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Abstract

Jaundice can be a serious medical condition which affects mostly newborn infants. High levels

of bilirubin in the bloodstream are the main cause of this. These bilirubin levels, total serum

bilirubin (TSB), need to be determined frequently, in order to detect early onset of jaundice and

start treatment. The traditional method of determining the TSB is by analysing blood samples

in a laboratory. The frequent venipunctures required to obtain these blood samples cause a high

strain on the newborn. A non-invasive technique to determine the bilirubin levels is through the

skin, using a transcutaneous bilirubinometry (TcB) device. This technique is preferred because

it is non-invasive, cheaper and faster than the traditional method. However, TcB measurements

are less accurate, especially for preterm infants. This group is also more susceptible to jaundice.

Therefore it is of interest to increase the accuracy of a TcB measurement.

This study uses the data of n = 101 newborn infants that are preterm (median gestational age:

30.5 weeks, range: 28.0 to 35.7). This data includes TcB measurements on five body locations

and patient characteristics, along with the actual TSB measurements. Machine learning is applied

to map the TcB measurements more accurately to a TSB value. Two models have been realized:

a linear regression model and a decision tree. The root mean square error (RMSE) of the linear

regression model is 21.9 µmol L�1
, and that of the decision tree is 30.4 µmol L�1

. The specified

error of the TcB measurement device for preterm infants without phototherapy is 27.4 µmol L�1
,

and 39.0 µmol L�1
after phototherapy. The data used to train the models contain a mix of mea-

surements with and without phototherapy. The error of the measurement data ranges from 30.2
to 85.2 µmol L�1

, depending on the body measurement location.

The linear model reduces the number of unnecessary blood samples from 201 to 69, and has

an RMSE that is lower than the specified error of the TcB device, and can therefore be accepted

as a valid model to predict TSB values.

Conflict of interests The author declares to have no financial interest in any TcB measuring

devices.
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Nomenclature

APGAR method to indicate health of a newborn right after birth
cross-validation technique to determine optimal hyperparameters
hyperbilirubinemia condition in which the bilirubin levels in the blood are high
jaundice medical condition that causes yellowing of the skin and whites of the eye,

caused by hyperbilirubinemia
MSE Mean Squared Error: parameter used by MATLAB to train a model
neonate a newborn child
predictor variable independent variable used to predict the response variable
response variable dependent variable that is predicted by the model
RMSE Root Mean Square Error: indication of model accuracy
TcB Transcutaneous Bilirubinometry: non-invasive technique to measure

bilirubin levels through the skin
test set part of dataset used to determine the accuracy a final model
training set part of dataset used to train the model during building
TSB Total Serum Bilirubin: bilirubin concentration in blood
validation set part of dataset used to validate settings of a model after training
venipuncture method of drawing blood from a vein for use as a blood sample
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1 Introduction

1.1 Problem statement

Jaundice is a disease that affects mostly newborns. It is caused by hyperbilirubinemia [1], elevated
levels of bilirubin in the bloodstream. High levels of this pigment are common in neonates, and are
mostly harmless. About 80% of neonates [2] undergo jaundice within their first week of life. Bilirubin
levels rise due to an increased red cell breakdown, and the young liver’s inability to effectively excrete
bilirubin. When the concentration of bilirubin reaches a certain threshold, it can cause severe brain
damage (bilirubin encephalopathy, the poisoning of the brain due to bilirubin), cerebral palsy, and if
left untreated, even death. Neonatal jaundice is accountable for 1.3% of deaths in the early-neonatal
period (postnatal age: 0 to 6 days) in 2016, globally [3]. Jaundice treatments include blood exchange
transfusion and phototherapy [4].

The levels of this pigment can be determined by collecting blood samples, yielding the Total Serum
Bilirubin (TSB). This method, however, causes a high strain on the newborn, since their blood volume
is limited. For the reason that the bilirubin levels can rise rapidly, the TSB needs to be measured
frequently. This causes an even bigger strain.

A non-invasive method that can determine the bilirubin level is via a Transcutaneous Bilirubinom-
etry (TcB) measurement [4]. TcB literally means the measurement of bilirubin through the skin. A
TcB device uses two optical paths that direct light of specific wavelengths into the skin, making this
method painless and convenient. The devices are point-of-care devices [5], meaning they can be carried
to the patient and their values read off instantly. This leads to faster results and a decrease in costs.
McClean et al. [5] determined that one TcB screening is 5 to 20 times cheaper than TSB, and 4 times
faster.

Unfortunately, TcB measurements are not very accurate. Therefore, the TSB values must still
regularly be checked using the traditional method.

1.2 Current research

A solution would be to create a model that can accurately predict the actual TSB values, using the
TcB measurements, and possibly taking into account certain patient characteristics. This gives the
advantage that hyperbilirubinemia can be detected earlier on, while simultaneously reducing the strain
on the neonate’s blood system by avoiding blood tests.

Multiple research papers [6, 7, 8, 9] have been published that discuss the statistical correlation
between acquired TcB and the actual TSB values. Schmidt et al. [6] show that the correlation
between TcB and TSB ranges from 0.79 to 0.92, for different gestational ages. The data used in their
research is shown in figure 1. It gives an indication how the TcB relates to the TSB values.

Figure 1: Relation between TcB and TSB values, from Schmidt et al. [6]

The predictive power of TcB measurements [7] depends on multiple factors, such as skin anatomy,
gestational age, and measurement body location. The TcB measuring seems to underestimate [8]
the TSB values for light and medium skin colours while overestimating in darker skin colours. The
studies by Schmidt et al. [6] and Karen et al. [9] suggest that the accuracy of the TcB measurements
decreases with higher levels of serum bilirubin. The TcB measurement device used in this study is not
recommended for use on preterm babies, due to its reduced accuracy.

A recent research paper by Raba et al. [4] investigates the possibility to use TcB measurements to
predict whether phototherapy will eventually be necessary. Their conclusion was that TcB performs
as a poor predictor for phototherapy. This was done without the use of machine learning. In fact, no
papers have been found that apply machine learning to improve the accuracy of TcB measurements.
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1.3 Goal of assignment

The goal of this bachelor assignment is to develop a model that can derive the correct TSB values based
on the less accurate TcB values, along with certain patient characteristics. This improves the usability
of TcB measurements. Additionally, a statistical analysis will be performed to indicate the significance
of this model. The model will be generated using machine learning. Multiple coding languages will be
considered, such as MATLAB and Python.

