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Abstract

Multi-aerial rotor vehicles, such as quadcopters and hexacopters, are increasingly finding
application in confined environments, ranging from indoor surveillance and inspection to
warehouse automation. Achieving precise and agile control in these constrained spaces
presents unique challenges, that includes navigating limited space, coping with intricate en-
vironmental dynamics, the aerodynamic disturbances of the confined spaces and real-time
decision-making constraints. Data-driven modeling incorporated Nonlinear Model Predictive
Control (NMPC) are proposed as suitable solutions for addressing these challenges, with a
focus on learning for improved adaptability and the capacity to model and adapt to distur-
bances in confined space environments.
This thesis explores if the integration of data-driven modeling and model-based controllers
can improve the performance of Multi Rotor Aerial Vehicles(MRAV) in confined environ-
ments. The potential combination of data-driven modeling and NMPC control offers several
advantages in the context of confined environment applications. The major advantage is
that the data-driven model provides a more accurate representation of the disturbances, al-
lowing for improved tracking and robustness in the face of external disturbances which is
crucial when navigating around obstacles. Firstly, the dynamic effects of flying an MRAV
in a confined space is analysed based on measurements collected from physical experi-
ments. Then, an NMPC controller that incorporates a Gaussian Process model is explored,
proposed, implemented, analysed, and validated with real-time simulations. The proposed
controller is compared with a nominal NMPC and NMPC controller that incorporates a state
of the art Disturbance Observer. The results shows that the proposed controller outper-
formes both the nominal NMPC controller and the NMPC controller with the Disturbance
Observer.
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Chapter 1

Introduction

This chapter aims to give an introduction to the assignment. The chapter is divided in four
sections namely: motivation, goals of the assignment, experimental validation, and the the-
sis outline.

1.1 Motivation

Advances in the field of multi-Rotor Aerial Vehicles (MRAVs) have made it possible for ve-
hicles to fly autonomously in a 3D indoor environment. The wide range of applications of
such vehicles include inspection and maintenance, mapping, monitoring, surveying, secu-
rity, physical interaction with environment and others. In case of an earthquake structures
such as a small bridge under railways, buildings, sewer tunnels, and mines can be difficult
for adults to inspect. Also, it is logistically time-consuming depending on the size of the
structure. Furthermore, there can be potential hazards such as harmful gases and chemi-
cals, venomous animals, or insects in addition to the unstable structures [3].
Based on these potential risks, Defense Advanced Research Projects Agency (DARPA) has
introduced a sub-terrain challenge [4]. The challenge is to come up with innovative solutions
for aid disaster response and combat operation in underground tunnels and natural caves
environment. This enhanced interest and innovation in indoor aerial vehicles and also high-
lighted the potential risks in these environment.
The motivation for beginning this work is taken from the high demand of a precise hovering
and maneuvering operations in close quarters for aerial vehicles performing inspection and
maintenance tasks. These tasks generally requires the MRAVs to fly in close proximity to
the boundaries such as the walls, ceiling, ground, or pillars with stability. However, when
flying in close proximity to the boundaries, perturbations are induced on the vehicle because
of the aerodynamic interaction between vehicle propellers and the boundary surfaces and
as well as the lack of space to regulate the perturbed position and attitude of the vehicle by
these disturbances. Hence, the proximity effects can have significant impact on the vehicle
stability and affect its ability to perform tasks [3], [5]–[7].
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1.2 Goals of the assignment

This section presents the questions that will be answered by this assignment. The assign-
ment research question is to find if data driven model can improve the performance of model
based controllers in confined environment?
This research question can further be divided into three sub research questions as:

1. How to model these erratic disturbances on MRAVs in confined environment?

2. How to extend the dynamic model of MRAVs to account for these disturbances induced
by the air flows in confined environments?

3. How to extend the existing controllers to ensure accurate trajectory tracking in confined
environments?

1.3 Thesis outline

This section describes the structure of the report.
Chapter 2 presents the accumulated research and results obtained by various groups and
gives a comparison of the results while introducing the contribution of thesis.
Chapter 3 presents the experimental validation of the proximity effect and it’s impact on the
MRAV.
Chapter 4 presents the background used for the methodology in chapter5.
Chapter 5 presents the detailed methodology of the control scheme used to model and elim-
inate the disturbances.
Chapter 6 presents the results from the approach used in chapter 5.
Chapter 7 presents the final conclusion based on the results and future recommendation.

2



Chapter 2

Literature review

This chapter aims at accumulating and discussing the research and results obtained by the
research group regarding the study of proximity effects on multirotor aerial vehicles(MRAVs)
from a modeling and control point of view. The chapter is divided in three primary sections
namely: proximity effects, control of MRAVs in confined spaces, and contribution.

2.1 Proximity effects

This section aims to discuss the research to understand the proximity effects and how these
effects have been modeled analytically, and empirically as well as understand the impact
on MRAVs. The presence of any boundary such as the ground, walls, ceiling or any other
boundary that changes the flow into the rotors, can affect the performance of MRAVs. These
proximity effects induce perturbations in the flight stability, when operating near these bound-
aries. The figure 2.1 depicts the flow of rotors in MRAVs under proximity effect.

Figure 2.1: Flow vectors out of proximity effects: in ground effect, in ceiling effect, and in
wall effect. Pressure is denoted as P, thrust as T, force as f, and torque as
τ . Subscripts a, g, c, w, and e indicate away from surface, near ground, near
ceiling, near wall, and external, respectively [1]

3



2.1.1 Ground effects

The study of proximity effects of the rotorcrafts can be traced back to the 1930s. The studies
until the mid 1980s proposed few analytical approximations of functions based on thrust and
power of one rotor disk also referred to as Helicopter In Ground effect(IGE). IN IGE one ro-
tor disk is oriented parallel to ground up [1], [8]–[10]. [8] described an estimate of the power
of a propeller, operating at constant thrust. By including image vortices below the ground
plane, [9] described an analytical model to estimate torque of a rotor. Using the method of
images, [10] described an analytical model to describe rotor thrust for a helicopter in ground
effect. But it was only valid for z

R >0.5, as the model did not take into consideration the
effect of viscosity or boundary layer effects [1]. Also, some researchers carried out experi-
mental studies for full scale helicopter for ground effects [11]. Numerous analytical models
have been obtained and experimentally validated by various researches and can be seen in
figure 2.2.

Figure 2.2: Ground effects experimentally validated from various research [2]

The y-label show the thrust ratio in hover and x-label show the normalized attitude. The
∞ show the baseline values. z and R denote the attitude over ground and radius of the
rotor respectively. [12] studied the impact of ground on helicopter in hovering and forward
flight scenarios by using the unsteady Reynold averaged Navier stokes method. The results
showed unsteady flow as well as the flow which is recirculating the rotor region. It also
showed that as the gap between the rotors and ground reduces, the lift is increased.
The study of multirotors experiencing the ground effect is inspired from the helicopter in the
study of ground effect. The constant number 4 in mathematical model by [10] is experimen-
tally replaced by [13] using identification with empirical data for the quadcopter under ground
effect. [14] also followed the similar approach and the ground effect was seen up to z

R=5,
that is more than what was predicted by model in [10].
[15] developed a method to predict power and thrust for small UAV experiencing ground
effect numerically. The model combined blade element momentum theory with the model
from [10]. The developed model effectively predicts the ground effect for the specific geom-
etry of the propeller. The potential rotor-rotor interaction is not considered while developing
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the model.
With the emergence of popularity of UAVs and advancements in computation technology,
the interaction of the rotor in ground effect were studied using computational fluid dynam-
ics(CFD), Particle Image Velocimetry(PIV) and advances were seen in control of rotorcrafts
operating in region of the ground effects.
[7] has shown that the correlation between the mathematical model used by [10] and exper-
imental data of the quadcopter is not good. A new model was proposed for the quadcopter
in ground effect by using method of images and potential field. The model includes a single
source situated at rotor geometric center and a term with coefficient. The model was empir-
ically found that to incorporate recirculating flow and generated lift on the central body. The
model was validated by physical experimentation and CFD. When all the rotors are not hov-
ering close to the ground, asymmetrical thrust is caused between the rotors of quadcopter
and the phenomenon is called the multirotor partial ground effect. This effect was recreated
during flight with a PID controller. The observation showed that the effect obtained during
flight and one obtained from the test bench are similar but during flight the effect is greater
in magnitude.
The author also assessed the implementation of [10] for small rotor hovering over the ground,
to find whether it was experiencing ground effect [16]. It shows that [10] is good approxima-
tion for single small rotors of size varying from 6 to 20 in. Following up, [17] developed a
method to generate a map of the ground effect that denotes the change in thrust in environ-
ments with different obstacles. The approach works by testing the effects close to surfaces
and then the obtained data is used to account for different obstacles. [18] has also studied
the impact of the distance between rotors, rotational speed of the rotor and size of rotor
on the quadcopter in ground effect. The thrust performance was evaluated by taking ratio
of thrust generated by quadcopter out of ground effect to thrust in the ground effect. The
results clearly showed that the influences of three parameters on the lift profile are differ-
ent. It can be concluded that when compared with [7], the work by [18] underestimated
the lift profile for the quadcopter IGE [3] but they agreed with [7] that [10] cannot accurately
predict the ground effect. Following up on his work, the author presented a ground effect
model based on empirical data [19]. The model is a rational polynomial for the torque as a
function of standardized height, the radius of the propeller, and the propeller spacing. The
coefficient of polynomials are obtained by data fitting using a cross-validation procedure to
prevent selection biases and over fitting. The mean accuracy of model was within the range
of ±5%. The comparison of the models obtained using cross-validation and other methods
is not discussed.
A modified model for the quadcopter experiencing ground effect is presented by [20],incor-
porating a ground surface quality coefficient. It was seen that for flat and hard surfaces, the
ground effect is at its maximum compared to uneven surface such as grass. A backstepping
control approach is used with the proposed model for reference trajectory tracking and vali-
dated in a simulated environment.
The empirical models are proposed by [21] for a quadcopter experiencing ground effect dur-
ing hover and forward flight respectively. Each model further has two variants to account for
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low to medium and high velocities. Although the results were obtained from Asctec Hum-
mingbird quadcopter, the model was also validated for Bitcraze Crazyflie 2.0. The results
indicated the model can be generalized for a quadcopter with different scale, control and
trajectories.

2.1.2 Ceiling effects

The ceiling effect is another scenario that has been discussed by the researchers. The
ceiling effect for a micro helicopter has been studied by [6] using CFD. The results showed
that when the rotor ceiling gap is decreased, the local effective angle of attack along the
blade span increases. The rotor efficiency is improved but when compared to rotor IGE, the
efficiency is less.
Similar to the ground effect, [17] developed a method to generate a map of the ceiling effect
that denotes the change in thrust in environment with different obstacles. The constant
number 4 in mathematical model by [10] is replaced. The approach works by testing the
effects close to surfaces and then the obtained data is used to account for different obstacles.
The correction factor is included in mathematical model by [10] is experimentally replaced
by [13] using identification with empirical data for the quadcopter experiencing ceiling effect.
The research presented in [22] shows that the mathematical model based on [10] is accurate
for single rotors In Ceiling Effect(ICE) and the model is experimentally validated. However
for the multirotor experiencing the ground effect, the conclusion differs and the model in
[10] is not accurate as suggested by [7]. [23] presented a solution to stay in the contact to
inspect bridges and other infrastructure using the ceiling effect. The ceiling effect has been
modelled for single rotor by changing 4 in the model by [10]. It is found that more thrust is
produced within the multirotor but the shape is similar. The special fairing is used to isolate
the aerodynamic effects for rotors of multirotor so as to replicate the performance as single
rotor case. The distance was found to be 0.36R for maintaining the contact with the lower
part of the bridge which was experimentally validated.
[24] also included a correct factor in the model by [10] by estimating the correction factor
using CFD simulations.
[25] derived analytical models using the momentum theory and the blade element method
for a spinning propeller ICE. The results were consistent with the performance but it does
not give insight into the model’s impact on MRAV and scalability.

2.1.3 Wall effects

Although number of studies have focused on the multirotor IGE or ICE, the scenario that is
relatively new and has been less investigated despite the increase in research and use of
UAV in indoor environments, is flying in proximity of walls or obstacles.
The interaction of the rotor has been investigated by [5] for a micro helicopter hovering
near the wall. The results from the CFD simulations showed that due to hovering near the
wall, an asymmetry is induced in the position and the circulation of the vortex wake. The
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wake asymmetry, induces asymmetry in the lift forces that are acting on the rotor and the
lift forces fluctuates as a function of the rotor azimuth angle. The fluctuation in lift forces
induces disturbance moments that acts on the rotor blade. These disturbing moments are
a function of rotor attitude and rotor-wall gap and have caused an adverse impact on the
stabilization of the attitude of a micro helicopter.
[19] is one of the first study to investigate the near wall effects for the quadcopter. By
early research it was suggested that the attractive force between the wall and quadcopter
is induced by the pitching moment when the thrust vector changes. The results showed
that attraction force between the quadcopter and the wall, and the pitching moment are not
related and thus coupled. The study also proposed empirical models to model ground effect
accurately based on numerical data.
A similar investigation for the wall effect is done by [3] using CFD and experimental methods
for a quadcopter hovering in a tunnel of square cross-section. The study agreed that there
is a disturbing moment acting on the quadcopter when near to the wall. The combined
proximity effects are dominated by inviscid flow forces.

2.2 Control of MRAVs subjected to proximity effects

This section focus on the various control approaches used to model and eliminate the prox-
imity effects for the MRAVs experiencing proximity effects.

2.2.1 Control

An adaptive altitude controller is proposed by [26] to avoid the ground effect for a quad-
copter. The controller estimates the global thrust coefficient online, assuming that the thrust
coefficient are same for all the rotors. The control law is:

u = mg +mk1(k1 + k2)δ2 (2.1)

where, δ2, k1 and k2 are control parameters. k1 and k2 are fixed and δ2 is a variable pa-
rameter that is changed when thrust estimation is changed. The ultrasonic sensor returned
values with noise which is dealt by designing a position and velocity estimator. It was noted
that perturbation resulting from the bad reading from the ultrasonic sensor can destabilize
the system. The results showed that the controller works well but the results do not show
controller performance below the altitude of 50cm as the ground effects might not be ob-
served significantly above 50cm based on the drone size.
[27] presented a comparison in simulation between a feedback linearization(FL) controller
and an adaptive sliding mode(ASD) controller to estimate the ground effects. The ground
effect have been modelled as an additional acceleration term is:

gr(z) =

{
A

(z+zcg)2
− A

(zo+zcg)2
, 0 < z ≤ zo

0, else

}
(2.2)
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where, A is ground effect constant, zcg is the z component of the center of gravity, zo is
altitude below which ground effect affects the MRAV. The FL controller is designed as a
position control of UAV and the ASD controller is designed as reference trajectory tracking
controller. It was seen from the results that the FL controller against perturbation and sensor
noise. For ASD controller, the input matrix was of size 6×4, hence was not invertible. An
augmented input matrix is designed by introducing slack variables into the input matrix. The
augmented control input is:

U = G−1(x)[F (x, xd) + ν − fr(x)] (2.3)

where, xd is the desired state, x is the state, G(x) is the augmented matrix, ν is the slack
variable estimates, and fr(x) is the estimate of ground effects. The results showed that the
proposed control scheme works well with presence of sensor noise and also is able to com-
pensate the ground effects.
The control scheme is proposed by [28] to land a quadcopter on a vertical oscillating plat-
form. The control structure is divided into three modules: the motion estimation module, the
trajectory generation module and an adaptive robust controller(ARC) as a tracking control
module. The ground effects are adapted robustly using ARC. ARC estimated an equivalent
inertia(m/kG) online using measurements from MoCap system and inertial measurement
unit(IMU). The results shows that using the tracking control module reduces the tracking
error when the quadcopter approaches the platform.
[29] presented a model reference adaptive controller(MRAC) scheme for compensating
ground effect on mini quadcopters. A mathematical model was experimentally formulated
and validated. It was found that when the rotor to rotor distance is small, the total thrust
of the quadcopter increases linearly as the quadcopter approaches the ground. When the
distance is found to be large, the total thrust is found to be quadratic as proven in [10]. The
control scheme used a linear quadratic regulator(LQR) control and a feedforward controller
in inner loop for stabilizing quadcopter and altitude tracking. The PID controller and MRAC
is used in outer loop for controlling position and countering the ground effects. The MRAC
is developed by considering an unknown matched uncertainty to the original linearized sys-
tem. The unknown uncertainty F(X) is written as a linear combination of basis functions ϕ(x)
with unknown coefficient θ and is shown in equation 2.4.

