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Management summary

Motivation of the research

Given the expanding demand for healthcare services, which is expected to grow in
quantity, quality, and complexity, healthcare decision-makers are facing a pressing
need to develop more efficient and effective healthcare systems. As part of this
growth, healthcare costs also increase [63; 7; 53]. Among the various expenses in-
curred within healthcare establishments, logistics-related costs emerge as the second-
largest cost category [63; 53]. Hence, this research focuses on optimising material
logistics processes, specifically enhancing the efficiency of replenishment procedures
within healthcare departments. The current material logistics techniques employed
in healthcare establishments are burdened by specific limitations [4; 30], like limited
data collection, limited data analyses, and demand fluctuation. These limitations
lead to imprecise replenishment estimates, inefficiencies that waste valuable time,
and a lack of strategic decision-making and data analysis capabilities. This leads to
financial waste, fluctuations in stock levels, and disruptions in the continuity of care.

To address the limitations, the primary objective of this research is twofold. First, it
aims to develop a technique that significantly enhances the accuracy of replenishment
quantity estimations while improving overall operational efficiency. Second, the
goal is to automate the decision-making process related to replenishment strategies
entirely. A collaborative effort is conducted with Coppa Consultancy BV (Coppa)
and Zaans Medisch Centrum (ZMC) to achieve these objectives. The effectiveness
and practicality of the proposed automated material logistics technique are assessed
through a case study conducted within the surgical department of ZMC. This case
study will illustrate how the model addresses the identified limitations and positively
changes material logistics processes.

Methods

We construct a simulation model using replenishment data from ZMC. From this
data, we select a subset of 43 items from the department’s storage cabinets based on
two primary criteria: their annual costs and annual replenishment frequency. This
selection accounts for 12% of all cabinet items and represents 53% of the total yearly
expenses. Replenishments for the department occur on Mondays and Thursdays;
any replenishments on other days are considered emergency orders. This approach
divides the week into two periods: Monday to Wednesday and Thursday to Sunday.
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Our integration of an automated material logistics system utilises employing Radio-
Frequency Identification (RFID) technology, enabling the use of RFID-equipped
storage cabinets. These cabinets allow precise item counting. We test the con-
ceptual decision-making strategy through simulation. To create a simulation, a
distribution is established for each item during each period, enabling the modelling
of cabinet inventory flow and assessment of the decision-making strategy.

The decision-making strategy of the conceptual model involves determining the re-
plenishment quantities based on a predetermined probability threshold. When de-
termining the replenishment quantity, the method assesses the likelihood that the
usage will be equal to or less than the in-stock items for the upcoming period. This
decision is based on the probability that the current stock in the storage cabinets
is sufficient to cover the period until the next scheduled ordering moment. If this
probability is less than the selected probability threshold, the stock is replenished to
its maximum capacity, considering the order size at which individual items are pack-
aged. Only multiples of this order size are placed as orders. If the likelihood that the
usage is equal to or less than the number of items available in the storage cabinet
does not exceed the established probability threshold, no order is initiated. Instead,
the system waits until the next scheduled ordering moment. The assessment of this
likelihood depends on the Normal or Poisson distribution used to characterise the
item.

We evaluate and measure the optimisation of the conceptual decision-making strat-
egy through three diverse experiments.

1. The first assesses the Markov chain decision policy implementation on tradi-
tional replenishment days (Monday and Thursday).

2. The second evaluates the implementation of the Markov chain decision policy
on traditional replenishment days (Monday and Thursday) and its application
on additional replenishment days (Tuesday, Wednesday, and Friday).

3. The third experiment aims to optimise the capacity of items stocked in the
storage cabinets.

Findings and conclusion

This research evaluates the integration of an automated material logistics system
and its enhancements for inventory management and operational efficiency within
healthcare department logistics. By using a conceptual model based on the Markov
chain method, key findings reveal the potential benefits of the combination of RFID-
equipped storage cabinets with the conceptual model. In comparison to the existing
statistics at ZMC, this integration results in a remarkable 93, 6% decrease in item
stockouts, reducing them from 1600 stockouts to 102. Additionally, it leads to a
substantial 60% reduction in unplanned additional replenishments, bringing them
down from 20 to 8, provided that 8 additional planned replenishments are intro-
duced. The conceptual decision strategy leads to a more reliable material logistic
process. Capacity optimisation emerges as a practical approach, reducing stockouts
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and additional replenishments and decreasing the value of in-stock items.

Moreover, the data availability facilitated by the RFID-equipped storage cabinets
offers a unique opportunity to access a wealth of previously unexplored information.
This data and the insights it yields are expected to diverge significantly from the in-
sights currently employed in known inventory management techniques, both within
the manufacturing industry and healthcare facilities. As a result, this field remains
open for further exploration, particularly in the context of the automated material
logistics system based on the Markov chain decision strategy.

Discussion

In the scope of this research, we delve into several limitations which could influence
the outcome of the research.

1. The research provides opportunities for future research to explore the relia-
bility of RFID-equipped storage cabinets and to investigate the feasibility of
sustainable RFID tags.

2. A comprehensive cost-benefit analysis for the implementation of RFID-equipped
storage cabinets is also a potential area for future research. Including precise
annual values of items in stock and considering the costs associated with ad-
ditional replenishments could enhance the research outcomes.

3. The simulation model’s predictions are currently based on replenishment pat-
terns. Future research may consider integrating actual usage patterns to pro-
vide a more comprehensive analysis.
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1 Introduction

The problem of this research addresses the material logistic processes for the pur-
pose of replenishing the storage cabinets at the department. Current limitations of
the material logistic techniques in healthcare establishments give room for improve-
ments [4; 30]. The identified limitations lead to imprecise replenishment estimates,
wasted time, inefficiency, and a lack of strategic decision-making and data analysis
capabilities. Consequently, the problem might lead to financial waste, fluctuations
in stock levels, and disruptions in the continuity of care. This chapter provides a
brief introduction concerning the participating parties Coppa and Zaans Medisch
Centrum in Section 1.1 and 1.2, respectively. Section 1.3 describes the rational mo-
tivation for this research, and Section 1.4 outlines the research objective. Section 1.5
outlines the proposed approach, the related research question, and sub-questions.

1.1 Introduction to Coppa

The research is conducted in collaboration with Coppa, a purchasing consultancy
company within the health care and government sectors [11]. The company was
founded in 1997 by Bas Bouwman together with Marco Plasier [12]. In 2008, Jeroen
Meijer and Paul Gelderman joined the management team, and since then, Bas,
Jeroen, and Paul have been leading Coppa [12]. During the 25 years of existence,
Coppa expanded to approximately a hundred professionals working collaboratively
in various teams. According to the website of Coppa [10], the company contains a
variety of teams. A list of Coppa’s teams is shown in Appendix A.

We focus our collaboration on "Team Business Consultants Implementaties". This
team advises organisations on selecting, implementing, and optimising the Enter-
prise Resource Planning (ERP) Systems and Financial Management Information
Systems (FMIS). These systems enable institutions to improve insights into item
consumption and associated costs. In addition, the material logistic processes auto-
mated by these systems reduce labour intensity and increase efficiency.

1.2 Introduction to Zaans Medisch Centrum

With the help of Coppa, a second collaboration is established with Zaans Medisch
Centrum. ZMC is a hospital serving the region Zaanstreek and is located at Zaan-
dam. The hospital resulted from a merger between the Municipal Hospital and the
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St. Jan Hospital [9], established in 1931 and 1932, respectively. This merger oc-
curred in 1974, and the hospital was subsequently known as Foundation Hospital
de Heel [9]. Since 2004, it is officially called Zaans Medisch Centrum [9]. Currently,
the hospital consists of 53 various care departments [65], along with various support
departments that contribute to providing comprehensive patient care, Figure A.1 in
Appendix A shows the organogram of ZMC. The primary objective of the hospital
is delivering the highest quality of care to the residents of the region Zaanstreek [66].

The two involved teams, the Logistics and Soft Services team and the Procurement-
to-Pay (P2P), play an essential role in ensuring an efficient material logistics process
within the ZMC. Meetings are held with both teams to gather a profound under-
standing of their utilised techniques and the monitoring processes within the material
logistics to gain deeper insights into the operational procedures of the ZMC hospital.
See Chapter 4 for deeper insights into the material logistic process of ZMC.

1.3 Case description

Given the expanding demand for healthcare services, which is expected to grow in
quantity, quality, and complexity, healthcare decision-makers are facing a pressing
need to develop more efficient and effective healthcare systems[1]. As part of this
growth, healthcare costs also increase [63; 7; 53]. In the hospital setting, efficient and
effective system operations focus on patient care. To ensure the organisation’s ser-
vice provision, systems are optimised to minimise wasted time, financial resources,
and employee energy. All while guaranteeing the provision of patient care and em-
phasising the provision of high-quality service to patients [33].

Among the various expenses incurred within healthcare establishments, logistics-
related costs emerge as the second-largest cost category [63; 53]. Hence, optimisa-
tion is also needed in the hospital environment’s material logistics context. In a
hospital setting, materials are often stocked at three logistical segments: (A) inven-
tory situated within the Operating Room (OR), (B) inventory directly held by the
individual departments, and (C) a centralised storage point [18]. All three segments
of the material logistic process are directed towards maximising the delivery of pa-
tient care. In the context of this research, we focus on the material logistics within
the individual hospital departments. To address the healthcare expansion at the
department level, numerous studies analyse the influential factors and their patient
characteristics impacting inventory control systems. With the help of data analysis,
these insights enable them to identify improvement areas and make well-informed
decisions that lead to favourable positive outcomes for patients and the organisation.
A substantial body of research has already delved into this area, aiming to find a
viable solution [51]. Subsection 3.2 concisely describes these methodologies.

Currently, the most prevalent technique employed in the material logistic process
within the hospital department is the Kanban method [33; 18]. This approach op-
erates as a pull method, enabling staff members to replenish inventory following
predetermined minimum and maximum stock levels [33]. A prompt is triggered to
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initiate replenishment whenever stock levels dip below the designated minimum.
The adoption of this technique is based on its primary objective of ensuring patient
safety. The secondary goals of the implementation of the Kanban method are ac-
counting for the inventory shortage costs and capacity considerations [18]. Notably,
this methodology does not account for the costs associated with staff coordinating
replenishment or the potential errors introduced by personnel, which might impact
the effectiveness of the Kanban method [42]. An automated material logistics process
is required to reduce personnel’s influence. That is why healthcare decision-makers
are looking for an automated improvement and refinement of a technique that aligns
primary, secondary, and overlooked objectives [18]. The determination of the pri-
ority among these objectives depends on the hospital’s preferences. The objectives
can be evaluated using Key Performance Indicators (KPIs); the most common ones,
as identified in relevant literature studies, are defined in Section 2.2.

1.4 Research goal

This research aims to analyse and improve the material logistics process within hos-
pital departments. The primary objective is to develop a technique that improves the
accuracy of reorder quantity estimations and enhances operational efficiency. The
technique should provide the flexibility to tailor the primary goal, allowing hospitals
to define their own KPIs and simultaneously concentrate on multiple KPIs. The
study involves exploring various methods and models utilised in previous literature.
The key goal is to develop an automated, data-driven model capable of determining
optimal reorder quantities for each specific item based on the KPIs selection. To
streamline our data analysis and model testing efforts, we perform a case study at
ZMC and focus our research on the department within the hospital with the highest
turnover of stocked items. This department is the surgical department of ZMC. The
following main research question is posed:

"How can integrating an automated material logistics system efficiently track in-
ventory and improve operational efficiency in the department’s material logistics
process?"

1.5 Problem approach and research questions

This section provides an overview of the research questions and the proposed ap-
proach to address them. The research questions serve as a foundation to achieve the
research goal by acquiring the necessary knowledge to solve the research problem.
Examining the findings for each sub-question provides a comprehensive understand-
ing of the context and helps identify the factors to consider before reaching a solution.
The proposed sub-questions are categorised into four main research questions, each
corresponding to a chapter. Sub-questions further support the research questions,
and their answers will contribute to addressing the main research questions.
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Chapter 1, the introduction offers an overview of the parties and teams engaged in
the research collaboration. Chapter 1 defines the case description of this research,
defines the research goal and outlines the research approach and questions. Chap-
ters 1 and 2 address the first research question.
Research question I. What traditional material logistic process techniques are cur-
rently employed in healthcare organisations, and what measures can be taken to en-
hance their operational effectiveness?

1. What plan of approach can be taken to address the described problem effec-
tively?

2. What issues arise within the traditional hospital approach, particularly at the
department level, and what are the resulting consequences of the current method-
ology?

3. What Key Performance Indicators (KPIs) are relevant for assessing the effec-
tiveness and efficiency of the techniques in addressing the main issue?

4. How can the described problem be categorised within the Strategic, Tactical,
and Operational (STO) and Qualitative and Quantitative (QQ) framework?

Chapter 2 aims to facilitate a problem analysis to explore possibilities for improving
the efficiency and accuracy of the hospital’s material logistic process. It outlines the
common KPIs for this research.

Chapter 3 involves analysing previous literature review studies to examine supply
or logistics management methods that have been investigated and identify the char-
acteristics associated with these methods. Chapter 3 addresses the second research
question.
Research question II. "What methods are examined in previous research to improve
the material logistics process of hospitals, in terms of supply management or other
logistics management methodologies?"

1. What state-of-the-art techniques are employed to organise material logistics
processes within healthcare institutions?