The model will be created based on actual measurements performed on newborn patients. A dataset
from 101 different preterm infants is provided at the beginning of the assignment, which means that
data collection is not part of the scope of this bachelor assignment. The dataset consists of TSB values,
TcB measurements and certain patient characteristics.

A regression model is desired since the reference value (TSB) is a continuous variable. Regression
models fall under supervised machine learning. There exist, however, different regression techniques,
which can incorporate different kinds of input data. Some predictor variables are continuous, such as
TcB, while others are classified, for instance some patient characteristics. These different techniques
will need to be researched, and an optimal method will be determined.

This study focuses on improving the predictive power of existing TcB devices, by processing their
measurements differently. It does not include developing new detection methods.

A theoretical background on bilirubin and the machine learning techniques is given in chapter 2
and applied in the method, chapter 3. Next, the results are presented in chapter 4. These results are
discussed in chapter 5, along with a conclusion in chapter 6.

Combining biology and machine learning to improve healthcare is a broad task, which makes this
a true Advanced Technology bachelor assignment.

1.4 Research questions

The research questions that have arisen from the goal of this assignment are formulated as follows:

• Which machine learning model can be used to predict TSB values, based on TcB values and
patient characteristics?

• How accurate is the prediction of the model?

• Which patient characteristics are meaningful?
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2 Theory
The theory behind the different models that will be implemented during this assignment, is presented
in this chapter. There exist different types of machine learning algorithms [10], namely supervised,
unsupervised and reinforcement learning. Supervised machine learning models are trained using known,
correct combinations of input and output data. The predictions for new, unseen output data are based
on the training of the model.

A machine learning model as a whole is a function which maps the independent variables (predic-
tors) to a dependent variable (response).

Firstly, more background on the pigment bilirubin is provided. Then a linear regression model is
discussed, followed by a decision tree model.

2.1 Bilirubin

Hyperbilirubinemia occurs when the bilirubin levels in the blood rise so much, that the bilirubin
diffuses into the surrounding tissues, such as the skin. This build-up starts in the trunk, and moves to
the limbs. The accumulation of bilirubin can then be observed as a yellow color shift in the skin and
whites of the eyes. A TcB device measures the concentration of bilirubin in the skin, from which it
estimates the corresponding bilirubin blood concentration. The TcB meter used in this study (Draeger
Jaudice Meter JM-105) does this by emitting light at two wavelengths into the skin, and measuring the
reflected light intensities [7]. The first wavelength of 450 nm is at the peak of the bilirubin absorption
spectrum. A second wavelength of 550 nm is used as a control. Hemoglobin absorbs light in roughly
equal amounts for both wavelengths. From these two measurements, the contribution of bilirubin can
be calculated [11].

As mentioned before, abnormally high bilirubin levels can be damaging to the newborn infant.
Treatments to reduce these levels include phototherapy and blood exchange transfusion. There is,
however, no definite threshold to determine when a treatment is needed. These thresholds are de-
pendent on the postnatal age, the gestational age and birth weight, and can differ per hospital and
per country. The guidelines for pediatricians in the Netherlands [12] show different charts, based on
gestational age and birth weight. The infants are labeled by a risk level (standard or high), which
are determined by factors such as APGAR score and sepsis. For patients with a higher risk, a lower
threshold for treatment is used.

Figure 2 shows the bilirubin thresholds for infants with a gestational age below 35 weeks and birth
weight between 1500 and 2000 grams. For different birth weights and gestational ages, different charts
are used, since their thresholds differ [13]. The chart for term infants can be found in appendix A
figure 10. The stationary value of the threshold (maximum value, which is reached after the first few
days) for preterm infants of all birth weights is shown in appendix B table 7, and for term infants in
table 8.

The guidelines state that in order to use a TcB measurement as a TSB value in the charts, a margin
of 50 µmol L�1 must be added: TSB = TcB + 50. It also states that TcB should not be measured
during or after phototherapy. When a threshold is reached using a TcB measurement, the bilirubin
levels must be verified using a TSB determination from a blood sample.

Figure 2: Chart showing the phototherapy and exchange transfusion thresholds for preterm infants,
based on postnatal age for two levels of risk, adapted from Dutch pediatric guidelines [12]
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2.2 Linear regression model

2.2.1 Model function

A linear regression model makes a prediction with the postulation that the response variable is linearly
proportional to all predictor variables, as in equation 1:

R ⇠ 1 +X1 +X2 + . . .+XN�1 +XN (1)

with R being the response variable, and Xn being the n
th predictor variable.

This results in a model function (equation 2) which calculates the predicted value f based on the
independent variables x1, x2, . . . , xN�1, xN . To achieve this, every variable is multiplied by a constant
coefficient c1, c2, . . . , cN�1, cN . Note that the coefficient c0 does not belong to a predictor variable, but
rather to the constant 1. This acts as a vertical intercept value.

f(x) = c0 + c1x1 + c2x2 + . . .+ cN�1xN�1 + cNxN (2)

em = rm � fm (3)

Equation 3 shows that the error em for the m
th measurement can be seen as the difference between

the true response variable rm and the predicted value fm. Achieving a zero error em can easily be
accomplished for a single measurement m. It is more interesting, however, to calculate the Root Mean
Squared Error (RMSE) of all the errors of all measurements. The RMSE gives an indication of the
accuracy of a model as a whole. Equation 4 shows how the RMSE is calculated based on the response
values r and predicted values f , for M amount of measurements:

RMSE =

vuut
 PM

m=1(rm � fm)2

M

!
(4)

The coefficients c0, c1, ..., cN�1, cN are tuned during training in such a way that the RMSE is
minimized.

The entire model is stored in the values of the coefficients. The coefficients represent the weight
associated with that predictor variable.

2.2.2 Categorical values

At first sight, it may seem that this model function (equation 2) only works for continuous predictor
variables. However, it is possible to associate categorical values to these predictors. Suppose we want
to use the variable C-section as a predictor. This is a binary variable, as it can take the values Yes

and No. We could then set the predictor variable x1 as Yes, that is, x1 = 1 when a C-section has
taken place, as in equation 5:

x1 =

(
1 C-section = Y es

0 C-section = No
(5)

In doing so, the corresponding coefficient c1 adds a value to the model prediction when the cate-
gorical variable is in one state, and is equal to zero when the categorical variable is in another state.

