2 in analogy with Ridge regres-
sion.

3. In some situations it is sensible that multiple type of sparsity simultaneously
occur in a problem. A prime example of this is the case where the variables
are grouped, and simultaneously few variable groups are active and within
groups few individual variables are active. A second type of structural
assumption is in matrix completion. Here a matrix can simultaneously be
low-ranked and have few non-zero entries (see Gui et al. [2016]).

1.5 A result when F is uniformly bounded
Bounds on respectively the expected excess risk and the estimation error have
quite a long history. Here we will not give a comprehensive history, but we want
to provide enough background to motivate the small ball method. One of the
main results that were obtained were a two-sided bound in the bounded setting.
In the bounded setting F is a space of measurable functions f : Ω → [0, 1].

In the result below, we need a first complexity measure of the function space
F . In this report we will always let ϵi ∈ {−1, 1} be i.i.d. Rademacher random
variables each taking the value ±1 independently with probability 0.5. We let
Rad F be the Rademacher complexity of the set F defined by

Rad F = E sup
f∈F

1

N

N∑
i=1

ϵif(Xi).

In a later chapter we show why the Rademacher complexity is a reasonable
complexity measure in this context. Let ψ(r) be a function satisfying

Rad {f ∈ F |Ef ≤ r} ≤ ψ(r),

and certain technical conditions that we skip here. Let r∗ ≥ 0 be any real
number that satisfies the fixed point equation ψ(r) ≤ r.

The claim in this context is that there exists a constant C > 0 such that for
any K > 1, with probability at least 1− 2 exp(−x), every f ∈ F satisfies

max

{
PNf − K + 1

K
Ef,Ef − K

K − 1
PNf

}
≤ PNf+KCr

∗+
x(C + CK)

N
. (7)
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This result is Corollary 3.5 in Bartlett et al. [2005]. This is called a two-sided
bound, because both PNf − K+1

K Ef and Ef − K
K−1PNf are upper bounded (so

the empirical process f 7→ PNf is both upper and lower bounded). An upper
bound on Ef − K

K−1PNf is called an one-sided bound. The main observation
due to Mendelson [2015] that led to the development of the small ball method
was that often only one-sided bounds are needed to bound the estimation error.
Moreover, an one-sided bound can hold, while the corresponding two-sided bound
does not. Thus these one-sided bounds exist under much less stringent conditions
than two-sided bounds. The small ball method provides a general method to
establish one-sided bounds. Notice that an one-sided bound is a lower bound on
PNf . So sometimes we will call such a bound a lower bound on an empirical
process.

Finally we would like to say something about how this result can be used.
Typically it is not applied directly to the space F of functions f : X → R. It
is typically applied to a loss class, for example G = {x 7→ (f(x) − f∗(x))2 :
f ∈ F}. Thus a one-sided bound in this example leads to an upper bound on
(E− K

K−1PN )(f(x)− f∗(x))2, which is similar to the result that one can obtain
from the small ball method. Note however that this two-sided bound does not
apply to the function class G, unless one poses stringent uniform boundedness
conditions on F .

1.6 The small ball method

The small ball method was developed to prove one-sided bounds. The original
motivation for the small ball method was lower bounding the smallest singular
value of a random m× n-matrix with general random i.i.d. rows Koltchinskii
and Mendelson [2015], but it is applicable to a much wider array of problems.

A large number of papers has appeared applying the small ball method to
various estimation problems. A sequence of papers by Mendelson and co-authors
applied the small ball method to regression problems. In Lecué and Mendelson
[2013] it was applied to empirical risk minimizers. In Lecué and Mendelson
[2018, 2017a] it was used to prove bounds on the estimation error for penalized
empirical risk minimizers. The same types of arguments can be used to derive
recovery guarantees for inverse problems and sparse recovery Tropp [2015], Lecué
and Mendelson [2017b]. Finally we would like to mention Chinot et al. [2022],
where an adversarial noise model is considered.

1.7 Noise model

In this subsection we specifically focus on the small ball method applied in the
regression setup. First we recall the setup. We have random variables (X,Y ) on
X × R distributed according to P. Let µ be the law of X. Let F ⊂ L2(µ) be
closed and convex. We let f∗ ∈ F be the minimizer of E(f(X)− Y )2.

We have the following equivalent characterization of f∗. The function f∗ is
the projection of Y onto F with respect to the L2(µ) inner product. This means

13



that for all f ∈ F ,
E(f − f∗)(Y − f∗) ≥ 0.

When F is a closed subspace of L2(µ), then for all f ∈ F

E(f − f∗)(Y − f∗) = 0.

This is an orthogonality relation. We define ξ = Y − f∗(X). So ξ and f − f∗

are orthogonal. We say that the model P is well-specified if E[ξ|X = x] = 0.

In Chinot et al. [2022] an adversarial noise model is assumed. Here the
following alternative data generating setup is used. Choose f∗ ∈ F . Sample
X1, ..., XN ∈ X according to the law µ. Now an adversary can choose ξ1, ..., ξN
subject to a constraint on ∥(ξi)∥22. Conditional on the ξi the measurements
Yi = f∗(Xi) + ξi are revealed. In this context the following obstruction to
learnability exists.

Lemma 1.2. (Chinot et al. [2022]) Let 0 < ϵ < 1. Let F be a function space
with f, g ∈ F such that ∥f − g∥L2(µ) = ϵ2/8. Then

inf
f̂

sup
f∗∈F :∥(ξi)∥2

2≤Nϵ2
P (∥f̂ − f∗∥L2(µ) ≥ ϵ2/16) ≥ 3/8

This is a minimax lower bound for estimation over the class F . The infimum
in this bound is taken with respect to all possible estimators. This lower bound
says that for any estimator f̂ there exists a function f∗ and a choice of noise
vector such that the estimation error is larger than a constant with constant
probability.

Note that in the i.i.d. setting ∥(ξi)∥22 = O(ϵ2N), so that the magnitude
of the noise is similar. But Lemma 1.2 implies that the estimation error is
bounded from below by the noise level with constant probability, under a weak
condition on the function space F . Thus this lemma shows that we need to
make assumptions beyond a boundedness assumption on the noise in order to
show that the estimation error ∥f̂ − f∗∥L2(µ) →N→∞ 0.

In our results we need to make additional assumptions on the noise generating
procedure. In addition to the orthogonality relations defined above we need an
empirical counterpart to these relations.

Assumption 1.1. DN is a sample such that there exists a constant c2 sufficiently
small such that for every f ∈ F with ∥f − f∗∥L2(µ) ≥ r, then∣∣∣∣∣ 1N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)

∣∣∣∣∣ ≤ c2∥f − f∗∥2L2(µ), (8)

where ξi = Yi − f∗(Xi) and ξ = Y − f∗(X) and the expectation on the LHS
is taken with respect to (X,Y ).
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This will be the first ingredient that we need in order to demonstrate the
small ball method. Later on we will elaborate more on this type of condition
and present it in a more general framework. This inequality says that outside a
ball of radius r centered at f∗, the quantity

(PN − E)ξ(f − f∗)

can be bounded. We have formulated it here in a way so that it can be directly
applied to the empirical risk minimizer.

1.8 Approximate isometries

We have already explained that by using the small ball method makes it possible
to lower bound empirical processes. A possible outcome of the small ball method
is the following type of lower bound.

Assumption 1.2. Assume we have a sample DN such that there exists a constant
c1 sufficiently large such that whenever f ∈ F and ∥f − f∗∥L2(µ) ≥ r, then

1

N

N∑
i=1

(f − f∗)2(Xi) ≥ c1∥f − f∗∥2L2(µ) (9)

This is a lower bound on the empirical process corresponding to the function
class F = {x 7→ (f − f∗)2(x) : f ∈ F}. It says that outside of a ball of radius r
centered at f∗, the empirical process corresponding to F can be lower bounded
by the mean of this process. Details on these types of estimates are provided in
the next chapter.

The radius r in Assumption 1.1 and 1.2 depends both on the function class
F and the distribution P . The value of r in both assumptions can be computed
using a fixed point equation similar to the definition of r∗ in Equation 7. The
radius r is a problem dependent "critical radius". The point behind these two
asssumptions is that whenever ∥f − f∗∥L2(µ) ≥ r, then it can be shown that f
cannot be an empirical risk minimizer. That will also be the proof method that
we use to prove the following theorem, which is essentially due to Mendelson
[2015].

Theorem 1.1. Assume that F ⊂ L2(µ) is closed and convex. Assume that we
have a sample DN such that Assumption 1.1 and 1.2 hold with critical radius r.
Then for any empirical risk minimizer f̂ ,

∥f − f∗∥L2(µ) ≤ r.

In a later chapter we will show that under the i.i.d. assumption and under
certain conditions, it is possible to prove that the sample DN satisfies Assumption
1.1 and 1.2 with high probability.
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Proof. We need to show that whenever f ∈ F and ∥f − f∗∥L2(µ) ≥ r, then f
cannot be an empirical risk minimizer. Recall that by definition, an empirical
risk minimzer is any function f ∈ F that minimizes

PN (f(X)− Y )2.

Then, since f∗ ∈ F , for any empirical risk minimizer f ,

PN (f(X)− Y )2 − PN (f∗(X)− Y )2 ≤ 0.

In order to show that f is not an empirical risk minimizer, we need to lower
bound PNLf = PN (f(X)− Y )2 − PN (f∗(X)− Y )2.

So assume that f ∈ F and ∥f − f∗∥L2(µ) ≥ r. Then by explicit computations
it follows that

PN (f(X)−Y )2−PN (f∗(X)−Y )2 = PN (f(X)−f∗(X))2+2PN (f(X)−f∗(X))ξ.

We first lower bound the second term. By the orthogonality relation it follows
that Eξ(f(X)− Y ) ≥ 0. So adding and subtracting Eξ(f(X)− Y ) shows that

PNξ(f(X)−f∗(X)) ≥ (PN−E)ξ(f(X)−f∗(X))+Eξ(f(X)−f∗(X)) ≥ (PN−E)ξ(f(X)−f∗(X)),

where in the second step we used this orthogonality relation. Now we use
Assumption 1.1, which shows that

(PN −E)ξ(f(X)− f∗(X)) ≥ −|(PN −E)ξ(f(X)− f∗(X))| ≥ −c2∥f − f∗∥2L2(µ).

This lower bounds the second term. The first term can be lower bounded
directly using Assumption 1.2, since

1

N

N∑
i=1

(f − f∗)2(Xi) ≥ c1∥f − f∗∥2L2(µ).

So whenever f ∈ F and ∥f − f∗∥L2(µ) ≥ r, then

PNLf ≥ (c1 − 2c2)∥f − f∗∥2L2(µ)

which shows that PNLf ≥ 0 whenver c1 − 2c2 ≥ 0. This concludes the proof.

This proof shows the strategy behind many applications of the small ball
method. We want to show that a function or class of functions shares a certain
property. We show that any function that does not satisfy this property cannot
be a member of the class of functions it is presumed to live in.

To formulate this theorem a little differently, we need to show that we have
the following inclusion of sets;

{f ∈ F : PNLf ≤ 0} ⊂ {f ∈ F : ∥f − f∗∥L2(µ) ≤ r}.

This type of argument not only works for empirical risk minimizers, but can
also be applied to families of other estimators.
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1.9 Overview of the report

As mentioned we are going to focus on penalized empirical risk minimizers where
the complexity functional C(f) is a norm Ψ(f). For a given choice of norm
Ψ(f) we basically want to understand how the estimation error depends on the
trade-off parameter λ. The starting point for this problem is the paper Lecué
and Mendelson [2018], where a optimal range of values [λ0, λ1] of λ is identified
on which it is possible to upper bound the estimation error. But it is impossible
to directly use their argument to proof bounds on the estimation error outside
of this range.

The first result that we prove is an extension of their result to the range
where λ ∈ [λ0,∞). The proof of this result is substantially more straightforward
and extends to all sufficiently large values of λ. This partially answers what
happens when λ is outside the range [λ0, λ1].

When λ < λ0 we say that the penalized empirical risk minimizer is under-
regularized and now an interesting phenomenon happens. Classically speaking,
one would expect using the bias-variance decomposition, that whenever λ is
large, then the bias is large and this would make the estimation error large.
This also always happens because when λ → ∞, then the empirical risk mini-
mizer will shrink to zero. Conversely, when λ is too small, one would expect
that the variance becomes large and this would imply that the estimation er-
ror is large. In fact, when λ→ 0, then one interpolates the data if this is possible.