ẋ = Ax+B(u+ F (x))

F (x) = θTϕ(x)
(2.4)

To cancel this uncertainty the adaptive control input is given by equation 2.5.

Uadp = −θ̂Tϕ(x) (2.5)

The study considered two basis functions, namely, linear function and radial basic func-
tions(RBFs). The rate of change of θ̂ is given by the difference between measured state and
reference. The results showed that including MRAC into the control scheme outperforms
the multirotor using only PID controller. Also, The MRAC using RBFs performs better as
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compared to the linear model although computation is increased for RBFs.
The robust controller is applied by [30], by performing numerical simulation on the quad-
copter. A position controller is developed using the saturated robust integral of sign of er-
ror(RISE). The ground effects are obtained from equation 2.2. The control law is:

u = G−1(x)[γ1tanh(ν)] (2.6)

Here, γ1 is a control gain>0, ν is Filippov solution obtained from the differential equation
containing the tracking errors. The result showed that the proposed controller is able to
compensate for the ground effect and added noise while guaranteeing that the saturation
limit is not transcended in addition to using advantages of high gain control.
[31] presented a cascaded control approach to compensate for the ceiling effect. The cas-
caded control consists of an attitude controller that incorporate a PID controller and a posi-
tion controller consisting of Nonlinear model predictive controller(NMPC). The system iden-
tification is performed using UKF and constraints for the parameters are estimated using a
sigmoid based function. The results shows that the position controller is effective.
Following up to [31], [32] presented a cascaded control scheme with a nonlinear force esti-
mator for close proximity to ceiling. The force estimator identifies forces online based on the
pose measurement. The results show that the quadcopter can handle the ceiling effect upto
1 cm below ceiling.
A semi autonomous control scheme is proposed by [3], [33] for a quadcopter flying in a
tunnel like environment. The system used a combination of a Kalman filter for translational
position and velocity and a Hough scan matching(HSM) for computation of position infor-
mation with fusing acceleration data. The Kalman filter is used because the update rate for
position is slow from HSM. The estimated states are used to track the error and an integral
controller is used for self stabilization. The control scheme is only valid in y-z frame. The
control law is:

u1 =
1

cosϕ cos θ
(g + z̈d + a1epz + a2 ˙epz + a3βz)

sinϕ =
−1

u1
(ÿd + c1epy + c2 ˙epy + c3βy)

(2.7)

where, a1, a2, a3, c1, c2 and c3 are positive control gains, z̈ and ÿ are the desired accel-
erations, and ep and ėp are tracking and velocity errors. ϕ is the target input roll angle.
The result shows that the position estimation and velocity estimation from Kalman filter are
smooth. The two types of experiments, step input tracking and trajectory tracking are per-
formed to validate the control scheme. For the step input tracking, the quadcopter is able
to follow the z position with negligible errors, however, the system has lateral oscillations of
±50mm when trying to reach y position, experiencing significant errors. For the trajectory
tracking, the control scheme is able to follow the trajectory in a stable way, however, the
performance deteriorates over time. The errors are present in both positions, 50 mm in z-
axis and 80mm in y-axis. The performance is compared with PID controller and it shows to
outperform the PID controller.
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2.2.2 Observers

This section focuses on active rejection control i.e. when observers are used to estimate
and compensate for the disturbances( internal or external) online [1].
The wall effects have been estimated and compensated by [34], using a Luenberger ob-
server. The state and disturbance estimator gain is estimated using h∞ synthesis using
onboard IMU sensor. The results showed that the proposed control scheme can passively
estimate the wall effect, however, the estimation has errors and the estimate encounters
numerical instability as the quadcopter goes further away from the surface.
The control system of the quadcopter is decoupled by [35] into three loops that are inner,
angle and position loops. The dynamic inversion is implemented to design a control law for
position and angle loops. The incremental nonlinear dynamic inversion(INDI) is implemented
to design a control law for the inner loop. The integral extended state observer(IESO) is in-
corporated with the inner loop to achieve ground effect rejection. The arranged transient
process(ATP) is used to smooth out and smooth transition in the desired reference. The
control law for the inner loop is given as in 2.8 [1] which is similar to 2.3.

U = wo +G−1(x)[F (x, xd)−∆dis] (2.8)

Where, wo are the velocities at last sample time, and ∆dis are the disturbances that account
for the ground effects. The results showed that IESO can observe and mitigate the ground
effect in simulations. Additionally, the control scheme is shown to be effective for trajectory
tracking in simulation.
Similar to the IESO, some non-linear disturbance observer(NDO) based control scheme is
also used. [36] proposed a control scheme to predict and compensate the ground effects
by incorporating an adaptive non-linear disturbance observer(ANDO) in the inner loop for
attitude control. The inner loop consists of ANDO and a propotional-integral-velocity(PIV)
controller while the outer loop for position is controlled by a PID controller. The ANDO is used
to estimate the disturbance in torque and forces due to the ground effect. The ground effects
are compensated by converting the disturbance estimates to pulse width modulation(PWM)
and adding the obtained PWM values to the motor mixer. An adaptive law is designed for
the motor parameters to estimate the global thrust coefficient and for simplification of the
modeling process. The adaptive law is:

Ti∞ = kmW
2
i

˙̂
km = cmctez

(2.9)

where, Ti∞ is generalized torque, km is the motor parameters, cm is adaptive gain, ct is the
control output, ez is the height tracking error and Wi is the PWM command of the ith motor.
The results showed that the proposed ANDO effectively compensate the disturbances by
ground effect and settling time is reduced by 60% in a simulation environment.
[37] focused on designing and validating the NDO from [36] without adaptive law in combi-
nation of the model based feed forward controller to compensate for the ground effect. The
linear velocity and angular velocity along height are estimated using a barometer and an
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IMU respectively. The compensator constraints the thrust to set limits. The tracking perfor-
mance is improved and error is reduced by 23% when compared to without NDO. [7] also
implements NDO to estimate the force and torque for the quadcopter experiencing ground
effect, compared the performance with the conventional PID and feed forward scheme. It is
shown from the obtained result when a quadcopter is in the test bench that it outperforms the
conventional PID controller, however the feed forward scheme provides the best response.

2.2.3 Estimator

This section focuses on active rejection control i.e. when estimators are used to estimate
and compensate for the disturbances( internal or external) online [1].
[38] used a continuous ant colony filter to estimate and compensate the ground effects. The
filter used the dynamic model of the quadcopter. The ground effect is modeled using a coef-
ficient provided by Hayden [39]. The equivalent radius is used instead of the radius of single
rotor to scale the ground effects for quadcopters. The inaccurate modeling of ground effect
is dealt by using the filter to estimate and compensate the errors online. It was seen that
the algorithm works in all flight conditions except for hovering because in hovering the pa-
rameters are not observable. This was dealt with by proposing a special landing procedure
introducing sinusoidal motion in phase two instead on near hover condition. Simulations
results shows that an accurate landing is performed.
[40] presented an UKF based approach to estimate the torque and force disturbance for the
wall effect. It uses the Gaussian based regression model as UKF for predicting the forces
and torques. The data is sent to a support vector machine(SVM) and a warning is triggered
if proximity to a wall is detected. It has been shown that the proposed controller converges
to true value for ground effect and stays robust in a simulation environment. The proposed
scheme is also experimentally validated to estimate force with machine learning to respond
to tasks such as wall detection, holding position relative to wind and avoiding downwash.

2.2.4 Neural networks

A deep leaning based nonlinear robust controller, termed as neural lander is presented
by [41], to improve the performance of the MRAV during landing. The control approach uses
a combination of a Deep Neural Network(DNN) and nominal dynamics models to learn high
order interaction. The output of DNN is limited by the spectral normalization. The limits
on the output are leveraged to design a nonlinear feedback linearization(FL) controller that
uses the learned model and prove system stability in addition to disturbance rejection. The
learned model is trained offline. The control law is:

u = B−1
o (u1 −mg − f̂a) (2.10)

where Bo is the input matrix, u1 is the PD controller output, gravity vector is given by g and
f̂a is defined as DNN prediction to the disturbances induced by the ground effect. It is exper-
imentally validated that the proposed neural lander outperforms the baseline controller in all
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three axes. Additionally, it successfully captures the ground effect with other aerodynamics
effects while assuring the stability of the controller.
As an extension to [41], [42] implemented DNN to include online learning with the goal of
adapting to the new unknown situations. The model was tested on the quadcopter in the sim-
ulation environment with similar nonlinear FL controller as in [41]. The simulations showed
positive and even better results than a model trained offline but the stablity is not assured for
a closed loop scheme.
The Modular Deep Recurrent Neural Network(MODERNN) framework is used by [43] to
model a multi-input-multi-output(MIMO) quadcopter model experiencing the ground effects.
The ground effects have been roughly mapped in the force generated by motors. Although,
ground effect is modeled, the influence of the ground effect on system has not been shown.
An adaptive controller and deep neural network based controller is presented by [44] to
control the quadcopter experiencing ground effect during landing and levitating. The adap-
tive controller uses an additional force in z-direction as disturbance. The ground effect is
estimated using an orthogonal trigonometric basis function. For the neural network based
controller, data containing the relationship between the motion status and disturbance from
ground effect is obtained offline by manually flying the drone up and down. The ground ef-
fect is then calculated from motion status and controller is used to compensate the ground
effect. The control input is:

u = un − ud

un = mg +mv̇d −Ke
(2.11)

where, un and ud are the nominal control input and compensation input respectively. Here,
e is the state error, K is gain of the controller and v̇d is desired acceleration. ReLu based
learning is selected as an activation function. The measurement noise for the disturbance
is reduced by using extended kalman filter.The experiments show that the neural network
based controller has smooth landing and levitation as compared to the adaptive controller
and they both outperform PID controller.
A novel learning based approach is proposed by [45] for modelling of multirotors experienc-
ing near surface effects for arbitrary geometry of the platform. The approach uses three
neural networks to predict the robot states and the control inputs. The approach starts by
predicting the thrust for a single rotor and then corrects the predictions for the multi rotors.
The model learns latent feature space of the landing platform for a robot centered occu-
pancy grid using auto encoders. The proposed approach is validated using the single rotor
and multirotor models, The robot centered occupancy grids by auto encoding are compared
with the ground truth occupancy grids. The result showed that the approach using only ro-
tor velocities and thrusts for a single rotor is not enough to predict the thrust correction for
the multirotor. Also, height needs to be considered as input as well, however, it is not yet
included in the model.
A self adapting sliding mode control(SMC) based on combination of sliding surface control
based PID controller and a neuro-fuzzy controller is proposed by [46]. The output from a
sliding surface based PID controller is used to update the parameter vector of neuro fuzzy
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controller. The learning structure for the fuzzy controller is self evolving based on the bal-
ance between variance and bias. The MRAV is made to follow a circular and eight-shaped
trajectory. It is shown that the proposed control scheme outperforms PID controller and
NMPC controller in close proximity flight for tracking circular and eight shaped trajectories
and holding the attitude. The stability analysis is provided to show that the error is bounded
for the system having disturbances. The table 2.1 shows the overview of various control
approaches discussed.

Here, the proximity disturbances are classified into ground effect, ceiling effect and wall

Table 2.1: Comparison of various control scheme for the multirotors. A: Proximity distur-
bances B: Data driven approach C: Model based control D: Controller validation
through real experiment

References A B C D
Guenard et al. [26] G × ×
D. Lee et al. [27] G × ×
Botao Hu et al. [28] G ×
Peng wei et al. [29] G ×
Waheed et al. [30] G × ×
Hei Vong et al. [3], [33] G,W ×
Kocer et al. [31], [32], Robinson et al. [34] C ×
Robinson et al. [34] W ×
Han Du et al. [35], Xiang He et al. [36] G × ×
Xiang He et al. [37] G × ×
Sanchez-Cuevas et al. [7] G ×
H. Nobahari and A. Sharifi [38] G × ×
Mckinnon [40] G,W ′ × ×
Guanya Shi et al. [41] G ×
Guoxi Xu et al. [44] W ×
Helen [42] G ×
Edmonds et al. [45] W × ×
Mohamad Abdul Hady et al. [46] G,C ×
Learning Based MATMPC (Proposed solution) ×

effect and are denoted by G,C and W.

2.3 Contribution

It can be seen from the above that most of the literature is focused on the modeling and
control of the MRAV experiencing ground effect and little literature is focused on the ceiling
effect and even fewer on the wall effect. The models of ground effects based on an analytical
model are not completely valid for the multirotor. The models obtained empirically by fitting
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the data from experiments are able to explain the ground effect to an extent. However it does
not comment on the scalability of the multirotors, lacks adaptability, and also may include
lots of parameters that might be complex to work with. Section 2.2.1 gives an overview of
various control schemes that are being used with the conventional controllers to model and
compensate primarily ground effects. Based on the study so far, there is a lack of study
to the best of my knowledge that comments on the proximity effects as a whole and also
uses data data-driven approach with model-based control. Thus, this assignment intends to
provide and if possible experimentally validate to model and compensate for the proximity
effects during hovering maneuvers of the MRAVs using data data-driven approach. The
method proposed by [47] is considered as the base motivation to model and compensate
for the proximity effect as it uses a Gaussian process learning-based NMPC. Based on [37],
a nonlinear disturbance observer is chosen as a state-of-the-art control scheme from the
literature to compare our presented approach.
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Chapter 3

Data Acquisition and Analysis

From the literature, it is seen that there exist proximity effects when MRAV moves in close
proximity to the obstacles. This chapter intends to experimentally validate the proximity ef-
fect and use data analysis from the experiments to see the impact of these disturbances on
the MRAV.
The first experiment was conducted at the Saxion University in a big room where it is as-
sumed that there are no proximity effects on MRAV from the surrounding environment dur-
ing the hovering phase. The size of the big room in Saxion was roughly |4m×4m×6m|. The
other experiments were conducted at the University of Twente in a small room where the dis-
turbances were present. The MRAV used for all three experiments is called Fiberthex, which
is a six-tilted rotor platform. The same Nonlinear model predictive controller(NMPC) [48]
with the same parameters was used to conduct the experiments. Figure 3.1 shows the test
setups for the experiments. big room shows the data from hovering MRAV without experi-
encing any proximity effects i.e. showing the data from the experiment performed in the big
room and small room has the datasets from hovering MRAV experiencing proximity effects
i.e. showing the data from the experiment performed in small room.

