
MSc Embedded Systems
Final Project

Species Distribution Modelling:
A Multimodal Learning
Approach

Pranesh Velmurugan
s2578050

Graduation Committee:
Prof.Dr.P.J.M.Havinga
Dr.A.Kamilaris
Dr.E.Talavera Martínez

October, 2023

Pervasive Systems,
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente.



Acknowledgements

I am filled with great pleasure as I reflect upon the completion of my thesis, focused on
the development of a Species Distribution Model. This endeavor allowed me to pursue my
passion for deep learning and computer vision with a profound commitment to environ-
mental preservation.

First of all I would like to thank Pervasive Systems group for their support and assis-
tance in helping me complete this thesis.

I extend my deepest appreciation to my supervisor, Andreas Kamilaris for his valuable
feedback, guidance and suggestion throughout the thesis.

I also wish to convey my gratitude to my committee chair, Paul Havinga and external
examiner, Estefanía Talavera Martínez for dedicating their time and evaluating my work.

A special thanks goes to Chirag Padubidri (CYENS Centre of Excellence) for his guid-
ance and helping me from the inception of this thesis.

Lastly, I am thankful to my family and friends for providing me the strength and being
there with me throughout my masters programme.

Have fun reading my thesis!

2



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Scientific Background 4
2.1 Multimodal Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Area Under Curve (AUC) or Area Under Receiver Operating Char-
acteristic Curve (AUROC) . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 True Skill Statistic (TSS) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Percentage Correctly Classified (PCC) . . . . . . . . . . . . . . . . . 5
2.2.4 Top-k Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Related Works 7
3.1 Current state-of-the-art methods . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Conventional Statistical Methods . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Summary of Methods for SDMs . . . . . . . . . . . . . . . . . . . . . 10

3.2 Multimodal Learning based SDMs . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Only limited works have been performed that uses pseudo-absence
data in building a SDM . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Feature importance assessment . . . . . . . . . . . . . . . . . . . . . 15
3.4.3 Raw-dataset Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Methodology 18
4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Environmental Covariates (Predictor variables) . . . . . . . . . . . . 18
4.1.2 Frog Occurrence Dataset (Target Variable) . . . . . . . . . . . . . . 19

4.2 Pre-Processing Techniques Used on the Datasets . . . . . . . . . . . . . . . 20
4.2.1 Grid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



4.2.3 Dataset Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Log Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.6 Other Basic Pre-processing Techniques . . . . . . . . . . . . . . . . . 26

4.3 Pseudo-Absence dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Dataset for GNN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Model for Frog Counting Task - Regression . . . . . . . . . . . . . . 31
4.5.2 Model for Frog Presence/Absence Classification . . . . . . . . . . . . 32

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.1 Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Implementation details - Experiments Conducted . . . . . . . . . . . 34

5 Results 39
5.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Mean Absolute Error (MAE) for Frog Counting Task . . . . . . . . . 39
5.1.2 Accuracy and AU-ROC score for Presence/Absence Classification . . 40

5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Balancing Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Feature Importance Assessment . . . . . . . . . . . . . . . . . . . . . 43
5.2.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.5 Performance Evaluation of the pre-processed terraclimate data using

XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.6 Presence / Absence Classification . . . . . . . . . . . . . . . . . . . . 46
5.2.7 Comparison of different pseudo-absence data generation method . . . 47

6 Discussion 48
6.1 Results - Analyses and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Dataset Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3 Feature Importance Assessment . . . . . . . . . . . . . . . . . . . . . 50
6.1.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.5 Performance Evaluation using XGBoost . . . . . . . . . . . . . . . . 53
6.1.6 Presence / Absence Classification . . . . . . . . . . . . . . . . . . . . 54
6.1.7 Comparison of different pseudo-absence generation methods . . . . . 55

6.2 Addressing the Research Questions . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion and Future Work 58
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Appendix 68
A.1 Cross Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 Balancing Approach - K means Clustering . . . . . . . . . . . . . . . . . . . 68
A.3 Terraclimate Variables - Correlation matrix . . . . . . . . . . . . . . . . . . 69

4



List of Figures

2.1 ReLU Activation [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sigmoid Activation [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Multimodal Analysis - Generic Architecture [60] . . . . . . . . . . . . . . . 13
3.2 Comparison [77] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 RGB Patch- Costarica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Grid Formation for Australia . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Presence points comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Histogram- Balanced Frequency of Frog Counts . . . . . . . . . . . . . . . . 24
4.5 Histogram- Frequency of Frog Counts . . . . . . . . . . . . . . . . . . . . . 24
4.6 Histogram of Frog count before and after log transformation . . . . . . . . 26
4.7 Missing Values - Terraclimate . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Frog Count - Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 Pseudo-Absence Data Generation . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 Australia Pseudo Absence point. Red - presence point, Grey - Pseudo Ab-

sence point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 South Africa Pseudo Absence point. Red - presence point, Grey - Pseudo

Absence point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.12 Costa Rica Pseudo Absence point. Red - presence point, Violet - Pseudo

Absence point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.13 Pseudo Absence Points Comparison . . . . . . . . . . . . . . . . . . . . . . . 29
4.14 Edge List - Sample Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.15 Pipeline Architecture - Frog Counting Challenge . . . . . . . . . . . . . . . 31
4.16 Pipeline Architecture - Frog Presence/Absence Classification . . . . . . . . 32
4.17 Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.18 Weighted Average Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Train and Test MAE curves for Imbalanced data . . . . . . . . . . . . . . . 41
5.2 Train and Test MAE curves for balanced data . . . . . . . . . . . . . . . . . 41
5.3 Sample patch that shows the distinction between RGB, LC and NDVI data

of the same location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Results - Comparison of various methods . . . . . . . . . . . . . . . . . . . 43
5.5 Feature Importance - Histogram . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 AU-ROC Curve for LC & Numeric data . . . . . . . . . . . . . . . . . . . . 46
5.7 AU-ROC Curve for NDVI & Numeric data . . . . . . . . . . . . . . . . . . 47

6.1 Results - Model-W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Scatter Plot on submission data . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Frog Counting Challenge - Leader Board Scores . . . . . . . . . . . . . . . 50
6.4 Results - MAE obtained for Lower value of Frog count . . . . . . . . . . . . 51

5



6.5 Scatter Plot on submission data for lower value of frog count . . . . . . . . 52
6.6 Tmax and Tmin of Australia and Costarica . . . . . . . . . . . . . . . . . . 53
6.7 Mean Precipitation of Australia and Costarica . . . . . . . . . . . . . . . . 53
6.8 Sample Land Cover patches of Australia and Costarica . . . . . . . . . . . 53
6.9 Sample Presence and Absence Points of South Africa . . . . . . . . . . . . 54
6.10 Tmax and Tmin of presence and absence point - South Africa . . . . . . . 55
6.11 Accumulated Precipitation of presence and absence point - South Africa . . 55

A.1 K-means Clustering - Feature Space . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Heatmap - Correlation matrix of Terraclimate variables . . . . . . . . . . . 70

6



List of Tables

3.1 Performance Comparison of Existing State-of-the-art Models. AUC- Area
Under Curve, PCC- Percentage Correctly Classified, TSS- True Skill Statis-
tics, RMSE- Root Mean Squared Error, A10%DQ- Accuracy on 10% Densest
Quadrats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Performance Comparison of Existing Multimodal Models. *- Not reliable
due to a bug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Overview of datasets used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Overview of Training Parameters. . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Results - MAE Comparison between Balanced and Imbalanced Dataset . . 40
5.2 Train and Test MAE obtained for the frog counting task on three sets of in-

put data and the MAE obtained using sliding window and resizing approach
on the submission data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Results - After Log Transformation . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Results - Weighted Average Ensemble . . . . . . . . . . . . . . . . . . . . . 43
5.5 Terraclimate Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Results - MAE for top 6 features . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Results on Costarica using the model trained on Australian data . . . . . . 45
5.8 Results of Ensemble method on Costarica using the model trained on Aus-

tralian data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9 Results of XGBoost model trained on terraclimate dataset . . . . . . . . . 46
5.10 Classification Accuracy for Frog Presence / Absence detection . . . . . . . 46
5.11 Pseudo-absence data performance comparison . . . . . . . . . . . . . . . . 47

6.1 F1-Score of Ensemble model . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Comparison of Model-W and Proposed model on Test data . . . . . . . . . 50
6.3 MAE obtained on Submission data for lower values of frog count . . . . . . 51
6.4 Two Comparison Approaches - Overview . . . . . . . . . . . . . . . . . . . 51
6.5 Comparison of XGBoost and Fusion model . . . . . . . . . . . . . . . . . . 54
6.6 Training Time for models using different modalities of data . . . . . . . . . 57

A.1 Cross Validation Results. * Not Completed . . . . . . . . . . . . . . . . . . 68

7



Abstract

A species distribution model (SDM) makes use of environmental factors at a location to
predict whether one species, or potentially several, will be present there. Some SDMs could
even predict the count of the species present there. This work aims to predict the count
of Anura (frogs) present in a location by building a SDM based on multiple modalities
of data. Eventually, these will provide us valuable information about the condition of the
environment. While there has been many methods of building SDMs, this work specifically
aims to build a SDM based on Multimodal Learning which takes as input environmental
features not just from one data type but from multiple modalities to predict the presence
of the species. This work describes the proposed architecture and evaluates the results
obtained from the model. Moreover, this paper compares the results obtained from the
proposed model to the existing State-of-the-art methods.

The fusion architecture proposed in this model makes use of both tabular data and
satellite image data. The results evaluated are compared with the winner of the frog
counting challenge [6]. According to the leader board of the challenge, the proposed work
achieved a F1-score of 0.36, which is placed second, and the winner of the challenge achieved
a score of 0.42.

Apart from the task of counting frogs, this work also performs the classification of a
location as presence / absence. The best performing model achieved an accuracy of 89.19%
and an AUC score of 0.96. Though there are no direct comparison available for this task,
still the results are on par with the existing classification SDMs.

For the task of classifying the location as presence/absence, a novel method of generat-
ing pseudo-absence dataset has been presented and is compared with some of the existing
methods. The proposed method performed better than the distance criteria method by
almost 4% better accuracy and by 19% better accuracy than the random selection method.

Overall, this work provides ways to use multiple modalities of data in building a SDM
and suggests ways to improve the performance further.

Keywords: Species distribution model, multimodal learning, covariates, pseudo-absence
data.



Chapter 1

Introduction

This section has been divided into motivation for this thesis, problem statement and Re-
search objective of this work.

1.1 Motivation

Considering the importance of ecological research in preserving our environment and also
to understand climate change, it is vital for the researchers to have a tool to monitor the
distribution of flora and fauna. This provides them with valuable information regarding
the consequences faced by animals and plants due to the changes in climate, pollution
caused due to human activities. These tools also play an important role in preserving and
protecting endangered species. There has been a number of citizen science projects where
researchers and volunteers participate together to gather data on various species and their
occurrences. Though these projects already provide the researchers with valuable informa-
tion regarding the Geo-location of the species, it cannot be used to make predictions on the
species occurrence in regions that have not been evaluated or recorded by citizen scientists.

To address this issue, the concept of Species Distribution Modelling has been intro-
duced. Species Distribution Models can be defined as " a quantitative , empirical models
of species-environment relationships developed using geo-location of species data and the en-
vironmental features that affect those species distributions. The methodology or techniques
used to develop such Species Distribution Models are called Species Distribution Modelling"
[22]. Species Distribution Models (SDMs) are an important tool that contributes greatly
to the research of biodiversity which in turn helps us in the conservation of ecology [48].
SDMs provides us with a measurable entity which explains the relationship between the
input variables or covariates (which could consist of variety of entities ranging from en-
vironmental features, climatic factors to remote sensing images) and the distribution of a
species. SDM’s function is to gather the spatial distribution of a species, given the details
of the occurrence of the species obtained through multiple sources of species observation
data. By employing SDMs to gather the spatial distribution of species, such as frogs
(Anura), researchers can better understand environmental issues.

In order to take actions towards environmental conservation and address those issues,
researchers need to know the factors that affect the ecosystem. In order to be aware of such
factors, there should be some sort of indications that can help in the analysis of environ-
mental problems. Bio-indicators [52] help in such analysis. By definition "bio-indicators
are living organisms of any kind such as animals, micro-organisms, plants etc, that assists
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in the screening of the natural ecosystem in the environment." [52]. One such bio-indicator
are frogs (Anura), that helps in the assessment of the quality of the environment and the
changes observed in the environment . Frogs serve as an important bio-indicator due to
their high sensitivity towards even minor changes in environmental conditions [27].

The technological aspect of motivation for this work comes from the enormous poten-
tial shown by one of the major areas of deep learning called multimodal learning [7]. It
involves processing and integrating information from multiple sources. This work aims to
levarage multimodal learning in the context of building a SDM. The motivation behind
employing this method stems from the promising results exhibited by this approach in a
wide range of applications as mentioned in [7],[75],[49],[35] including in SDMs [60]. This
further underscores the relevance of exploring this option further in the context of building
a SDM. More on multimodal learning is explained in the following chapter.

This work describes the process of building a Species Distribution Model for predicting
the presence of frog population and also to predict the count of frogs present at a location
using multimodal learning under the assumptions that using more than one modality of
data will improve the predictions of SDMs.

1.2 Problem Statement

Based on the above motivation, this work aims to address the following problem statement.
"To fulfill the critical need for monitoring the distribution and population count of frog
species as a bio-indicator for analyzing environmental changes, there is a need to develop
a SDM that can effectively predict the presence and abundance of frog populations".

Additionally, the SDM built, will also be used to predict the presence / absence of frogs
in a location. This task requires absence data, which is not available with the dataset used
in this work. For that purpose, pseudo-absence data will be generated.

1.3 Research Objective

The concept of SDM has been in the picture for many decades now. There has been
numerous methods available for building a SDM and it has evolved since. SDMs based on
statistical methods [69][51][25] are a popular model which produced good results.
On the other hand due to the evolution of deep learning methods and the effectiveness of
Convolutional Neural Networks (CNNs), SDMs based on the above technologies has gained
traction.

So far, SDMs based on models that uses covariates like temperature, moisture content of
soil, elevation data etc. as input to classify the species using deep learning and SDMs that
takes high resolution remote sensing images as input to classify via deep learning (CNNs)
exists. Eventhough these model provide better predictions, important details are missed by
those models mainly due to the nature of the input data being single modality. Research
on making use of multimodal learning in building SDMs has not gained much attention.
Refer scientific background section for more information on multimodal learning. So, the
main objective of this thesis is to build a SDM based on MultiModal Learning [49][75] and
compare the results obtained with existing state-of-the-art methods.

2



1.4 Thesis Outline

The thesis is organised as follows. Chapter 2 describes the relevant scientific background
information. Chapter 3 outlines the literature survey conducted. Chapter 4 discusses
the methodology followed, which includes the dataset preparation ,the model architecture
and the experimental setup. In chapter 5, the results obtained are presented. Chapter
6 explains and analyses the results obtained and answers the research questions framed.
Finally, chapter 7 gives a overall conclusion and also discusses the future research areas.

3



Chapter 2

Scientific Background

2.1 Multimodal Learning

In multimodal learning, the deep neural network learns various features over multiple
modalities. In traditional deep neural networks, the input data involves a single modality.
But as discussed in the research objective section, SDMs often take inputs from multiple
modalities, so it is only logical that we employ a multimodal learning based model. By
processing and learning from diverse data sources together, the models can identify complex
correlation and dependencies that might not be captured when considering the different
modalities separately. Having said this, multimodal learning can be defined as the process
of developing algorithms and architectures, that enable the models to handle and process
information from multiple modalities or sources of data. [49], [75].

2.2 Evaluation Metrics

In this part, some of the evaluation metrics that have been used in literature in measuring
the model performance is explained.

2.2.1 Area Under Curve (AUC) or Area Under Receiver Operating
Characteristic Curve (AUROC)

The performance of a binary classification model can be visualized graphically using the
Receiver Operating Characteristic (ROC) curve. The curve is obtained by plotting True
Positive Rate (TPR) against False Positive Rate (FPR). By measuring the Area Under
the ROC curve (AUC), we obtain a degree of separability. A higher AUC value means, the
model is better at predicting true positives and true negatives. In [11], the author proposes
that AUC can be calculated by using trapezoidal integration, mathematically AUC can be
calculated using equation 2.1 [11]

AUC =
∑
i

((1− βi.∆α) +
1

2
(∆(1− β).∆α)) (2.1)

Where,
∆(1− β) = (1− β) − (1− βi−1)
and∆α = αi − αi−1.
α = P (Fp) [False Positive Rate]
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andβ = 1− P (Tp) [True Positive Rate].