Sometimes the estimation error improves as λ → 0. This phenomenon is
called benign overfitting Bartlett et al. [2020]. An example is shown in Figure 1.
To understand this phenomenon many papers have been published in the last
few years. It is interesting to understand this phenomenon in the context of the
small ball method.

We want to (partially) address the following questions in this report.

(i) What is the influence of the norm Ψ on the estimation error of the penalized
empirical risk minimizer?

(ii) What is the influence of the choice of trade-off parameter λ?

(iii) What happens when the trade-off parameter λ→ 0?

In some cases, it is possible to represent the empirical risk minimizer and
the penalized empirical risk minimizer in a closed form and then some of these
questions can be answered directly based on this representation. But in general
it is not possible to find such a representation.

One of the earliest approaches to this problem is based on localized Rademacher
complexity Bartlett et al. [2002], see also the two-sided bound above. The main
drawback of this approach is that it only works in the bounded setting (both the
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function class and measurements are bounded by B a.s.). In Mendelson [2015] it
was shown that even in the bounded setting the rates obtained in Bartlett et al.
[2002] can be sub-optimal.

The paper Lecué and Mendelson [2018] extends Mendelson [2015]. It uses
the small ball method to obtain estimation bounds for penalized empirical risk
minimizers when λ is in a specific range.

Based on these previous works already question (i) and (ii) can be partially
answered. In Lecué and Mendelson [2018] it is shown that when C(f) = Ψ(f) is
a norm, sparsity of f∗ relative to Ψ improves the estimation properties of the
penalized empirical risk minimizer.

Regarding the second question in Lecué and Mendelson [2018] a specific
range of λ is identified for which the resulting penalized empirical risk estimator
defined in Equation6 attains the optimal estimation rate in a certain sense.

The third question is the recent and concerns so-called norm minimizing inter-
polating estimators. These are estimators minimizing C(f) subject to f(Xi) = Yi.
In the last few years many results have been obtained on that. In particular for
well-specified models with Gaussian noise, general results have been obtained for
example in Koehler et al. [2021]. The main advantage of the approach taken here
is that it allows for more general noise generating models and in the misspecified
setting. The approach taken here can be considered as an application of the
methods obtained in Lecué and Mendelson [2013], Mendelson [2015], Lecué and
Mendelson [2018] to extend results obtained in Chinot and Lerasle [2020], Chinot
et al. [2022] to different noise models in the interpolating and under-regularized
regime.

The report is ordered in the following way. In chapter two we review the
small ball method and prove the estimates that will be used to prove our results.
In the third chapter we will prove the main results in this report. We will try to
answer the questions posed in this introduction.
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(a) σi = exp(−i)

(b) σi = i−1 log(i+ 1)−1

Figure 1: In both pictures the estimation error as a function of the regularization
parameter is plotted. The regularization parameter is plotted on a log-scale
and normalized. The blue line is the estimation error. The orange line is the
norm of the estimator. The black line is E[Y 2] as a reference. In both pictures
ridge regression is applied with Gaussian design with covariance matrices Σ
with diagonal σi. Figure 1a: This is the classical situation where the estimation
error has a clear optimal range and respectively the bias or the variance is large
whenever λ becomes to large or too small. Figure 1b: Benign overfitting occurs.
The estimation error does not increase as λ→ 0.
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2 The small ball method

2.1 A global result.
Let µ be a probability measure on Ω and let F ⊂ L2(µ). Recall the definition of
the Rademacher complexity

Rad F = E sup
f∈F

1

N

N∑
i=1

ϵif(Xi),

where X1, ..., Xi ∈ Ω are i.i.d. random variables with law µ. The ϵi random
variables taking the value ±1 independently with probability 0.5.

The main result of this section is the following. The proof of a similar
statement was first presented in Mendelson [2015].

Theorem 2.1. Let F ⊂ L2(µ). Let T : F 7→ R+ be any function. Assume that
(ϵ, κ, r) ∈ (0, 1]× R+ × R+ is a triple that satisfies the following two properties.

1. ((delocalized) Small ball assumption) For all f ∈ F such that T (f) ≥ r,

P (f(X) ≥ κT (f)) ≥ ϵ.

2. (Rademacher bound) The Rademacher complexity of F is bounded,

Rad F ≤ κϵ

32
r.

Then, there exists an event A with probability ≥ 1− 2 exp(−ϵ2N/16), such
that on A and for all f ∈ F such that T (f) ≥ r,

#

{
i ∈ [N ] : f(Xi) ≥

κT (f)

2

}
≥ Nϵ

2
.

Before we show the proof of this statement, we first would like to say some-
thing about the assumptions in this theorem and the implications of this theorem.

The function T (f) is usually chosen to be T (f) = ∥f∥L2(µ), T (f) = ∥f∥2L2(µ)

or T (f) = E [lf − lf∗ ], for a loss function lf . So in most applications T (f) will
be chosen to be the estimation error or the excess expected risk. Depending on
the choice of T different types of estimates can be proven using this method. In
Mendelson [2015] a similar theorem was proven for T (f) = ∥f∥L2(µ).

As mentioned in the introduction, the conclusion of this theorem can be
used to lower bound various empirical processes related to statistical learning
problems. Choosing T (f) = ∥f∥L2(µ), it can be shown that on the event A
Assumption 1.2 holds with c1 = κ2ϵ

8 .

21



The theorem states that whenever T (f) exceeds some tolerance, then with
high probability at a certain fraction of instances Xi that is uniform over the
function class, |f(Xi)| exceeds some tolerance level. Then this implies a high
probability lower bound on the empirical risk associated to the function class.

Now we want to discuss the (delocalized) small ball assumption (DSBA).

Definition 2.1. (small ball condition) Any set of functions F that satisfies
condition 1 in Theorem 2.1 is said to satisfy a delocalized small ball condition.
When F satisfies that condition with r = 0, then F is said to satisfy a small ball
condition.

Compared to the small ball assumption in Mendelson [2015], this assumption
is strictly weaker, because of the observation that this assumption only needs
to hold for all f with T (f) ≥ r. We will see later that in some applications for
which the DSBA holds, the small ball assumption does not necessarily hold.

The small ball assumption is a quantitative identifiability assumption. The
function space F is identifiable if P (|f(X) − g(X)| > 0) > 0 whenever f ̸= g.
One could argue that the conclusion of Theorem 2.1 says that f, g are identifiable
using only the values of f − g on the Xi, whenever T (f − g) is sufficiently large.

The small ball assumption is scale invariant under dilation by F → cF with
c > 0. So in particular this assumption can hold for unbounded function classes.

The following important condition implies the DSBA.

Assumption 2.1. (Lp − Lq-norm equivalence) Assume that for some 1 ≤ q <
p ≤ ∞ there exists a constant B > 0, such that for all f ∈ F with ∥f∥Lq(µ) ≥ r,

∥f∥Lp(µ) ≤ B∥f∥Lq(µ).

When F satisfies Assumption 2.1 for some (p, q, r) with p > q, then by the
Paley-Zygmund inequality, F satisfies the (ϵ, κ, r) DSBA with κ ∈ [0, 1] and
T (f) = ∥f∥Lq(µ) and with

ϵ =

[
1− κq

Bq

] 2p
2p−2q

.

This result is especially useful when q = 1 or q = 2. A proof of this fact is
provided in the Appendix.

Now we give two situations where DSBA holds.

Example 2.1. (Gaussian random variables) Suppose that for any f ∈ F , f(X)
is distributed according to a Gaussian random variable with mean zero and
variance σ2

f (the variance can depend on f). For any mean zero Gaussian
random variable f ,

E|f | =
√

2

π
σ, Ef2 = σ2, Ef4 = 3σ4.
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So when q = 2 and p = 4, then it follows that we can choose

ϵ =

(
1− κ2√

3

)2

.

When q = 1 and p = 2, then we can choose

ϵ =

(
1− κ2

)2
π
2

.

This example is particularly useful when Ω = Rd is equipped with a centered
Gaussian measure and F consists of all linear functionals on Rd.

Example 2.2. (bounded random variables) Suppose that there exists a constant
b > 0 such that |f | is bounded by b almost surely for all f ∈ F . Let p = ∞. Since
for all f ∈ F , ∥f∥L∞ ≤ b it follows that Assumption 2.1 holds for all q ∈ [1,∞)
and all r > 0 with B = b/r.

So F satisfies the DSBA with κ ∈ (0, 1), q ∈ (1,∞) and with

ϵ =
rq(1− κq)

bq
.

Example 2.2 is interesting because in the bounded setting the classical SBA
(with r = 0) does not hold in general. Thus this example shows that the DSBA
is strictly more general than the classical SBA.

Before we present the proof of Theorem 2.1, we want to finish with one
remark regarding condition 2 in Theorem 2.1. We need to choose r such that

Rad F ≤ κϵ

32
r.

But Rad F = E
[
supf∈F RNf(X)

]
= O(N−1/2) for quite general function classes

(see Bartlett et al. [2005]). To obtain lower bounds on empirical processes of
order smaller than N−1/2, we need a better approach. This is the goal of the
upcoming chapters.

Now we will present the proof of Theorem 2.1.

Proof. We need to show that with high probability and a fraction of the Xi the
function value h(Xi) is larger than some critical value. It is standard to first
bound the expected value of this quantity, and then bound the deviation between
this quantity and its expectation under the imposed assumption that the Xi are
sampled i.i.d. to X with law µ. The fact that the result holds uniformly over all
f such that T (f) is sufficiently large will be critical in the applications that we
consider. Before we present the proof we need some notation.

Define the function

ϕ(t) =


0 when t < 1,

t− 1 when 1 ≤ t ≤ 2

1 when t > 2

.
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Let 1 be the indicator function. The function ϕ is 1−Lipschitz and 0 ≤ ϕ(t) ≤ 1.
Furthermore 1(x ≥ 1) ≥ ϕ(x) ≥ 1(x ≥ 2). Let F≥r = {f ∈ F : T (f) ≥ r} and
let f ∈ F≥r. Let η = η(f) = κT (f)/2.

Now we show how we decompose the quantity of interest in terms of its
expectation and its deviation around the mean. By the properties of the function
ϕ, and by adding and substracting the expectation of ϕ( f(X)

2η ) it follows that

PN1(f(X) ≥ η) ≥ PNϕ

(
f(X)

η

)
≥

Eϕ
(
f(X)

η

)
−
∣∣∣∣(PN − E)ϕ

(
f(X)

η

)∣∣∣∣ ≥
P
(
f(X)

2η
≥ 1

)
−
∣∣∣∣(PN − E)ϕ

(
f(X)

η

)∣∣∣∣ = (i) + (ii),

(10)

were the properties of ϕ and the fact that for a, b ≥ 0, |a+ b| ≥ |a| − |b|.
Now we are going to lower bound both terms uniformly over F≥r. We start

with the first term.
(i) We show that (i) ≥ ϵ. This fact follows directly from the small ball

assumption and the fact that 2η
T (f) = κ,

inf
f∈F≥r

P(
f(X)

2η
≥ 1) = inf

f∈F≥r

P(f(X) ≥ 2η

T (f)
T (f)) ≥ ϵ.

(ii) In order to bound the second term, we first apply the bounded differences
concentration inequality Z = supf∈F≥r

|(PN − E)ϕ( f(X)
η )|, see the appendix.

Recall that ϕ(x) ∈ [0, 1]. Then with probability ≥ 1− t,

sup
f∈F≥r

|(PN − E)ϕ(
f(X)

η
)| ≤ E sup

f∈F≥r

|(PN − E)ϕ(
f(X)

η
)|+

√
log(2/t)/N.

By the symmetrization inequality for Rademacher processes,

E sup
f∈F≥r

|(PN − E)ϕ(
f(X)

η
)| ≤ 2E sup

f∈F≥r

RNϕ(
f(X)

η
).

Recall that ϕ is a 1−Lipschitz function. Thus we can apply the contraction
inequality for Rademacher processes. This implies that

2E sup
f∈F≥r

RNϕ(
f(X)

η
) ≤ 4E sup

h∈F≥r

RN
f(X)

η
.

