

14
October
2023

Wearable
technology software
toolkit
THE DEVELOPMENT OF A VISUAL PROGRAMMING

ENVIRONMENT FOR ARDUINO

BY: KEVIN SMID

SUPERVISOR: EDWIN DERTIEN

CRITICAL OBSERVER: ANGELIKA MADER

1

Abstract

Not everyone can participate in DIY-focused workshops. One of the main reasons for this

is a lack of programming experience, which makes the participant unable to work

independently. As there is no time to guide these participants to all the steps required to

create working code, this research proposes a more visual approach to programming. For

this purpose, a tool has been created that can aid users to program their own prototypes.

The developed tool uses a flow-based programming language which is in turn converted

to Arduino code before being uploaded to the device. To achieve this the tool implements

simple Arduino functions and links them to matching blocks, these blocks can then be

connected in a sort of a flow chart to create code.

A user test was held with ten participants in which they were asked to create increasingly

difficult code for the components supplied. The results show that this lowered the

threshold for beginners while still allowing for a lot of creativity/flexibility in what can be

created. For advanced programmers however it is inconclusive whether or not this tool

decreases the possible complexity of what can be created. The results are promising, but

further development of the tool and further testing is required to conclude whether a

non-limiting tool can be created.

2

Contents
1 Introduction ... 7

1.1 Problem statement ... 7

1.2 Research questions ... 7

1.3 Report outline ... 8

2 Method .. 9

2.1 Creative Technology design process ... 9

2.1.1 Ideation ... 10

2.1.2 Specification .. 10

2.1.3 Realisation ... 10

2.1.4 Evaluation .. 10

3 State of the art .. 11

3.1 The current wearable technology workshop and its origins............................. 11

3.2 Description of the current toolkit ... 12

3.3 Target audience... 14

3.3.1 User scenario ... 15

3.4 Current workarounds for the missing programming skills 15

3.5 Other ways of addressing the lack of programming skills 16

3.5.1 In other workshops ... 16

3.5.2 In other toolkits ... 16

3.5.3 Applicability to the current workshop .. 17

3.6 Exploring possibilities with the current toolkit ... 18

3.7 Criteria for developing a toolkit .. 19

3.8 Requirements for the workshop setting and toolkit ... 19

4 Visual programming .. 20

4.1 Visual programming or regular programming .. 20

4.1.1 The reduction of required skills by visual programming 20

4.1.2 The limits of visual programming .. 21

4.1.3 Usefulness for wearable technology toolkit ... 21

4.2 Existing visual programming tools .. 22

4.2.1 Search strategy .. 22

4.2.2 A brief overview of the most popular tools .. 22

4.2.3 Visual programming in other areas ... 25

4.2.4 Block-based or flow-based .. 27

4.2.5 Suitability of both styles .. 27

5 Defining possibilities for the visual programming tool ... 28

3

5.1 Choices made for the programming tool .. 28

5.1.1 Preliminary requirements ... 29

6 Design of the tool .. 31

6.1 What should one block look like ... 31

6.2 The interface as a whole ... 32

6.3 Refining colour choices ... 33

6.4 Technical implications of this design .. 33

6.5 Priorities for design ... 34

7 Implementation .. 35

7.1 Processing ... 35

7.2 General graphical interface structure ... 35

7.3 The resulting interface of the program ... 36

7.4 The classes in detail ... 37

7.4.1 Display manager .. 37

7.4.2 Mouse handler .. 37

7.4.3 Block library ... 38

7.4.4 Inspector window .. 38

7.4.5 Flowblock .. 39

7.4.6 Connection point ... 41

7.5 Code creation .. 42

7.5.1 Arduino functions .. 42

7.5.2 Building and uploading the code... 43

7.5.3 Arduino CLI .. 44

7.6 Functional evaluation .. 45

7.6.1 MoSCoW.. 45

8 Evaluation .. 46

8.1 Design of the workshop .. 46

8.2 Questionnaire .. 47

8.3 Ethics ... 47

8.4 Test setup .. 47

8.5 Pilot test .. 48

8.6 Results ... 49

8.6.1 Defining the participant groups .. 49

8.6.2 Low threshold .. 50

8.6.3 Wide walls ... 52

8.6.4 High ceiling .. 54

4

8.6.5 General results of the questionnaire .. 56

8.6.6 Observations during the workshop ... 57

9 Conclusion ... 58

10 Discussion .. 59

11 References ... 60

Appendices .. 62

Appendix A – Example programs .. 62

A1. The full table with possible prototypes .. 62

A2. Programming keywords and their occurrence in the possible prototypes 64

Appendix B – Current language types ... 65

Appendix C – The workshop.. 66

C1. The assignment ... 66

C2. Info sheet .. 68

Appendix D – Questionnaire ... 71

Appendix E – Information document .. 72

Appendix F – Consent form ... 73

Appendix G – Results .. 74

Appendix H – Improvements to be made ... 88

H1. Functionality ... 88

H2. UI ... 88

H3. Hardware .. 88

5

List of Figures
FIGURE 1 CREATE DESIGN PROCESS PHASES [2] .. 9
FIGURE 2 AN OVERVIEW OF THE TOOLKIT .. 12
FIGURE 3 MICRO CONTROLLER CARD SOURCE: WIKI.EDWINDERTIEN.NL [3]. .. 12
FIGURE 4 THE TURN SIGNAL STARTER CARD SOURCE: WIKI.EDWINDERTIEN.NL [3]. .. 13
FIGURE 5 A SCRATCH FOR ARDUINO PROGRAM [15] .. 22
FIGURE 6 CREATING A PROGRAM IN TINKERCAD [16] .. 23
FIGURE 7 ARDUVIZ: EXAMPLE OF A LIGHT SENSOR PROGRAM [17] .. 23
FIGURE 8 NODE-RED CONTROLLING LIGHTS [18] .. 24
FIGURE 9 UNITY VISUAL SCRIPTING SOURCE: [19] .. 25
FIGURE 10 UNREAL ENGINE BLUEPRINT SOURCE: [20].. 25
FIGURE 11 BLOCK DESIGN OPTIONS ... 31
FIGURE 12 THE DESIGN OF THE GUI .. 32
FIGURE 13 THE GUI AFTER THE MAKEOVER .. 33
FIGURE 14 GENERAL STRUCTURE OF THE PROGRAM .. 35
FIGURE 15 AN EXAMPLE OF A HEARTRATE SENSOR THAT GOES RED WHEN THE HEARTRATE IS ABOVE THE AVERAGE

HEARTRATE .. 36
FIGURE 16 MINIFIED VERSION OF THE BLOCK LIBRARY. .. 38
FIGURE 17 THE STRUCTURE OF THE STRING BUILDER AND ARDUINO COMMAND LINE INTERFACE 43
FIGURE 18 A LED STRIP THAT TURNS ON WHEN THE DISTANCE IS GREATER THAN 50CM 43
FIGURE 19 EXAMPLE OF THE HOVER OVER TEXT IN ARDUINO IDE .. 44
FIGURE 20 LOW THRESHOLD LIKERT SCORES ... 50
FIGURE 21 WIDE WALLS LIKERT SCORES ... 52
FIGURE 22 HIGH CEILING LIKERT SCORES .. 54
FIGURE 23 HOW NATURAL WAS USING THE TOOL? ... 56
FIGURE 24 HOW LIKELY ARE USERS TO USE THE TOOL AGAIN? ... 56

6

List of Tables
TABLE 1 AVERAGE END-USER SPECIFICATION .. 14
TABLE 2 TOP SIX CODING KEYWORDS ... 18
TABLE 3 NUMBER OF VISUAL PROGRAMMING TOOLS BY CATEGORY FOR ARDUINO .. 27
TABLE 4 MOSCOW FOR THE PROTOTYPE ... 34
TABLE 5 MOSCOW - IMPLEMENTATION STATE.. 45
TABLE 6 PROGRAMMING COMFORTABILITY OF THE PARTICIPANTS .. 49

7

1 Introduction
Thanks to advances in hardware and software, low-power devices such as IOT sensors or

BLE devices are becoming increasingly available to a wider public. In addition, these

advancements enable countless applications of technology. One area in which these

affordable and smaller technologies can be used is wearables. Wearable technology or

wearables refer to technology that is designed to be worn throughout the day, such as

watches, wristbands, glasses, and clothing. For example, wearables in clothing provide

many different possibilities and functions, such as posture correction, a turn signal for

cyclists or integrated party lights. There is a lot of potential to improve wearables through

technology, but in the current products extraordinarily little wearable technology is used.

Smart wearables have many other applications across multiple industries, such as in the

medical industry, where wearables can reduce costs and improve the quality of healthcare

by remotely monitoring body functions [1].

1.1 Problem statement
To familiarize people with this technology, a wearable technology toolkit has been

created, which is used during the workshops. This toolkit allows users to prototype and

design wearable technology without requiring extensive knowledge of electronics.

Currently the code is written in Arduino, but users who do not have a coding background

often struggle with writing Arduino code. To make the prototypes within the timeframe

of the workshop, you need a technical coding background, allowing fewer designers to

participate in this workshop.

Helping the user in programming his or her prototype idea, would aid in the ideation

process. Creating the tool(s) needed to enable designers to make wearable technology is

the focus of this project. This leads to the following research question: “How do we make

programming accessible to designers in a short (half-day) workshop?”

1.2 Research questions
As discussed in the problem statement the main research question is defined as:

“How do we make programming accessible to designers in a short (half-day) workshop?”

In order to answer this question, this question will need to be split into smaller parts, this

resulted in the following sub-questions:

• How can a different approach in programming help shortening the time it takes

to code, and reduce the amount of experience needed?

• Does a programming tool still allow the user to be creative and experiment with

all the options the toolkit provides?

• Is using a visual programming tool a hinder for users that are comfortable with

programming?

8

1.3 Report outline
In the first chapter the goal and research questions of this research are explained. After

that in the second chapter a description of the creative technology design process and

how it is used during this project can be found. Chapter three contains the state of the

art detailing the current contents of the workshop and a description of how other

workshops deal with lacking programming skills. In chapter four visual programming is

explained along with how it will be used in this project. Chapter five defines the

possibilities for the programming tool and explains choices made to get requirements.

These requirements are then used in chapter six to create a design for the programming

tool. Chapter seven explains how the programming tool was created and a in depth look

at its features. After that chapter eight contains the materials and setup used for the

user tests followed by the results of this user test. Chapter nine will be the conclusion of

this research, while chapter ten is the discussion related to this project.

9

2 Method
This chapter discusses the steps that were taken to get to the end result of this graduation

project. First there is a description of how the Creative Technology design process is

structured, which will be used to create a prototype to answer the research questions.

After that there is an overview of what was done in each of these steps during this project.

2.1 Creative Technology design process
The Creative Technology design process consists of the following four phases: ideation,

specification, realisation, and reflection. Each phase has its own set of intermediate

results as seen on the left side of Figure 1. Within each phase a cyclic workflow is used,

which allows the designer to iterate over the nested problems that are often found in

designing a product.

Figure 1 Create Design Process Phases [2]

10

2.1.1 Ideation
During this phase the focus is on defining the problem and gaining requirements that

would solve the problem. For this project this started with an interview to look at how the

workshop was structured. After this background research was done into related works for

inspiration. One of the creative ideas was to use the whiteboard flow chart as code. After

that this idea was used to look more closely at one interesting possibility namely visual

programming, when looking at this possibility it was selected as the solution that is going

to be used. To see if this was doable a brainstorming session was held with another

student to generate as many ideas as possible that would be possible using the toolkit.

2.1.2 Specification
The results from the brainstorm session were then used to determine the functions that

need to be included in the prototype. After this several personas are made to better

understand the programs the target audience uses often. In addition, some small

prototypes were made to investigate how the code generation could work.

2.1.3 Realisation
In this phase the prototype that is described in the specification phase is created. To do

this first the requirements were converted to descriptions of the classes. These classes

were then developed without making all the specific subclasses for the different blocks.

2.1.4 Evaluation
During the evaluation phase the prototype is tested, to do this multiple user tests are

performed. The first user test was a pilot test to test for any mistakes in the assignment

and bugs in the code that would prevent other test users from completing the test. The

information gathered from the user tests is then used to verify if the prototype is a

solution to enable all the participants to generate their own code without being too

limited in the possibilities provide by the toolkit. Additionally, the areas that still need

further improvement in the future are defined in this phase.

11

3 State of the art
As previously stated, a toolkit was created for the wearable technology workshop to

familiarize designers with the possibilities of wearable technology. In order to achieve the

intended improvements in accessibility for designers, as indicated in the research

question, it is important to first describe the current situation.

This chapter starts with an interview with an important stakeholder who provides a brief

description of the current workshop and its origins. Subsequently, a detailed description

of the wearable technology toolkit is given. Since we want to make programming more

accessible to a specific target group in a short workshop, a further description is given of

the participants in the workshop. How the current workshop and other workshops and

toolkits in the same field deal with the missing programming skills of the participants is

another important element of this chapter. During the expert interview, three important

criteria for developing a toolkit were identified. This chapter about the state of the art

concludes with a number of requirements for both the workshop and the toolkit.