1

Experiment A 
(at University of Saxion)

Experiments B and C
(at University of Twente)

Figure 3.1: Test Setup
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3.1 Time domain

This section presents the effects on the MRAV experiencing proximity effects compared
to when the effects are not present in time domain. The chapter A shows that there is a
significant difference between datasets. The experiments are performed twice to check re-
peatability. Here, we chose to present the comparison of two datasets where each dataset
represents the proximity effect present during a small room and the absence of proximity
effect during a big room respectively.
Figure 3.2 shows the boxplot of data obtained for the error between positions and desired
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Figure 3.2: Boxplot for Normalized Position Error

positions in x, y, z axes. The data has been normalized with respect to data from big room
to clearly show the relative difference between the datasets due to the disturbances.
Table 3.1 shows the median, the mean, IQR(interquartile range) and the range of data for

Table 3.1: Data obtained from box plots
States and

Errors
Axis

Median Mean Interquartile Range Range
Big Small Big Small Big Small Big Small

Position error
x -0.0034 -0.0021 -0.0034 -0.0021 0.0015 0.0039 0.0061 0.0146
y 0.0034 -0.0092 -0.0033 -0.0094 0.0014 0.0032 0.0058 0.0129
z -0.0452 -0.0266 -0.0454 -0.0266 0.0040 0.0078 0.0158 0.0310

Orientation error
x 0 -0.0052 0.0297 -0.0052 0.0225 0.0278 0.0674 0.1110
y -0.0105 0.0112 -0.0112 0.0108 0.0172 0.0234 0.0571 0.0930
z 0.0391 0.0401 0.0393 0.0393 0.0074 0.0156 0.0297 0.0468

Linear velocity
error

x 0.0020 0.0082 0.0019 0.0086 0.0132 0.0452 0.0525 0.1498
y -0.0033 0.0107 -0.0035 0.0113 0.0108 0.0272 0.0433 0.1086
z -0.0034 0.00084 -0.0033 0.00010 0.0281 0.0559 0.1121 0.2233

Angular velocity
error

x 0.0015 -0.0024 0.0011 -0.000929 0.0615 0.1190 0.2460 0.4750
y -0.0014 0.00068 -0.0010 0.000955 0.0730 0.1355 0.2918 0.5406
z -0.0024 0.000022 -0.0020 0.000708 0.0378 0.0456 0.1509 0.1816

Thrust

Propeller 1 3.8864 3.9701 3.8590 4.0482 0.5720 0.9924 2.1691 3.6896
Propeller 2 3.5114 3.9487 3.5349 3.9398 0.4728 1.0596 1.8036 3.8859
Propeller 3 4.6647 4.3562 4.6823 4.3545 0.4792 0.9453 1.8188 3.4837
Propeller 4 3.2402 3.5527 3.2216 3.6309 0.5496 1.0068 2.0806 3.7268
Propeller 5 3.7728 4.5538 3.7679 4.5612 0.4638 1.0355 1.8459 3.5545
Propeller 6 3.9813 3.7906 3.9944 3.8134 0.4618 0.9296 1.8311 3.4299

various error and states of the MRAV. IQR shows the spread of data in box or spread of 50
percentile of data. Range shows the spread of hundred percentile of data.
It is seen from figure 3.2 and table 3.1 that the medians of error in x and z axes are higher
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for big room as compared to median of the error in small room, whereas median of error in
y axis is higher for small room as compared to error in big room. The median is chosen over
mean because median is more robust than mean.
Comparing the median and mean of errors in x, y and z axes, it is seen that in y-axis,
the error is left skewed for big room and right skewed for small room. The right(positively)
skewed distribution implies that the error density below median is high that drags the mean
lower than the median and there are relatively fewer larger errors compared to the number
of small errors instances that makes the distribution skewed whereas the left(negatively)
skewed distribution implies that the error density above median is high that drags the mean
higher than median and there are relatively fewer small errors compared to the number of
large errors instances that makes the distribution skewed.
This suggests that the error in y-axis for big room has lower error at the center but there are
few instances of large errors that make the distribution skewed whereas for small room have
higher error at center but there are few instances of smaller error that makes the distribu-
tion skewed. For the error in z-axis, the error in big room has a right skewed distribution,
whereas the error in small has a symmetric distribution. The same can be seen in figure 3.2.
This suggests that the error in z axis for big room has a higher error at the center. However,
there are a few instances of smaller errors that makes the distribution skewed. For the error
in x-axis, the error is symmetrically distributed. Additionally, IQR and the range in table 3.1,
shows that the variation of errors is significantly higher for small room as compared to big
room.

Figure 3.3 shows the normalized orientation error in the x, y, and z axes and the errors
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Figure 3.3: Boxplot for Normalized Orientation Error

have been normalized w.r.t. the error from big room. Figure 3.3 and table 3.1 shows that
that median of the error in x axis is higher in magnitude for big room as compared to small
room showing higher error for big room. However, for errors in y and z axes respectively, the
median of errors is larger for small room as compared to errors from big room. Additionally,
table 3.1 and figure 3.3 show that the variation of errors is significantly higher for small room
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as compared to big room.
When comparing the median and mean of errors in x,y and z axes from table 3.1 and figure
3.3, it is seen that for the error in x axis, big room has right skewed distribution. However,
small room has a symmetric distribution. The error in y axis for big room has a right skewed
distribution and a left skewed distribution for small room. The error in z axis for big room has
a right skewed distribution while the error for the small room has a left skewed distribution.
Figure 3.4a shows the normalized data obtained for the linear velocities in x, y and z axes

In x In y In z
Big room Small room Big room Small room Big room Small room

-2

-1

0

1

2

3

N
or

m
al

iz
ed

 L
in

ea
r 

V
el

oc
ity

 E
rr

or

Boxplot for Normalized Linear Velocity Error

Error in z
Error in y
Error in x

(a) Boxplot for Normalized Linear Velocity Error

In x In y In z
Big room Small room Big room Small room Big room Small room

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 A
ng

ul
ar

 V
el

oc
ity

 E
rr

or

Boxplot for Normalized Angular Velocity Error

Normalized Error in z
Normalized Error in y
Normalized Error in x

(b) Boxplot for Normalized Angular Velocity Error

Figure 3.4: Boxplot for Normalized velocity Error

where the errors is normalized wrt errors from big room. Figure 3.4a and table 3.1 show that
median of errors in x and y axes are higher in magnitude for the small room as compared
to big room. The median of error in z axis is higher in magnitude for big room as compared
to the small room. It is seen that from table 3.1, that the variation of errors is significantly
higher for small room as compared to big room.
When comparing the median and mean of errors in x,y and z axes from table 3.1, it is seen
that for the error in x axis, big room has a left skewed distribution and has a right skewed
distribution for small room. The error in y axis for both room has right skewed distribution.
The error in z for both the rooms have left skewed distribution.
Figure 3.4b shows the data obtained for the angular velocity errors in x, y, and z axes. It is
seen from the figure 3.4b and table 3.1 that the median of the error in the x axis is higher in
magnitude for small room as compared to big room. However, for the error in y and z axes,
the median of error is higher in magnitude for small room as compared to the median of
error for big room. It is seen that the variation of errors is significantly higher for small room
as compared to big room. When comparing the median and mean of errors in x,y and z
axes from table 3.1, it is seen that for the error in x axis for both the rooms has a left skewed
distribution. The error in y axis for small room have right skewed distribution, whereas big
room has a left skewed distribution. The error in z for big room has a left skewed distribution,
whereas small room has a right skewed distribution.
Figure 3.5 shows the normalized thrusts data where thrusts are normalized w.r.t. thrusts

from big room. It is seen from the figure 3.5a, figure 3.5b and table 3.1 that medians of
thrusts from the propeller 1, propeller 2, propeller 4 and propeller 5 are higher in magnitude
for small room as compared to big room.
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Figure 3.5: Box plot for thrusts

The median of thrusts from propellers 3 and 6 are higher in magnitude for big room as com-
pared to small room. It is seen that the variation of all six thrusts is significantly higher for
small room as compared to big room.
When comparing the median and mean of errors of thrusts from table 3.1, it is seen that
for thrusts in big room for propeller 1 and propeller 4 have a left skewed distribution and for
small room have a right skewed distribution. The thrusts of propeller 2 and propeller 3 in
big room have a right skewed distribution and a left skewed distribution for small room. The
thrust of propeller 5 for big room has a left skewed distribution and for small room has a right
skewed distribution. The thrust of propeller 6 for both room has a right skew distribution.
It is seen that except for the position in the x-axis, all other datasets have skewed distribution.
During the repeatability of the experiments in the small room, it was seen that there is a bit
of inconsistency in thrust from propeller 1 for experiments as compared to other thrusts. The
possible reason for this is that one of the obstacles(wall in our case) was relatively closer to
the propeller 1, so the effect is more dominant.
It is observed from IQR and range in table 3.1 and seen from all boxplots, that the spread
or variation of all the states and errors are significantly higher for small room as compared
to big room. This is expected because the disturbances have not been accounted for by the
controller. When the controller reaches the desired position, there are unmodeled dynam-
ics of disturbances that makes the controller deviate from the current position. When this
happens, the controller again needs to reach the desired position.

3.2 Frequency analysis

This section presents the frequency analysis of data to show the impact on states and errors
in the frequency domain due to presence of proximity effects. Table 3.2 shows the dominant
frequencies and peak amplitude of the Fast Fourier Transform(FFT) of various states and
errors. The fft plots are shown in appendix B. Figure 3.6 shows the logarithmic plots and the
cumulative frequency distribution of the FFT of position error in x, y and z axes for experi-
ments in the small room and the big room respectively. As seen from table 3.2, the position
error has the same dominant frequency for both rooms suggesting that the periodic or os-
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Table 3.2: Data from FFT plots

States and errors Axis
Dominant frequency(Hz) Peak Amplitude

A B A B

Position error
x 0 0 57.8025 36.0901
y 0 0 56.0059 159.7277
z 0 0 771.0234 452.6878

Orientation error
x 0 0.0147 505.2573 109.6253
y 0 0 191.1030 183.1622
z 0 0 668.6526 668.5632

Linear velocity error
x 0 2.19105 31.7477 159.2447
y 0 0 59.5080 192.7302
z 0 2.36751 56.2915 270.5061

Angular velocity error
x 2.36751 2.19105 84.8752 185.2759
y 0.441151 2.19105 83.5769 143.7759
z 37.6448 37.1596 44.3157 81.3403

Thrust

Propeller 1 0 0 65610 68820
Propeller 2 0 0 60100 66980
Propeller 3 0 0 79600 74030
Propeller 4 0 0 54770 61730
Propeller 5 0 0 64060 77540
Propeller 6 0 0 67910 64830

cillatory component is the same. Additionally, the peak amplitude of position errors in x and
z axes at the dominant frequency has higher amplitude in big room as compared to small
room suggesting that the errors are larger in big room as compared to small room at the
dominant frequency. The amplitude of the position error in y-axis at the dominant frequency
has a higher amplitude in small room as compared to big room. This suggests a higher error
in small room as compared to big room at the dominant frequency.
From figure 3.6a, figure 3.6b and figure 3.6c, it is seen that as the frequency increases, the
amplitude of the x,y, and z axes components for small room are higher but overall the am-
plitude keeps decreasing and not very significant when compared to amplitude around and
at the dominant frequency. It is also interesting to note there are few exceptions that there
exist few frequency components like between 5 to 7 Hz and around 240 to 245 Hz where
the amplitude of fft of errors in big room is higher as compared to small room that might
be highlighting the stochastic nature of noise that affects system dynamics at that particular
frequencies. From figure 3.6d, it is seen that the proximity disturbances are more dominant
in low frequency regions for errors in the x and y axes. The errors in the z-axis are similar in
magnitude.
Figure 3.7 shows the logarithmic plots and cumulative frequency distribution of FFT of ori-
entation error in x, y, and z axes for small and big rooms respectively. As seen from table 3.2
the orientation error has the same dominant frequency for both the rooms for y and z axes,
suggesting that the periodic or oscillatory component is the same. However, for error in x
axis, the dominant frequency is higher for the error in small room which is due to proximity
effect affecting the system dynamics. Additionally, the peak amplitudes of orientation errors
in all three axes at the dominant frequency have higher amplitudes in big room, as compared
to small room. This suggests that the errors are larger in big room, as compared to small
room at the dominant frequencies.
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10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Frequency (Hz)

10 -6

10 -4

10 -2

10 0

10 2

10 4

M
ag

ni
tu

de
 (

dB
)

Logarithmic FFT for Position Error in y

Position error y(big room)
Position error y(small room)

(b) Logarithmic plot of FFT of Position Error in y

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

Frequency (Hz)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

M
ag

ni
tu

de
 (

dB
)

Logarithmic FFT for Position Error in z

Position error z(big room)
Position error z(small room)

(c) Logarithmic plot of FFT of Position Error in z
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Figure 3.6: Frequency plot for position error

From figure 3.7a, figure 3.7b and figure 3.7c, it is seen that as the frequency increases, the
amplitude of x, y and z components for small room are higher. This implies higher noise
but, as a whole the amplitude keeps decreasing and is not very significant when compared
to amplitude around and at the dominant frequency. It is also interesting to note that there
exist a few frequency components for example between 10 to 60 Hz for error in x axis and
around 240 to 245 Hz for all components where the amplitude of FFT of errors in big room
is higher as compared to small room error in x. From figure 3.7d, it is seen that the proximity
disturbances are more dominant in low frequency regions for errors in the x, y, and z axes
as thats where the max errors are added.
Figure 3.8 shows the logarithmic plots and Cumulative Frequency Distribution (CFD) of the

FFT of linear velocity error in the x, y, and z axes in the big and the small room. Table 3.2
shows that the linear velocity error has the same dominant frequency for both rooms for the
y-axis suggesting that the periodic or oscillatory component is the same. However for the
errors in x and z axes, the dominant frequency is higher for the error in small room which
is again due to proximity effect affecting system dynamics. Additionally, the peak amplitude
of linear velocity errors in all three axes at the dominant frequency have lower amplitudes
in big room as compared to small room suggesting that the errors are less in big room as
compared to small room at the dominant frequency.
From figure 3.8a, figure 3.8b and figure 3.8c, it is seen that for the low frequencies, the
amplitude of the x and y axes components for small room are higher, whereas for z-axis
it is similar. This implies higher noise at low frequency for x and y axes, but as frequency
increases the amplitude in all three axes for small room are lower than the amplitudes in
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(a) Logarithmic plot of FFT of Orientation Error in x
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(b) Logarithmic plot of FFT of Orientation Error in y
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(c) Logarithmic plot of FFT of Orientation Error in z
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Figure 3.7: Frequency plot for Orientation error

big room. However, throughout bandwidth, the amplitude keeps decreasing and is not very
significant compared to the amplitude around and at the dominant frequencies. From figure
3.8d, it is seen that the proximity disturbances are more dominant in low frequency regions
for errors in the x and y axes. The errors in the z-axis are similar in magnitude.
Figure 3.9 shows logarithmic plots and Cumulative Frequency Distribution (CFD) of the FFT

of angular velocity error in x, y, and z axes in the big and the small room respectively. Table
3.2 shows that, the dominant frequency is higher for the error in small room compared to big
room for the error in y-axis and dominant frequency being higher for big room in x-axis as
compared to the small room whereas for error in z axis the dominant frequencies are close
to each other. Additionally, the peak amplitude of errors in all three axes at the dominant
frequency have lower amplitude in big room as compared to small room. This suggests that
the errors are smaller in big room at the dominant frequency.
From figure 3.9a, figure 3.9b and figure 3.9c, it is seen that for the error in x and y axes the
harmonics components for small room are higher than big room. For the error in z axis, the
harmonic components for the small room are higher in the small room, upto 60 hz. However,
as frequency increases, the magnitude of harmonic components in small room have similar
amplitude compared to big room. The amplitude of high frequency harmonic components
are significant compared to peak at the dominant frequency and contributes to the error.
From figure 3.9d, it is seen that the proximity disturbances are more dominant in between
40 to 60 Hz for errors in the x, y, and z axes.