2. How are state-of-the-art techniques applied to assess the turnover of material
logistics process management, particularly at the department level of hospitals?

3. Which techniques are utilised to analyse the data of replenishment quantities
and identify significant characteristics?

4. What automated and data-driven material logistic process is best suited for
supplying the storage cabinets of hospitals?

This chapter will explore the similarities among these methods and evaluate other
commonly used methods in hospitals to determine their suitability for the material
logistics process and their applicability within hospitals.
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Chapter 4 includes a description of the existing material logistic process within ZMC
and addresses the third research question.
Research question III. "How is the current material logistic process organised at the
department level in ZMC?"

1. What is the overall structure of the material logistics process within ZMC?

• Which steps does ZMC follow when they receive deliveries?

• How are items distributed throughout the hospital?

• Which methods are used to track, replenish, and distribute articles within
the hospital?

2. What problems arise within the current approach at the department level of
ZMC, and what are the resulting consequences of the current methodology?

3. What Key Performance Indicators (KPIs) does ZMC consider relevant for
evaluating the effectiveness and efficiency?

4. What parameters are included within the dataset provided by ZMC

The chapter aims to clarify the current context by implementing interviews that
answer the four sub-questions.

Chapter 5 analyses the methods identified in the previous chapter and provides
insights into answering the fourth research question.
Research question IV. "Which predictive methodology will be investigated in this
research as the implementation of a conceptual model within the material logistics
process at the department level of ZMC?"

1. Which key parameters of the dataset of ZMC can be included into the concep-
tual model?

2. In what ways can the data characteristics of the dataset be included in the
conceptual model?

3. How can the Markov chain process technique be transformed into an automated,
data-driven conceptual model suitable for implementation within hospitals?

4. What methods can be employed to analyse and evaluate the KPIs of the con-
ceptual model?

5. How is the structure and configuration of the simulation model constructed?

The chapter describes the solution design and presents the data analysis findings to
develop the conceptual model.

Chapter 6 examine the added value of the conceptual model and introduce the fifth
research question:
Research question V. "What are the outcomes, impact, and effectiveness of the con-
ceptual model for the material logistics process at the department level of ZMC?"
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This assessment is achieved through a case study, aiming to obtain the results gen-
erated by the conceptual model. The results will be validated and analysed to
evaluate their potential added value.

Finally, Chapter 7 conclude the report with additional information gathered during
the research period. The conclusions and recommendations sections summarise the
findings and provide recommendations for Zaans Medisch Centrum, hospitals in
general, Coppa, and future research. The discussion offers an interpretation of the
results and critical reflection on the proposed solution.
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2 Context analysis

This chapter presents a context analysis regarding the investigated problem corre-
lated with the material logistic process of healthcare institutions. It also outlines the
causes and consequences of our investigated problem. The chapter categorises the
type of problem represented and outlines the Key Performance Indicators. Section
2.1 outlines the causes and consequences of the issues, Section 2.2 outlines the key
performance indicator related to the consequences and Section 2.3 categorises the
type of problem represented. A summary of this section is given in Subsection 2.4.

2.1 Problem context

To comprehensively understand the problem being investigated in this research, we
analyse the problem from three perspectives: the customer, financial, and internal
process. These perspectives are derived from the balanced scorecard framework [25],
a management tool used to measure and monitor organisational performance. De-
veloped by Robert Kaplan and David Norton, the balanced scorecard can also be
applied in healthcare institutions [25]. Unlike traditional financial indicators, the
balanced scorecard incorporates non-financial indicators crucial for long-term suc-
cess [25]. By applying the different perspectives of the balanced scorecard, the aim is
to analyse the problem thoroughly and identify its root causes and consequences [25].

The chosen perspectives — the customer, financial, and internal process — have
been selected for specific reasons. The customer perspective is relevant since stock
levels directly affect department employees’ and patients’ needs and satisfaction.
The financial perspective is relevant since the manual inspection and estimate of
inventory requirements can affect the cost and financial efficiency of the material
logistic process. The internal process perspective is important since the manual
control and estimation process directly influences material logistics’ overall oper-
ation and performance. Assessing this perspective allows evaluating the material
logistics process’s efficiency, effectiveness, and quality. By examining the problem
from these perspectives, a comprehensive understanding of its causes, impacts, and
consequences can be achieved, enabling appropriate actions and improvements to
be implemented. Figure 2.1 provides an overview of the problem cluster.
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Figure 2.1: The problem cluster represents the causes, impacts, and consequences
of hospitals’ traditional materials logistics process. Each element is explained in
detail in Section 2.1.

The problem cluster represents the causes, impacts, and consequences of hospitals’
traditional materials logistics process. Each of these elements is explained below the
figure.
The problem cluster includes various colours: grey, red, and black. Within the
cluster, the grey elements represent the causes of the problem, each exerting distinct
impacts. These impacts are visually depicted in red. Ultimately, the red elements
lead to outcomes that are represented by the four black elements, which are defined
from the three different perspectives described above. The causes and impacts of
the problem are clarified below. As well, the outcomes represented by the black
elements are explained below from three distinct perspectives.

Causes and impacts of the problem

Below, you’ll find a more detailed explanation of the causes and their impacts of the
problem cluster.

Causes

(A) Limited data collection. During the consumption of materials within the hos-
pital, particularly stocked items, it is common practice not to record the ma-
terials per patient but rather to register the average weekly or monthly data.
This practice limits the data obtained, consequently restricting data analyses
[17]

(B) Limited data analyses. The lack of detailed information regarding future de-
mand for specific items challenges accurate stock forecasting and planning.
Departments are constrained to rely on average historical data from the past
year instead of utilising dynamic and predictive future values to establish the
minimum-maximum stock policy.
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(C) Demand fluctuation. In hospitals, the consumption of materials is often char-
acterised by unpredictability. For instance, a sudden rush in the consumption
of a specific item can rapidly exhaust articles, surpassing the predictions made
by the minimum-maximum stock policy. Conversely, there may be instances
where materials are used sparingly, resulting in excessive stock levels. These
fluctuations in consumption patterns make it challenging to maintain balanced
stock levels.

impacts

(A) Inadequate min-max policy. As previously explained, limited data analyses
hinder the compliance of Kanban policy. Consequently, the levels may not
align with actual consumption in specific scenarios, making the levels unre-
liable. As a result, logistics team members must rely on their judgment to
determine the reorder size per item instead of depending solely on the estab-
lished thresholds [29].

(B) Human-related decision-making. The existing process lacks the incorporation
of advanced data analytics or predictive models to enhance the accuracy and
automation of stock forecasting. The absence of data-driven decision-making
hinders the efficiency and effectiveness of the material logistics process, forcing
logistics team employees to make decisions resulting in time-consuming tasks
and human-related mistakes manually [18].

(C) Subjective estimation. The employees responsible for inspecting the storage
cabinets encounter inadequate minimum-maximum stock levels, which force
them to rely on subjective estimates when determining the required reorder
quantities. This can result in inconsistencies and variations in the reordering
decisions, as different employees may make other estimates. As a result, there
is a risk of experiencing shortages or accumulating excess stock levels.

(D) Time-consuming process. Manually checking the storage cabinets and esti-
mating reorder requirements is time-consuming. Employees must physically
visit each department within ZMC, scan the articles, and estimate the need for
reordering. This process consumes a significant amount of time and impacts
the overall productivity of the logistics team, potentially leading to additional
unnecessary costs.

(E) Inaccurate estimates. Employees encounter challenges in accurately determin-
ing whether to reorder or wait. This challenge becomes even more complicated
when unexpected changes occur, of which they may be unaware, such as a sud-
den spike in the consumption of a specific item. These factors contribute to
the inaccuracy of estimates, which can result in shortages or excessive stock
levels, commonly referred to as stock imbalance.

(F) Stock imbalance. As previously mentioned, the introduction of inconsistencies
and variations in reordering decisions, influenced by different employee esti-
mates and demand fluctuations, can result in imbalanced stock levels. Such
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imbalances can lead to misperceptions among employees who rely on stock con-
sistency. Additionally, this situation can cause financial waste due to potential
shortages or excessive stock levels.

(G) Unfulfilled anticipation. Stock imbalance can lead to stock level shortages,
undermining the consistency of relying on stock levels. This situation can
cause dissatisfaction among department employees who anticipate having the
required items readily available.

Below, you’ll find a more detailed explanation of the consequences resulting from
the causes and their impacts within the problem cluster.

Customer perspective

From the customer’s perspective of the problem cluster, two of the consequences
can be categorised within the customer’s perspective. First, inaccurate inventory
estimates might result in unforeseen shortages, potentially leading to dissatisfaction
among departments relying on their stock in the storage cabinets, consequence A.
Second, stock imbalance might cause delays in patient care and a decrease in the
quality of service provided, ultimately degrading the service level, consequence B.

Financial perspective

Two consequences can be classified when considering the financial perspective, re-
sulting in financial waste. First, manual inspections and estimates of inventory needs
yield inaccurate assessments, leading to excessive or insufficient stock levels. Such
situations can result in financial waste caused by excess inventory, revenue loss due
to shortages, or additional costs associated with emergency orders, consequence C.
Second, manually verifying the stock in the storage cabinets and estimating reorder
requirements is time-consuming since each department must monitor and replenish
each item. This process consumes significant time, potentially leading to additional
unnecessary costs, consequence C.

Internal process perspective

One consequence arises from the internal process perspective, which can lead to an
inefficient material logistic process. The manual verification and estimate of stock
points are time-consuming and inefficient, requiring significant time and effort from
the logistics team. Mainly due to a lack of data and insights into the material
logistics process, making it challenging to formulate strategic decisions regarding
inventory management. This can result in disruptions in the material logistics pro-
cesses, consequence D.

Core problem

As seen in the problem cluster, impacts are influenced by the causes: limited data
collection, limited data analyses and demand fluctuations. The focus of this research
is primarily placed on the enhancement of limited data analyses. A substantial
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amount of available data remains unexploited in its potential to enhance an auto-
mated material logistics process. The possibilities of an automated approach are
extensively explored in the literature, and one of the alternatives is further elabo-
rated on in this research. In addition, in-depth data analyses offer the opportunity
to better manage the demand fluctuations. Addressing the issue of data collection
is a issue that could be addressed in further research and falls beyond the current
scope of this research.

2.2 Key performance indicator

Based on the problem context, it is possible to determine essential performance
benchmarks to evaluate the methodology’s performances within material logistic
processes, commonly referred to as KPIs. Below, you can find a list of the most
common KPIs to measure the improvement of the forecast model, as identified in
relevant literature studies in Chapter 3. The specific KPIs can be determined in
alignment with the preferences of the healthcare organisation and scope. Section
3.2 provides an overview of the examined KPIs and the correlated literature research.

1. Data utilisation ratio: Evaluates the degree to which data analytics are em-
ployed for automated decision-making. A lower level of human intervention
results in a higher ratio, signifying a stronger reliance on data-driven decision-
making.

2. Emergency order cost : Calculates the expenses incurred due to emergency
orders. Reduced emergency order costs signify improved inventory planning.

3. Forecast error : Computes the variance between predicted demand and actual
consumption, considering both overestimated and underestimated demand.
Smaller forecast errors indicate more accurate demand forecasting.

4. Inventory carrying cost : Evaluates the cost of holding inventory, including
storage and transport costs. Lower carrying costs reflect efficient inventory
management.

5. Inventory value at risk : Estimates the potential financial risk associated with
inventory value fluctuations. A lower value at risk indicates better risk man-
agement.

6. Labour hours per replenishment : Measures the time and effort required to
complete replenishment tasks. Lower labour hours per replenishment indicate
improved labour efficiency and lower labour costs.

7. Obsolete inventory rate: Measures the percentage of inventory that becomes
obsolete or unusable. Reducing this rate demonstrates effective inventory plan-
ning and management.

8. Patient care delay : Assesses the time delay caused by stock outs, impacting
patient care. Minimising delays enhances patient care quality.

11



9. Replenishment frequency : Evaluates the number of replenishment actions re-
quired within a specific period. Lower frequencies suggest optimised inventory
levels.

10. Stock out rates : Measures the percentage of instances where items are unavail-
able when needed. A lower stock-out rate indicates better inventory accuracy
and availability.

11. Stock turnover rate: Calculates the number of times inventory is sold and
replenished within a specific period. A higher turnover rate suggests efficient
inventory utilisation.

12. Storage cabinets utilisation efficiency : Assesses the efficiency of space utilisa-
tion of the storage cabinets for inventory storage. A higher utilisation rate
indicates optimal space utilisation and efficient inventory management prac-
tices.

13. Storage handling time efficiency : Measures the average time items are stored
in storage cabinets before being utilised or removed. Lower values indicate
efficient storage practices and quicker turnover of stored items, reducing the
need for excessive storage space and associated costs.

2.3 Type of problem

Before determining the approach to resolving the problem, it is essential to clarify
the type of problem at hand. This subsection will outline whether the research
involves a strategic, tactical, or operational problem in Subsection 2.3 and whether
it is a quantitative or qualitative problem.

Strategic, tactical or operational problem

To classify the problem within the Strategic, Tactical, and Operational framework,
it is essential to provide a brief overview of strategic, tactical, and operational prob-
lems as experienced in hospital settings, which can be read below.