3.1 The current wearable technology workshop and its origins
Edwin Dertien is a lecturer and researcher at the Robotics and Mechatronics department

at the University of Twente. In an interview, he gave the following information about the

origin of the wearable technology workshop. At first, a short introduction to programming

was given during a one-day workshop on interactive inflatables which allowed all group

members to understand what other group members had programmed. This workshop

developed into a broader wearables themed workshop, not just about inflatables.

Subsequently, Angelika Mader (lecturer Creative Technology, University of Twente) and

Edwin Dertien were asked to give a half-day wearable technology workshop in a couple

of other libraries.

Edwin indicated that in addition to the technical parts of the toolkit, instruction cards

were developed (see also 2.2). These instruction cards were intended to give structure to

the workshop. For example, three cards were drawn, and the participants were

challenged to discover what they could make with the items on the cards. While

brainstorming, all kinds of ideas arose. Discovering possibilities by using a random set of

components was an important learning objective of this workshop. This ensured that the

participant became acquainted with the possibilities of the toolkit before moving on to

the reverse process, namely from a desired outcome to the required components.

The core activity of the workshop is designing and tinkering, to figure out all the

possibilities that wearables have to offer. For structuring coding process during the

workshop sense-think-act is used as a guideline. So first you focus on measuring the

sensor that you want to use, then you try to translate those values into something

sensible, and finally you output those variables to your actuator(s). To do this in a sensible

way you first make a flowchart of the behaviour that you want your program to have

before converting that into code.

In the next section, we examined the current toolkit in detail.

12

3.2 Description of the current toolkit

Figure 2 An overview of the toolkit

Developing and evaluating a toolkit requires a thorough understanding of its content and

capabilities. Therefore, this section provides more detailed information about the current

toolkit. As Figure 2 shows, the toolkit consists of a number of items, namely instruction

cards, a controller, sensors, actuators, and starters.

Instruction cards
The instruction cards consist of a small deck of 21 cards. Each card provides a brief

overview of a relevant item. The cards are divided into five groups: components, tools,

materials, sensors, and actuators. During the workshop, these cards can be used as quick

cheat sheets. Another important function is its use as a way to ideate; if a user picks a few

random cards and combines them, a new product quickly emerges. For example, the

micro controller card as seen in Figure 3 shows essential information such as the pinout

and the possible connections, allowing the card to be used as a quick reference during

prototyping.

Figure 3 Micro controller card source: wiki.edwindertien.nl [3].

13

Controller
When using a toolkit to create wearable technology, a controller is always needed to plug

the other components into. Therefore, the controller has three analog inputs and three

digital outputs to which the sensors and actuators can be connected, respectively. The

controller, the Beetle, is based on Arduino micro which means the controller is based on

the ATmega32u4 chip. The controller can be plugged into a computer using the USB-plug.

When connected, the user can program the controller using Arduino Integrated

Development Environment (Arduino IDE). In this environment Arduino code can be

created (C++ with additional methods and functions) that determines the behaviour of

the controller after uploading. Since Arduino is a widely used programming language, the

user can easily find information about it. However, coding can be challenging for a user

who has no prior programming experience. For this reason, the controller uses a premade

code that works for all starter cards.

The sensors
The toolkit contains six sensors that can be connected to the controller with color-coded

cables. This modular design allows the user to instantly connect a different sensor. The

foregoing in combination with the premade code enables quick prototyping; the user only

needs to connect the sensor to the correct port. The included sensors are a touch sensor,

an accelerometer, a flex sensor, a sound sensor (microphone), a galvanic skin response

(GSR) sensor, and a heart rate sensor. By using these sensors, the prototype can easily

react to the environment.

The actuators
There are four kinds of actuators: a buzzer, a servo motor, a vibration motor, and a LED

strip. These allow for a large variety of output signals. The actuators can be connected to

the following digital ports: D9, D10 and D11, which means that no more than three

actuators can be used at the same time.

Starters
Included in the kit are some “starters”. These starters are meant to start building in a

simple yet inspiring way [3]. Figure 4 shows an example of such a starter, the turn signal

card. This card describes the necessary components to create a turn signal using a LED

strip on your back and touch sensors in your sleeve. When a cyclist presses the button, a

turn signal will blink indicating the direction the cyclist wants to go.

Figure 4 The turn signal starter card source: wiki.edwindertien.nl [3].

14

In order to develop a tool that fits well with potential users, more insight is provided into

the target group, which consists of both students and designers. Since the tool should be

especially suitable for people who have less programming skills, the designers, we then

provide a user scenario for this.

3.3 Target audience
The wearable technology workshop is given to designers and students to boost interest in

wearable technology and open their eyes to the possibilities. What this means for the

workshop itself is discussed here. The participants do not need any special skills to start

with the workshop. As it is a technology-based workshop, a technological interest can

nevertheless be expected. During the workshop, the audience should get an

understanding of the possibilities and impossibilities of technology in their future designs.

As Durling states, in fashion design being different can be a goal on its own, not following

a path that has been followed before is important in fashion [4]. This aiming at being

different is often seen in the designers’ approach. They intuitively feel what is right and

aim for it. This often results in taking another path than expected, creating something new

and interesting in the process. The following table shows a brief overview of what the

target audience could contain.

 Students Designers

Age 18-26 [5] 18-65 (working age)

Possible background
knowledge/experience

• Programming experience

• Uses apps frequently

• Experience with Simulink

• Designing of clothing

• Uses apps frequently

• Experience with
graphical design
programs

Motivation Investigate whether
programming is an interesting
field of study.
Learn about the creative
process involved in producing
a new product, with hands on
experience.

Discover the possibilities of
wearable technology and
get inspiration to use it in
their designs. How easy is it
to get started with
wearable technology, can I
think of wearable
technology that adds value
to my design?

Related personal
interests

• Internet of Things (IOT)

• Smart watches

• Fashion

• Health monitoring

• Fashion

• Technology

Table 1 average end-user specification

15

3.3.1 User scenario
James, 19, a first-year industrial design student, is interested in discovering more about

wearables. He recently acquired a smart watch and now wants to know more about

wearable technology and its possibilities. He joins the workshop expecting to experiment

with and discuss the future of wearables. However, during his studies he has never

programmed before, so as the workshop progresses, he struggles with the coding of his

prototype. He is too proud to constantly ask for help and wants to impress others.

He needs something that enables him to make a prototype independently or with minimal

help from the people who assist in the workshop. He wants to create a heart rate monitor

that shows a visual representation of his heart rate using a circle of LEDs attached to his

t-shirt. He wants to be able to make this monitor without having to learn Arduino syntax

that is currently used in the workshop. He is used to programs with an intuitive user

interface and wonders if such an interface for creating code exists.

Julie, 37, a sportswear designer, wants to keep up with the current trend of devices that

track the user’s performance. For that reason, she wants to learn more about how sensors

and wearable technology work. With the help of the assistants during the workshop, she

manages to make a nice prototype of shorts that measure how someone runs. However,

when she wants to continue at home, she cannot get her programs to work. She does not

have time to immerse herself into the world of programming.

She wants something that will allow her to continue experimenting with the sensors and

create smart wearables at home, without spending time and effort learning to code on

top of her busy job. At work, she often uses a program that quickly reveals what a design

idea would look like by dragging patterns and letters onto digital previews of T-shirts

without having to draw it from scratch.

3.4 Current workarounds for the missing programming skills
In this section, we explore how missing programming skills are addressed in the current

wearable technology workshop. During the wearable technology workshop, the

participants will receive sample code which they have to adapt to their needs in Arduino

IDE. If the sample code provided matches what they intend to create, users can quickly

prototype as they do not have to code themselves. Not having to code is both an

advantage and a disadvantage, because the user does not tinker with the code or only to

a limited extend, so that not all possibilities of the hardware are explored. Since a designer

likes to make something new and creative, this is a rather large handicap of the toolkit. In

order to make full use of the possibilities, it would be necessary to teach the designers to

write Arduino code themselves. However, this is a very time-consuming process that

cannot be accomplished in one session. Another possibility is that the coder extensively

guides the designer in creating the necessary code for the behaviour intended by the

designer.

16

3.5 Other ways of addressing the lack of programming skills
This section discusses workshops in the same field, focusing on how these workshops deal

with a lack of programming skills during the workshop. Subsequently, we describe two

toolkits that could be used for people with minor programming skills.

3.5.1 In other workshops

Interactive inflatables studio workshop
During this six-hour workshop, participants create an inflatable device that allows you to

notice certain human behaviour that is otherwise difficult to observe, such as excitement

or attraction [6]. This device gives a physical interpretation of certain behaviours or

emotions by, for example, inflating or moving. To create such an inflatable device, the

user is equipped with a simple kit of components and is assisted by instructors. Before

programming the Arduino, the participants receive a short workshop on how to work with

an Arduino. In addition to other skills, the learning objectives indicate that the user

acquires new programming skills, so there definitely is a focus on educating the user in

the field of programming. The setup of this workshop bears a lot of resemblance to the

wearable technology workshop, so Arduino IDE could also be used during the current

workshop. However, this is already being done and takes a lot of time. Time that could be

better used for the creative process.

Kobakant: Soft Interactive Technology 1
During this adult-oriented workshop, the participants will explore what textile sensors can

do and how users can interact with digital technology [7]. The user chooses an app and

then analyses how to interact with this app, do you swipe or click? Once it is clear how

the app works, the user starts to think about how to modify this interaction. To investigate

this, many prototypes are created over the course of two days. An advantage of this

workshop over other workshops is that it is a two-day workshop, so there is a lot of time

to learn and tinker with code. During the workshop, the user makes his/her code in

Arduino. To guide the user through the programming, links are provided to Arduino

reference pages often used on previous prototypes. With this guidance and the allotted

time, the user can program it from scratch.

3.5.2 In other toolkits

MakerWear
MakerWear is a toolkit that uses physically connecting hexagonal modules instead of

code. One of these modules can be a sensor or an actuator, but more interestingly it can

also be an action such as a threshold or a counter. When connecting these modules, the

user creates ‘code’ directly in the physical world. While this approach does not require

actual coding, it does present some drawbacks, including the following: “the sole reliance

on a tangible, modular approach limits designs to available modules as opposed to

completely open kits” [8]. This means that full physical programming limits the freedom

of end users significantly, but since the toolkit is aimed at children in primary schools, this

is justified.

17

BYOR – Build Your Own Robot
This kit consists of a printed circuit board and various sensors and actuators, all of which

have a Jack connector. The board has six inputs and six outputs. When connecting a

sensor to the first input, the same signal is applied to the first pin on the output side [9].

This results in direct feedback, plug in a sensor and actuator and you immediately have a

working device.

When a micro:bit is inserted in the BYOR Easyboard it is possible to create your own code

for the BYOR kit. The main advantage of this kit is that it is completely plug and play; the

micro:bit adds a lot of functionality using a block-based visual programming environment.

One downside of the kit is the nonstandard connector.

3.5.3 Applicability to the current workshop
During the background research, different ways were found to address a lack of

programming skills. One way consisted of just getting started with Arduino by providing

lots of examples or premade code (for example the Interactive Inflatables Studio

Workshop). Other more interesting routes were to help the user with visual programming

(BYOR) or not to use programming at all (MakerWear and BYOR). The sub research

question “Does a programming tool still allow the user to be creative and experiment with

all the options the toolkit provides?” states that the tool should not be a restriction to

what the user can make. In the two cases where no code was used, the user was limited

to either a direct translation of input to output or very limited processing of the signal was

found. This means that the user cannot program everything he or she wants (MakerWear)

or in the case of BYOR, that all current starters must be included in the kit. The Soft

Interactive Technology allows the user to learn a lot about programming, but since this is

a two-day workshop, there is also more room for this. For the wearable technology

workshop simply telling the user where to find the information may not be enough, but

proper help files or a wiki should be created.

18

3.6 Exploring possibilities with the current toolkit
What is possible?
The toolkit contains a variety of sensors and actuators, but what can be created with this?

To what extent do these creations depend on different programming principles? To

investigate this further, a list of code examples has been made (see Appendix A1). This list

includes a brief description of each program and uses keywords to describe the

programming requirements. This list was created as follows. First the researcher sat down

with another student to generate ideas of what they thought could be made using the

hardware provided in the toolkit. When this was done each of the generated example

uses got assigned code keywords based on what would be needed to create them.

Code keywords for the programs
The keywords were counted and then ranked based on this count, this was done to get

insight on what the most important features to implement are. Appendix A2 shows how

often a keyword occurs. There are a few things worth noting. Some keywords occur very

often and are used in almost every program. For instance, the “Read values” keyword

appeared directly in at least eight different programs. The actual usage is even higher,

because reading the value of a pin is used in every program that uses a sensor. It is also

noteworthy that “Custom calculation” occurs five times, for these programs a simple if-

statement or threshold would not be enough, for example the program that describes

using an accelerometer to measure the power at which a soccer ball is kicked cannot be

created using just simple condition.