Similarly, this method can be extended to a case where the categorical variable can take more than
only two values, as in the binary case. Here, multiple intermediate predictor variables are created.
Consider the variable Fetal position, which can take the values Head, Breech and Transverse lie.
The corresponding case definitions for the predictor variables x1 and x2 are:

x1 =

(
1 Fetal position = Head

0 otherwise
x2 =

(
1 Fetal position = Breech

0 otherwise
(6)

When both x1 and x2 are equal to 0, it means that the Fetal position variable has the value
Transverse lie. Transverse lie is therefore defined as the control variable, as it does not contribute
a value to the model. Head and Breech can both add or subtract a value to the model, depending on
their corresponding coefficient.

More generally, a categorical variable can be split into n � 1 predictor variables, for n different
values the variable can take.

2.3 Decision tree model (regression tree)

A decision tree is a model which fits data into different categories based on their predictors. It achieves
this by considering conditional statements consecutively. A decision tree can therefore be seen as a
combination of nested if-statements. The response variable can be both categorical (classification tree)
or a continuous variable (regression tree).

A graphical representation of an example decision tree is shown in figure 3a. In the tree structure,
the branches represent the decisions that are being evaluated, and the leaves represent the response
labels.
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Figure 3b shows a plot with two predictor variables x1 and x2. The decision tree model is overlaid
over the predictor data. For every branch node (decision split) in the tree, a straight line is added
to the plot which partitions the data. The average response value per partition is displayed, which
corresponds to the predicted value for that node. Note that in this example, there are only two
predictor variables. This means that the plot can easily be displayed graphically. For higher order
models, this is not the case.

Nodes in a graph are numbered in ascending order from the top row to the bottom row, and left
to right within a row. The statements belonging to every node in the example decision tree are the
following:

1. if x1 < 5.9 then node 2 else node 3

2. if x2 < 5.3 then node 4 else node 5

3. if x2 < 6.7 then node 6 else node 7

4. if x1 < 3.2 then node 8 else node 9

5. prediction = 0.433

6. if x1 < 7.6 then node 10 else node 11

7. prediction = 0.956

8. prediction = 0.302

9. prediction = 0.874

10. prediction = 0.100

11. prediction = 0.640

(a) Graphical representation decision tree

(b) Partitioned data according to the decision tree

Figure 3: An example regression tree

In order to apply this model onto a new set of data to predict the response value, the above scheme
or graphical representation in figure 3a can be followed for every measurement. Additionally, the data
can be plotted in the same plot as figure 3b and the value of the corresponding partition can be read
off.
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It is possible that a predictor variable is unknown for a certain measurement. A split can then not
be made, since the conditional statement cannot be evaluated. Therefore there exists a third option
that the branch can lead into, namely the weighted average of the values of the leaves under it.

Categorical variables can be used in a regression tree in the same way as the method described in
the linear regression model.

2.3.1 Hyperparameters

While training a model, the machine determines which statements are evaluated at every node. There-
fore these do not need to tuned by the user. There are, however, so-called hyperparameters which
can be chosen by the user. These can, for example, control the depth of the regression tree. Which
hyperparameters are tuned exactly will be explained later.

10



3 Method
All the data processing and model creation were done in MATLAB version R2020a, with an academic
use licence. One toolbox is required to run the code, namely Statistics and Machine Learning Toolbox.
The main function to train a linear regression model is fitlm() [14]. This function uses QR decom-
position to optimise the coefficients of the model. QR decomposition uses linear algebra to perform
a linear least squares algorithm. A matrix A is decomposed into the product A = QR, with Q an
orthogonal matrix and R a right triangle matrix, hence the name QR decomposition.

Similarly, a regression tree is trained using fitrtree() [15]. This function uses standard CART
[16] to determine a split based on maximising the reduction in MSE (mean squared error) per node.
In other words, it finds the predictor that most effectively splits the data at a node. The function
standard CART refers to a standard Classification And Regression Trees algorithm. For both models,
new response values can be predicted using the predict() function [17].

3.1 Training, validation and test set

It is important to be able to determine the effectiveness of a model, after it has been created. This
is done by testing the model on a different dataset than the one used to train the model. Therefore,
throughout the process of making the models, the data has been split into different sets repeatedly.
Generally, the data is split into a training set used to train (build) the model. Next, a validation set
is used to assess the performance of the model based on the current hyperparameters, and is used to
improve those hyperparameters. Once satisfied with the model, the final model can be tested using
the test data. The process of distributing the data over the different sets is described below, and can
be seen visually in figure 4. The width of the dataset is proportional to the number of patients it
contains. The steps indicated in the figure correspond to the steps in the paragraphs below.

It is important to ensure that the accuracy of both the linear model and decision tree model are
evaluated in the same way, so that they can be compared. Therefore, the following steps of distributing
the data are performed only once, and the same distribution is used for both models.

Figure 4: The distribution of the data, used for the k-fold cross-validation

3.1.1 Test set

Step 1: Firstly, a part of the complete dataset is held out, which can be used as a test set in the end
to test the model. Here, 20% of the total data is held apart. This leaves 80% of the data to be used
for both the training and validation. To optimize the use of the data, the data is split into training
and validation sets after every training run of the model. This is called cross-validation. The specific
cross-validation technique used is k-fold cross-validation.

3.1.2 k-fold cross-validation set

The cross-validation dataset is separated into k different subgroups. Here, k = 10 is chosen. The
dataset is large enough to be split into 10 folds, with every fold still being representative of the entire
dataset. The folds contain roughly the same amount of measurements, from the same amount of
patients (n = 8). This is to make the folds as uniform as possible and decrease deviation. Moreover,
the measurement data is split per patient, so the data from the same patient cannot be shuffled into
multiple folds. This is to prevent the model from recognizing a patient based on its characteristics.
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3.2 Hyperparameter tuning

Hyperparameters are parameters that can be set by the user, prior to training the machine learning
model. The internal model parameters will be set during the training. The hyperparameters can be
tuned after every cross-validation run. Note that for a linear regression model, there are no hyperpa-
rameters to be tuned. It is, however, used to add and remove predictor variables to create an accurate
as possible model.

