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Abstract

Flexure-based mechanisms have advantages over traditional mechanisms, as they do not suffer from backlash
and friction, and have high precision and reliability. However, these mechanisms do have some drawbacks.
The largest drawback is the strain energy storage in the flexible elements, which affects the input-output
relationship, as a part of the inputted energy is used for the deformation of the elastic elements. To negate
this effect, a system can be statically balanced. To do this, a compensating form of energy is introduced.
This is often done by adding a pre-load in the mechanism. When in movement, energy can flow from the
pre-load area to the deforming flexures. A system where the strain energy is compensated, in such a way
that the potential energy is constant, is said to be statically balanced.
The addition of pre-load, leads to static balance, but also has effect on other system properties. The pre-load
could affect the support stiffness of the mechanisms. Hysteresis could be added or increased, by the addition
of pre-load. In this research, the side effects of pre-load are examined, with a focus on support stiffness,
hysteresis and stress. Simulations and measurements were done, to examine the effects of the pre-load.
Both modal measurements and hysteresis tests were done. The measurements were done with both mass
and springs. The springs were both clamped and hanging. This was done so that the difference between
attachment methods could be examined.
From the simulations it follows that the actuation stiffness, support stiffness and stress decrease when pre-
load is applied. The actuation stiffness decreases linearly with increasing pre-load and can become negative.
The support stiffness decreases with approximately 15% when one time the theoretical balancing load is
applied. The stress decrease was found to be about 25 MPa at 1.5 to 2 two times the theoretical balancing
load, for a leaf spring thickness of 0.4 mm. The stress decreases allows the leaf spring thickness to increase.
An increase of leaf spring thickness of 0.1 mm leads to a stress increase of approximately 25 MPa and a
support stiffness increase of about 25% when in equilibrium position. In deflected position, the increase is
about 80%.
From the modal measurements, a decrease of 92.6% in eigen frequency in movement direction was found for
the mass. For the spring, the largest decrease was found to 62.9%. No larger decrease could be acquired,
as an increase in pre-load would lead to an unstable systems. The support eigen frequency drop by about
12% for the mass, and about 15% for the spring. This trend matches the simulations, therefore it can be
concluded that the simulations are correct.
From the hysteresis measurements, it follows that the system with the mass becomes balanced at 11.75 kg.
The system with the clamped spring becomes balanced at around 198 N, the system with the hanging spring
becomes balanced at about 193 N. No large differences in hysteresis due to pre-load application method has
been seen.
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1 Introduction

Flexure-based mechanisms differ from traditional mechanisms, as they do not rely on movable joints for move-
ment, but are able to move by elastic deformation [1]. This gives flexure-based mechanisms certain advantages
over traditional mechanisms. These can be put into two categories: cost reduction and increased performance.
The increase in performance comes from increased precision, increased reliability, and reduced wear. [1]. The
precision of flexure-based mechanisms can be higher than traditional mechanisms, as flexure-based mechanisms
do not suffer from backlash and are frictionless.
However, flexure-based mechanisms also have some drawbacks. One of those drawbacks is the strain energy
storage in flexible elements [2]. This affects the input-output relationship of the mechanism [3]. Part of the
inputted energy is not transferred to the output but is used for the deformation of the flexure-based elements.
To negate this unwanted effect of energy storage, another form of compensating energy can be introduced. This
can be done by applying a form of pre-load. Energy will flow from the pre-loaded area to the deforming area
when the mechanism is displaced [4]. A system where the strain energy is compensated, in such a way that the
potential energy is constant, is said to be statically balanced [5]. Gallego and Herder [3] derived five criteria for
static balancing. These are constant potential energy, continuous equilibrium, neutral stability or zero stiffness,
zero virtual work, and zero natural frequency.
A constant potential energy eliminates the actuation force and stiffness in the movement direction, resulting
in zero natural frequency. Due to these advantages, statically balanced flexure-based mechanisms are used in
multiple engineering fields, like medical devices such as grippers, and in precision machines [6].

There are multiple methods of implementing a pre-load. Often used methods are by adding mass or adding
springs [5]. Adding mass is simple and accurate, but increases the mass of the system, which could be undesired.
Springs also introduces a form of compensating energy. Multiple methods and different kinds of springs are
possible for applying pre-load. A tension spring has been used by Merriam and Howell [7] and by Henein [8].
The first achieved an 87% reduction and the latter a 99.9 % reduction in actuation stiffness.
Rotational springs are used by Merriam et al. [9]. A large reduction was found in needed torque per displace-
ment.
The geometry of a system can be designed in such a way that the geometry provides the compensating energy.
This way it can directly be integrated into the system, as is done by Henein [8]. Liang et al. [10] used buckled
leaf springs as a source of compensating energy. This design also results in a stiffness reduction in the driving
reduction. Van Eijk and Dijksman use a plate spring with a negative stiffness [11].

Next to (partially) achieving static balance, pre-loading has an effect on other system properties and behavior.
The support stiffness can decrease when a pre-load is applied [12]. This could be undesired and prove to be a
problem in some situations. Adding external members to a system can increase hysteresis. This is the case for
both the mass and the springs. Kim and Herder [13] found that their system suffers from a noticeable hysteresis
loop and that it had a finite offset from zero force.

The stresses in the mechanism are affected by the pre-load. The maximum stress reduces when a leaf spring is
put under pre-load [12]. When the pre-load is added, the stress is distributed more evenly over the leaf spring,
such that the maximum stresses are reduced. This is only the case until a certain amount of pre-load. Due
to this stress decrease, it becomes possible to increase the thickness of the leaf spring. A thicker leaf spring
experiences higher stresses, but also results in a potentially higher support stiffness.

Most research conducted on flexure-based mechanisms is done on implementing pre-load and determining the
quality of static balance. What is currently lacking, are the mentions of the side effects of static balancing, such
as the effect on the support stiffness, the effect on the stress, and the hysteresis of the system. The decrease in
support stiffness is mostly mentioned by analytical results and not derived or validated with experiments. The
relation between stress decrease and potential support stiffness increase is also not mentioned. Hysteresis has
been mentioned, but no relation has been made between the addition of pre-load and the hysteresis.

List of contributions In this research, the focus will be on the side effects of pre-loading. We investigate the
effect of pre-load on the hysteresis, actuation stiffness, and support stiffness. This will be done with analytical
models, FMB software, and measurements. The measurements which are done on the hysteresis of the system
and the eigen frequencies. The difference between pre-load application method will also be examined.
An analytical model, the simulations, and measurements are discussed in Section 2. The results of the measure-
ments can be seen in Section 3. In Section 4, the results, the effect of pre-load, the effect of pre-load application
method, and the relation between stress decrease and stiffness increase are discussed. The conclusion can be
seen in Section 5.
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2 Method

2.1 Pre-load to achieve static balance

Pre-load has to be applied to static balance the system. Multiple methods of applying pre-load are possible.
The amount of pre-load to achieve balance has to be determined. With the balancing load determined, an
analytical model can be made and examined. From there on the methods of applying pre-load in a setup will
be discussed. The effects of the pre-load will be analyzed with the help of simulations. With the analytical
model and the simulations, a design setup will be made. This setup will be analyzed, to examine the effects of
pre-load. To do this, a measurement plan will be made.

2.1.1 Buckling load and form

The theoretical balancing load is based on the buckling load. This can be determined with Equation 1. This
formula represents the amount of force that is needed to achieve buckling in a leaf spring. The value K
corresponds with different buckling modes [14]. In this case of value 1 is the relevant value for K.

Pcr =
1

K2

π2EI

L2
=

π2EI

L2
(1)

Wherein E is the E-modulus of the material, L is the length of the leaf spring and I is as follows:

I =
1

12
wt3

Where w is the width of the leaf spring and t is the thickness of the leaf spring. With the theoretical amount
of pre-load to balance a system known, an analytical model can be made to analyze the effect of the pre-load.

2.1.2 System properties

In Figure 1, a drawing of a parallel leaf spring mechanism and a leaf spring can be seen. The variable names
for certain system properties can be seen. The properties of the leaf spring can be seen in Table 1.

Figure 1: Model of the parallel leaf spring mechanism, and a leaf spring

Table 1: Leaf spring properties

Property Variable Value
Length Lf 94 mm
Width w 54 mm
Thickness t 0.4 mm
Distance Dis 78 mm

The basic system properties can be found using analytical formulas. In Equation 2 and Equation 3, the formula
for the actuation stiffness and the support stiffness can be seen.

kx =
Ewt3

L3
(2)
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ky =
EA

L
=

Ewt

L
(3)

The stress of the mechanism can also be calculated. The bending stress can be found with Equation 4. The
compressive stress can be found with Equation 5.

σb = −My

I
(4)

σ =
F

A
(5)

2.2 Rigid arm equivalent and analytical model and of vertical force

A parallel leaf spring mechanism experiences shortening when displaced from the equilibrium position. The
movement of the mechanism represents a circle movement. This behavior can be seen in Figure 2. This
movement can also be modeled as a rigid arm. The rigid arm is fixed at one end and rotates in the same fashion
as the parallel leaf spring mechanism does.