Keyword Count

Read values 8

Threshold 8

Timer 6

Conditional statement 6

Alarm 5

Custom calculation 5

… …

Table 2 Top six coding keywords

19

3.7 Criteria for developing a toolkit
During the expert interview with Edwin Dertien, three important criteria for developing

a toolkit were identified, namely wide walls, high ceiling, and low threshold. A brief

explanation is given of what they entail.

Wide walls
This relates to how many different uses something has. When saying that a tool has

wide walls this means that the tool can be used to create a wide variety of behaviours.

This is important to not hinder the creativity of the end-user.

High ceiling
The ceiling in this case is the limit of what can be achieved with a tool, it is the

opportunity for the user to make and learn advanced things that are beyond the average

user's skill level.

Low threshold
This entails how easy it is to get started with using something. If the threshold to using is

low, it is quick to pick up without requiring a lot of effort before the first results can be

achieved.

3.8 Requirements for the workshop setting and toolkit
A number of things can be concluded of the different wearable technology

workshops/toolkits and the target audience analysis that support the development of

code for smart wearables:

• No technological skills should be expected when participating in the workshop. It

is preferable that the tool can be used with a short explanation or no explanation

at all. The tool should make it possible to start up quickly and to create a simple

program within half an hour.

• Easy-to-read documentation for the user, this allows the user to be more

independent, especially after learning the basics.

• The tool should not hinder creativity, it is the task of a designer to produce new

innovative uses. Limiting the freedom of the designer in this process is not

desirable for the workshop.

• Technological details do not need to be visible; the designer sees technology as a

way to achieve the goal.

• All sensors and actuators should be supported, as the toolkit expands new

components should be easy to implement.

• All functions from the examples should be present, prioritizing the code

constructs that occurred in most projects. In this way, even if a newly developed

tool is not yet finished, it can still be used and tested.

From these requirements it can be inferred that the tool must be very versatile, in order

to be able to use it for many applications. In addition, the tool must be easily adaptable

by the user, because it is not feasible to make all code for every possible prototype in

advance, as it uses custom calculations and other “fancy” programming features. And last

but not least, the tool must not hinder the user’s creativity. The next chapter explores an

alternative to text-based programming.

20

4 Visual programming

4.1 Visual programming or regular programming
From the previous chapter, it became clear that not programming at all is not a valid

option for the smart wearable toolkit as that would hinder the wide walls the toolkits

hardware has to offer. This is why visual programming was chosen, as when implemented

properly the designer should not be hindered in their creativity. To aid in programming,

many alternatives have been created over the years of which programming visually is the

most exciting. In theory, learning a programming language is replaced by using intuitive

visual representations of code. To investigate whether visual representation of code can

also be used in the smart wearable toolkit, a literature study on visual programming was

performed, the results of which are presented in this chapter.

4.1.1 The reduction of required skills by visual programming
Scratch and other block-based visual programming languages are designed to be a first

language learned, meaning they are created for novice programmers [10]. Block-based

visual programming languages use several ways to facilitate code creation, such as drag

and drop blocks; using shapes to show what kind of block is required; c-shaped control

structures indicating that the body is missing and many more [10] [11]. These pieces that

only fit together in a correct way prevent syntax errors from being made. However, this

does not guarantee that the program will behave as intended when the pieces fit.

Weintrop [11] examined student perceptions and discovered that a majority found block-

based programming tools easier to use than text-based programming. Booth and Stumpf

found that end users using a block-based visual programming environment for Arduino

were more likely to complete the tasks given to them than those using a traditional

programming environment. In addition, the end users with whom they performed the

tests reported that the task was less mentally demanding and less frustrating [12]. One of

the participants in Booth and Stumpf’s research stated that it was difficult to remember

which special characters to use whilst coding in the textual programming environment

[12]. This clearly shows that the syntax used in textual programming, which is so familiar

and easy to the advanced programmer, can be quite daunting at first for a new user. In

addition to the block-based approach from scratch and many other visual programming

languages, there is also another way of visual programming, namely dataflow-based visual

programming (DFP). As explained by Sousa, DFP is based on nodes/blocks with lines

connecting them [13]. An advantage of DFP is that it enables extremely fast prototyping

of code and implementation of certain systems, allowing DFP to be used by experienced

programmers as well as less technical users [13]. Visual programming languages require

barely any programming knowledge to get started with. The building blocks are quite

literally provided for the end user, which results in less learning required for the user to

get started [10]. In summary, visual programming reduces the required knowledge of a

specific programming language and prevents the user from making syntactic errors. This

allows the novice user to quickly get started with programming and to create a program

with relative ease straight away.

21

4.1.2 The limits of visual programming
Putting the code in premade blocks might seem very restrictive. However, this is not the

case in the popular block-based languages such as Scratch, Snap and Blockly. As explained

by Weintrop [11] abstract syntax trees are used, meaning that the program’s primitives

are represented visually and once all primitives are implemented, no functionality is lost.

Technically, there is no limit to what can be created in these. However, as Schaefer clearly

states, visual programming is very convenient for smaller programs, but when you

increase the scale of the program, it often becomes very unclear [14]. Resnick et al.

describe C-shaped building blocks in which the other code is contained [10]. When nested,

the horizontal screen space used increases rapidly, causing the code to no longer fit into

the space of the window [14]. The downside of block-based visual programming can

create a struggle for the user to find what he/she wanted to look at, making you really

search for what you want to change and making it more likely that you lose oversight over

the code as a whole. (DFP does not use blocks that are inside other blocks, so larger

programs might seem like a great plan here. However, if a user creates many nodes that

are interconnected, the screen can quickly become filled with the nodes and the edges

connecting the nodes. This can be difficult to interpret, as it is quite hard to find all

relationships between all nodes [13]. According to Sousa a possible solution to this

cluttering could be the ability to group nodes effectively creating your own bigger node

[13]. The main problem for visual programming environments is not what an end user

could technically create, it is keeping track of what has been created and fitting it onto

the screen.

4.1.3 Usefulness for wearable technology toolkit
The previous sections discussed some advantages and disadvantages of visual

programming. This section discusses its usefulness for the wearable technology

workshop. During the wearable technology workshop, it is important that a novice coder

can quickly create code. Visual programming can be a great tool for this, as it is designed

to reduce prior knowledge to create code. The main disadvantage of visual programming

is that it quickly becomes cluttered when creating large programs. This would not be a

problem for the wearable technology workshop, as the amount of code created for one

wearable is not that massive. Therefore, it can be concluded that visual programming is a

possible solution to the programming problem in the workshop.

22

4.2 Existing visual programming tools
Since there are already many visual programming tools, these tools have been thoroughly

researched for user-friendliness. A brief overview of the results can be found in this

section.

4.2.1 Search strategy
To investigate the most searched/most popular tools, a clean browser session was used

in combination with DuckDuckGo. This ensured that the previous browsing history did not

influence the search. The keywords searched were “visual programming”. Subsequently,

the results were screened on relevance, including only those results that were made for

Arduino or other microcontrollers.

4.2.2 A brief overview of the most popular tools

Scratch for Arduino
Scratch for Arduino or S4A is a visual programming environment based on Scratch [15].

Just like Scratch, S4A has draggable blocks that are located in a menu on the left. These

blocks only fit together in certain ways, as shown in Figure 5.

Figure 5 A Scratch for Arduino program [15]

The brightly coloured blocks represent basic structures and datatypes, which can be used

to create programs that can be uploaded to the Arduino. Scratch was targeted to teach

children how to code [10] and the same holds true for S4A. It is not created to be the

fasted way to prototype an Arduino project. For the wearable technology toolkit

workshops, software aimed at rapid prototyping for wearable technology is better suited.

In addition, since the software will be used for adults, the user interface should be more

aimed at users with more life experience.

23

TinkerCAD ® Circuits

Figure 6 Creating a program in TinkerCAD [16]

TinkerCAD Circuits [16] has a block-based visual programming environment. With a similar

drag and drop-based programming interface, code for the Arduino can be created. The

number of blocks is extremely limited, allowing the user to create only simple programs.

As shown in Figure 6, the “language” is remarkably similar to Scratch for Arduino. The

blocks have bright colours and fit together like a jigsaw puzzle. This is sufficient when used

with the library of components provided in the simulation section of the editor. For

creating prototypes with more advanced sensors, like those provided for the toolkit, this

would be less than ideal.

Arduviz
As Pratomo and Perdana state [17], Arduviz also uses a block-based approach to visual

programming, minimizing errors by limiting how the blocks can be connected. They also

clearly state that Arduviz is designed as a tool that teaches about Arduino code and coding

in general.

Figure 7 Arduviz: example of a Light sensor program [17]

As Figure 5 shows, Arduviz uses a design similar to both TinkerCAD and Scratch for

Arduino. Arduviz has the advantage of having a rather large library of blocks, which makes

it easy for the user to create code for various applications.

24

Due to the lack of ready-to-use, still-maintained flow-based visual programming tools for

Arduino, a broader view of similar tools is needed to determine whether block-based is

indeed the best option for the wearable technology toolkit. To this end, programming

tools for similar hardware platforms have been researched in this chapter.

Node-RED
Node-RED is an example of a modern flow-based programming tool, working with

premade code blocks with titles such as “Light Sensor” [18]. These blocks can be intuitively

connected together to create programs without knowing the code behind the blocks. An

example of this ‘code’ can be seen in Figure 6. These blocks with their easy-to-interpret

titles allow for quick development of a program.

Figure 8 Node-RED controlling Lights [18]

25

4.2.3 Visual programming in other areas
To the researcher’s knowledge, there is barely any scientific research to be found on the

effectiveness of flow-based tools for educational purposes, whereas flow-based programs

are widely used in professional applications. This means that no scientific publications

could be found that discuss the advantages and disadvantages. For that reason, this

section will discuss some of the existing visual programming tools in a non-educational

setting.

Unity visual scripting
This tool is made to make scripting more accessible for artists and designers, who can

work together with programmers to make developing games easier. It is stated that

programmers can create custom nodes with visual scripting that the other members of

the team can then use to make things regardless of their programming knowledge [19].

Figure 9 Unity visual scripting Source: [19]

In the figure the tool is shown, from this you can get a feel of what using the tool is like.

There are nodes that are connected together or have a value set with a box on the same

spot as where one could connect a node.

Unreal engine Blueprint Visual Scripting

Figure 10 Unreal engine Blueprint Source: [20]

This visual scripting system uses a node-based interface. The system is designed to be

flexible so that designers can create anything that normally only a programmer could

26

create. In addition to this it is made in such a way that a programmer can create the

underlying systems on which de designer can work using this visual scripting language.

When looking at the tool’s user interface it is clear that the compile/save and other

functions are on the top in a toolbar, there is an overview of the components used and

add component button on the left while the right of the screen has a “Details” window.

With the middle of the screen filled up with a large window in which the graph editor is

located. This is where connecting the blocks takes place.

Simulink
To quote the website of the maker of Simulink: “Simulink is a block diagram environment

used to design systems with multidomain models, simulate before moving to hardware,

and deploy without writing code. [21]” This tool is often used both in education and

professionally, where it is used to model real world behaviour in a simulation. This allows

for rapid prototyping and makes it easy to test your system before making it.

27

4.2.4 Block-based or flow-based
When considering a visual programming language as a possible solution for the wearable

technology workshop, it should be specified what kind of visual programming language

will be created. During the theoretical research on visual programming languages, two

main types were specified namely block-based and dataflow-based visual programming.

The brief overview of the most popular visual programming tools for Arduino and other

microcontrollers Appendix B – Current language types shows that only one of these two

main types was commonly used, namely block-based visual programming. To further

investigate whether this was correct for Arduino, a Google search was performed on

‘Arduino visual programming’. The first fifty records of this search query were examined

to determine which tools were involved. After removing duplicates, the search yielded 12

unique results. The following categories were identified: block-based, flow-based, and

other. Table 3 shows the totals for the different categories. This table generates the

following question: Why is block-based hugely more popular than flow-based?

Block-based Flow-based Other

9 2 (1 of which is no longer
updated)

1

Table 3 Number of visual programming tools by category for Arduino

4.2.5 Suitability of both styles

Block-based
A block-based tool such as Scratch aims to make code easier to learn. To achieve this, the

code has been converted to a visual representation that closely matches the actual code.

Due to the close resemblance to the original code, the user still needs to understand many

programming principles. Using this tool is a great way to learn the train of thought behind

a program. This is why this tool is widely used for educational purposes [11]. For the

workshop this style is less well suited as it has a relatively steep learning curve to get

started with.

Flow-based
Visual programming with a flow-based language is different from traditional programming

because there is no direct translation to code. The user creates flowcharts to model the

desired behaviour. As a result, flow-based languages have a higher level of abstraction

than other paradigms. A node can consist of all the code required for the sensor with only

the necessary pins as input and the value as output, which makes coding quite easy as

almost all coding is done for the user.