2.2.2 True Skill Statistic (TSS)

TSS is a frequently used evaluation metric in assessing the performances of SDMs, espe-
cially when it comes to binary classification (distinguish between the presence and absence
of a species). TSS is often credited for being independent of the proportion of the presence
or absence of a species in the sampled locations (i.e. prevalence). Mathematically TSS is
defined in equation 2.2 [65]

TSS = sensitivity + specificity − 1 (2.2)

Where,
sensitivity = true positive rate (TPR),
and specificity = true negative rate (TNR).

TPR =
TP

TP + FN
(2.3)

Where,
TP (True positives) = positive instances correctly classified,
and FN(False negatives) = negative instances incorrectly classified.

FPR =
FP

FP + TN
(2.4)

Where,
FP (False positives) = positive instances incorrectly classified,
and TN(true negatives) = negative instances correctly classified.

2.2.3 Percentage Correctly Classified (PCC)

PCC is one of the common and easiest way to evaluate a model’s classification ability. PCC
corresponds to the proportion of observations that has been correctly classified. Mathe-
matically, it is given by equation 2.5

PCC =
No.of correct classifications

Total no of samples
∗ 100 (2.5)

2.2.4 Top-k Accuracy

For problems involving multi-class classification , where the model has to predict from N
classes, this evaluation metric is the most used one. In top-k predictions, where k can be
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any positive integer. In top-1 prediction, the prediction is correct only if the most probable
prediction is correct, whereas, in top-k prediction, the prediction will be considered correct
if one of the top k predicted values has the correct prediction. Top-k prediction is defined
mathematically by equation 2.6 [58]

Ck(q) = {y[i] ∈ Y |1 ≤ i ≤ k} (2.6)

Where,
Y = {1, 2, ...N} is the label space , N is Number of classes,
q = (q1, q2, ..qN ) is the normalized values
obtained as the output after softmax activation,
and k = (1, 2, ..N − 1).

2.3 Activation Function

Activation functions that are used in this work is explained here.

Rectified Linear Unit:Rectified Linear Unit or ReLU is an activation function that
outputs the input value directly if the value is positive or else zero.

Figure 2.1: ReLU Activation
[61]

Figure 2.2: Sigmoid Activa-
tion [61]

Sigmoid:Sigmoid takes any input value and outputs a value in the range of 0 to 1.
When the prediction is a probability, sigmoid is used. Especially when it comes to binary
class classification.
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Chapter 3

Related Works

This section is subdivided into two parts, the first part is about the research done on the
existing methods for building a SDM and the second part is about Multimodal learning
which will be the approach used in this thesis to build a SDM. This chapter also includes
some preliminary research work done on using Graph Neural Networks (GNN) for building
a SDM.

3.1 Current state-of-the-art methods

This section is categorized based on the types of techniques employed, progressing from
elementary approaches to more intricate methods.

3.1.1 Conventional Statistical Methods

Statistical methods based SDMs are a trusted and proven approach. In literature one can
find many SDMs based on statistical approaches. Statistical approaches based on presence-
only methods are a popular approach in building SDMs. Before going into the method it
is important to know the two major types of data available. Presence-only data contains
only the presence details. This means that if the species is observed at a location, it is
recorded as a presence point, however it fails to provide the location where the species is
absent. This gap is overcome by presence-absence data which consists of both locations
where the species is present and absent. More on the dataset that will be used in this work
is discussed later. Several works [2][12][13] have been proposed based on presence-only
method. But, the most popular one is MaxEnt [54]. In the context of Species Distribution
Modelling, Philips et.al., in [55] suggests that given the presence details of the species,
the region of interest and the covariates, the distribution of the target species over the
geographical region of interest is predicted by calculating the distribution of maximum
entropy provided that the expected value of each feature is equivalent to its emperical
average. Though this method is consistent and produces good results, which is evident
from the experiments conducted by the authors in [54], there are some serious drawbacks
with this approach.One such issue is that this method is based on presence-only dataset
and this may lead to bias in the occurrence localities.

Several works such as [24] [25] [51] have used statistical methods, generalized linear
models for instance. Manel et.al., in [47] compared different methods of building a SDM
to predict the presence of Rhyacornis fulginosus. One of the methods used is based on
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Logistic Regression. In this context, logistic regression is treated as more of a statistical
method than a machine learning based method because of the linear dependence between
the variables. The authors employed a generalized linear model based on multiple logistic
regression to model the presence/absence of the species. The equation 3.1 represents the
linear function of 32 predictor variables.

(p) = log
p

1− p
= b0 +

32∑
i=1

b1ixi (3.1)

Where,
(p) represents the logit transformation of
presence/absence (p),
b0 and b1i are the regression constants.

The authors of [47] when compared logistic regression with other methods like artificial
neural networks and multiple discriminant analysis, found logistic regression to have better
performance in than others, but the difference is minimal. Though logistic regression have
an edge over artificial neural networks in terms of efficient usage of resources, it comes with
a serious issue. In the case of logistic regression, a situation where predictor variables could
have a significant impact on the presence/absence of a species by coincidence or random
chance rather than due to the representation of actual relationship between covariates and
occurrence can arise. This is due to the building of model based on only correlative data.
This makes it one of the reasons to look beyond statistical model in building SDMs.

3.1.2 Machine Learning Methods

Even though statistical methods have yielded good results in building SDMs, due to the
impact of machine learning it is hard to ignore it. And also, a linear function may not be
sufficient to explain the relationship between the environment and the species. As a re-
sult several works based on machine learning methods such as random forests classification
[14], support vector machines [19] and boosted regression trees [21] are proposed for SDMs.

One such machine learning based model was presented by Cutler et.al., in [14]. The
authors used random forest classifier to build Species Distribution Modelling. RF method is
compared with 4 other different classification methods, such as Linear discriminant analysis
(LDA), logistic regression, additive logistic regression and classification trees. Accuracy of
each method is calculated using overall percentage correctly classified (PCC), sensitivity
(the percentage of presences correctly classified), specificity (the percentage of absences
correctly classified), kappa and AUC.

This method is applied to 3 examples for classifying 3 groups of organisms, vascular
plants, non-vascular plants, and vertebrates. In all three examples it is found that RF
outperforms other classifiers. It is concluded that RF should outperform linear methods
like logistic regression and LDA which has high interactions among variables. In addition
to it RF has the ability to measure the variable importance better than other ML based
methods such as SVMs. But the downside with this approach is that the relationship
between predicted values and covariates is complex and this makes interpreting ecologi-
cal information difficult. Lek et.al., in [41] compared two techniques for modelling SDMs
namely multiple regression and neural networks. The authors concluded that neural net-
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works performed better when there exists a non-linear relationship between variables when
compared to multiple regression.

3.1.3 Deep Learning Methods

The environmental variables can be of many types including elevation data, land cover, soil
type in addition to climate data. As the input variables increase it is important to make
sure that the complex relationship between the input variables is addressed properly. This
is where deep learning comes into the picture. But, before going into deep learning, neural
networks with a single hidden layer has been utilized in the field of SDM [42] [40] many
years back. Though these networks produced better predictions, deep neural networks
with more than one hidden layer perform better when the complexity is high [9]. Botella
et.al., in [10] put forward a deep learning approach for building a SDM. According to the
authors in [10] the main goal of SDMs is to obtain a function that outputs the density
of the species at a location given the environmental features as the input. This means
that the species is constrained to one specific ecological niche that is distinguished by the
distribution over the environment. But, it has already been established that the function
is more complex than expected. The paper [10] provides a classical equation which helps
us understand the correlation between species abundance and covariates.

g([y|x]) =
∑
j

fj(xj) +
∑
j,j′

hj,j′(xj , xj′) (3.2)

Where,
y is the target variable whose presence is to be predicted,
x is the input variable,
f and h are the monovariate and bivariate functions that
describe the relation between the inputs,
g is to make sure that the expected value is within the
space of y.

From equation 3.2 [10] we can understand that, it is the case in most of the time that
the pairwise interaction effect between the covariates is expressed by the product of their
values, which simplifies the model and makes it easier to interpret. This approach may
not work always as it assumes a simple correlation between the covariates and the species
response. In reality, this does not reflect the complexity of the environmental patterns
that influence the species occurrence. So, neural networks with several layers can negate
this issue as their architecture can accommodate complex interactions between input vari-
ables. The deep neural network proposed in [10] consists of a feedforward network with
six hidden layers and uses ReLU activation function. From the experiments conducted in
[10], the authors found deep neural networks to outperform the classical MaxEnt approach.
Similarly several works [79] [67] have used deep learning to build SDMs and have achieved
better results. However, when the dataset on which the deep neural network is trained on
is small, the model will overfit leading to a degraded performance on the validation dataset
[1].

Another drawback with using deep learning approach in building SDMs is that ex-
tra work should be put in deciding the hyper-parameters and architecture before training
the neural network. Shiferaw et.al., in [62] compared various machine learning algorithms
and deep neural networks in predicting a invasive plant species. From the experiments
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conducted, the authors obtained a 92% accuracy when using a random forest approach.
However deep learning approach only yielded am accuracy of 73%. The authors could
not definitively explain the reasons for the under performance of DNN, but suspect that
various factors such as proper weight initialization, selection of right optimizer and further
hyper-parameter tuning could result in a better performance.

A special case of deep neural networks are the one that has a convolutional layer in
it. Convolutional neural networks (CNNs) [39] are a specific class of neural networks that
specializes in image data due to the convolution operation between the matrices. CNNs
have seen a lot of success in the field of image classification [37], pattern recognition [73]
etc. due to their ability to extract spatial features from the image. So, the spatial patterns
in the covariates contains information that are missed by usual machine learning methods.

Deneu et.al., in [15] proposed a SDM based on CNN. The authors suggest that Convo-
lutional Neural Networks, have a distinct characteristic in that they rely on spatial envi-
ronmental tensors, which are representations of the spatial distribution of environmental
factors surrounding each point, rather than simply using local values. Given their ability
to capture rich information through the use of spatial environmental tensors, CNN-SDMs
are well-suited to model how complex ecological niches and spatial dynamics influence the
distribution of numerous species within a given region. CNN-SDM presented in [15] con-
sists of the input data subjected to a non-linear transformation initially. This results in
a feature vector of lower dimension. For this transformation the authors make use of the
Inception v3 model [66]. The feature vector obtained captures information about the envi-
ronmental characteristics. This feature vector acts as a input in predicting the species at
the end using a generalized linear model. Based on the experiments conducted in [15], the
authors suggest that CNN-SDMs performed better when the occurrence data are limited.

3.1.4 Summary of Methods for SDMs

The table 3.1 compares and summarizes the main state-of-the-art methods that were dis-
cussed so far. Since each of the methods discussed in the literature have used different
target variables (species) and different metrics of evaluation, it is difficult to directly com-
pare them and come to a conclusion that one method is better than other. However, the
following summary made a diligent attempt to provide a comprehensive comparison of all
the methods by utilizing the available data and highlighting their respective drawbacks.

From the discussion about the random forests classifier approach earlier, various metrics
were used to evaluate the different methods that were utilized to predict various species.
From those only PCC & AUC metrics are chosen to compare as they are the most common
method of evaluation in the literature. Also only one species (Verbascum thapsus) is
chosen because of the highest number of observation among others. From the experiments
conducted in [14] Random forests classifier outperformed all other classifier.

Similar to Random forests classifier, in MaxEnt [55] approach AUC is chosen as the
evaluation metric for comparison purpose. This method obtained a high AUC value com-
pared to the other commonly used presence-only method called Genetic Algorithm for
Rule-Set Prediction (GARP).

In [47] logistic regression based model fared better than ANN and MDA methods. This
is due to a straightforward linear method of predicting the distribution.

When it comes to deep learning approach carried out by Botella et.al., in [10], in
order to not be partial towards the selection of the category of species, 1000 species were
chosen randomly from 7626 species and from 1000, 200 were chosen and finally 50 species
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S.No Method Species/Dataset Evaluation Metric Value

1 Random Forests Classifier [14]Verbascum thapsus
PCC 92.6%

AUC 0.940

2 MaxEnt [55] Microryzomys minutus AUC 0.982

3 Logistic Regression [47] Rhyacornis fulginosus Prediction perfor-
mance (Accuracy) 75%

4 Deep Learning [10] Randomly selected 50 species

Mean Loss -0.927

RMSE 2.61

A10%DQ 0.519

5 CNN-SDM [15] GBIF dataset

Mean top-k accuracy 0.34

AUC 0.818

TSS 0.450

Table 3.1: Performance Comparison of Existing State-of-the-art Models. AUC-
Area Under Curve, PCC- Percentage Correctly Classified, TSS- True Skill Statistics,
RMSE- Root Mean Squared Error, A10%DQ- Accuracy on 10% Densest Quadrats
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were chosen. And the evaluation metric chosen are mean loss, RMSE and accuracy on
10% densest quadrats, which are different from the usual AUC. From the experiments
conducted, deep neural network outperformed MaxEnt method when there are multiple
species at the output. However, for mono response version MaxEnt performed better.

In the case of CNN-SDM described in [15], the evaluation metric chosen are mean top-k
accuracy, AUC and TSS. And the dataset is GBIF consisting of 4520 plant species. When
compared with the other methods such as deep neural network, random forests classifier
and boosted regression trees, CNN-SDM had the highest mean top-k accuracy. However,
when AUC & TSS metric are taken into account, there was not much difference when
compared with random forests. But, it was observed that CNN-SDM performed well when
it comes to rare species with less observation data while random forests and boosted trees
performed better for frequently occuring species.

The table comprises of the results obtained from the best performing method which
were presented in the literature explained so far. Eventhough it is difficult to compare
these methods in a straightforward manner, it can be infered that each method has its own
pros and cons.

3.2 Multimodal Learning based SDMs

In multimodal learning [49] [75], deep neural networks learns features by taking in inputs
from multiple modalities. Several applications that uses multimodal learning has been
developed so far. For example, video and image captioning [68] [71], generation of images
from texts [72] [74]. These models uses images and text as input data. There are also speech
recognition[20] which combines audio and visual data. Likewise there are several other
applications which are developed where the deep neural network learns across multiple
modalities. However, there hasn’t been a lot of work done using multimodal learning in
the field of SDMs so far.

Though deep learning based SDMs have produced good performance, the input to
those models are only of one modality. Mostly the input will be either of environmental
variables or high resolution satellite images. When the model uses only one type of data,
for example environmental variables like temperature, soil type, humidity etc., it misses
out on important information about spatial patterns of the area. If only satellite images are
used, the model misses out on important climatic data. Either way the model performance
takes a hit due to missing out on important information.

So, in order to tackle this issue, multimodal learning is utilized to handle the heteroge-
nous nature of input data used in building a SDM.

When it comes to multimodal learning, one of the task to keep in mind is the fusion of
representation of input data of different modalities. The stages at which the fusion occurs
plays a major role in the performance of the multimodal model. There are only a few
works that has focused on building an SDM using multimodal learning, and the following
discussion will be about the related works that focuses on the different fusion methods.

Deneu et.al., in [16] used input data of multiple modalities and fused them at the input
stage itself. The combined data is then fed to a CNN model and the features are extracted
from it. Though this is a simple method, the drawback of this approach is that, since
the input data are combined at an early stage itself, it might be difficult to capture and
leverage unique information from different modalities especially when the modalities of
input data are significantly different from other.

Seneviratne in [60] tried incorporating multimodal images in building an SDM for
habitat prediction of 30,000 species. The author trained a ResNet50 model with the base
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Figure 3.1: Multimodal Analysis - Generic Architecture [60]

Figure 3.2: Comparison [77]

RGB imagery initially and then included altitude images and compared the results. The
architecture used for multimodal analysis consisted of an additional branch for extracting
features of the altitude imagery other than the one used for RGB imagery. Instead of fusing
the lower level features of the two modalities at the beginning itself, this architecture fuses
higher level features at the end to facilitate the learning of more fine grained information
about the different image domains. This leads to the network being adapted easily to
different image modalities. The architecture used in [60] for multimodal analysis is shown
in figure 3.1. From the experiments conducted in [60], multimodal structure achieved lower
error rate compared to the unimodal structure. However, it was discussed that higher GPU
memory footprint is seen as a drawback with this approach.