Figure 2: Deflected parallel leaf spring mechanism

Basic model of rigid arm equivalent
The basic model consists of a rigid arm, attached at the bottom, making it such that the arm can rotate freely,
and a horizontal spring. This spring simulates the stiffness in the driving direction. Multiple lengths are present
in the analytical model. The length of the flexure is named Lf . The length of the rigid arm is denoted as Lr,
and is modeled with a length of 5

6Lf . This is due to the way the flexure deforms when displaced, as can be seen
in Figure 2 and Figure 3.
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Figure 3: Model of the rigid arm.

From this, a free body diagram (FBD) can be made. This free body diagram can be seen Figure 4. Two forces
and a spring can be seen. Fx is used to displace the rigid arm. Fy is used to simulate the pre-load of the system
and the mass of the system. The spring has a spring stiffness equal to the actuation stiffness. This actuation
stiffness can be found with Equation 2. In the equation, the actuation stiffness is found for one leaf spring, so
the found value has to be multiplied by a factor of two. This found stiffness will be denoted as kx. The amount
of force this horizontal spring gives is dependent on the displacement of the rigid arm, this displacement is
denoted with dx. The spring force is denoted as Ff .

Figure 4: FBD of the rigid arm

The length of the rigid arm can be divided into its components in the x- and y- direction. The x-direction is
known, which is equal to the displacement dx. The y-direction can be found using Pythagoras’ Theorem and
can be seen in Equation 6.
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h =
√
L2
r − dx2 (6)

With the free body diagram and the lengths known, the force and moment balances can be found. These can
be seen below.

ΣFx = Fx + Fn,x − Ff = Fx + Fn,x − kxdx (7)

ΣFy = −Fy + Fn,y (8)

ΣM = −Fxh+ Ffh− Fydx (9)

With the force and moment balances found, the unknowns in these equations can be found.

Fn,y = Fy (10)

Fx = Ff − Fy
dx

h
= kxdx− Fy

dx√
L2
r − dx2

(11)

Fn,x = Ff − Fx (12)

With the forces and system properties known, the effect of the pre-load on actuation stiffness can be found.
This can be seen in Figure 5. Here the actuation stiffness is evaluated for an increasing pre-load.

Figure 5: Actuation stiffness over pre-load

It can be seen that after a certain value of pre-load, the stiffness becomes negative. From that point, the system
becomes statically balanced. The relation between the stiffness decrease and pre-load is linear.

2.3 Applying pre-load

In the analytical model seen above, the pre-load was applied as a vertical force. Such a theoretical force cannot
be inputted in a real-life setup. So other methods of adding pre-load need to be used, the forms used are adding
a mass and adding a spring.

2.3.1 Mass

Mass can be used to balance a system. Mass brings the disadvantage that the total mass of the system increases.
The force of the mass is always in the direction of the gravity. This could be an advantage and a disadvantage. If
the parallel leaf spring mechanism is situated correctly, the force acts perpendicular to the movement direction,
which is in this case desired.
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2.3.2 Springs

Another method of adding pre-load is by adding a spring. In this research tension springs will be used. A
tension spring has a starting length, this starting length is said to be a zero length and is denoted as L0. At the
zero length, the spring has a force that is present, this force is called the zero force and is denoted by F0. The
spring will not move if it is excited with a force smaller than the zero force of the spring. When an applied force
is larger than the zero force, the spring will move. The behavior of the spring from that point on is linear, where
a displacement from the applied force is determined by the spring constant. The spring constant is denoted by
ks. It is not possible to add a standard tension spring with a pre-load value of zero.
The spring force acts in line with the spring. This is not always perpendicular to the movement direction, as the
spring moves over the same circle as the parallel leaf spring mechanism does, due to the shortening of the leaf
spring mechanism. When the mechanism is deflected, this results in a spring force component perpendicular to
the movement direction, and a component opposite of movement direction.
A spring has its own dynamic effects. When a spring is added to the mechanism, these dynamic effects also
have an influence on the behavior of the mechanism. It is possible that a spring adds hysteresis to a system, or
increases the present hysteresis in the system. Friction and play in the attachment can increase the hysteresis
of the system.

2.3.3 Increasing the pre-load

To get a good overview of the effects of pre-load, the pre-load can be added in steps and increased to the final
value. The pre-load is increased by either adding mass or increasing the length of the spring. The mass and
spring are used independently. The needed length of the spring is calculated by dividing the found theoretical
balancing load by the spring stiffness.

2.3.4 Effects of pre-load on system properties

Stiffness and stress
As mentioned before, the applied pre-load has desired and undesired effects. The desired effect is that the
driving stiffness and the corresponding eigen frequency decrease to (close to) zero. The support stiffness could
drop when pre-load is applied, this could be undesired.
A positive effect of pre-load is the maximum stress decrease in the leaf springs. In itself, this is a desired effect,
but another advantage of the maximum stress decrease is to possibility of increasing the thickness of the leaf
springs, which in turn increases the support stiffness. As can be seen in Equation 3, larger thickness results in
a higher value for ky. When the thickness is increased, the stiffness in the movement direction is also increased.
This can be seen in Equation 2. The leaf spring thickness has an influence on the driving stiffness with a power
three. The increase could be undesired. A larger thickness can result in a higher bending stress, due to the
fact that the internal moment increases. The compressive stress decreases as the area decreases with increasing
stiffness, as can be seen in Equation 5. It is also known that the maximum stress decreases when pre-load is
applied, this is due to a more even stress distribution over the leaf spring. This results in there being an optimal
value of pre-load and leaf spring thickness for driving stiffness, support stiffness, and stress.

Hysteresis
Adding extra components to a system can increase the hysteresis in a system. The hysteresis could come from
the attachment of the spring or the attachment of the mass. The pre-load could also increase the already present
hysteresis in the system. A higher hysteresis results in decreased repeatability, which is undesired.

2.4 Analytical model of mass and spring

The analytical model seen before can also be used to analyze the cases where pre-load is added with the mass
or with the springs.

2.4.1 Mass

The analytical model of the mass is the same as the analytical, which can be seen in Figure 4. The pre-load in
kilograms can be converted to Newtons and can be added to the system. From this, the effect of pre-load on
stiffness can be analyzed. This can be seen in Figure 6.
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Figure 6: Stiffness over pre-load, for the mass case

It can be seen that the stiffness decreases with an increasing pre-load. At a pre-load of about 13.5 kg, the
stiffness becomes negative.

2.4.2 Spring

The analytical model used before is not representative of the system with the spring. The spring adds pre-load
to the system needs to be added. This spring is attached at the top of the rigid arm. dL is the distance from
the attachment bottom attachment point to bottom of the rigid arm, as can be seen in Figure 3. The length of
the spring is denoted by Ls. The length of the spring can be derived with Equation 13. With the spring length
and stiffness known, the spring force can be found. This can be done with Equation 14.

Ls =
√
(dx2 + (h+ dL)2) (13)

Fs = ks(Ls − L0) + F0 (14)

A free body diagram is made and can be seen in Figure 7. Fy is still present, this is done to simulate the mass
of the mechanism.

Figure 7: FBD of the analytical model with spring
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The spring force can be divided into components in x- and y-direction. This is done with Pythagoras’ theorem.
A factor r is derived, which gives the ratio between the lengths in the x- and y-direction. This factor r can be
seen in Equation 15. Using this factor, the spring force in the y-direction can be found with Equation 16. The
force in x-direction can then be found with Equation 17.

r =
dx

(h+ dL)
(15)

Fs,y =

√
F 2
s

r2 + 1
(16)

Fs,x = rFs,y (17)

From the free body diagram, the force and moment balances can be derived. These can be seen below.

ΣFx = Fx − Ff − Fs,x − Fn,x (18)

ΣFy = −Fy − Fs,y + Fn,y (19)

ΣM = Ffh− Fxh− Fydx− Fs,ydx+ Fs,xh (20)

With the spring force known and the force and moment balances known, the following can be derived.

Fn,y = Fy + Fs,y (21)

Fx = Ff − Fy
dx

h
− Fs,y

dx

h
+ Fs,x (22)

Fn,x = −Fx + Ff + Fs,x (23)

From this, the effect of pre-load on the stiffness can be analyzed. This can be seen in Figure 8. This is evaluated
for an increasing value of spring force, with a constant value for dL. This attachment point is placed at the
arbitrary point of -100 mm from the bottom of the rigid arm. The spring properties are derived from a spring
which will later on be used for the experiments.