Strategic problems are characterised by their long-term focus and wide-ranging im-
pact on the organisation [22]. They involve setting goals, establishing direction,
and making decisions at the higher level of the organisation. Examples of strate-
gic problems include defining the business strategy, restructuring the organisation,
or determining the desired patient type volumes or the number of resources [22].
Strategic planning is based on historical data and forecasts[22].

Tactical problems are associated with the medium term and revolve around a plan-
ning horizon of several weeks [22]. Tactical issues relate to the way of doing the
work and involve the tactics for implementing strategic plans. Examples of tactical
problems include reorganising a department, creating a surgical schedule, or opti-
mising the supply chain process [22].
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Operational problems relate to the short term and revolve around the day-to-day or
weekly activities and task execution within the organisation [22]. Operational issues
concern addressing disruptions, enhancing customer service, and ensuring quality
standards. These problems aim to increase day-to-day operational performance and
address immediate challenges.

Within operational problems, a distinction is made between offline and online opera-
tional problems [22]. Offline operational problems focus on the detailed coordination
of activities related to current (planned) demand and typically involve a planning
horizon of a week [22]. This includes activities such as treatment selection, sequenc-
ing of appointments, and inventory management, which are predetermined before
the actual execution occurs. Offline operational planning relies on known informa-
tion and expected demand [22]. On the other hand, online operational problems
address the unpredictable and unforeseen events that can arise during the execution
of the processes [22]. It involves reactive decision-making and implementing control
mechanisms to monitor the process and respond to unexpected circumstances. On-
line operational planning relies on real-time information and the current situation
to guide decision-making. It includes triage, adding emergencies to the schedule,
and restocking depleted supplies [22].

Improving the material logistic process of healthcare institutions can be classified
as an offline operational problem. It directly impacts the day-to-day operations and
task execution within the hospital environment, and covers a part of the workweek.
In addition, the decision-making process occurs before the actual implementation
of activities. This means that the information can be gathered and analysed in
advance, after which decisions about reordering items and the reorder quantities are
made. The process does not rely on real-time monitoring or immediate responses to
unexpected events during execution.

Quantitative or qualitative problem

This subsection briefly overviews the aspects defining a quantitative or qualitative
problem, including classifying our specific problem in the Qualitative and Quanti-
tative framework.

A quantitative problem is when data is presented in measurable terms, such as num-
bers, quantities, percentages, or statistics [35]. With a quantitative problem, the
analysis primarily involves collecting, analysing, and interpreting numerical data
[6]. This problem often involves quantifying relationships, identifying patterns or
trends, and making predictions using mathematical models [6]. Illustrative exam-
ples of quantitative problems include calculating average sales figures, evaluating
the efficacy of a marketing campaign through measurable outcomes, or forecasting
the consumption of items within the hospital on historical data and trends.

A qualitative problem, in contrast, involves understanding and interpreting non-
numerical data, such as text, observations, interviews, or perceptions [8]. It revolves
around gaining insights into the qualitative aspects of a problem, such as behaviour,
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attitude, opinion, or experience [8]. A qualitative problem emphasises collecting and
analysing contextual data to gain meaning and profound understanding. This type
of problem often focuses on identifying patterns, discovering themes, and explor-
ing the subjective experiences of individuals [8]. Examples of qualitative problems
include analysing qualitative customer feedback regarding a product, examining em-
ployees’ perceptions of work culture, or understanding patient viewpoints in health
care.

The problem addressed in this research can be classified as a quantitative problem.
It involves determining specific numbers and quantities of articles that need to be
reordered. This requires quantifying needs based on measurable data, such as his-
torical consumption patterns, current stock levels, and expected consumption. By
using numerical information, the problem focuses on making data-driven decisions
and optimising material logistics processes.

2.4 Summary

The sections above outline the issues associated with material logistic processes
within hospitals and the techniques used for inventory checking and estimating re-
plenishment quantities for the storage cabinets at hospital departments. These
problems result in inaccurate estimates, wasted time, inefficiency, and a lack of
strategic decision-making and data analysis. Consequently, they might lead to fi-
nancial waste, stock shortages or surpluses, and disruptions in the continuity of
care. To address these issues, it is crucial to implement an automated and data-
driven material logistic process. Such an approach can enhance the organisation’s
primary objective KPI and accommodate combinations of multiple KPIs. A dual
approach combining offline operational improvements with quantitative analysis is
recommended to address this issue.
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3 Literature review

This chapter provides a literature review regarding the investigated problem of the
thesis research. The sections answer the following questions: Which technique is em-
ployed to organise material logistics processes within healthcare institutions? How
are state-of-the-art techniques applied to assess the turnover of material logistics
process management, particularly at the department level of hospitals? Which tech-
niques are utilised to analyse the data of replenishment quantities and identify sig-
nificant characteristics? What automated and data-driven material logistic process
is best suited for supplying the storage cabinets of hospitals? When addressing the
literature review questions, our research focused on techniques aimed at addressing
offline operational problems and techniques characterised by a qualitative frame-
work.

Section 3.1 describes the traditional techniques currently used in hospitals within
material logistic processes. Section 3.2 discusses general inventory management
techniques used in healthcare institutions. Section 3.3 outlines the techniques used
to define the characteristics of items in hospital departments and Section 3.4 explains
how these techniques can be combined with an automatic, data-driven methodology.
Section 3.5 reviews inventory management techniques based on on-hand stock levels.
A summary of the relevant techniques for this study is provided in Section 3.6.

3.1 Traditional techniques in material logistics in
health care

This section investigates the current method used in many hospitals, the Kanban
technique [33; 18]. The Kanban technique, a lean technique initially developed by
Taiichi Ohno at Toyota in the 1940s as part of the Toyota Production System (TPS)
[41], has since evolved and found widespread application across various industries,
including health care. Within the material logistic processes of the hospital’s depart-
ment, the technique serves as a central approach to material logistics management.
The technique is based on just-in-time manufacturing and operates as a pull system.
The Kanban technique enables healthcare employees to efficiently replenish inven-
tory, aligning with predetermined minimum and maximum stock levels to maintain
a smooth flow of supplies [33]. When inventory levels dip below the designated min-
imum, automated triggers prompt staff to initiate replenishment, thereby ensuring
the availability of essential materials for the patient when needed [33]. Beyond its
benefits, such as minimising waste and streamlining resource allocation, the Kanban
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technique focuses on the primary goals of providing high-quality service to patients
and optimising hospital processes [18]. Its effectiveness in enhancing patient safety,
addressing inventory shortages, and considering capacity constraints has contributed
to its status as a widely adopted methodology in hospital logistics management, ulti-
mately enhancing the continuous delivery of top-notch patient care within healthcare
institutions [33; 18].

3.2 Review: inventory management techniques in
health care

The literature includes numerous methodologies for enhancing material logistics
processes and their corresponding implementation strategies. Notably, the existing
body of literature focuses on addressing one individual KPI rather than providing
comprehensive solutions that combine performance indicators. While conducting
a literature review study, several influential factors and their associated patient
characteristics and methodologies have been identified [51]. The KPIs within these
studies are extracted from the influential factors and the reviewed literature studies
can be classified within these influential factors, along with their corresponding KPIs.
The subsequent influential factors and their corresponding methodology approaches
are listed below, with references to the KPI numbers mentioned in Section 2.2:

1. Variation in demand for healthcare items, refer to KPI 3.
The consumption of healthcare items can be categorised into stationary and
non-stationary demand. Stationary demand pertains to items such as vaccines
and examination gloves and is relatively easy to predict using forecasting tech-
niques [37]. In the literature, predictive methods such as the Economic Order
Quantity (EOQ) method [32; 27] and the Mixed Integer Programming (MIP)
optimisation technique [23; 55] are commonly employed for these types of
demand predictions. To determine the non-stationary demand, a technique
is conducted to predict the dynamic and uncertain nature of non-stationary
demand. The non-stationary demand depends on various sources of random-
ness, such as the number of patients in hospital care units, patient treatment
stages, patients’ conditions, reaction to the medication, and physicians’ recom-
mendations [62]. For this non-stationary demand, the literature investigates
probability distributions like Normal [36], Poisson [20], and Negative Binomial
[48] to predict the variation in demand.

2. Type variation of health care inventory items, refer to KPI 11.
Various characteristics influence the consumption of healthcare items and show
different behaviours. Given the variations among items, a distinct approach
is necessary to forecast demand for each item. Therefore, literature studies
investigate the classification of items based on their characteristics. Employed
methodologies are ABC analysis [21; 31] and VED analysis [21; 31], decision
tree analysis [13], or a combination of ABC and critical analyses [3].

3. Distribution of inventory within the storage facility, refer to KPI 12.
In a healthcare system, inventory is distributed among different departments
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or locations, leading to the implementation of multistage inventory systems
[26; 62]. Distinct healthcare items may require specific storage conditions,
such as temperature maintenance, and the consumption of healthcare items
varies based on the characteristics of each department or location within the
system [26]. Moreover, the space in various storage facilities within a health-
care system is limited, and it is necessary to maximise its utilisation. To ad-
dress this, researchers are exploring an approach that distributes storage space
across multiple healthcare items [38; 5]. Employed methodologies for achieving
optimal storage utilisation are a capacity model based on a simple inventory
rule to determine reorder levels and order quantities [5], nonlinear program-
ming (NLP) [61], constraint programming (CP) [36], and chance-constrained
programming (CCP) [38], model predictive Control (MPC) [38].

4. Inventory replenishment policies, refer to KPI 7, 9, 10.
The literature review study employs various methodologies to determine the
optimal replenishment quantity for items based on continuous assessment, pe-
riodic assessment, or a combination of both [51]. In the case of continuous
assessment, the analysis focuses on factors such as reorder level and order
quantity, also known as the (s,Q) policy [45; 49], or the (s,S) policy [28].
When employing periodic assessment, metrics such as review period, order-
up-to-level, and reorder level are considered, using policies such as (R,S) [19]
or (R,s,S) [5]. This extensively researched topic has implications not only for
hospitals but also for other industries and sectors. Within health care, hybrid
strategies are utilised, which incorporate both continuous and periodic review
policies, along with joint replenishment criteria for multiple items [51; 49; 50].

5. Maximisation of service level of the hospital, refer to KPI 8.
Ensuring continuous availability of products within a hospital is crucial to
ensure uninterrupted care provision to patients and prevent any delays or
shortages experienced by healthcare employees. The objective is to achieve
a 100% service level to avoid backorders that can entail significant costs [5].
The methodologies employed to maximise the service level of the hospital align
with the methods described for the influence factor of inventory replenishment
policies.

6. Variation of the patient medical conditions and their response, refer to KPI 3,
11.
In healthcare settings, the consumption of healthcare items is determined by
the correlation between medicine requirements and the patient’s medical con-
dition and response [62; 51]. The daily demand for healthcare items is influ-
enced by various patient characteristics, including the patient arrival rate [2],
the severity of their illness [62], their medical condition [62], the medication
the patient is already taking (multi-morbidity) [14; 15], transfers to other care
units [2], and the length-of-stay in the hospital [57]. One methodology em-
ployed to address the variation in patient medical conditions and their response
is the Markov decision processes (MDP) [52].

7. Variation in physicians’ prescribing behaviour, refer to KPI 3, 11. Within
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the hospital, physicians are the primary customers of the healthcare items.
The demand for these items is dependent on the prescriptions provided by the
physicians. This influencing factor must be considered in inventory manage-
ment, however, it is currently an unobserved aspect [40].

When one carefully reviews the methodology mentioned above and takes note of the
KPIs, it becomes evident that KPI numbers 2, 4, 5, 6, 13 are absent. KPIs 2, 4,
and 5 pertain to the costs reduction associated with inventory management, which
are considered as secondary objectives in the methods outlined above, for example,
when addressing influential factor Inventory replenishment policies. KPI 6, labour
hours per replenishment, is commonly regarded as the costs incurred for employee
compensation, aligning it with the secondary objectives of the studies. KPI 13 is
comparable to KPI 11. KPI 13 focuses on assessing the average time items remain
in storage cabinets, providing insights into the handling time associated with the
turnover.

Many of the above-mentioned techniques mainly focus on analysing individual KPIs.
Only a few techniques focus on combining KPIs encompassing disparate aspects.
Notably, many of these techniques predominantly focus on historical data as their
primary input, often overlooking the inclusion of real-time inventory levels. This
observation becomes clear when closely examining the operations within hospitals.
The materials are utilised for patient treatments at the department level of hos-
pitals. Essential items required for these treatments are retrieved from storage,
and any remaining supplies are returned to their designated locations. Materials
such as bandages, gloves, and syringes do not need to be linked to specific patients.
Consequently, it proves impractical for doctors or nurses to accurately record the
consumption of such items for each patient, considering the significant time invest-
ment involved. Time efficiency is superior within hospital settings, where time is
directly translated into monetary value. As a result, this crucial step is often omit-
ted, leading to the need for manual stock counting for each department to determine
the on-hand inventory levels. This manual approach introduces limitations within
the material logistics process. The following section will explore potential solutions
aimed at addressing this issue.