Another simpler approach is to train the different models with different modalities of
input variables independently and then evaluate the prediction by taking the average of
all the model’s predictions. Eventhough it is a lot more easier approach, there is no single
layer where the fusion of different modalities occurs in a significant manner and this could
lead to a degraded prediction.

Zhang et.al., in [77] presented two approaches of multimodal learning in building an
SDM. The first approach constitutes a two branch approach, one each for two different
modalities of predictor variables. The first branch consists of a ResNet architecture, used
for extracting spatial features from remote sensing RGB images. The second branch is
made up of a fully connected layer for processing 27 environmental variables passed as
27-dimensional vector. The two branch’s vector are then concatenated together as single
vector which is then passed through a fully connected layer and a softmax layer to get the
final prediction.

Attention mechanism is a concept where the weighted combination of feature vectors
are generated using scalar weights. These weights are generated by taking into account the
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S.No Method Species/Dataset Evaluation
Metric Value

1 Fusion of CNN and RF Prediction
[16] GeoLifeCLEF 2020 Top-30 Accuracy 0.24*

2 ResNet50 - Fusion of RGB and alti-
tude Imagery [60] GeoLifeCLEF 2021 Top-30 Error rate 0.748

3 ResNet50 - SDMM-Net [77] GeoLifeCLEF 2020 Top-30 Accuracy 26.4%

4 Swin-T Transformer (PreFuze) [77] GeoLifeCLEF 2020 Top-30 Accuracy 29.56%

5 Ensemble of 3 Models (leaderboard)
[18] GeoLifeCLEF 2022 Top-30 Error rate 0.684

Table 3.2: Performance Comparison of Existing Multimodal Models. *- Not reliable
due to a bug.

importance of vectors in an image. For example setting higher scalar weights to more im-
portant vectors and lower weights to less important ones. This way an attention mechanism
generates vectors of an image that highlights the significant features of an image.

The second approach presented in [77] is based on Swin Transformer which is a model
based on attention mechanism. [46]. For comparison purpose, out of different versions of
swin transformer, Swin-Tiny is used as it is similar to ResNet50 in terms of computational
purpose. 4 different fusion methods are implemented namely pre-fuze, post-fuze, mid-fuze
and feature addition and concatenation method. In pre-fuze method the Swin-T structure
is used to extract the features after fusion, where in post-fuze method Swin-T structure is
used to extract only features of remote sensiong images and the fusion with the features
of environmental data occurs at the end. In mid-fuze the fusion occurs at the end of every
stage of the Swin-T structure. These methods so far are called data fusion technique,
where feature fusion techniques such as addition and concatenation are also used to build
an SDM. From the figure 3.2 we can observe that pre-fuze method yielded highest accuracy
among other methods proposed in [77].

In addition to the methods mentioned above, the winning model of GeoLifeCLEF 2022
[18] is also discussed. It is a combination of 3 models of which 2 are deep learning based and
1 is a Random forest model. The first model is a bi-modal network which uses a pre-trained
ResNet34 for remote sensing images and a FCN layer for environmental vector. The second
model is similar to the first one but it uses MobileNetV3 instead of ResNet34. The third
model is a Random forest with 32 estimators. Finally the predictions from all 3 models
are merged using mean probabilities approach. However there is not much information
about other parameters and the architecture used in this approach. This method yielded
an error rate of 0.684.

From table 3.2 the results suggest that the Swin-T Transformer (PreFuze) method
outperforms the other methods in terms of accuracy in predicting species or evaluating
SDMs on the respective datasets. Though the datasets are same in most of the cases, it is
hard to pick one method which we can say is the best just from these four cases.

Also due to the limited number of published studies in the field of multimodal learning
for constructing SDMs, it is challenging to draw significant conclusions or derive extensive
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data from the performance comparisons presented so far.

3.3 Graph Neural Networks

This section gives a short background on using Graph Neural Networks (GNNs) in building
a SDM (Under the GNN approach only the dataset has been generated. The
experiments conducted were not conclusive so it will not be explained in this
thesis).
Graphs in general are a type of data structure that consists of nodes and edges. Edges
represents the relationship between the nodes. Using this type of data structure in deep
learning have gained attention. GNNs are a class of machine learning / deep learning
models that works on data represented by graphs [78]. GNNs have found usage in a variety
of application areas like bioinformatics [76], wireless networks [32], computer vision [56],
weather forecasting [36] etc. When it comes to species distribution modelling, GNNs have
been seldom used. However, Han et.al., in [30] used message passing in GNNs for predicting
species. In [38], GraphCast is introduced where the GNNs are employed in a encode-
process-decode structure for forecasting the weather. The input data is first encoded in
a graph structure which then uses GNNs to learn the complex interactions between the
data through message passing and then finally decoded to output the predicted weather.
Unlike the latitude-longitude based grid division, GraphCast introduces multi-mesh which
is obtained by successively dividing a icosahedron into many levels.

3.4 Research Gaps

From the extensive literature survey conducted, the following research gaps are identified,
which will be looked to address in this thesis.

3.4.1 Only limited works have been performed that uses pseudo-absence
data in building a SDM

Since, collecting absence data is harder than collecting presence data, researchers often use
pseudo-absence data in predicting the species occurrence. There are only minimal works
that has actually used pseudo-absence data, especially when it comes to using multimodal
learning. Only few notable works like [45] has conducted research on how the prediction
accuracy varies when using pseudo-absence data. Moreover method for generating pseudo-
absence data is little explored. The pseudo-absence data generated should be reliable in
predicting the species occurrence. The method chosen for generating the pseudo-absence
data should be accurate and the generated data should be comparable to that of an actual
absence data. Only few notable works [59] are published for generating a pseudo-absence
data. This work compares the proposed method of generating the pseudo-absence data
with few of the already existing methods in the literature.

3.4.2 Feature importance assessment

From the literature reviewed so far, the impact of using relevant features has been relatively
explored less in the context of deep-learning based SDMs. Assessing the importance of
different features can provide valuable insights into identifying the most influential factors
that drives species occurrence.
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3.4.3 Raw-dataset Balancing

The problem faced with dataset used in building SDMs is that they are raw, similar to all
tasks in deep learning. But with SDMs there are some specially associated difficulties.

1. Spatial Bias: Data collected from some location could be in large number compared
to other location. This leads to over representation in some parts and could lead to
bias in model prediction.

2. Generalization: The purpose of SDMs is to use it on unseen locations. So merely
oversampling the data will not be enough. This leads to a more complex balancing
technique.

These challenges are taken into consideration while balancing the dataset. Proper balancing
of dataset should be performed before building a SDM. This area is little explored so far
in existing literature especially when it comes to regression task (counting frogs).

3.5 Contributions of this thesis

• A novel method for generating pseudo-absence data points.

• Dataset balancing method for SDMs (regression challenge).

• How different climatic features affect the distribution of frogs is addressed here.

• How multimodal learning is leveraged in building a SDM for frogs is presented in
this work.

3.6 Research Questions

Based on the research objective and the literature survey conducted, the following research
questions are framed and will be addressed in this project.

RQ1: What are the major limitations of the existing methods for building
an SDM in predicting the presence of a species in a particular location?

It is crucial to identify the limitations that are present in the existing methods. Because
by doing so, those limitations will be looked to address in the proposed method.

RQ2: How multimodal learning can be made use of in building a SDM?

This question is framed to explain how the technology of multimodal learning is lever-
aged to build a SDM. The techniques and how input data of multiple modalities are made
use of is answered through this question.

RQ3: How does the performance of the proposed SDM based on multimodal
learning compare to the existing state-of-the-art methods?

In order to gain insights into the performance of the proposed model, it is necessary to
compare with a baseline model. This will eventually be helpful in determining where the
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proposed model stands and also identify the areas of improvement.

RQ4: What is the impact of the different covariates used(temperature, land
cover etc) in contributing towards the prediction of target variable?

It is important to identify the factors that influence the most in prediction of the target
variable. By doing so, important questions like how a particular factor impact the habitat
selection of the species.

RQ5: How is the performance of the model using pseudo-absence points
generated by the proposed method compared to the existing ones?

Since one of the contribution of this work is to provide a better way of generating
pseudo-absence points, the generated points are compared with some of the existing meth-
ods.
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Chapter 4

Methodology

In this chapter, section 4.1 describes about the datasets used, followed by the pre-processing
techniques used in section 4.2. Then the proposed method for generating the pseudo-
absence data is explained in section 4.3. Section 4.4 describes the dataset generated for
the purpose of using GNN. Sections 4.5 and 4.6 explains the model description and the
experimental setup respectively.

4.1 Dataset Description

This section explains the datasets that are used as predictor variables for building the
SDM and the frog occurrence dataset that contains the frog count which will be used as
the target variable.

4.1.1 Environmental Covariates (Predictor variables)

The Microsoft Planetary Computer Portal [5] is an open source platform that provides
access to a number of geospatial data which includes high-resolution satellite images. The
dataset consisting of patches for the required grids are downloaded using pystac API client.
Out of all the available data catalogs, the following covariates are chosen for the task in
hand.

Sentinel-2 Level-2A

This dataset provides high resolution (10m to 60m) satellite imagery in 13 spectral bands.
Out of all the spectral bands, this work utilizes RGB and NIR bands as predictor variables.
A sample RGB patch in Costarica is shown in figure 4.1.

JRC Global Surface Water

JRC - GSW are comprehensive datasets that provide information about the occurrence,
seasonality and transition of surface water on a global scale.

Esri 10-meter land cover (10 class)

This dataset provides information regarding the type of Land Cover (LC) present at various
locations on the earth’s surface. The dataset includes land types such as water bodies, trees,
grass, crops etc. The dataset is characterized by a spatial resolution of 10 meters.
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Figure 4.1: RGB Patch- Costarica

Copernicus DEM GLO-90

This dataset represents the surface of the earth that includes, buildings, infrastructure
and the elevation data. As researchers suggest that the distribution of several species,
especially amphibians could change and move towards higher altitudes due to rising earth’s
temperature [44], the elevation data of the species occurrence is taken into consideration.

TerraClimate

This dataset provides climate and water balance information of the earth in a monthly
basis. The dataset includes a wide range of climate variables, from which temperature,
precipitation, Palmer Drought Severity Index, vapour pressure, soil moisture etc., are cho-
sen. These specific variables are chosen due to their high influence on frog habitat and
their distribution. Temperature (tmin and tmax) affect frog’s distribution as pointed out
by Gerick et.al., in [28] as the species’ distribution will experience a temperature beyond
their thermal optimum capability. But their thermal safety margin is between 3.2 to 3.8◦C.
So, it is important to take temperature into account when building a SDM. Similarly, ex-
periments conducted in [44] suggests that severe drought will affect a species’ distribution
and their existence. [70] points out the importance of soil moisture in the distribution
of amphibians. And precipitation is considered because, wet-skinned organisms like frogs
require a moist skin for respiration and for maintaining their body temperature as pointed
out by Lertzman-Lepofsky et.al., in [43].

An overview of all the dataset used is outlined in table 4.1

4.1.2 Frog Occurrence Dataset (Target Variable)

The frog presence dataset for the frog counting tool has been provided by [6] for three
countries namely, Australia, South Africa and Costarica in CSV format. For Australia
the dataset is part of FrogID project [3] and for South Africa and Costarica the dataset is
part of iNaturalist Research-grade observations [4]. Both these projects involves dataset
collected as a part of citizen science project where people share bio-diversity information
and create a database of different species observed at different locations.

The initial dataset provided pertaining to all three countries encompassed a variety
of information, including details such as the species name, coordinates where the species
was observed, the corresponding date and time of observation etc. The initial grid size for
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S.No Dataset Variable/Image Type Resolution

1 Sentinel-2 Level 2A RGB and NIR band 10m

2 JRC Global Surface Water Transition, seasonality, recurrence, occurrence, max-
imum water extent

10m

3 Esri 10-meter Land Cover (10
class)

Global land cover (Water, trees, grass, flooded veg-
etation, crops, shrub, built area, bare ground, snow,
clouds)

10m

4 Copernicus DEM GLO-90 Elevation data 90m

5 Terraclimate Temperature (Tmax, Tmin), vapour pressure (Vap),
vapour pressure deficit (Vpd), precipitation (Ppt),
soil moisture (Soil), palmer drought index (Pdsi),
wind speed (Ws), runoff (Q), radiation flux (Srad),
evapotranspiration (Aet).

–

Table 4.1: Overview of datasets used.

calculating the frog density given was 225sq km, since the submission data has the same
resolution. But, the frog density was calculated for 30 sq km for the purpose of having
more quantity of data. However, this raw data as such cannot be utilized for predicting
the density or count of frogs at specific areas.

4.2 Pre-Processing Techniques Used on the Datasets

To make the data usable for such predictions, a number of transformations including data
preprocessing, removal of outliers etc, were undertaken. The pre-processing techniques
that are performed in this work is explained here.

4.2.1 Grid Approach

In order to calculate the frog density of all three countries, we create grids of 30 sq.kms
area such that the entire country is partitioned into several grids. The grids are enclosed by
bounding box coordinates (min_latitude, min_longitude, max_latitude, max_longitude).
Once the grids are created, we obtain the frog count of each grid by iterating through each
grid and subsetting the frog presence points available from the original dataset provided.
An illustration of the grid creation for Australia is shown in figure 4.2. The presence points
of Costarica, South Africa and Australia are shown in figure 4.3 . The points are visualized
using QGIS software.

4.2.2 Feature engineering

Apart from the raw data obtained from the datasets mentioned above, it is possible to
derive meaningful features from the available datasets. This process of deriving new fea-
tures from the existing features is called feature engineering [57] [33]. For the task of frog
counting, two such features are identified which could help in predicting the count better.
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Figure 4.2: Grid Formation for Australia

1. Normalized Difference Vegetation Index (NDVI) [34]: This gives us a quan-
tifiable entity that helps us in measuring the vegetation of a particular location. This
could be one of the major factor in the habitat suitability of frogs. NDVI is calculated
by equation 4.1 and its value lies between -1 and +1.

NDV I =
NIR−Red

NIR+Red
(4.1)

Where,
NIR and Red are the spectral reflectances of NIR
(Near infrared) and Red Channels respectively.

2. Normalized Difference Water Index (NDWI) [26]: NDWI provides us with
an index which tells us the surface water content, which also highly influences frog
habitat. NDWI is calculated by equation 4.2

NDWI =
Green−NIR

Green+NIR
(4.2)

Where,
NIR and Green are the spectral reflectances of
NIR (Near infrared) and Green Channels
respectively.

4.2.3 Dataset Balancing

Imbalanced dataset is a major problem in the field of machine learning. An imbalanced
dataset is a situation where the distribution of the data is heavily skewed, meaning one
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Presence points - Costa Rica
Presence points - South Africa

Presence points - Australia

Figure 4.3: Presence points comparison

class has significantly more instances than others. In our case, since the frog count is our
target variable, some values of counts are represented more compared to others. From
figure 4.5 we can see that, the count of frogs are heavily concentrated between 1 and 10.
This is a heavily imbalanced dataset. This imbalance leads to several problems such as

• Bias in model performance: Models trained on imbalanced dataset shows bias towards
majority class.

• Overfitting: This is caused when the model performs well on training data but fails
to give similar performances on unseen data.

• Under represented class: The model may fail to learn patterns from the minority
class.

In order to tackle this issue, one of the methods to balance the dataset called oversam-
pling is performed. Oversampling is where the representation of minority class is increased
by duplicating it n- number of times to balance the dataset. But a mere duplication of
the data can lead to the dataset losing diversity and variability. For this purpose K-means
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clustering algorithm is used to group similar data points together based on the defined ter-
raclimate features. Once clusters are formed, one instance from each cluster is extracted.
This way only unique data points are present in the dataset without losing the diversity
of the original dataset.

So, the procedure described below is followed to oversample the original dataset, with-
out losing the variability.

1. Obtain the frequency of frog counts and identify the minority range of frog counts.

2. Apply oversampling of the data points that have less frequency of frog counts.

3. Retrieve the resultant data frame with somewhat balanced dataset. This balanced
dataset is obtained by merely oversampling the available datapoint. To restore the
diversity of the original dataset K-means clustering is employed.