Figure 8: Stiffness over pre-load, for the spring case

It can be seen that a higher value of pre-load is needed to reach the point of zero stiffness. This is due to the
stiffening effect of the spring, which will be explained below. Also, the zero force of the spring is taken into
account, as no lower amount of pre-load can be used.
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2.5 Effect of springs

It can be seen in Figure 5, Figure 6 and Figure 8 that the force needed to balance is higher for the case where a
spring is added. This is due to the spring force having a component that is opposite of the movement direction.
The force needed to reach a certain displacement increases, when compared with the case of the added mass of
force. This effect can be seen as a stiffening effect by the spring, which is examined below.

2.5.1 Spring stiffening effect from analytical model

The stiffening effect of the spring can be seen in the force balances. When compared with the force and the
mass, extra components can be seen in ΣFx. These extra terms can be seen in Equation 24.

−Fs,y
dx

h
+ Fs,x = −Fs,y

dx√
L2
r − dx2

+ Fs,x (24)

It can be seen that a factor is present in front of the y-component of the spring force. This causes the x-
component to have a larger influence. The x-component of the spring force is dependent on multiple factors,
which are:

• Spring constant ks

• F0

• Spring length Ls

– Attachment point bottom dL

– L0

• Deflection dx

The force is dependent on the spring stiffness and the location of the attachment points of the spring. With
that, the following can be derived:

Fs,x = rFs,y =
dx

h+ dL
Fs,y (25)

dx

h+ dL

√
F 2
s

( dx
h+dL )

2 + 1
=

dx

h+ dL

√
1

( dx
h+dL )

2 + 1
Fs (26)

dx

h+ dL

√
(ks(Ls − L0) + F0)2

( dx
h+dL )

2 + 1
(27)

dx

h+ dL

√√√√ (ks(
√

dx2 + (h+ dL)2 − L0) + F0)2

( dx
h+dL )

2 + 1
(28)

dx√
L2
r − dx2 + dL

√√√√√ (ks(
√

dx2 + (
√
L2
r − dx2 + dL)2 − L0) + F0)2

( dx√
L2

r−dx2+dL
)2 + 1

(29)

Some variables in Equation 29 are dependent on the chosen spring and cannot be changed. What can be changed
is the amount of displacement dx and the attachment point of the spring dL. A decrease in dx results in a lower
value of the spring force in x-direction. As does an increase in dL, however, an increasing dL also results in a
higher spring force.

2.5.2 Spring stiffening effect quantified

The stiffening effect can be quantified and is in proportion to the theoretical buckling load, the length of the
spring, and the length of the leaf springs. With Equation 30, this effect can be calculated.

Fs ≊
12Ls

12Ls − π2Lf
Fbalance[12] (30)

Wherein Fbalance has previously been seen as Pcr in Equation 1.
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In Figure 9, the normalized force can be seen over the normalized length of the spring can be seen. The force
is normalized to the theoretical balancing force, for a leaf spring of 0.4 mm thick. The length is normalized
to the length of the leaf spring. The largest effect can be seen in the range of the length of the leaf spring.
The stiffening effect is very large when the spring has the same length as the flexure. From a spring length of
1.5 times the flexure length, the effect is manageable. The behavior becomes asymptotic when the length is
increased and the needed force gets really close to the theoretical balancing force.
It can be seen that the needed balancing force is lower than the theoretical buckling force when the spring has
a negative length. A negative length corresponds with a compression spring.
It can be seen that at a length of 0 and a pre-load of 0, the system should be balanced, this can not exist in
a mechanism. A length of 0.1 would result in a small negative pre-load, this could also not be the case. It
therefore is assumed that this formula cannot give a good indication of needed pre-load at and around a length
of 0.

Figure 9: Stiffening effect as follows from Eq. 30

2.5.3 Effect of spring length

The spring force has a component acting in the opposite direction of the movement direction. When the
mechanism is deflected, the spring is put under an angle. A larger angle results in a larger component of the
spring force in the opposite direction of the movement direction. The angle decreases for a larger spring when
compared with a shorter spring. A larger spring thus reduces the stiffening effect. This can also be seen in
Equation 29, an increase in dL results in a lower value of the spring force opposite of movement direction.
This influence of spring length can also be seen in the stiffness of the mechanism, as can be seen in Figure 10. A
lower pre-load results in a lower stiffness, as expected. It can also be seen that for the same amount of pre-load,
a longer spring results in a lower stiffness, as is expected.
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Figure 10: Stiffness in the movement direction, with changing spring length

2.6 Simulations

Multiple simulations were done in the modeling software SPACAR [15]. The simulations were done with a model
consisting of two vertical leaf springs and a connection part. These leaf spring consists of multiple flexible parts.
The leaf springs are connected to each other using a rigid body at one end and are fixed at the other end. For
the relevant simulations, a truss is added to simulate a spring. Mass is added to simulate the mass of the setup
itself. Mass is also used to add pre-load, for the case where mass is added to the system.
The eigen frequencies of the system can be evaluated in SPACAR. The first ten eigen frequencies are given. The
corresponding eigen modes can be displayed. The stress in the system can be calculated in SPACAR, and the
stress distribution can be displayed. The compliance of the leaf springs can be calculated. With the compliance,
the stiffness can be found. The simulations can be evaluated in both the equilibrium position and over deflected
positions.

2.7 Design setup

The design is based on a parallel leaf spring mechanism. Two leaf springs are mounted at a bottom plate and a
top plate using clamps. The leaf spring mechanism is placed on beams, which are attached to the bottom of the
leaf spring mechanism and on another plate. This plate has rubber supports on the bottom. The top plate has
an attachment point for a spring. The bottom plate of the leaf spring mechanism has a hole, to allow the spring
to pass through. This is done so that a spring can be longer than the leaf springs. A spring can be attached to
the top plate. The other end of the spring can be attached to a mechanism that can move up and down over a
guide and a spindle. The length of the spring can be decreased or increased by moving the spindle. End stops
in movement direction are added to make sure that the mechanism does not move too far to either side.
The SolidWorks model can be seen in Figure 11a. The build model can be seen in Figure 11b. To apply an
external force to the system, a voice coil motor (VCM) [16] is attached to one side of the mechanism. The VCM
line of action passes through the center of compliance. An encoder [17] is placed at the same height.
The springs can be attached in two ways. It can be hanging on screws, which are placed on the attachment
points, or it can be clamped to the attachment points. The hanging on a screw design can be seen in Figure 12a.
The clamped situation can be seen in Figure 12b. The attachment point at the spindle uses the same methods
of attaching.
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(a) Solidworks model of the setup (b) Picture of the setup, without encoder

Figure 11: Solidworks design and build setup

(a) Hanging spring setup (b) Clamped spring setup

Figure 12: Setups of spring attachment

2.8 Measurement plan

Multiple measurements will be done, to gather data on the behavior of the system and to validate the simulations.
Two types of tests will be done, modal analysis and hysteresis tests. The modal analysis can tell about the effect
of pre-load on the driving eigen frequency and the support eigen frequency of the system. These measurements
can also be used to validate the simulations. The hysteresis test can tell about the hysteresis in the system,
the hysteresis the spring possibly adds, and the hysteresis of the system where mass is added. The hysteresis
tests can also be used to find the balance point of the system. The tests will be done with both mass added
and springs added.
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2.8.1 Springs used

Three springs are acquired to use for the tests. Multiple springs are used such that the spring length and amount
of pre-load can be changed semi-independently. The name used in the report, the manufacturer-specified name,
the zero-length of each spring the manufacturer-specified stiffness, and the measured stiffness can be seen in
Table 2. The spring stiffnesses are identified and can be seen in Appendix A. In the report the results of spring
B are shown, this spring is mentioned with the word spring. The results for Spring A and C can be seen in the
Appendix. The springs are ordered from TEVEMA [18].

Table 2: Classification of the springs

Report name Manufacturer name L0 [mm] F0 [N] Specified stiffness [N/mm] Measured stiffness [N/mm]
A T32074 75.8 23.3 3.33 3.423
B T32235 123 24.38 1.71 1.750
C T32681 128 85.9 11.34 12.3

To determine the pre-load of the springs, the amount of turnings of the spindles is counted. With the pitch
of the spindle and the stiffness, the exact amount of pre-load can be determined. The starting position of the
spring is determined by moving the spring up to the top plate. When the spring cannot move further up and
deflects to the side, the spring is moved down with one turn of the spindle. The position the spring is in at that
point is chosen to be the starting position.

2.8.2 Hysteresis test setup

The hysteresis test is done with the VCM and encoder present on the system. The input to the VCM is a sine
wave. The input force is not measured. It is assumed that the force is proportional to the input current when
the VCM is moving slowly [19]. The force can be found with the motor constant and the inputted current. The
motor constant can be identified by examining the change of bode plots with different pre-loads.
The system is position-controlled with a PID controller. The initial tuning is done with the tuning rules of
the lecture notes of Aarts and van Dijk [20]. The mass equivalent needed has been found by running an
identification, and can be seen in Figure 31.