Figure 3.10 shows the logarithmic plots and Cumulative Frequency Distribution (CFD) of
thrust for the propellers. It is seen from table 3.2 that the dominant frequency for all frequen-
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(a) Logarithmic plot of FFT of Linear velocity Error in x
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(b) Logarithmic plot of FFT of Linear velocity Error in y
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(c) Logarithmic plot of FFT of Linear velocity Error in z
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Figure 3.8: Frequency plot for Linear velocity error

cies are same for all propellers. The peak amplitude in small room for thrusts for propeller 1,
2, 4 and 5 is higher and lower for thrusts for propeller 3 and 6 as compared to amplitude of
big room. From figure 3.10a, 3.10b, 3.10c, 3.10d, 3.10e, 3.10f, it is seen that the amplitude
of thrusts is higher for small room except around 10 to 25 Hz but as frequency increases
the amplitude of frequency components keep decreasing and become relatively insignificant
compared to peaks around the dominant frequencies. It is also seen from figure 3.10g that
the proximity effects are more dominant in low frequencies as that’s where the maximum
increase in amplitude is observed.

3.3 Cross-spectral analysis

This section presents the cross-spectral analysis of the data. It was performed to measure
the frequency domain relationship between two signals and how it correlates or co-varies
with other signal at same frequencies. The cross spectral power density is obtained by tak-
ing Fourier transform of the cross correlation function.
Figure 3.11a shows the cross-spectral power density (CPSD) between different position er-
rors in x, y and z for the big room and the small room. It is seen that the amplitude for small
room are higher than amplitude for big room for the correlations between errors. CPSD sug-
gest very weak or negligible relationship between aforementioned errors.
The figure 3.11b shows the cross-spectral power density (CPSD) between different orienta-
tion error in x, y and z in the big room and the small room. It is seen that the amplitude for
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(b) Logarithmic plot of FFT of Angular velocity Error y
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(c) Logarithmic plot of FFT of Angular velocity Error z
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Figure 3.9: Frequency plot for Angular velocity error

big room is higher in amplitude for the small room for all the errors. CPSD suggest weak re-
lationship for error between x and y for big room however the correlation is negligible for the
small room. CPSD for orientation error between y and z suggests a moderate relationship
for both the rooms. CPSD for error between x and z have a strong correlation for big room,
a moderate correlation for the small room.
The figure 3.11c shows the cross-spectral power density (CPSD) between different linear
velocity errors in x, y and z for the small room and the big room. From CPSD, it is suggested
the correlation between all errors are negligible although it is interesting to note that the cor-
relation for errors for small room.
The figure 3.11d shows the cross-spectral power density (CPSD) between different angular
velocity error in x, y and z for the big room and the small room. From CPSD, it is suggested
the correlation between all errors are negligible although it is interesting to note that the cor-
relation for errors for small room.
The figure 3.12 shows the CPSD between different thrusts for the big room and the small
room. It is seen that all thrust have strong correlation with each other. There is more strong
correlation for small room compared to big room for propellers 1 and 2, 1 and 4, 1 and 5,
1 and 6, 2 and 4, 2 and 5, 2 and 6, 3 and 5, 4 and 5, 5 and 6. There is similar correlation
between propellers 1 and 3, 2 and 3, 3 and 4, 4 and 6 for both rooms.
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(a) Logarithmic plot of FFT of Thrust from propeller 1
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(b) Logarithmic plot of FFT of Thrust from propeller 2
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(c) Logarithmic plot of FFT of Thrust from propeller 3
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(d) Logarithmic plot of FFT of Thrust from propeller 4
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(e) Logarithmic plot of FFT of Thrust from propeller 5
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(f) Logarithmic plot of FFT of Thrust from propeller 6
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Figure 3.10: Frequency plot for Thrust
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(a) Cross spectral density for position error
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(b) Cross spectral density for orientation
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(c) Cross spectral density for linear velocity error
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(d) Cross spectral density for angular velocity error

Figure 3.11: Cross spectral density
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Figure 3.12: Cross spectral density for propeller thrust
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Chapter 4

Theoretical Background

This chapter introduces the theoretical background used to derive the method to model and
compensate for the proximity effect. The chapter first introduces the used controller namely,
NMPC (Nonlinear Model predictive controller), then Gaussian process based modeling that
will be used in the method and finally the state-of-the-art disturbance observer.

4.1 NMPC

The MPC(model predictive control) is based on the study of the LQR(Linear Quadratic Regu-
lator) based optimization. For a continuous system, the model dynamics can be represented
in the general form:

ẋ(t) = f(x(t), u(t), t, p) (4.1)

where, x ∈ Rnx is the state vector with nx being number of states, u ∈ Rnu is the input vector
with nu being number of inputs, p ∈ Rnp are the parameters. An infinite dimension OCP
(optimal control problem) defined for the continuous time of Bolza type objective function for
the above equation is:

u∗ = argmin
x,u

E(x(tf )) +

∫ tf

t0

L(x(t), u(t))dt (4.2)

r(x, u) = 0,

s(x, u) ≤ 0
(4.3)

where L(x(t),u(t)) is stage cost and E(x(tf )) is the terminal cost. The MPC computes the
optimal solution i.e. the sequence u∗ such as to minimize the cost or objective function along
the future time window [t0 tf ] called prediction horizon subjected to constraints, realized by
functions r(x,u) and s(x,u) in equation 4.3. By standard, r includes the model dynamics
constraints that evolve from equation 4.1 and real system measurements. The states and
input constraints are included in s. The MPC solves the OCP at each sample time(Ts)
iteratively. In other words, the principle of MPC can be summarized as:

• the measurement of the states are obtained x̂k at time instant tk where tk is the current
time
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• solve the OCP for prediction horizon and get the first solution of u∗ given by u0

• obtained u0 is applied to the real system for time Ts

• the process is repeated after each time Ts

The predictive horizon is shifted forward in the case of a receding horizon and shrank in the
case of a diminishing horizon. It can be seen that the MPC has three primary blocks, namely
the convex cost function reflecting the goals of the control tasks, the dynamics model of the
physical system and the constraints imposed on the states, and the control input for the en-
tirety of the control tasks.
The variant of MPC can be termed NMPC if it takes into account the nonlinear model dy-
namics of the plant and the constraints that can be either linear or nonlinear. The primary
advantage of NMPC over reactive controllers where the control input at any time instant is
computed with the state errors at the current time or past time, does not generate an intrinsic
delay and guarantees that the physical constraints from the real system are satisfied by the
input or the state.
The OCP is usually solved by three methods that can be categorized into dynamic pro-
gramming, indirect methods and direct methods. The dynamic programming method uses
Hamilton-Jacobi-Bellman(HJB) equations to compute a solution that gives the necessary op-
timal conditions for the OCP. The main drawback of this method is the high complexity and
computation requirement for the moderate dimensions. The indirect method uses the min-
imum principles to get the necessary conditions for the OCP to define multipoint boundary
value problem(MPBVP) i.e. differential algebraic equations solved usually by Newton opti-
mization schemes iteratively. The main disadvantage of this method is deriving the DAEs
can be intractable and the control elimination through algebraic methods might be impossi-
ble. The direct method converts the OCP into a nonlinear programming(NLP) problem with
finite dimensions. The sufficient optimal conditions are obtained and solved by NLP solvers.
The problem is first discretized and then solved for optimization and the direct method allows
flexible implementation on the dynamic system and can handle the inequality constraints.
The direct method control can be further classified into two methods, direct shooting method
and multiple shooting method. The direct shooting method for the forward simulation consid-
ers only the initial state. The method is not very useful for nonlinear system because of the
high nonlinear propagation across time horizon during numerical integration. The solution
to this problem is the direct multiple shooting method where the prediction horizon is split
into a set of smaller intervals and each of these intervals is taken as an independent direct
single shooting method while taking into account the constraints for continuity.

4.1.1 NLP formulation

The NLP is formulated after discretizing the OCP in equation 4.2 by applying the direct
multiple shooting method over the prediction horizon with N shooting points and assuming
system dynamics is locally Lipschitz i.e. smooth over the prediction horizon. The NLP with
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constraints is:

min
x,u

N−1∑
k=0

L(xi, ui, pi) + E(x(tf )) (4.4)

s.t. x0 = x̄0

xk+1 = ϕ(xk, uk) k=0,1,....,N-1

xlk ≤ xk ≤ xuk k=1,2,....,N-1

ulk ≤ uk ≤ uuk k=0,1,....,N-1

glk ≤ Gk ≤ xuk k=0,1,....,N-1

glN ≤ GN ≤ guN

(4.5)

where ϕ(x,u) is the discrete-time model dynamics, Gk and GN represent the path constraints
imposed on shooting points and x0 is the initial solution. The discrete dynamics is used in
constraints to include the continuity constraints during shooting intervals. The problem is
converted to the form of quadratic programming(QP) by using Sequential Quadratic Pro-
gramming(SQP) algorithm as discussed in the next section.

4.1.2 SQP

Assuming the initial solution (so,µo,λo), the NLP is computed using SQP by reformulating
the NLP for a given iteration in the quadratic problem(QP) iteratively. The cost function
and the constraints are substituted by its local quadratic approximation and the local affine
approximation. The QP formed at the mth iteration is shown by 4.6.

min
∆s

N−1∑
k=0

(
1

2

[
∆xk

∆uk

]T
Hm
k

[
∆xk

∆uk

]
+

[
gmxk
gmuk

]T [
∆xk

∆uk

]
)

+
1

2
∆xTNH

m
N∆xN + gm

T

xN
∆xN

s.t. ∆x0 = x̂0 − x0,

∆xk+1 = Amk ∆xk +Bm
k ∆uk + amk , k = 0, . . . , N − 1

xk − xmk ≤ ∆xk ≤ xk − xmk , k = 1, . . . , N

uk − umk ≤ ∆uk ≤ uk − umk , k = 0, . . . , N − 1

cmk ≤ Cmk ∆xk +Dm
k ∆uk ≤ cmk , k = 0, . . . , N − 1

cn − cmN ≤ CmN∆xN ≤ cn − cmN ,

(4.6)

where, Hm and HN are the Hessian matrices of the Lagrangian and are estimated by Gauss
Newton(GN) approach or Generalized Gauss Newton(GGN) approach and the gxk , guk , and
gxN represent the first-order Lagrangian terms. The Gauss hessian Newton approach is
used and hessian is reported to be always positive semi-definite.

∆xm = x− xm,

∆um = u− um
(4.7)
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where, xm =[xm0 ,....,xmN−1,x
m
N ] and um =[um0 ,....,umN−2,x

m
N−1]. The linear matrices are shown

in 4.12. The ϕ represents the dynamics of the model and the rk denotes f, the inequality
constraint. The Explicit Runge-kutta 4(ERK4) method is used as an integrator to obtain the
discrete dynamics. ERK4 is preferred for its convergence speed over Euler Method(EM).
For the NLP defined as:

min
s

h(s) (4.8)

s.t. g(s) = 0

f(s) ≤ 0
(4.9)

where h represents the objective function, s is the variable containing x and u, g represents
the equality and f represents inequality constraints. As it is hard to find the global optimal so-
lution for the optimal solution, we analyze the local optimal points similar to global solutions.
These solutions are based on minimizing the Lagrangian function and the optimal solution
needs to satisfy Karush-Kuhn-Tucker(KKT) conditions [49]. The Lagrangian function can be
written as:

L(s, λ, µ) = h(s) + λT g(s) + µT f(s) (4.10)

where λ and µ are the Lagrange multipliers. It is assumed that if s∗ is a feasible solution,
then there exists λ∗ and µ∗ such that,

∆sh(s
∗) + ∆sg(s

∗)Tλ∗ +∆sf(s
∗)Tµ∗ = 0

g(s∗) = 0

f(s∗) ≤ 0

µ∗ ≥ 0

µifi(s
∗) = 0

(4.11)

where the first condition represents the stationary conditions, the second and third represent
primal feasibility, the fourth represents dual feasibility and the last one represents comple-
mentary slackness. The primal solution s∗ and the dual solutions λ∗ and µ∗ that satisfy the
KKT conditions are also referred to as KKT points.

Amk =
∂ϕk
∂xk

, Bm
k =

∂ϕk
∂uk

, amk = ϕ(xmk , u
m
k )− xmk+1,

Cmk =
∂rk
∂xk

, Dm
k =

∂rk
∂uk

, CmN =
∂rN
∂xN

,

cmk = rk − rk(x
m
k , u

m
k ), cmk = rk − rk(x

m
k , u

m
k ),

cmN = rN − rN (x
m
N ), cmN = rN − rN (x

m
N )

(4.12)
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The primal and dual solutions provide the optimal values ∆x and ∆u for increments in x and
u and new multipliers that are used to update the trajectory and Lagrange multipliers as:

xm+1 = xm + αm∆xm

um+1 = um + αm∆um

λm+1 = λm + αm(λm+1 − λm)

µm+1 = µm + αm(µm+1 − µm)

(4.13)

where α is called step-size and given by globalization strategies. The iteration continues
until the KKT conditions are satisfied for the given value of accuracy. Once the value is
obtained the first control input is applied to the system and moves the trajectory at the next
sampling time instant. For real-time iteration α=1 is sufficient. The different global strategies
like trust region or line search are more often required as SQP method or Interior Point(IP)
methods don’t guarantee that the solution will converge to a local minimum for the above
problem. The globalization method used in this assignment is called line search.
The KKT conditions were discussed as it is the fundamental part of most of the solvers used
to solve QP. The QP problem in equation 4.6 can be solved by available solvers. For this
assignment, HPIPM [50] is considered and used.