Step 2: For every training run of the model, one fold is kept apart, which will be used for validation.
For every subsequent iteration of the training, a different fold will be used as a validation set, thus
leading to different model performances. The performance is shown as the root mean square (equation
4). The mean RMSE will be saved as a cross-validation RMSE and gives an indication of the perfor-
mance for the specific hyperparameters. After k runs, every fold will have been used as a validation
set.

Step 3: After the optimal hyperparameters have been found (with the smallest cross-validation
RMSE), the performance of the model can be determined. This is done by applying the model on the
test set that has been set aside. The model is trained by using all the data in the cross-validation
set, so without distinguishing between the folds. The performance on the test set is again determined
using the RMSE, and saved as an intermediate RMSE.

This final model could be seen as an end product, but its performance depends somewhat on the
distribution that has been made in the very first step. To counter this, all above steps 1 to 3 have
been repeated, thus with different training, validation and test sets. The optimal hyperparameters are
again determined, together with a new intermediate RMSE. Steps 1 to 3 are repeated five times, and
their results recorded.

Step 4: Lastly, the opportunity remains to build the final model using all the available data. This
model cannot be tested, however, since there is no test set available. Its accuracy can be derived from
the intermediate RMSEs in step 3.

The pseudo-code for the process of training and testing a model is shown in algorithm 1:

for 5 times do

randomly divide studies over 10 folds and one test set;
end

for each permutation of folds and test set do

hold test set apart;
for each combination of hyperparameters do

for each fold in k=10 do

train model using the 9 other folds;
validate model using the fold;
calculate and remember RMSE;

end

set cross-validation_RMSE as: average RMSE for these hyperparameters;
end

remember hyperparameters that yield lowest cross-validation_RMSE;
train model using all k=10 folds and optimal hyperparameters;
test model using test set that was held apart;
determine and remember intermediate_RMSE;
remember prediction of test set;

end

set final_model_RMSE as: maximum intermediate_RMSE of all test sets;
plot predictions of all test sets;
randomly divide studies over 10 folds (without creating test set);
for each combination of hyperparameters do

for each fold in k=10 do

train model using the 9 other folds;
validate model using the fold;
calculate and remember RMSE;

end

set cross-validation_RMSE as: average RMSE for these hyperparameters;
end

remember hyperparameters that yield lowest cross-validation_RMSE;
train final model using all k=10 folds and optimal hyperparameters;
final model cannot be tested;

Algorithm 1: Pseudo-algorithm of creating and testing a model
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4 Results

4.1 Inspection of data

The data used in this study was previously obtained by the medical staff of the neonatal intensive
care unit (NICU) of Isala Hospital in Zwolle, the Netherlands. A Draeger Jaudice Meter JM-105 was
used for all the measurements. A part of the specification of this device can be found in the appendix,
table 9. The measurements took place from December 2017, to August 2019. From the 101 patients
(n = 101), an average of 17 times data was taken, over an observation period of 6 days.

Neonates with a gestational age below 37 weeks are considered preterm. All patients included in
this study are preterm: the median gestational age is 30.5 weeks (range: 28.0 to 35.7 weeks). The TcB
meter used in this study is not recommended to be used on preterm infants, since the error is too large
for low gestational ages. The models created are trained solely on data of preterm babies.

The majority (n = 54) has a Caucasian ethnicity, and for a large group (n = 41), the ethnicity is
unknown. The full analysis of the patient characteristics can be found in table 12 in the appendix.

A patient is observed over the course of its first couple of days of life. There are multiple measure-
ment moments per day. Some (invariant) data about the patient characteristics are entered once when
the baby is born, while other (variant) data is entered during the measurement moments. However,
not all variant data is entered for every observation. It is therefore possible that the data for a TcB
is known, but not the corresponding TSB value, or vice versa. There are 5 TcB measurement body
locations: forehead, sternum, hip bone, tibia and ankle. Per location, a maximum of three consecutive
measurements takes place, to increase accuracy. The mean value of these measurements is taken, after
outliers have been removed. Ultimately, a total of 3071 TcB-TSB pairs are created. These pairs have
been plotted in figure 5, per body location along with the line of best fit and the root mean square
error between the TcB and TSB value. A straight line of slope 1 has been added for reference. A
separate plot per body location can be found in appendix A figures 11a to 11e. Visually we can see
that the forehead, sternum and hip bone have a line of best fit relatively close to the optimal line, and
have a smaller RMSE than the tibia and ankle measurements. The TcB measurements for the tibia
and ankle are frequently below the TSB value, as seen by the lower gradient of the line of best fit.
This is in agreement with the theory.

The specification of the TcB device states that the accuracy decreases after phototherapy has
taken place. Also, the accuracy is lower for infants with a gestational age below 35 weeks. Ac-
cording to the measurement data, the forehead is the body location with the lowest error (RMSE:
30.2 µmol L�1). This lies between the error for no phototherapy (± 27.4 µmol L�1) and after pho-
totherapy (± 39.0 µmol L�1). This is plausible, since the data includes measurements of both before
and after phototherapy. The hip bone measurements also lay between the specified errors. However,
the sternum, tibia and ankle measurements have an error that is far greater than the specified error.

Figure 5: All TcB-TSB pairs plotted per body measurement location
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4.2 Linear regression model

The data has been divided over a training, validation and test set, as per section 3.1. Per iteration of
a cross-validation round, predictor variables are manually added and removed from the model to see
what the influence on the cross-validation RMSE is. The goal is to minimize the RMSE. The generic
equation 4 is rewritten to equation 7, to apply it to a regression model. Equation 7 shows how the
RMSE is calculated based on the response values (TSBactual) and predicted values (TSBpredicted).

RMSE =

vuut
 PN

n=1(TSBactual(n)� TSBpredicted(n))2

N

!
(7)

A linear regression model requires a value for all its predictor variables, otherwise the equation
cannot predict a response value. However, as mentioned before, not all measurement moments include
values for all the predictor variables. So when adding a new predictor variable to the model, the
amount of useful measurements that contribute to the model decreases. Therefore, a tradeoff needs to
be considered between lowering the RMSE, and having less measurements to train the model.