28

5 Defining possibilities for the visual programming tool
First, this chapter provides an overview of the basic requirements for the programming

tool of the wearable technology workshop. Subsequently, the choice for the type of

programming tool is explained. The preliminary requirements are then discussed in more

detail.

5.1 Choices made for the programming tool
Based on the previously mentioned knowledge in combination with the limitation of a

half-day workshop, a number of basic requirements for the tool can be derived. These

requirements consist of:

• Creativity is especially important for fashion designers; the tool should allow for

a lot of customization using the components in the toolkit.

• The tool should not hinder creativity, it is the task of a designer to produce new

innovative uses. Restricting the creativity of the designer in this process is not

desirable for the workshop, as this is important for tinkering.

• No technological skills are expected when participating in the workshop, the tool

is preferably used with only a short explanation or no explanation at all.

• All sensors and actuators should be supported. As the toolkit expands, new

components should be easy to implement.

• All functions from the examples should be present, prioritizing the code

constructs that occurred in most projects. In this way, even if a newly developed

tool is not yet finished, it can still be used and tested.

• The visual programming tool should allow for rapid prototyping, since the time

for creating a program is limited.

• The learning curve should be as small as possible, a user should be able to start

using the tool intuitively. This could be done by hiding more advanced options

behind a menu, which ensures that the user only sees simple building blocks at

the start.

• Familiar interface for designers, based on tools they have used before.

• Easy-to-read documentation for the user allowing the user to be more

independent, especially after learning the basics.

The aforementioned basic requirements result in the choice for a flow-based visual

programming tool, as it is very similar to the flowchart that people make during the

workshop this makes it very easy to quickly go from the flowchart to the corresponding

code blocks. A flow-based visual programming tool creates an easy environment to start

with, because the number of blocks can be limited to not overwhelm the user. A single

block can contain all the code required for reading a sensors value. Connecting these large

blocks together also aids in faster prototyping, as explained in 4.1.1. One of the downsides

of using this data flow-based representation is that it does not have the same educational

value as a block-based language, making the workshop even more focused on generating

interest rather than teaching programming principles.

29

5.1.1 Preliminary requirements
For each of the following main requirement’s ideas were generated as to what they would

mean for a possible software prototype. Some of them might not be feasible later on in

the design process due to either time constraints or because they are to complex, but the

aim is to at least consider them when making a prototype.

The requirements in 1) are based on the stakeholder interview. During this interview it

was clear that in a workshop there is not a lot of time for coding which means it is

important to get started as quickly as possible. Part 2) consists of requirements that were

gotten by taking the keywords analysis from the brainstorm session. For generating the

requirements for the sensors and actuators the capabilities of each of the components

was looked at along with how they were used in the brainstorm session and the examples

Edwin Dertien provided.

1) Low threshold, high ceiling

a) Quick installation and setup before being able to start coding

b) User can start coding with a 5-minute introduction and a simple instruction card

c) Possible to create a simple program within the first half hour after starting

d) Output to serial for debugging

e) Provide proper documentation on all the functions

2) Non-restrictive

a) Support all keywords from appendix A2

i) Get values from each sensor as detailed in 3) Sensors

ii) Control all actuators that are in the toolkit see 4) for more details

iii) Timers and loops

iv) Threshold on value of the sensor

v) Conditional statements, preferably full Boolean logic support

vi) Counters to keep track of previous events

vii) Custom calculations/algorithms

3) Sensors

a) Accelerometer

i) Acceleration in each axis

ii) Speed in each axis

iii) Rotation over each axis

b) Flex sensor

i) Threshold -> Boolean

ii) Raw value

iii) Value in degrees

c) GSR sensor

i) Raw value

ii) Threshold -> Boolean

iii) Calibration

d) Heartrate sensor

i) Time between beats

ii) Beats per minute

iii) Average heartrate

iv) Logging

30

e) Sound sensor

i) Value

f) Touch sensor

i) Pressed

ii) Released

iii) Clicked

4) Actuators

a) Buzzer

i) Tone control

ii) Duration control

iii) Musical notes

iv) Patterns

b) LEDs

i) Multiple configurations

ii) Per LED or as a whole

iii) RGB

iv) Effects (optional, could also be created by the user)

c) Servo

i) Set angle

ii) Move to angle with certain speed

d) Vibration motor

i) PWM

31

6 Design of the tool
From the previously mentioned tools a couple of design and interaction elements can be

found that are used a lot more than alternatives. Most notably, menu bars are always on

the top of the screen. Since a user is used to this location, the menu bar will be located

on the top. When looking at unity, Unreal Engine, Maya, and a lot of other (programming)

tools, there is almost always an inspector on the right side. This inspector contains

additional parameters of whatever is selected, as this tool requires some simple

parameters such as: the pin it is connected to and the initial values of the output, the

inspector will be implemented in a similar fashion. All the tools that used blocks had the

library which contained a list of blocks on the left side where the user could just drag and

drop them to the middle of the screen to use them in his/her program.

6.1 What should one block look like
Since working from left to right feels more natural as we are used to reading and writing

this way, the blocks will be a rectangle with inputs on the left and outputs on the right.

When determining the shape of the blocks, the main goal was for them to look inviting to

touch. To achieve this the number of sharp corners were minimized as this can impose a

sense of threat in users [22]. However, to accommodate multiple inputs and/or outputs

in an organised way a straight edge was more convenient. This resulted in the use of

rectangles with rounded corners instead of a pill shape.

Figure 11 Block design options

Heart rate

B

A

Heart rate

B

A

Heart rate

B

A

32

6.2 The interface as a whole
The interface of the program will consist of the following parts, each of these parts is

picked to be familiar to programs that are used in the creative industry.

Menu bar
This component is based on the arduino interface but most desktop applications have

something similar. A bar at the top from where you have access to all the settings and

other commonly used functions like saving, selecting a file and uploading. This was

included in this project as a location for the upload, save, settings, serial monitor and a

link to help texts.

Component picker
To store a list of blocks for the user to drag into the canvas a component picker is

needed, this will sit on the left side of the screen where the blocks are easily accessible

for the user. This approach is much like the block palette from scratch or the toolbox

from maya.

Canvas
To place and connect the blocks a blank canvas area is required, this is in the middle of

the screen as this is where the user will spend most of their attention whilst coding. The

canvas area is often seen in other tools such as: Gimp, scratch, unity, photoshop.

Inspector
The blocks have a lot of parameters that you can set, to make this easier the choice was

made to not have this under a menu but appear as soon as you click on a block. In a lot

of programs this can be done by either single or double clicking on a item. Programs that

use an inspector window/settings window are unity, blender, gimp, and photoshop.

Using 6.1 and the choices made in chapter 5 the following first sketch could be created,

this sketch was created in PowerPoint to serve as a visual guide when creating the

program. As you can see the interface has simple blocks with connection points that link

together with a line. To create this line the user has to drag from one connection point to

the other.

Figure 12 The design of the GUI

33

6.3 Refining colour choices
Looking at the colours of this first prototype, you cannot distinguish an actuator from a

sensor at a glance. To improve this the colours were changed to red for actuators, green

for sensors, and blue for other assisting blocks. These colours ended up looking very out

of place on the blue background, so we switched over to a dark theme. This dark theme

also feels more familiar to experienced programmers. This resulted in a more uniform

look for the software as a whole and made the type of the blocks more significant in the

way they appeared.

Figure 13 The GUI after the makeover

6.4 Technical implications of this design
From the design that was made a lot of additional requirements about how the user will

interact with the prototype became apparent. The following GUI related requirements for

the application were used when creating the application:

• The layout of the window should look as similar to the sketch as possible:

o Menu bar on the top where all the general settings are located, these are

not used for creating the code but the buttons here are used for saving,

uploading, help and changing user preferences.

o Inspector window on the right where the user can set certain parameters

of the blocks.

o Library window where the user can easily distinguish the block that

he/she needs for creating a prototype.

o Canvas area where the user can drag and drop the blocks to create the

actual flow of the code.

• The code blocks have to be draggable so that the user can arrange them in a way

that makes sense to him/her. When dragging the blocks of the screen into the

library the block should be put back in the library/removed from the code that

the user created.

• There could be a way to upload the code to the microcontroller that is easily

accessible within the application, preferably the user does not need to copy paste

text into the ‘normal’ Arduino program, an upload button that handles detecting

Heart rate

B

File dit lay pload Help

Search

 utput Input

Timing ath

Light strip se ngs

 ode Fade by value

 in number

Red

 reen

BlueLight strip

Brightness

34

the Arduino and uploading the code to the Arduino is desired. If this is not feasible

it should at least not take a lot of effort to upload the code using the traditional

Arduino ide.

6.5 Priorities for design
To gain more insight in which features should be developed first for a functioning

prototype the MoSCoW [23] method was used. MoSCoW has four categories for the

features that can be developed: Must, Should, Could and Would. The functions that are

in must are needed for even the most basic user test, even without any other functionality

the user interface of the tool and its effectiveness could be assessed without any actual

code generation, this is why this category contains most of the functions related to basic

user interaction. Should contains all the functions that are needed to generate Arduino

code, making the prototype functional even though it might not contain all the desired

functions that make it easy to work with, this allows testing the feasibility of this tool for

and allows for testing if it is possible to make it function. Could contains uploading directly

and saving/loading of the workspace, this would allow the user to work with the tool

completely independently without the researcher needing to upload the code for them,

thus leading to less interruptions in the user’s experience. In Would there are some

features that would have been implemented if the tool was actually developed fully.

MoSCoW Function

Must Have blocks that represent sensors/actuators/other

Be able to spawn new blocks

Linking the flow blocks

Easy to implement new sensors/actuators by creating different blocks

Should Set parameters of the flow blocks

Create Arduino code

Could Upload the Arduino code directly

Save and load the workspace to continue with a project later

Would Resizable windows

Live mode, where the code is directly executed without uploading to the
microcontroller

Table 4 MoSCoW for the prototype

35

7 Implementation

7.1 Processing
To create the prototype as proposed in the previous chapter, a program needs to be

created. For this the language Processing was chosen because it is easy to program visual

prototypes in Processing. The language is based on Java but has a lot of functions that

make drawing simple shapes to the screen a lot easier.

7.2 General graphical interface structure
To structure the creation of the classes a class diagram was made that shows how the

main components interact. The following structure diagram is only for the graphical user

interface, more on the other classes will follow in subsequent sections.

Figure 14 General structure of the program

Figure 14 General structure of the program shows, there are multiple classes that make

up the interaction and display part of the code: display manager, mouse handler, block

library this allows the user to spawn in new flowblocks, inspector window a way to set the

parameters of the blocks that are used, and flow blocks a super class that has the common

behaviour of all other blocks (sensor block, other block, and actuator block). Each of these

will be discussed in the following subsections.

36

7.3 The resulting interface of the program
Before discussing the content of all the classes that were created, we will briefly discuss

the programs interface. The program has a simple dark theme as shown in Figure 15 each

of the block types has its own unique colour to make it easier to distinguish the type of

the block at a glance. What is missing from the design sketches made previously is the

collapsible menu on the left. Whilst adding all the blocks it was found that they all fit

comfortably on the screen of the user, this meant that the menu was no longer necessary

and was left out for simplicity.

Figure 15 An example of a heartrate sensor that goes red when the heartrate is above the average heartrate

37

7.4 The classes in detail
In this section there is a brief description of how the main classes work.

7.4.1 Display manager
This class handles all the drawing and displaying that needs to be done for the user

interface. It does not contain a lot of functionality, what it does is create a structured way

of calling all display functions of the flowblocks, menu bar, block library, and inspector

window. The only function we will discuss here is the drawBlocks() function.

drawBlocks()
This function iterates over all flowblocks that are currently on the screen and calls their

individual display() functions. After drawing all the flowblocks, the function iterates over

all flowblocks again, now drawing their connectionNodes and the lines connecting the

node, this to make sure that all connection lines are always drawn on top of the actual

blocks.

7.4.2 Mouse handler
Contains methods for mousePressed(), mouseDragged(), mouseReleased(), and

mouseClicked(). This class handles all things mouse related basically driving all interaction

that the program contains.

mousePressed()
Checks if there currently is a locked block (the block that is being dragged) and if there is

no locked block, loops through all blocks and determines if they are being pressed. If a

block is detected at the mouse position this block is now the locked block.

mouseDragged()
If there is a locked block execute the mouseDrag() of this block, meaning that this block

will either move with the mouse or create a connection between two nodes.

mouseReleased()
Set the locked parameter to false, unlocking interaction for all blocks to be interacted with

again. Additionally, call the locked blocks mouseUnpressed() function.

mouseClicked()
Handle short mouse clicks currently only used for the block library to spawn new blocks.

38

7.4.3 Block library
A class that handles the creation of new blocks. This class contains a list of blocks which

are displayed as seen in the following figure. The blocks are coloured according to their

type to help the user understand if it is a sensor, actuator, or other block.

Figure 16 Minified version of the block library.

If any of these buttons are clicked a new block is spawned of the type matching the text

on the button. For example, if the Buzzer is clicked a buzzer block is spawned.