4.1.3 MRAV model

The NMPC uses the detailed model of the physical system to produce an optimal input of
the system. The model is taken from [48] for Fiberthex and is given as:[

mI3 03

03 J

][
p̈

ω̇BB

]
=

[
¨−mge3

−ωBB × JωBB

]
+

[
R 03

03 I3

]
Gγ (4.14)

where the symbols are shown in Table 4.1. The control input is denoted by u=γ̇ and the
constraints are defined as:

γl ≤ γ ≤ γu

γ̇l ≤ γ̇ ≤ γ̇u
(4.15)

where, γl and γu denote the lower and upper bound on propeller forces, and γ̇l and γ̇u

denote the lower and upper bound on the control inputs. γ and γ̇ denotes the propeller
forces and rate of change of propellers forces. The state vector x is defined as:

xk =
[
p, η, ṗ, ω, γ

]T
(4.16)

The mapping function to relate ẋ and x is obtained from equation 4.14. The discrete time
model for the control purpose can be discretized using various techniques such as fourth
order Explicit Runge-kutta integrator as:

xk+1 = ϕ(xk, uk) (4.17)
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Definition Symbol

Body frame of MRAV with origin OB and axes
(
xB, yB, zB

)
FW

Inertial frame with origin Ow and axes
(
xW , yw, zW

)
FB

Propeller frame with origin Op and axes
(
xp, yp, zp

)
FP

mass of MRAV m
Inertia of the MRAV with respect to FB and expressed in FB J
position of OB at time t in Fw p
velocity of OB at time t in Fw ṗ

Acceleration of OB at time t in Fw p̈

Rotation matrix expressing the orientation of FB with respect to Fw RB

Gravitation acceleration constant g
Angular velocity of FB with respect to FW and expressed in FB ωBB
Angular acceleration of FB with respect to FW and expressed in FB ω̇BB
Allocation matrix G
Propeller forces in FP γ

Table 4.1: overview of the symbols used in this section

where, k=0,1...N-1. Since the NMPC is intended to be used for reference tracking, the
reference signal yr(t) is given as:

yr =
[
pr(t), ηr(t), ṗr(t), p̈r(t), ωr(t), ω̇r(t)

]T
(4.18)

and the output can be defined as:

y(t) = H(x(t), u(t)) =
[
p(t), η(t), ṗ(t), p̈(t), ω(t), ω̇(t)

]T
(4.19)

The discretized versions of yr(t) ,and y(t) are defined as yr,k and yk respectively. The cost
function in equation 4.20 is a function of the desired reference, output prediction, and control
input.The NLP to be solved tries to minimize the cost function at some time kT and satisfy
the imposed model constraints, with the current state given as xk [48] can be formulated as:

min
x,u

=

N−1∑
i=0

(
∥ŷi − yr,k+i∥2Qi

+ ∥ûi∥2Ri

)
+ ∥ŷN − yr,k+N∥2QN

(4.20)

s.t. x0 = x̄0

xk+1 = ϕ(xk, uk) k=0,1,....,N-1

yi = h(xk, uk) k=1,2,....,N

γlk ≤Mxi ≤ γuk k=0,1,....,N

γ̇lk ≤ ui ≤ γ̇uk k=0,1,....,N-1

(4.21)

where Qi and Ri are positive semi-definite weight matrices and M is a selection matrix to
only constrain the n elements of the state vector defined as:

M =
[
0nx-n In

]
(4.22)
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where nx is the number of states and 0 and I denote the null matrix and identity matrix
respectively. The lower and upper bounds on the propeller forces are denoted by γlk and γuk
respectively. The lower and upper bounds on the changing rate of forces are denoted by γ̇lk
and γ̇uk respectively.

4.2 Gaussian Process

This part aims to introduce the Gaussian Process(GP) based regressions and how it is in-
corporated into NMPC to account for unmodelled dynamics from observed data.
The Gaussian process is a stochastic process with multivariate Gaussian probability distri-
bution as a finite dimension distribution. The Probability Density function(PDF) by Gaussian
process for a random variable x given by:

PX(x) =
1√

(2π)jdet(
∑

)
exp(−1

2
(x− µ)T (

∑
)−1(x− µ)) (4.23)

where, j is number of dimension, x=[x1,x2,....,xj ], x is a real argument, µ=[m(t1,m(t2,.....,m(tj)))]
∈ Rnj denotes the mean and

∑
∈ Rnj×nj denotes the symmetric covariance matrix contain-

ing the covariance of all jointly modeled x. The Gaussian Process(GP) can be denoted by f
and the Euclidean space ∈ Rj contains the index set.

f(x) ∼ GP (µ(x), k(x, x′, θ)) (4.24)

Equation 4.24 denotes the scalar GP with K as the kernel function or covariance matrix, θ ∈
Rn as the hyperparameter that the covariance matrix depends on, and µ as the mean.

4.3 Gaussian Process Regression

Let’s consider a certain dataset given by (xj ,yj) where j=0,1,2....N, x ∈ R and y ∈ R repre-
sents input and measured output, we want to model the relationship between x and y. The
model developed by using GP denoted by f with the index given by the dimension of the
input, the variable is given as:

y1

y2

.

.

.

yN


=



f(x1)

f(x2)

.

.

.

f(xN )


+



ϵ1

ϵ2

.

.

.

ϵN


where,

{
f(x) ∼ GP (0, k(x, x′, θ))

ϵ ∼ N(0, σ2yIN )
(4.25)

Here, the function f is a zero mean Gaussian process with covariance K and the error is zero
mean with standard deviation σn. y have a normal distribution with the probability density
given as:

y ∼ N(0,K(X,X∗) + σ2yIN ) (4.26)
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where X denotes the collective input, I denotes the identity matrix, and K(X,X∗) is the
covariance matrix between two random variables in X. Now that the probabilistic model is
given, it is possible to make predictions in another point x′. For making the prediction, the
conditional probability of f(x′) needs to be computed with respect to y. The joint probability
of f(x′) and y is given as:[

f(x′)

y

]
∼ N

(
0,

[
K(x′, x′) K(X,x′)

K(x′, X) K(X,X) + σ2yI

])
(4.27)

The conditional probability can now be computed as:

f(x′|y,X) ∼ N
(
µ̄,
∑̄)

(4.28) µ̄ = K(x′, X)
(
K(X,X) + σ2yI

)−1
y∑̄

= K(x′, x′)−K(x′, X)
(
K(X,X) + σ2yI

)−1
K(x′, X)

(4.29)

where, K(x′,X) denotes the covariance between x′ and X, and K(x′,X)=K(X,x′)T . The f(x′)
can now be estimated by a Machine Learning(ML) estimator. The estimator in the case of
Gaussian coincides with the mean of conditional probability:

f̂(x′) = µ̄ = K(x′, X)
(
K(X,X) + σ2yI

)−1
y (4.30)

It is also noted that the estimation strongly depends on the choice of kernel function. Inter-
ested readers can read more in detail on GP and it’s implementation can be read by [51]
and [52].

4.3.1 Hyperparameters

As regression depends on the kernel function, the kernel function further depends on the
assigned hyperparameters θ. Various methodologies exist that can be used to learn the
hyperparameters, but for the scope of this thesis, the marginal likelihood maximization ap-
proach is used. The measured output y is distributed for the Gaussian case for marginal
likelihood according to [52] as:

log(p(y|X; θ)) = −n
2
yTK−1y − n

2
log(2πdet(K)) (4.31)

with,

K = Kθ(X,X) + σ2yIy (4.32)

The optimization problem is then formed as:

θ∗ = argmax
θ

log(p(y|X; θ)) (4.33)

The objective function is differentiated with respect to hyperparameters under conditions
such as kernel is differentiable to set a gradient:

∂ log(p(y|X; θ))

∂θi
=

1

2
tr
(
(ααT −K−1

θ )∂Kθ
∂θi

)
(4.34)
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with,

α = K−1
θ y (4.35)

The various available gradient descent algorithms are applied to obtain the hyperparame-
ters.

4.4 Disturbance Observer(DO)

The section introduces the extension of the dynamic model to incorporate a state-of-the-art
disturbance observer (DO) from the literature in the control scheme to see how the proposed
solution performs compared to it. The NMPC makes its prediction based on the model; how-
ever, the proximity effects are not accounted for in the model. The DO is intended to esti-
mate the disturbances on the wrench of the MRAV and provide that disturbance to NMPC,
so NMPC receives the updated state for the propeller forces and it is possible to get more
consistent closed-loop performance. The force and torque sensors can be used as well and
provide more reliable measurements, but that also adds to the cost and weight of the MRAV.
Therefore, a more feasible solution is to use a wrench estimator that can provide a more
accurate wrench estimation.
The wrench is given by ŴB=

[
f̂TB ,τ̂TB

]
∈ R6, where ŴB are the wrench estimations, f̂TB are

the estimated forces and τ̂TB are the estimated torques on the body frame of MRAV exerted
by the environment. The wrench estimation can provide sufficient accurate estimation pro-
vided accurate measurements of position, velocities, and if possible acceleration. The forces
are estimated using an acceleration based observer presented by [53] and the torques are
estimated using a momentum based observer by [54].

Force estimator

The forces are estimated as:

˙̂
fB = L(fTB -f̂TB )

˙̂
fB = -fTB+L(mp̈B+mge3 −RF1u)

(4.36)

where L is the observer gain, fTB is the force on the body frame of MRAV, m is mass of MRAV,
g is the gravity matrix, R is the rotation matrix expressing the body frame to world frame, F1

∈ R3×6is the matrix to account for the physical and geometric properties of MRAV and u =
[u1,u2,u3,u4,u5,u6]T is the controller input denotes the vector that gathers the squares of the
spinning velocities of the six propeller. The observer error is defined as eL=fTB -f̂TB . The error
dynamics, when there is a constant presence or slowly varying presence of external force,
can be expressed as [53]:

ėf = -Lef (4.37)
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Therefore, the error dynamics exhibit exponential convergence towards the origin for any
positive-definite gain matrix L.

Torque estimator

From the equation of motion of MRAV, the angular momentum in body frame (FB) can be
expressed as:

qB = JωBB (4.38)

Differentiating W.R.T. time,

q̇B = Jω̇BB = −ωBB × JωBB + F2u+ τBB (4.39)

From equation 4.39, the estimated value of torque τB in body frame can be regarded as the
residual vector.

τ̂BB = kI

[
(qB(t)− qB(t0)) +

∫ t
t0
ωBB × JωBB − F2u− τBB

]
(4.40)

where t denotes the current time, t0 denotes the initial time, F2 ∈ R3×6is the matrix to ac-
count for the physical and geometric properties of MRAV, J ∈ R3×3 is MRAV inertia in body
frame, ωBB ∈ R3 is the angular velocity in body frame and kI is the positive definite gain
matrix, assuming ωBB (t0)=0 ∈ R3, it follows that the qB(t0)=03. Upon differentiating equation
4.40 with respect to time and using equation 4.39, we obtain the following dynamics for the
residual vector:

˙̂τBB = kI(τ
B
B − τ̂BB ) (4.41)

It is seen from equation 4.41 denotes the dynamics of the first-order low pass system. It’s
readily apparent that as time t approaches infinity, the estimated vector τ̂BB converges to the
true vector τBB for any positive-definite gain matrix kI . The selection of the kI matrix involves
a trade-off between the convergence rate and the filtering characteristics of the observer.
The larger gain values result in faster convergence, whereas smaller values help in filtering
out the high-frequency noise.

4.4.1 DO Implementation with NMPC

This section shows how NMPC with DO is applied to the physical model. The control scheme
for the controller implemented to MRAV is shown in Figure 4.1. The first input value from
NMPC is applied as u indicates γ̇, and an integrator is used to convert it to propeller forces.
Then the propeller forces are converted to rotor velocity, which can be applied to actuators.
The states are measured by the use of sensors and sent as feedback to NMPC. The states
are also sent to DO. The DO output is the estimated wrench for the disturbance containing
estimated forces and torque disturbances on the body of the MRAV, and this wrench is
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Figure 4.1: Control scheme of NMPC with DO implemented to MRAV

converted to propeller forces using G, where G is the allocation matrix. The hold function
block holds the output until the observer converges, usually between 5 and 7 seconds. The
output force disturbances are then added to the state responsible for the propeller forces,
and NMPC takes into account the disturbances.
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Chapter 5

Methodology

This chapter introduces the method containing the data-driven model used to model and
compensate for the proximity effects.

5.1 Method

The method talks about the extension of the dynamic model to incorporate GP-based re-
gression in NMPC. The GPR is intended to model the residual dynamics of the proximity
effects. The predicted dynamics are incorporated into the nominal model, allowing NMPC to
be aware of the disturbances. It allows NMPC to have more consistent closed-loop perfor-
mance.

5.1.1 Training the GP and collecting data

In the context of dynamical systems, the feature space typically encompasses past and
present inputs as well as state variables. The GP takes physical variables measured at the
same time instant ’k’ as input and generates predictions for the relative prediction error at
the subsequent time instant ’k + 1.’
For the physical system of MRAV, states are defined as we define state variables as:

xk =
[
p, η, ṗ, ω, γ

]T
(5.1)

where p ∈ Rnp defines the position, η ∈ Rnη defines the orientation,ṗ ∈ Rnṗ defines the
linear velocities,ω ∈ Rnω defines the angular velocities and γ defines the propeller forces
respectively for the MRAV. With N time instants, we have the opportunity to organize the
observed states and inputs into groups:

X =
{
x0, x1....xN−1

}
u =

{
u0, u1....uN−1

}
X̂ =

{
x̂0, x̂1....x̂N−1

} (5.2)
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where X̂ is the predicted state from the nominal model of MRAV and X and U are the actual
states and control input. The needed data can be obtained by implementing the NMPC con-
troller based on the nominal dynamics of MRAV. The GPR have been implemented on the
dataset mentioned in equation 6.4. To address each component of state vectors separately,
an independent GP has been employed. At each time instant tj , the input GP vectors are
denoted by sj=[xj−1, uj−1]. The output of kth GP corresponding to sj is defined as ykj=xkj -x̂

k
j ,

where xkj and x̂kj denote the observed and predicted values of states. The GPR probabilistic
model at the kth instant is as follows:

yk =


yk1
yk2
.

.

ykN

 =


xk1 − x̂k1
xk2 − x̂k2

.

.

xk2 − x̂k2

 =


ψ̃kx(s1)

ψ̃kx(s2)

.

.

ψ̃kx(sN )

+


ϵk1
ϵk1
.

.

ϵk1

 = ψ̃kx + ϵk (5.3)

where, ϵ ∼ N(0,σ2y IN ) with σ2y being variance and ψ̃kx ∼ N(0,Kk) with Kk denoting the co-
variance and can be defined by kernel function Kk(xi,xj). From [52], it is stated that for the
general input sj , the posterior probability of ψ̃kx is Gaussian in nature and thus the maximum
estimator is given by the posterior mean and can be computed from equation 4.30 as:

ψ̃kx(sj) =
[
Kk(sj , s1),Kk(sj , s2),........,Kk(sj , sN )

] (
Kk + σ2yI

)−1
yk (5.4)

The ψ̃x can be expressed as:

ψ̃x(sj) =


ψ̃1
x(sj)

ψ̃2
x(sj)

.

.

ψ̃nx
x (sj)

 =


K1
jα

1

K2
jα

2

.

.

Knx
j αnx

 (5.5)

where αk=
(
Kk + σ2yI

)−1
yk

It can be seen that the choice of kernel function is an important aspect of GPR. There
are many kernels available such as Exponential kernel, Square Exponential(SE) kernel or
Radial Basis Function(RBF) kernel, Matern Kernel, Polynomial kernel, and Trigonometric
kernel. For the scope of this assignment, it was considered to use the SE kernel because
the SE kernel is smooth and infinite times differentiable,a universal approximator and it has
two hyperparameters making it easier to tune and less computationally expensive. The SE
kernel is defined as:

Kk(s̃i, s̃j) = e−∥s̃i−s̃j∥∑k = e
−
(
s̃i − s̃j

)T ∑k−2
(
s̃i − s̃j

)
(5.6)

where
∑k is a diagonal matrix with hyperparameters called lengthscales as its elements. It

is seen that the SE covariance kernel evaluates the correlation based on the distance be-
tween two GP inputs. The second hyperparameter σy defines the tradeoff between accuracy

39



and smoothness. The higher values of σy leads to more smooth ψ̃x(sj) but less accuracy
and low values of σy lead to non-smooth ψ̃x(sj). For the present framework, once the hy-
perparameters are selected by ML optimization and then the maximization of the marginal
likelihood approach is implemented using the Python library ”GPR pyTorch” to find the opti-
mized hyperparameters.