Equation 8 shows the final model:

TSB ⇠ 1 + TcB1 + . . .+ TcB5 + PatC1 + . . .+ PatC8 (8)

with TcB1 through TcB5 being the TcB values of the 5 body locations, and PatC1 through PatC8

being the following 8 patient characteristics:

Continuous:

• Postnatal age (hours)

• Maternal age (years)

• Birth weight (grams)

• Gravidity

Categorical:

• C-section (yes/ no)

• IVH (yes/ no)

• Sepsis (yes/ no)

• Feeding (formula/ breastfeeding/ both)

The model incorporates a mix of continuous variables along with binary and higher order categorical
variables.

A technique to help determine if a certain predictor variable has a good contribution to a model,
is testing the following hypothesis:

Hypothesis: The coefficient for the specified predictor variable is not equal to 0.

The hypothesis can be accepted when the corresponding p-value is higher than a 95% significance
level. When a coefficient is equal to 0, the associated variable does not contribute anything to the
model. Accepting the hypothesis is therefore desired.

In other words, a high p-value for a predictor variable means the variable is significant to the model.
The p-values of every predictor for an example model have been plotted in appendix A figure 12. Not
all predictors reach the 95% significance mark, but are still useful for the model. The p-values change
depending on which fold is being used to validate, and might be useful in another training data. The
variable Feeding for example, consists of two subvariables Formula and Both. Removing the least
performing variable Both, would also remove a well-functioning variable Formula.

Once satisfied with the predictor variables to use, the model can be trained using all 10 folds,
and tested using the test set (step 3 from figure 4). This yields intermediate results (predictions and
RMSE), which can be seen in figure 6. As mentioned before, steps 1 to 3 are repeated five times, thus
yielding five intermediate models. The RMSE for these models ranges from 18.0 to 21.9 µmol L�1. The
mean is 20.1 µmol L�1.

For this specific application, it is important to know how often the TSB is over- or underestimated,
and to what extent. You would rather perform too many blood samples to determine the TSB in a
lab, than miss an opportunity to reduce jaundice with treatment. In 49.8% of the cases, the TSB value
is underestimated in the linear models. The error between the actual TSB and the predicted TSB
(equation 3) is plotted as a histogram in appendix A figure 14a for every model. It gives an indication
how the error is distributed. A positive error means an underestimation.

Lastly, a final model is built using the same predictor variables as before, while using all the
available data. This is step 4 of the schema. The resulting coefficients can be found in figure 7
and appendix B table 10. The accuracy of this model is estimated using the accuracy for the five
intermediate models. It is important for the healthcare application to employ a large enough error
on the TSB prediction. Therefore the error of the final model has been estimated to be equal to the
worst-performing intermediate model. The RMSE of that model is 21.9 µmol L�1.
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Figure 6: Predictions of the 5 intermediate linear models and their mean RMSE

Figure 7: Final linear regression model coefficients with standard error

Note that this model does not provide information about the causality of the coefficient values. For
example, it cannot be concluded that providing formula as the method of feeding increases the TSB
of an infant by 9.34 µmol L�1.

According to the Dutch pediatric guidelines, a TSB must be determined in a lab, when the TcB+50
reaches above the phototherapy threshold for an infant. It can therefore be said that collecting a
blood sample is prevented, when the threshold is reached using the TcB device, but is not reached
when applying the machine learning model. Table 1 shows the number of times the TcB measurement
solely reaches the threshold, including the true positive, false positive, true negative, false negative.
The TcB measurement on the forehead is used, since it is recommended by the manufacturer and the
pediatric guidelines, and has the smallest error. The threshold used depends on the birth weight of the
infant, as in appendix B table 7. Table 1 and 2 show the predictions when using only the TcB device,
and when applying the linear model, respectively. It can be seen that the number of false positives
decreases drastically. Out of the 490 measurements, the TcB device required 243 blood samples to be
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taken. The linear regression model reduced this number by 140, to 103. Out of these 140 prevented
blood samples, 132 were appropriately marked as such, but 8 were wrongly prevented, as in table 3.

True False
Threshold reached 42 201
Threshold not reached 244 3

Table 1: TcB device prediction

True False
Threshold reached 34 69
Threshold not reached 376 11

Table 2: Linear model prediction

True False
Prevented blood samples 132 8

Table 3: The number of (rightly and wrongfully) prevented blood samples when using the linear model

A prevented blood sample occurs when the TcB value plus its margin reaches the threshold, but
the model and its margin remains under the threshold, as in the following equation:

(TcB + 50) > threshold AND (TSBmodel + errormodel) < threshold (9)

It is rightly predicted (true) when TSB < threshold, and wrongly (false) when TSB > threshold.

4.3 Decision tree model

The second type of model that is created, is a regression tree. It has been realized in the same way as
the linear model, as described in section 3.1. During step 2, the hyperparameters can be tuned. The
hyperparameters [15] that have been optimized during the development of this model are:

• MinLeafSize: Minimum number of leaf node observations (integer)

• MaxNumSplits: Maximal number of decision splits (integer)

• Surrogate: Surrogate decision splits flag (on/ off)

• MergeLeaves: Leaf merge flag (on/ off)

The first parameter MinLeafSize controls the tree depth. It is defined as the minimum amount
of observations that make up one leaf node value. In terms of the visual representation of figure 3b,
it is the amount of observations per partition. Increasing this parameter decreases the complexity of
the tree. The second term is MaxNumSplits, which also controls the tree depth. It determines the
maximum number of branch nodes in the tree model.

Setting the parameter Surrogate to "on", allows the model to adapt to missing data. This is
done by selecting a next best variable (surrogate) to perform a decision split when the main variable
is unknown. This is useful for sparse datasets, but requires more computational time and memory.

Lastly, the MergeLeaves parameter can be set to "on" to merge two leaf nodes which originate
from the same parent branch node, when the sum of both MSEs is larger than the MSE of the parent
node.

The hyperparameters are optimized by performing cross-validation for every single combination of
hyperparameters (step 2). The hyperparameters which lead to the lowest RMSE are used to train an
intermediate model (step 3). These steps are repeated to build a total of five intermediate models. The
hyperparameters for every intermediate model, as well as the final model, can be found in appendix
table 11. These models are then tested using their respective test sets. The results of these predictions
are plotted in figure 8. The mean RMSE is 25.6 µmol L�1, with a range of 19.5 to 30.4 µmol L�1.