The constant η was defined as η = κT (f)/2 and for all f ∈ F≥r, T (f) ≥ r.
Further, recall that since F≥r ⊂ F , that r satisfies Rad F≥r ≤ Rad F ≤ κϵ

32r.
So

4E sup
f∈F≥r

RN
f(X)

η
≤ 8

κr
E sup

f∈F≥r

RNf(X) ≤ ϵ

4
.
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Setting t = 2 exp(−ϵ2N/16) implies that
√
log(2/t)/N = ϵ/4. Putting everything

together shows that with probability ≥ 1− 2 exp(−ϵ2N/16),

inf
f∈F≥r

1

N

N∑
i=1

1(f(Xi) ≥ η) ≥ ϵ

2
.

This proofs the theorem.

2.2 Localization: The role of convexity.

In what ways Theorem 2.1 can be adapted to obtain better lower bounds on the
associated empirical process? In general it will not be possible to do this for any
set F and any function T : F → R.

Definition 2.2. (star-shaped setting) We will say that (F , T ) is in the star-
shaped setting if

1. F is star-shaped around 0, which means that for any α ∈ [0, 1] and for any
f ∈ F , αf ∈ F .

2. for some symmetric convex subset S ⊂ L2(µ), T is of the form T (f) =
∥f∥S = inf{t ∈ R+ : f/t ∈ S}.

The first condition can always be satisfied by replacing any function space
F by the star-hull star(F , 0) = {αf : f ∈ F , α ∈ [0, 1]}. Moreover it can be
shown (see Lemma 3.9 in Mendelson [2003]) that the Rademacher complexity of
the star-hull is not significantly larger than the Rademacher complexity of the
original class. Thus in many situations only the second condition is important.

Important examples of T that satisfy condition 2 are the ∥·∥L2(µ) and ∥·∥L1(µ)

norms. Any norm ∥ · ∥ satisfies condition 2 with S the unit ball {f : ∥f∥ ≤ 1}.
We will see that it is enough for Theorem 2.1 to hold on the set {f ∈ F :

T (f) = r} for some appropriate radius r then the conclusion of Theorem 2.1 will
also hold for all f ∈ F≥r. This will motivate the idea that we will exploit. This
method is called localization.

We are going to apply Theorem 2.1 to the set F≤r = {{f ∈ F : T (f) ≤ r}}.
Now condition 2 in Theorem 2.1 will hold for F≤r if

Rad F≤r ≤ κϵ

32
r.

The following lemma implies that for any problem of star-shaped type, r∗ which
is the infimum over all r that satisfy this condition has the property that for all
r ≥ r∗ this condition also holds.

Lemma 2.1. In the star-shaped setting, for any r ≥ r∗,

Rad F≤r ≤ κϵ

32
r.
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Proof. Clearly by the star-shaped property and the definition of T , F≤r ⊂
r
r∗F≤r∗ . So by the scaling property of Rademacher complexity

Rad F≤r ≤ Rad
r

r∗
F≤r∗ =

r

r∗
Rad F≤r∗ ≤ r

r∗
κϵ

32
r∗ =

κϵ

32
r.

This concludes the proof.

Now we will present the main result of this section. This is essentially
Corollary 5.3 in Mendelson [2015].

Theorem 2.2. In the star-shaped setting, let r∗ be the infimum of all r > 0
such that the (κ, ϵ, r) DSBA holds and that

Rad F≤r ≤ κϵ

32
r.

Assume that r∗ is finite. Then with probability ≥ 1 − 2 exp(−ϵ2N/16) for all
f ∈ F with T (f) ≥ r,

#{i ∈ [N ] : |f(Xi)| ≥
κT (f)

2
} ≥ Nϵ

2
.

Proof. Applying Theorem 2.1 to the set F≤r∗ shows that with probability greater
than or equal ≥ 1− 2 exp(−ϵ2N/16), for all f ∈ F such that T (f) = r∗,

#{i ∈ [N ] : |f(Xi)| ≥
κT (f)

2
} ≥ Nϵ

2
.

But by the star-shaped condition any f ∈ F such that T (f) ≥ r∗ can be written
as f = cg for some c ≥ 1 and for g ∈ F with T (g) = r∗. The implication follows
because the condition

|f(Xi)| ≥
κT (f)

2

is invariant under scaling.

Observe that from the proof of this statement it follows that when F is a
subspace of L2(µ), then once there exists a finite r∗ that satisfies the conditions
from the theorem, then the conclusion holds with that same probability over all
of F .

Now we want to show how the conclusion of Theorem 2.1 and Theorem 2.2
can be exploited.

1. We say that F satisfies the (r, θ) empirical small ball assumption if Assump-
tion 1.2 holds with constant c1 = 2θ. That is given a sampleX1, ..., XN ∈ Ω,
for all f ∈ F such that ∥f∥L2(µ) ≥ r,

1

N

N∑
i=1

f2(Xi) ≥ 2θ∥f∥2L2(µ).
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Lemma 2.2. Under the conditions of Theorem 2.2, with T (f) = ∥f∥L2(µ),
F satisfies the (r∗, θ) empirical small ball assumption for θ = ϵκ2/8.

Proof. (see the proof of Theorem 3.1 in Mendelson [2015].) From the
conclusion it follows that whenever ∥f∥L2(µ) ≥ r∗,

PNf
2 ≥ κ2ϵ

8
∥f∥2L2(µ).

This implies the lemma.

This type of result is useful when deriving bounds on the estimation error,
because it can be applied to f − f∗ and ∥f − f∗∥L2(µ) is the estimation
error.

2. We can also apply the small ball method directly to loss classes. We let
Y be any random variable on Ω and we choose F = {(f − Y )2 : f ∈ G}
for some underlying set of random variables G. Choose for g ∈ F , T (g) =
E [g] = E

[
(f − Y )2

]
. Suppose that the set F satisfies some small ball

property. Let r∗ be the modulus of continuity of F around 0. That is r∗
is the infimum over all r > 0 such that

Rad {g ∈ conv(F , 0) : E [g] ≤ r} ≤ κϵ

32
r.

The conclusion of Theorem 2.2 implies that whenever E [g] ≥ r∗, then

PNg ≥ κϵ

4
E [g]

Now we provide a few examples showing how to compute the localized
Rademacher complexities. To show this systematically, we need to introduce
convering numbers of a class. Consider the set F equipped with the L2(µ)-norm.
This norm induces a distance function on F , given by d(f, g) = ∥f − g∥L2(µ).
We can measure the size of F in the following way. First of all f1, ..., fm ∈ L2(µ)
is a ϵ−covering of F if for all f ∈ F there exists a fi such that d(f, fi) ≤ ϵ.
We let N(F , d, ϵ) be the smallest m > 0 such that there exist a m−covering of
F . Often it is convenient to work with the entropy numbers logN(F , d, ϵ). For
many function classes the dependence of the entropy numbers on ϵ is one of
the following two types. 1. For parametric classes logN(F , d, ϵ) ∼ d log diam F

ϵ
2. For nonparametric classes we have that logN(F , d, ϵ) ∼ ϵ−α. Examples of
classes of the first type are, intuitively speaking classes that can be smoothly
parametrized by at most d parameters. Nonparametric classes are classes that
cannot be parametrized by a finite dimensional space. Examples are spaces of
Lipschitz functions, spaces of Sobolev functions or Besov functions etc. See for
example Wainwright [2019].

By Dudley’s entropy integral (see Wainwright [2019], for any ϵ ∈ R+,

Rad F ≲ ϵ+

∫ diam F

ϵ

√
logN(F , d, u)

N
du.
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1. For parametric classes,

Rad F≤r ≲ r

√
d

N
.

So when we localize in ∥ · ∥L2(µ), then it follows that r∗ = 0 if d ≲ N and
there exists no r satifying the fixed point equation otherwise. This makes
sense, since to recover a vector v ∈ Rd one can perfectly recover v when
one has at least d measurements and it is impossible to recover v otherwise.

2. A second important example of parametric classes are when Ω = Rd and
when X is a mean zero random variable on Ω with covariance matrix
Σ = E

[
XXT

]
. Let F = {f ∈ Rd : ∥f∥2 ≤ σ}. Let λ1 ≥ ... ≥ λd ≥ 0 be

the eigenvalues corresponding to Σ. From Lemma 4 in Chinot and Lerasle
[2020] it follows that

Rad F≤r ≤
√

2

N

(
d∑

i=1

λiσ
2 ∧ r2

)1/2

.

The dependence of r∗ on N depends on the rate of decay of the eigenvalues
of Σ.

3. For nonparametric classes we need to make a distinction between the cases
(a) 0 < α < 2, (b) α = 2 and (c) α > 2.

(a) When 0 < α < 2, then we can set ϵ = 0 and

Rad F≤r ≲
r1−α/2

√
N(α− 2)

.

Solving the fixed point equation shows that we can choose r∗ ∼α

N−1/α.
(b) When α = 2,

Rad F≤r ≲ ϵ+
1√
N

log
r

ϵ
.

Choosing ϵ = 1√
N

, r∗ can in principle be computed.

(c) When α > 2, then

Rad F≤r ≲
ϵ1−α/2

√
N(2− α)

+ ϵ,

which is independent of r. Choosing ϵ =
(

α−2
2
√
N

)2/α
, shows that

Rad F≤r ≲α N
−1/α.

So we can choose r∗ ∼ N−1/α.

From these examples it is clear that the dependence of r∗ onN is determined
by the dependence of N(F , d, ϵ) on ϵ.
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2.3 Weighted empirical processes: non-convex results.
In the last chapter we saw that in the star-shaped setting it was possible to
replace the global Rademacher complexity with a local variant called the modulus
of continuity. But for function classes that do not belong to this family it is in
general not possible to extend this analysis in the same way. Therefore we need
to use a family of related empirical processes. We will see that in some cases it
is possible to bound these weighted processes even when the underlying function
class is not star-shaped. We will also see that these types of processes are of
interest in the star-shaped setting, because using them it is possible to derive
results that are distinct from the results obtained in the previous sections. A
good reference for such processes is Bousquet [2002]. Right here we use these
processes from the point of view of the small ball method.

Given a set F ⊂ L2(µ), we can define some new function spaces that are
related to F . To do so, we introduce a weight function w : F 7→ R on F and
define

Fw = {f/w(f) : f ∈ F}.

First of all, observe that the DSBA still holds for an appropriate value of r if
the original function space F satisfies the DSBA. We can use both the global
result Theorem 2.1 and in the star-shaped setting we can use Theorem 2.2 in
order to lower bound the weighted empirical process associated to Fw.

So we need to relate the reweighted empirical process to the empirical process
F for appropriate weight functions w. Observe that

Ef = cPNf + w(f)
Ef − cPNf

w(f)
≤ cPNf + w(f) sup

f∈F

Ef − cPNf

w(f)
. (11)

In order to make this inequality tight, we need to choose w(f) such that Ef−cPNf
is of the same order as w(f). In particular when these two quantities are equal,
we have equality in this bound.

The first weight function we consider is w(f) =
√
Ef . This choice of weight

can be applied to obtain bounds for interpolating estimators.

Proposition 2.1. Assume that F is a set of non-negative random variables.
Let w(f) =

√
Ef and let c > 0. Define

V = sup
f∈F

Ef − cPNf√
Ef

.

Then
Ef ≤ cPNf + V

√
cPNf + V 2.

Proof. This follows from Equation 11 and the fact that x ≤ B
√
x + A, with

A =
√
cPNf and B = V implies x ≤ A+B

√
A+B2 (see Bousquet [2002]).

We do not go further into this topic, because it is not strictly necessary for
the final chapter. The premise is that outside a T (f) = Ef ball it is possible to
use Theorem 2.1 to lower bound the empirical process associated to the weighted
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function space. Then it is possible to exploit the Proposition above to lower
bound the unweighted empirical process. Examples of similar results for different
weight functions are presented in Bousquet [2002].

2.4 Further examples.
In this subsection we want to explain the relevance of the small ball method in
the context of function estimation.

Example 2.3 (Mendelson [2017]). Assume there exists a sequence fn of {0, 1}-
valued functions such that ρn = µ(supp fn) → 0. P (fn ≥ κρn) = ρn for
sufficiently large n and ∥fn∥L2(µ) = ρn. So F does not satisfy the small ball
assumption.