2.8.3 Modal Analysis setup

The quality of static balance can be analyzed by a modal analysis. The eigen frequency can tell about the
amount of balance of the mechanism. When the eigen frequency is zero, the system is balanced.
The modal analysis will be done with a laser-vibrometer, in this case, the Polytec PSV-500 [21] is used. The
laser-vibrometer is positioned perpendicular to the leaf spring and shines a laser at a spot on the leaf spring. The
machine measures the movement of the spot. This is done for multiple points. After every spot is measured, a
model of the mode shapes and the eigenfrequencies is made. In these tests, 25 evenly dived points are measured.
The mechanism was exited by a sweep. The settings of the laser-vibrometer can be seen in Table 3.

Table 3: Settings used in the laser-vibrometer

Setting Value
FFT Lines 3200
FFT magnitude averaging off
Amplitude 2
Voltage [-2,2]
Sweep time 3.2 sec
Sweep range 1-1000 Hz
Measuring range 125 mm/s
Measuring bandwidth 0-1000 Hz
Resolution 312.5 mHz
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3 Results

3.1 Force-displacement plots

3.1.1 Analytical and simulated force-displacement plots

In Figure 13a and Figure 13b, the force displacement plots of the mass and the spring can be seen. In a dotted
line, the analytical results for the corresponding pre-loads are overlayed. It can be seen that the simulations and
the analytical model match quite well. The same effect of increasing pre-load can be seen. The same amount
of force is needed to reach the same amount of displacement.
An increase in force leads to an increase in displacement. From a certain amount of pre-load, the force needs
to decrease to increase the displacement. The stiffness of the mechanism becomes negative.
It can be seen that a higher pre-load is needed to balance the spring case. This is expected from the analytical
model.

(a) Force displacement plot of the mass (b) Force displacement plot of the spring

Figure 13: Analytical and simulated force displacements plots of the mass and spring

3.1.2 Measured force-displacement plots

The simulated and analytical force displacement plots can be compared with measurement results. The force
is not measured in the tests, but the effect of pre-load can be compared. The force can also be estimated with
the motor constant. The motor constant was estimated to be 3.23N/A. This value was used to determine the
actuation force.
In Figure 14, the results for the hysteresis test of the mass can be seen. In Figure 15, the hysteresis curves of
the clamped spring can be seen. In Figure 16, the hysteresis curves of the hanging spring can be seen. The
figures are divided into the range of pre-load, and the values close to balancing force.
From the measurements, it can be seen that a higher pre-load results in a less steep line. Less force is needed to
get the same displacement, meaning that the stiffness drops. At a certain pre-load, the system becomes (close
to being) balanced, the curves lay flat. This is due to the force needed to displace the mechanism is close to
zero. Beyond the balancing point, the curves tip over. In that case, there is negative stiffness present. The
force needs to decrease to increase the displacement.
It can be seen that in the case of the springs, more pre-load is needed to achieve the same effect in the case of
the mass. This is expected, as this is derived from the analytical model. Approximately the same displacement
is reached with the same force for both the mass and the springs. No significant difference is seen between the
attachment methods of the springs.
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(a) Hysteresis plot of the mass (b) Hysteresis plot of the mass, zoomed in

Figure 14: Hysteresis measurements of the mass

(a) Hysteresis plot of the clamped spring (b) Hysteresis plot of the clamped spring, zoomed in

Figure 15: Hysteresis measurements of the clamped spring

(a) Hysteresis plot of the hanging spring (b) Hysteresis plot of the hanging spring, zoomed in

Figure 16: Hysteresis measurements of the hanging spring
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Quantified hysteresis
The hysteresis can be quantified around the equilibrium position, thus around a displacement of zero and at
a force of zero. The percentage of hysteresis can be found from the mechanism with the lowest amount of
pre-load. The quantified hysteresis is plotted over normalized pre-load. The pre-load is normalized to the
theoretical balancing load of the leaf springs with a thickness of 0.4mm. The plotted hysteresis can be seen in
Figure 17.
It can be seen that the force hysteresis is quite constant when the pre-load increases. The displacement hysteresis
increases for a higher pre-load. When the system is (close to being) balanced, the displacement almost becomes
equal to the whole displacement of the system. This is because the hysteresis curve is lying flat, almost no force
is needed to move the mechanism. When the stiffness becomes negative, the hysteresis curve begins to slope
down.

(a) Current hysteresis plotted over normalized pre-load (b) Displacement hysteresis plotted over normalized pre-load

Figure 17: Percentage of maximum force- and displacement hysteresis

3.1.3 Comparison with simulations

In Figure 18, the measured force displacement of the mass and spring can be seen with the simulated force
displacement.
A smaller displacement is reached in the measurements when compared with the simulations. This is due to
limitations in the current which is sent to the VCM. Still, the effect of the pre-load can be compared with the
simulations. This is because the steepness of the force-displacement lines can be compared.
Approximately the same effect of pre-load can be seen in the simulated force-displacement plots and the mea-
sured force-displacement plots. The pre-load to achieve balance is lower in the measurements than it is in the
theoretical results. This could mean that there are unmodelled compliances in the system. It can also indicate
that the determined value of the motor constant is off.

(a) Measured mass hysteresis compared with simulations (b) Measured spring hysteresis compared with simulations

Figure 18: Measured hysteresis compared with simulations
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3.2 Simulated system properties

Simulations are used to give information on system properties and how the systems behaves in multiple situa-
tions. This can be an increase in pre-load, a displacement of the system, or an increase in leaf spring thickness.
Below the simulated system properties can be seen.

3.2.1 Stiffness

Simulations were done in which the stiffness of the leaf springs was derived. The stiffnesses are divided into the
driving stiffness and the stiffness of the leaf spring in the support direction.
The stiffnesses are examined for different leaf spring thicknesses and different values of pre-load. These are
examined in equilibrium position, deflected position, and over a range of movements.

Driving stiffness
The results for the stiffness in the driving direction can be seen below. In Figure 19, the stiffness for both
the mass and spring can be seen, where the pre-load is normalized to the theoretical balancing load for the
corresponding leaf spring thicknesses. The leaf spring thickness is taken into account to find the theoretical
balancing load.
The analytical stiffness results for the same pre-loads are plotted over the simulated values as dotted lines.
The starting situation for both cases is the same. For the mass, the stiffness is zero at a normalized pre-load
of close to 1. For the case of the spring, the stiffness is zero at a pre-load of about 1.8. This value is arbitrary
because it depends on the spring length. This spring length is chosen arbitrarily.

(a) Simulated stiffness in movement direction of the mass (b) Simulated stiffness in movement direction of the spring

Figure 19: Simulated stiffness in movement direction

Support stiffness
The results for the simulated support stiffness can be seen in Figure 20. The support stiffness is plotted over the
normalized pre-load, where the pre-load is normalized to the theoretical balancing load for the corresponding
leaf spring thicknesses. The simulation was done without and with an initial displacement.
In the case of no initial displacement, the support stiffness is constant over an increasing pre-load. When the
system is displaced, it can be seen that the support stiffness decreases with an increasing higher pre-load. Due
to the displacement, the initial stiffness is lower compared with the initial stiffness of the undisplaced situation.
It can be seen that a thicker leaf spring has a higher support stiffness. The support stiffness decreases more
rapidly for larger leaf spring thicknesses.
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(a) Simulated support stiffness over pre-load, in equilibrium
position

(b) Simulated support stiffness over pre-load, with an initial
displacement of 5 mm

Figure 20: Simulated support stiffnesses

In Figure 21, the influence of displacement in movement direction on the support stiffness can be seen.
In Figure 21a the leaf spring thickness is varied with a constant pre-load of 150N. It can be seen that as the
displacement increases, the support stiffness drops. A higher thickness results in a higher support stiffness. The
difference between the support stiffness decreases over displacement. In Figure 21b the pre-load is varied with
a constant leaf spring thickness of 0.4 mm. It can be seen that the support stiffness drops if the displacement
increases. The amount of pre-load has a very small influence on the initial support stiffness. A larger pre-load
results in a faster decrease in support stiffness. But overall the pre-load has a smaller effect than the thickness
of the leaf spring.

(a) Support stiffness over displacement, with varying leaf
spring thicknesses and a pre-load of 150 N

(b) Stiffness in movement direction over displacement, with
varying pre-loads and a leaf spring thickness 0.4 mm

Figure 21: Support stiffness over displacement

3.2.2 Maximum stress

The maximum stress per value of normalized pre-load were examined, for both a leaf spring thickness of 0.4
mm, 0.5 mm, and 0.6 mm. This can be seen in Figure 22. The pre-loads were normalized to the theoretical
balancing loads for the corresponding thicknesses.
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Figure 22: Maximum stress of the system, at deflection

For all the examined leaf spring thicknesses, it can be seen that the maximum stress decreases with a higher
pre-load, until a certain point. From that point, the stress stays nearly constant. When the pre-load is further
increased, the stress begins to increase again. At a pre-load of 1.5 the theoretical load, the stress is the lowest.
The stress begins to increase at a pre-load of approximately 2.1 times the pre-load.
The maximum decrease for leaf springs with a thickness of 0.4 mm was found to be about 29 MPa. For a leaf
spring thickness of 0.5 mm, this was found to be around 35 MPa. For a leaf spring thickness of 0.6 mm, it was
found to be approximately 40 MPa.