4. Feature Selection: Define the features for performing k-means clustering. The
features are composed of the various parameters from terraclimate dataset. These
features define the dimensions along which the similarity is measured. As a result a
feature matrix is formed.

5. Define the number of clusters (n).

6. Perform k-means clustering: K-means clustering works by randomly instantiat-
ing n number of centroids. Centroids are nothing but the centre of clusters. Then in
the first iteration, all the datapoints are assigned to one of the cluster based on how
closer they are to the centroids. This way all similar points are present in the same
cluster. The closer together two data points are the more similar, the farther apart
the less similar. During each iteration of the algorithm, centroid of each cluster is
updated. The center of each cluster is found by the mean feature values of datapoints
within the cluster. This corresponds the centroid.

7. Convergence: The K-means clustering algorithm continues by updating the cen-
troid until convergence. This occurs when there is no significant changes in the center
of clusters between iterations.

8. Cluster Label: Each data point is assigned a cluster label indicating the cluster it
belongs.

9. Unique Indices: For each cluster, only one instance is kept. This way only unique
values are kept maintaining the diversity of the dataset.

10. Get the resultant dataframe with balanced dataset without losing variability.
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Figure 4.4: Histogram- Balanced Frequency of Frog Counts

Figure 4.5: Histogram- Frequency of Frog Counts
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After performing the above steps we obtain a better balanced dataset shown in figure
4.4 compared to the original one.

Apart from the data imbalance which was present based on the frequency of frog counts,
the dataset also had imbalanced data countrywise. Out of the three countries for which
the frog occurrence data is present, Australia covers about 82% of the data while South
Africa taking up 11% and Costarica filling up the remaining 7%. This type of imbalance
can lead to biased models with lower performance on the minority classes.

So, to negate this issue, weighted loss function [23] [8] is implemented in this thesis.
The idea is to assign higher weight to minority class (Costarica and South Africa), and
lower weight to majority class (Australia). The weights assigned to each class is calculated
by equation 4.3

Weight of class x =
Total.no.ofsamples

No of samples in class x ∗No of Classes
(4.3)

These weights assigned to each class is multiplied with the original loss value and then
added with the regularized loss with L2 regularization. This is given in the equation 4.4

Total_loss = (Weight.of.class(x)× loss_value)
+ regularization_loss

(4.4)

4.2.4 Log Transformation

Skewness is a common problem faced with respect to the distribution of the data. Skewness
is a measure of the asymmetry of data distribution. When the data is not normally
distributed then the performance could take a hit. This is the case for the data used here
even after the balancing step. So, log transformation of the dependant variable is performed
to reduce the effect of skewness. Our particular data is positively skewed, i.e. the data
distribution has a long tail in the positive direction of the number line. Refer figure 4.6 for
the histogram of frog count before and after log transformation. It is important to note
that the predictions obtained by the model trained using log transformed data will be in
log scale. So, to get back the predictions for interpreting, the inverse of log transformation
has to be taken.

4.2.5 Image Augmentation

One of the techniques used to balance the dataset is introducing duplicate data. By filling
the dataset with duplicate data the uniqueness and variability of the images are compro-
mised. In order to preserve the variability and uniqueness of the images various image
augmentation techniques are utilized. Performing image augmentation before training also
makes the model more generalized and prevent overfitting. The image augmentation tech-
niques used are explained below.

Horizontal Flip : This technique flips the image along its vertical axis. Horizontal
flip is performed with a probability of 0.5, meaning there is a 50% chance that the image
will be flipped before training.

Rotation: Here a random rotation is applied to the image. The angle of rotation is
randomly choosen between -10 and 10 degrees. So, instead of uniform angle applied every
time, the image will be rotated randomly within the specified range.
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Figure 4.6: Histogram of Frog count before and after log transformation

Figure 4.7: Missing Values - Terraclimate

Scaling: Depending upon the scaling factor, the image is scaled up or down. The
scaling factors are randomly sampled between the interval 0.6 and 1.4. This applies scaling
in both height and width of the image.

Resizing: Random resizing of images can make the model robust to various image
sizes. So, before training the images are resized randomly.

4.2.6 Other Basic Pre-processing Techniques

Missing Values: In the terraclimate dataset, most of the variables have missing values.
These should be removed before training. Figure 4.7 shows the number of missing values
present in each of the terraclimate variables

Outlier removal for Target Variable: Since frog count is the target variable, the
outliers present should be removed. Such outliers can influence the prediction accuracy and
can cause biased outcomes. Figure 4.8 shows that most of the frog counts are concentrated
below 500. So, the data points that have count above 500 are removed.

4.3 Pseudo-Absence dataset

One of the research objective is to predict the presence/ absence of frogs at a location. For
that we need absence data to know the characteristics of absence location. It is compara-
tively difficult to collect absence data of any species compared to collecting presence data.
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Figure 4.8: Frog Count - Outliers

This is because, if a species is not observed at a particular location, it does not necessarily
be considered as true absence point. There are multiple reasons for the species to not be
present at a location [59].

• The species could have been present but was not recorded by the observerdue to
human error.

• The species could have been extinct at that particular location due to human activ-
ities or due migration in spite of being environmentally suitable.

Considering these difficulties researchers sort to other methods of obtaining the absence
data. The generated data is called pseudo-absence data. This section describes a novel
procedure created to obtain the pseudo-absence data. The factors that are taken into
account for generating the pseudo-absence data that could potentially have an impact on
the accuracy of the SDMs are:

1. Number of pseudo-absence points (i.e. the ratio of presence points to pseudo-absence
points). Since having a large number of pseudo-absence points compared to the pres-
ence points could make the dataset imbalanced and result in a biased performance.

2. Covariates chosen to filter the data.

• Geographical extent (Distance criteria)

• Land cover patches

The motivation for selecting the above covariates is that, there is a high probability
that the person who observed the presence of frog at a location would have also been
present at a location close to the presence point (distance criteria). If the land cover of
those points are similar to that of the presence point, then there is a high chance that the
observer have not observed frog presence at those points. This is the reason for selecting
the mentioned pseudo-absence technique. The steps followed to obtain the pseudo-absence
points are:

1. Extracting potential pseudo-absence points: First of all, the whole study area is
divided into 30sqkm grids and from this, the existing grids for which the presence
data available are separated. The remaining grids constitute the potential pseudo-
absence points.
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Figure 4.9: Pseudo-Absence Data Generation

2. From the known presence points, select only those points that are located at some
X distance. The distance between two points are calculated using the haversine
formula by utilizing the coordinates of these points[50]. Haversine formula is shown
in equation 4.5. The threshold set for distance X is different for three countries.
Considering the first factor explained earlier, since Australia has more presence points
compared to other two countries, fixing the same threshold will result in large number
of pseudo-absence points. So, the threshold is set as 10 Kms, 20 Kms and 28 Kms for
Australia, South Africa and Costarica respectively. The points obtained from this
step for all three countries are shown in figure 4.10,4.11,4.12 (example patch).

3. Identify the land cover types present at the presence and the points obtained from
the previous step. For this, the Esri 10-meter land cover dataset can be utilized.

4. If the points which are present at x distance (obtained from step 2) contain the same
land cover as the presence points, then those points are a possible pseudo absent
point. Because these points have a high possibility of being visited by a citizen
scientist and probably those points don’t have the presence of frogs.

d = 2r sin−1(

√
sin2(

ϕ2 − ϕ1
2

) + cos(ϕ1) cos(ϕ2) sin
2(
ψ2 − ψ1

2
)) (4.5)

Where,
d is distance between 2 points , r is radius of Earth
and ϕ and ψ are latitude and longitude

4.4 Dataset for GNN Approach

The task of classifying a location as presence / absence is tried as a node classification
problem in GNN. The nodes present in a graph are made up of data points which are
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Figure 4.10: Australia
Pseudo Absence point. Red
- presence point, Grey -
Pseudo Absence point

Figure 4.11: South Africa
Pseudo Absence point. Red
- presence point, Grey -
Pseudo Absence point

Figure 4.12: Costa Rica
Pseudo Absence point. Red
- presence point, Violet -
Pseudo Absence point

Figure 4.13: Pseudo Absence Points Comparison
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one of presence or absence location. In a graph, a node is represented not just by its own
features but also by the features of the neighboring nodes. So, the idea is to make use
of the information of the neighboring nodes also in order to classify a particular node as
presence / absence. In order to obtain information about the neighboring nodes, message
passing is incorporated. Message passing is a technique which each node uses to obtain
information from its neighbours and update its embedding.

Since it is a relatively new approach used in building a SDM and also considering time
constraint, only one modality of data is used (Tabular) and on only one country data
(Costarica). The graph dataset is created by making a edge list. And the feature vectors
are made up of terraclimate data. The edge list represents the connectivity of nodes in
the graph. The edge list is formed based on the distance criteria. The threshold for the
distance is chosen as 10 kilometers. So, for a specified node, 2 nodes will be a neighbour
in both horizontal and vertical direction, while 1 node will be a neighbour in diagonal
direction. Refer figure 4.14 for the representation of a edge list.

Figure 4.14: Edge List - Sample Points

4.5 Model Architecture

This section describes the model architecture used in building the SDM. This section is
subdivided into two according to the nature of the problem in hand. The first part describes
the pipeline used for the purpose of frog counting tool which is a regression task and the
second part is for classification of the location into presence or absence of frogs conducted.
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4.5.1 Model for Frog Counting Task - Regression

.

Figure 4.15: Pipeline Architecture - Frog Counting Challenge

In general multimodal learning involves architecture that is able to combine input data
from multiple modalities. The fusion module is where the combination happens where a
single representation of different modalities is obtained that will be used for regression or
classification tasks. As outlined in section 3.2, several fusion methods are present like early
fusion, late fusion , weighted fusion and attention mechanism based fusion etc.

In this work late fusion is applied. This is because each modality will have its own neural
network for feature extraction. This flexibility of having data specific neural network will
be influential in capturing the input data’s feature more effectively. Since, each modality
has its own path for processing, unique characteristics and features of each data source can
be captured with high accuracy.

The architecture used for the purpose of counting frogs in a particular location is
somewhat similar to the one used in [77]. The exact architecture used is shown in figure
4.15. The model is a fusion model where it combines information from two different
input sources. The model takes input from two modalities of data, one is images which
constitutes high resolution satellite images and the other is of numerical or tabular data
which consists of terraclimate data. These inputs make up the predictor variables or
covariates. The model is made up of two branches. Input images are fed to a ResNet50
[31] model pre-trained on imagenet dataset [17]. Output of the ResNet50 model consists of
the features extracted from the image inputs and it is flattened to get 32768 features. The
output from the sequential model consists of a flattened array of 1280 features of numeric
data. Both the obtained features are concatenated to get the combined features of both
inputs of length 34048. It is then passed through a dense layer and finally through Relu
Activation to get the predicted frog count.

The model shown in figure 4.15 takes one set of input data which consists of RGB
image and terraclimate image. Similarly, two other different models are used which takes
a different image as input. For example instead of RGB, Model-B takes land cover patches
and terraclimate data as input and Model-C constitutes inputs from NDVI and terraclimate
data.

31



Figure 4.16: Pipeline Architecture - Frog Presence/Absence Classification

4.5.2 Model for Frog Presence/Absence Classification

The architecture used for the classification of area based on the presence or absence of frogs
is similar to the one used for counting problem, but with the use of softmax activation at
the end. The output predicts either presence or absence of frogs. Similar to counting
problem, this task was also implemented for three sets of data (RGB & terraclimate, Land
cover & terraclimate, NDVI & terraclimate). The architecture is shown in figure 4.16

4.6 Experimental Setup

4.6.1 Validation Metrics

Model Architecture

As mentioned earlier, the choice of architecture chosen for both the tasks is ResNet50. The
model is pre-trained on ImageNet dataset. ResNet is chosen because of its effectiveness
against vanishing gradient problem [53]. Kaiming et.al., in [31] introduced deep resid-
ual learning framework that consists of skip connections to negate the vanishing gradient
problem. Due to its effectiveness in extracting features of images, Resnet50 is chosen.

Loss Function

For the frog counting task, the loss function used is Mean Squared Logarithmic Error
(MSLE). Since the target variable is a wide range of continuous numbers, MSLE treats
small differences between actual and predicted value the same as big differences between
actual and predicted values. MSLE is calculated using the formula given in equation 4.6

MSLE =
1

N

N∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (4.6)

Where,
N is Number of data points, y represents true value,
and yi represents predicted value.

For the purpose of frog presence/absence classification task, Binary Cross-Entropy
Loss is used. Since, it is a binary classification problem, the Binary Cross-Entropy Loss
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Task Input Data
Type

Optimizer Loss
Function

Learning
Rate

No of
Epochs

Batch
Size

Frog Counting

RGB & Numeric Adam MSLE 0.005 1500 16

LC & Numeric Adam MSLE 0.001 2000 16

NDVI & Numeric Adam MSLE 0.005 1500 16

Presence/Absence

RGB & Numeric Adam BCE 0.01 1000 16

LC & Numeric Adam BCE 0.02 1000 16

NDVI & Numeric Adam BCE 0.01 1000 16

Table 4.2: Overview of Training Parameters.

function measures the difference between predicted probabilities and actual binary labels.
The mathematical formula is given in equation 4.7

Binary Cross-Entropy Loss = − 1

N

N∑
i=1

(yi · log(pi) + (1− yi) · log(1− pi)) (4.7)

Where,
N is Number of data points, yi represents true value,
and pi represents predicted probability.

In addition to the loss function, in order to prevent overfitting, regularization is em-
ployed while training. Specifically, L2 regularization also called as ridge regression is used
where the square of the magnitude of coefficient is added as a penalty to the loss function.

Optimizer and Learning Rate

The optimizer used in training is Adam. Eventhough Adam handles learning rate opti-
mization on its own for each parameter in the model, a learning rate scheduler is used as
a warm-up phase. This warm-up phase results in a smooth transition from the initial set
learning rate to the target value.

Software and Hardware

For training the model and to conduct various experiments the GPUs and CPUs with the
following properties are used.

• GPU: NVIDIA A16 and a CPU with 72 cores and 256 GB of memory.

• NVIDIA Quadro RTX-6000 with 24GB of memory.

• NVIDIA GeForce RTX-2080ti with 11GB of memory.

The following software and the version are used:
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• CUDA version 11.3

• Python version 3.10.11

• TensorFlow version 2.11.0

4.6.2 Implementation details - Experiments Conducted

Balancing the Frog count dataset

As said earlier in section 4.2.3, balancing the dataset appropriately is one of the areas
which is rarely explored in building SDMs. This experiment is conducted to analyse the
impact of the balanced dataset by comparing the performances of the model trained on
both the original imbalanced dataset and balanced dataset. The trained model is used to
make prediction on the submission data to know the differences in their performances.

Performance comparison between proposed method and winner of frog count-
ing challenge (model-w)

RQ3: Performance of proposed multimodal based SDM. In order to answer the
research question about the performance of the developed method, this experiment is con-
ducted. The training data consists of grids of size 30sqkm split into train and test data.
As said earlier in section 4.5, the model is trained on three sets of data separately. In order
to obtain the model performance and make a fair comparison with model-w , the trained
model is tested on the submission data provided by [6]. The submission data consists of
grids of size 225 sqkm. So, the model prediction is done using two approaches.

Sliding Window approach Since the model is trained on images of size 512*512 and

Figure 4.17: Sliding Window
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the image on which the prediction done on is of size 3034*3034, sliding window method is
employed while predicting. The window size is set to 512 and the stride is set equal to the
window size to avoid overlapping. The model is then used to make prediction on the current
window, starting from top left and slides through the entire image. The predictions from
each window are accumulated and then finally the sum of all the predictions constitutes
the prediction of the current location. An illustration of the approach is shown in figure 4.17

Resizing approach This approach simply resizes the image on which predictions are
done to the same size as the training images.

Predictions are done using both the approaches and the results obtained using all three
models are discussed in the next chapter. The results obtained by model-w is used as a
baseline model and compared with the result obtained here.

Weighted Average Ensemble

Figure 4.18: Weighted Average Ensemble

In general ensemble method combines the predictions of all three models to give one
optimal prediction. When it comes to weighted average ensemble, contribution of each
model to the final prediction is weighted by the performance of the model. The formula
for weighted average prediction is given in equation 4.8

yi =
(Wa ∗ Pa) + (Wb ∗ Pb) + (Wc ∗ Pc)

Wa +Wb +Wc
(4.8)

Where,
yi is prediction of ensemble model. Wa, Wb, Wc are
weights of model a, b and c respectively. Pa, Pb, Pc are
predictions of model a, b, and c respectively.