By this example it follows that any function space F that has the property
that it can approximate (in L2(µ)) functions of this type does not satisfy the
classical small ball assumption.

Sometimes this is a desirable property, because this example shows that fn
is 0 on the sample with probability (1 − ρn)

N . Thus when ρn is very small,
then with probability larger than some constant it is not possible to distinguish
between 0 and fn. This type of unidentifiability forms an obstruction towards
learnability. So in a sense it is good to exclude these type of functions from the
analysis.

On the other hand, it might as well be possible to sometimes include these
type of functions. Namely if ∥fn∥L2(µ) is small, then it does not matter whether
the values of fn and 0 coincide on the sample. Only functions need to be
identifiable if they are far enough from each other. This is the main motivation
for introducing the DSBA.

Now we want to show that a very large space satisfies DSBA. The idea is
that Ω is equipped with a metric d and that every f ∈ F has Lipschitz constant
Lip(f) ≤ L for some fixed constant L. Recall that the (delocalized) small ball
property holds relative to a probability measure on Ω. We need a compatibility
condition between µ and d.

Definition 2.3 (Doubling property). (Ω, µ, d) satisfies a doubling property if
∃C ∈ (0, 1) such that

µ(B(x, r)) ≥ Cµ(B(x, 2r))

for all x ∈ Ω and r > 0.

We have that µ(Ω) = 1, since µ is a probability measure. We will also assume
that (Ω, d) has a finite diameter. Without loss of generality we can assume that
d is chosen such that the diameter of (Ω, d), diam(d) = supx,y∈Ω d(x, y) = 1.

Lemma 2.3. Assume (Ω, µ, d) satisfies a doubling property with constant C and
let d = − log2(C) be the intrinsic dimensionality of (Ω, d). Assume diam(d) = 1.
Let F be a class of L−Lipschitz continuous functions. Let κ ∈ (0, 1). Then F

satisfies the (r, κ, ϵ)-delocalized small ball assumption with ϵ =
(

r(1−κ)
L

)−d

.

30



Proof. Let κ ∈ (0, 1). By assumption, f ∈ F is L−Lipschitz. Assume that
∥f∥L2(µ) ≥ r. Then since µ is a probability measure, there exists a point x ∈ Ω
such that f(x) ≥ r.

By the Lipschitz property it follows that for all y with d(x, y) ≤ r(1−κ)
L ,

f(y) ≥ κr.
By assumption diam(d) = 1 and µ(Ω) = 1. So by iterating the doubling

property it follows that

µ(B(x, 2−i)) ≥ Ciµ(B(x, 1)) = Ci. (12)

And choosing i = log2(
r(1−κ)

L ) implies that the DSBA holds with ϵ =

C log2(r(1−κ)/L), which implies the conclusion.

The doubling property holds for a variety of common metric probability
spaces. In particular Rd with the Euclidean metric satisfies the doubling prop-
erty with C = 2−d. For further examples see Stein and Murphy [1993].

The DSBA also holds for Sobolev spacesW k,p = {f ∈ Lp(µ) : for every multindex α such that |α| ≤
k,Dαf ∈ Lp(µ)}. This follows for certain ranges of k, p, logC from the Sobolev
embedding theorem. For example if logC < p, then if f ∈ W 1,p, then f ∈ Cα

with α = 1 − logC
p , where Cα is the space of α-Hölder continuous functions.

Moreover the Cα norm of f can be controlled in terms of the W 1,p norm of f ,
see Evans [1998], Heinonen et al. [2015].
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3 Applications
In the last chapter it was shown how to lower bound empirical processes. In this
chapter these results will be used to derive performance guarantees on estimators.

The plan for this chapter it to first provide some more background and results
for empirical risk minimizers. After that we will focus on results for penalized
empirical risk minimizers. An important result that motivated this report is
the main theorem in Lecué and Mendelson [2017a]. In that paper an optimal
range for the trade-off parameter λ is identified. The main gain achieved in this
report regarding these types of estimators is a simplified proof of this result.
Furthermore this simplified argument enables extending this result both to the
"over-regularized" (when λ is too large) and the "under-regularized" setting
(when λ is too small).

3.1 Setting i: General empirical risk minimization
Let F ⊂ L2(µ) and consider the problem of minimizing Ef over F . We assume
a minimizer f∗ exists. We have the following simple result.

Lemma 3.1. Consider the excess risk class G = F − f∗. Let A be any event.
Assume that there exists a constants c, r > 0 such that on the event A for all
g ∈ G with E[g] ≥ r it follows that

E[g] ≤ cPNg.

Then for any empirical risk minimizer f̂ ,

E
[
f̂ − f∗

]
≤ r.

Proof. Let ĝ = f̂ − f∗. By definition of the empirical risk minimizer, PN ĝ ≤ 0.
For sake of contradiction assume that E [ĝ] ≥ r. Then by assumption

cPN ĝ ≥ E[ĝ] ≥ r.

Thus PN ĝ ≥ r/c which is strictly positive, as c, r > 0 by assumption. Thus we
arrive at a contradiction. And it follows that E

[
f̂ − f∗

]
≤ r.

This type of result is called an exact oracle inequality. Rewrighting it says
that Ef̂ ≤ Ef∗+ r. This is an exact oracle inequality because there is a constant
one before the term Ef∗. In a non-exact oracle inequality this constant is strictly
greater than one. The term r is the complexity term. A similar type of result
is obtained in Koltchinskii [2006], in the case where F is [0, 1]-valued. Now we
show two important settings where this lemma can be applied. First we show
that we can recover this result in the bounded setting.

Example 3.1 (Uniformly bounded functions). Assume that F is a set of
functions f : Ω → [0, b] and let G = F − f∗, where f∗ again minimizes Ef over
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F . Observe that the range of the function f − f∗ + b is [0, 2b]. Let g ∈ G. It
follows that

P (g(ω) ≥ κEg) = P (g(ω) + b ≥ κEg + b)

and E[g + b] = E[g] + b. Since the function g + b has range [0, 2b] it follows from
Example 2.2 that G satisfies the (κ, ϵ, r) DSBA with κ ∈ (0, 1) and ϵ = r(1−κ)

2b .
Now we need to choose r satisfying

Rad Fr ≤ κϵ

32
,

but this needs to be done based on a case by case basis.

Example 3.2. (regression) Let Ω = Ω0 × R be a measure space equipped with
probability distribution P. Assume (X,Y ) is distributed according to P . Let
(X1, Y1), ..., (XN , YN ) be any i.i.d. sample. We let F0 be any set of real-valued
functions on Ω0 and let F = {(f(X)− Y )2 : f ∈ F0}.

By Jensens’s inequality, if F0 − Y satisfies a DSBA, then F also satisfies a
DSBA. More specifically, since the function f(x) : x 7→ x2 is convex, it follows
that E[(f − Y )2] ≤ (E|f − Y |)2. Hence

P
(
(f − Y )2 ≥ κE(f − Y )2

)
≥

P
(
(f − Y )2 ≥ κ(E|f − Y |)2

)
=

P
(
|f − Y | ≥

√
κE[|f − Y |]

)
.

Thus the loss class F satisfies DSBA if the function class F − Y satisfies
a DSBA over L1(P ). This can once again be verified for a variety of function
classes using the fact that Lp − L1 norm equivalences imply the DSBA over
L1(P ).

Secondly we need to compute the critical radius r. The computation of this
critical exponent can be reduced to the computation of two simpler radii rM and
rQ. This will be explained later.

In the exact oracle inequality, we assumed that f̂ is an empirical risk minimizer
in the sense that PN (f̂ − f∗) ≤ 0. But from the argument it directly follows
that it is possible to extend this result to approximate empirical risk minimizers.
In this case an estimator f̂ such that PN (f̂ − f∗) < r/c. This is an reoccurring
observation in this chapter.

3.2 Setting ii: Regression over L2(µ) and bounds on the
estimation error

Now we return to the problem described in the introduction. The set F is fixed
and the goal is to minimize the expected square loss over F . In the introduction
the computation of the critical radius r was not discussed in detail. In chapter
two it was already observed that the small ball method can be used to verify
Assumption 1.2. This will lead to a radius rQ. The verification of Assumption
1.1 will lead to a second critical radius rM depending on the set F and the
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distribution of the pair (X, ξ). The DSBA gives a critical radius rS . The critical
radius related to this problem then will be r = max{rS , rQ, rM}. This subsection
is based on Mendelson [2015] and it will be explicitly mentioned if something is
based on any other source.

Recall that f∗ is the minimizer of E
[
(f(X)− Y )2

]
over all f ∈ F . We

assume that the centered space Fc = F − f∗ satisfies the DSBA with parameters
(ϵ, κ, rS) with respect to T (f) = ∥f∥L2(µ). Let rQ be equal to the infimum over
all r > 0 such that

E sup
f∈F :∥f−f∗∥L2(µ)≤r

1

N

N∑
i=1

ϵif(Xi) ≤ γQr

with γQ = κϵ/32.
We have the following Lemma showing that Assumption 1.2 holds under the

previous assumptions.

Lemma 3.2. Assume that F is closed and convex. Under the previous conditions
there exists an event A with probability mass at least 1−2 exp(−ϵ2N/16) such that
Fc satisfies Assumption 1.2 with parameters r = max rS , rQ and with c1 = κ2ϵ/8.

Proof. Choosing T (f) = ∥f∥L2(µ), by Theorem 2.2 it follows that there exists
an event A with probability mass at least 1− 2 exp(−ϵ2N/16) such that

#

{
i ∈ [N ] : |f(Xi)| ≥

κ∥f∥L2(µ)

2

}
≥ Nϵ

2
.

So it immediately follows that

1

N

N∑
i=1

(f − f∗)2(Xi) ≥ ∥f∥2L2(µ)κ
2ϵ/8,

which finishes the proof.

Secondly we need to verify Assumption 1.1. Namely we need to upper bound
the supremum of the empirical process (X, ξ) 7→ ξf(X) parametrized by the
function class Fc localized around f∗. Thus we want to find a constant r > 0
such that

P

(
sup

f∈Fc:∥f∥L2(µ)≤r

1

N

N∑
i=1

ξif(Xi)− Eξf(X) ≤ γMr
2

)
≥ 1− δ/4.

We denote the infimum of all such r > 0 as rM . In order to compute rM we
relate this empirical process to the Rademacher process of (X, ξ) 7→ ξf(X) with
f ∈ Fc.

Lemma 3.3. (Giné-Zinn Symmetrization theorem) Let ϵ1, ..., ϵN be i.i.d. Rademacher
random variables. If for some r > 0 with probability at least 1− δ/4

sup
f∈Fc:∥f∥L2(µ)≤r

1

N

N∑
i=1

ϵiξif(Xi) ≤ γMr
2,
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then also for this same r with probability at least 1− δ

sup
f∈Fc:∥f∥L2(µ)≤r

1

N

N∑
i=1

ξif(Xi)− Eξf(X) ≤ γMr
2.

The Rademacher process supf∈Fc:∥f∥L2(µ)≤r
1
N

∑N
i=1 ϵiξif(Xi) can in princi-

ple be upper bounded by similar means as previous types of Rademacher complexi-
ties. By making assumptions about the noise ξ, the quantity supf

1
N

∑N
i=1 ϵiξif(Xi)

can be bounded in terms of the Gaussian complexityG(f) = E supf
1
N

∑N
i=1 gif(Xi),

where gi are i.i.d. standard Gaussian random variables. Examples can be found
in Lecué and Mendelson [2018].

Finally we would like to condense the previous two lemmas and the result
from the introduction into a single theorem. After that we give an additional
interpretation of the critical radius r in this context.

Theorem 3.1. In the regression setup, let F be a closed convex space of functions
on Ω and let (X,Y ) be a pair of random variables on Ω× R. Let r ≥ 0 be any
constant such that the following statements hold.

(i) The space F satisfies the ∥ · ∥L2(µ) DSBA with parameters (ϵ, κ, r).

(ii)

E sup
f∈F :∥f−f∗∥L2(µ)≤r

1

N

N∑
i=1

ϵif(Xi) ≤ γQr

with γQ = κϵ/32.