3.3 Modal measurements

Modal measurements can be used to validate the simulations. The eigen frequencies of the simulations and
measurements can be compared. The effects of the pre-load and the order of magnitude of frequencies can be
examined to validate the simulations.
Modal measurements were done with mass and springs A, B, and C. The results for the mass and spring B
can be seen below. The results for springs A and C can be seen in Appendix C. The results are divided into
the first eigen frequency, the eigen frequency for the movement direction, and the support frequencies. The
measurements were done with a leaf spring thickness of 0.4mm and a leaf spring thickness of 0.5 mm.
No measurement is done for the spring at a force of 0 N, this is because the spring has a zero force, thus adding
the spring would have an influence on the eigen frequency. In the case of the mass tests, adding more than 11
kilograms would result in an unbalanced system. The same was the case for the spring at a pre-load of 175 N.

Mode shapes
Below the mode shapes of the simulations and derived with the laser-vibrometer can be seen. In the mode
shapes of the laser-vibrometer, the color depicts the amount of movement. Red means a large amount of
movement from the equilibrium position. The equilibrium position is defined by the color green. Blue means
movement from the equilibrium position, but in the opposite direction that the color red defines. The first mode
shape, as can be seen in Figure 23b, is the mode in the movement direction. The second and third modes, as
can be seen in Figure 24b and Figure 25b respectively, correspond with the support stiffness of the leaf spring.
The mode shapes are very similar but have an opposite movement pattern.
The mode shapes of the laser-vibrometer can be related with the mode shapes from the simulations. It is
assumed that the mode shape from the laser-vibrometer in Figure 24 and Figure 25 correspond with the shown
mode shapes from the simulations. This is because the eigen frequencies of those modes have almost the same
value, both in the simulations and in the measurements.
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(a) Simulated mode shape corresponding to the first eigen
frequency

(b) Experimental mode shape corresponding to the first
eigen frequency

Figure 23: Mode shape of the first eigen frequency

(a) Simulated mode shape corresponding to the second eigen
frequency

(b) Experimental mode shape corresponding to the second
eigen frequency

Figure 24: Mode shape of the second eigen frequency

(a) Simulated mode shape corresponding to the third eigen
frequency

(b) Experimental mode shape corresponding to the third
eigen frequency

Figure 25: Mode shape of the third eigen frequency

1st eigen frequency
In Figure 26a and Figure 26b, the results for the mass measurements and the spring measurements can be
seen. In the plots, the measured data points are shown. These data points are fitted with a linear regression
model. No large outliers in the data points are seen. The simulated data is plotted as a dotted line.
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A decrease in eigen frequency can be seen when the pre-load is increased. The decrease is larger in the mass
measurements, which is also found in the simulations and the analytical model. This is the case for both leaf
spring thicknesses.
The simulations and the measurements match quite well. The measured eigen frequencies are lower than the
simulated eigen frequencies. The difference between simulations and measurements is quite constant. This
could be due to there being compliance in the system, which is not simulated.
Perfect balance is not achieved. This is due to the fact that the system became unstable before this balance
was reached. An unstable system could not be actuated, and thus not measured.
The eigenfrequencies are higher for the larger thickness, this is to be expected, as the stiffness is higher for
larger thicknesses. It can be seen that the decrease in eigen frequency of the thicker leaf spring is not as large as
the decrease of the thinner leaf springs. This is expected, as the eigen frequency behaves as a square root, thus
the decrease becomes larger closer to the balance point. This point is not reached due to spring limitations.

(a) eigen frequency in movement direction, mass and simu-
lated data

(b) eigen frequency in movement direction, Spring and sim-
ulated data

Figure 26: eigen frequency in movement direction, simulated and measured data

Support eigen frequencies
In Figure 27a and Figure 28a, the results of the eigen frequency test, in support direction, of the mass can
be seen. In Figure 27b and Figure 27b, the results of the eigen frequency tests, in support direction, of the
spring can be seen. The data points can be seen, which are fitted with a linear fit. One outlier in data points
is seen, the fit gives a good indication of the frequency value at the location of the outlier. The data from the
simulations is also shown.
The measured data and the simulated data follow the same trends. The measured eigen frequencies are lower
than the simulated values. This difference is constant over the whole range of pre-load. The third eigen frequency
is a bit higher than the second one, this also follows from the simulations. A small decrease in support eigen
frequencies can be seen for an increasing pre-load.
The eigen frequency of the larger leaf spring thickness is higher compared with the smaller leaf spring thickness.
This is expected, as the stiffness increases with increasing leaf spring thickness.
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Second eigen frequency

(a) 2nd eigen frequency, mass and simulated data (b) 2nd eigen frequency, Spring and simulated data

Figure 27: 2nd eigen frequency, simulated and measured data

Third eigen frequency

(a) 3rd eigen frequency, mass and simulated data (b) 3rd eigen frequency, Spring and simulated data

Figure 28: 3rd eigen frequency, simulated and measured data

Comparison with simulations
It can be seen that the eigen frequency simulations and the modal measurements line up quite well. The trend
of the eigen frequencies is quite the same. The measured values are a bit lower than the simulated values. This
difference is constant over the whole pre-load. This could be unmodelled compliance. This difference is also
found in the force-displacement plots. For the first eigen frequency measurement with the spring, the thicker
leaf springs do not follow the trend of the simulation as well as the thinner leaf springs. For the thinner leaf
springs, the trend is better followed closer to the balance point, it is expected that the same is true for the
thicker leaf springs.

Overview of measurements
Below an overview of the measurements and results are given. The start and end values of the used pre-load
can be seen in Table 4. In Table 5, the decrease expressed in percentages of the eigen frequencies can be seen.
The same decrease is also expressed in Hertz and can be seen in Table 6.
It can be seen that the biggest decrease in eigen frequency in movement direction is achieved with the mass.
The system becomes close to being balanced. A reduction of about 60% is achieved for springs B and C. A
smaller decrease is achieved for spring A.
The support eigen frequencies also decrease. This decrease is linear, and is not as large when compared with
the decrease of the eigen frequencies in movement direction.
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Table 4: Used values of pre-load per case

Start value End value Percentage of balancing load
Mass 0.4mm 0 kg 11 kg 79.9%
Mass 0.5mm 0 kg 15 kg 55.8%
Spring A 75N 115N 140.6%
Spring B 0.4mm 25N 150N 129.5%
Spring B 0.5mm 25N 200N 85.3%
Spring C 100N 175N 203.5%

Table 5: Percentage decrease of measured eigen frequencies

1st eigen frequency decrease 2nd eigen frequency decrease 3rd eigen frequency decrease
Mass 0.4mm -92.6% -12.4% -12.0%
Mass 0.5mm -89.5% -9.1% -12.5%
Spring A -31.0% -15.4% -15.3%
Spring B 0.4mm -63.0% -15.2% -15.3%
Spring B 0.5mm -29.7% -10.3% -12.7%
Spring C -60% -23.3% -23.7%

Table 6: Decrease of measured eigen frequencies expressed in Hertz

1st eigen frequency decrease 2nd eigen frequency decrease 3rd eigen frequency decrease
Mass 0.4 mm 7.8 Hz 28.1 Hz 27.5 Hz
Mass 0.5 mm 10.6 Hz 25 Hz 35.9 Hz
Spring A 2.8 Hz 33.5 Hz 33.5 Hz
Spring B 0.4mm 5.3 Hz 33.4 Hz 34.4 Hz
Spring B 0.5mm 3.4 Hz 27.8 Hz 35.9 Hz
Spring C 4.7 Hz 48.1 Hz 49.7 Hz

Stiffening effect
It was found from the analytical model and the simulations that the length of springs has an influence on the
stiffness in the movement direction, as can be seen in Figure 9. Because the spring length has influence on the
stiffness, it also has effect on the eigen frequencies. This can be seen in the modal measurements. Multiple
amounts of pre-load can be looked at to see the effect of spring length. Each spring measurement has measure-
ments with a pre-load of 100N, 125N, 150N, and 175N. these measurements can be directly compared with each
other.
The eigen frequencies per spring, for 100 N, 125 N, 150 N, and 175 N can be seen in Table 7, Table 8, Table 9
and Table 10. It can be seen that the support eigen frequencies are relatively the same for each spring. It differs
with about five Hertz, which results in a percentage difference of about 2.5%.
The eigen frequency in movement direction does differ by a large factor. It can be seen that a longer spring,
results in a lower eigen frequency in the movement direction. A difference of 50% can be seen in the case of 175 N.