5.1.2 GP based model

Now, once the GP model has been obtained, the discrete dynamic model of the system can
be modified by including these unmodeled dynamics:

xk+1 = ϕ(xk,uk) + ψx(xk,uk) (5.7)

where ϕ is the nominal discrete dynamic models and ψx is the estimate of residual dynamics
modeling proximity effects.
Following the dynamic model, the NLP for N shooting points is updated from equation 4.20
as:

min
x,u

=
N−1∑
i=0

(
∥ŷi − yr,k+i∥2Qi

+ ∥ûi∥2Ri

)
+ ∥ŷN − yr,k+N∥2QN

(5.8)

s.t. x0 = x̄0

xk+1 = ϕ(xk, uk) + ψ(xk, uk) k=0,1,....,N-1

yi = h(xk, uk) k=1,2,....,N

γlk ≤Mxi ≤ γuk k=0,1,....,N

γ̇lk ≤ ui ≤ γ̇uk k=0,1,....,N-1

(5.9)

Then next QP constraints will be updated in equations 4.6 and 4.12 as:

∆xk+1 = (Amk +A1mk )∆xk + (Bm
k +B1mk )∆uk + amk , , k = 0, . . . , N − 1

Amk =
∂ϕk
∂xk

, Bm
k =

∂ϕk
∂uk

, amk = ϕ(xmk , u
m
k ) + ψ(xk, uk)− xmk+1,

A1mk =
∂ψk
∂xk

, B1mk =
∂ψk
∂uk

(5.10)

where A1 and B1 represent the Jacobian with respect to residual dynamics. Finally, in the
KKT conditions for equality constraints corresponding to the Lagrange multiplier λ and given
by ∂ϕ(s∗)T

∂s where s contains the states and control input will be updated as ∂ϕ(s∗)T

∂s + ∂ψ(s∗)T

∂s .

5.1.3 Implementation of GP incorporated NMPC with MRAV

This section shows how the control approach is applied to the physical model. The block
diagram for the controller implemented with MRAV is shown in Figure 5.1. The NMPC gives
the solution to the NLP at time instant k and it consists of the optimal values x0,k ,x1,k,......xN,k
and u0,k ,u1,k ,......,uN−1,k. Here N shows the number of shooting points and x,u denotes the
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optimal states and control input from NMPC. The first input value is applied to the system
and all the values of u for different shooting point is applied to the GP prediction model to
predict from trained model. As u indicates γ̇, an integrator is used to convert it to propeller
forces and then the propeller forces are converted to rotor velocity that can be implemented
to the actuator. Then by use of sensors, the states are measured and sent as feedback to
the NMPC and GP prediction model to estimate the control input at the next sample time
instant.

Constraints

Cost 
function

Reference

Gyros

MoCap

MRAV 
ActuatorsNMPC

x

GP prediction 
model

Figure 5.1: Control scheme of NMPC incorporated with GP implemented to MRAV

5.2 MATMPC

This section gives an insight in the framework used for NMPC implementation. The NMPC
is implemented using the NMPC genome module developed and used previously by [55]
based on a software called MATMPC [56]. Once the Optimal Control Problem(OCP) and
respective Jacobian and Hessian matrices are defined using the Casadi framework [57],
MATMPC uses MEX files to set up an interface between functions written as C code files.
This allows MATMPC to call these functions during the real-time execution of the codes.
Then these models are discretized using ERK4 for direct multiple shooting. It is followed
by solving the dense QP and finding an explicit solution using solvers like HPIPM [50] and
QPOASES [58] based on the Real Time Iteration(RTI) scheme.
RTI represents a cutting-edge, efficient algorithm designed for addressing Nonlinear Model
Predictive Control (NMPC) problems. It operates by executing a single Sequential Quadratic
Programming (SQP) iteration to solve the Nonlinear Programming (NLP) problem, meaning
that the associated Quadratic Programming (QP) problem for the NLP is resolved in just one
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iteration. The RTI scheme’s effectiveness lies in its initial value embedding strategy, which
enables it to rapidly address a series of comparable QP problems in real time, even when
faced with varying initial conditions.

5.3 Gazebo

The simulations are carried out in the Gazebo environment, so this section intends to give
an insight into the Gazebo simulation environment [59]. One of its notable features is its
robust physics engine, which enables the MRAV to engage in physical interactions with
objects present within the simulated world. Thus, the Gazebo simulation allowed us to get
insight into the implementation of the proposed scheme in relatively real-life environment.
The MRAV and the environment are defined in the Simulation Descriptive Format(SDF).
While the controller continues to operate within MATLAB/Simulink, the physical models of
both the MRAV and the surrounding environment are established and simulated in Gazebo.
The rotorcraft module from Genom3 allows the interface between rotor velocities command
obtained after integrating the control inputs and low-level ESCs. The commands are sent
through Genom3 mrsim module that functions as low-level ESC and sent it to the mrsim-
Gazebo plugin that evaluates the wrench that will be applied to the model. The rotorcraft
module is further connected to POM module. The optitract Genom3 module is used to export
the position and orientation data from Gazebo and to POM module of Gazebo. The POM
module gives the estimates of states back to MATLAB. Interested readers can read in more
detail about it in [55]. The block diagram of how NMPC interface between MATLAB/simulink,
Genom3, and Gazebo is shown in Figure 5.2.

Trajectory 
generation

NMPC

mrsim-
gazebo

Cost 
function

Constraints

Rotorcraft
u

optitrack

mrsim

POM
Optitrack
-gazebo

MRAV

Post-processing

GazeboGazebo plugins

Genom3 ModuleMATLAB/ Simulink

Figure 5.2: Interface of NMPC with Gazebo
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Chapter 6

Results

This chapter presents the results based on the method discussed in the previous chapter.
The chapter starts with the model training for the proposed method, then presents the results
from the simulations of the proposed GP-based NMPC controller and its comparison with
nominal NMPC, and state-of-the-art disturbance observer.

6.1 Data collection and model training

This section introduces the simulation setups and the model training to estimate the proximity
effect. The simulations were performed in a Gazebo environment. In this simulation, the
MRAV was commanded to hover and it was controlled with NMPC with the nominal model.
Then, a virtual constant disturbance of 2.6 N was applied to propellers 3 and 6. Finally, the
state and control input measurements were recorded. From the collected dataset, states,
and control input were used as input to the GP model, whereas, the output was given as
prediction error i.e. the difference between the predicted states and the measured states.
The two different models were chosen based on the states, namely the minimized model
and the extended model.

6.1.1 The minimized model

The minimized model consists of a GP model trained using position in the position vector
and the control inputs as input, and the prediction errors of position vectors. The training
data contained 700 points for each input and the output. The number of predictions for the
NMPC controller was set to three. The inputs dataset is represented as:

X =
[
p, u
]

(6.1)

and the output dataset is represented as: [
p− p̂

]
(6.2)

where p̂ denotes the predicted position vector, U denotes the control input and p denotes
the measured position vector. The control input is the time derivative of propeller forces.
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6.1.2 The extended model

The extended model consists of a GP model trained using position vector, the thrusts from
all the propellers and the control inputs as input, and the prediction errors of position vector
and of the thrusts from respective propellers. The training data contained 140 points for
each input and the output. The number of predictions for the NMPC controller was set to
three. The inputs dataset is represented as:

X =
[
p, γ, u

]
(6.3)

and the output dataset is represented as:[
p− p̂, γ − γ̂

]
(6.4)

where p̂ denotes the predicted position vector, U denotes the control input and p denotes the
measured position vector. The control input is the time derivative of propeller forces. The γ
denotes the respective propeller thrusts.

6.2 Comparison of GP models with NMPC

It is observed from the previous section that the training dataset does not use the complete
states of the MRAV and the number of data points is limited. This is because including more
states in the training dataset and the number of data points leads to the complex GP model.
The complexity of the model results in more computation time for the NMPC. For NMPC to
work the computation time needs to be less than the sampling time. The sampling time for
this assignment was set to be 4ms. Figure 6.1 shows the spread of the computation time of
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Figure 6.1: Computation time comparison of different controller

the minimized model and extended model with the NMPC. It is seen that for the extended
model and the minimized model, the median and mean of the computation time are higher
as compared to the NMPC. Also, the data is skewed i.e. more than fifty percent of the val-
ues of computation time are between 2ms and 4ms. If more data points are added in the
minimized model and extended model then more values surpass 4ms. Similarly, if more
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states are incorporated, the computation time passes the 4ms limit leading to the crash of
the solver.

6.2.1 Comparison of errors

This section shows the comparison of GP models with NMPC and shows the spread of the
error and thrusts. The table A.3 in appendix A.2 shows the mean, median and variation from
the boxplot.
Figure 6.2a and figure 6.2b show the boxplot of position error in the x,y, and z axes. It is seen
for the position error in the x,y, and z axes that the minimized model has the least median
of the error compared to NMPC and the extended model. The median of the errors in the
extended model is less than NMPC in the x,y, and z axes. The variability is highest for all
errors in the extended model compared to the NMPC and Minimized model. The variability
of error is higher in the minimized model when compared to the NMPC model in the x and y
axes but that is expected as the controller is accounting for the disturbances. However, for
the error in the z-axis, the variation of the minimized model is less than the NMPC.
The error in the x-axis has a right-skewed distribution for the NMPC and minimized model
but a left-skewed distribution for the extended model. That suggests that for the NMPC and
minimized model, there are relatively fewer larger errors compared to the number of small
errors and for the extended model there are relatively more large errors in the x-axis but
overall the extended model has less errors than NMPC. The error in x is the least for the
minimized model.
The error in the y-axis has a right-skewed distribution for the NMPC and extended model and
a left-skewed distribution for the minimized model. That suggests that for the NMPC and ex-
tended model there are relatively fewer larger errors compared to the number of small errors
and for the minimized model there are relatively more large errors in the y-axis but overall
the minimized model has least errors compared to the NMPC and extended model.
The error in the z-axis has a left-skewed distribution for NMPC and a right-skewed distribu-
tion for the minimized model and extended model. That suggests that for NMPC, there are
relatively fewer large errors compared to the number of small errors and for the minimized
model and extended model, there are relatively more large errors in the z-axis but overall
the errors are still least for the minimized model.
Figure 6.2c and figure 6.2d show the boxplot of linear velocity error in the x,y, and z axes.
It is seen for the linear velocity error in the x and y axes that the extended model has the
least median of the error compared to NMPC and the minimized model. However, for the
z-axis, NMPC has the least median of errors. The median of the errors in the NMPC is less
than the minimized model in the x,y, and z axes. The variability is highest for all errors in
the extended model compared to the NMPC and Minimized model. The variability of error is
higher in the minimized model when compared to the NMPC model in the x and y axes.
The error in the x-axis has a right-skewed distribution for the minimized model and extended
model but a left-skewed distribution for the NMPC. That suggests that for the extended model
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Figure 6.2: Boxplot for Position Error and Linear Velocity Error

and minimized model, there are relatively fewer large errors compared to the number of small
errors and for the NMPC there are relatively more large errors in the x-axis but overall ex-
tended model has similar performance to NMPC.
The error in the y-axis has a right-skewed distribution for the extended model and a left-
skewed distribution for the NMPC and minimized model. That suggests that for the extended
model, there are relatively fewer larger errors compared to the number of small errors and
for the NMPC and minimized model, there are relatively more large errors in the y-axis but
overall the NMPC has fewer errors than the minimized model and extended model although
the performance of NMPC and the minimized model is close.
The error in the z-axis has a left-skewed distribution for NMPC and a right-skewed distribu-
tion for the minimized model and extended model. That suggests that for NMPC, there are
relatively fewer large errors compared to the number of small errors and for the minimized
model and extended model, there are relatively more large errors in the z-axis but overall the
errors are still least for NMPC although the performance of the minimized model and NMPC
is similar.
Figure 6.3a show the boxplot of orientation error in the x,y, and z axes. It is seen for the
orientation error in the x-axis that the extended model has the least median of the error
compared to NMPC and the minimized model. However, for the y and z axes, NMPC has
the least median of errors. The median of the errors in the extended model is less than the
minimized model in the x,y, and z axes. The variability is highest for all errors in the mini-
mized model compared to the NMPC and extended model. The variability of error is higher
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in the NMPC when compared to the extended model in the x, y, and z axes.
The error in the x-axis has a right-skewed distribution for the extended model but a left-
skewed distribution for the NMPC and the minimized model. That suggests that for the
extended model, there are relatively fewer large errors compared to the number of small
errors and for the NMPC and the minimized model, there are relatively more large errors in
the x-axis but overall extended model has the least errors.
The error in the y-axis has a right-skewed distribution for the NMPC and a left-skewed dis-
tribution for the extended model and minimized model. That suggests that for the NMPC,
there are relatively fewer larger errors compared to the number of small errors and for the
extended model and minimized model, there are relatively more large errors in the y-axis but
overall the extended model has fewer errors than the minimized model and NMPC although
the performance of NMPC and the extended model is close.
The error in the z-axis has a left-skewed distribution for the extended model and a right-
skewed distribution for the minimized model and NMPC. That suggests that for the extended
model, there are relatively fewer large errors compared to the number of small errors and for
the minimized model and the NMPC, there are relatively more large errors in the z-axis but
overall the errors are still the least for extended model although the performance of the all
the controllers are similar.
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Figure 6.3: Boxplot for Orientation Error and Angular Velocity Error

Figure 6.3b show the boxplot of angular velocity error in the x,y, and z axes. It is seen for the
angular velocity error in the x and y axes that the extended model has the least median of
the error compared to NMPC and the minimized model. However, for the z-axis, NMPC has
the least median of errors although the value is close for all three controllers. The median of
the errors in the extended model is less than the minimized model in the x,y, and z axes. The
variability is highest for errors in the x and y axes in the NMPC compared to the minimized
model and extended model. However, for the errors in the z-axis, the variability is highest in
the minimized model.
The error in the x-axis has a left-skewed distribution for the NMPC, minimized model, and
extended model. That suggests that for the NMPC, minimized model, and extended model,
there are relatively more large errors in the x-axis but the overall minimized model has the
least errors although all three controllers have similar performances.
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The error in the y-axis has a right-skewed distribution for the extended model and a left-
skewed distribution for the NMPC and minimized model. That suggests that for the extended
model, there are relatively fewer larger errors compared to the number of small errors and
for the NMPC and minimized model, there are relatively more large errors in the y-axis but
overall the extended model has fewer errors than the minimized model and NMPC.
The error in the z-axis has a left-skewed distribution for the minimized model and extended
model and a right-skewed distribution for the NMPC. That suggests that for the NMPC, there
are relatively fewer large errors compared to the number of small errors and for the mini-
mized model and the extended model, there are relatively more large errors in the z-axis but
overall the errors are still the least for NMPC although the performance of the NMPC and
extended model is similar.
Figure 6.4a and figure 6.4b show the boxplot of thrust from the propellers. The variation
of the thrust is higher for the extended model and the minimized model compared to the
NMPC. It can be seen that propeller 3 and propeller 6 where the constant disturbances,
the extended model predicts the disturbance up to a certain extent however the minimized
model can predict the constant disturbance well.