(iii) With probability at least 1− δ/4

sup
f∈Fc:∥f∥L2(µ)≤r

1

N

N∑
i=1

ϵiξif(Xi) ≤ γMr
2,

with γM = κ2ϵ/160.

Then for any empirical risk minimizer f̂ it follows that ∥f̂ − f∗∥L2(µ) ≤ r.

Proof. By the previous lemma, the conditions of Theorem 1.1 hold with c1 =
κ2ϵ/16 and c2 = κ2ϵ/80. So c1−2c2 is strictly positive and the result follows.

The critical radius r used here has another interpretation. Consider the
family of models M parameterized by F such that for any f∗ ∈ F the covariates
X are generated according to a fixed distribution and Y = f∗(X) + e where
e is standard normal. By a result in Lecué and Mendelson [2013] under weak
conditions the critical radius r used here is the minimax rate associated with
the class of models M . This means that for any estimator f̂ ,

sup
M

∥f̂ − f∗∥L2(µ) ≥ r

with constant probability.
Finally in situations where the underlying space F is not clear we write r(F)

for r.
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3.3 Norm penalized estimators

We adapt the framework considered in the following way. We let E be a vector
space equipped with a norm Ψ and assume that F is a subset of E. Given
f ∈ F , we denote the corresponding loss function by lf . Thus we assume that
F parametrizes a family of loss functions on Ω.

Later we will need to make certain assumptions about the loss function lf ,
but first we will will show some definitions and results that will be used in the
proofs, related to the norm Ψ.

The types of estimators we consider are f̂ minimizing

PN lf + λΨ(f),

over all f ∈ F . As always we denote by f∗ the minimizer of Elf over all f ∈ F .
It is a reasonable idea that the larger the norm of f∗ is, the more difficult it is
to estimate f∗. In general this is indeed true, but in some specific situations it is
possible to estimate f∗ with a large norm, but that satisfies a certain structural
assumption compatible with the norm. Such a compatible structure is called
sparsity. We will right now formalize this type of sparsity along the lines of
Lecué and Mendelson [2018].

This idea will lead to an adapted complexity measure ρ, that can in general be
significantly smaller than Ψ(f∗). We will now introduce this notion of complexity.
Note that on the space F , we have a function T : F → R that was used in the
small ball method.

Definition 3.1. Recall that E is a normed linear space. We denote the ball of
radius r centered at f as BΨ(r, f) = {g ∈ E : Ψ(g − f) ≤ r} and we let SΨ(r, f)
be the sphere of radius r centered at f . Denote the unit ball and unit sphere by
BΨ = BΨ(1, 0) and SΨ = SΨ(1, 0). We denote by E∗ the dual space to E con-
sisting of all continuous linear functionals on E. The dual space E∗ is equipped
with the dual norm; for a linear functional z∗ on E, Ψ∗(z∗) = supf∈BΨ

z∗(f). A
functional z∗ ∈ SΨ∗ is norming for z ∈ E if z∗(z) = Ψ(z).

Let Γf∗(ρ) ⊂ S∗
Ψ be the collection of all functionals z∗ ∈ SΨ∗ that are norming

for some f ∈ BΨ(ρ/20, f
∗). So Γf∗(ρ) ⊂ S∗

Ψ consists of all linear functionals
that are norming for an f close to f∗. We will see that a vector f ∈ E is sparse
if the set of norming functionals of f is large.

The key quantity measuring the degree of sparsity is

∆(ρ) = inf
f∈F∩SΨ(ρ,f∗)∩DT (r(ρ))

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗). (13)

In this equation, T is the function on F coming from the small ball method and
r(ρ) is the critical radius corresponding to the set Fρ = {f ∈ F : Ψ(f −f∗) ≤ ρ}.
We denote DT (r(ρ)) = {f ∈ F : T (f) ≤ r(ρ)}, where we abbreviated r(ρ) =
r(Fρ).
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It is not easy to see why ∆(ρ) is the right quantity to consider. Later on we
will provide an example to show that this indeed leads to a notion of sparsity.
Further it becomes clear that ∆(ρ) occurs naturally in the proofs.

In all of our results we need that we choose ρ (which is the complexity of f∗)
such that ∆(ρ) is non-zero.

Assumption 3.1. Let ρ > 0 be some fixed constant such that ∆(ρ) > 0. We
write f∗ = u + v with Ψ(u) ≤ ρ/20 and with z∗ norming for v, such that
∆(ρ) = z∗(v).

Now we come to the main motivating example for the theory just introduced.
We consider the linear regression setup with Ψ(f) = ∥f∥1 =

∑
|fi|. So µ is a

measure on Rd and F = Rd.
In this case f∗ is sparse whenever the number of non-zero coefficients s =

|supp f∗| = #{f∗i : f∗i ̸= 0} of f∗ is small. So if s≪ d, we can construct norming
functionals for f∗ in the following way. Recall that the dual norm to ∥ · ∥1 is
∥ · ∥∞. We let z∗i = ±1 on the support of f∗, where we choose the sign of z∗i
depending on the sign of f∗, so that z∗(f∗) = Ψ(f∗). All other coefficients of z∗
can be chosen arbitrarily. So if f∗ is s−sparse, then the set of norming funcionals
at f∗ consists of a subspace of codimension s. By the same construction we have
that whenever f1, f2 have disjoint support, then there exists a z∗ that is both
norming for f1 and f2. This idea leads to the following result.

Lemma 3.4. Lecué and Mendelson [2018] Choose T (f) = ∥f∥2. If f∗ = u+ v
and u ∈ (ρ/20)B1 and 100|supp v| ≤ (ρ/r(ρ))2, then ∆(ρ) ≥ 4ρ/5.

Proof. We need to show that for any f ∈ F ∩ SΨ(ρ, t
∗) ∩DT (r(ρ)) there exists

some z∗ ∈ Γt∗(ρ) such that z∗(f − t∗) ≥ 4ρ/5.

So let f ∈ F ∩ SΨ(ρ, t
∗) ∩DT (r(ρ)). Because Ψ(v − t∗) ≤ ρ/20, there exists

some z∗ ∈ Γt∗(ρ) that is norming for v.

Let I = supp (v). For w ∈ Rd, we denote by PIw the vector obtained by
setting all coefficients of w outside I to zero. So PIv = v and it follows that v
and PIcw have disjoint support, where Ic is the complement of I. So we can
choose z∗ such that z∗ is also norming for PIcw. Thus

z∗(w) = z∗(PIw) + z∗(PIcw) ≥ ∥PIcw∥1 − ∥PIw∥1 ≥ ∥w∥1 − 2∥PIw∥1.

By assumption ∥w∥2 ≤ r(ρ), so ∥PIw∥1 ≤
√
s∥PIw∥2 ≤

√
sr(ρ). So finally

z∗(w) ≥ ρ− 2
√
sr(ρ) ≥ 4ρ/5

precisely whenever 100s ≤ (ρ/r(ρ))2.

In general a norm does not need to have a relevant notion of sparsity, but it is
always possible to find a ρ such that ∆(ρ) = ρ. Namely if we choose ρ = 20Ψ(f∗),
then 0 ∈ BΨ(ρ/20, f

∗) and any z∗ ∈ SΨ∗ is norming for 0 and thus ∆(ρ) = ρ.
More examples can be found in Lecué and Mendelson [2018].
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Now we are going to explain how the quantity ∆(ρ) can be used in our
results.

The following two results are used in the analysis of penalized empirical risk
minimizers for the square loss. So we want to upper bound the estimation error
and we choose T (f) = ∥f − f∗∥L2(µ). From the proof of this statement it will
become clear it is possible to generalize this for other choices of T (f). We only
use the homegeneity property of T (f). This first result is used in the analysis of
over-regularized estimators.

Lemma 3.5 (Along the lines of Lecué and Mendelson [2018]). Assume that
f ∈ F with ρ∥f − f∗∥L2(µ) ≤ Ψ(f − f∗)r(ρ). Under Assumption 3.1,

Ψ(f)−Ψ(f∗) ≥ Ψ(f − f∗)

ρ
∆(ρ)− ρ/10.

Proof. Let f ∈ F and assume that ρ∥f − f∗∥L2(µ) ≤ Ψ(f − f∗)r(ρ). Let
f∗ = u+ v with z∗ such that ∆(ρ) = z∗(v) and Ψ(u) ≤ ρ/20. First note that by
duality for any z∗ with Ψ∗(z∗) ≤ 1, it follows that Ψ(f) ≥ z∗(f) for all f ∈ E.
Then by the triangle inequality

Ψ(f)−Ψ(f∗) = Ψ(f)−Ψ(u+ v) ≥ Ψ(f)−Ψ(v)−Ψ(u).

By definition of ∆(ρ) and since Ψ(f) ≥ z∗(f) one concludes that Ψ(f)−Ψ(v) ≥
z∗(f − v). Applying duality again and using that f∗ = u + v shows that
z∗(f − v) − Ψ(u) ≥ z∗(f − f∗) − 2Ψ(u). We can now multiply z∗(f − f∗) by
Ψ(f−f∗)

ρ
ρ

Ψ(f−f∗) = 1. We can moreover use that g = ρ
Ψ(f−f∗) (f−f

∗) has norm ρ

and by the condition on f − f∗ it follows that ∥g∥L2(µ) ≤ r(ρ). So now using the
definition of ∆(ρ) it follows that z∗(f − f∗) ≥ Ψ(f−f∗)

ρ ∆(ρ). Finally exploiting
that Ψ(u) ≤ ρ/20 proves the Lemma.

The following result is used in the analysis of underregularized penalized
empirical risk minimizers for the square loss.

Lemma 3.6. Whenever ρ∥f−f∗∥L2(µ) ≤ Ψ(f−f∗)r(ρ), then under Assumption
3.1,

Ψ(f − f∗) ≤ ρ
Ψ(f)−Ψ(f∗) + ρ/10

∆(ρ)
.

Proof. This Lemma follows easily from 3.5 by rearranging the conclusion.

Notice that the only used property of the function f − f∗ 7→ ∥f − f∗∥L2(µ)

was homogeneity with respect to scaling. So this proof also works for functions
T (f) that satisfy a similar homogeneity assumption. These types of functions
T (f) are going to be considered later, but we do not explicitly look at the
underregularized case in that situation.
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3.4 Setting ii revisited: Regression over L2(µ) and bounds
on the estimation error

Now we consider again the regression setting with squared loss, but with penalized
empirical risk minimizers instead of empirical risk minimizers. To be precise we
consider any minimizer of

PN (f(X)− Y )2 + λΨ(f)

with Ψ being any norm. This falls within the framework sketched in the previous
section because the loss lf (X,Y ) = (f(X)− Y )2 is parametirized by a family of
functions F in a vector space. We assume that F is closed and convex and we
once again let f∗ be any minimizer of Elf over F .

Given an estimator f̂ , we want to bound the estimation error ∥f̂ − f∗∥2L2(µ).
Recall that Ψ is a norm on F . For penalized empirical risk minimizers it is
possible to proof a variety of bounds under different conditions. A shared
property of these results is that it is useful to distinguish between the case when
∥f̂ −f∗∥L2(µ) ≤ r(ρ)

ρ Ψ(f̂ −f∗) and the case when ∥f̂ −f∗∥L2(µ) ≥ r(ρ)
ρ Ψ(f̂ −f∗).

We call these two cases respectively norm-dominated and loss-dominated results.
The idea is that we can combine a norm-dominated result and a loss-dominated
result in order to give a bound that holds for the estimator f̂ . Depending on
the problem, it is possible to choose the combination of norm-dominated and
loss-dominated bounds that is most suited for the problem or estimator at hand.
This is reminiscent of the classical bias-variance decomposition, and we will see
that these two cases also correspond to a bias-like term and a variance-like term.

The main advantage of this approach is that it is possible to more flexibly
apply these results. We will see that it is sometimes possible to either recover or
improve upon known results in the literature.

To state the results more compactly, we introduce the following notation.
We let A be an event such that

1.

sup
f∈Fc:∥f∥L2(µ),Ψ(f)≤ρ≤r(ρ)

1

N

N∑
i=1

ϵiξif(Xi) ≤ γMr
2,

with γM = κ2ϵ/160.