For finding the optimal weights for each model, the scipy.optimize library is used. The
following steps explains the procedure to find the optimal weights.

• Start with assigning equal weights (0.3,0.3,0.4) to all three models such that it sums
up to 1.

• Calculate the weighted average predictions using the equation 4.8.
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• Calculate the MAE between the true value and the obtained predictions.

• The minimize function from scipy.optimize is used to find the optimal weights that
minimizes the MAE.

– This function takes arguments such as the ensemble metric (MAE), initial
weights, bounds, optimization constraints and the optimization method.

– The optimization constraints are defined such that the sum of the weights are
equal to 1.

– The bounds for the weights are set to be between 0 and 1.
– The optimization method is chosen as "Sequential Least Squares Quadratic

Programming" (SLSQP). This iteratively updates the weights to minimize the
MAE while satisfying the constraints and the bounds. It works by minimizing
the sum of squared differences between the predicted and the actual values.

• The algorithm terminates when the obtained solution (weights) converges to a min-
imum value satisfying the constraints.

In addition to the one-to-one comparison of all three models separately with model-w,
predictions obtained using ensemble of all three models are also compared.

Performance evaluation using cross validation

K-fold cross validation is performed to test how well the model generalizes on different
datasets. In k-fold cross validation, the entire dataset is divided into k sets. The model is
trained on k-1 sub-sets and evaluated on the remaining set. This is repeated for k times, for
every combinations of the subsets used for training and testing. This estimates how well
the model performs on unseen data. For this purpose, the value of k is chosen as 5. And
only LC and numeric data are used to evaluate the model using cross validation. However,
this experiment could not be finished on time as each cycle of training on 4 training sets
(k-1) and evaluating on 1 test set took more than one hour. And only around 80 epochs
got over, that too for only one set. So, a conclusive result on cross validation MAE could
not be provided. Nevertheless, whatever the results obtained as of writing this has been
mentioned in the appendix.

Feature Importance Assessment

RQ4: Importance of different covariates in contributing to the target value.
The terraclimate dataset consists of 14 parameters in total. It is vital to understand
the parameter that has high influence in the frog presence/absence in a location. This
importance value will contribute to the research of the impact of global warming and
climate change in the migration of frogs. Feature selection means the technique used to
select a subset of the relevant features from all the existing features. From the efficiency of
the model aspect, the less the features are the more efficient the model is in terms of space
and time. And also having irrelevant features can guide the model in a wrong way resulting
in worse prediction results. For this experiment an algorithm called Recursive Feature
Elimination (RFE) is employed. RFE recursively fits the model and ranks the features
based on their importance. The algorithm begins by feeding in all the 14 parameters of
terraclimate data and discarding the least important features one by one until the desired
number of features remain. In order to rank the importance of features, Random Forest
Regressor model is used. The desired number of features is selected as 10. Here the target
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value represents the frog count. The importance value of each value are discussed in the
results chapter.

Generalization

Inorder to test the proposed model’s generalization capacity, this particular experiment
is conducted. This experiment will test how well the model performs in predicting the
frog count of a location when it comes to real world scenarios and the model’s ability
to extrapolate its knowledge to unseen environments. Since there are ground truth data
available for three different countries, the model will be trained on one country and then
predictions will be made on a different country. For this purpose, the model will be trained
on data of Australia and evaluated on Costarica.

Performance Evaluation of the pre-processed terraclimate data using XGBoost

The terraclimate dataset used for training the fusion model, obtained after performing the
pre-processing step mentioned in section 4.2 is evaluated by training using XGBoost tech-
nique. The winner of the challenge used XGBoost to evaluate their terraclimate data. So,
to compare the two terraclimate data, XGBoost is chosen. XGBoost stands for "Extreme
Gradient Boosting" based on gradient boosted regression trees. This algorithm has been
used frequently on many kaggle data science competitions. Only one modality of data i.e.
tabular data is used here to predict the frog count. The results obtained are discussed in
the next chapter and compared with the results of the winner.

Presence/Absence Classification

The task of predicting the presence/absence of frogs in a location is handled as a binary
classification problem. The presence points are considered as positive class and the absence
points are considered as negative class. The positive class is made up of data points from
the original presence dataset. And the negative class is obtained by the pseudo-absence
points generated as discussed earlier in section 4.3. The model and data used for training
is similar to the frog counting task. Unlike the frog counting task, there are no separate
submission data available on which the model can be used to make predictions. So, 20% of
the available data points is separated from the training data to finally make the predictions.
The results obtained are discussed in the next chapter.

Comparison of Different pseudo-absence data generation method

Since, one of the contribution of this thesis is to provide a credible way to generate the
pseudo-absence data, in order to analyse how accurate the proposed method is, comparison
with the existing method in the literature [59] is performed. Due to time constraint, only
two methods are chosen to compare with and only the land cover type input data is used.
The two methods of generating the pseudo-absence data used for comparison purpose are:

• Random Selection: From the available data points within the study area, the
presence points are separated. From the remaining points, which constitute potential
absence points, the pseudo-absence points are randomly chosen. The number of
randomly chosen points are selected such that it balances with the presence points.

• Distance Criteria: The potential absence points are restricted by the distance
threshold. Only the points which are located within the threshold distance are chosen.
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The same distance chosen as the threshold in the proposed method are selected here
as well. And from those points the pseudo-absence points are randomly selected.

The pseudo-absence points generated by these two methods are used to train the fusion
model and the results are compared with the proposed method. The obtained results are
explained in the next chapter.
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Chapter 5

Results

The results of the experiments discussed in the previous chapter are presented here. Before
that the evaluation metric chosen to evaluate the performance of the models used in both
the tasks are explained.

5.1 Evaluation Metric

5.1.1 Mean Absolute Error (MAE) for Frog Counting Task

Since the task of predicting the count of frogs is a regression task, it is only logical to use
Mean Absolute Error (MAE) as evaluation metric. MAE measures the average absolute
difference between the actual and predicted values. In simple terms, MAE tells us how
much the predicted value is deviated from the actual value. The larger the MAE is the
worse the performance is. And also, MAE was used to evaluate the performance of model-
X. So, to get a direct comparison between the proposed model and model-X, MAE is
chosen. MAE is calculated using the formula given in equation 5.1

MAE =
|(yi − yp)|

n
(5.1)

Where,
n is number of observations , yi represents true value,
and yp represents predicted value.

For comparison with the model-w, F1 metric is also used to evaluate the model.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(5.2)

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)

Where,
TP is True positives , FP is False positives
and FN is False negatives.
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5.1.2 Accuracy and AU-ROC score for Presence/Absence Classification

For the classification task, accuracy is chosen as the evaluation metric. Accuracy is calcu-
lated as the ratio of correctly predicted instances to the total instances in the dataset. In
addition, the area under ROC curve is also used as evaluation metric. The dataset used for
this classification task is balanced to some extent, i.e. in positive class, 6580 sample points
are present, whereas in negative class 5589 sample points are present. When it comes to
accuracy, it is heavily threshold dependent, so to minimize the influence of threshold, AUC
score is also chosen as an evaluation metric.

5.2 Experiment Results

5.2.1 Balancing Dataset

The results obtained before and after balancing the dataset is shown in table 5.1. For
comparison purpose, only the model using RGB & Numeric data is shown. The MAE for
the model using imbalanced data shows a very high value of around 190 for both training
and testing. From figure 5.1, we can observe that after epoch 2, the curve started to
saturate and did not go down from there. This shows the inability of the model to learn.
After balancing the dataset following the procedure mentioned in section 4.2.3, the model
was able to achieve a relatively lower MAE and the model was able to learn well, which is
evident from figure 5.2. The MAE obtained after around 500 epochs is around 9 and 29 for
the train and test data respectively. As a consequence of balancing the dataset, the model
now has more representation of data from the minority range. This eventually resulted
in reduced MAE which is expected, as with any balancing technique the model performs
better naturally.

Input Data Dataset Train MAE Test MAE Submission MAE

RGB & Numeric Original (Imbalanced) 189.0413 189.2232 208.23

RGB & Numeric Balanced 8.44 28.82 36.25

Table 5.1: Results - MAE Comparison between Balanced and Imbalanced Dataset

5.2.2 Performance Comparison

The results obtained by using sliding window and resizing approach on the submission
data and also the train and test results is given in table 5.2

From table 5.2, we can notice that the model with input data type of LC & numeric
data performs well compared to that of other data types. The second best model is the
one which utilizes NDVI & numeric data. The reason for this visible difference in the
performance could be due to the nature of the data. As mentioned earlier in section 4.1.1,
the Esri 10-meter land cover dataset separates the study area into 10 classes of land types.
This type of data can be considered as a form of semantic segmentation. This results in
the area being distinguishable from one point to another. This makes the model learn the
features easily compared to the other types of data. When it comes to NDVI, particular
study area is defined by a value in the range (-1 to 1) which gives us the vegetation health
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Figure 5.1: Train and Test MAE curves for Im-
balanced data

Figure 5.2: Train and Test MAE curves for bal-
anced data

Input Data Train MAE Test MAE
Submission MAE

Sliding Window Resizing

RGB & Numeric 8.44 28.82 39.15 36.25

LC & Numeric 5.06 12.08 35.42 30.18

NDVI & Numeric 3.99 12.17 38.34 33.74

Table 5.2: Train and Test MAE obtained for the frog counting task on three sets
of input data and the MAE obtained using sliding window and resizing approach
on the submission data

of the area. Similar to the case of Esri dataset, the model can learn the features easily
compared to RGB dataset.

Figure 5.3 shows how the pixel values differs. The whole of green patch in the RGB data
refers to one class in the land cover data and in the case of NDVI, the same area will have
a value close to 1, indicating the high health of the vegetation. In both cases, the models
benefits from the nature of data, that results in certain features easily distinguishable.

When the prediction is made on the submission data, which consists of grids of size
225sqkms, the MAE obtained is higher than the test and train MAE. This might be due to
the difference in the size of images used in training, which consists of grids of size 30sqkms.
So, while predicting using two approaches to cover the size difference, resizing approach
yielded better result than sliding window approach. This is because, while performing
sliding window approach, the window size might not fit perfectly over the entire image
and there will be some part missing or overflow. This could lead to information loss
or redundancy, affecting the model’s performance. And also due to the fact that the
terraclimate data (numeric data) is available for the entire patch of 225sqkms and not for
sub-patch of smaller size, the terraclimate data is made up of one set of values for the
whole area. All these differences result in the slight performance distinction between the
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Figure 5.3: Sample patch that shows the distinction between RGB, LC and NDVI
data of the same location

sliding window and resizing approach.
To further improve the current result, log transformation was applied as discussed

in section 4.2.4. The results obtained after applying log transformation are shown in table
5.3. Only test and submission MAE (resizing approach) are shown.

Input Data Test MAE Submission MAE

RGB & Numeric 27.72 36.09

LC & Numeric 10.19 28.49

NDVI & Numeric 11.78 32.87

Table 5.3: Results - After Log Transformation

The test and submission MAE reduced slightly after applying log transformation com-
pared to the results obtained earlier. However, the inverse of log transformation has
to be taken to get the predictions back to the original scale.

Ensemble Method

The performance differences between the models using three different types of data is tried
to overcome by weighted average ensemble. The weights are assigned according to the
procedure described in section 4.5.2 under weighted average ensemble. The model using
LC is assigned higher weights due to its better performance compared to the other two
models. The results obtained on the submission data is given in table 5.4. The predictions
obtained using only the resizing approach is taken because of its superior performance
obtained compared to the sliding window approach.

Clearly, from the table 5.4, it can be seen that the MAE reduced considerably from
the previous results obtained from separate models. The MAE reduced by almost 9, which
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Ensemble Weights MAE

Weighted Average RGB - 0.1, LC - 0.6, NDVI - 0.3 21.94

Table 5.4: Results - Weighted Average Ensemble

shows the effectiveness of the ensemble approach. Observe figure 5.4, to visualize how the
MAE has reduced considerably using the ensemble approach.

Figure 5.4: Results - Comparison of various methods

5.2.3 Feature Importance Assessment

S.no Feature Importance

1 Tmax 0.55

2 Tmin 0.16

3 Pet 0.08

4 Ppt 0.05

5 Vap 0.05

6 Vpd 0.04

7 Soil 0.03

8 Ws 0.03

9 Q 0.01

10 Pdsi 0

Table 5.5: Terraclimate Feature Importance
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The results obtained by performing RFE, to rank the features according to their impor-
tance is shown in table 5.5. The results obtained are from the fusion model trained using
LC & Numeric data. From the table we can infer that almost 80% of the parameters have
negligible contribution towards the target variable. So, in order to test the MAE obtained
using only the top 6 important features, the model was trained using LC & Numeric data.
The trained model was used to get prediction on the submission data. Apart from the
MAE, the inference time is also measured while predicting on the submission data to see
if the model performs any faster than the original model with all 10 features. The results
are shown in table 5.6. Refer table 4.1, for the different feature names.

Figure 5.5: Feature Importance - Histogram

Input Data No of features Train MAE Test MAE Submission MAE Inference Time(sec)

LC & Numeric 10 5.06 12.08 30.18 0.064

LC & Numeric 6 6.15 14.23 30.58 0.058

Table 5.6: Results - MAE for top 6 features

From table 5.6, we can see that there is no significant difference in the MAE between the
models using all the features and only the top 6 features. However, it can be seen that there
is a slight improvement in the inference time while using only top 6 features. Eventhough
the difference is very minute, for larger datasets and more complex model, assessment of
the feature importance can lead to a better efficient model in terms of inference time and
space.
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5.2.4 Generalization

The fusion model was trained only using the Australian dataset, and the trained model
was used to predict the frog count in Costarica. The results are shown in 5.7. The table
shows that similar to the results obtained earlier in section 5.2.2, LC & Numeric input
data type produced better performance. And the MAE achieved was comparable with
that of the model trained on data of all three countries. This proves that the model is
able to generalize well and is able to make good predictions on unseen data. The ensemble
method was applied using almost similar weights on all three models. Because, unlike the
results shown in section 5.2.2, all three models produced similar MAEs. So, the models are
assigned almost equal weights by the optimization procedure described earlier in section
4.5.2. This method yielded even better MAE of 19.85, which is almost 40% reduction
compared to the separate models.

Input Data
Submission MAE

Sliding Window Resizing

RGB & Numeric 36.78 32.57

LC & Numeric 33.35 32.12

NDVI & Numeric 34.98 32.73

Table 5.7: Results on Costarica using the model trained on Australian data

Ensemble Weights MAE

Weighted Average RGB - 0.25 , LC - 0.40 , NDVI - 0.35 . 19.85

Table 5.8: Results of Ensemble method on Costarica using the model trained on
Australian data

5.2.5 Performance Evaluation of the pre-processed terraclimate data us-
ing XGBoost

XGBoost is trained and evaluated on both the test data (training data split into train and
test) and the publicly available submission data. However, only the MAE obtained on
the training data by the challenge winner is available. Refer table 5.9, for the comparison
between proposed dataset and the winner dataset. From the table, it is observed that the
proposed dataset slightly outperforms the dataset used by the winner. XGBoost model is
used only on terraclimate data for two reasons, the first one is to compare the terraclimate
data used by the winner and the one used in this work. The second reason is that XGBoost
is more suited for tabular and structured data. However, for images to be used, the features
must be extracted first by a suitable CNN model and then use XGBoost for prediction.
This is one of the reason why XGBoost is only used on tabular data.
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Model Evaluation Dataset MAE (proposed dataset) MAE (Winner dataset)

XGBoost Test data 10.81 10.95

XGBoost Submission data 27.16 Not available

Table 5.9: Results of XGBoost model trained on terraclimate dataset

5.2.6 Presence / Absence Classification

The classification accuracy and the AU-ROC score achieved in predicting the frog occur-
rence is shown in table 5.10. LC & Numeric data achieved highest accuracy in classifying
the location as presence / absence. The ROC curve obtained for LC and NDVI data type
are shown in figure 5.6 and 5.7 respectively. Both the data type achieved similar AUC
score. Unlike the frog counting task, the trained model is evaluated on patches of the same
size as the training data. So, there is no need for sliding window and resizing approach on
the evaluation data.