When looking at the full list of components and their coding block counterparts that are

included in the current version of the programming tool it was deemed unnecessary to

make a menu inside this block library as all the buttons could comfortably fit in the menu

on an average sized laptop display.

7.4.4 Inspector window
The class named SettingsMenu handles the inspector window, when the active block is

changed it removes the current items displayed on it, changes the theme to match the

colour scheme for newly selected blocks type, then it generates all the menu items (such

as sliders and dropdown lists) that should be included in the menu for the current block.

To do this it has the following methods:

• activeBlockChanged

• closeSettingsMenu

• display

• createLabel

• createSliderWithText

• createSlider

• createList

39

7.4.5 Flowblock
The superclass from which all other blocks inherit the following functions: display(),

mouseDown()¸ mouseDrag(), mouseUnpressed(), and checkPosition(). This allows all

blocks to be displayed and the mouse to be handled. The subclasses from the flowblocks

class are kept as minimal as possible to allow for easy creation of new block types.

Sensor block
Only contains the colour of the flowblock, and the pin variable, this class is mainly used

for organization purposes. By having the other sensor classes be a subclass of this it is easy

to detect that they are sensor blocks. The following TouchSensor class is a subclass from

the sensorblock class, to save space not all other subclasses will be discussed, for more

specifics on each subclass look at the supporting files containing the full code.

TouchSensor
This class contains all code required for the touchsensor block; this is a nice example of

how the sensor classes work. It contains a constructor that calls the SensorBlock

constructor and adds a connection with the label Measured Value. The stringBuilder is

explained more elaborately in the next subsection but this returns the string containing

the function call that is needed in Arduino to get the value of this sensor.

public class TouchSensor extends SensorBlock

{

 TouchSensor(float _xPos, float _yPos)

 {

 super(_xPos, _yPos, 300, 60, "Touch Sensor");

 Connections.add(new Output(BLOCKWIDTH - 30, 40, "Measured

Value"));

 }

 String stringBuilder()

 {

 return "touchSensor(" + String.valueOf(pin) + ")";

 }

}

40

Actuator block
Same as the sensor block this class only contains a colour and pin number and is mainly

used for organization of the code.

Buzzer

This class functions much the same as the touch sensor example, only the stringBuilder()

is a lot more elaborate. The stringBuilder() returns a string when it is called that contains

its parameters and Arduino function call, in order to do this, it checks the label of each

connected connection and if this matches one of the expected parameters save this in a

string, this string is then combined with the other parameters into the Arduino function

call and returned.

public class Buzzer extends ActuatorBlock

{

 float tone = 440; //default frequency in hz

 Buzzer(float _xPos, float _yPos)

 {

 super(_xPos, _yPos, BLOCKWIDTH, 80, "Buzzer");

 Connections.add(new Input(this, 20, 40, "Volume"));

 Connections.add(new Input(this, 20, 60, "Tone

(optional)"));

 }

 String stringBuilder()

 {

 String toneString = String.valueOf(tone);

 String volumeString = "";

 for (ConnectionPoint c : Connections)

 {

 if (c.label == "Tone (optional)" && c.connectedTo !=

null)

 {

 toneString = c.connectedTo.stringBuilder();

 } else if (c.label == "Volume" && c.connectedTo != null)

 {

 volumeString = c.connectedTo.stringBuilder();

 }

 }

 if (volumeString == "")

 {

 return "";

 }

 return "buzzer(" + String.valueOf(pin) + "," + volumeString

+ "," + toneString;

 }

}

41

Other block
In this class all blocks that are not actuators or sensors are gathered, they serve as a way

to manipulate the signal before sending it to the actuator.

Invert

Here you can see an example of the split build block, this block does not have any Arduino

code as all it does is split the signal in two. So, when it is called by an actuator it just returns

the loopBuilder of whatever is on the input side.

7.4.6 Connection point
Handles all the connections between the blocks. All flow blocks have one or multiple

connection points. The connecting point contains a reference to the block that it is on and

a reference to a different connection point when connected.

public class Split extends OtherBlock

{

 Split(float _xPos, float _yPos)

 {

 super(_xPos, _yPos, 300, 80, "Split");

 Connections.add(new Input(this, 20, 40, "Input"));

 Connections.add(new Output(this, 300 - 30, 40, "Output

1"));

 Connections.add(new Output(this, 300 - 30, 60, "Output

2"));

 }

 String loopBuilder(ConnectionPoint output)

 {

 for (ConnectionPoint c : Connections)

 {

 if (c.label == "Input" && c.connected())

 {

 return c.connectedTo.loopBuilder();

 }

 }

 return "";

 }

}

42

7.5 Code creation
All the arduino code is contained in functions, each flowblock has a stringbuilder that

contains all the code to generate a string that is a valid call of this function. This

string/function call contains one or more parameters, these parameters can either be

set in the inspector window or by connecting a flowblock to the input of this parameter.

If a flowblock is connected to this its stringbuilder will be called and the resulting string

is then inserted into the spot of the parameter. The advantage of putting most of the

code into the premade arduino functions and then only generating the function call is

that it is easy to generate code and it remains readable. One downside is that it requires

the programmer to always write an Arduino function even for something that could

have been a single line of code. Another downside is that this does limit the code that

can be created as not every single code concept has a corresponding arduino function

and flowblock, as this could be a limiting factor the high ceiling of the tool this is

evaluated during the user tests.

7.5.1 Arduino functions
To allow for all of the possibilities that can be made with the prototype the Arduino code

needed to be modular and all functions should be as self-contained as possible, this makes

generating the code a lot easier. Because of this the following Arduino function design

was made:

By only using int as a datatype the value does not need to be changed for a LED strip or a

servo, both will just scale the value internally. A on/off signal or a Boolean is thus

represented with the value 0 or 1023, these values were chosen as they are also the

maximum value of analogRead() on an Arduino, therefore there would not be a

difference between the brightness of a LED strip when turned on with a Boolean or when

the max input is reached on the analog input.

int sensorName(int pin, int parameter, int parameter2, etc.)

{

 return value;

}

void actuatorName(int pin, int input, int parameter, etc.)

{

 //actual code that does something based on the input

}

int other(int value, int parameter, etc.)

{

 return newValue;

}

43

7.5.2 Building and uploading the code
To go from these building blocks to an actual Arduino program the following setup was

used:

Figure 17 The structure of the string builder and Arduino Command Line Interface

CodeCreator
When the user presses the upload button, first the CodeCreator class is called. This class

creates the header, adds the variables used, adds the import statement for the libraries

and finally creates the main loop of the code, all that is needed in the loop are nested

function calls with their respective parameters for most blocks. For this the create()

function calls all actuators stringBuilder() functions and puts these into a string separated

with a newline after each actuator. This actuator then calls the stringBuilder() function of

what the blocks that it is connected to and so on until we reach a sensor or dead-end. An

example of the following example would like both in code and visually in the programming

tool is this:

Figure 18 A LED strip that turns on when the distance is greater than 50cm

The code:

ledStrip(A2,comparison(distanceSensor(A2),">",50,255),128,0,0,8);

44

Figure 19 Example of the hover over text in Arduino IDE

The resulting code is compact and still readable for any user that wants to use the

functions or tweak the parameters without using the tool, especially if you use any IDE

that has hover over text that shows you information on the method. When all the code

creation is done it is saved in a folder that has the same file as the .ino sketch alongside

the file containing all the Arduino functions that were created.

7.5.3 Arduino CLI
The Arduino command line interface is a powerful tool that allows users to access Arduino

boards through the command line or a daemon [24]. Using this tool, it is possible to detect

the connected board, compile Arduino code for it and then upload to that Arduino

compatible board. This is currently not implemented as for testing the concept it was not

required but could definitely be a great opportunity later on to make the interaction more

seamless.

45

7.6 Functional evaluation
To determine if the tool meets the minimum requirements to use during the user tests,

the tool was analysed using MoSCoW and the general requirements that were

determined. This was done multiple times until most of the important features where

implemented.

7.6.1 MoSCoW
During this project it was not feasible to implement all features that Could or Would have

been in the programming interface given more time. The following MoSCoW table shows

what currently has been implemented.

MoSCoW Function Implemented

Must Have blocks that represent
sensors/actuators/other

Yes

Be able to spawn new blocks Yes

Linking the flow blocks Yes

Easy to implement new
sensors/actuators by creating different
blocks

Mostly

Should Set parameters of the flow blocks Yes

Create Arduino code Yes

Could Upload the Arduino code directly No

Save and load the workspace to
continue with a project later

No

Would Resizable windows Yes

Live mode, where the code is directly
executed without uploading to the
microcontroller

No

Table 5 MoSCoW - Implementation state

When looking at Table 5 all the Musts but one and all the Shoulds are implemented, this

suggests that the program that was created has all the minimal features needed to be

used, from the features that are lacking the highest priority one is “ asy to implement

new sensors/actuators by creating different blocks”, a brief explanation of why it is

classified as mostly is the following. While it only takes a small amount of time to go from

the Arduino function to the block that represents it and the code that generates its code

this could be made simpler. A great way to do this would be to make the interface read

the Arduino return type, name, and parameters. When this is done a quick menu should

pop up that asks for if the parameter needs to have an input connection, as slider, and

what the minimum and maximum values are. Then if the function has a return type that

is not void an output connector could be added to the block. This would greatly improve

the speed at which new functionality/hardware can be added to the visual programming

language.

46

8 Evaluation
When the final prototype was realised, the prototype was used in a user test with

potential end users. The aim of this evaluation is to show whether the tool was effective,

and to define areas that need more research/work before the tool can be used. After

conducting the test, a questionnaire is conducted focussing on low threshold, wide walls,

and high ceiling.

8.1 Design of the workshop
To test the effectiveness of the tool that was created a short workshop/assignment was

created for the test subjects to follow. The contents of the workshop are briefly described

here, you can find the assignments as they were used in Appendix C – The workshop.

During this workshop the user used the toolkit as discussed in Error! Reference source n

ot found.. The assignment consisted of three parts that progressively increased in

difficulty and freedom. First the user was given an information sheet that contained a

general description of how-to code in the interface, how to connect sensors/actuators to

the Beetle, and a description of all the available blocks and their properties.

Part 1 – Getting started
The first assignment was to follow the steps described in the workshop. Here, the user

made a heartrate sensor connected to the number of LEDs of the LED strip using a

mapping function. The main goal of this assignment was to familiarize the user with the

interface and the hardware. To do this effectively the workshop contained simple

instructions to guide through each step of connecting the hardware, using the interface

of the tool, and coding.

Part 2 – Time to tinker
The second assignment was about tinkering with the previously made code. First the user

got to change something about the code, for example: make the LEDs go red if the

heartrate is above 120 bpm. After this, the user got to add a sensor or actuator of choice.

If the user had no idea what to connect, one of the cards could be used for inspiration.

This part forces the user to slowly make more substantial changes to the code and

program big parts of the system at once.

Part 3 – All the freedom
The third assignment was not really a traditional assignment. The question to the users

was to think of something they could do with the given hardware, write down what they

were going to do and finally build it both in code and physically. Here the user was given

all possible freedom to create something. This caused the user to explore more of the

toolkit’s options allowing them to explore as much of the needed programming as

possible.

47

8.2 Questionnaire
The questionnaire consists of three main parts, namely:

• Questions to gain insight into their previous programming experience. (Questions

1 to 6)

• Questions about the tool and the test workshop. (Question 7 to 20)

• Questions specific to programmers who used the tool. (Questions 21 and 22)

Most of the questions were formulated in such a way that they could be answered with

yes/no/something in between, but with space to fill in a further explanation if the user

wanted to. This resulted in data that was easy to analyse using a three-point Likert scale,

but still gave qualitative feedback on the tool as well. The qualitative information was

mainly used to determine where possible shortcomings were in the tool and to validate

that the answer was about visual coding style and not the specific implementation. Let us

say for example that a user decides that there are technical problems that a user

encounters with the code. This could be that a certain button does not work. This is not

necessarily related to the general idea of visual coding but is a purely technical/

implementation problem. Quantitative research cannot discern the difference between

implementation and ideation problems, which motivates the need for further elaboration

by the participant.

The survey will be conducted on location, as the tool can only be used with certain

hardware that the participants do not have. Therefore, the users need to be present on

location. The three sub-research questions each focus on another aspect of what makes

the tool successful, therefore the questions about the tool (questions 7 to 20) were

chosen to match with these aspects. The resulting questionnaire can be found in Appendix

D – Questionnaire.

8.3 Ethics
Before a user test can take place, the participant needs to be informed and consent to

the use of the gathered data. To inform the participant the information document as

seen in Appendix E – Information document was used. They also received two consent

forms (as seen in Appendix F – Consent form) to sign of which they could keep one. The

data gathered during the user test was anonymized to ensure privacy.

8.4 Test setup
For both the pilot test and the full user test the setup was as described in this section.

The total time of each test ended up from 30 to 50 mins including filling out the

questionnaire in the end. Upon arrival of the participant, they were first handed an

information document about what they were going to do and an ethics permission form.