NPMC Min Ext NPMC Min Ext NPMC Min Ext

1

2

3

4

5

6

7

8

9

Pr
op

el
le

r 
th

ru
st

 (
N

)

Boxplot for Propellers

F
Prop 3

F
Prop 2

F
Prop 1

(a) Boxplot for Propeller Thrusts
NPMC Min Ext NPMC Min Ext NPMC Min Ext

1

2

3

4

5

6

7

8

9

Pr
op

el
le

r 
th

ru
st

 (
N

)

Boxplot for Propellers

F
Prop 6

F
Prop 5

F
Prop 4

(b) Boxplot for Propeller Thrusts

Figure 6.4: Boxplot for Thrusts

For NMPC, thrust from all propellers except propeller 5 has a right skew distribution. Thrust
from all propellers except propeller 1 and propeller 4 have left skew distribution. For the
extended model, propellers 1,3, and 6 have a right skew distribution whereas propellers 2,4
and 5 have a left skew distribution.
The table 6.1 shows the dominant frequency and the amplitude at dominant frequency for
various errors and states of the MRAV with each controller respectively. The summarized
data in the table 6.1 is obtained from FFT plots of errors and states shown in appendix C. It
is seen that the GP-based controller has the highest dominant frequency compared to the
NMPC-based controller. The minimized model has the highest dominant frequency except
for orientation error in z and angular velocity error in z. The highest dominant frequency
suggests more variation in the errors that is due to GP based model accounting for the dis-
turbances. The thrusts have the same dominant frequencies. For the position error in the
x,y, and z axes, the orientation error in the x-axis, and the angular velocity error in the x-axis,
the amplitude is least at the dominant frequency for the minimized model. For linear velocity
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Table 6.1: Data from FFT plots

States and errors Axis
Dominant frequency(Hz) Peak Amplitude
NMPC Min Ext NMPC Min Ext

Position error
x 0.2643 7.9281 0.2643 56.5187 3.3471 27.3815
y 0.2643 7.9281 0.2643 39.3432 2.0830 24.1581
z 0.2643 7.9281 0.2643 136.150 1.3502 255.91

Orientation error
x 4.4926 8.1924 5.5497 3.5254 1.6284 1.7929
y 4.4926 5.2854 4.7569 1.6596 3.0645 1.5001
z 4.4926 6.3425 7.3996 1.5438 6.3425 0.8337

Linear velocity error
x 3.9641 7.9281 5.5497 12.2201 32.5115 15.6833
y 3.9641 7.9281 2.6427 18.2028 20.2206 23.0184
z 3.9641 7.9281 0.2643 9.5728 12.5414 294.711

Angular velocity error
x 4.4926 8.1924 5.5497 38.1881 16.3701 18.8626
y 4.4926 5.2854 4.7569 19.1199 30.9574 16.1851
z 4.4926 6.3425 7.3996 18.0148 19.9354 12.192

Thrust

Propeller 1 0.2643 0.2643 0.2643 9246.56 9229.15 9261.74
Propeller 2 0.2643 0.2643 0.2643 9215.06 9214.39 9275.21
Propeller 3 0.2643 0.2643 0.2643 4365.88 9271.16 6731.96
Propeller 4 0.2643 0.2643 0.2643 9223.85 9233.64 9241.41
Propeller 5 0.2643 0.2643 0.2643 9218.93 9186.99 9269.35
Propeller 6 0.2643 0.2643 0.2643 4344.27 9292.15 6726.12

errors in the x,y, and z axes, the amplitude is the least for the NMPC. For orientation error
and angular velocity errors in the y and z axes, the amplitude is least for the extended model.
For the thrust, it is seen that the thrust in propellers 3 and 6 has more consistent amplitude
compared to other propellers for the minimized model.
Figure 6.5 shows the logarithmic plot of FFT and cumulative frequency distribution of po-
sition error in the x,y, and z axes. From figure 6.5a, figure 6.5b, and figure 6.5c it is seen
that for the low frequencies the minimized model has the least amplitude and the extended
model has the highest amplitude. As the frequency increases, the minimized model has
more variations in amplitude compared to the NMPC and extended model. From figure 6.5d
it is seen that the fluctuation in amplitude of the minimized model does not contribute to the
errors significantly as the amplitude is negligible, and the minimized model still has the least
collective errors.
Figure 6.6 shows the logarithmic plot of FFT and cumulative frequency distribution of ori-
entation error in the x,y, and z axes. From figure 6.6a, figure 6.6b, and figure 6.6c it is
seen that for the low frequencies, all three controllers have similar amplitude with minimized
model having more variation in amplitude for error in y and z axes and extended model
having more variation in amplitude for error in x-axis. As the frequency increases, all three
controllers have more variations in amplitude. From figure 6.6d, it is seen the extended
model has the least collective errors for error in the x-axis and the NMPC has the least col-
lective errors for error in y. Both NMPC and the extended model have similar performances
for error in the z-axis. The most error is contributed near the dominant frequency for all three
controllers and for the minimized model, error in the z-axis is contributed due to fluctuations
at high frequency as well.
Figure 6.7 shows the logarithmic plot of FFT and cumulative frequency distribution of linear
velocity error in the x,y, and z axes. From figure 6.7a, figure 6.7b, and figure 6.7c, it is seen
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(a) Logarithmic plot of FFT for Position Error in x
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(b) Logarithmic plot of FFT for Position Error in y
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(c) Logarithmic plot of FFT for Position Error in z
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(d) CFD of Position Error

Figure 6.5: Frequency Spectrum for Position Error

that for the low frequencies the minimized model has the least amplitude and the extended
model has the highest amplitude. As the frequency increases, all three controllers have
more variations in amplitude. From figure 6.7d it is seen that the fluctuation in amplitude
of the minimized model has the highest collective error in x-axis due to the addition of the
error at the dominant frequency and NMPC has the least collective errors. For errors in
the y-axis, the minimized model and NMPC have the least collective errors, and errors are
similar in amplitude. For the z-axis, the extended model has the highest collective error due
to the dominant peak. NMPC has the least collective errors although the performance of the
minimized model is close to the performance of the NMPC. It is also seen that fluctuation in
amplitude at high frequency does not contribute to the collective errors significantly.
Figure 6.8 shows the logarithmic plot of FFT and cumulative frequency distribution of angu-
lar velocity error in the x,y, and z axes. From figure 6.8a, figure 6.8b, and figure 6.8c, it is
seen that as the frequency increases, all three controllers have more variations in amplitude
with the highest amplitude for the minimized model. From figure 6.8d it is seen that for error
in the x-axis, the fluctuation in amplitude of the minimized model and NMPC has the highest
error due to the addition of the error at the dominant frequency and also fluctuations at high
frequency and extended model has the least errors.
For errors in the y-axis, the NMPC has the least errors, and errors are high for the extended
model and the minimized model. For the z-axis, the minimized model has the highest col-
lective error due to the dominant peak. NMPC and extended model has the least errors and
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(a) Logarithmic plot of FFT for Orientation Error in x
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(b) Logarithmic plot of FFT for Orientation Error in y
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(c) Logarithmic plot of FFT for Orientation Error in z
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Figure 6.6: Frequency Spectrum for Orientation Error

the performance of the extended model is close to the performance of the NMPC. It is also
seen that fluctuation in amplitude at high frequency for errors in x,y, and z axes is similar for
all controllers.
Here, after comparing all three controllers, the minimized model is chosen as it is able to esti-
mate the disturbances and also provides good close-loop performance for the position. As it
has been trained for position, it is giving good performance in position. It also provided good
close loop performance in velocity for the y and z-axes and angular velocity in the x-axis.
Although it is interesting to mention that the extended model also gives a good closed-loop
performance, especially for the orientation, and is able to estimate the disturbances to an
extent, however, it does not estimate the disturbances completely. Also, the performance
for the position needs to be improved compared to the NMPC and minimized model. One
possible reason for this is that the extended model is limited by training data points. It is
expected that with more training data points the performance will improve. Therefore, the
chosen model is the minimized model.

6.3 Comparison of GP-NMPC with DO-NMPC

This section shows the comparison of DO with NMPC and the chosen GP model by observ-
ing the spread of the errors and thrust. Here only the performance of DO is compared to
the NMPC and minimized model as the performance of NMPC and minimized model has
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(a) Logarithmic plot of FFT for Linear Velocity Error in
x
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(b) Logarithmic plot of FFT for Linear Velocity Error in
y
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(c) Logarithmic plot of FFT for Linear Velocity Error in z
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Figure 6.7: Frequency Spectrum for Linear Velocity Error

already been compared in the previous section. The table A.4 in appendix A.3 shows the
mean, median and variation from the boxplot.
Figure 6.9a and figure 6.9b show the boxplot of position error in the x,y, and z axes. It is
seen for the position error in the x,y, and z axes that the minimized model has the least
median of the error but DO has less median of error than NMPC. The variation is highest in
DO compared to the NMPC and minimized model. The position error for DO in the x,y, and
z axes has the right skewed distribution. The overall error is highest in the DO incorporated
controller.
Figure 6.9c and figure 6.9d show the boxplot of linear velocity error in the x,y, and z axes. It
is seen for the linear velocity error in the x,y, and z axes that the NMPC has the least median
of the error and DO has the largest median of error. The variation is highest in DO compared
to the NMPC and minimized model. The linear velocity error for DO in the x, and y axes has
the left skewed distribution and right skewed distribution for the z-axis. The overall error is
highest in the DO incorporated controller.
Figure 6.10a show the boxplot of orientation error in the x,y, and z axes. It is seen for the
orientation error in the x and y axes that the DO has the least median of the error compared
to NMPC and the minimized model. However, for the z-axis, NMPC has the lowest median
of errors and DO has the highest median of error. The variation is highest in DO for error
in the x-axis compared to the NMPC and minimized model. For error in y and z axes the
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(a) Logarithmic plot of FFT for Angular Velocity Error in
x
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(b) Logarithmic plot of FFT for Angular Velocity Error in
y
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(c) Logarithmic plot of FFT for Angular Velocity Error in
z
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Figure 6.8: Frequency Spectrum for Angular Velocity Error

variation of DO is between NMPC and minimized model. The orientation error for DO in the
x, and z axes has the left skewed distribution and right skewed distribution for the y-axis.
Figure 6.10b show the boxplot of angular velocity error in the x,y, and z axes. It is seen for
the angular velocity error in the x and y axes that the DO has the median of the error be-
tween NMPC and the minimized model. However, for the z-axis, DO has the highest median
of errors although the value is close for all three controllers. For error in y-axis, the median
is lowest compared to NMPC and the minimized model.
The variation of DO is between variations of NMPC and minimized model for the angular
velocity error in the x,y, and z axes. The angular velocity error for DO in the x, and z axes
has the left skewed distribution and right skewed distribution for the y-axis. The overall error
in x is highest in the NMPC incorporated controller and the minimizes model for error in y
and z axes. Figure 6.11a and figure 6.11b show the boxplot of thrust from the propellers.
The variation of the thrust is highest for DO incorporated model. It can be seen that in pro-
peller 3 and propeller 6 where the constant disturbance was applied, the DO predicts the
disturbances up to a certain extent better than NMPC but the minimized model still outper-
forms DO. The thrust distribution of all the propellers except propeller 5 has a right-skewed
distribution.

Table 6.2 shows the dominant frequency and the amplitude at the dominant frequency
for various errors and states of the MRAV with each controller respectively. The summarized
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Figure 6.9: Boxplot for Position Error and Linear Velocity Error

data in the table 6.2 is obtained from FFT plots of errors and states shown in appendix D.
It is seen that except for the position error, the DO has the dominant frequency less than
NMPC and minimized model. For position error, the dominant frequency for DO is equal to
NMPC and greater than NMPC for error in the x and y axes. The dominant peak for DO is
lowest for orientation error in the z-axis however for all other errors the amplitude is higher
than the minimized model. For linear velocity errors in x,y, and z axes and angular velocity
errors in z, the amplitude of DO is higher than NMPC as well.
Figure 6.12 shows the logarithmic plot of FFT and cumulative frequency distribution of posi-
tion error in the x,y, and z axes. From figure 6.12a, 6.12b, and figure 6.12c, it is seen that
the DO has the highest amplitude of errors in the x,y, and z axes compared to NMPC and
minimized model except around the dominant frequency of the minimized model in x and y
axes. From figure 6.12d, it is seen that the DO has the highest cumulative error in the x,y,
and z axes, and the minimized model still has the least collective errors. The most error is
contributed near the dominant frequency for all three controllers, and the fluctuation is high
for DO at high frequency and contributes to the error as there is an increase in error in the
x,y, and z axes at high frequency.
Figure 6.13 shows the logarithmic plot of FFT and cumulative frequency distribution of orien-
tation error in the x,y, and z axes. From figure 6.13a, 6.13b, and figure 6.13c, it is seen that
for the low frequencies, all three controllers have similar amplitudes but as the frequency
increases, the DO have higher variation in amplitude. From figure 6.11b, it is seen that for
errors in x, DO has the least errors but for errors in the y and z axes the cumulative error is
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Figure 6.10: Boxplot for Orientation Error and Angular velocity error
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Figure 6.11: Boxplot for Thrusts

between NMPC and minimized model.
Figure 6.14 shows the logarithmic plot of FFT and cumulative frequency distribution of the
linear velocity error in the x,y, and z axes. From figure 6.14a, 6.14b, and figure 6.14c, it is
seen that the DO has the highest amplitude of errors in the x,y, and z axes compared to
NMPC and minimized model except around dominant frequency of the minimized model in
x and y axes. From figure 6.14d, it is seen that the DO has the highest cumulative error in
the x,y, and z axes compared to NMPC and minimized model. The most error is contributed
near the dominant frequency for all three controllers, and the fluctuation is high for DO at
high frequency and contributes to the error as there is an increase in error in the x,y, and z
axes at high frequency.
Figure 6.14 shows the logarithmic plot of FFT and cumulative frequency distribution of an-
gular velocity error in the x,y, and z axes. From figure 6.13a, 6.13b, and figure 6.13c, it is
seen that for the low frequencies, all three controllers have similar amplitudes but as the
frequency increases, the DO have higher variation in amplitude similar to NMPC but less
than the minimized model. From figure 6.11b, it is seen that for errors in x, DO has the
least errors compared to NMPC and minimized model but for errors in the y and z axes the
cumulative error is between NMPC and minimized model.
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Table 6.2: Data from FFT plots (DO)

States and errors Axis
Dominant frequency(Hz) Peak Amplitude
NMPC Min DO NMPC Min DO

Position error
x 0.2643 7.9281 2.1142 56.5187 3.3471 16.7458
y 0.2643 7.9281 2.1142 39.3432 2.0830 12.7413
z 0.2643 7.9281 0.2643 136.150 1.3502 258.21

Orientation error
x 4.4926 8.1924 4.2283 3.5254 1.6284 2.4154
y 4.4926 5.2854 4.2283 1.6596 3.0645 4.1922
z 4.4926 6.3425 3.6998 1.5438 6.3425 1.2709

Linear velocity error
x 3.9641 7.9281 2.1142 12.2201 32.5115 86.434
y 3.9641 7.9281 2.1142 18.2028 20.2206 66.8242
z 3.9641 7.9281 0.5285 9.5728 12.5414 343.455

Angular velocity error
x 4.4926 8.1924 4.2283 38.1881 16.3701 23.9291
y 4.4926 5.2854 4.2283 19.1199 30.9574 39.9158
z 4.4926 6.3425 3.6998 18.0148 19.9354 11.2254

Thrust

Propeller 1 0.2643 0.2643 0.2643 9246.56 9229.15 9282.66
Propeller 2 0.2643 0.2643 0.2643 9215.06 9214.39 9241.26
Propeller 3 0.2643 0.2643 0.2643 4365.88 9271.16 5461.59
Propeller 4 0.2643 0.2643 0.2643 9223.85 9233.64 9265.16
Propeller 5 0.2643 0.2643 0.2643 9218.93 9186.99 9222.76
Propeller 6 0.2643 0.2643 0.2643 4344.27 9292.15 5509.77

6.4 Discussion

This chapter presented the results from the simulation validation in the Gazebo environment
of controllers with NMPC and GP-based models. The GP-based models were classified
as minimized model and extended model. It was clear that all three controllers tried to
adjust for the disturbances. The minimized model-based controller was chosen based on the
results. While implementing the controllers the essence of the assignment was maintained.
Then, the performance of the chosen GP based controller was compared with the state-of-
the-art disturbance observer-based controller. The Disturbance controller performed better
for orientation and angular velocity in the x,y, and z axes. It was seen that for position
and velocity in the x, y, and z axes, the chosen controller outperformed the disturbance
observer based controller. The disturbance observer based controller tried to estimate the
disturbances on propeller 3 and propeller 6 however it was only able to estimate to a certain
extent compared to the chosen controller.
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(a) Logarithmic plot of FFT for Position Error in x
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(b) Logarithmic plot of FFT for Position Error in y
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(c) Logarithmic plot of FFT for Position Error in z
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Figure 6.12: Frequency Spectrum for Position Error
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(a) Logarithmic plot of FFT for Orientation Error in x
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(b) Logarithmic plot of FFT for Orientation Error in y
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(c) Logarithmic plot of FFT for Orientation Error in z
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Figure 6.13: Frequency Spectrum for Orientation Error
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(c) Logarithmic plot of FFT for Linear Velocity Error in z
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(e) Logarithmic plot of FFT for Angular Velocity Error in
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(f) Logarithmic plot of FFT for Angular Velocity Error in
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Figure 6.14: Frequency Spectrum for Velocity Error
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Chapter 7

Conclusions and recommendations

This chapter consists of two sections. The first section concludes with an overview of the
work done during the thesis while answering the research questions. The second section
presents future recommendations based on the presented work and the current limitations
of the work.