Section 3.2 reviews inventory management techniques in healthcare, focusing on in-
dividual KPIs. These KPIss align with specific influential factors and methodologies,
covering demand variation, healthcare inventory types, distribution, replenishment
policies, service level maximisation, patient condition impacts, and physician pre-
scribing behaviour. However, certain KPIss related to cost reduction and labour
efficiency are not fully addressed, and many techniques predominantly rely on his-
torical data, often overlooking real-time inventory levels. The next following section
explores potential solutions to address these limitations and improve healthcare ma-
terial logistic processes.
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3.3 Material logistics turnover techniques at the hos-
pitals department level

This section examines possible techniques for automated determinations of the on-
hand inventory levels at a specific hospital department. A list of possible techniques
includes:

1. 2-bin policy: The 2-bin policy is a lean inventory management technique. It
involves having two bins or containers for each item in inventory. The first bin
contains the current stock, while the second holds reserve stock. When the
first bin becomes empty, it signals the need to reorder or replenish the item.
In the meantime, the second bin is utilised. This method promotes visual
inventory control and helps prevent stock-outs.

2. Doctor-managed consumption tracking: In this approach, doctors and medical
staff are responsible for keeping track of the medical supplies or items they
consume during patient care. It can be a simple way to monitor the consump-
tion of certain high-value or specialised items and can help raise awareness of
resource utilisation among healthcare professionals.

3. Electronic shelf labels: Electronic shelf labels are digital price tags that can
also be used for inventory tracking. They provide real-time information on
product availability, prices, and promotions, helping staff monitor inventory
levels.

4. Manual counting: This is the most straightforward method where inventory
levels are determined by physically counting items on shelves or in storage
areas. While simple, it can be time-consuming and prone to human errors.

5. Near Field Communication (NFC): NFC allows contactless inventory tracking
using smartphones or specialised devices. It is often used for smaller, high-
value items.

6. Radio-Frequency Identification: RFID tags are attached to items, and RFID
readers send out radio waves to collect data from the tags. RFID allows
for real-time, contactless tracking of inventory items, providing accuracy and
efficiency.

7. Red and green markers: This is a simple visual tracking method where items
are marked with red and green markers to indicate their inventory status. For
example, a green marker may indicate that an item is in stock and does not
need to be reordered, while a red marker signifies that the item is running low
and requires replenishment. The physicians place these markers. The method
provides a quick visual indicator of inventory levels and reorder points.

8. Weight-based inventory: Some industries use weight to indicate inventory lev-
els. Items have known weights, and scales can measure the total inventory
weight. This method is suitable for bulk goods with consistent weights.
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Upon closer examination of the provided list, options 1, 2, 3, 4, 7, and 8 can be
excluded. These options necessitate manual adjustments by employees, making op-
tion 1, 2, 3, 4 and 7 unsuitable for our objective of achieving automatic application.
Hospitals handle a wide range of items, varying from heavy to lightweight, and often
store various items together in a single drawer. This complexity makes it unfeasible
to implement option 8. Options 5 and 6, NFC and RFID tags, are the more viable
alternatives.

The development of NFC and RFID technologies has advanced considerably in the
last decade [58; 24; 43]. Notably, the costs associated with these tags have decreased.
In addition, the accuracy of these techniques has improved, with signals being less
susceptible to interference, and the signal strength and range have expanded. It is
worth noting that NFC has a limited range of just 4 cm and is primarily designed for
short-range communication. In contrast, RFID technology offers a broader range of
capabilities, with the reading range varying depending on the specific type of RFID
technology used (e.g. low-frequency, high-frequency, ultra-high-frequency, etc.). In
some cases, RFID can read tags throughout entire rooms, offering a more extensive
reach. RFID tags have found widespread adoption in the manufacturing sector,
including manufacturing, logistics, and supply chain management. Many products
and items within these industries are equipped with RFID tags during manufac-
turing. These tags are instrumental in tracking the status and location of items,
enhancing overall efficiency and traceability in these sectors.

Researchers in literature recognise significant opportunities for using RFID tags in
material logistics processes [64; 13]. Nevertheless, detailed elaborations within the
material logistic processes are still absent. For now, in the hospital setting, RFID
tags are used for diverse applications, which can be described as follows:

1. The "2-bin policy" : This approach involves using two bins filled with the same
item. When one bin becomes empty, an RFID tag is placed on a designated
board and scanned to indicate that the bin needs to be replenished [49].

2. Drug management sytem: This approach is utilised within pharmacies. They
used the RFID tags as an additional check on medication expenditure. This
helps ensure that the correct medication is provided, especially when deal-
ing with similar medications, and prevents potentially dangerous interactions
between different medications. [59].

3. Tracking and monitoring medical instruments : RFID technology has been em-
ployed in literature and various hospitals to track instruments throughout the
washing and moving processes. The RFID technology ensures that instru-
ments are properly washed and sterilised [34]. The status of RFID tags is
adjusted to reflect the status of instrument tents.

4. Indoor positioning system: This approach involves using RFID technology to
locate medical equipment within medical centres or healthcare facilities. By
implementing an indoor positioning system, healthcare providers can save time
that would otherwise be spent searching for equipment within the hospital [60].
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5. Monitoring of nurses, doctors, or patients : RFID technology is employed to
monitor and control the activities of nurses, doctors, staff, patients, and vis-
itors within hospitals, ensuring compliance with required protocols. For in-
stance, RFID tags are used to track the frequency of hand disinfection by
nurses or doctors and monitor their interactions with patients [44]. Addi-
tionally, RFID-based systems enable real-time monitoring of patient’s medical
conditions, allowing healthcare providers to promptly respond to any changes
or emergencies [46; 47].

One American company provides RFID storage cabinets in the market, facilitating
the scanning and counting of items within the cabinet using RFID tags and scanners
[54]. These cabinets can read additional labelled information, such as temperature
and expiration date details [54]. In this research, our primary focus is on automating
and improving material logistics processes within hospitals. To accomplish this
objective, we utilise the technology employed in RFID storage cabinets, exemplified
by Terso Solutions, as an illustrative model without delving deeper into these specific
technologies. Our approach centres on a technique capable of offering automated
recommendations for replenishment quantities of each item stored in these cabinets,
as detailed in Section 3.5. To implement this automated technique effectively, we
require data similar to what RFID storage cabinets can provide. We explore various
potential techniques to generate this data, as outlined in Section 3.4.
Section 3.3 explores various automated inventory management techniques for hos-
pital departments, including the 2-bin policy, doctor-managed tracking, electronic
shelf labels, manual counting, Near Field Communication, Radio-Frequency Identi-
fication, red and green markers, and weight-based inventory. RFID and NFC are
potential candidates due to their automation capabilities. RFID technology has
diverse applications in healthcare, such as medication management, temperature
monitoring, instrument tracking, indoor positioning, and personnel monitoring. The
research aims to automate hospital material logistics, with a focus on RFID tech-
nology for automated replenishment recommendations, similar to RFID-equipped
storage cabinets offered by an American company.

3.4 Turnover simulation techniques at the hospitals
department level

This research investigates the viability of implementing an automated decision-
making technique in combination with a RFID storage cabinets. It is essential
to initially evaluate the model within a realistic context to formulate recommenda-
tions. Ideally, the data acquired using RFID storage cabinets, capable of precise
consumption measurement, should be employed for model testing. Unfortunately,
this data is unavailable, so this section investigates techniques that can be applied
to simulate the RFID storage cabinets in hospitals with the help of existing data
at the department level of hospitals. When usage is high during a particular week,
the corresponding replenishment quantity is also high, and vice versa. The existing
data within hospitals consists of replenishment quantities for each item without the
precision of tracking the exact time and date of item consumption. Nonetheless, it
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offers the possibility to analyse and simulate the throughput of a storage cabinets in
a manner that enables automatic estimation of expected on-hand stock levels within
these cabinets.

We have divided this section into two subsections to determine the possible tech-
nique to simulate the on-hand data of the RFID-based storage cabinets. Subsection
3.4.1 outlines the essential characteristics of the provided data in the context of
modelling and analysis. Subsection 3.4.2 delves into the various techniques that can
be employed to simulate RFID-based storage cabinets.

3.4.1 Data characteristics

It is crucial to observe the data set’s characteristics to determine the composition of
the hospital’s material logistic data set and its potential applications. By defining
these characteristics, you can effectively identify the data set’s practical uses. This
subsection describes the various characteristics that can be distinguished and the
characteristics of the existing hospital data [39]. The various characteristics are: (A)
Deterministic vs. Stochastic, (B) Static vs. Dynamic, (C) Continuous vs. Discrete,
(D) Transient vs. Steady State, (E) Terminating vs. Non-Terminating, (F) Cyclical
vs. Non-cyclical, (G) Markovian vs. Non-Markovian. In this subsection, we briefly
explain characteristics A-G and ascertain the characteristics that align with the data
set presently available from hospitals.

(A) Deterministic vs. Stochastic: In deterministic data sets, outcomes are pre-
cisely determined by known rules or inputs, making them highly predictable.
Stochastic data sets introduce randomness or unpredictability, often influenced
by external factors or chance events, making predictions less precise.

(B) Static vs. Dynamic: Static data sets remain constant without significant
changes, making them suitable for historical analysis. Dynamic data sets
evolve with time, capturing fluctuations, trends, and real-time variations, al-
lowing for the study of evolving processes.

(C) Continuous vs. Discrete: Continuous data sets consist of an unbroken flow of
data points within a range (e.g., temperature measurements), while discrete
data sets comprise distinct, separate values (e.g., counts of items) with gaps
between them.

(D) Transient vs. Steady State: Transient data sets depend on temporary fluctua-
tions or changing conditions, making them suitable for studying transitions or
disruptions. Steady-state data sets represent stable, unchanging conditions,
often used to analyse long-term stability.

(E) Terminating vs. Non-Terminating : Terminating data sets have a finite du-
ration or endpoint, typically signalled by a specific natural event that marks
the end of a simulation run, making them suitable for analysing particular
time periods. In contrast, non-terminating data sets continue indefinitely, of-
ten characterised by performance measures linked to continuous steady-state
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cycles, facilitating ongoing analysis and trend monitoring. If there is no steady
state behaviour, consider its type as terminating simulation.

(F) Cyclical vs. Non-cyclical : Cyclical data sets display recurring patterns, resem-
bling waves, or loops, which help forecast seasonal trends or cyclic behaviour.
Non-cyclical data sets lack repetitive patterns and may show erratic, irregular
variations, making them suitable for complex, unpredictable scenarios.

(G) Markovian vs. Non-Markovian: Markovian datasets adhere to the Markov
property, where future states solely depend on the current state, simplifying
predictions and modelling. Non-Markovian datasets incorporate historical de-
pendencies, requiring consideration of past states to forecast future outcomes
or analyse systems with memory effects accurately.

Replenishment quantities data set characteristics description

Table 3.1 shows the identified characteristics for our data set:

Table 3.1: The identified characteristics associated with the dataset of re-
plenishment quantities.

Data set characteristics definition

Characteristic class Choice

A Stochastic
B Static & Dynamic
C Discrete
D Transient
E Non-Terminating
F Cyclical
G Non-Markovian

Our data set is:

(A) Stochastic. The data set is stochastic, reflecting the inherent randomness and
variability in the consumption patterns of medical items for patient treatment.

(B) Dynamic & Static: The dataset exhibits both dynamic and static characteris-
tics. It is dynamic due to the varying replenishment quantities over time. How-
ever, these quantities tend to hover around an average replenishment quantity,
representing a static aspect of the data set.

(C) Discrete: The data set is discrete since replenishment quantities are typically
distinct, countable values.

(D) Transient : The data set depends on temporary fluctuations or changing con-
ditions, such as the item preferences of doctors and nurses.
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(E) Non-Terminating : The data set is ongoing and has no predefined endpoint. It
represents a continuous or open-ended collection of replenishment quantities
with no specified final date or time.

(F) Cyclical : The data set consists of the frequency and regularity of fixed-order
days, displaying a cyclical pattern.

(G) Non-Markovian: The data set exhibits non-Markovian behaviour since future
replenishment quantities and order days may depend on historical context or
past occurrences.

Considering the data characteristics, we can proceed to explore the turnover simu-
lation techniques, as detailed in Subsection 3.4.2.

3.4.2 Turnover simulation techniques

When determining on-hand stock levels, the logistical choice for handling the dy-
namic and uncertain nature of demand is the utilisation of probability distributions.
A possible technique to predict non-stationary demand, and the associated dynamic
and uncertain nature of non-stationary demand, is the probability distributions like
Normal [36], Poisson [20] and Negative Binomial [48]. The non-stationary demand
depends on various sources of randomness, such as the number of patients in hospital
care units, patient treatment stages, patients’ conditions, reaction to the medica-
tion, and physicians’ recommendations [62]. In addition to the Normal, Poisson, and
Negative Binomial distributions, numerous other known and slightly unknown distri-
butions exist. Table 3.2 shows multiple distribution options and the corresponding
characteristics.

Table 3.2: The characteristics related to the potential distributions.

Overview distributions and their characteristics

Distribution characteristics

Distribution Determin
istic Stochastic Static Dynamic Continuous Discrete Transient Steady

State
Termin
ating

Non-
Terminating

Beta 1 1 1 1 1
Binomial 1 1 1 1 1
Exponential 1 1 1 1 1
Gamma 1 1 1 1 1
Geometric 1 1 1 1 1
Log-Normal 1 1 1 1 1
Negative Binomial 1 1 1 1 1
Normal 1 1 1 1 1
Poisson 1 1 1 1 1
Uniform 1 1 1 1 1 1
Weibull 1 1 1 1 1

Replenishment
data set 1 1 1 1 1 1

Characteristics that
align with the data

Characteristics that do not
align with the data

Table 3.2 shows the characteristics associated with these distributions. The char-
acteristics of our data set have been incorporated into the illustration. Within the
figure, the blue boxes represent distribution characteristics that do not align with
our data set, while the red boxes depict characteristics of the distributions that
align with our data set. As depicted in the figure, not all characteristics overlap
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with those of the replenishment quantities data set. When evaluating the purpose
of distributions for our research objective, the following distributions are not well-
suited for our intended application: beta, binomial, exponential, gamma, geometric,
Negative Binomial, Uniform, and Weibull. These distributions revolve around the
probability of events, time, or the number of successes and failures, which do not
align with the purpose of this simulation. After elimination, the three options left
are the Log-Normal, Normal, and Poisson distributions. These distributions could
be employed for simulating on-hand replenishment quantities.