2. For all f ∈ F such that ∥f − f∗∥L2(µ) ≥ r(ρ),

PN (f − f∗)2 ≥ κ2ϵ

8
E(f − f∗)2.

By the Lemma 3.2 and Lemma 3.3 the event A can be chosen to have
probability mass at least 1− 2 exp(ϵ2N/16)− δ. So in the rest of this chapter
we will say that the event A holds if the these two statements hold.

Also recall the definition of Lf = lf − lf∗ and Lλ
f = Lf + λ(Ψ(f)−Ψ(f∗))

which will be used in this chapter.

40



3.4.1 Results for (over-)regularized estimators

The following result is a generalization of the main result in Lecué and Mendelson
[2018]. The main difference between their approach and the approach taken here
is that the proof is structured in a more efficient way. This makes the proof of
this result more comprehensible. The following result holds for all λ that are
sufficiently large.

Theorem 3.2. Let f̂ be the λ−penalized empirical risk minimizer. Let ρ > 0
and recall the definition of the sparsity parameter ∆(ρ). Let λ0 be defined by the
equation λ = λ0

κ2ϵ
80ρr

2(ρ). Then on A,

∥f̂ − f∗∥L2(µ) ≤ r(ρ)max{1, ρ/10

λ0∆(ρ)− ρ
, λ0/9}, (14)

whenever λ0∆(ρ)− ρ > 0.

First of all this theorem has the following interpretation. Recall that r(ρ) is
more or less the rate that one would expect to be attained whenever one performs
empirical risk minimization over the set Fρ = {f ∈ F : Ψ(f − f∗) ≤ ρ}. Thus
whenever ρ is sufficiently large, and given a proper choice of λ it follows that it
is possible to recover f∗ just as accurately as if the set Fρ is known beforehand.
This phenomenon is called adaptivity of the estimator f̂ to the choice of ρ.

The proof incorporates quite a few of the steps of the original proof of a
related statement in Lecué and Mendelson [2018]. The main difference is that
the proof is simplified and it is easier to generalize this proof to different settings.

A direction in which this result can be generalized is to estimators that are
only approximate minimizers to the penalized empirical risk functional. Recall
that a penalized empirical risk minimizer f̂ also minimizes PNLλ

f and that
PNLλ

f̂
≤ 0. An estimator is called an α−approximate penalized empirical risk

minimizer if PNLλ
f̂
≤ α2. These types of results are a straightforward extension

of the proofs presented here. But first we want to discuss what this result states
about the choice of optimal trade-off parameter λ.

The rescaled trade-off parameter λ0 is used, because it is "dimension-
less".Indeed, when we rescale the norm Ψ → cΨ, then in order for the estimator
to remain the same one needs to rescale λ also appropriately. But under this
rescaling λ0 remains constant. Also one can rescale (f, Y ) → (cf, cY ) and λ0
also does not change whenever one rescales λ to compensate for this second
transformation. From a physics point of view these two different types of trans-
formations correspond to different units and λ0 is dimensionless in this sense.
Thus it becomes interesting to understand the dependence of the proportionality
constant κ2ϵ

8ρ r
2(ρ) on ρ, because this says something about how the optimal

parameter λ needs to be chosen. In particular when this proportionality constant
is independent of ρ then it is possible to use the same value of λ. Sometimes
r2(ρ)/ρ is not constant. For example, as we will see, when rQ(ρ) > rM (ρ),
then r2(ρ) is a quadratic function of ρ. So in that case r2(ρ)/ρ is not constant.
In Lecué and Mendelson [2018] a variety of examples are presented were this
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proportionality constant is independent of ρ. For example this happens for the
LASSO, slope and trace-norm regression.

Choice of λ

From the previous result it becomes clear that choosing λ0 ∼ 1 is optimal.
Thus the optimal choice of λ, which is the parameter that is important in
practice should be chosen in the order of magnitude of r2(ρ)/ρ. Depending
on the application, sometimes the size of r(ρ) can be estimated. For example
when one has control over the measurements Xi and one has an idea about the
characteristics of the noise, it is possible to estimate r(ρ) for fixed ρ. Alternatively
r(ρ) can be computed conditionally on the Xi when one has an idea about the
noise level. But in general the value of ρ is not known (because it depends on
f∗ which is unknown). Therefore it is of interest to understand under what
conditions r2(ρ)/ρ is independent of the value of ρ.

When F is a vector space, it is is possible to determine the dependence of
r2(ρ) on ρ.

Lemma 3.7. Assume that F is a vector space. Then rQ(ρ) = ρrQ(1).

Proof. Let s = ρrQ(1) and notice that

1

ρ
E sup

f :Ψ(f)≤ρ,∥f∥L2(µ)≤s

1

N

N∑
i=1

ϵif(Xi) = E sup
f :Ψ(f)≤1,∥f∥L2(µ)≤s/ρ

1

N

N∑
i=1

ϵif(Xi) ≤ γQs/ρ.

Letting s̃ = s/ρ and substituting this in the equation above shows that rQ(1)
is equal to the infimum over all s̃ satisfying the equation above. Thus rQ(ρ) =
ρrQ(1).

Thus when rQ(ρ) dominates, r2(ρ) ∼ ρ2 and by dimentionality arguments it
is reasonable to expect that Ψ(f)2 is a reasonable penalty function in this case.
These different types of penalty functions are not discussed further.

Relationship to the main result in Lecué and Mendelson [2018]

The main result in Lecué and Mendelson [2018] can be recovered, since assuming
that we choose ρ such that ∆(ρ) ≥ 4ρ/5, then in order for the RHS of Equation
17 to be equal to r(ρ), we can choose λ0 satisfying 11

8 ≤ λ0 ≤ 9. Thus we can
prove the following corollary.

Corollary 3.1. Lecué and Mendelson [2018] Let f̂ be a penalized empirical risk
minimizer. Let ρ > 0 with ∆(ρ) ≥ 4ρ

5 . Whenever

11κ2ϵ

640ρ
r2(ρ) ≤ λ ≤ 9κ2ϵ

80ρ
r2(ρ), (15)

then ∥f̂ − f∗∥L2(µ) ≤ r(ρ) and Ψ(f̂ − f∗) ≤ ρ.
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Approximate minimizers

Until now, mostly estimators were considered that minimize PN lf + λΨ(f).
For any such minimizer f we have that PNL

λ
f ≤ 0. Right here we consider

approximate minimizers f̂α which are any estimator such that PNL
λ
f ≤ α2. Due

to the nature of the proofs it is straightforward to extend these results.
We only provide an analogue of Theorem 3.2.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have that

∥f̂α − f∗∥L2(µ) ≤ r(ρ)max

1,
ρ/10 + ρ 80α2

κ2ϵr2(ρ)

λ0∆(ρ)− ρ
,
λ0
18

+

√
λ20
324

+
80α2

9κ2ϵr2(ρ)

 ,

(16)
for any α2−approximate penalized risk minimizer f̂α.

Even though this expression on the RHS looks complicated it reduces to the
result in Theorem 3.2 when α = 0. It can also be observed that as long as

80α2

κ2ϵr2(ρ)
≲ 1

the rate of convergence (as N → ∞) is of the same order as the rate that would
be obtained for an exact (= not approximate) penalized empirical risk minimizer.
To obtain a similar rate of convergence an optimization problem only needs to
be solved up to an accuracy proportional to r2(ρ).

3.4.2 Under-regularized estimators

In the previous subsection, risk bounds were proven that hold when λ0∆(ρ)−ρ >
0. So when λ0 is too small, this bound is not useful. The following result holds
for arbitrary small λ0.

Theorem 3.4. Let f̂ be the λ−penalized empirical risk minimizer. Let ρ > 0
and recall the definition of the sparsity parameter ∆(ρ). Let λ0 be defined by the
equation λ = λ0

κ2ϵ
80ρr

2(ρ). Then on A,

∥f̂ − f∗∥L2(µ) ≤ r(ρ)max{1, Ψ(f̂)−Ψ(f∗) + ρ/10

∆(ρ)
, λ0/9}, (17)

whenever λ0∆(ρ)− ρ > 0.

The proof of this statement follows actually very direct from the sublemmas
used in the proof for the over-regularized case (see the proofs section).

These types of under-regularized estimators are quite topical, because from
the classical point of view these types of under regularized types of estimators
should not be able to perform well. From the classical point of view the parameter
λ should be finely tuned in order to balance the bias and variance of the estimator.
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Before we compare this result to some other results in the literature, we first
illustrate the bounds that can be expected to be derived from this theorem. The
quantity on the right hand side in Equation 17 is random, because in general
Ψ(f̂) is a random quantity. So one needs to bound Ψ(f̂). How large Ψ(f̂) is, is
highly problem dependent. Some examples are provided in Chinot et al. [2022],
Koehler et al. [2021]. In general it seems that one can expect that

Ψ(f̂) ≤ Ψ(f∗) +O(|ξ|).

As a consequence, according to this bound, we need O(|ξ|)+ρ/10
∆(ρ) ≤ 1 in order to

obtain a bound of similar order as for an optimal choice of λ in Corollary 3.1.

Now we would like to relate this result to some other results in the literature.
For this we make a distinction between the situation where the signal to noise
ratio is low (when rM > rQ) and the situation where the signal to noise level
is high (when rQ > rM ). Under a high signal to noise level this result is very
similar to the main theorem in Chinot et al. [2022]. The difference between this
result is that they consider adversarial noise, while here we consider the situation
where the noise ξ is sampled i.i.d. according to a fixed distribution. But this
difference is immaterial when the signal to noise level is high.

Now we consider the situation with a low signal to noise ratio. Here we need
to make a distinction. In the literature there exist many results where bounds on
the estimation error are proven under the condition that Y = f∗(X) + e with e
a mean zero Gaussian, f∗ ∈ F and with F a vector space. But this result holds
under much weaker conditions. The only condition related to the distribution
of the noise is through the definition of the critical radius rM . In general it
is not possible to recover the aforementioned results under the Gaussian noise
assumption using Theorem 3.4.

In Shamir [2022] it is shown that these types of severely under-regularized
estimators are biased towards an inconsistent solution in general. This indicates
that for general noise models (in general) these under-regularized estimators
perform far worse than regularized models with an optimal choice of λ. Only
under Gaussian noise assumptions these types of estimators can in general be
expected to be consistent. So an interesting problem would be to exploit this
Gaussianity assumption in the general context that we consider right here. This
problem has already been discussed in Zhou et al. [2021], Koehler et al. [2021]
under the additional assumption that not only the noise is Gaussian but also
that the vector of covariates is multivariate Gaussian. The main tool that was
used in these results is the Convex Gaussian Min-max Theorem Thrampoulidis
et al. [2014]. The small ball method and the convex Gaussian Min-max Theorem
seem to be interrelated, as for a lot of applications where the small ball method
was used, the Convex Gaussian Min-max Theorem is also applicable (see the
applications in Thrampoulidis et al. [2014] and Thrampoulidis et al. [2015] and
compare to Koltchinskii and Mendelson [2015]).
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3.5 Proof of previous results
3.5.1 Norm dominated bounds

The first result is a variant of the argument in Lecué and Mendelson [2018],
with the main difference that it holds for a larger range of values of λ. The
main result in Lecué and Mendelson [2018] is stated for completeness later this
chapter.

Lemma 3.8. Let ρ > 0. Recall the definition of r(ρ). Let λ = λ0
κ2ϵ
80ρr

2(ρ).
Assume that λ0 is sufficiently large such that λ0∆(ρ) > ρ. Then, on A, for any
λ−penalized empirical risk minimizer f̂ ,

∥f̂ − f∗∥L2(µ) ≤ r(ρ)
ρ/10

λ0∆(ρ)− ρ
(18)

whenever ρ∥f̂ − f∗∥L2(µ) ≤ r(ρ)Ψ(f̂ − f∗).