When this was read and any possible questions where answered the test began. They

were asked to go to a desktop where the tool was already open. Then they received the

following: the assignments, a cheat sheet containing some information on how to use

the program, some paper to make notes, and the toolkit. The goal of the test setup was

for it to be as close to a workshop as possible, this is why the participant is left to work

on the assignments themselves. Any questions regarding the tool could be asked and

the researcher did check on their progress at times, but the researcher was not

constantly working with them/looking at what they were doing. This approach where

there was help available, but the participant works independently is a lot like a full

48

workshop with limited assistance per participant. When the participant was content

with the last assignment, they are asked to fill in questionnaire, during this the

researcher sits the other way or leaves to room to make sure it was anonymous.

8.5 Pilot test
First a pilot test was conducted, which had a sample size of 1. The pilot test took roughly

one hour. The pilot test differed from the previous test setup slightly, the researcher was

observing more closely and asking questions more often when compared to the more

independent tests that were held later. The goal was to determine whether there where

flaws in the assignments or in the tool that prohibited proper testing. During this pilot test

a few errors in the prototype where found, mainly the Arduino code not working if there

was no LED strip defined and other small issues. Also, the test user had some remarks

about the naming of the blocks which was subsequently modified, for example having an

addition and multiplication block made little sense as it could be combined into one

simple math block. Finally, the assignments did not mention that the user should upload

the code after each assignment. After the pilot test the following changes were made

small bug fixes, combining math into a single block type, and adding a sentence telling the

user to upload their code after/during each assignment.

49

8.6 Results

8.6.1 Defining the participant groups
Each of the participants was asked how comfortable they are with programming. Based

on this, the participants were assigned to two groups for analysis of the questionnaire:

• Not comfortable with programming: participants with a programming comfort

level of 0 to 5. This group consisted of three participants, one of which never

programmed before.

• Comfortable with programming: a programming comfort level of 6 to 10. This

group consisted of 7 participants.

The overview of each participant’s programming comfortability can be seen bellow.

ID Group Programming comfortability

A Comfortable 7

B Not comfortable 3

C Comfortable 8

D Comfortable 7

E Comfortable 8

F Not comfortable 4

G Comfortable 6

H Not comfortable 0

I Comfortable 6

J Comfortable 6
Table 6 Programming comfortability of the participants

50

8.6.2 Low threshold

Likert score
To provide a better overview of the data a three-point Likert scale was used. If the answer

of the participant was in line with the tool having a low threshold the question got a +2,

if the answer of the participant was neutral the question got a score of +1, if the answer

opposes the tool having a low threshold the answer got a score of +0.

Seven questions related to the low threshold of the tool to get started, after coding the

answers to these questions the following box plot was created. The maximum score of

the Likert scale with seven questions is 14 (seven questions multiplied by +2).

Figure 20 Low threshold Likert scores

As any score above 7 indicates that the user was at least slightly positive about the low

threshold of the tool, the scores in the boxplot give a clear indication that the tool does

have a low threshold. To explore the specific aspects of the low threshold, the questions

themselves are now examined separately.

Usage without any guidance
Most users indicated that they could have used the tool without any guidance, however

five out of the ten users stated that the guidance they received during the workshop

significantly reduced the amount of time it took to get started with the tool.

Time required to get started
The users indicated that it did not take long to get started with the programming even

though participant H did mention that the assignment contained a lot of text.

Experienced difficulty
This aspect consisted of three questions relating to the increasing difficulty of the three

assignments. Most of the users did not experience the tool as being difficult to program

with, however participant F noted that the programming of the last part was difficult for

them, but also stated that they were giving themselves a significant challenge.

51

Helpfulness structuring idea
All the users but user A stated that the tool was helpful in giving structure to their idea.

Participant E stated that the fact that the tool was limited was an advantage here as it

made brainstorming a lot easier and the tool is more straightforward.

Required effort turning idea into code
Most of the users found the tool to require surprisingly little effort to get their ideas

converted into code or as participant J said: “Surprisingly little, I usually struggle with

coding in Arduino”.

52

8.6.3 Wide walls

Likert score
There were three questions that directly corresponded to wide walls, after coding the

answers to these questions the following box plot was created. The maximum score of

the Likert scale with three questions is 6 (or three questions multiplied by +2).

Figure 21 Wide walls Likert scores

Looking at the box plot it is clear that using a three-point scale for three questions had a

ceiling effect on the possible outcomes of the score, as for seven of the participants the

resulting score was six. This still indicates that all participants were positive about the tool

in terms of the diversity of things you can do with it. The only outlier is participant A who

felt that the tool limited the coding style.

Enabling converting idea into code
Seven of the users stated that the tool did allow them to convert their ideas into code.

Two stated that they got close to their idea, however both of them felt that they could

have solved their issues if they had been given more time. “At first it seemed like there

was no function for what I wanted, but that could be solved by using other functions.”

One user stated that the tool did not enable them to make what they wanted.

Motivating to experiment with the components
All ten of the participants agree that the tool is motivating to experiment with the

components used during the workshop. Some quotes that support this are: “As I said, I

don't have prior experience with the hardware components, but I feel that I could work

with them nevertheless”, “It was very easy to swap out and made me curious to try other

sensors and actuators”, and “It was very rewarding and fast to make a new component

work, so I wanted to keep adding new things.”.

53

Tool enabling to create other things
Eight of the participants thought they could make other things that they did not create

during the workshop. Some examples of their answers are: “I think plenty is possible.”

and “The programming language would not be a restriction to let my creativity flow”.

These answers clearly state that the users had confidence in being able to create different

things using the toolkit and the software tool.

54

8.6.4 High ceiling

Likert score
There were three questions that explored the tool having a high ceiling. The resulting box

plot can be seen below. The maximum score that can be achieved is six. Since in answering

these questions, users were asked to compare with normal coding, the user that never

programmed before was excluded for this criterion. Since a high ceiling usually relates to

the experienced user, this was not a problem.

Figure 22 High ceiling Likert scores

Figure 22 shows that the scores fall into neutral to positive. To determine whether the

users were actually positive about the tool, we need to investigate what their exact

answers are, as it is likely that only some parts of having a high ceiling were achieved while

others could be missing.

Confidence in prototyping more complex projects
When asking the users if they had confidence in the possibility of using the tool for

creating more complex projects, they answered the following: “Yes, although it might get

very messy, and it might become more cluttered for larger projects” and “Sometimes the

blocks are limiting as I would have more control coding stuff myself.” It became clear from

these responses that whilst it might be possible to use the blocks to create more complex

programs, it could become cluttered or confusing for the user.

55

Time saving compared to normal coding
Six users stated that the tool saved them time compared to coding similar projects; two

users stated that it saved time for simple projects and one stated that they could not

compare it, because they had not done similar projects before. Explaining why it saved

time, one of the participants stated: “It prevented many syntax errors and minor mistakes

I usually make when coding. It also made it easier to change orders of operations, change

parts and keep a clear overview of the program.” Another stated that “it might be 10 times

faster”. So even if it limited the user with advanced projects, it would not hinder the

simple prototypes created during the workshop.

Some things were more difficult than normal coding
Three users found doing something with the tool to be more difficult than with traditional

coding. The examples they mentioned are math (especially more advanced things like sine

waves), logic gates, and making your own classes/functions.

56

8.6.5 General results of the questionnaire

The tool feeling natural to use

The participants of the workshop got the following question: “Did using the tool feel

natural to you? (Where 1 is not at all and 10 is extremely natural)”. The result was then

plotted into a box plot. From this plot we can tell that the users found the tool natural

to use to at least a certain degree.

Figure 23 How natural was using the tool?

Likeliness using the tool again for creating quick prototypes
The questionnaire included asking users to rate from 1 to 5 stars how likely they are to

use the tool again when creating quick prototypes for Arduino. Since the goal during the

workshop is to create quick prototypes and not necessarily design full products, the

question was specifically aimed at quick prototypes, as for creating a fully featured

product the tool might not have all the functions (yet). The results are shown in the

following graph.

Figure 24 How likely are users to use the tool again?

0 1 2 3 4 5 6 7 8

Five stars

Four stars

Likeliness of using the tool again (1 to 5 stars)

57

8.6.6 Observations during the workshop
In addition to collecting data from the questionnaire, the researcher made observations

during the workshop. These observations are briefly discussed in this section.

Functionality
Something that users missed when making the assignments was a reset button, a way to

quickly clear the entire canvas when starting on a new assignment. What three users

tried but was not implemented was trying to connect multiple inputs to one output, this

was their preference over having a separate split block.

UI
All workshop participants tried to double-click the value input box, which is not supported

by the library. Some participants even tried this multiple times. This finding shows that

while this was not in the tool's requirements, it probably should have been implemented.

In addition, it was not clear for some users that if there was something connected to the

node that that means that the corresponding sliders does not work anymore.

Hardware
A usb extension cable would have been a welcome addition to the toolkit, now it often

was difficult to upload code whilst keeping all the hardware connected to the

microcontroller.

Computational thinking
Users who did not write down or explain the desired behaviour often got interesting

results that did not match their intentions. While this is interesting, it does mean that

participants can get frustrated with themselves, because they end up searching for a block

that does one very specific thing, rather than first elaborating their idea and then going

to a program one step at a time.

Motivating to experiment
Some participants got sidetracked by experimenting with everything they could instead

of following the given assignments. While this is a great result in terms of tool immersion,

it does mean that some users had a different experience with the assignments than

others. This did result in much more of the tool being tested and in addition to using blocks

as they were originally intended, they were also tested in more surprising ways, for

example setting the colour of the LED strip to values above 255, the value rolled back to

0 again.

58

9 Conclusion
The goal of this graduation project was to find a solution that makes programming

accessible for designers during a short workshop where there is not time to teach

programming to every participant. This research has shown that when using the toolkit,

the prototypes that can be created use a lot of different combinations of code, to

support this the user must write code in some form. For minimizing the difficulties that

come with writing code without prior knowledge visual programming can be an effective

solution. Another finding was that there is not a lot of research into flow-based

programming whilst it is used often in settings were learning to code is not important.

For this reason, this style of programming was used during this project.

Overall, the created tool provides a solution for less experienced programmers (designers)

to program more easily and quickly in the wearable technology workshop. Most users

experienced that the flow-based tool significantly reduced the threshold for creating

code. This enabled the less experienced users to write code independently, which allows

them to participate in a workshop without excessive guidance. The programming tool was

very effective at stimulating the user to experiment with the provided hardware and

enabled them to change parts of their program, so they could be creative, but

unfortunately not everything was possible. The users who had more experience with

programming had to get used to the thought process of creating code using a flow-based

language. In addition, frustrations occurred when the tool lacked a function a programmer

was used to when programming. To improve on this the tool would need to be developed

further focussing on making sure that it has a high ceiling.

During this research, it became clear that flow-based visual programming is something we

can expect to see more of in the future, as hardware is becoming more readily available

to end-users, there is a need for a simplified way of programming. Therefore, more

research is needed into what makes a visual programming environment effective.

59

10 Discussion
The prototype
During this research, a prototype visual programming tool was created, and while this

tool was usable, it had a couple of issues. One of the bigger flaws that may have

significantly reduced the usability of the tool is that when the user sets a value by

connecting a node the slider for this value is still visible and adjustable. This was

confusing for many users as they did not know exactly how the generated code would

respond to the values set in this menu (the values are ignored if something is

connected). During the evaluation it became clear that some users indicated the

inspector as unclear, whether this was the main cause will have to be investigated

further. In addition, there were some other issues with the user interface, but they will

not all be discussed here, as many of these are minor issues but they do add up. A full

list of the currently identified improvements can be found in Appendix H –

Improvements to be made.

The evaluation of the prototype
The evaluation of the prototype could be improved upon. The current sample size of ten

participants is small, especially when you consider that of those ten users, only one had

zero programming experience. To increase the validity of the results, the test should be

repeated with a recommended twenty programmers and twenty non-programmers. This

larger sample size would allow a more quantitative approach to the data, for example by

having participants complete a questionnaire that uses a seven-point Likert scale. This

would allow for a more accurate analysis, as the degree to which they agree with a

statement can be measured more precisely than whether they agree, disagree, or

neither.

Analysis of differences between visual programming types
In addition to a more thorough test of a flow-based tool, it would be interesting to

compare it to a block-based tool, because the decision to create a flow-based language

is now based on the small amount of existing research on this subject.

60

11 References

[1] Lymberis, A. (2003). "Smart wearables for remote health monitoring, from

prevention to rehabilitation: current R&D, future challenges," 4th International

IEEE EMBS Special Topic Conference on Information Technology Applications in

Biomedicine, Birming.

[2] A. ader and W. ggink, “A design process for creative technology.,” in

Proceedings of the 16th International conference on engineering and product

design education., Enschede, 2014.

[3] http://wiki.edwindertien.nl/doku.php?id=workshops:wearables.

[4] Durling, David. (2004). “Horse or cart? Designer creativity and personality.”

http://durling.org/papers_files/EAD.pdf.