Figure 5.6: AU-ROC Curve for LC & Numeric data

Method Train Accuracy (%) Test Accuracy
(%)

Submission
Accuracy (%)

AUC
Score

RGB & Numeric 79.07 76.18 75.78 0.82

LC & Numeric 91.06 90.9 89.19 0.96

NDVI & Numeric 90.9 90.8 88.4 0.96

Table 5.10: Classification Accuracy for Frog Presence / Absence detection
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Figure 5.7: AU-ROC Curve for NDVI & Numeric data

5.2.7 Comparison of different pseudo-absence data generation method

The AUC score and the accuracy achieved on the two existing methods of generating
pseudo-absence data is compared with the proposed method. Only the LC & Numeric data
type are chosen for comparison. The results suggest that the proposed method performs
better than the other two method. While a huge difference can be seen between the
proposed method and the random selection method, pseudo-absence data generated by
the distance criteria method closely follows the proposed method. The reason for this
can be attributed to the selection criteria chosen for generating the pseudo-absence data.
While the proposed method selects the absence points based on both geographical extent
and land cover type, the distance criteria takes into account only the geographical extent.
So, there will be some correlation between the two methods. While there is no ground
truth data available to evaluate the model, the submission dataset is made up of data
generated by all three methods, to ensure fairness in the prediction.

Method Train Accuracy (%) Test Accuracy
(%)

Submission
Accuracy (%)

AUC
Score

Proposed Method 91.06 90.09 84.87 0.90

Random Selection 72.29 70.18 65.93 0.68

Distance Criteria 90.47 90.16 80.18 0.88

Table 5.11: Pseudo-absence data performance comparison
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Chapter 6

Discussion

In this chapter the results obtained in the previous chapter are discussed in detail and
compared with the appropriate model.

6.1 Results - Analyses and Discussion

6.1.1 Dataset Balancing

Balancing of dataset resulted in overcoming the issues that usually affect the model that
occur due to imbalanced data. These issues were explained in section 4.2.3.

Bias in model performance: Though the model performed slightly lower on the
submission data, the balancing method proposed in this work seems to work well, consid-
ering the initial very high MAE obtained from imbalanced dataset . Still there is room for
improvement in balancing the dataset, considering the relatively lower MAE achieved on
lower frog counts.

Generalization: The data available for Australia was very large compared to that of
other two countries. This is also an imbalanced data that was discussed in section 4.2.3.
However, weighted loss function was used to mitigate this issue. Due to this the model was
able to generalize well, which is evident from the results obtained from the generalization
experiment.

6.1.2 Performance Comparison

The results obtained using the proposed model is compared with model-w. The MAE
obtained by model-w on test data is shown in figure 6.1. For comparison purpose the best
performing model (ANN) is taken into consideration along with XGBoost.

Figure 6.1: Results - Model-W

Before comparing the performance of the proposed model with model-w, a scatter plot
6.2 is plotted to visualize the predictions made by all the models trained so far. This is
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done to better understand where the predictions differ from the actual values (submission
data). From the scatter plot, it can be observed that the predicted values were very close
to the actual values when the frog count were below 100. And beyond that count the
predicted value diverges from the actual value. The model performed better when it comes
to lower value of frog count. So, all the trained model was used to predict the lower values
of frog count only, which forms about 80% of the submission data.

Figure 6.2: Scatter Plot on submission data

The results obtained for lower values of frog count is shown in table 6.3. The results
shows a significant reduction in MAE. The corresponding scatter plot is shown in figure
6.5. It shows that the actual and predicted values are much closer to each other. However,
the reason for this difference in performance can be attributed again to the dataset. Since
there is considerably very low data points that have higher values of frog count, there is
a limit for model learning. Eventhough the dataset balancing approach explained earlier
resulted in a significant improvement in the performance compared to the original dataset,
still it can be observed that there is a big gap when it comes to the distribution of the
data.

In order to compare the results obtained with model-w, two approaches are undertaken.
The results of model-w shown in figure 6.1, was evaluated on the data used for training and
not on the submission data. So, for the comparison to be credible the results obtained by
the proposed model on the test data is taken into consideration. Table 6.2 shows the best
results obtained by both the models. From the table it can be observed that there is only
a slight difference in MAE between both the models. As said earlier, the MAE obtained
from the proposed model can be improved further by a better balancing technique for the
dataset.

The second approach to compare the two models is to use F1-metric. Eventhough,
the task is regression and using f1 score might not be the correct way to evaluate the
model, it is used because the leader-board score of this contest uses f1-metric to rank the
participants. Figure 6.3 shows the f1 scores of the top ranked participants. The winner
achieved a score of 0.42. To evaluate the f1 score of the proposed model, the obtained
predictions are separated into two classes. If the predicted value matches exactly with the
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actual value, it is of one class and the remaining are of the second class. This way the
number of times the model predicted correctly is known. And the leader-board score is
evaluated on the submission data. The f1 score obtained using the proposed model using
ensemble technique is shown in table 6.1. The best model obtained a score of 0.36, which
is slightly lower than the leader.

Model F1-Score

Ensemble Model 0.36

Table 6.1: F1-Score of Ensemble model

Figure 6.3: Frog Counting Challenge - Leader Board Scores

Model MAE

Model-W (ANN) 9.35

Proposed Fusion Model (LC & Numeric) 10.19

Table 6.2: Comparison of Model-W and Proposed model on Test data

6.1.3 Feature Importance Assessment

The results obtained from the feature importance assessment experiment suggest that
temperature plays a key role in contributing to the prediction of target variable, followed
by evapo-transpiration and precipitation. The results of model trained only with the top
6 features suggest that it simplifies the model by reducing its dimentionality, making it
more efficient. By comparing the MAE of both the models, it is clear that only 6 features
is more than sufficient to make predictions without sacrificing predictive accuracy. When
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Figure 6.4: Results - MAE obtained for Lower value of Frog count

Input Data
Submission MAE

Sliding Window Resizing

RGB & Numeric 12.43 9.33

LC & Numeric 10.25 6.90

NDVI & Numeric 10.97 7.43

Table 6.3: MAE obtained on Submission data for lower values of frog count

Dataset
Evaluation

Metric

Value

Fusion Model

(Proposed)

Model-w

(Winner)

Submission Data F1 Score 0.36 0.42

Test Data MAE 10.19 9.35

Table 6.4: Two Comparison Approaches - Overview

looking at the scalability of the model, it is important to notice that assessing the feature
importance can be beneficial for larger datasets and complex models.

The following key aspects can be analysed in building a SDM for frogs by the results
of feature importance assessment.

Variable Selection: Assessing the important features leads the selection of the rele-
vant features to include in the SDM. Temperature and precipitation are identified as the
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Figure 6.5: Scatter Plot on submission data for lower value of frog count

driving factors in the case of SDMs for frogs.
Biological Insights: The important features obtained provides ecologists and conser-

vationists with valuable insights in understanding the species habitat requirements. In the
case of frogs, as mentioned earlier in section 4.1.1 under terraclimate, temperature [28] and
precipitation [43] plays an important role in distribution of frogs. These findings correlated
with the results obtained through the experiment conducted here.

Climate Change: When it comes to climate change, feature importance can help
assess the vulnerability of species to changing environmental conditions. In the case of
frogs, by identifying that temperature as the factor that influences the distribution the
most, planning and conservation of frogs can be adapted according to the future climate
scenarios.

6.1.4 Generalization

The results obtained by the model trained on Australian dataset, in predicting the frog
count in Costarica suggest that the model generalizes well. The model was able to achieve
similar MAE comparable to that of the model trained on all three countries. Australia and
Costarica are different when it comes to geographical and climate context. To show how
different the two countries are different, observe figure 6.6, 6.7 and 6.8. Since, temperature
and precipitation are the significant factors that influenced frog count, they are chosen to
evaluate how different the two countries are.

From figure 6.6, it can be observed that the maximum and minimum temperature of
Australia can go upto 36°celcius and 5°celcius respectively. While, for Costarica it can only
go upto 32°celcius and 18°celcius.

From figure 6.7, the accumulated precipitation for Australia and Costarica is 95mm
and 550mm respectively. Both these climatic features shows how varied is the climate
between the two countries.

Figure 6.8, shows how the land cover differs between the two countries.
Inspite of such variations between the two countries, the proposed model was able to
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Figure 6.6: Tmax and Tmin of Australia and Costarica

Figure 6.7: Mean Precipitation of Australia and Costarica

Figure 6.8: Sample Land Cover patches of Australia and Costarica

generalize well and resulted in low MAE.

6.1.5 Performance Evaluation using XGBoost

In addition to the comparison of the XGBoost performance with that of the winner, this
particular experiment also evaluates the difference between using single modality and mul-
tiple modalities of data. using two modalities clearly performs better than the model using
single modality. Though the performance is only slightly better, this already shows the
potential of using multiple modalities.
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Model Evaluation Dataset MAE

XGBoost Submission data 27.16

Fusion (Ensemble Method) Submission data 21.94

XGBoost Test Data 10.81

Fusion Test Data (LC & Numeric) 10.19

Table 6.5: Comparison of XGBoost and Fusion model

6.1.6 Presence / Absence Classification

The results from the presence / absence classification task suggest that LC & Numeric
data play a crucial role in identifying the locations with frog presence or absence. The
important reason for performing this experiment however is to analyse how effective the
pseudo-absence data generated is, in predicting the frog occurrence. Eventhough there is
no direct model for comparison, the model was able to achieve good accuracy in dataset
that was kept solely for the purpose of evaluation. To put things into perspective, observe
the figure 6.9, the presence and absence point are located so close to each other. And
figure 6.10, 6.11 shows that the mean temperature and accumulated precipitation of the
two locations have not much difference. This shows that the model is able to capture
the intricate details between the presence and absence points and is able to classify the
location as presence / Absence. From the table 3.1, we can observe the classification
accuracy and AUC score of the existing state-of-the-art methods. Though these models
cannot be directly compared with the proposed model, the achieved accuracy and AUC
score are on par with those models. These comparison will be more credible if the dataset
used in those literature are available or the ground truth data for frog absence points are
present.

Figure 6.9: Sample Presence and Absence Points of South Africa
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Figure 6.10: Tmax and Tmin of presence and absence point - South Africa

Figure 6.11: Accumulated Precipitation of presence and absence point - South
Africa

6.1.7 Comparison of different pseudo-absence generation methods

From the results obtained in the experiment conducted, clearly more the variables are
taken into account for generating the pseudo-absence points, better the predictions are.
But, by just including more criteria is not enough as some variables may result in generating
incorrect pseudo-absence points. For example, from the feature importance assessment, it
can be observed that temperature plays an important role in the presence of frogs. So,
including it may help in predicting the absence point better. But taking less important
features like soil moisture, wind speed and Pdsi etc. can corrupt the data.

6.2 Addressing the Research Questions

RQ1: What are the major limitations of the existing methods for building an
SDM in predicting the presence of a species in a particular location?

From the literature review conducted earlier, there were several limitations with the
existing SDMs, which resulted in looking beyond them for building SDMs. With the
conventional statistical methods, one of the disadvantage is that, MaxEnt approach used
presence-only datasets. This could result in the predictions being partial towards only
one class. The logistic regression model posed the limitation of being based on correlative
data, which could lead to failure in obtaining the actual relationship between the predictor
variable and target variable. And also due to the linear nature of the function, complex
relationship existing between the covariates and species cannot be represented by them. In
the case of CNN based deep learning models, valuable insights about the climatic data are
being missed out due to the input data being single modality. Eventhough, CNN-SDMs
produced good results, it is only logical to make use of all the available modalities of data
to get better result.
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RQ2: How multimodal learning can be made use of in building an SDM?
This research question can also be answered by the conducted literature survey. SDMs

are characterized by heterogenous nature of input data. It is important to analyse the spa-
tial pattern of the location. In order to do so, high resolution satellite images are used as
inputs. But, climatic variables like temperature and humidity take up the form of tabular
data. So, SDMs benefit from having both types of data. This is why multimodal learning
can be utilized in building SDMs. Collecting data from both the sources is an important
part in building a multimodal based SDM. Combining both types of data can be achieved
by fusion architecture. This combines the features extracted from different modalities and
represent it together. This approach allows for the representation of information from both
modalities in a unified manner.

RQ3:How does the performance of the proposed SDM based on multimodal
learning compare to the existing state-of-the-art methods?

The first task is to count the frogs present at a location. This is a regression task, where
most of the existing state of the art methods focus on classification. So, the proposed
method is compared with the winner (model-w) of the EY open science data challenge.
On the test data Model-w obtained a MAE of 9.35. Compared to it, the proposed model
obtained a MAE of 10.19 . When it comes to the submission data, the winner of the
challenge achieved a F1 score of 0.42, while the proposed model resulted in a score of 0.36,
which is placed second in the leader board.

Comparing with model using unimodal data, XGBoost model achieved a MAE of 27.16
on submission data, while the proposed fusion model resulted in a lower MAE of 21.94.

The second task is to identify the presence / absence of frogs at a location. The best
accuracy obtained was 89.19% and an AUC score of 0.96 which is on par with that of the
existing state-of-the-art methods.

RQ4: How do different covariates contribute to the prediction of the target
variable?

From the feature importance assessment, temperature and precipitation are identified
as the most important covariate that contributes more to the prediction of target variable.
These two covariates make up almost 85% of the contribution among terraclimate variables
(tabular data). When it comes to high resolution satellite images, land cover and NDVI
patches produced better MAE compared to RGB images. As explained earlier this is due
to the semantic segmentation nature of the land cover and NDVI images. However, not
all the types of data are used for predicting the frog count, due to time constraints. But,
it should produce almost similar performance as compared to the ones used in this work.

RQ5: How is the performance of the model using pseudo-absence points
generated by the proposed method compared to the existing ones?

From the experiment conducted to analyse the performance difference between the
proposed method of generating pseudo-absence points and a couple of existing methods,
the proposed method performed better than the other methods. Random selection method
performed worse, because no factor was taken into account while selecting the pseudo-
absence point other than the fact that it is not a presence point. On the other hand, the
points selected by the distance criteria method performed close to the proposed method.
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This is because, there might be some common points between the two methods, as the
threshold distance chosen are the same. The model evaluated by both the metrics accuracy
(84.87%) and AUC score (0.90) suggest that the proposed method is better at generating
pseudo-absence points.

6.3 Limitations

Model Complexity

Adding multiple modalities of data increases the complexity of the fusion model. For
example, table 6.6 shows the time it took for training the model for one epoch using two
and three modalities of data. While it took under 10 minutes for one epoch for models
trained using only two modalities of data, adding an additional data type increased the
time almost 10 times. So, ways of efficiently using different modalities of data should be
looked into and a mere concatenation will not result in an efficient model.

Data Collection

Though we have input data of multiple modalities available for training, while using the
model on unseen locations , obtaining data of multiple modalities of such remote location
can be a difficult task. And the reliability of such data is always a question to ponder
about.

Input Data Train time - 1 epoch (minutes)

RGB & Numeric 7

LC & Numeric 7

NDVI & Numeric 8.5

RGB, LC and Numeric 78

Table 6.6: Training Time for models using different modalities of data

Prediction ability of higher count of frogs

From the obtained results, one can observe that the model does not perform well on
predicting higher frog count. This can be connected to the dataset. Eventhough, balancing
of dataset resulted in good performance, due to the lack of data points present for higher
counts the learning capacity of the model is limited. Features could not be learned well
for higher counts of frog compared to lower counts.
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Chapter 7

Conclusion and Future Work

In this chapter, the conclusion of the research is provided and also discusses the future
research works.

7.1 Conclusion

The objective of the research is to build a SDM for anura using input data from multiple
modalities and compare the results with existing method that uses a single modality of
data. Though there are already several methods available in building a SDM, it comes
with several disadvantages as pointed out in the related works section. And with the
growing interest and the effectiveness of multimodal learning, this work could well be a
starting point for the less explored area of using multimodal learning to build a SDM. The
designed SDM is used for the purpose of both counting frogs and also classifying the area
as presence/absence.

By building a fusion architecture that combines images and tabular data, the model is
able to achieve performance comparable to that of the winner of the challenge. Though
the achieved MAE is slightly less than the model-w, with better representation of the data
at higher value of frog count the model can perform much better than the existing methods.

The comparison between XGBoost and fusion model suggest that using multi-modal
data performs better than using uni-modal data.