Table 7: Eigen frequencies comparison at 100 N

Spring Length 1st eigen frequency 2nd eigen frequency 3rd eigen frequency
A 98 mm 8.75 Hz 203.4 Hz 205.3 Hz
C 129 mm 7.8 Hz 206.6 Hz 210 Hz
B 166 mm 6.9 Hz 202.5 Hz 206.6 Hz

Table 8: Eigen frequencies comparison at 125 N

Spring Length 1st eigen frequency 2nd eigen frequency 3rd eigen frequency
A 105 mm 8.4 Hz 196.6 Hz 199.1 Hz
C 131 mm 7.2 Hz 200.6 Hz 205.3 Hz
B 180.3 mm 5.6 Hz 196.9 Hz 201.25 Hz
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Table 9: Eigen frequencies comparison at 150 N

Spring Length 1st eigen frequency 2nd eigen frequency 3rd eigen frequency
A 113 mm 7.8 Hz 187.2 Hz 191.9 Hz
C 133 mm 6.6 Hz 190.6 Hz 197.8 Hz
B 194 mm 5 Hz 190.6 Hz 194.7 Hz

Table 10: Eigen frequencies comparison at 175 N

Spring Length 1st eigen frequency 2nd eigen frequency 3rd eigen frequency
A 120 mm 6.9 Hz 182.8 Hz 185 Hz
C 134.9 mm 5.9 Hz 185.3 Hz 188.1 Hz
B 208.4 mm 3.1 Hz 186.9 Hz 190.6 Hz
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4 Discussion

4.1 Measurement limitations

Some limitations were present when doing the experiments, these limitations are discussed below. While these
limitations are present, the data gathered can still give relevant information on the behavior of the system. A
controller is used to manage the instability in the hysteresis tests. This could not be done at the eigen frequency
test, meaning that the maximum force used in the eigen frequency test is lower than the maximum force used
in the hysteresis tests.
The limitations are about the force at zero length of the spring and the maximum force that can be reached.
There is also a maximum value of mass which can be added. The limitations are mentioned below.

F0
Spring A - F0 is 75N, the shortest length possible of the setup is larger than the minimum length of the spring.
Spring B - F0 is 24.38N.
Spring C - F0 is 85.90N.
Mass - Zero mass can be added

Ending Force
Spring A - Maximum length of spring is reached.
Spring B - Unstable because of large force reached.
Spring C - Unstable because of large force reached.
Mass - Unstable because of the large force reached

VCM Current
There was a limitation on the amount of current the VCM could handle. This was set from -0.5 A to 0.5 A.
This was used to determine the possible displacement of the system without pre-load. This displacement was
taken as the displacement for the other tests.

4.2 Difference between eigen frequency simulations and modal measurements

In subsection 3.3, a small difference between the simulations and the eigen frequency measurements can be seen.
The eigen frequency of the simulations is in general a bit higher than the the measurements. From that, it can
be concluded that there is more compliance present in the setup than is modeled in the simulations. This extra
compliance could have multiple reasons, which will be discussed below.
This compliance could come from the bolted connections. Bolted connections generally introduce compliance
in systems. This was not taken into account in SPACAR.
The initial mass of the setup is measured. This mass is distributed evenly on three top nodes in the simulations.
The mass distribution of the setup is different than what is simulated. This could have an effect on the stiffness
and compliance of the system.
Miss alignment of components could influence the stiffness of the system. Generally speaking, miss-alignment
causes the stiffness in the movement direction to increase and the stiffness in the support direction to stay the
same or decrease. As the measured eigen frequencies, in its turn the stiffness, are constantly lower than the
simulation, it can be assumed that no large component miss-alignment is present in the system.
Miss alignment can also be present in the form of load miss-alignment. In the simulations, the load was placed
in the middle of the top beam. In the setup, the spring is also attached to the middle. It could be the case that
the spring hooks apply the force in another than the way it is done in the simulations. In the simulations, the
mass is divided over three parts of the top beam. In the experiments, the mass is placed in the middle. This
could influence the results.

4.3 Effect of pre-load

The addition of pre-load on the mechanism has effects on the system. The effects will be discussed below.

4.3.1 Effect on eigen frequency and stiffness in movement direction

Eigen frequency in movement direction
The eigen frequency in movement direction decreases as the pre-load on the mechanism increases. This effect
was found in the simulations and the eigen frequency measurements, as can be seen in Figure 26. The amount
of decrease is dependent on the value of the pre-load, and the method of applying the pre-load. Generally,
a higher pre-load causes the eigen frequency to decrease further. At a certain value of pre-load, the eigen
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frequency becomes (very close to) zero, at this point the system is balanced. After the balance point is reached,
the mechanism is expected to have a zero natural frequency. It can be seen that the eigen frequencies decrease
more rapidly for the mass than for the springs, due to the stiffening effect of the springs.

Driving stiffness
The behavior of the eigen frequency can tell something about the corresponding stiffness. An increase in pre-
load lowers the stiffness of the leaf spring in the movement direction. The behavior is linear, as can be seen in
Figure 19. After a certain value of pre-load is reached, the stiffness becomes zero. At that point the system
becomes balanced. Beyond that point, the stiffness becomes negative. The stiffness decreases more rapidly for
the mass than for the springs.

4.3.2 Effect on support eigen frequencies and stiffness

Support eigen frequency
The addition of pre-load on the system decreases the support eigen frequencies, as was found in the mea-
surements. This can be seen in Figure 27 and Figure 28. The found decrease was linear. The decrease is
approximately the same for the mass and the spring, thus the decrease is not dependent on the method of
applying pre-load.

Support stiffness
Applying pre-load does not affect the support stiffness when the system is in an equilibrium position. This
can be seen in Figure 20a. When the mechanism is in a deflected position, an increase in pre-load causes the
support stiffness to decrease, as can be seen in Figure 20b. The found decrease is linear. The support stiffness
does not reach a point where it is (close to) zero.
The support stiffness decreases when the system is displaced, as can be seen in Figure 21. The leaf spring
thickness influences the initial value of the support stiffness, but not the behavior over displacement. An
increase in pre-load causes the stiffness to drop more rapidly over displacement.

4.3.3 Effect on maximum stress

The addition of pre-load has an effect on the maximum stress present in the leaf springs, as can be seen in
Figure 22. The stress decreases with an increasing pre-load, until a certain point where the stress increases
again. At a pre-load of about 1.5 times the theoretical balancing load, the maximum stress is the lowest. From
there on it increases slowly with an increasing pre-load. At a pre-load of about 2 times the theoretical balancing
load, the amount of stress increase increases.
For the leaf spring thickness of 0.4 mm, a decrease of about 22 MPa can be seen at the theoretical balancing
force. At about 1.5 times the theoretical balancing force, the maximum stress is the lowest. At that point,
the stress decrease is approximately 30 MPa. For the leaf spring thickness of 0.5 mm, a decrease of about 25
MPa is achieved at the theoretical balancing force. At 1.5 times the theoretical balancing force, this decrease
is close to 35 MPa. For the leaf spring thickness of 0.6mm, a decrease of approximately 28 MPa was found at
the theoretical balancing force. At 1.5 times the theoretical balancing force, a decrease of about 40 MPa was
found.

4.4 Influence of pre-load application method

4.4.1 Difference between the addition of mass and springs

The effects of the pre-load differ with the method of implementation. Differences can be seen between the
implementation of mass and springs. These differences can be examined in the eigen frequency test and the
hysteresis tests.

Eigen frequencies
It was found that a lower pre-load is required to reach the balance point for the mass when compared with
the springs. This can be seen in Figure 19 and Figure 26. This is due to the fact that the spring has a force
component opposite of the movement direction.
The support eigen frequencies of the mass and the springs have approximately the same value, as can be seen
in Figure 27 and Figure 28. The decrease of the support eigen frequencies is approximately the same for both
the mass and the springs.
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Hysteresis
The first part of the hysteresis curves for the mass and spring cases look very similar, as can be seen in
Figure 14, 15 and 16. An increase of pre-load results in a flatter laying line, thus a lower actuation stiffness. A
lower amount of pre-load is needed to reach the balancing point for the case of the mass. This is also found in the
eigen frequency tests. A slightly larger current hysteresis has been found in the case of the mass measurements.
No large conceivable difference has been seen in the displacement hysteresis. This can be seen in Figure 17. So
no large difference in hysteresis is seen between the attachment methods.

Largest difference
The largest difference found between the springs and the mass is the larger decrease of the eigen frequency in
movement direction for the mass. This is due to the stiffening effect of the spring. No large difference can be
seen between the hysteresis of the system and the support frequencies.