[5] https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70962NED/table?fromstatweb.

[6] Niedlinger, Kristin & Dertien, Edwin. (2015). TEI 2015 Studio Interactive Inflatables:

Amplifying Human Behaviors. 489-491. 10.1145/2677199.2683588.

https://dl.acm.org/doi/pdf/10.1145/2677199.2683588.

[7] https://www.kobakant.at/DIY/?p=7394.

[8] Kazemitabaar, Majeed & McPeak, Jason & Jiao, Alexander & He, Liang & Outing,

Thomas & Froehlich, Jon. (2017). MakerWear: A Tangible Approach to Interactive

Wearable Creation for Children. 133-145. 10.1145/3025453.3025887.

https://www.researchgate.net/publ.

[9] https://www.byor.nl/.

[10] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,

K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B. & Kafai, Y. (2009). Scratch:

programming for all. Communications of the ACM, 52(11), p. 60-67.

DOI:10.1145/1592761.1.

[11] Weintrop, D. (2015). Minding the Gap Between Blocks-Based and Text-Based

Programming (Abstract Only). In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (SIGCSE ’15). Association for

Computing Machinery, New York, NY, USA, 72.

[12] Booth, T., Stumpf, S. (2013). End-User Experiences of Visual and Textual

Programming Environments for Arduino. In: Dittrich Y., Burnett M., Mørch A.,

Redmiles D. (eds) End-User Development. IS-EUD 2013. Lecture Notes in Computer

Science, vol 7897. Spring.

[13] Sousa, T. B. (2012, November). Dataflow programming concept, languages and

applications. In Doctoral Symposium on Informatics Engineering (Vol. 130)..

61

[14] Schaefer, R. (2011). On the limits of visual programming languages. SIGSOFT Softw.

Eng. Notes 36, 2 (March 2011), p.7–8. DOI: 10.1145/1943371.1943373.

[15] "Scratch for Arduino”, Accessed on: Apr. 10, 2020. [Online] Available:

http://s4a.cat/.

[16] “Creating a program in TinkerCAD”, Accessed on Apr. 16, 2020. [Online] Available:

www.tinkercad.com.

[17] A. B. Pratomo and R. S. Perdana, "Arduviz, a visual programming IDE for arduino,"

2017 International Conference on Data and Software Engineering (ICoDSE),

Palembang, 2017, pp. 1-6..

[18] A. Rajalakshmi and H. Shahnasser, "Internet of Things using Node-Red and alexa,"

2017 17th International Symposium on Communications and Information

Technologies (ISCIT), Cairns, QLD, 2017, pp. 1-4..

[19] “ nity isual Scripting,” [nline]. Available: https://unity.com/features/unity-

visual-scripting. [Accessed 14 June 2023].

[20] nreal ngine, “Blueprints isual Scripting,” [nline]. Available:

https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html. [Accessed 14

June 2023].

[21] athworks, “Simulink - Simulation and Model-Based Design - ATLAB,” [nline].

Available: https://nl.mathworks.com/products/simulink.html. [Accessed 14 June

2023].

[22] Bar, M., & Neta, M. (2006). Humans Prefer Curved Visual Objects. Psychological

Science, 17(8), 645-648. https://doi.org/10.1111/j.1467-9280.2006.01759.x.

[23] Moscow. [Online]. Available: https://www.projectsmart.co.uk/moscow-

method.php.

[24] 'Arduino CLI', Accessed on: Dec. 13, 2020. [Online] Available:

https://arduino.github.io/arduino-cli/latest/.

[25] https://www.sensoree.com/tei-2015/.

62

Appendices

Appendix A – Example programs

A1. The full table with possible prototypes
Idea Description Requirements

Posture coach Alert the user with sound or
vibration if wrong posture is
detected

Timer, conditional statement,
threshold on flex sensor

Turn signals Turn signal with led strips on back,
activated by touch sensors

Threshold on sensor, timer,
light animation,

Party shirt Make your clothes light up with the
rhythm of the music or heartrate, or
a combination where the brightness
depends on heartrate and the
rhythm is based on the music.

Microphone filter frequencies,
light animations, threshold,
frequency analysis, FFT

Tail Wiggle tail when excited. Sweep the servo, detect change
in gsr, average of gsr

Accident
avoidance

Detect sound and nudge user in a
different direction with servo

Threshold, sound recognition,
comparison, servo movement

Fall detector When the user falls out of bed, have
an alarm turn on

Alarm sound, detect rapid
change in acceleration, custom
Algorithm to detect if it was a
fall or just rolling over in bed

Car safety Use heartrate and
speed/acceleration to detect
dangerous driving and alert the
user/someone else

Speed calculation, detect large
change in value, connect to
external device

Flex shoes Flex sensor in running shoes to
obtain insight in running technique

Pattern detection, store values,
use time in calculation

Soccer shoes Accelerometer to measure the
power at which a soccer ball is
kicked

Accelerometer data, custom
calculation (with weight of ball
and other parameters), peak
detection

Christmas
sweater

A simple ugly sweater that lights up
and plays music, the music will be
paired with a LED animation

Switch statement, LED
animations, button press, music

Face mask
with touch
alarm

Capacitive sensor in a face mask to
detect when a user wants to touch
it, with a vibration

Cap sense library, vibration
alarm, threshold

63

Bike gear
change
suggestion

Use GSR, heartrate and speed to tell
the user to switch gears up or down
for maximum biking efficiency or a
more effective workout

Read values, compare to
"perfect" values (array),
calculate, output voice

Activity watch Vibrate when a user sits still too
long, then use accelerometer to
detect exercise

Read values, timer, condition
statement, exercise counter,
vibration

Vented jacket Use the GSR sensor to detect sweat,
if the user is sweating open the shirt
using the servo to increase cooling

Read values, threshold, servo
movement

Automated
sunglasses

When a user looks down for 5
seconds put sunglasses in front of
eyes with a servo, if a user than
clicks a button lift the sunglasses
again

Conditional statement, timer,
servo control

Night light If it is nighttime and the gsr and
heartrate sensor indicate stress,
turn on the LEDs to provide more
light for the user.

Conditional statement,
threshold on gsr and heartrate,
timer, array with night times for
each time of the year

High five
counter

Count the number of high fives
received and use the LEDs to show
this to the user.

Counter, filtering, LED states,
detection algorithm

Keep me
awake

Keep someone awake by vibrating if
they fall asleep, if that does not
wake the user make an increasingly
annoying sound. Detectable with
heartrate sensor and accelerometer
(if a user does not move and has a
low heartrate for a certain amount
of time, he/she probably fell asleep)

Timer (s), tone control,
vibration, conditional
statement

Musical glove Using flex devices on the back of the
fingers, allow the user to make
music

Tone control, loudness, read
values

Equalizer
shirt

Put LED strips in a shirt that react to
sounds/music

FFT, lighting control

Starry night
dress

A dress with LEDs embedded
throughout making some nice
twinkle effects, press a button to
switch modes

Switch statement, LED
animations, button press

Fitness
monitor

Using the heart rate, gsr and
accelerometer detect activity and
calculate calories burned

Read values, store values,
calculate

Measure fluid
in knees

Use a capacitive sensor to detect
excess liquid in the knees and alert
the user

Capacitive sensing, compare to
reference, threshold, alarm

64

Lifting
technique

With a flex sensor and
accelerometer detect whether
someone lifts with his back or with
his knees, alert the user when
wrong lifting technique is sensed

Read values, conditional
statement, combine data of the
sensors, alarm

Arthrosis
sensor

Detect arthrosis with a flex sensor
on the finger, if the value keeps
fluctuating the user might have
arthrosis

Read values, measure over
time, detect rapid changes,

Epilepsy
detection

Epilepsy detection with an
accelerometer, measuring rapid
movement during an epilepsy
attack while sleeping, when
detected set of an alarm or connect
to an app

Read values, detect sudden
changes, data over time, arrays
of data, alarm, connect to
external device

Animal
repellent

Use the buzzer to create high
frequency sounds, keeps animals
away from you

Tone output, sweep tones

Pickpocket
sensor

When a hand is detected in the
pocket vibrate

Conditional statement

A2. Programming keywords and their occurrence in the possible

prototypes
Keyword Count

Read values 8*

Threshold 8

Timer 6

Conditional statement 6

Alarm 5

Custom calculation 5

Animation 4

Servo control 4

Vibration 3

Array 3

Tone generation 3

Switch statement 2

FFT 2

Filter 2

Counter 2

Algorithm 2

Average 1

65

Appendix B – Current language types
Block-based Flow-based Other

Arduviz Visuino Flowcode

ArduBlock XOD

Scratch4Arduino

Tinkercad circuits

mBlock

Minibloq

ArduBlockly

Modkit

BlocklyDuino

66

Appendix C – The workshop

C1. The assignment

Wearable technology workshop
Introduction
In this brief workshop, you will be completing three minor tasks using the programming tool. You will

also receive a cheat sheet that illustrates how to link the sensors to the arduino and the data they

measure/the values they output.

Part 1 - Getting started
As the first challenge in any Arduino tutorial usually involves making a LED blink, we are going to

make something similar: a heartrate sensor that uses the LED strip to tell you your current heartrate.

Connections:
First, we connect the LED strip to pin 11 (the far-right side) exactly as shown in the picture on the left,

make sure the color of the wires matches:

Next, connect the heartrate sensor to pin 9 (the 4th pin from the left) as shown in the picture on the

right.

Now that the sensor and the LED strip are connected it is time to explain what exactly we want the

code to do. When the heartrate is bellow 40bpm we turn on 0 LEDs and after that for every 20bpm

we turn one more LED on:

Heartrate LEDs that are on

0 to 39 0

40 to 59 1

60 to 79 2

80 to 99 3

100 to 119 4

120 to 139 5

140 to 159 6

160 to 179 7

180 to 199 8

67

Coding
To start drag the heartrate block from the menu on the left onto the canvas, as you now still have the

block selected make sure to set the pin to 9 in the settings menu on the right. Now do the same for

the LED block and set its pin to 11 and slide Brightness up to somewhere above 50.

Make sure there is some space between the two blocks by dragging them to opposing sides of the

canvas. Now add the Map block in between the two blocks, and set the values as follows: Minimum

input value to 40, Maximum input value to 200, Minimum output value to 1 and Maximum output

value to 9. Now connect the blocks together by clicking on the white dot next to Current heartrate

and dragging the line to Input of the Map block. Do the same for Result to Amount of LEDS.

Exporting
Click on the upload button in the top left, after this create a folder on the desktop and click open.

When this is done tell me and I will show you how to upload it to the Arduino.

Part 2 - Time to tinker

Playing with the code
Now that you know how to connect and configure the blocks it is time to give it your own twist. First

tweak something small. Some suggestions of things you might be able to do:

• Change the LEDs color to red if the heart rate is high.

• Lower the brightness if your average heart rate is low so you can relax without bright lights.

Now that you have changed something it is time to test, upload the code and see if it works.

Adding some new hardware
To make it more unique add any of the other sensors or actuators to your existing build. Make sure to

connect them to the proper pins (as stated in the reference sheet) and mind the colors. If you do not

know what you want to add you can draw a card from the sensors or actuators stack and somehow

work whatever you got your wearable. When you have done this make sure to upload your code and

see the results.

Swapping hardware
Now that you have explored some of the options with the heartrate sensor and the LED strip it is time

to change something. For inspiration we will use cards, draw one, if it is a sensor replace the heart

rate sensor, if it is an actuator replace the LED strip with it. First write down what you think you can

do with the new hardware combination before you start making it.

Now adjust the code to match with your hardware swap, use the reference sheet to see what some

of the blocks can do. If that does not work, you can ask for help if you need it. Time to upload and

test your code again.

Part 3 - All the freedom
Make anything you want using items from the kit, hint if you do not have any inspiration feel free to

draw a card or two. First write down or explain to someone what it is you thought of then build and

code it.

68

C2. Info sheet

Info sheet
Connecting sensors or actuators
All sensors should be connected with the brown wire facing away from the usb plug of the

microcontroller. In the overview of the blocks that is included you can see which sensors/actuators

can be connected were. If you are unsure also refer to the image of the controller below.

Overview of the controller

Programming

Using the blocks
You can create blocks by dragging them from the menu on the left into the lighter grey working area.

You can delete blocks by dragging them back into the menu on the left or by selecting them and

pressing delete.

Connecting blocks together
To connect the blocks together, drag from one of the white circles to another. Note you cannot

connect an output to an output or an input to an input. To delete a connection, you can click on

either of the end points.

Changing settings of a block
To change the settings of a block simply click on the block and use the menu that appears on the

right.

A A A

69

70

71

Appendix D – Questionnaire
Questionnaire Wearable technology workshop

Knowledge about programming

1. Have you programmed before?

2. If you did program before, what language(s) have you used?

3. How comfortable are you with programming on a scale of 1 to 10? (Where 1 is

not at all and 10 is extremely comfortable)

4. Are you familiar with visual programming? Visual programming is any way of

creating code without typing it.