Section 3.4 explores the feasibility of combining automated decision-making tech-
niques with RFID storage cabinets in hospitals, aiming to enhance material logistics.
To assess the model’s performance, precise consumption data from RFID cabinets
is needed. Consequently, the section investigates techniques for simulating RFID
cabinets using existing department stocklevel data, focusing on data characteristics
and potential simulation methods. The data exhibits stochastic, static & dynamic,
discrete, transient, non-terminating, cyclical, and non-Markovian features, reflect-
ing the variability in medical item consumption. To simulate on-hand replenishment
quantities, probability distributions like Log-Normal, Normal, and Poisson are con-
sidered.

3.5 Inventory management techniques based on on-
hand stock levels

With the capability to simulate a realistic setting of on-hand stock levels, the final
step involves developing a model based on the data collected from the RFID storage
cabinets, which can offer guidance regarding replenishment quantities. Numerous
methods can be appropriate for this purpose, as outlined in this section:

1. Agent-based modelling: Agent-based modelling involves creating virtual agents
representing items or products within a storage cabinet. These agents interact
with each other based on predefined rules and policies, simulating real-world
rotations and usage patterns.

2. Discrete event simulation: This technique models discrete events and their im-
pact on the system. In the context of storage cabinet rotation, it can simulate
item restocking, emergency reordering, and the overall flow of items through
the cabinet, providing insights into usage patterns and efficiency.

3. Markov chains: Markov chains can be used to model the transition of items
between different states within a storage cabinet. By defining states (e.g.,
number of items in stock) and transition probabilities, you can simulate how
items move and rotate over time.

4. Monte Carlo simulation: Monte Carlo simulation is a probabilistic modelling
technique that can be applied to simulate the rotation of items within stor-
age cabinets. It generates random scenarios based on input parameters like
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demand patterns, usage rates, and restocking policies. By running many sim-
ulations, you can estimate the distribution of item usage and identify potential
stock-out risks.

5. Optimisation algorithms: Some optimisation algorithms, such as genetic algo-
rithms or particle swarm optimisation, can be applied to find optimal stocking
policies that maximise rotation and minimise waste in storage cabinets. These
algorithms iterate through different strategies to find the best approach.

6. Queuing theory: Queuing theory can be applied to simulate the movement
of items in and out of storage cabinets. It focuses on analysing wait times,
service rates, and the overall flow of items, which can help optimise cabinet
configurations and stocking strategies.

When examining the options listed above, one reason to select Markov chain from
the list of modelling techniques for the context of storage cabinets turnover is that
Markov chains are particularly well-suited for modelling systems with discrete states
and probabilistic transitions. These characteristics align with the dynamics of item
movement and rotation within a storage cabinets, precisely mirroring the input that
our data can furnish. Unlike the Markov chain, Monte Carlo simulation is com-
monly employed for continuous data when the goal is to estimate probabilities and
outcomes across a continuous range of values. Queuing Theory and discrete event
simulation typically centre around the timing or waiting/service times of the simu-
lation, which does not align with the primary focus of our research. Optimisation
algorithms can sometimes be less transparent in revealing the underlying processes
within the algorithm. This lack of clarity is why this algorithm is not utilised for
this research. Lastly, Markov chains are particularly well-suited for systems char-
acterised by discrete and clearly defined states, along with probabilistic transitions
between these states. If a problem can be accurately represented using states and
transitions, a Markov chain may provide a more straightforward and efficient ap-
proach than Agent-based modelling. Hence, we employ the Markov chain as the
chosen technique for this research.

3.5.1 Markov chain method

This subsection provides a brief overview of the Markov chain model implemen-
tation. Markov chains are excellent for modelling the items’ transition between
different states within a system [56]. In the context of storage cabinet rotation, it
is possible to define states such as the number of items in stock or the occupancy
level of the cabinet. By specifying transition probabilities between these states, it
is possible to simulate how items move and rotate over time. Markov chains rely
on probabilities to dictate transitions between states. This is advantageous when
dealing with uncertain factors such as demand patterns, usage rates, or restocking
policies, which can significantly influence the rotation of items in storage cabinets.
Markov chains allow the possibility to incorporate this uncertainty into the model.
Defining the transition probabilities between these states makes it possible to sim-
ulate the movement and rotation of items over time. This enables examining the
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current state and the likelihood of transitioning to other states. Additionally, recom-
mendations for replenishment and reorder quantities can be formulated based on the
Markov chains. Markov chains capture dynamic behaviour as they evolve over time.
This is valuable in understanding how items move and rotate within the cabinet as
conditions change. For example, it is possible to assess how different restocking poli-
cies or demand patterns affect item rotation and usage. Markov chains can provide
insights into the long-term behaviour of the system. By simulating transitions over
many time steps, you can assess the steady-state behaviour of the storage cabinet,
helping you identify trends and patterns in item rotation.

Section 3.5 delves into inventory management techniques centred on on-hand stock
levels, primarily within RFID storage cabinets. It presents a range of methods,
including agent-based modelling, discrete event simulation, Markov chains, Monte
Carlo simulation, optimisation algorithms, and queuing theory. From these options,
Markov chains are chosen because they are well-suited for handling discrete states
and probabilistic transitions in the context of item transitions between different
states within a system. Subsection 3.5.1 offers a concise overview of the Markov
chain method.

3.6 Summary

Chapter 3 explores various techniques employed within material logistics processes
in hospital settings relying on historical data. This research tries to identify another
possible method to improve material logistic processes at the department level of
hospitals. To establish a foundation for this optimisation, the initial step involves
exploring potential methods to create a suitable data set. The objective is to acquire
direct on-hand inventory levels, a critical component in improving the material lo-
gistics process. The ideal source for this data is RFID storage cabinets, which can
provide real-time insights into inventory status. However, data is unavailable since
such storage cabinets are not yet used. An alternative approach is considered: sim-
ulating the data. After evaluation, the decision is made to employ three probability
distributions – Log-normal, Normal, and Poisson – to simulate the data. These
distributions align with the characteristics of the data set, facilitating the simu-
lation of on-hand stock levels within hospital storage cabinets. Last, the Markov
chain method is the foundation for the forecasting model’s design. The Markov
chain method is suitable for modelling systems with discrete states and probabilis-
tic transitions, making it an appropriate selection for simulating item stock levels
and replenishment quantities.
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4 Case study: Background informa-
tion Zaans Medisch Centrum

To assess our forecasting model, we conduct a case study with the assistance of the
Zaans Medisch Centrum. Before delving into the specifics outlined in Chapter 5, it
is essential to provide an overview of the hospital and its operations. Section 4.1
explains the material logistics processes within ZMC. Subsection 4.1.1 outlines the
operational aspects of distinguishing between three logistic segments: (A) inventory
located within the Operating Room, (B) inventory directly managed by individual
departments, and (C) a centralised storage point [18]. Subsection 4.1.2 describes
the distinction among various items, and Subsection 4.1.3 provides further insights
into the inventory ordering systems of ZMC. Subsection 4.1.4 provides a summary of
the first section of this chapter. Section 4.2 provides a concise problem description
within ZMC, Section 4.3 defines the KPIs of this case study, and Section 4.4 describes
the data contents of the provided data by ZMC. Section 4.5 offers an overview of
the key points in this chapter.

4.1 Process description

First, in Subsection 4.1.1, a comprehensive description of the material logistics at
Zaans Medisch Centrum along with the diverse storage facilities is presented. ZMC
possesses diverse storage facilities supplemented by external suppliers or internal
storage locations within the organisation. In addition, Subsection 4.1.2 describes the
hospital items, categorised into two subgroups: stocked items and purchased items.
Lastly, the order process is explained in Subsection 4.1.3, providing an overview of
how procurement is conducted at ZMC. The subsections cover the key processes
essential for understanding the material logistics within ZMC.

4.1.1 General overview of supplies within ZMC

During our visits to the ZMC, we arranged meetings with, among others, the Head
of Logistics and Soft Services and the Head of OR Care. Following these meetings,
we oversee the material logistics within ZMC. ZMC possesses three different storage
facilities: a warehouse situated at an external location of the hospital in Wormerveer,
storage cabinets placed within each department at the hospital, and a warehouse for
the Operation Rooms in the hospital. Figure 4.1 shows a visual representation and

28



schematic overview of the storage facilities at ZMC.

Warehouse located in Wormerveer

ZMC uses an external warehouse located in Wormerveer, serving as a central point
for receiving all orders from external suppliers, except for emergency orders, haz-
ardous materials, and large equipment, which are directly delivered to the hospital.
Within the warehouse, items are sorted, monitored, and replenished as needed, with
assistance from the ProQuro software program. For a more comprehensive expla-
nation of the ProQuro software application, read Subsection 4.1.3. When using an
external warehouse, ZMC can place substantial orders with suppliers, temporarily
store the orders and replenish the hospital’s stock with smaller quantities. The
external warehouse’s purpose is to streamline hospital supply operations, enhance
reliability, and reduce supplier costs, ensuring a more efficient and cost-effective sup-
ply chain.

ZMC categorises items for material logistics into two distinct categories: stocked
items and purchased items. Stocked items are stored in the warehouse in Wormerveer
and can be ordered by departments when needed. Purchased items are not initially
stocked in the external warehouse. When a department orders purchased items, the
order is sent to the supplier, after which it is first delivered to the warehouse and sub-
sequently included in the next delivery to the respective department. In addition,
the stocked items stored in the warehouse in Wormerveer are further categorised
into medically sterile items, non-sterile items, and liquids, each with a dedicated
section within the warehouse for storage. This systematic division ensures efficient
organisation and management of various items.

When a department at the hospital places an order, the order is processed and pre-
pared at the warehouse. On weekdays, a delivery truck travels three times each day
from the external warehouse to the hospital, following a predetermined schedule,
dividing the departments into specific blocks. In the morning, the warehouse re-
ceives a request from the departments for that relevant day, specifying the required
quantity of the items. Those orders are then prepared in the warehouse and col-
lected at the assigned time by the truck, which transports them from Wormerveer to
the hospital. Occasionally, the external warehouse receives emergency orders from
departments that are not scheduled for that specific day. In the context of this
research, we will refer to these as additional replenishment or additional orders. In
such cases, those additional orders are included in the next trip departing from the
warehouse. However, that only applies to additional orders for items stocked in the
external warehouse. If an additional order is placed for an item not currently avail-
able in the warehouse, it is directly delivered to the hospital by the supplier. The
described logistical process ensures the smooth delivery of items from the warehouse
in Wormerveer to the various departments within the hospital in Zaandam.

The replenishment of stocked items in the external warehouse follows a system based
on minimum and maximum stock thresholds, which are predetermined for each item.
When an item’s quantity falls below the minimum level, an order is initiated at the
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Figure 4.1: A flowchart of the material logistic processes for items at Zaans
Medisch Centrum.

supplier to replenish the stock to the maximum level for that specific item. The
warehouse aims to place orders at suppliers once a month, resulting in twelve or-
ders per year. Determining the minimum and maximum ranges is aligned with the
monthly ordering frequency, ensuring efficient stock management and supply replen-
ishment.

Storage cabinets in the department

In ZMC, every department stores its items in the storage cabinets situated within
an enclosed room. In addition to the regular storage cabinets, departments also
have access to modular carts that are replenished directly from the storage cabinets.
These carts facilitate easy transportation of items to patients. When managing
the stock, it is essential to find the right balance between the capital invested and
the prevention of shortages. Excessive stocking of items should be avoided as it
leads to substantial capital investment and occupies significant stock space. How-
ever, it is equally important to avoid running out of essential items. The expiration
dates of products, especially food and sterile materials, must also be considered.
Insufficient purchases of a product lead to additional orders, incurring additional
costs. Conversely, a large capital investment also comes with additional expenses.
Each department, together with team Logistics and Soft Services, is responsible
for maintaining the storage cabinet, emphasising the importance of accurate supply
management.
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To ensure an adequate stock level, each item in the department has a minimum-
maximum stock threshold determined and monitored by the Logistics and Soft Ser-
vices team. Depending on the throughput in the department, supplies are checked
by a logistic employee 1-3 times a week. Larger departments receive supplies three
times a week, while smaller outpatient clinics are supplied once a week. The team
has developed a weekly schedule for delivery and monitoring, taking into account the
specific needs of each department. Table B.1 in Appendix B displays this replenish-
ment schedule. It is important to note that deliveries and inspections occur only on
weekdays, and there are no standard deliveries to ZMC over the weekend. Inspec-
tions are conducted on the morning of the delivery day, which aligns with the day
of the transport of supplies from the external warehouse to the hospital in Zaandam.