4.4.2 Stiffening effect of the spring

A stiffening effect is present when the pre-load is applied with springs. This has been found in the analytical
model. From Figure 6 and Figure 8, it follows that more pre-load is needed to balance the system in case of
the spring. It was also found that the spring length has an influence on the amount of extra pre-load needed.
This can be seen in section 3.3, Figure 9 and Figure 10.
Multiple modal measurements were done with different spring lengths. The eigen frequencies at the same pre-
loads and different lengths are examined. These eigen frequencies can be seen in Table 7, Table 8, Table 9 and
Table 10. It can be seen that the spring length has an effect on the first eigen frequency. The spring length has
almost no influence on the support eigen frequencies of the system.
When a longer spring is attached, the component of the force in the movement direction decreases, meaning
more of the pre-load is applied in the intended direction. This effect can be seen in the tables mentioned above.
For a pre-load of 100 N, the difference in eigen frequency is smaller than for a higher amount of pre-load. A
difference of about 25% in eigen frequency can be seen in the case of a pre-load of 100 N. This is with a length
difference of about 70%. In the case of a larger pre-load, a difference of 50 % in eigen frequency can be seen in
the first eigen frequency for a length difference of about 100 %.
To overcome this stiffening effect, more pre-load needs to be applied, as can be seen in Figure 9. The amount
of extra pre-load needed decreases as the spring length increases. To achieve a relatively good balance for a
relatively low amount of pre-load, a long spring is required. A higher pre-load is needed to balance with a short
spring when compared with a longer spring. A higher pre-load results in a decrease in support stiffness and has
an influence on the maximum stress in the leaf springs. An increase in pre-load also results in a larger value of
the pre-load opposite of movement direction, to overcome this extra stiffening effect, an increase in pre-load is
needed.

4.5 Point of static balance

The point of static balance had been found in multiple ways. The theoretical balance point can be calculated
with the buckling equation, as can be seen in Equation 1. The analytical force displacement curves can be used
to determine the balance point. With the simulations, the balance can be found with the force displacement
plots and the stiffness analysis. The balance point was found with the hysteresis measurements, and can be
estimated with the modal measurements. These found balances forces can be seen in Table 11. The balance
point of the force displacement of the spring is found with Figure 35. It can be seen that the balance points of
the mass lay below the simulated and theoretical values. For the spring the values are higher than the mass, as
is expected.

Table 11: Found balancing forces, for leaf spring thickness of 0.4mm

Mass [kg] Spring (clamped) [N] Spring (hanging) [N]
Theoretical 13.8 135 135
Force displacement 13.5 203 203
Hysteresis measurements 11.75 198 193
Modal measurements 12.25 ≈ 200 ≈ 200

4.6 Theoretical support stiffness increase

The leaf springs can only experience a certain amount of stress before yielding. As can be seen in Figure 22, the
stress of the leaf spring increases with increasing leaf spring thickness. This means that only up to a certain leaf
spring thickness is viable for this mechanism. What also can be seen in Figure 22, is that the stress decreases
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as the pre-load increases, up to a certain point. This stress decrease could be used to (partially) negate the
stress increase of an increasing leaf spring thickness. It can be seen that at a pre-load of about 1.5 to about 2.2
times the theoretical balancing load, the maximum stress is equal to the stress in the mechanism with a lower
leaf spring thickness and no pre-load applied. This means that at a pre-load of 1.5 times the balancing load,
the leaf spring thickness can increase by 0.1 mm.
In Figure 20a, it can be seen that a thickness increase of 0.1 mm leads to a support stiffness increases by
1.2 · 107N/m when in equilibrium position. This is an increase of about 25%. When deflected the support
stiffness increases by approximately 0.8 · 107N/m, as can be seen in Figure 20b. This is an increase of about
80%.
An increase in leaf spring thickness also results in an increase in actuation stiffness. This can be seen in Equa-
tion 2 and Figure 19. From the equation, it follows that the thickness increase has an influence with the power
of three on the initial actuation stiffness. This increase in actuation stiffness can be negated by applying a
pre-load. For the case of the mass, the system is balanced at 1.5 times the theoretical balancing load. For the
spring it depends on the spring length. From Figure 9, it follows that the spring length needs to be around 2.2
the leaf spring length, for a pre-load of 1.5 times the balancing load.

4.7 Optimum spring and system properties

Multiple optimums can be found for the system properties, dependent on the desired behavior. In Table 12
different system properties can be seen for different leaf spring thicknesses and different amounts of pre-load.
The behavior is examined for the theoretical balancing load, 1.5 and 2 times the theoretical balancing load.

Table 12: System properties for certain values of leaf spring thickness and pre-load, evaluated at a deflection of
5 mm and spring length of 2.5 Lf .

t [mm] kxx [N/m] kyy [N/m] Stress [MPa] Pre-load [N] Optimal spring length [Ls/Lf ] eq. 30

Zero pre-load 0.4 1702 1.44 · 107 144.2 0 -
Balancing load 0.4 532 1.09 · 107 122.6 135.1 ≈ 10
1.5 balancing load 0.4 -71 0.92 · 107 114.7 202.7 2.45
2 balancing load 0.4 -621 0.76 · 107 115.0 270.2 1.6

Zero pre-load 0.5 3367 2.41 · 107 180.6 0 -
Balancing load 0.5 1115 1.88 · 107 156.6 263.9 ≈ 10
1.5 balancing load 0.5 -97 1.62 · 107 145.8 395.8 2.45
2 balancing load 0.5 -1281 1.36 · 107 145.4 527.8 1.6

Zero pre-load 0.6 5851 3.54 · 107 216.97 0 -
Balancing load 0.6 1889 2.88 · 107 188.2 456 ≈ 10
1.5 balancing load 0.6 -142 2.53 · 107 176.1 684 2.45
2 balancing load 0.6 -2205 2.15 · 107 176.6 912 1.6

It can be seen that the system properties differ for different values of pre-load and different leaf spring thicknesses.
The optimum configuration depends on which behavior is desired.
For a low actuation stiffness, a pre-load of 1.5 times the balancing load or higher is desired. Thinner leaf springs
also result in lower actuation stiffness. For a high support stiffness, thick leaf springs with a low pre-load are
desired. For low maximum stress, the best range of pre-load is between 1.5 and 2 times the theoretical balancing
load, thinner leaf springs also result in lower stress.

4.8 Difference in hysteresis for different spring attachment methods

In Figure 15 and Figure 16 the hysteresis curves for the clamped spring and the hanging spring can be seen. In
the case of the hanging spring, the spring is able to rotate around the screw.
The same trend of driving stiffness decrease at a higher pre-load can be seen for both cases. For the same
amount of pre-load, the same amount of needed force is seen. The amount of quantified current hysteresis does
not differ between both cases.
There is a difference in displacement hysteresis, as can be seen in Figure 17b. This difference is due to the fact
that the hysteresis curves of the clamped spring are laying more flat than the hysteresis curves taken for the
hanging spring. In the hysteresis curves, it can be seen that the hysteresis behavior is very similar.
The amount of needed pre-load to reach the balance point differs between both cases. The difference is about 5
N. This difference could be caused by the starting position of the spring. The starting position is chosen on the
minimum length the spring can reach, the attachment method could influence this starting position. A higher
or lower starting position could influence the amount the spring has to move to reach the balancing point. This
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could the balancing force to differ.

From this, it can be concluded that there is no significant difference between the spring attachment methods in
these experiments. In this case, a small deflection was reached in the measurements, a larger deflection could
show an increase in hysteresis.
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5 Conclusion

The first eigen frequency decreases with an increasing pre-load. The same trend can be seen in the measure-
ments as in the analytical model and the simulations. The support eigen frequencies decrease a bit with an
increasing pre-load. This can also be seen in the simulations. The measured frequencies are a bit lower than the
simulated values, this difference is constant over the range of pre-load. From this, the simulations and analytical
model can be validated.

From the hysteresis measurements, the amount of pre-load to balance the mechanism was found. For the mass,
the system became balanced at a pre-load of 11.75 kg. For the clamped spring, the system became balanced
for a pre-load of about 198 N. The system with the hanging spring became balanced at a pre-load of 193 N.
Increasing the pre-load beyond these points results in negative stiffness behavior.

The maximum stress reduces with an increasing pre-load till a certain value. The maximum stress decrease was
found to be at 1.5 times the theoretical balancing load. The maximum decrease for leaf springs with a thickness
of 0.4 mm was found to be about 29 MPa. For a leaf spring thickness of 0.5 mm, this was found to be around
35 MPa. For a leaf spring thickness of 0.6 mm, it was found to be approximately 40 MPa.
The support stiffness increases with increasing leaf spring thickness. The stress also increases with increasing
leaf spring thickness. The maximum stress decrease from an applied pre-load can negate this effect and make it
possible to increase the leaf spring thickness. An increase of 0.1 mm in thickness results in a stiffness increase of
about 25% when in an equilibrium position. When the deflected, the support stiffness increases with about 80%.

Applying pre-load with springs results in a stiffening effect of the spring. Part of the spring force is in the
opposite direction of the movement direction. A longer spring results smaller amount of said stiffening effect.
At one time the theoretical balancing load, the spring length needs to be approximately ten times the length of
the leaf spring to negate this effect. At two times the theoretical balancing load, the spring length needs to be
around 1.6 times the length of the leaf spring.