The aim of the presence/absence classification is to evaluate the reliability of the gener-
ated pseudo-absence data and observe how effective the model is in learning the distinction
between the presence and absence points. The model was able to classify the location as
presence/ absence with almost 89% accuracy. Though there is no separate data available to
evaluate the model, it still was able to capture and make distinction between the presence
and absent location on the evaluation data (separated from training data).

Moreover, comparing the proposed method of generating the pseudo-absence data with
couple of existing methods, the proposed method performed better and achieved an accu-
racy of 84.87% and an AUC score of 0.90.

7.2 Future Work

The results obtained are promising and has great scope in using multimodal learning for
SDMs. This section describes some of the future works that can be performed to further
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increase the prediction accuracy.
Stages of Fusion: The current proposed architecture performs fusion after extract-

ing features from different modalities separately. The features extracted are then passed
through ResNet50 and FCNN for images and tabular data respectively. This constitutes
the primary learning of the model. This is called late fusion.

In the case of early fusion [64], the pre-processed data from each different modalities
are fused before passing it to a learning algorithm. The image feature vectors and envi-
ronmental feature vectors are combined at the early stage. This type of fusion is suitable
especially when there data from multiple modalities are associated strongly. Which is the
case for environmental variables. This is a method worthy of exploring in the future. Apart
from this, the kind of fusion can also be explored. This work proposes concatenation of
extracted features. But, feature addition is also a technique that can be explored.

Pseudo-Absence data Generation: The method used for generating pseudo-absence
data can be studied further to include more details. For example, the current method
takes into account only the geographical extent and land cover patches for selecting the
pseudo-absence points. Parameters like temperature and precipitation can also be taken
into account since they proved to be the most important factor in influencing the frog
habitat. Moreover, algorithms like K-means clustering can be used to group points sim-
ilar to presence points so that the dissimilar points can be chosen as pseudo-absence points.

Including Historical data for better representation: While the provided frog
presence dataset includes only the year 2017-2019, covariates of only those period is taken
into account for building the SDM. However, including the climatic data of previous years
can help in generating additional data. This will result in a better representation of frog
counts of higher values. This method can be explored in the future to see if it could result
in better predictions.

SDM based on GNN: Similar to the GNN approach explained in section 3.3 in
weather forecasting can be applied in building a SDM. Already the dataset has been pre-
pared using the method explained in section 4.4. But, experiments could not be conducted
within the time available. This can be a future work which can yield a better result.

Deployment on Edge AI devices: Edge AI is a technology that has gained atten-
tion in recent years. It involves deploying deep learning models on low powered micro-
controllers. Deploying a multimodal based SDM on a low powered device is a challenging
task and is exciting to explore further. Quantization of neural networks [29] and neu-
ral network pruning [63] are some of the techniques that are used to make the neural
networks efficient in terms of memory, power consumption and speed.

59



Bibliography

[1] Effects of sample size and network depth on a deep learning approach
to species distribution modeling | Elsevier Enhanced Reader. URL:
https://reader.elsevier.com/reader/sd/pii/S157495412030087X?token=
30A364BBC67F4E0E3D8E5D3AB311424DA159798AAC0C2A91072E9D8ED50F0188F2A49370558C951297A682CE2E6E5841&
originRegion=eu-west-1&originCreation=20230519215754, doi:10.1016/j.
ecoinf.2020.101137.

[2] An evaluation of the effectiveness of environmental surrogates and modelling tech-
niques in predicting the distribution of biological diversity / Simon Ferrier and Gra-
ham Watson. URL: https://collection.sl.nsw.gov.au/record/74VvPKwrwjm3.

[3] Home. URL: https://www.frogid.net.au/.

[4] iNaturalist Research-grade Observations. URL: https://www.gbif.org/dataset/
50c9509d-22c7-4a22-a47d-8c48425ef4a7, doi:10.15468/ab3s5x.

[5] Microsoft Planetary Computer. URL: https://planetarycomputer.microsoft.
com/.

[6] EY Wavespace Madrid & CT AI. Open Science Data Challenge. URL:
https://challenge.ey.com/challenges/level-3-frog-counting-tool/
data-description.

[7] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal Ma-
chine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41(2):423–443, February 2019. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.
2018.2798607.

[8] Jaya Basnet, Abeer Alsadoon, P. W. C. Prasad, Sarmad Al Aloussi, and Omar Hisham
Alsadoon. A Novel Solution of Using Deep Learning for White Blood Cells Clas-
sification: Enhanced Loss Function with Regularization and Weighted Loss (EL-
FRWL). Neural Processing Letters, 52(2):1517–1553, October 2020. doi:10.1007/
s11063-020-10321-9.

[9] Monica Bianchini and Franco Scarselli. On the Complexity of Neural Network
Classifiers: A Comparison Between Shallow and Deep Architectures. IEEE Trans-
actions on Neural Networks and Learning Systems, 25(8):1553–1565, August 2014.
Conference Name: IEEE Transactions on Neural Networks and Learning Systems.
doi:10.1109/TNNLS.2013.2293637.

[10] Christophe Botella, Alexis Joly, Pierre Bonnet, Pascal Monestiez, and François Munoz.
A Deep Learning Approach to Species Distribution Modelling. In Alexis Joly, Stefanos

60

https://reader.elsevier.com/reader/sd/pii/S157495412030087X?token=30A364BBC67F4E0E3D8E5D3AB311424DA159798AAC0C2A91072E9D8ED50F0188F2A49370558C951297A682CE2E6E5841&originRegion=eu-west-1&originCreation=20230519215754
https://reader.elsevier.com/reader/sd/pii/S157495412030087X?token=30A364BBC67F4E0E3D8E5D3AB311424DA159798AAC0C2A91072E9D8ED50F0188F2A49370558C951297A682CE2E6E5841&originRegion=eu-west-1&originCreation=20230519215754
https://reader.elsevier.com/reader/sd/pii/S157495412030087X?token=30A364BBC67F4E0E3D8E5D3AB311424DA159798AAC0C2A91072E9D8ED50F0188F2A49370558C951297A682CE2E6E5841&originRegion=eu-west-1&originCreation=20230519215754
https://doi.org/10.1016/j.ecoinf.2020.101137
https://doi.org/10.1016/j.ecoinf.2020.101137
https://collection.sl.nsw.gov.au/record/74VvPKwrwjm3
https://www.frogid.net.au/
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://doi.org/10.15468/ab3s5x
https://planetarycomputer.microsoft.com/
https://planetarycomputer.microsoft.com/
https://challenge.ey.com/challenges/level-3-frog-counting-tool/data-description
https://challenge.ey.com/challenges/level-3-frog-counting-tool/data-description
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1007/s11063-020-10321-9
https://doi.org/10.1007/s11063-020-10321-9
https://doi.org/10.1109/TNNLS.2013.2293637


Vrochidis, Kostas Karatzas, Ari Karppinen, and Pierre Bonnet, editors, Multimedia
Tools and Applications for Environmental & Biodiversity Informatics, pages 169–199.
Springer International Publishing, Cham, 2018. URL: http://link.springer.com/
10.1007/978-3-319-76445-0_10, doi:10.1007/978-3-319-76445-0_10.

[11] Andrew P. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30(7):1145–
1159, July 1997. URL: https://www.sciencedirect.com/science/article/pii/
S0031320396001422, doi:10.1016/S0031-3203(96)00142-2.

[12] John R. Busby. A biogeoclimatic analysis of Nothofagus cunninghamii
(Hook.) Oerst. in southeastern Australia. Australian Journal of Ecology,
11(1):1–7, 1986. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1442-
9993.1986.tb00912.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1442-9993.1986.tb00912.x, doi:10.1111/j.1442-9993.1986.tb00912.x.

[13] Guy Carpenter, Andrew N Gillison, and J Winter. DOMAIN: a flexible modelling
procedure for mapping potential distributions of plants and animals.

[14] D. Richard Cutler, Thomas C. Edwards, Karen H. Beard, Adele Cutler, Kyle T. Hess,
Jacob Gibson, and Joshua J. Lawler. Random Forests for Classification in Ecology.
Ecology, 88(11):2783–2792, 2007. Publisher: Ecological Society of America. URL:
https://www.jstor.org/stable/27651436.

[15] Benjamin Deneu, Maximilien Servajean, Pierre Bonnet, Christophe Botella, François
Munoz, and Alexis Joly. Convolutional neural networks improve species distribution
modelling by capturing the spatial structure of the environment. PLOS Computa-
tional Biology, 17(4):e1008856, April 2021. Publisher: Public Library of Science.
URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.
pcbi.1008856, doi:10.1371/journal.pcbi.1008856.

[16] Benjamin Deneu, Maximilien Servajean, Pierre Bonnet, François Munoz, and Alexis
Joly. Participation of LIRMM / Inria to the GeoLifeCLEF 2020 challenge.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, June 2009. ISSN: 1063-6919. doi:
10.1109/CVPR.2009.5206848.

[18] Enric Domingo. GeoLifeCLEF 2022 Winning Submission. URL: https:
//www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/
discussion/327055.

[19] John M. Drake, Christophe Randin, and Antoine Guisan. Modelling ecological niches
with support vector machines. Journal of Applied Ecology, 43(3):424–432, 2006.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2664.2006.01141.x.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2006.
01141.x, doi:10.1111/j.1365-2664.2006.01141.x.

[20] S. Dupont and J. Luettin. Audio-visual speech modeling for continuous speech recog-
nition. IEEE Transactions on Multimedia, 2(3):141–151, September 2000. Conference
Name: IEEE Transactions on Multimedia. doi:10.1109/6046.865479.

61

http://link.springer.com/10.1007/978-3-319-76445-0_10
http://link.springer.com/10.1007/978-3-319-76445-0_10
https://doi.org/10.1007/978-3-319-76445-0_10
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://doi.org/10.1016/S0031-3203(96)00142-2
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9993.1986.tb00912.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9993.1986.tb00912.x
https://doi.org/10.1111/j.1442-9993.1986.tb00912.x
https://www.jstor.org/stable/27651436
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008856
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008856
https://doi.org/10.1371/journal.pcbi.1008856
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055
https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055
https://www.kaggle.com/competitions/geolifeclef-2022-lifeclef-2022-fgvc9/discussion/327055
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2006.01141.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2006.01141.x
https://doi.org/10.1111/j.1365-2664.2006.01141.x
https://doi.org/10.1109/6046.865479


[21] J. Elith, J. R. Leathwick, and T. Hastie. A working guide to boosted re-
gression trees. Journal of Animal Ecology, 77(4):802–813, 2008. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2656.2008.01390.
x, doi:10.1111/j.1365-2656.2008.01390.x.

[22] Jane Elith and Janet Franklin. Species Distribution Modeling. January 2017. doi:
10.1016/B978-0-12-809633-8.02390-6.

[23] K. Ruwani M. Fernando and Chris P. Tsokos. Dynamically Weighted Balanced Loss:
Class Imbalanced Learning and Confidence Calibration of Deep Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems, 33(7):2940–2951, July
2022. Conference Name: IEEE Transactions on Neural Networks and Learning Sys-
tems. doi:10.1109/TNNLS.2020.3047335.

[24] Scott D. Foster and Piers K. Dunstan. The Analysis of Biodiver-
sity Using Rank Abundance Distributions. Biometrics, 66(1):186–195, 2010.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1541-0420.2009.01263.x.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.
01263.x, doi:10.1111/j.1541-0420.2009.01263.x.

[25] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization Paths for Gener-
alized Linear Models via Coordinate Descent. Journal of statistical software, 33(1):1–
22, 2010. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/.

[26] Bo-cai Gao. NDWI—A normalized difference water index for remote sensing of veg-
etation liquid water from space. Remote Sensing of Environment, 58(3):257–266,
December 1996. URL: https://www.sciencedirect.com/science/article/pii/
S0034425796000673, doi:10.1016/S0034-4257(96)00067-3.

[27] Abhishek Garg and Rajshekhar Hippargi. Significance of frogs and toads in environ-
mental conservation. February 2007.

[28] Alyssa A. Gerick, Robin G. Munshaw, Wendy J. Palen, Stacey A. Combes, and
Sacha M. O’Regan. Thermal physiology and species distribution models reveal cli-
mate vulnerability of temperate amphibians. Journal of Biogeography, 41(4):713–
723, 2014. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbi.12261.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.12261, doi:10.
1111/jbi.12261.

[29] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt
Keutzer. A Survey of Quantization Methods for Efficient Neural Network Inference,
June 2021. arXiv:2103.13630 [cs]. URL: http://arxiv.org/abs/2103.13630.

[30] Xu Han, Ming Jia, Yachao Chang, Yaopeng Li, and Shaohua Wu. Di-
rected message passing neural network (D-MPNN) with graph edge attention
(GEA) for property prediction of biofuel-relevant species. Energy and AI,
10:100201, November 2022. URL: https://linkinghub.elsevier.com/retrieve/
pii/S2666546822000477, doi:10.1016/j.egyai.2022.100201.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition, December 2015. arXiv:1512.03385 [cs]. URL: http://arxiv.
org/abs/1512.03385, doi:10.48550/arXiv.1512.03385.

62

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2656.2008.01390.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1016/B978-0-12-809633-8.02390-6
https://doi.org/10.1016/B978-0-12-809633-8.02390-6
https://doi.org/10.1109/TNNLS.2020.3047335
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01263.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01263.x
https://doi.org/10.1111/j.1541-0420.2009.01263.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
https://www.sciencedirect.com/science/article/pii/S0034425796000673
https://www.sciencedirect.com/science/article/pii/S0034425796000673
https://doi.org/10.1016/S0034-4257(96)00067-3
https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.12261
https://doi.org/10.1111/jbi.12261
https://doi.org/10.1111/jbi.12261
http://arxiv.org/abs/2103.13630
https://linkinghub.elsevier.com/retrieve/pii/S2666546822000477
https://linkinghub.elsevier.com/retrieve/pii/S2666546822000477
https://doi.org/10.1016/j.egyai.2022.100201
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/arXiv.1512.03385


[32] Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jiaheng Wang, Yongming Huang,
and Yaoxue Zhang. An Overview on the Application of Graph Neural Networks
in Wireless Networks. IEEE Open Journal of the Communications Society, 2:2547–
2565, 2021. Conference Name: IEEE Open Journal of the Communications Society.
doi:10.1109/OJCOMS.2021.3128637.

[33] Jeff Heaton. An Empirical Analysis of Feature Engineering for Predictive Modeling.
In SoutheastCon 2016, pages 1–6, March 2016. arXiv:1701.07852 [cs]. URL: http:
//arxiv.org/abs/1701.07852, doi:10.1109/SECON.2016.7506650.

[34] Sha Huang, Lina Tang, Joseph P. Hupy, Yang Wang, and Guofan Shao. A commentary
review on the use of normalized difference vegetation index (NDVI) in the era of
popular remote sensing. Journal of Forestry Research, 32(1):1–6, February 2021. doi:
10.1007/s11676-020-01155-1.

[35] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating
Image Descriptions.

[36] Ryan Keisler. Forecasting Global Weather with Graph Neural Networks, February
2022. arXiv:2202.07575 [physics]. URL: http://arxiv.org/abs/2202.07575, doi:
10.48550/arXiv.2202.07575.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neu-
ral Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL: https://proceedings.neurips.cc/paper_files/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[38] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire
Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua
Hu, Alexander Merose, Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott,
Alexander Pritzel, Shakir Mohamed, and Peter Battaglia. GraphCast: Learning skill-
ful medium-range global weather forecasting, August 2023. arXiv:2212.12794 [physics].
URL: http://arxiv.org/abs/2212.12794.

[39] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation, 1(4):541–551, December 1989. Conference Name: Neural Computation.
doi:10.1162/neco.1989.1.4.541.

[40] Sovan Lek, Alain Belaud, Philippe Baran, Ioannis Dimopoulos, and Marc Dela-
coste. Role of some environmental variables in trout abundance models using neu-
ral networks. Aquatic Living Resources, 9(1):23–29, January 1996. URL: http:
//www.alr-journal.org/10.1051/alr:1996004, doi:10.1051/alr:1996004.

[41] Sovan Lek, Marc Delacoste, Philippe Baran, Ioannis Dimopoulos, Jacques Lauga,
and Stéphane Aulagnier. Application of neural networks to modelling nonlin-
ear relationships in ecology. Ecological Modelling, 90(1):39–52, September 1996.
URL: https://linkinghub.elsevier.com/retrieve/pii/0304380095001425, doi:
10.1016/0304-3800(95)00142-5.