During the stock control process, the logistic employee scans all items in the depart-
ment’s storage cabinets. After scanning, the inspector estimates whether additional
items should be ordered and determines the appropriate quantity if necessary. While
the minimum-maximum stock threshold provides a useful guideline for estimating
stock needs, some employees may find it challenging to decide whether to place a
reorder or wait until the next stock control. Moreover, unexpected changes, such
as sudden increases in item consumption, can make the estimate less accurate. To
support employees in making informed choices, a department-wide supply check is
conducted every six months to verify the minimal-maximal stock threshold. If any
shortages or surpluses are identified during the stock control, the department and
logistics teams collaborate to discuss and adjust the threshold accordingly. In the
meantime, the logistic employee has the authority to order more or less than the
threshold to ensure that the supply meets the consumption demands. Ultimately,
the Logistics and Soft Services team is responsible for ensuring that each department
has sufficient supplies to meet the required standards.

Placing additional orders entails additional costs, which include the expenses of an
extra delivery by the supplier and the labour costs associated with fulfilling the
additional order and delivering it to the department. Additional orders may be
necessary for various scenarios, such as when the department has been late with
its ordering process, when more materials have been consumed than anticipated,
or when the internal or external supplier fails to meet the agreed delivery time.
If the item is unavailable at the external warehouse, a direct order is made with
the supplier. In the other cases, an additional order is placed at the warehouse in
Wormerveer. Department secretaries handle additional orders, which are reported
to the P2P team for processing. When the item from the additional order is directly
ordered from the external supplier, the supplier delivers it straight to the hospital
in Zaandam. Any additional costs associated with the delivery must be approved
in advance by the department, considering their set budget and ensuring it is not
exceeded. To minimise unexpected additional charges in a department, it is crucial
to minimise the occurrence of additional orders.
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Operating Room warehouse

Orders are placed immediately within the supply organisation of the OR warehouse
upon consumption of items. Throughout the day, those individual orders are col-
lected and gathered into a singular order and sent to the external warehouse. While
both stocked items and purchased items coexist in the OR warehouse, the reordering
process for both types of items follows a similar approach to the logistics process
outlined for purchased items in subsection 4.1.1 - Storage cabinets in the department.
It can be observed that the supply management in the OR warehouse differs from
the external warehouse and storage cabinets.

The replenishment process for both stocked items and purchased items in the OR
warehouse is facilitated through the CoperniCare software system. This application
allows the tracking of individual orders of the OR. Moreover, CoperniCare is inte-
grated with ProQuro, enabling the automatic transmission of orders between the
two systems. The combined orders are transmitted via ProQuro to the external
warehouse in Wormerveer, where it is prepared on the day when the delivery truck
is scheduled to transport the items to the OR department.

In addition to stocked items and purchased items, the OR department also utilises
a consignment inventory system. This type of inventory management involves the
supplier being responsible for supplying and maintaining the inventory in the OR
warehouse. An example is prostheses in various sizes, from which only one specific
size is used during the operation. The supplier stocks a certain quantity of each size
of prostheses in the hospital, but this inventory remains the supplier’s property and
is not considered hospital-owned. When an item is consumed, it is deducted from
the hospital’s inventory. Following consumption, the supplier replenishes the stock
in the hospital.

4.1.2 Distinction in items

As mentioned in subsection 4.1.1, the ZMC hospital classifies items into two cat-
egories: stocked items and purchased items. This subsection delves into further
details about these two types of items.

Stocked items are kept available in the warehouse located in Wormerveer and are
immediately ordered and delivered to the hospital whenever a department requires
them. These items are stored in the warehouse if multiple departments use them or
if the delivery time from the supplier is long. This approach ensures that the de-
partments have a higher level of assurance regarding timely deliveries and helps to
reduce delivery and administration costs. Stocked items are frequently used, allow-
ing for consumption prediction and assessment of the accuracy of the current stock
threshold. Examples of stocked items include medical consumables, medication and
pharmaceutical products, as well as bandages.

Purchased items, on the other hand, are purchased on an ad hoc basis and typically
involve items that are used infrequently or are specifically meant to treat patients
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with a unique treatment. When a department requires purchased items, they are
immediately ordered after usage, separate from the department’s stock control in
the morning. Still, similar to stocked items, purchased items are delivered to the
warehouse first and then included in the next delivery moment to the relevant de-
partment. The handling of purchased items within the warehouse is facilitated by a
purchasing number, which allows the external warehouse employees to identify the
department that placed the order. The purchasing number also enables determining
whether the item is needed earlier than the scheduled delivery. In such cases, the
item will be delivered to the hospital during the next delivery of that day. Exam-
ples of purchased items include medication and pharmaceutical products that are
not regularly used and consumables specific to certain procedures, such as catheters,
prostheses, or implants.

4.1.3 Placing orders

In the section above, orders are placed either from the external warehouse or by
a specific department at ZMC, utilising the ProQuro software program. ProQuro
is a software solution specialising in procurement and supplier management across
various industries, including health care [16]. It offers features and tools to stream-
line the procurement process, enhance supplier relationships, and optimise the cold
supply chain [16]. The ProQuro platform enables organisations to improve the effi-
ciency of their procurement processes and gain better control over expenses.

Within ZMC, ProQuro is utilised for placing and tracking item replenishment orders.
Those orders are initiated by either a member of the Logistics and Soft Services team
or one of the department secretaries. During the ordering process, the order is related
to a specific cost centre, corresponding to the relevant hospital department. Once the
order is placed, it requires approval from the budget holder of the department. After
obtaining the necessary approval, the order is forwarded to the external warehouse
(in the case of hospital orders) or the supplier (for orders made by the external
warehouse) for further processing and fulfilment.

4.1.4 Summary

This section offers a comprehensive understanding of Zaans Medisch Centrum’s ma-
terial logistics, from the storage facilities and item categorisation to the ordering
processes, setting the stage for a more in-depth exploration of the hospital’s logis-
tics operations. The section is subdivided into three subsections, each focusing on
a critical aspect of the material logistics within the hospital.

The first subsection offers a comprehensive overview of ZMC’s material logistics,
emphasising the various storage facilities. ZMC utilises three storage facilities: an
external warehouse in Wormerveer, storage cabinets within hospital departments,
and a dedicated warehouse for the Operating Room. These facilities serve different
roles in managing the hospital’s supplies.
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The second subsection delves into the categorisation of items at ZMC. Items are
classified into two primary groups: stocked items and purchased items. Stocked
items are readily available in the external warehouse and can be ordered by depart-
ments when needed. Purchased items are ordered as required and are not initially
stocked in the external warehouse. The distinction between these two categories
influences the procurement and supply processes.

The third subsection provides an insight into the ordering process at ZMC. It dis-
cusses the software solution, ProQuro, used for placing and tracking item replenish-
ment orders. The order process is explained, highlighting the involvement of various
personnel, including the Logistics and Soft Services team and department secretaries.

4.2 Problem description

As described in Section 4.1.1, the storage cabinets undergo manual inspections car-
ried out by a logistics team member. During these inspections, the employee scans
each item in the department’s storage cabinet, and based on the findings, the inspec-
tor evaluates whether reordering is necessary and, if so, determines the appropriate
quantity. While many employees can accurately estimate the need for reordering
using the minimum-maximum stock threshold, some may struggle with making this
decision. Additionally, unforeseen shifts in item consumption can occur, further
undermining these estimates’ precision. Manual inspections and estimates of inven-
tory needs in department storage cabinets result in various challenges and potential
issues.

4.3 Key performance indicators in the case study

When testing the model using the case study, our attention is directed towards a
subset of Key Performance Indicators selected from the list provided in Section 2.2.
During discussions with the Head of Logistics and Soft Services and the Head of
Operating Room (OR) Care, it became clear that they are interested in a reliable
automated technique to determine replenishment quantities. Their definition of re-
liability revolves around a model’s ability to prevent stockouts. They emphasise the
risks associated with an excessive stock in the storage cabinets. This risk neces-
sitates a trade-off between guaranteeing the provision of patient care and keeping
a low invested capital within the storage cabinets. To measure the effect of these
requirements, relevant KPIs are formulated. The following KPIs are in line with the
requirements mentioned above:

1. Additional replenishment frequency.

2. Stock out rates.

3. Inventory carrying costs.
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4. Storage handling time efficiency.

Our model’s evaluation revolves around assessing the outcomes of these KPIs.

4.4 Data contents

ZMC provides data regarding replenishment activities across the hospital’s depart-
ments. Within ZMC, the logistics team monitors the stock levels in every depart-
ment. As described in Section 4.1.1, our research focuses on a specific department
within ZMC known as the surgical department. The logistics team oversees re-
plenishment for this department twice a week — Mondays and Thursdays. Period
1 represents consumption spanning from Mondays to Wednesdays, while period 2
represents consumption from Thursdays to Sundays. Notably, orders on Thursday
mornings reflect consumption in period 1, whereas orders on Monday mornings mir-
ror consumption in period 2. Additionally, the surgical department occasionally
places additional orders to avert shortages. Whenever the logistics team initiates
an order, the corresponding quantity is recorded; conversely, 0 is recorded when no
order is placed. All orders are tracked using the ProQuro software system. The data
required for this research is sourced from the ProQuro system.

The data contains information about the ordering behaviour and items of the de-
partments from January 1, 2020, to December 31, 2022. The essential information
within the data set is described as the following:

1. Cost centre: The cost centre describes the department in which the costs are
incurred. In our case, this is the surgical department.

2. Cost category : The cost category describes the type of costs of the item. For
example, medicines, bandages, or administrative costs.

3. Item name: The item name describes the item, such as Glove size L, NITRILE
SensiCare-Mediguard, Sterile suture removal kit, and Hip bandage large.

4. Order date: The order date indicates the date the item was ordered.

5. Quantities : The quantities indicate the quantity ordered per item on the order
date.

6. Price per unit : The price per unit represents the item’s cost per unit on the
order date.

7. Total costs (incl. VAT): Total costs are the expenses for the total number of
one item per order date, including VAT.

8. Unit : The unit specifies the unit of which one quantity of the item consists.
For example, gloves come in a box containing 200 pieces; the unit for 1 number
of gloves is 200 pieces.

4.4.1 The items in the storage cabinets

In the year 2022, the surgical department distinguished 37 cost categories. Table C.1
in Appendix C shows a comprehensive overview of all these cost types. Some of these
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cost types encompass items available in the storage cabinets, while others include
administrative expenses or one-time purchases of assets. In this research, our focus
is primarily directed to the cost types predominantly consisting of items located
within the storage cabinets. This choice is made since it allows the development of
an automated, data-driven forecast model tailored to the specific item usage of the
surgical department.

Next, we compare the items belonging to the remaining cost categories and those
listed in the assortment lists. The items in the assortment list are stocked in the
storage cabinets and exclusively contain stocked items. These are closely monitored
and replenished by the logistics team. We exclude any items not found on this list
from our comprehensive order overview. In some instances, the same item might
be listed under two different names, or the same item might transition to another
brand midway through the year. To address this, we have consolidated the order
history and quantities, presenting the item’s consumption overview while accounting
for both the old and new item units. This execution of items forms a comprehensive
overview of all items stored in the storage cabinets. A total of 267 distinct items
emerge from this process, encompassing all items present in the storage cabinet of
the surgical department. The cumulative cost for all the selected items, as incurred
in 2022 by the surgical department, amounts to € 132 963. This sum constitutes 89%
of the total costs, which is €149 658, spent by the surgical department throughout
2022.

4.5 Summary

The first section of this chapter provides a detailed overview of material logistics at
ZMC. The section serves as a foundation for understanding ZMC’s logistics opera-
tions and is divided into three subsections:

1. Subsection 4.1.1 outlines the hospital’s storage facilities, including an external
warehouse, departmental storage cabinets, and an OR warehouse.

2. Subsection 4.1.2 explains the classification of items into stocked items and
purchased items.

3. Subsection 4.1.3 delves into the ordering process using the ProQuro software,
involving various personnel and approval procedures.

The second subsection addresses the manual inspection of storage cabinets, as out-
lined in Section 4.1, and highlights the associated issues. During the inspections,
employees scan items and determine if reordering is necessary. While some em-
ployees can estimate reorder needs accurately, others face challenges. In addition,
unforeseen shifts in item consumption can also complicate estimates, resulting in
additional costs and possible shortages.

The third section discusses the selection of Key Performance Indicators for the case
study. The selected KPIs are in line with the requirements of hospital management
and include the following:

36



1. Additional replenishment frequency.

2. Stock out rates.

3. Inventory carrying costs.

4. Storage handling time efficiency.

Section 4.4 describes the data used for the research. The data, sourced from the
ProQuro system, covers department ordering behaviour and item details from Jan-
uary 2020 to December 2022. The focus is primarily on cost types associated with
items stored in storage cabinets (stocked items), amounting to 89% of the surgical
department’s total costs in 2022, totalling €132 963 out of €149 658.
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5 Forecast model

This chapter provides a written description of the conceptual forecast model devel-
oped for this research. Section 5.1 provides a written description of the conceptual
forecast model developed for this research. It offers an overview of all the sections
described in this chapter. Section 5.2 explains the data preprocessing steps. Sec-
tion 5.3 clarifies the selection process of the distributions for the individual items.
The explanation of the revised capacity determination and the implementation of
the Markov chain decision strategy can be found in Section 5.4 and Section 5.5,
respectively. Section 5.6 provides details on the setup of the three experimental de-
signs, while Section 5.7 explains the functioning of the conceptual forecasting model.
Section 5.8 concludes this chapter with a summary.