No large difference in hysteresis can be seen between the different spring attachment methods. The same dis-
placement is reached for the same applied current. The behavior under pre-load is approximately the same. The
hanging spring needs a bit less pre-load to reach the balancing point. No large difference in terms of hysteresis
was found between the springs and the mass.
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6 Recommendations

Further steps could be taken to improve the research and gather more information on applying pre-load and its
effects. These steps are discussed below.

Increased amount of data points
In this research eigenfrequency tests were done. For each amount of pre-load, one measurement was done. This
gave usable and valid results, but an increase in data points could increase the accuracy of the results. The
same is the case for the hysteresis measurements. The current- and displacement hysteresis could become more
accurate if more data points are present.
It could also be beneficial if an eigen frequency test could be done where the pre-load is increased to the balance
point and further than the balance point. This was not possible with the current setup. If it is possible, the
balance point could be determined more exactly and the behavior beyond the balance point could be analysed.

Comparison between clamped and hanging spring
In this research, a comparison is made between the hysteresis of a spring hanging on a screw and a clamped
spring. Because this is done with only one spring, there is a small sample size. It could be beneficial to increase
this sample size, such that a better conclusion can be gotten on the effects of the way the spring is attached.
The measurements were done with a small deflection, a larger deflection of the mechanism could show a notice-
able difference between the methods of attaching the spring.
The starting position of the spring was chosen by hand, a method of being able to find the starting point could
be beneficial.

Stress verification
A decrease in stress was found in the simulations. This decrease was not verified by the test, as the eigenfre-
quencies were. It could be assumed that the stresses in the simulations are correct, but a stress verification test
could be beneficial. That way the validity of the results could be shown.
A possibility for this would be by adding strain gauges on the leaf spring, near the clamps, and in the middle.
This could give a good indication of the values of the stress and the stress distribution.

Examining other flexure-based mechanisms
In this research, a parallel leaf spring mechanism was examined. A parallel leaf spring mechanism is one of
many flexure-based mechanisms. Implementing pre-load on other flexure-based mechanisms and examining the
behavior of those systems could give relevant information on a general way of implementing pre-load, and the
effects of the implemented pre-load.

Guideline for applying pre-load
A guideline can be made for implementing pre-load in mechanisms. Multiple methods could be introduced and
the advantages and disadvantages of for example adding mass and/or springs could be given. The optimum
settings and system properties could be given for multiple cases, for example low actuation stiffness or high
support stiffness.

35



References

[1] L. Howell, Compliant Mechanisms. A Wiley-Interscience publication, Wiley, 2001.

[2] K. Hoetmer, J. Herder, and C. Kim, “A building block approach for the design of statically balanced
compliant mechanisms,” 01 2009.

[3] J. Gallego Sanchez and J. Herder, “Criteria for the static balancing of compliant mechanisms,” vol. 2, 01
2010.

[4] N. Tolou, J. Gallego Sanchez, and J. Herder, “Statically-balanced compliant micromechanisms,” Mikroniek,
vol. 50, pp. 20–25, 01 2010.

[5] J. Herder, Energy-free Systems; Theory, conception and design of statically balanced spring mechanisms.
PhD thesis, 11 2001.

[6] T. L. Thomas, V. Kalpathy Venkiteswaran, G. K. Ananthasuresh, and S. Misra, “Surgical Applications of
Compliant Mechanisms: A Review,” Journal of Mechanisms and Robotics, vol. 13, 01 2021. 020801.

[7] E. G. Merriam and L. L. Howell, “Non-dimensional approach for static balancing of rotational flexures,”
Mechanism and Machine Theory, vol. 84, pp. 90–98, 2015.

[8] S. Henein, “Short communication: Flexure delicacies,” Mechanical Sciences, vol. 3, 01 2012.

[9] E. Merriam, M. Colton, S. Magleby, and L. Howell, “The design of a fully compliant statically balanced
mechanism,” vol. 6, 08 2013.

[10] H. Liang, G. Hao, O. Z. Olszewski, and V. Pakrashi, “Ultra-low wide bandwidth vibrational energy har-
vesting using a statically balanced compliant mechanism,” International Journal of Mechanical Sciences,
vol. 219, p. 107130, 2022.

[11] J. van Eijk and J. Dijksman, “Plate spring mechanism with constant negative stiffness,” Mechanism and
Machine Theory, vol. 14, no. 1, pp. 1–9, 1979.

[12] J. de Jong, S. Theans, L. Epping, and D. Brouwer, “Improving support stiffness of flexure mechanisms by
statically balancing,” pp. 45–48, nov 2021. Publisher Copyright: © 2021 Proceedings - 36th ASPE Annual
Meeting. All rights reserved.; 36th Annual Meeting of the American Society for Precision Engineering,
ASPE 2021 ; Conference date: 01-11-2021 Through 05-11-2021.

[13] K. Hoetmer, G. Woo, C. Kim, and J. Herder, “Negative stiffness building blocks for statically balanced
compliant mechanisms: Design and testing,” Journal of Mechanisms and Robotics, vol. 2, p. 041007, 11
2010.

[14] JPE, “Precision point.” https://www.jpe-innovations.com/precision-point/

beam-theory-buckling/. Beam theory: buckling.

[15] J. B. Jonker and J. P. Meijaard, SPACAR — Computer Program for Dynamic Analysis of Flexible Spatial
Mechanisms and Manipulators, pp. 123–143. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.

[16] Akribis systems, AVM series.

[17] RLS, RLS-RLB.

[18] “Tevema.” https://www.tevema.com/. Accessed: 2023-04-10.

[19] X. Feng, Z. Duan, Y. Fu, A. Sun, and D. Zhang, “The technology and application of voice coil actuator,”
in 2011 Second International Conference on Mechanic Automation and Control Engineering, pp. 892–895,
2011.

[20] R. Aarts and J. van Dijk, Dictaat Inleiding Systeem- en Regeltechniek (Lecture notes 113117, 113115,
280214). Werktuigbouwkundige automatisering / Mechanical Automation (MA), 2008.

[21] “Psv-500 scanning vibrometer.” https://www.polytec.com/int/vibrometry/products/

full-field-vibrometers/psv-500-scanning-vibrometer. Accessed: 2023-07-3.

36

https://www.jpe-innovations.com/precision-point/beam-theory-buckling/
https://www.jpe-innovations.com/precision-point/beam-theory-buckling/
https://www.tevema.com/
https://www.polytec.com/int/vibrometry/products/full-field-vibrometers/psv-500-scanning-vibrometer
https://www.polytec.com/int/vibrometry/products/full-field-vibrometers/psv-500-scanning-vibrometer


A Spring identification

An identification has been done on the springs to determine the stiffnesses. This was done to see if the springs
are up to manufacturer specs and to better calculate the needed spring length for the measurements. The
results can be seen in Figure 29a, 29b, and 30a. Because the largest spring has a higher F0, the spring did not
displace for the first measurement points. A zoomed-in version of the linear behavior is made and can be seen
in Figure 30b. The results of the stiffnesses are summarized in Table 13. It can be seen that the springs with
the lower stiffness match the manufacturer specified stiffnesses quite well. The measured stiffness of the large
spring with high stiffness differs more from the specified stiffness. This could be due to there being fewer data
points, thus a measurement error having a larger effect on the total.

(a) Force displacement plot of the smallest spring (b) Force displacement plot of the middle spring

Figure 29: Force displacements plots used to derive the spring stiffness of the smallest and middle spring

(a) Force displacement plot of the largest spring
(b) Zoomed-in on the linearly increasing part of the force-
displacement plot of the largest spring

Figure 30: Force displacement plot and zoomed-in version used to derive the spring stiffness of the largest spring

Table 13: Measured spring stiffnesses compared with the specified stiffnesses

Report name Name Measured stiffness [N/mm] Specified stiffness [N/mm] Difference L0 [mm]
Short A T32074 3.423 3.33 3% 75.8
Middle B T32235 1.750 1.71 2% 123
Large C T32681 12.3001 11.34 8% 128
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B Mass equivalent for the used controller

Figure 31: Measured and fitted mass equivalents

C Eigenfrequency measurements spring A and C

(a) Eigenfrequency in movement direction, Spring A and
simulated data

(b) Eigenfrequency in movement direction, Spring C and
simulated data

Figure 32: Eigenfrequency in the movement direction, simulated and measured data
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(a) 2nd Eigenfrequency, Spring A and simulated data (b) 2nd Eigenfrequency, Spring C and simulated data

Figure 33: 2nd Eigenfrequency, simulated and measured data

(a) 3rd Eigenfrequency, Spring A and simulated data (b) 3rd Eigenfrequency, Spring C and simulated data

Figure 34: 3rd Eigenfrequency, simulated and measured data
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D Actuation stiffness of spring corresponding with measurement

Figure 35: Actuation stiffness for spring length corresponding with measurements with a pre-load of 200 N
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