7.1 Conclusions

In this section, the research questions that are proposed in chapter 1 are reviewed, and the
summary of the work and related conclusions are presented. The primary research question
is given by:

Can data-driven model improve the performance of model-based controllers in con-
fined environment?
The data-driven model has potential to improve the performance of model-based controllers
in a confined environment. This conclusion is based on the performance of the GP-based
models incorporated with the NMPC controller to estimate and eliminate the disturbances
induced by air flows interacting with the obstacles in close proximity in simulation environ-
ment. Further, the comparison of GP-based models with the NMPC and state-of-the-art
disturbance observer based controllers has been discussed in the chapter 6. It is seen that
data-driven controllers can improve performance with sufficient training data points. The
primary advantage of using the data-driven model is that the states that are actually re-
sponsible can be considered as GPs are independent of each other. That means if only
the position is interesting and MRAV needs to move in a confined environment, then the
GP-based model can only be incorporated for the position as was shown in the minimized
model.
Now that the primary question is answered, the sub-research questions are discussed that
were used to achieve the above conclusion.

1. How to model these erratic disturbances on MRAVs in a confined environment?
It was shown that the disturbances were modeled using Gaussian Process-based Re-
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gression(GPR). GPR combined prior and the likelihood probabilistic functions based
on training samples giving a probabilistic approach to prediction by giving mean and
standard deviation as output. Then the mean is used as a prediction model for the
error as seen in chapter 5.

2. How to extend the dynamic model of MRAVs to account for these disturbances
induced by the air flows in confined environments and How to extend the exist-
ing controller to ensure accurate trajectory tracking in confined environments?
The second and third sub-questions are concluded together as they are dependent on
each other. It was seen that once the prediction model is obtained, it is included with
the dynamic model of the MRAV in the system constraints while formulating the Non-
linear Programming(NLP) problem. The controller was extended by updating the NLP
problem and its transformation into the Sequential Quadratic Problem (SQP). Further,
the Jacobians used to convert the NLP into the sequential quadratic problem were ex-
tended to include the prediction model of the errors and the controller. This allows the
NMPC to take into account the disturbances when solving SQP while imposing con-
straints on the system. Finally, the solver was able to solve the updated problem and
provide the optimal control input that was transformed into velocities given as input to
MRAV.

7.2 Limitation and Future Recommendations

This section introduces the current limitation of the work and future recommendations on
how it can be improved. The limitations of the current work are:

1. The current control scheme has been validated for the constant disturbances in the
simulation environment. The control scheme needs to be tested for the more real life
scenario where proximity effects are erratic in nature as seen in chapter 3.

2. The control scheme has yet to be validated experimentally to get more real insight into
the potential and the limitations of the controller.

3. The current model has only been tested for the hovering mode of the MRAV. So, the
controller has only been tested for position control, and is yet to be determined what
will be the impact of added rotation in MRAV maneuvering.

4. The GP-based model requires more computation time as compared to NMPC. Also, as
more GPs are introduced to include more states the complexity of the GP-based model
is increased as seen in chapter 6. That limits the training of the GP-based model and
that affects the performance of the GP-based model as seen for the extended model.

Based on the work done in the assignment and the current limitations, following recommen-
dations can be made:

1. The experimental validation of the control scheme to get more real insight into the
potential and the limitations of the controller.
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2. Bayesian optimization can be investigated for hyperparameter tuning and ensembling
techniques to combine multiple GP-based regression models to enhance the proposed
methodology.

3. The current controller framework uses a combination of Matlab, C++, and Python.
Therefore, the GP-based controller can be implemented completely in C++/python to
reduce the computation burden as they are better suited for computation purpose than
Matlab.

4. New research on Real-time Neural MPC [60] shows faster results than previously
Learned model-based MPC including GP based model, that can be explored.

5. At present, the GP models are being computed in series. Finding ways for paralleliza-
tion of the computation process for each GP as all GPs are independent of each other,
can also reduce the computation burden and allow the incorporation of more prediction
error for more states in the controller.
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Appendix A

Statistics test

A.1 Disturbance and Non-disturbance based data comparison

This section presents the results from the two independent samples. The first set of sample
contains the error and thrust datasets from the MRAV in big room i.e. not experiencing the
proximity effects. The second set of sample contains the error and thrust datasets from the
MRAV in small room i.e. experiencing the proximity effects. These two samples are then
analysed to check certain hypothesis and to conclude if there are significant difference in
two samples due to the disturbances.

Table A.1: Hypothesis Test Summary
States and

Errors
Axis Sig.a Decision on null hypothesis

Posititon error
x .000 Reject
y .000 Reject
z .000 Reject

Orientation error
x .000 Reject
y .000 Reject
z .018 Reject

Linear velocity
error

x .000 Reject
y .000 Reject
z .000 Reject

Angular velocity
error

x <.001 Reject
y .062 Retain
z <.001 Reject

Thrust

Propeller 1 .000 Reject
Propeller 2 .000 Reject
Propeller 3 .000 Reject
Propeller 4 .000 Reject
Propeller 5 .000 Reject
Propeller 6 .000 Reject

The test that is performed is Independent-Samples Mann-Whitney U test. The Mann-Whitney
U test is non parametric test to compare the distributions of independent groups and to de-
termine if there exists a statistically difference between distributions of two samples across
two categories. Further, Mann-Whitney U test can differences in shape and central ten-
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dency of the distribution. The hypothesis also called null hypothesis is that the error and
state datasets have same distribution for both cases i.e. when disturbances are present and
when the disturbances are not present. The table A.1 shows the summary of results from
the analysis. The p-value shown by Sig. in table A.1 to determine if there exists statistical
differences between sample. If p-value is less than chosen significance level then the null
hypothesis is rejected. The significance level is chosen to be 0.50 and represented by a in
table A.1. The analysis is conducted using IBM statistics software.
It can be concluded that from the table A.1 that there exist significant differences in the two
datasets except for the case in angular velocity error data in y-axis. For the angular velocity
data in y axis, there is lack of evidence to reject the null hypothesis.

A.1.1 Disturbances

Table A.2: Hypothesis Test Summary
States and

Errors
Axis Sig.a,b Decision on null hypothesis

Posititon error
x .000 Reject
y .000 Reject
z .000 Reject

Orientation error
x .000 Reject
y <.001 Reject
z .247 Retain

Linear velocity
error

x <.001 Reject
y .000 Reject
z .495 Retain

Angular velocity
error

x .021 Reject
y .707 Retain
z .006 Reject

Thrust

Propeller 1 .000 Reject
Propeller 2 .003 Reject
Propeller 3 .000 Reject
Propeller 4 .000 Reject
Propeller 5 <.001 Reject
Propeller 6 .000 Reject

This section presents the results from the two related samples i.e. the experiment are
repeated twice with same parameter and controller in small room i.e. experiencing the prox-
imity effects. Both the set of samples contain the error and thrust datasets from the MRAV
in small room. These two samples are then analysed to check certain hypothesis and to
conclude if there are significant difference in two samples due to the disturbances. The test
performed is Friedman’s two-way Analysis of Variance by ranks to check if there exist stati-
cally significant difference between distribution of errors and thrusts between two samples.
The analysis is conducted using IBM statistics software. The summary of result are shown in
table A.2. It can be concluded that from the table A.2 that there exist significant differences
in the two datasets except for the case in the orientation error in z, the linear velocity error
in z, and the angular velocity error in y data. For the orientation error in z, the linear velocity
error in z, and the angular velocity error in y there is lack of evidence to reject the null hy-
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pothesis. It can be concluded that the error is erratic and can influence system differently as
there is small but significant difference between two datasets.

A.2 Boxplot data for NMPC and GP-NMPC

The table A.3 shows the median, mean, and range of data for various errors and states of
the MRAV with each controller respectively. One thing that can be concluded from table A.3
is that every dataset distribution is skewed irrespective of the controller.

Table A.3: Data from Box plots
States and errors Axis

Median Mean Range
NMPC Min Ext NMPC Min Ext NMPC Min Ext

Position error
x 0.0318 -0.0016e-03 0.0176 0.0320 0.0332e-03 0.0145 0.0074 0.0205 0.0429
y 0.0228 -0.5312e-03 0.0030 0.0229 0.4244e-03 0.0128 0.0083 0.0131 0.0854
z -0.0886 -0.2236e-03 -0.0788 -0.0881 -0.2790e-03 -0.1353 0.0133 0.0105 0.8331

Orientation error
x 0.0010 0.6762e-03 0.0604e-03 0.7342e-03 0.0951e-03 0.2005e-03 0.0192 0.0202 0.0165
y 0.0003 -0.7696e-03 0.3752e-03 -0.0993e-03 -0.4581e-03 0.2266e-03 0.0252 0.0364 0.0211
z 0.0000 -0.1674e-03 0.0365e-03 0.1549e-03 -0.1693e-03 -0.0239e-03 0.0084 0.0213 0.0078

Linear velocity error
x -0.0003 -0.0007 0.0003 -0.1900e-03 -0.0012 -0.0016 0.0602 0.1808 0.2503
y 0.0002 -0.0014 -0.0001 -0.0448e-03 -0.0003 -0.0024 0.0705 0.1202 0.4498
z 0.0013 0.0017 0.0117 0.0209e-03 0.0019 0.1558 0.0545 0.0879 1.1856

Angular velocity error
x 0.0032 0.0009 -0.4661e-03 0.8573e-03 -0.0002e-03 0.0003 0.2044 0.1807 0.1902
y 0.0021 0.0031 0.9123e-03 0.0444e-03 0.5155e-03 -0.0016 0.2761 0.4115 0.2115
z -0.0005 -0.0007 0.6109e-03 -0.1126e-03 -0.3691e-03 0.0001 0.0850 0.2697 0.1001

Thrust

Propeller 1 4.8482 4.8759 4.8947 4.8616 4.8806 4.8978 1.8158 2.9313 7.5920
Propeller 2 4.8872 4.9189 4.9103 4.8943 4.8728 4.9049 1.7951 3.6611 7.0678
Propeller 3 2.2962 4.9795 3.3082 2.3085 4.9028 3.5600 0.6437 3.9507 7.0265
Propeller 4 4.8324 4.8756 4.8935 4.8547 4.8829 4.8871 1.6707 3.0262 7.6833
Propeller 5 4.8901 4.8979 4.9349 4.8858 4.8583 4.9018 1.8982 3.6847 6.9624
Propeller 6 2.2868 4.9683 3.2447 2.2925 4.9139 3.5569 0.5817 3.9437 7.1073

A.3 Boxplot data for nominal NMPC, GP-NMPC and DO-NMPC

Table A.4 shows the median, mean, and range of data for various errors and states of the
MRAV with nominal NMPC, minimized model model, and DO respectively. One thing that
can be concluded from table A.4 is that every dataset distribution is skewed for DO.
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Table A.4: Data from Box plots
States and errors Axis

Median Mean Range
NMPC Min DO NMPC Min DO NMPC Min DO

Position error
x 0.0318 -0.0016e-03 -0.0016 0.0320 0.0332e-03 -0.0039 0.0074 0.0205 0.1018
y 0.0228 -0.5312e-03 0.0003 0.0229 0.4244e-03 -0.0004 0.0083 0.0131 0.0771
z -0.0886 -0.2236e-03 -0.0501 -0.0881 -0.2790e-03 -0.1294 0.0133 0.0105 0.7867

Orientation error
x 0.0010 0.6762e-03 0.2337e-03 0.7342e-03 0.0951e-03 0.0200e-03 0.0192 0.0202 0.0207
y 0.0003 -0.7696e-03 -0.1404e-03 -0.0993e-03 -0.4581e-03 0.1470e-03 0.0252 0.0364 0.0328
z 0.0000 -0.1674e-03 0.2826e-03 0.1549e-03 -0.1693e-03 0.2719e-03 0.0080 0.0213 0.0101

Linear velocity error
x -0.0003 -0.0007 0.0074 -0.1900e-03 -0.0012 -0.0023 0.0602 0.1808 0.4141
y 0.0002 -0.0014 0.0020 -0.0448e-03 -0.0003 -0.0017 0.0705 0.1202 0.3231
z 0.0013 0.0017 0.1218 0.0209e-03 0.0019 0.1829 0.0545 0.0879 1.8755

Angular velocity error
x 0.0032 0.0009 -0.0022 0.8573e-03 -0.0002e-03 -0.5624e-03 0.2044 0.1807 0.1827
y 0.0021 0.0031 -0.0002 0.0444e-03 0.5155e-03 -0.2750e-03 0.2761 0.4115 0.2848
z -0.0005 -0.0007 0.0008 -0.1126e-03 -0.3691e-03 -0.3269e-03 0.0850 0.2697 0.1013

Thrust

Propeller 1 4.8482 4.8759 4.8010 4.8616 4.8806 4.9089 1.8158 2.9313 6.9517
Propeller 2 4.8872 4.9189 4.7394 4.8943 4.8728 4.8870 1.7951 3.6611 6.5073
Propeller 3 2.2962 4.9795 2.5223 2.3085 4.9028 2.8882 0.6437 3.9507 9.0744
Propeller 4 4.8324 4.8756 4.7938 4.8547 4.8829 4.8996 1.6707 3.0262 7.1153
Propeller 5 4.8901 4.8979 4.6839 4.8858 4.8583 4.8772 1.8982 3.6847 6.2787
Propeller 6 2.2868 4.9683 2.5281 2.2925 4.9139 2.9137 0.5817 3.9437 9.1434
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Appendix B

FFT of experimental data

This section shows the fft plots of error and thrust for the data from experimentation. The
results from the plots have been summarized in the table 3.2.
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Figure B.1: Frequency plot for Errors
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Figure B.2: Frequency plot for Thrusts
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Appendix C

FFT of results

This section shows the fft plots of error and thrust for the data from results and compare the
results of NMPC and GP based model. The results from the plots have been summarized in
the table 6.1.
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Figure C.1: Frequency plot for Errors
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Figure C.2: Frequency plot for Thrusts
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Appendix D

FFT of results(DO)

This section shows the fft plots of error and thrust for the data from results and compare the
results of NMPC and minimized model with Disturbance observer. The results from the plots
have been summarized in the table 6.2.
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Figure D.1: Frequency plot for Errors
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Figure D.2: Frequency plot for Thrusts
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