5.1 Chapter overview

This chapter outlines the research approach for the development of the conceptual
forecast model and serves as an essential guide to understanding the methodology
and steps involved, from data preprocessing to experimentation and modelling. The
chapter consists of the following key steps:

1. Data preprocessing, Section 5.2: Before determining item distributions, data
preprocessing is conducted to select crucial items based on criteria such as
cost type, article name, total costs, and replenishment frequency. The ABC-
Replenishment matrix is used for classification, and further preprocessing is
explained for data from 2020-2021.

2. Determining distributions for each item, Section 5.3: The distribution for each
item is determined based on a two-period consumption pattern derived from
the data collected at ZMC. These distributions are validated using the chi-
square test.

3. Revised capacity, Section 5.4: The assigned capacity for items is revised to
better match actual usage. This revised capacity is determined based on the
average maximum consumption observed across simulations.

4. Markov chain model, Section 5.5: A Markov chain decision strategy is im-
plemented to decide replenishment quantities based on probability thresholds.
The probability threshold assesses the likelihood that the usage will be equal
to or less than the in-stock items for the upcoming period.
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5. Experimental designs, Section 5.6: Three experiments are conducted to opti-
mise the decision-making strategy. These experiments focus on the probability
threshold values, additional replenishment days, and capacity adjustments.

6. Forecast model, Section 5.7: The simulation model is described, including the
material logistics process, consumption patterns, ordering methods, and the
implementation of KPIs. The chapter also delves into various experiment
setup details, including the number of replications, random number streams,
warm-up periods, and batching approach for modelling items.

5.2 Data preprocessing

Before determining the distribution of each item for the storage cabinets simulation,
it is essential to conduct data preprocessing on the acquired data. This preprocessing
involves the selection of crucial items based on criteria such as cost type, article
name, total costs, and the number of replenishments. For this process, we process
the data from the year 2022, representing the most recent complete cycle. The
determination of the most suitable items for simulation is explained in Subsection
5.2.1, utilising the ABC-Replenishment matrix. Further details about additional
preprocessing steps, carried out after analysing the entire available data from 2020
to 2022, are provided in Subsection 5.2.2.

5.2.1 ABC-Replenishment matrix

After identifying the items present in the storage cabinets, a total of 267 distinct
items remain. This is still a long list, implying that replicating a storage cabinets
simulation would be a labour-intensive and time-consuming task. By implementing
a categorisation strategy that classifies items into three groups based on their re-
plenishment frequency and revenue data (ABC analysis), we streamline this process
and reduce the number of items.

Inventory classification based on replenishment frequency

A sufficient amount of data is necessary to establish a distribution of the replenish-
ment for each item. By considering the frequency of replenishments, we can clas-
sify items into different groups, often labelled as "High Replenishment Frequency,"
"Medium Replenishment Frequency," and "Low Replenishment Frequency,".

1. High Replenishment Frequency: ≥ 48 replenishment.
Items in this category are replenished frequently throughout the year, averag-
ing at least once a week. This implies a high level of demand for these items,
and they require more frequent stock replenishment to meet this demand.

2. Medium Replenishment Frequency: 48 ≥ 24 replenishment.
This category includes items with a moderate level of replenishment. They
are replenished roughly two to four times a month. This suggests a balanced
demand for these items and a more measured stock replenishment approach.
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3. Low Replenishment Frequency: 24 > replenishment.
Items in this category experience infrequent replenishment, with an average
of less than twice a month. This indicates lower demand or longer shelf life,
allowing for a more relaxed stock replenishment schedule.

For this research, we define the minimum requirement as 24 replenishments within
a year. This means that the specific item is replenished at least twice a month.

Inventory classification based on the ABC analysis

The ABC analysis ranks items according to their revenue or cost data, focusing
on their contribution to overall value. This strategy initially arranges all items in
descending order based on their revenue or cost. For which the total percentage
is computed. A prioritised list is formulated with the cumulative revenue or cost
calculations. The outcome of the ABC analysis classifies items into three primary
groups:

1. Category A: 80% of total revenue or cost.
This category includes the most valuable items. Although they constitute a
relatively small fraction of the overall item count, they significantly contribute
to the overall sales.

2. Category B: 15% of total revenue or cost.
This category includes items that provide a moderate value contribution to
total sales.

3. Category C: 5% of total revenue or cost.
This category includes items with the lowest individual value contribution.
They often make up a substantial percentage of the overall item count.

Combining both categorised groups provides the opportunity to differentiate the
items. This differentiation is depicted in Table 6.1.

5.2.2 Additional data preprocessing based on 2020-2021

The item selection mentioned earlier is established upon the replenishment data of
2022. Upon examination of the data from 2020 and 2021, it becomes clear a refined
subset of 43 items remains suitable out of the initially identified 56 distinct items
— various factors cause this refinement. For instance, the turnover of certain items
during 2020-2021 is comparatively lower than that of 2022, or certain items were not
stocked at all within 2020-2021. One illustrative example is the item "OttoMatic
BEPA 5 ltr can". Moreover, it is crucial to acknowledge that the COVID-19 pan-
demic has influenced the consumption of specific items. Notably affected are items
such as "Sterillium gel pure 475ml 9813152" and "INT Mask Blue Earloop EN14683
Type IIR." Consequently, the data generated during this period is not representa-
tive due to the exceptional circumstances, so these specific items are excluded from
the final selection. The final selection consists of 43 items from the storage cabinet
of the surgical department. Table 6.2 shows the statistics of this selection.
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5.3 Determining the distributions for each item

We assume two distinct periods within a week when determining the distribution of
each item’s consumption. This approach involves considering additional orders as
part of the period in which they occur. We further assume that the consumption
patterns in periods 1 and 2 between 2020 and 2022 are similar and can be treated as
distinct measurement instances within a unified period. All these measurement in-
stances from periods for both periods 1 and 2 are combined sequentially. To achieve
this, we sequentially record all replenishment quantities for each day, as provided in
data from ZMC. Thereafter, all replenishment quantities within one period of one
week are summarised and listed in a new overview. This overview can be used to
create visual representations such as histograms or frequency overviews to better
understand the distribution of replenishment quantities over time and enables the
derivation of a distribution for each item per period.

When examining the attributes of the data, it becomes clear that the decision-
making of the logistics team members impacts the measurement instances. Fig-
ure 5.1 illustrates a visual explanation of the influence of the logistics employee’s
replenishment behaviour. The influence of the team members can be categorised
into three distinct factors:

1. Item reorder quantities such as 1, or occasionally 2, are seldom ordered. The
team member responsible for logistics tends to wait until the subsequent or-
dering opportunity, at which point a larger quantity is ordered in a single
instance.

2. Certain reorder quantities, such as 2, 4, or 5, are inherently more straightfor-
ward to order than items like 3 or 6. The preferences of the logistics team
members influence the selection process.

3. Various articles are ordered in specific quantities such as 5, 6, 10, etc., often
based on convenience or due to items being supplied in certain quantities, like
strips.

(1) Seldom
ordered quantities

(2) Preferences
ordered quantities

(3) Strip size
ordered quantities

Figure 5.1: Illustration of factors 1, 2, and 3 influencing the decision-making
process of the logistics team members.
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The factors above significantly impact the shape of the distribution. Despite these
influences, it is essential to derive a distribution from the acquired data. To achieve
this, the interval used to categorise data points in a histogram or frequency dis-
tribution must be adapted following the effects of factors 1, 2, or 3. There are
also instances where a combination of these factors might influence the item reorder
quantity. For example, an item is supplied in strips of six (factor 3), and the logistics
team member delays ordering if only one strip has been utilised (factor 1).

A common heuristic for determining the bin range is
√
Number of measurements

[39]. This choice helps strike a balance between the level of detail in the histogram
and its ability to reveal patterns or structures in the data. The reasoning behind
this heuristic is that if you have too few bins (underspecified), the histogram might
not capture important details in the data. On the other hand, if you have too many
bins (overspecified), the histogram may become noisy and make it difficult to iden-
tify meaningful patterns.

However, to account for the impact of these factors, the bin length is adjusted
to counterbalance the effect or a combination of these factors. The procedure for
adjusting the bin length is as follows:

1. Bin length multiplication: The bin length is multiplied by a factor of two,
resulting in a bin range that accommodates double the item count. In cases
where a combination of factors occurs, such as factors 3 and 1, when an item
is ordered in quantities of five, the bin length is adjusted to ten.

2. Bin length shift: The bin length is shifted to align with item quantities ordered
less frequently. Precisely, the bin range is adjusted so that the next or previous
item quantity encompasses the less frequently ordered item quantity. For
instance, when item reorder quantity three is often rounded to four by the
logistics team, the bin length is fine-tuned to ensure that reorder quantity
three and four fall within the same bin range.

3. Preferred Quantity Bin Length: The bin length is set based on the item’s strip
size or preferred order quantity (e.g. reorder quantity of ten). By adjusting
the bin length to match the preferred quantity or strip size, the distribution is
influenced, and orders that occasionally deviate from this pattern are aligned
with the more frequently made choice.

To determine which distribution suits each item, we conduct a validation procedure
utilising the chi-square test. This test serves to evaluate the null hypotheses. In
this context, the null hypothesis posits that the examined distribution fits the char-
acteristics of the observed item. The chi-square test assesses the variance between
expected and observed frequencies within the data set. It quantifies how much the
data deviates from what would be expected under independence. This Chi-Square
statistic is compared to the critical value derived from the Chi-Square distribution.
If the Chi-Square statistic surpasses the critical value, it signifies the rejection of the
null hypothesis, indicating a lack of significant association between the variables.
If the Chi-Square statistic does not exceed the critical value, this distribution can
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be employed for simulating on-hand stock levels. These outcomes are illustrated in
Section 6.3 Table 6.4.

5.4 Revised capacity

When observing the replenishment data, it became clear that the assigned capacity
does not always align with the actual item usage. While shadowing the logistics team
member during a department checkup, it became clear that the specified capacities
are not always accurate for every item. The logistics team members often use their
insights into which items are being used more rapidly or slowly than the assigned
capacity indicates. They manually adjust the replenishment quantities as needed.
We seek to incorporate a revised capacity within our simulation to achieve a more
realistic representation. This revised capacity is determined based on the average
maximum consumption observed across twenty simulation replications.

5.5 Markov chain model

The conceptual model is based on the methodology selected in the last subsection of
Chapter 3. The replenishment quantities are based on a predetermined probability
threshold. When determining the replenishment quantity, the method assesses the
likelihood that the usage will be equal to or less than the in-stock items for the
upcoming period, denoted as P (Usage <= InStock). This decision is based on
the probability that the current stock in the storage cabinets is sufficient to cover
the period until the next scheduled ordering moment. If this probability is less
than the selected probability threshold, the stock is replenished to its maximum
capacity, considering the order size at which individual items are packaged. Only
multiples of this order size are placed as orders. If P (Usage <= InStock) exceeds
the probability threshold, no order is placed, and the system waits until the next
scheduled ordering moment. The determination of P (Usage <= InStock) relies on
the distribution used to characterise the item. The following formula applies to the
Poisson distribution, where x represents the current stock level (InStock):

P (Usage <= x) =
λx ∗ e−λ

x!
(5.1)

The following principles apply when calculating P (Usage <= InStock) for the
Normal distribution, with x representing the current stock level (InStock):

ϕ(z) = P (Usage <= x) =
1√
2π

∗ exp−x2

2
(5.2)

When consulting the standard Normal probability table for the result of ϕ(z), you
obtain P (Usage <= x).
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5.6 Experimental designs

We evaluate and measure the optimisation of the conceptual decision-making strat-
egy through three diverse experiments. The first assesses the Markov chain decision
policy implementation on traditional replenishment days (Monday and Thursday).
The second evaluates the implementation of the Markov chain decision policy on
traditional replenishment days (Monday and Thursday) and its application on addi-
tional replenishment days (Tuesday, Wednesday, and Friday). The third experiment
aims to optimise the capacity of items stocked in the storage cabinets.

First experimental design: implementation of the Markov chain model

The replenishment decision is driven by the probability P (Usage <= x), which
assesses the likelihood of the current stock meeting upcoming care requirements.
A threshold specific to each experiment is defined to guide the decision-making
process. Replenishment is initiated when the P (Usage <= x) falls below the defined
threshold. This threshold represents the point at which the probability of adequately
meeting care demands becomes too low, signifying an unacceptable level of risk
in starting the period with the current stock levels. In the first experiment, a
threshold of 50% is applied, with subsequent experiments incrementally increasing
the threshold by 1% until reaching the maximum value of 100%. This systematic
progression results in 51 unique experiments, each comprising a hundred replications.

Findings after first experimental design

When examining the first experiment’s results, it becomes evident that a trade-
off must be considered between the KPIs representing the frequency of stock outs
and the associated costs within the inventory. The performance is determined by
a balance between these two KPIs. After a thorough analysis of the results, four
options emerge:

1. Maintaining certainty: When prioritising certainty, opt for a probability thresh-
old of 100%, even though this comes with higher inventory costs. This ap-
proach aligns with the current method, where inventory levels are consistently
replenished to their maximum capacity.

2. Accepting a slight risk for cost reduction: To reduce costs while accepting a
small degree of risk, choose a probability threshold lower than 100%. This will
lead to an increase in stockouts but a decrease in the total inventory value.