5. If you are familiar with visual programming which programs/languages, do you

know that use it

6. If you ever used visual programming yourself, which languages/programs did

you use?

The software used during the workshop

7. Did using the tool feel natural to you? (Where 1 is not at all and 10 is extremely

natural)

8. Could you have used this tool without any guidance?

9. Did it take you long to get started with programming in the software?

10. In your experience was the programming in Part 1 - Getting started difficult?

11. In your experience was the programming in Part 2 - Time to tinker difficult?

12. In your experience was the programming in Part 3 - All the freedom difficult?

13. Did the tool help you with structuring your idea into code?

14. How much effort did it take to convert your idea into code?

15. Did the software allow you to create what you had in mind?

16. Does this software motivate you to experiment with the different components?

17. Do you have any ideas for things you could make with the components, that you

have not made yet during this workshop?

18. Do you think that you can create other/new things using the tool you used

today?

19. Are you confident that you can also prototype more complex projects using this

tool?

20. How likely are you to use the tool again for making quick prototypes? (1 to 5

stars)

Questions for people that programmed before

21. Did the tool save you time compared to normal coding?

22. Did the tool make it more difficult to create something that you would already

know how to do in code?

Optional remarks

23. If you have any optional remarks or improvements that you would like to make

you can put them here.

72

Appendix E – Information document

Smart wearable technology software test information
Researcher: Kevin Smid

Date of writing: 17-1-2023

The research:
My research is in ways to make programming more accessible for anyone that wants to participate in

a workshop. To determine if the tool that was developed is a possible solution it will be compared

against a different commonly used tool.

What is asked of me?
• Before starting the user test, you will be asked to fill in a questionnaire regarding your coding

proficiency, this so that we can determine which part of the target group you are in.

• After this you will get a brief overview followed by a assignment using one of the two tools

that are being compared. It does not matter if you can not complete the assignment, and

don’t be afraid to write down any remarks regarding the tools. Depending on the test this

will be followed by a secondary assignment in the other tool.

• Lastly, we will finish with a questionnaire asking your opinion on the tool(s)

• All in all, this will take between 20-40min.

Data usage
All data collected will be filled in by you and stored without any personal data. In the report this data

may be used as a quote combined with an indication of your coding level. The data will only be

accessible in full (anonymised) to me (Kevin Smid) and will be stored until the end of the research.

If at any point you have any questions, feel free to ask them. If at any point for any reason you wish

to withdraw/leave this study, you are able to without the need for explanation.

73

Appendix F – Consent form

74

Appendix G – Results
ID Programming

experience
Used programming
languages

Programming
comfortability

Familiarity
visual
programming

Visual programming
known

Visual programming
used

A Yes Arduino, C,
Processing, C#,
Python, R

7 Yes Blockly blockly, lego
mindstorms

B Yes Matlab 3 Yes Simulink Simulink

C Yes Processing, Arduino,
Python, C#, C++,
Dart, Html, Css, Sql

8 Yes Unity Visual
Scripting, Unity
ShaderGraph, Unity
VFX Graph, Blender
Nodes, blockly

Unity Visual Scripting,
Unity ShaderGraph,
Unity VFX Graph,
Blender Nodes, blockly

D Yes Python, php,
JavaScript, arduino,
processing, html/css

7 Yes blockly, lego
mindstorms

blockly, lego
mindstorms

E Yes Processing, arduino,
c++, c#, python

8 Yes Blockly, unity visual
scripting

Blockly

F Yes c++, python, Arduino 4 Yes Blender,
Rhino/Grasshopper,
Unity

Blender,
Rhino/Grasshopper

G Yes Arduino, Processing
(Java based), Python

6 Yes

H No (skip to
question 4

0 No

I Yes Python, R, Java 6 Yes SPSS (not
recommended)

J Yes Processing, Arduino,
Python, Java

6 No

75

ID Degree feeling
natural to use

Usage
without any
guidance 1

Usage without any guidance 2

A 7 Yes

B 6 Yes but then it would have taken a little
longer and I would have made
mistakes

C 7 Yes

D 8 Yes

E 7 Probably With enough time, probably. The
inspector window was the least
obvious

F 7 Yes

G 9 Yes but sometimes for people with 0
knowledge, the values of 0-1023 and
0-255 can be confusing, especially
when mixing them up with the
operators (blue blocks)

H 7 Yes would just have taken a lot of time,
trial, and error on what would do
what.

I 6 No because I was over-complicating my
approach. Though I may have figured
it out in more time and the manual
without personal guidance.

J 8 Yes but some tips were useful especially
in understanding it a little faster

76

ID Long time
required
getting started
1

Long time required getting started 2

A No null

B A while It always takes me a while before I
understand how a program works. That
was also the case with this program.

C No null

D No null

E No the logic is simple, but some functions
like the split are less logical.

F No it was similar to other visual
programming languages I have used

G No null

H I think so the start was a lot of reading and then
checking if I read it correctly.

I No

J No

77

ID Experienced difficulty part 1
getting started 1

Experienced difficulty
part 1 getting started 2

A No null

B No, not at all. null

C just the math null

D No null

E It was harder than the others as I had to get familiar
with the software and
the Arduino.

F No null

G No null

H No just a lot of double
checking.

I No and I was not familiar
with any hardware

J No

78

ID Experienced difficulty part 2 time to tinker 1 Experienced difficulty part 2 time to tinker 2

A No null

B Somewhat difficult. Understanding 'map' took a while.

C No null

D Medium null

E Much more straightforward although I did forget to set the inspector
settings.

F No null

G the very first moment a bit nervous like oh no I have to think now but then it was all
very easy and intuitive.

H More trial and error and a case of
experimenting rather than having it correct
immediately.

null

I No I did notice that my approach was complicated
(where I blocked or transferred a signal). So
rather than the software being complicated, I
was not familiar with the most optimal way of
thinking through what I wanted to implement.

J A little more but only at the beginning, then I better
understood how it all works

79

ID Experienced difficulty part 3 all
the freedom 1

Experienced difficulty part 3 all
the freedom 2

A No null

B I noticed that after part 2 I
already figured it out a bit,

which makes you feel more
comfortable when adding new
things.

C Not really null

D Challenging null

E Even easier only hard to think of an idea

F Yes I gave myself a significant
challenge and certain quality of
life tools were missing, such as
an |absolute| function and logic
statements

G No especially not after learning the
system in part2

H Nope because I made a plan fitting to
my (not so) high skill level.

I No I did not make a very effective
intruder alarm though :D

J No because most of it already
became clear in parts 1 and 2

80

ID Helpfulness structuring idea into
code 1

Helpfulness structuring idea into code 2

A No null

B Yes null

C Yes null

D Yes it did null

E Yes as the tools were limited, that makes brainstorming easier.
Also, the tool is straightforward and required less thinking
than if I were to write the code myself.

F Yes the visual programming approach was much more
intuitive than writing code.

G Yes! it is very handy to keep the overview

H Yes if I had to do this in writing I would graduate sooner than
finishing my idea.

I Yes and no. For the hardware part (for which I have no experience)
the tool helped a lot. For the comparisons elements
(especially) I was sometimes too used to thinking in the
way I already know from my prior programming
experiences.

J Yes

81

ID Required effort converting idea into code

A it is limiting my style

B Not really very much. It is easy that you see the steps happening in the boxes

C Not that much, if I wrote it out on paper first

D Yes but I chose a challenging challenge

E A little bit but not much, the same logical problem solving is required as
coding, just less of it.

F several clicks. No effort at all

G on a scale from 1-10 I would say 2. very easy but sometimes have to think
twice for the blue blocks and their values.

H Not that much, as it did not really require any knowledge as to how coding
works.

I Not too much with a little guidance

J Surprisingly little, I usually struggle with coding in Arduino

82

ID Enabling converting idea
into code 1

Enabling converting idea into
code 2

A No null

B Yes null

C Yes null

D Almost null

E Yes although at first it seemed like
there was no function for what I
wanted, but that could be solved
by using other functions.

F Yes the only limiting factor was a
lack of clear vision from myself

G Yes null

H Close to but that was also because I did
not finetune it a few times.

I Yes but for the intruder alarm I
noticed when I finished my idea
that it is not a good alarm, but
that's a design error

J Yes

83

ID Motivating to
experiment with
the components 1

Motivating to experiment with the
components 2

A Yes saves time with collecting al libraries
and figuring them out

B Yes It is nice to see that with a number of
components you can make many
different things by combining the
components.

C Yes because easily hotswappable

D Yes it seems very easy to add and
remove sensors/actuators

E Yes I think so its much easier to test out crazy
ideas and just play around with the
'code'

F yes it was very easy to swap out and
made me curious to try other sensors
and actuators

G Yes! since it was so easy to use it was very
rewarding fast to make a new
component work, so I wanted to
keep adding new things.

H Yes the buzzer was very fun.

I It does! As I said, I do not have prior
experience with the hardware
components, but I feel that I could
work with them nevertheless

J Yes it was fun that there were so many
different components

84

ID Ideas for using the components 1 Ideas for using the components 2

A Led strip white with neutral
heartbeat and blue with low read
with high

null

B No null

C Yes pretty much everything null

D Not right now but it would be easy to come up
with new ideas

E The ones that I thought of I made. But I can image you can do most
stuff with the provided tools

F The ultimate rave suit a shirt with embedded led strip
audio visualisers that change colour
depending on the acceleration and
bending of your limbs

G Projects for the uni modules etc. It
would be very useful.

null

H A sensor to see how far you are from
something that you can not see.
(Something like a parking sensor)

null

I A working intruder alarm null

J Not by heart but there are many
possibilities

null

85

ID Tool enabling to
create other things 1

Tool enabling to create
other things 2

Confidence in tool
prototyping more
complex projects 1

Confidence in tool prototyping more
complex projects 2

A No then I would use actual
code. But good to quickly
prototype

No null

B Yes null I think so It will take a little longer, but it will
eventually work.

C definitely null Yes null

D Yes null Sometimes the
blocks are limiting

 as I would have more control coding stuff
myself.

E Yes I think plenty is possible. Yes although it might get very messy and for
larger projects it might become more
cluttered than code would.

F Yes null Yes null

G Yes! The programming
language would not be a
restriction to let my
creativity flow

Yes this would definitely help with me making
concepts of things faster and easier since it
is ALWAYS a hassle to get my new Arduino
components working (at least for me).

H Yes I think that would be
possible to make my
previously mentioned
idea.

Yes but that is also because I did not make that
difficult things as I am not that experienced
in the area of coding and wanted to start of
easy.

I Probably!

Yes but some guidance (tutorials etc.) would be
appreciated

J Yes definitely

Yes but I am not sure how you can create
dependencies and loops between parts

86

ID Likeliness using
tool again for
quick prototyping

Saving time compared to
normal coding 1

Saving time compared to normal coding 2

A 4 Yes null

B 5 Yes null

C 4 Yes because I have not used arduino in a while

D 4 For the easy stuff yes.

E 4 For simple solutions yes.

F 5 Yes it prevented the many syntax errors and little
mistakes I usually make when coding. It also made
it easier to change orders of operations, change
parts and keep a clear overview of the program

G 5 yes! a lot! I would say that
this might be 10x faster.

null

H 4 null null

I 4 Can't compare because I haven't coded comparable projects in
normal coding

J 4 Yes!

87

ID Something was more
difficult than coding 1

Something was more difficult than
coding 2

Any optional remarks

A Yes null use wifi and ota updates. no cables

B No null null

C Yes, basic math but in general not It was not always clear which direction I had to
put in the wires. Small usability improvements
would have been nice. (disabled input fields,
quick snap lines etc)

D Yes there was something that I knew
how to do in code but did not
manage in the tool.

null

E I think it is equal. null Split block needs more outputs. I would like
multiple lines from one output. Curves :). And
more logical UX in the inspector.

F Yes as mentioned before, some useful
tools such as logic gates and more
advanced math functions like
absolute or sine waves were missing.
Also, the ability to make classes and
functions was missing.

<3

G No null more components to play with ;)

H null null The buzzer is great :)

I No haven't coded comparable projects
before (involving hardware)

None

J No

Only the addition of making dependencies
between parts or possible loops.

88

Appendix H – Improvements to be made

H1. Functionality
• Automatic uploading

• Saving and loading the workspace

• Serial monitor

• Serial plotter

• Custom block creation

• More math options

• Control logic for example AND and OR

• Custom methods where the user can type

• Calibration

• Split block multiple outputs

• Help button that shows information

H2. UI
• Hide/lock sliders when the value is not used

• Overview of the pins that are in use

• Double click on text box should select all text

• Open a drop-down menu when clicked instead of having to use the button

• Save last file location

• Grouping blocks into a single block

• Zoom on the canvas

• Make blocks autofit based on text, leading to smaller blocks

• Quick snap lines

• Bendable lines/curves

H3. Hardware
• A microphone instead of the current sound sensor

• Pin labels printed on the Beetle

• Wires that fit in one direction

• USB extension cable