Proof. Assume that f ∈ F and ρ∥f − f∗∥L2(µ) ≤ r(ρ)Ψ(f − f∗). Define Lλ
f =

Lf + λ(Ψ(f) −Ψ(f∗)) where Lf = lf − lf∗ . Since f∗ ∈ F and because f̂ is a
penalized empirical risk minimizer it follows that PN lf̂ +λΨ(f̂) ≤ PN lf +λΨ(f)

for all f ∈ F . So PNLλ
f̂
≤ 0. We are going to show that PNLλ

f > 0 whenever

∥f − f∗∥L2(µ) ≥ r(ρ) ρ/10
λ0∆(ρ)−1 . Because PNLλ

f̂
≤ 0 this implies the conclusion of

the theorem.
First we write out the definition of PNLλ

f . Recall that PNLf = PN (f(X)−
Y )2 − PN (f∗(X)− Y )2 = PN (f(X)− f∗(X))2 + 2PNξ(f(X)− f∗(X)). So

PNLλ
f = PN (f(X)− f∗(X))2 + 2PNξ(f(X)− f∗(X)) + λ(Ψ(f)−Ψ(f∗)).

We need to lower bound PNLλ
f and in order to do so we are going to lower bound

each of these three terms.
The first term is non-negative.
The second term can be bounded using a similar method as the method used

for empirical risk minimizers. Let C > 0 be any constant to be determined later.
We want to lower bound 2PNξ(f(X)− f∗(X)). By the convexity of F it follows
that 2Eξ(f(X)− f∗(X)) ≥ 0 (this is the orthogonality relation). So

2PNξ(f(X)− f∗(X)) ≥ 2(PN − E)ξ(f(X)− f∗(X)).

Now we use a homogeneity argument. Let σ = Cρ/Ψ(f − f∗). Define g =
ρ

Ψ(f−f∗) (f − f∗). It directly follows that Ψ(g) ≤ ρ and by the condition on f it
follows that ∥g∥L2(µ) ≤ r(ρ).

But recall that by the definition of rM (ρ) it follows that with probability at
least 1− δ

sup
f∈Fc:Ψ(f)≤ρ,∥f∥L2(µ)≤r(ρ)

(PN − E)|ξf | ≤ κ2ϵ

160
r2(ρ), (19)
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where Fc = F − f∗ is F centered around f∗. Now it follows that

2(PN−E)ξ(f(X)−f∗(X)) ≥ 2C

σ
(PN−E)ξg ≥ 2C

σ
(PN−E)(−|ξg|) ≥ −2C

σ

κ2ϵ

160
r2(ρ).

So the second term can be lower bounded by −C
σ

κ2ϵ
80 r

2(ρ).
Finally we lower bound the last term. By lemma 3.5 it directly follows that

Ψ(f)−Ψ(f∗) ≥ Ψ(f − f∗)

ρ
∆(ρ)− ρ/10.

Multiplying by C/C and recalling the definition of ρ shows that Ψ(f−f∗)
ρ ∆(ρ)−

ρ/10 = C
σ∆(ρ)− ρ/10.

Putting everything together shows that

PNLλ
f ≥ −C

σ

κ2ϵ

80
r2(ρ) +

λC

σ
∆(ρ)− λρ/10.

So PNLλ
f > 0 if

λ

(
C∆(ρ)

σ
− ρ/10

)
>
C

σ

κ2ϵ

80
r2(ρ).

Using the fact that λ = λ0
κ2ϵ
80ρr

2(ρ), it follows that PNLλ
f > 0 if λ0

(
C∆(ρ)

ρ − σ/10
)
>

C. Rearranging, this condition is equivalent to the condition that C
(
λ0

∆(ρ)
ρ − 1

)
>

σ/10.
Now we can make some assumptions. Right here we assume that σ ≤ 1. This

implies that under the condition that

C >
1/10

λ0
∆(ρ)
ρ − 1

,

it follows that PNLλ
f > 0.

To recap we have shown that for the choice of the constant C large enough
it follows that, whenever σ ≤ 1, f cannot be an empirical risk minimizer. So for
any empirical risk minimizer f̂ it follows that σ > 1. Using the definition of σ
shows that

Cρ/Ψ(f̂ − f∗) > 1

which implies an upper bound on Ψ(f̂ − f∗). Finally using the norm dominating
condition implies the Lemma.

Lemma 3.9. In the regression setting, when ρ∥f̂ − f∗∥L2(µ) ≤ r(ρ)Ψ(f̂ − f∗),
then

∥f̂ − f∗∥L2(µ) ≤ r(ρ)
Ψ(f̂)−Ψ(f∗) + ρ/10

∆(ρ)
.

Proof. This result follows directly from Lemma 3.6 in combination with the
norm dominated condition.
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3.5.2 Loss dominated bounds

The following theorem is a variant of the main result in Lecué and Mendelson
[2018], in the loss dominated setting, with the main difference that it holds for
all λ.

Lemma 3.10. Recall the definition of r(ρ). Let λ = λ0
κ2ϵ
80ρr

2(ρ). Then on the
event A, for any λ−penalized empirical risk minimizer f̂ ,

∥f̂ − f∗∥L2(µ) ≤ r(ρ)max{1, λ0/9} (20)

whenever ρ∥f̂ − f∗∥L2(µ) ≥ r(ρ)Ψ(f̂ − f∗).

Proof. Assume that f ∈ F and that ρ∥f − f∗∥L2(µ) ≥ r(ρ)Ψ(f − f∗). We
are going to show that whenever ∥f − f∗∥L2(µ) > r(ρ)max{1, λ0ρ/4}, then
PNLλ

f > 0. By Proposition 5.2

PNLλ
f ≥ PN (f(X)− f∗(X))2 + 2PNξ(f(X)− f∗(X)) + λ(Ψ(f)−Ψ(f∗)) (21)

Now we first lower bound the first two terms of the right hand side by a
scaling argument. Let g = r(ρ)

∥f−f∗∥L2(µ)
(f − f∗). By the definition of g it directly

follows that ∥g∥L2(µ) = r(ρ). Additionally by the loss dominated condition
it follows that Ψ(g) ≤ ρ. Denote by σ = r(ρ)

∥f−f∗∥L2(µ)
. First multiplying by

σ2/σ2 = 1 and noting that σξ(f(X)− f∗(X)) = ξg it follows that

PN (f − f∗)2 + 2PNξ(f(X)− f∗(X))

=
1

σ2

[
PNg

2 + 2σPNξg
]

≥ 1

σ2

[
PNg

2 − 2σPN |ξg|
]
.

Now we are going to again lower bound both terms in this expression. The
first term can be lower bounded by observing that Eg2 = r2(ρ) ≥ rQ(ρ). So by
the small ball method it follows that PNg

2 ≥ κ2ϵ
8 Eg2 = κ2ϵ

8 r2(ρ). The second
term can be lower bounded in exactly the same way as in Equation 19. This
shows that PNξg ≥ −PN |ξg| ≥ −κ2ϵ

80 r
2(ρ).

Now we assume that σ ≤ 1. It directly follows that

1

σ2

[
PNg

2 − 2σPN |ξg|
]
≥ 1

σ2

[
PNg

2 − 2PN |ξg|
]
≥ 1

σ2

[
9κ2ϵ

160
r2(ρ)

]
.

Finally by definition of σ it follows that 1
σ2

[
9κ2ϵ
80 r2(ρ)

]
= 9κ2ϵ

80 ∥f − f∗∥2L2(µ),
which lower bounds the first two terms.

Bounding the last term of Equation21 is easier. By the triangle inequality
and the loss-dominating condition

λ(Ψ(f)−Ψ(f∗)) ≥ −λΨ(f − f∗) ≥ − λρ

r(ρ)
∥f − f∗∥L2(µ).
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Thus PNLλ
f > 0 if

9κ2ϵ

80
∥f − f∗∥2L2(µ) >

λρ

r(ρ)
∥f − f∗∥L2(µ).

Dividing both sides by ∥f − f∗∥L2(µ) shows that this happens when ∥f −
f∗∥L2(µ) >

80λρ
9κ2ϵr(ρ) = r(ρ)λ0

9 , where the equality follows from the definition of λ
in terms of λ0.

Thus we have proven that PNLλ
f > 0 if ∥f − f∗∥L2(µ) > r(ρ)λ0

9 and r(ρ) <
∥f − f∗∥L2(µ). This finishes the proof.

Now we can finish the proofs of Theorem 3.2 and 3.4. Theorem 3.2 directly
follows from Lemma 3.8 and Lemma 3.10. Theorem 3.4 directly follows from
Lemma 3.9 and Lemma 3.10.

3.5.3 Approximate minimizers

As mentioned, the proofs for approximate minimizers follow directly from the
proofs of the previous lemmas. We will proof both a norm dominated and a loss
dominated analogue that will jointly imply Theorem 3.3. Because the statements
and proof are so similar to the proofs of Lemma 3.10 and 3.8, we will only point
out the differences between both proofs. First the norm dominated statement.
By the proof of the norm dominated statement, we have that

PNLλ
f ≥ λ

(
C∆(ρ)

σ
+ ρ/10

)
− C

σ

κ2ϵ

80
r2(ρ).

Thus PNLλ
f > α2 if

λ

(
C∆(ρ)

σ
ρ/10

)
>
C

σ

κ2ϵ

80
r2(ρ) + α2.

Performing the same steps as in the proof of Lemma 3.8 and assuming that
σ ≤ 1 shows that PNLλ

f > α2 when

C >
1/10 + 80α2

κ2ϵr2(ρ)

λ0∆(ρ)/ρ− 1
,

which finishes the norm dominated part.

The loss dominated result follows in a similar way. Namely we have in that
case that PNLλ

f > α2 if

9κ2ϵ

80
∥f − f∗∥2L2(µ) >

λρ

r(ρ)
∥f − f∗∥L2(µ) + α2.
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Multiplying this equation by 80
9κ2ϵ and applying the quadratic formula shows

that PNLλ
f > α2 if

∥f − f∗∥L2(µ) > r(ρ)
λ0
18

+

√
r2(ρ)

λ20
324

+
80α2

9κ2ϵ
,

which implies a loss dominated statement. These two results combined imply
Theorem 3.3.

3.6 Setting i revisited: General penalized empirical risk
minimization

Now we revisit the problem of empirical risk minimization for general loss
functions, in the context of penalized estimators. Given a linear space E
equipped with norm Ψ, let F be a subset of E. For every f ∈ F , let lf be a loss
function on a probability space Ω. So F parameterizes a family of loss functions
on Ω. Given an i.i.d. sample X1, .., XN ∈ Ω, we consider any estimator lf̂ that
minimizes

PN lf + λΨ(f)

over all f ∈ F . The goal is to minimize Elf over F . Let f∗ be any minimizer
of Elf in F (which we assume exists). We measure how good an estimator is
in terms of the excess risk E

[
lf̂ − lf∗

]
. Right here we are going to assume that

lf − lf∗ is of a certain form.
Recall that in the context of penalized estimators in regression, homogeneity

played an important role in the proofs. We will make a similar assumption. First
we will write lf − lf∗ = B(f − f∗, f∗). So B(f − f∗, f∗) is a loss function on
Ω parameterized by f − f∗ and f∗. We will assume that B is homogeneous of
order α ≥ 1 under scaling of f − f∗, which means that for any constant c ≥ 0

B(c(f − f∗), f∗) = cαB(f − f∗, f∗).

Important examples of loss functions of this type are linear and quadratic
forms in f − f∗. An example of a loss function that is homogeneous of order
1 is shown in Vu et al. [2013], where sparse principal component analysis is
considered with a ∥ · ∥1 norm penalty. Notice that for example the regression
setting does not fall within this framework, because here lf − lf∗ is the sum of
two homogeneous loss functions. The result below can be generalized to sums of
homogeneous loss functions. To keep the proofs short and simple we will state
and proof the results only for a single homogeneous loss function.

As mentioned, regression with respect to the squared loss falls within this
framework. Another motivation is provided by computing a truncated Taylor
expansion of lf − lf∗ around f∗ which also leads to a representation of this form.
Especially this second example shows that a wide range of loss functions lf − lf∗

admits such a representation.
Now we present a result when B is homogeneous of order α which is an

analogue to Theorem 3.2. We present it in a fashion similar to Corollary 3.1.
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Theorem 3.5. Assume that lf − lf∗ = B(f − f∗, f∗) is homogeneous of order
α ≥ 1. Let T (f) = E [lf − lf∗ ]. Recall the definition of ∆(ρ) for a general
function T (f) on F and choose ρ > 0 such that ∆(ρ) ≥ 4ρ

5 . Let r, C1, C2 be
constants such that

1. (Rademacher bound)

E sup
f∈F :Ψ(f−f∗)≤ρ,T (f)≤r

1

N

N∑
i=1

ϵi(lf − lf∗)(Xi) ≤ C1r

2. (Small ball assumption) For all f ∈ F with Ψ(f − f∗) ≤ ρ and T (f) ≥ r,
we have that

PN (lf − lf∗) ≥ C1T (f).