The predictions of a decision tree are discrete values. These are discretely distributed over the
vertical axis. Therefore, there are as many horizontal lines in the prediction figure, as there are leaf
nodes for that model.

On average, the decision tree models underestimate the TSB for 45.7% of the measurements. The
distribution of the error can be found in figure appendix A 14b.

Lastly, the final model for the regression tree can be trained, using all available data (step 4).
Before this can be done, however, the optimal hyperparameters should be determined. To do this, the
complete dataset is again divided into k = 10 folds. The process of hyperparameter tuning (step 2) is
applied to these folds. The combination of hyperparameters that yield the lowest RMSE, determine the
optimal parameters. These are then used to train the final model with all available data. This model
cannot be tested, since no test set has been held apart. The final model is graphically represented in
figure 9, with the statements of each node in appendix B.
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Figure 8: Predictions of the 5 intermediate decision tree models and their mean RMSE

During training, the machine learning determines which variables are best suited for use as a pre-
dictor variable. Apart from the 5 TcB body locations, 4 patient characteristics are used for the final
model. These are as follows:

Continuous:

• Postnatal age (hours)

• Maternal age (years)

• Birth weight (grams)

Categorical:

• Feeding (formula/ breastfeeding/ both)

The importance of the predictor variables are estimated using the total accuracy each predictor
brings to a model. The predictor importance of the final model can be found in appendix A figure
13. Since the TcB forehead is the first split that is performed, it has the highest contribution to the
model, and thus has the highest predictor importance. The variables with a predictor importance of
zero do not contribute to the model, and cannot be found in the split decisions.

The accuracy of this model is again determined using the accuracy of the worst-performing inter-
mediate model. The RMSE of the final model can therefore estimated to be 30.4 µmol L�1.

The same method of analysing how many blood samples are prevented, has been applied to this
decision tree model. For a total of 636 measurements, 309 times the traditional TcB method called for
a blood sample. Using the decision tree model, 181 blood samples are rightfully prevented, and 12 are
wrongfully marked as not necessary.

True False
Threshold reached 55 254
Threshold not reached 324 3

Table 4: TcB device prediction

True False
Threshold reached 43 76
Threshold not reached 502 15

Table 5: Decision tree model prediction

True False
Prevented blood samples 181 12

Table 6: The number of (rightly and wrongfully) prevented blood samples when using the decision
tree model

17



TcB 
forehead

TcB hip 
bone

TcB 
forehead

TcB tibia

? 145.167< 145.167

< 86.5

? 86.5

Postnatal 
age

< 153.167 ? 153.167

126.3333 157.0633

< 45.925 ? 45.925
< 32.8333 ? 32.8333

Birth 
weight

TcB hip 
bone

64.42424

< 48.6667 ? 48.6667

TcB 
forehead

34.45 56.03448

< 29.6667 ? 29.6667

Postnatal 
age

64.68182

< 23.8333 ? 23.8333

TcB hip 
bone

86.45 102.7917

< 75.3333 ? 75.3333

Postnatal 
age

< 32.7417 ? 32.7417

TcB 
forehead

84.65 102.0833

< 111.333 ? 111.333

Birth 
weight

< 1137.5 ? 1137.5

TcB hip 
bone

94.07407 112.28

< 99.8333 ? 99.8333

Feeding

140.8065

Breastfeeding Formula or Both

Maternal 
age

114.25

< 33.5 ? 33.5

Maternal 
age

115.2273

< 26 ? 26

TcB hip 
bone

115.3636 137.25

< 93.3333 ? 93.3333

TcB 
sternum

< 1465

156.9333 186.95

< 204.5 ? 204.5

TcB 
sternum

? 1465

188.9091 222.5417

< 248.667 ? 248.667

Figure 9: Graphical representation of the final decision regression tree
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5 Discussion
During the process of making the models, five intermediate models were trained per model type. These
were then tested with a test set to determine the accuracy. The research question for this assignment
was to find one model that can be used to predict the TSB values. The consideration had to be made
to either use one of those intermediate models as the final product, or to create a new final model.
Training a final model has the advantage that it is trained using all of the available data. The downside
is that its accuracy can only be estimated. It is desired to rather have a too high TSB prediction,
than to miss the opportunity to treat the jaundice. Therefore the error margin for the final model
can better be estimated too large than too tight. The choice was made to use the highest RMSE of
the intermediate models as the RMSE of the final model. Perhaps better estimations of the accuracy
could have been done, such as incorporating the mean and deviation in the intermediate models. It
must be noted that there is a rather large spread between the RMSEs of the decision tree models.

Perhaps it would have been best not to create a new final model at all, but use one of the inter-
mediate models as the final product. The question then still remains as to what the accuracy of that
model is. Another assumption was that the method of hyperparameter optimisation also worked for
the final model. The complete dataset was divided into 10 folds to perform cross-validation, just as
how it was done for the intermediate models. The hyperparameters did not differ much from the ones
used in the intermediate models.

The accuracy of both types of models can be compared to each other, because they are determined
in the same way. They have undergone the same statistical analysis. The intermediate models were
built using the same datasets: the partitioning over the train, validation and test set was identical for
both models.

All the data was entered manually by the medical staff. Therefore the data is susceptible to human
error. During the data processing, the most obvious outliers have been removed or fixed. For example,
TSB values of 0 and 1 have been removed altogether, and the year 1018 has been changed to 2018. It
is likely that not all mistakes have been removed, which will decrease the accuracy of the models.

Future research could be done to explore exactly what the limitations of both linear en decision
tree models are. Perhaps they could compliment each other, by combining both models into one.
Also other regression models might provide better predictions than the two used in this assignment.
Moreover, the current research questions focused on predicting the actual TSB value based on the TcB
measurements. Perhaps a more interesting research would have been to predict the need for treatment
based on the TcB measurements. This is more applicable to the healthcare application. This would
mean a classification model is trained instead of a regression model. For example, three predictions
could be made: safe (low TSB), risk (blood test required), and high (jaundice treatment needed). The
division of these zones could depend on the gestational age, postnatal age and birth weight, much like
figure 2. However, the thresholds used by the different healthcare systems vary, so this model will
probably not be able to be used worldwide.