[42] Sovan Lek and J. F. Guégan. Artificial neural networks as a tool in
ecological modelling, an introduction. Ecological Modelling, 120(2):65–73,

63

https://doi.org/10.1109/OJCOMS.2021.3128637
http://arxiv.org/abs/1701.07852
http://arxiv.org/abs/1701.07852
https://doi.org/10.1109/SECON.2016.7506650
https://doi.org/10.1007/s11676-020-01155-1
https://doi.org/10.1007/s11676-020-01155-1
http://arxiv.org/abs/2202.07575
https://doi.org/10.48550/arXiv.2202.07575
https://doi.org/10.48550/arXiv.2202.07575
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://arxiv.org/abs/2212.12794
https://doi.org/10.1162/neco.1989.1.4.541
http://www.alr-journal.org/10.1051/alr:1996004
http://www.alr-journal.org/10.1051/alr:1996004
https://doi.org/10.1051/alr:1996004
https://linkinghub.elsevier.com/retrieve/pii/0304380095001425
https://doi.org/10.1016/0304-3800(95)00142-5
https://doi.org/10.1016/0304-3800(95)00142-5


August 1999. URL: https://www.sciencedirect.com/science/article/pii/
S0304380099000927, doi:10.1016/S0304-3800(99)00092-7.

[43] Gavia F. Lertzman-Lepofsky, Amanda M. Kissel, Barry Sinervo, and Wendy J.
Palen. Water loss and temperature interact to compound amphibian vul-
nerability to climate change. Global Change Biology, 26(9):4868–4879,
2020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.15231. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15231, doi:10.1111/
gcb.15231.

[44] Yiming Li, Jeremy M. Cohen, and Jason R. Rohr. Review and synthesis of the
effects of climate change on amphibians. Integrative Zoology, 8(2):145–161, 2013.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1749-4877.12001. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/1749-4877.12001, doi:10.
1111/1749-4877.12001.

[45] Canran Liu, Graeme Newell, and Matt White. The effect of sample size
on the accuracy of species distribution models: considering both presences
and pseudo-absences or background sites. Ecography, 42(3):535–548, 2019.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecog.03188. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ecog.03188, doi:10.1111/ecog.
03188.

[46] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9992–10002, Montreal, QC, Canada, October 2021. IEEE. URL: https://
ieeexplore.ieee.org/document/9710580/, doi:10.1109/ICCV48922.2021.00986.

[47] Stéphanie Manel, Jean-Marie Dias, and Steve J. Ormerod. Comparing discrimi-
nant analysis, neural networks and logistic regression for predicting species distri-
butions: a case study with a Himalayan river bird. Ecological Modelling, 120(2):337–
347, August 1999. URL: https://www.sciencedirect.com/science/article/pii/
S0304380099001131, doi:10.1016/S0304-3800(99)00113-1.

[48] Jennifer Miller. Species Distribution Modeling. Geography Compass, 4(6):490–
509, 2010. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-
8198.2010.00351.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1749-8198.2010.00351.x, doi:10.1111/j.1749-8198.2010.00351.x.

[49] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y
Ng. Multimodal Deep Learning.

[50] Mangesh Nichat. Landmark based shortest path detection by using A* Algorithm and
Haversine Formula. April 2013.

[51] Otso Ovaskainen, Gleb Tikhonov, Anna Norberg, F. Guillaume Blanchet,
Leo Duan, David Dunson, Tomas Roslin, and Nerea Abrego. How to
make more out of community data? A conceptual framework and its
implementation as models and software. Ecology Letters, 20(5):561–576,
2017. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.12757. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12757, doi:10.1111/
ele.12757.

64

https://www.sciencedirect.com/science/article/pii/S0304380099000927
https://www.sciencedirect.com/science/article/pii/S0304380099000927
https://doi.org/10.1016/S0304-3800(99)00092-7
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15231
https://doi.org/10.1111/gcb.15231
https://doi.org/10.1111/gcb.15231
https://onlinelibrary.wiley.com/doi/abs/10.1111/1749-4877.12001
https://doi.org/10.1111/1749-4877.12001
https://doi.org/10.1111/1749-4877.12001
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.03188
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.03188
https://doi.org/10.1111/ecog.03188
https://doi.org/10.1111/ecog.03188
https://ieeexplore.ieee.org/document/9710580/
https://ieeexplore.ieee.org/document/9710580/
https://doi.org/10.1109/ICCV48922.2021.00986
https://www.sciencedirect.com/science/article/pii/S0304380099001131
https://www.sciencedirect.com/science/article/pii/S0304380099001131
https://doi.org/10.1016/S0304-3800(99)00113-1
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-8198.2010.00351.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-8198.2010.00351.x
https://doi.org/10.1111/j.1749-8198.2010.00351.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12757
https://doi.org/10.1111/ele.12757
https://doi.org/10.1111/ele.12757


[52] Trishala K. Parmar, Deepak Rawtani, and Y. K. Agrawal. Bioindica-
tors: the natural indicator of environmental pollution. Frontiers in Life
Science, 9(2):110–118, April 2016. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/21553769.2016.1162753. doi:10.1080/21553769.2016.
1162753.

[53] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
Recurrent Neural Networks, February 2013. arXiv:1211.5063 [cs]. URL: http://
arxiv.org/abs/1211.5063.

[54] Steven J. Phillips, Robert P. Anderson, and Robert E. Schapire. Maximum en-
tropy modeling of species geographic distributions. Ecological Modelling, 190(3):231–
259, January 2006. URL: https://www.sciencedirect.com/science/article/pii/
S030438000500267X, doi:10.1016/j.ecolmodel.2005.03.026.

[55] Steven J. Phillips, Miroslav Dudík, and Robert E. Schapire. A maximum entropy
approach to species distribution modeling. In Twenty-first international confer-
ence on Machine learning - ICML ’04, page 83, Banff, Alberta, Canada, 2004.
ACM Press. URL: http://portal.acm.org/citation.cfm?doid=1015330.1015412,
doi:10.1145/1015330.1015412.

[56] P Pradhyumna, G P Shreya, and Mohana. Graph Neural Network (GNN) in Image
and Video Understanding Using Deep Learning for Computer Vision Applications. In
2021 Second International Conference on Electronics and Sustainable Communication
Systems (ICESC), pages 1183–1189, August 2021. doi:10.1109/ICESC51422.2021.
9532631.

[57] Tara Rawat and Vineeta Khemchandani. Feature Engineering (FE) Tools and Tech-
niques for Better Classification Performance. May 2019. doi:10.21172/ijiet.82.
024.

[58] Azusa Sawada, Eiji Kaneko, and Kazutoshi Sagi. Trade-offs in Top-k Classification
Accuracies on Losses for Deep Learning, July 2020. arXiv:2007.15359 [cs, stat]. URL:
http://arxiv.org/abs/2007.15359.

[59] Senait D. Senay, Susan P. Worner, and Takayoshi Ikeda. Novel Three-Step Pseudo-
Absence Selection Technique for Improved Species Distribution Modelling. PLoS ONE,
8(8):e71218, August 2013. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3742778/, doi:10.1371/journal.pone.0071218.

[60] Sachith Seneviratne. Contrastive Representation Learning for Natural World Imagery:
Habitat prediction for 30,000 species. September 2021.

[61] Sagar Sharma. https://towardsdatascience.com/activation-functions-neural-
networks-1cbd9f8d91d6.

[62] Hailu Shiferaw, Woldeamlak Bewket, and Sandra Eckert. Performances of ma-
chine learning algorithms for mapping fractional cover of an invasive plant
species in a dryland ecosystem. Ecology and Evolution, 9(5):2562–2574,
2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.4919. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.4919, doi:10.1002/
ece3.4919.

65

https://doi.org/10.1080/21553769.2016.1162753
https://doi.org/10.1080/21553769.2016.1162753
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
https://www.sciencedirect.com/science/article/pii/S030438000500267X
https://www.sciencedirect.com/science/article/pii/S030438000500267X
https://doi.org/10.1016/j.ecolmodel.2005.03.026
http://portal.acm.org/citation.cfm?doid=1015330.1015412
https://doi.org/10.1145/1015330.1015412
https://doi.org/10.1109/ICESC51422.2021.9532631
https://doi.org/10.1109/ICESC51422.2021.9532631
https://doi.org/10.21172/ijiet.82.024
https://doi.org/10.21172/ijiet.82.024
http://arxiv.org/abs/2007.15359
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742778/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742778/
https://doi.org/10.1371/journal.pone.0071218
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.4919
https://doi.org/10.1002/ece3.4919
https://doi.org/10.1002/ece3.4919


[63] Sietsma and Dow. Neural net pruning-why and how. In IEEE 1988 International
Conference on Neural Networks, pages 325–333 vol.1, July 1988. doi:10.1109/ICNN.
1988.23864.

[64] William C. Sleeman, Rishabh Kapoor, and Preetam Ghosh. Multimodal Classifica-
tion: Current Landscape, Taxonomy and Future Directions. ACM Computing Sur-
veys, 55(7):150:1–150:31, December 2022. URL: https://dl.acm.org/doi/10.1145/
3543848, doi:10.1145/3543848.

[65] Imelda Somodi, Nikolett Lepesi, and Zoltán Botta-Dukát. Prevalence dependence in
model goodness measures with special emphasis on true skill statistics. Ecology and
Evolution, 7(3):863–872, January 2017. URL: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5288248/, doi:10.1002/ece3.2654.

[66] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, Las
Vegas, NV, USA, June 2016. IEEE. URL: http://ieeexplore.ieee.org/document/
7780677/, doi:10.1109/CVPR.2016.308.

[67] Tina Tirelli and Daniela Pessani. Use of decision tree and artificial neural net-
work approaches to model presence/absence of Telestes muticellus in piedmont
(North-Western Italy). River Research and Applications, 25(8):1001–1012, 2009.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rra.1199. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/rra.1199, doi:10.1002/rra.1199.

[68] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3156–3164, Boston, MA, USA,
June 2015. IEEE. URL: http://ieeexplore.ieee.org/document/7298935/, doi:
10.1109/CVPR.2015.7298935.

[69] Simon N. Wood. Fast stable restricted maximum likelihood and marginal like-
lihood estimation of semiparametric generalized linear models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 73(1):3–36, 2011.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2010.00749.x.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.
00749.x, doi:10.1111/j.1467-9868.2010.00749.x.

[70] Richard L. Wyman. Soil Acidity and Moisture and the Distribution of Amphibians
in Five Forests of Southcentral New York. Copeia, 1988(2):394–399, 1988. Publisher:
[American Society of Ichthyologists and Herpetologists (ASIH), Allen Press]. URL:
https://www.jstor.org/stable/1445879, doi:10.2307/1445879.

[71] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A Large Video Description
Dataset for Bridging Video and Language. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5288–5296, Las Vegas, NV, USA,
June 2016. IEEE. URL: http://ieeexplore.ieee.org/document/7780940/, doi:
10.1109/CVPR.2016.571.

[72] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang,
and Xiaodong He. AttnGAN: Fine-Grained Text to Image Generation with At-
tentional Generative Adversarial Networks. In 2018 IEEE/CVF Conference on

66

https://doi.org/10.1109/ICNN.1988.23864
https://doi.org/10.1109/ICNN.1988.23864
https://dl.acm.org/doi/10.1145/3543848
https://dl.acm.org/doi/10.1145/3543848
https://doi.org/10.1145/3543848
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288248/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288248/
https://doi.org/10.1002/ece3.2654
http://ieeexplore.ieee.org/document/7780677/
http://ieeexplore.ieee.org/document/7780677/
https://doi.org/10.1109/CVPR.2016.308
https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.1199
https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.1199
https://doi.org/10.1002/rra.1199
http://ieeexplore.ieee.org/document/7298935/
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.00749.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://www.jstor.org/stable/1445879
https://doi.org/10.2307/1445879
http://ieeexplore.ieee.org/document/7780940/
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571


Computer Vision and Pattern Recognition, pages 1316–1324, Salt Lake City, UT,
USA, June 2018. IEEE. URL: https://ieeexplore.ieee.org/document/8578241/,
doi:10.1109/CVPR.2018.00143.

[73] Wenchao Xu, Yuxin Pang, Yanqin Yang, and Yanbo Liu. Human Activity Recognition
Based On Convolutional Neural Network. In 2018 24th International Conference on
Pattern Recognition (ICPR), pages 165–170, August 2018. ISSN: 1051-4651. doi:
10.1109/ICPR.2018.8545435.

[74] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2Image: Condi-
tional Image Generation from Visual Attributes, October 2016. arXiv:1512.00570 [cs].
URL: http://arxiv.org/abs/1512.00570.

[75] Chao Zhang, Zichao Yang, Xiaodong He, and Li Deng. Multimodal Intelligence:
Representation Learning, Information Fusion, and Applications. IEEE Journal of
Selected Topics in Signal Processing, 14(3):478–493, March 2020. Conference Name:
IEEE Journal of Selected Topics in Signal Processing. doi:10.1109/JSTSP.2020.
2987728.

[76] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph Neural Networks
and Their Current Applications in Bioinformatics. Frontiers in Genetics, 12, 2021.
URL: https://www.frontiersin.org/articles/10.3389/fgene.2021.690049.

[77] Xiaojuan Zhang, Yongxiu Zhou, Peihao Peng, and Guoyan Wang. A Novel Multi-
modal Species Distribution Model Fusing Remote Sensing Images and Environmental
Features. Sustainability, 14(21):14034, January 2022. Number: 21 Publisher: Multi-
disciplinary Digital Publishing Institute. URL: https://www.mdpi.com/2071-1050/
14/21/14034, doi:10.3390/su142114034.

[78] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of
methods and applications. AI Open, 1:57–81, January 2020. URL: https://www.
sciencedirect.com/science/article/pii/S2666651021000012, doi:10.1016/j.
aiopen.2021.01.001.

[79] Stacy L Özesmi and Uygar Özesmi. An artificial neural network approach to spa-
tial habitat modelling with interspecific interaction. Ecological Modelling, 116(1):15–
31, March 1999. URL: https://www.sciencedirect.com/science/article/pii/
S0304380098001495, doi:10.1016/S0304-3800(98)00149-5.

67

https://ieeexplore.ieee.org/document/8578241/
https://doi.org/10.1109/CVPR.2018.00143
https://doi.org/10.1109/ICPR.2018.8545435
https://doi.org/10.1109/ICPR.2018.8545435
http://arxiv.org/abs/1512.00570
https://doi.org/10.1109/JSTSP.2020.2987728
https://doi.org/10.1109/JSTSP.2020.2987728
https://www.frontiersin.org/articles/10.3389/fgene.2021.690049
https://www.mdpi.com/2071-1050/14/21/14034
https://www.mdpi.com/2071-1050/14/21/14034
https://doi.org/10.3390/su142114034
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S0304380098001495
https://www.sciencedirect.com/science/article/pii/S0304380098001495
https://doi.org/10.1016/S0304-3800(98)00149-5


Appendix A

Appendix

A.1 Cross Validation Results

Cross validation for the task of frog counting is performed using k-fold technique. The
dataset is divided into 5 parts. In one complete cycle, 4 parts are used as training data
and the remaining is used as test data. This one set is run for the required number of
epochs. Similarly, the dataset is shuffled, where the previously assigned test set will be
included as one of the training set, while one of the training set will be kept as the test
set. So, in the end, five different MAE values each corresponding to five different sets will
be obtained. The mean of those five values will constitute the validation MAE. However,
training and evaluation on only one set could be performed within the time available. The
results are shown in A.1

Set Epochs MAE

1 77 * 43.26

2 - -

3 - -

4 - -

5 - -

Table A.1: Cross Validation Results. * Not Completed

A.2 Balancing Approach - K means Clustering

In the dataset balancing step mentioned in section 4.2.3, k-means clustering is used to
group similar data points together. An illustration of the feature space is given in figure
A.1
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Figure A.1: K-means Clustering - Feature Space

A.3 Terraclimate Variables - Correlation matrix

To know how the parameters in the terraclimate variables interact with each other, a
correlation matrix is plotted, refere figure A.2. The correlation matrix gives a value between
-1 to 1. -1 means the two variables are inversely related and a value of 1 means the two
variables have linear relationship.
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Figure A.2: Heatmap - Correlation matrix of Terraclimate variables
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