Define the normalized regularization parameter λ0 by λ = λ0
20r
ρ . Assume that

λ0 satisfies C2 < λ0 < 20C1. Then any penalized empirical risk minimizer f̂
satisfies

T (f̂) ≤ r.

First we proof a lemma that is an exact analogue of Lemma 3.5.

Lemma 3.11. Recall the definition of ∆(ρ) for a general function T . Then for
any f ∈ F with ραT (f) ≤ r(ρ)Ψ(f − f∗)α,

Ψ(f)−Ψ(f∗) ≥
[

ρ

Ψ(f − f∗)

]α
T (f)− ρ/10.

Proof. By the proof of Lemma 3.5 we have that

Ψ(f)−Ψ(f∗) ≥ z∗(f − f∗)− ρ/10.

Once again a scaling argument is applied. Let g = ρ
Ψ(f−f∗) (f − f∗). Observe

that Ψ(g) = ρ and by homogeneity,

T (g) = EB(g, f∗) =

[
ρ

Ψ(f − f∗)

]α
EB(f − f∗, f∗) =

[
ρ

Ψ(f − f∗)

]α
T (f).

Finally using the norm dominated condition shows that T (g) ≤ r(ρ). It
now follows from the definition of ∆(ρ), that z∗(f − f∗) = Ψ(f−f∗)

ρ z∗(g) =
Ψ(f−f∗)

ρ ∆(ρ).

Lemma 3.12. Assume that λ > 20C2r
ρ . For any f ∈ F such that ραT (f) ≤

rΨ(f − f∗)α and Ψ(f − f∗) ≥ ρ and T (f) ≥ r,

PN (lf − lf∗) + λ(Ψ(f)−Ψ(f∗)) > 0.

A direct consequence of this result is that in the norm dominated setting
whenever λ is large enough it follows that Ψ(f̂ − f∗) < ρ or T (f̂) < r. But the
norm dominated condition implies that when Ψ(f̂ − f∗) < ρ, then T (f̂) < r.
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Proof. Let f ∈ F such that ραT (f) ≤ rΨ(f − f∗)α and Ψ(f − f∗) ≥ ρ and
T (f) ≥ r. Let g = ρ

Ψ(f−f∗) (f − f∗). By the proof of Lemma 3.11, Ψ(g) = ρ

and T (g) ≤ r. Also B(f − f∗, f∗) =
[
Ψ(f−f∗)

ρ

]α
B(g, f∗). But Ψ(f−f∗)

ρ ≥ 1, so
B(f − f∗, f∗) ≥ B(g, f∗). We are going to lower bound PN (lf − lf∗). Using the
fact that f∗ is an empirical risk minimizer shows that

PN (lf − lf∗) = E(lf − lf∗)+(PN −E)(lf − lf∗) ≥ (PN −E)(lf − lf∗) ≥ −2C2r(ρ),

where the last inequality follows from the symmetrization theorem and the
Rademacher condition.

By Lemma 3.11 and the norm dominating condition, it follows that

λ(Ψ(f)−Ψ(f∗)) ≥ λ

[(
T (f)

r

)α

∆(ρ)− ρ/10

]
.

Using that T (f) ≥ r and the fact that ∆(ρ) ≥ 4ρ/5 shows that

PN (lf − lf∗) + λ(Ψ(f)−Ψ(f∗)) > 0

if λρ/10 > 2C2r, which proves the lemma.

Finally we are going to proof a loss dominated result.

Lemma 3.13. Let f ∈ F such that ραT (f) ≥ rΨ(f − f∗)α. Then

PN (lf − lf∗) + λ(Ψ(f)−Ψ(f∗)) > 0

if C1T (f) > λρ
[
T (f)
r

]1/α
.

Proof. Let f ∈ F such that ραT (f) ≥ rΨ(f − f∗)α. Once again we apply a

scaling argument. This time we let g =
[

r
T (f)

]1/α
(f−f∗). An easy computation

using the homogeneity of B shows that T (g) = r. By the loss dominated
condition, it follows that Ψ(g) ≤ ρ. Now we use the small ball assumption. By
the definition of g, we have that

PN (lf−lf∗) = PNB(f−f∗, f∗) = T (f)

r
PNB(g, f∗) ≥ T (f)

r
C1EB(g, f∗) = C1T (f).

Now we lower bound λ(Ψ(f) − Ψ(f∗)) exactly in the same way as in the
proof of Lemma 3.10. By the loss dominating condition it follows that

λ(Ψ(f)−Ψ(f∗)) ≥ −λρ
[
T (f)

r

]1/α
.

So putting both bounds together shows that

PN (lf − lf∗) + λ(Ψ(f)−Ψ(f∗)) > 0

51



if C1T (f) > λρ
[
T (f)
r

]1/α
.

Recall that λ = λ0
20r
ρ . The condition that C1T (f) > λρ

[
T (f)
r

]1/α
is equiv-

alent to 20C1T (f)
1−1/α > λ0r

1−1/α. So if T (f) > r, it is sufficient to choose
C1 > λ0/20.
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4 Discussion and conclusion
In this report we developed a version of the small ball assumption that is useful
for a wider variety of function classes. This extension is called the delocalized
small ball assumption (DSBA), because it only needs to hold outside of a ball of
radius r. It was shown that the DSBA can be applied in the bounded setting
and to functions in Sobolev spaces that lie above the critical line for the Sobolev
embedding theorem.

The application of the small ball method to regression problems was explained.
A simplified proof of a statement due to Lecue and Mendelson Lecué and
Mendelson [2018] was given, which afforded generalizing this result. In Lecué
and Mendelson [2018] various applications were discussed using the standard
small ball assumption, but further applications using the DSBA were not given.
So it would be interesting to see what results could be obtained by applying the
DSBA to this setting.

Our simplified proof provides in a reasonably direct way new bounds for
under regularized penalized empirical risk minimizers. It is clear that this new
bound is not optimal for models having Gaussian noise. In general it is unclear
whether this result can be improved, e.g. under Gaussian noise assumptions.

The DSBA was applied to generic empirical risk minimizers. Here it was
possible to recover a result from Bartlett et al. [2005] up to constants. Regarding
generic penalized empirical risk minimizers, a result was established analogous
to Theorem 3.2. A certain homogeneity assumption were presupposed. Also in
this setting it would be interesting to see what results can be obtained in specific
applications.

It is further interesting to analyze to which settings the DSBA can be applied,
e.g. in hypothesis testing. Furthermore contraction rates for Bayesian estimators
can be established under the condition that certain tests exist (see Theorem 8.9
in Ghosal and Van der Vaart [2017] for example). It would be of interest to
understand how the small ball method can be applied in those settings.

53



54



5 Appendix
In this section some background results are stated and proven.

5.1 Basic results
First we discuss some properties of the functional Lλ

f that are used in this report.

Proposition 5.1. Whenever f̂ is a minimizer of the penalized empirical risk
functional f 7→ PNLλ

f and f∗ minimizes the population risk, then

1. PNLλ
f∗ = 0

2. PNLλ
f̂
≤ 0

Proof. The first statement in this proposition immediately follows from the
definition of Lλ

f and the second part follows from the fact that f̂ minimizes
PNLλ

f̂
over F and the fact that f∗ ∈ F .

The following lower bound on the empirical penalized excess risk is often
used.

Proposition 5.2. Recall that ξ = f∗(X) − Y . Assume that f∗ minimizes
f 7→ E[(Y − f(X))2] in F . Then

PNLf ≥ PN (f − f∗)2(X) + 2(PNξ(f − f∗)(X)− Eξ(f − f∗)(X)). (22)

Proof. By definition,

PNLf =PN lf − PN lf∗ = PN (Y − f(X))2 − PN (Y − f∗(X))2

=PN (f − f∗)2(X) + 2(PNξ(f − f∗)(X).

It remains to show that Eξ(f − f∗)(X) ≥ 0. This follows because f∗ minimizes
E(Y − f(X))2. Thus for any f ∈ F we have that 0 ≥ E(Y − f∗(X))2 − E(Y −
f(X))2 = E(f−f∗)2(X)−2Eξ(f−f∗)(X) ≥ −2Eξ(f−f∗)(X). This final claim
follows because E(f − f∗)2(X) is non-negative. So 0 ≤ 2Eξ(f − f∗)(X).

Lemma 5.1. Let F ⊂ L2(µ).

1. If F is a closed subvectorspace of L2(µ), then L(f, f∗) = ∥f − f∗∥L2(µ) for
any f ∈ F .

2. If F is a closed convex subset of L2(µ), then L(f, f∗) ≥ ∥f − f∗∥L2(µ) for
any f ∈ F .

Proof. By definition L(f, f∗) = ELf . Using the definition of Lf it follows that

Lf = (f − f∗)2(X) + 2ξ(f − f∗).

So the proposition follows if Eξ(f − f∗)(X) is zero or non-negative respectively
when F is a subspace or when F is convex. In the convex case this follows
from the previous proposition and when F is a subspace this follows from the
characterization of the nearest point map.
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5.2 Concentration inequalities

Lemma 5.2. (Bounded differences inequality) Let f : ΩN 7→ [0, 1] be a mea-
surable function. Let X be a random variable on Ω and let X1, ..., XN be i.i.d.
copies of X. Let Z = f(X1, ..., XN ). Then

P{Z −E[Z] > t} ≤ e−8t2/N . (23)

Proof. See Theorem 6.2 on page 166 in Boucheron et al. [2013].

5.3 Contraction and symmetrization theorems

Lemma 5.3. Let F be a class of functions on a probability space (Ω, µ). Suppose
that L(X) = µ and let X1, ..., XN ∼ X be i.i.d. Let PN be the associated
empirical measure. Let ϵ ∈ {−1, 1}N be uniformly distributed. Then

(i)

E
[
sup
f∈F

PNf(X)− Ef(X)
]
≤ 2E

[
sup
f∈F

1

N

N∑
i=1

ϵif(Xi)
]

(24)

(ii) If ϕ : R 7→ R is Lipschitz continuous with Lipschitz constant Lip(ϕ), then

E
[
sup
f∈F

1

N

N∑
i=1

ϕ(ϵif(Xi))
]
≤ 2Lip(ϕ)E

[
sup
f∈F

1

N

N∑
i=1

ϵif(Xi)
]

(25)

Proof. Observe that f(X) − Ef(X) is centered. Therefore (i) follows from
lemma 11.4 on page 322 from Boucheron et al. [2013]. Statement (ii) follows
from Theorem 4.12 in Ledoux and Talagrand [1991].

Finally we present the proof of the fact that the small ball assumption holds
for non-negative functions f that satisfy an Lp − Lq norm equivalence. First we
state a result Mendelson [2015] obtained using the Paley-Zygmund inequality
De la Pena and Giné [2012].

Proposition 5.3. Let r > 2 ≥ 1 and let g be a function on Ω such that

∥g∥Lr ≤ C∥g∥L2 . Then for any u ∈ (0, 1), P (|g| ≥ u∥g∥L2) ≥
(

1−u2

C2

) r
r−2

.

Now let p > q ≥ 1 and assume that f is such that

∥f∥Lp ≤ B∥f∥Lq .

Observe that ∥f∥Lq = ∥|f |q/2∥2/qL2 and that ∥f∥Lp = ∥|f |q/2∥2/q
L2p/q . So f also

satisfies
∥|f |q/2∥L2p/q ≤ Bq/2∥|f |q/2∥L2 .
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Now we apply Proposition 5.3 with C = Bq/2, g = |f |q/2, and r = 2p/q. Notice
that r > 2 as long as p > q. This implies for any u ∈ (0, 1) that

P (|f |q/2 ≥ u∥|f |q/2∥L2 ≥
(
1− u2

C2

) r
r−2

=

(
1− u2

Bq

) 2p
2p−2q

.

Setting u = κq/2 proves that

P (|f | ≥ κ∥f∥Lq ) ≥
[
1− κq

Bq

] 2p
2p−2q

,

which finishes the proof.
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