One of the statistical analyses performed was similar to the above mentioned remark, as the pre-
dicted TSB value was used to determine if phototherapy is needed. This was then compared to the
prediction done by using only the TcB value of the forehead. The limitations of this statistical analysis
is that the threshold employed was only the stationary value of the phototherapy curve, based on the
birth weight. It did not depend on the postnatal age, even though the guidelines specify this. Also, all
infants were considered to be in the ’standard risk’, even though some of them would likely have been
a ’high risk’. This could not be incorporated, since that data was not part of the provided dataset.
This statistical analysis was only used to illustrate the effects of using a model, and was not the desired
output of the model. Moreover, the same data that was used to train the model, was used to calculate
the prediction of the requirement for a blood sample. By using the models, the amount of blood
samples that need to be taken is greatly reduced, but this also introduced some cases where a sample
is not taken even though it should have. By increasing the error margin on the model, this number
of false negative predictions is reduced, but less blood samples are prevented. A trade-off needs to be
made to determine the desired error margin.

The theory shows that ethnicity is an important factor in the accuracy of the TcB measurements.
Unfortunately, the ethnicity for a large group of the patients in this research is unknown. Moreover,
there are few patients that have an ethnicity other than Caucasian. Therefore, this factor could not be
used as an effective predictor variable in this study. The models would likely have been more accurate
if this data would have been able to be used.

The specifications of the jaundice meter used state that there is a difference in accuracy between
patients who have undergone phototherapy, and those who have not. This research did not take this
factor into account when training the models. It would be interesting to see if a model can make more
accurate predictions based on when and for how long a patient has undergone phototherapy.

19



6 Conclusion
During this assignment, two different machine learning models have been created. Both are regression
models, which are part of supervised learning. The first is a linear regression model, which fits the
predictors to a linearly proportional reference value. The predictors are TcB measurements of five
different body locations and eight patient characteristics. The reference value is the actual TSB value.
Five intermediate models have been trained using cross-validation, and tested. A final model is created
using all available data. The root mean square of the final model is 21.9 µmol L�1. When applying on
the same training data, the linear model reduces the number of false positive blood sample indications
from 201 to 69, when compared to using only a TcB device on the forehead.

The specifications of the TcB measurement device states that the accuracy for preterm infants
is 27.4 µmol L�1, and 39.0 µmol L�1 after phototherapy. Without using a model to improve the ac-
curacy, the best performing TcB measurement location is the forehead. The corresponding RMSE
is 30.2 µmol L�1. This is above the specified error for patients without phototherapy, but below the
specified error with phototherapy. The linear regression model improves this error drastically, to
21.9 µmol L�1.

Similarly, a decision tree model has been trained. It uses five TcB locations and four patient
characteristics as predictor variables. The hyperparameters have been optimised using 10-fold cross-
validation. The final model has an RMSE of 30.4 µmol L�1. This is marginally worse than using only
the TcB of the forehead. Nonetheless, the number of false positive indications for a blood sample is
reduced from 254 to 76.

To answer the research questions, the linear regression model can be accepted as a method of im-
proving the accuracy of TcB measurements in preterm infants. The RMSE is reduced from 30.2 µmol L�1

(TcB forehead) to 21.9 µmol L�1. The patient characteristics that are used in this model are: postnatal
age, maternal age, C-section, feeding, gravidity, IVH, sepsis proven and birth weight.
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A Figures

Figure 10: Chart showing the phototherapy and exchange transfusion thresholds for term infants,
based on postnatal age for three levels of risk, adapted from Dutch pediatric guidelines [18]
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(a) Forehead (b) Sternum

(c) Hip bone (d) Tibia

(e) Ankle

Figure 11: TcB-TSB plot for every body measurement location

Figure 12: p-values testing the hypothesis, with a 95% significance level
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Figure 13: Predictor importance for the final decision tree model

(a) Linear models

(b) Decision tree models

Figure 14: Histogram of error in TSB prediction, with RMSE value below the graph
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B Tables

Birth weight (gr) Standard risk High risk
<1000 100 100
1000 - 1249 150 100
1250 - 1499 190 150
1500 - 2000 220 190
>2000 240 220

Table 7: Stationary value of bilirubin thresholds for preterm infants (µmol L�1), from Dutch pediatric
guidelines [12]

Low risk Standard risk High risk
Term infant 360 300 260

Table 8: Stationary value of bilirubin thresholds for term infants (µmol L�1), from Dutch pediatric
guidelines [18]

Measurement range 0 µmol L�1 to 340 µmol L�1

Accuracy ± 27.4 µmol L�1 � 24 weeks gestation
± 25.5 µmol L�1 >35 weeks gestation

Accuracy after phototherapy ± 39.0 µmol L�1 � 24 weeks gestation
± 38.0 µmol L�1 >35 weeks gestation

Table 9: Draeger Jaundice Meter JM-105 specifications [19]

Coefficient Standard Error p-value
(Intercept) -36.14 8.46 1.00
Postnatal age (hours) 0.18 0.02 1.00
Maternal age (years) 0.95 0.25 0.99
C-section: No 1.89 2.08 0.64
Feeding: Both 0.18 5.12 0.03
Feeding: Formula 9.34 2.84 0.99
Gravidity -2.50 0.98 0.99
IVH: No 6.28 2.58 0.98
Sepsis proven: Yes -13.53 3.01 1.00
TcB ankle (µmol L�1) 0.06 0.04 0.89
TcB forehead (µmol L�1) 0.36 0.03 1.00
TcB hip bone (µmol L�1) 0.16 0.04 1.00
TcB sternum (µmol L�1) 0.06 0.03 0.97
TcB tibia (µmol L�1) 0.23 0.05 1.00
Birth weight (grams) 0.02 0.00 1.00

Table 10: Final linear regression model coefficients, with the corresponding standard error and p-value

Model 1 Model 2 Model 3 Model 4 Model 5 Final model
MaxNumSplits 37 37 19 7 26 19
MinLeafSize 1 4 20 4 10 20
Surrogate on on off on on on
MergeLeaves on on on on on on

Table 11: Hyperparameters of decision tree models
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Final decision tree model

1. if avgV H < 145.167 then node 2 elseif avgV H >= 145.167 then node 3 else 127.225

2. if avgV H < 86.5 then node 4 elseif avgV H >= 86.5 then node 5 else 96.9974

3. if avgHB < 153.167 then node 6 elseif avgHB >= 153.167 then node 7 else 171.802

4. if avgTIBIA < 32.8333 then node 8 elseif avgTIBIA >= 32.8333 then node 9 else 67.9662

5. if agehrs < 32.7417 then node 10 elseif agehrs >= 32.7417 then node 11 else 115.597

6. if agehrs < 45.925 then node 12 elseif agehrs >= 45.925 then node 13 else 149.236

7. if weightgr < 1465 then node 14 elseif weightgr >= 1465 then node 15 else 187.642

8. if avgHB < 48.6667 then node 16 elseif avgHB >= 48.6667 then node 17 else 54.1463

9. if agehrs < 23.8333 then node 18 elseif agehrs >= 23.8333 then node 19 else 85.1364

10. if avgV H < 111.333 then node 20 elseif avgV H >= 111.333 then node 21 else 94.1591

11. if weightgr < 1137.5 then node 22 elseif weightgr >= 1137.5 then node 23 else 120.642

12. fit = 126.333

13. fit = 157.063

14. if avgST < 204.5 then node 24 elseif avgST >= 204.5 then node 25 else 168.94

15. if avgST < 248.667 then node 26 elseif avgST >= 248.667 then node 27 else 196.901

16. if avgV H < 29.6667 then node 28 elseif avgV H >= 29.6667 then node 29 else 47.2245

17. fit = 64.4242

18. fit = 64.6818

19. if avgHB < 75.3333 then node 30 elseif avgHB >= 75.3333 then node 31 else 95.3636

20. fit = 84.65

21. fit = 102.083

22. if avgHB < 99.8333 then node 32 elseif avgHB >= 99.8333 then node 33 else 102.827

23. if Feeding = Breastfeeding then node 34 elseif FeedinginFormulaMixofabove then node 35
else 127.504

24. fit = 156.933

25. fit = 186.95

26. fit = 188.909

27. fit = 222.542

28. fit = 34.45

29. fit = 56.0345

30. fit = 86.45

31. fit = 102.792

32. fit = 94.0741

33. fit = 112.28

34. if agemother < 33.5 then node 36 elseif agemother >= 33.5 then node 37 else 123.538

35. fit = 140.806

36. if agemother < 26 then node 38 elseif agemother >= 26 then node 39 else 125.75

37. fit = 114.25

38. fit = 115.227

39. if avgHB < 93.3333 then node 40 elseif avgHB >= 93.3333 then node 41 else 129.484

40. fit = 115.364

41. fit = 137.25
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Mean (standard deviation) Median (range)
Gender (n)

Male 60
Female 41

Ethnicity (n)
African 1
Azian 1
Caucasian 54
Latin-American 1
Turkish 1
Other 2
Unknown 41

Plurity (n)
Singleton 62
Twin 32
Triplet 6
Unknown 1

Sepsis (n)
Proven 8
Clinical 27
No 59
Unknown 7

Feeding (n)
Breastfeeding 81
Formula 14
Both 3
Unknown 3

C-section (n)
Yes 57
No 43
Unknown 1

IVH (n)
Yes 13
No 84
Unknown 4

Birth weight (grams) 1518 (447.5) 1450 (675-3280)
Gestational age (weeks) 30.71 (1.71) 30.5 (28.0-35.7)
Maternal age (years) 29.98 (4.19)A 29 (21-39)A
Gravidity 1.86 (1.19) 2 (1-6)
Parity 0.53 (0.70) 0 (0-3)
Measurement moments per patient 17.0 (6.7) 16 (6-38)
Observation period per patient (days) 6.3 (2.3) 6.3 (2.0-12.9)

A: 1 unknown value

Table 12: Patient characteristics
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Predictor variable Units/ values Description
Continuous

Gestational age weeks age of the pregnancy
Postnatal age hours age infant since birth
Birth weight grams weight of infant at time of birth
Weight SDS birth weight Standard Deviation Score:

number of standard deviations from
mean birth weight

Maternal age years age of mother at time of birth
Gravidity number of times the mother has been pregnant
Parity number of times the mother has given birth

to a fetus with gestational age >= 24 weeks
Apgar 1 min 0-10 Apgar scoreB 1 minute after birth
Apgar 5 min 0-10 Apgar scoreB 5 minute after birth
Apgar 10 min 0-10 Apgar scoreB 10 minute after birth
Umbilical cord pH pH
Temperature Celcius body temperature (if known: rectal, else via skin)
TcB forehead µmol L�1 mean of three TcB measurements on the forehead
TcB sternum µmol L�1 mean of three TcB measurements on the sternum
TcB hip bone µmol L�1 mean of three TcB measurements on the hip bone
TcB tibia µmol L�1 mean of three TcB measurements on the tibia
TcB ankle µmol L�1 mean of three TcB measurements on the ankle

Binary
Gender male/ female
C-section yes/ no Patient underwent a Cesarean delivery
Hypoglycemia yes/ no Low blood sugar
Sepsis proven yes/ no Diagnosed sepsis
Sepsis clinical yes/ no Clinical expectation of a sepsis
IVH yes/ no Intraventricular hemorrhage: bleeding in the brain

Higher order
Ethnicity African/ Asian/ Caucasian/

Latin-American/ Turkish/
other/ unknown

Fetal position head/ breech/ transverse lie
Assisted delivery yes/ no/ unknown Delivery assisted using ventouse or forceps
Feeding breastfeeding/ formula/ both
Plurity singleton/ twin/ triplet
Antenatal corticosteroid yes/ no/ incomplete medication taken by mother to reduce

treatments risk of breathing difficulties in preterm babies
Respiratory insufficiency No/ ventilation/ Ventilation support needed due to a

"NIPPV/CPAP/LF/HF"C respiratory insufficiency

B: APGAR is a method to indicate health of a newborn right after birth: [20]
Appearance (skin color) 0-2
Pulse (heart rate) 0-2
Grimace response (reflexes) 0-2
Activity (muscle tone) 0-2
Respiration (breathing rate and effort) 0-2

C: NIPPV/CPAP/LF/HF are forms of ventilation support

Table 13: Predictor variables
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