3. Predictive stock-out prevention: Conduct an experiment to explore whether
predicting stock-outs in advance during the period is feasible, allowing for
timely additional replenishments. This proactive approach aims to prevent
stockouts from occurring within the department itself.

4. Alternative cost reduction measures: Conduct an experiment to investigate
alternative methods for reducing costs while maintaining the certainty of a
100% probability threshold.
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The last two options are examined before providing the results and a recommenda-
tion. The approach for these options is described in the following two subsections.

Second experimental design: additional replenishments

One of the advantages of implementing RFID-equipped storage cabinets is the con-
tinuous visibility of the quantities of items within the storage cabinet at any given
time. This means that when orders are not traditionally placed, it is possible to
monitor the inventory levels within the cabinets. This contrasts with the current
practice where item counts are conducted only on Mondays and Thursdays, and
replenishments are determined based on those counts.

With these real-time insights, the Markov chain model can be employed to assess
whether a replenishment should occur on non-traditional ordering days. Similar to
the approach used on Mondays and Thursdays, this decision is based on the proba-
bility that the current stock in the storage cabinets is sufficient to cover the period
until the next scheduled ordering moment. When the P (Usage <= x) falls below
the predefined threshold, an additional replenishment is triggered, and the stock is
refilled.

For the second experimental design, we employ two distinct probability thresh-
olds. The probability threshold for guiding replenishment decisions on Mondays
and Thursdays is set at 94% and remains fixed. The second probability thresh-
old is utilised to determine replenishments on the remaining days. We conduct 51
experiments, starting with a probability threshold of 50%. Subsequently, each suc-
cessive experiment increases the threshold by 1% until reaching the maximum of
100%. This results in 51 unique experiments, which aim to explore the potential of
predicting stockouts in advance on non-traditional ordering days.

Third experimental design: optimise capacity

A capacity adjustment is an alternative approach to cost reduction while ensuring
the certainty of a 100% probability threshold. In our simulation, when a 100%
probability threshold is selected, the average quantities of stockouts amount to an
annual average of four over a hundred replications. The average annual inventory
value costs amount to €3 100, representing a 14% increase compared to a 99% prob-
ability threshold.

The third experimental design aims to maintain certainty while exploring an alter-
native approach to cost reduction. The solution focuses on the capacity of each
item. A fractional factorial design is employed, conducting experiments that adjust
the capacity of individual items within the storage cabinets. In many cases, the ca-
pacity of each item is either reduced or maintained. However, in some instances, the
capacity is increased to enhance the stockout outcomes. The simulation is halted if
no cost reduction is observed without an increase in stockouts exceeding six.
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5.7 Forecast model

After selecting the distribution models for individual items, the subsequent step in-
volves constructing the simulation model within Plant Simulation. Figure D.1 and
Figure D.2 in Appendix D provides an overview of the final output within the model
frame of the simulation. The model frame is divided into two parts. The first part
depicts the flow of items in the material logistics process, encompassing item deliv-
ery by suppliers, stock placement in the external warehouse in Wormerveer, item
packaging, and subsequent storage in storage cabinets. Additionally, the simulation
system visually represents its status. For instance, when items arrive from suppliers
at Wormerveer, the status is denoted as LoadStock, and when replenishment of the
storage cabinets occurs, the replenishment day is indicated. Item usage is depicted
by tracing the consumption of items after they are allocated to patients. The sec-
ond part of the model frame presents the model’s settings, inputs and outputs, with
various methods, variables and tables. Additionally, this section features simulation
run-time settings and buttons for resetting and initiating the simulation.

The subsections within this section provide in-depth insights into the implementa-
tion of various methods, as well as the settings, and input and output employed in
the simulation. The material logistics process consists of different parts, the sim-
ulation of the first two parts, supplier and external warehouse, are explained in
Subsection 5.7.1. Subsection 5.7.2 explains the simulation of the storage cabinets
using distributions. Subsection 5.7.3 describes the implementation of the present
state method and the conceptual method. Subsection 5.7.4 explains the implemen-
tations of the KPIs and how results for this research will be obtained. Subsection
5.7.5 describes what the setup of the experiment will look like.

5.7.1 Implementation of the simulation of supplier and ex-
ternal warehouse

This research proposes a simulation model to analyse the throughput and consump-
tion of the storage cabinets. The process starts at the supplier, where items are
requested from various departments. Once the supplier fulfils the order, the stock
is transported to Zaans Medisch Centrum’s external warehouse. Our simulation
assumes that an ample supply of items is always available to satisfy departmental
demands. To ensure that the simulation is not constrained by stock shortages in
the external warehouse, the order size for the external warehouse is set equal to the
cumulative number of items utilised throughout the entire simulation, plus twice
the storage cabinets capacity for extra safety stock. The quantities for these orders
are determined using the SetDelivery method, and the specific quantities are doc-
umented in the Delivery table. The item quantities outlined in the Delivery table
define the quantities for each item entering the system. The SetDelivery method
calculates the quantities consumed over the entire simulation period, drawing infor-
mation from the Forecast table. The supplier delivers the stock to ZMC’s external
warehouse at the simulation’s onset. Subsequently, using the Stocking method, the
items are allocated to their respective storage locations within the external ware-
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house. Once this stocking process for all items is concluded, the simulation pro-
gresses to simulate the replenishment and consumption of items within the storage
cabinets.

5.7.2 Implementation of the simulation of the storage cabi-
nets

The simulation of the storage cabinets is achieved through moving items, encompass-
ing consumption, stock level tracking, and replenishment procedures. At this stage
of the simulation, an inventory of items exists at a remote location, while another
inventory remains at the respective department. However, before the simulation
can start, it is essential to establish an initial stock within the surgical department’s
storage cabinets. This is accomplished using the CreateStock model, which ensures
that, before initiating the simulation, all items are replenished to the maximum
allowable quantity within the storage cabinets. Subsequently, the Usage method
manages the periodic consumption of items from the cabinets to the Patient. The
consumption pattern is determined based on the distributions outlined in the pre-
ceding section. The SetForecast method examines the distribution associated with
each item and period and the input required for a single observation. Every ob-
servation is recorded in the Forecast table, encompassing all observations for each
item at each replenishment moment throughout the simulation. These observations
serve as predictions for consumption on the relevant days. During the simulation,
the system retrieves the consumption data from the Forecast table for the relevant
date of each item stocked in the storage cabinets. These items are allocated to the
Patient when used and subsequently exit the simulation. This approach aims to
replicate the flow of items within the RFID-equipped storage cabinets.

5.7.3 Implementation of the automated ordering process

On each day when replenishment occurs, verifying the quantities still present in the
cabinet within the simulation becomes feasible. This information is then used to
determine the replenishment quantity. These replenishment quantities are deter-
mined using the PresentStateMethod or the ConceptualMethod. The approaches of
both methods are explained in Subsection 5.7.3 and Subsection 5.7.3, respectively.
The selection of the simulation model is determined through the checkbox labelled
Conceptual Model Simulation. When this checkbox is selected as true, it signifies the
intention to execute a simulation employing the ConceptualMethod method. Con-
versely, if the checkbox is marked false, it utilises the PresentStateMethod method.
Subsection 5.7.3 explains the additional replenishment ordering process within our
model frame.

Present state model

The present state model represents the current material logistics process employed
in departments at Zaans Medisch Centrum. At the surgical department, item quan-
tities in the cabinets are checked every Monday and Thursday morning, and they are
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replenished to reach the maximum capacity of the items. The PresentStateMethod
method executes the replenishment strategy as described above, creating the present
state model.

Conceptual model

The conceptual model is based on the Markov chain decision strategy as defined
in Section 5.5. The probability threshold can be modified using the dropdown list.
Within this list, you can select a probability ranging from 50% to 100%. Opting
for a threshold of 100% signifies a choice to avoid risk and consistently replenish to
ensure that P (Usage <= x) equals 100%. Conversely, as the threshold decreases,
the greater the risk.

To consult the standard Normal probability table for the result of ϕ(z), both the
positive, Pos_StdNormal, and the negative standard Normal probability tables,
Neg_StdNormal, have been incorporated into the simulation.

Additional orders

Aside from the standard replenishment process, there are instances where stock
shortages occur during a given period. To maintain continuous care provision, ad-
ditional orders are initiated. These additional orders are sourced directly from the
stock in Wormerveer and are utilised for patient care. The count of additional orders
is maintained in the StockOut table.

5.7.4 Implementation of the key performance indicators out-
comes

The data is recorded in tables to capture essential information required for the KPIs
during the simulation. In Section 4.3, you can find the KPIs specifically formulated
for this case study.

Within the tables under the Usages section, we record the consumption and average
consumption data throughout the simulation. In the Capacities section, we record
various applications of capacities. The tables in the StockOuts section store data on
the average occurrences of stockouts per item throughout the entire simulation. It
also provides information on the average service level for the whole duration and for
all items. The tables in the Costs section offer insights into the average value of items
in stock. Meanwhile, the tables in the HandlingTimes section monitor the average
handling time of items within the storage cabinets. The annual average values of
all replications of one experiment are logged in the tables MultiLevelCapacity and
MultiLevelOutcome.
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5.7.5 Experiments setup

Number of replications

The output of a simulation model, in the form of the performance measures, is a
complex function of the input. Given the uncertainty in the input of a simulation
model, the output also has a random character. The output only provides point
estimates of the system performance. This is similar to having one respondent in
a questionnaire. Statistical rules apply: the more observations from the simulation
model, the more accurate the performance measures are estimated. An indication of
the accuracy is confidence intervals. The confidence interval gets smaller with more
replications. The idea is to perform replications until the width of the confidence
interval, relative to the average, is sufficiently small. When determining the number
of replications for our simulation, selecting a value that ensures the simulation’s
accuracy falls within the 95% confidence interval is essential. This number can be
calculated using the sample t-approach. With each additional replication, the sam-
ple size increases, and this process is repeated until the error falls and consistently
stays below 5%.

In our simulation, this level of accuracy is achieved after seven replications. However,
our simulation is not computationally intensive, and each run takes less than a
second, so we opt to conduct each experiment with a hundred replications. This
decision provides an extra layer of assurance and helps further reduce the potential
impact of external influences.

Random number stream

For each replication of each experiment, we employed a unique random number
stream. This approach is implemented to reduce the influence of external factors,
ensuring that the selected probability threshold remains the predominant factor
influencing the outcomes.

Runlength and warm-up period

Each replication is conducted over precisely one year to maintain comparability in
our findings. A fixed warm-up period of two periods is established for this simulation.
Only the output from the first two periods is not stored as part since the outcomes of
the subsequent period are influenced by the number of items in the storage cabinets.
After two periods, the results of the items are entirely dependent on the specific
experiment’s settings.

Batch of Items

In this research, a Student License for Plant Simulation is employed, which imposes
a limitation of utilising a maximum of 80 objects. However, for our simulation,
we aim to model 43 distinct items. We use a batching approach to accommodate
all these items in the simulation. Batch 1 encompasses item numbers 1 through
22, and batch 2 contains 23 through 43. The simulations for batch 1 and batch
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2 are executed sequentially, employing identical settings, and are considered as a
single run. After the simulation for batch 2 is completed, adjustments are made to
the simulation setup. A checkbox labelled "Batch of Items 1-22" is employed to
determine which batch is currently being simulated. When true is selected in the
checkbox, it signifies that a simulation is being conducted for batch 1. Conversely,
selecting false indicates that the simulation is based on batch 2.

Revised capacity

When true is selected in the checkbox labelled Use Revised Capacity, it indicates that
the simulation is being conducted with the revised capacity. Conversely, selecting
false indicates that the simulation relies on the capacity assigned by ZMC.

5.8 Summary

This chapter provides a detailed account of the conceptual forecast model developed
for the research. It offers an overview of all the sections within the chapter and cov-
ers essential topics, starting with data preprocessing, distribution determination for
individual items, revised capacity, and the Markov chain model. The chapter also
explains the setup for three experimental designs: one focused on the implementa-
tion of the Markov chain decision policy on traditional replenishment days, another
exploring the implementation of the Markov chain decision policy on additional re-
plenishment days, and the third aiming to optimise the capacity of items stocked in
the storage cabinets. It further describes the forecasting model’s implementation.
These experiments are conducted with the number of replications set to one hun-
dred, using unique random number streams, with a warm-up period of two periods,
and a batching approach involving two batches to model the items.
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6 Results

This chapter presents the quantitative outcomes of this research. These results ulti-
mately answer the question of whether integrating an automated material logistics
system based on the Markov chain decision strategy can efficiently track inventory
and improve operational efficiency in the department’s material logistics process.
This question is answered by evaluating the results of the four established Key Per-
formance Indicators (KPIs) comprehensively.

Section 6.1 shows the statistics of the final item selection based on the data pre-
processing. Section 6.2 explores the current performance of ZMC of the selection of
items. The results of the determined distributions are shown in 6.3. Sections 6.4 to
6.6 provide insights into the findings derived from the outcomes of the conceptual
forecast model. Section 6.4 assesses the Markov chain decision policy performance
on traditional replenishment days (Monday and Thursday). Section 6.5 evaluates
the performance of the Markov chain decision policy on traditional replenishment
days (Monday and Thursday) and its application on additional replenishment days
(Tuesday, Wednesday, and Friday). Section 6.6 shows the findings of the optimised
capacity of items stocked in the storage cabinets. To conclude, Section 6.7 compares
the results of the experiments and the statistics of ZMC and Section 6.8 provides a
conclusion of the obtained results.

6.1 Results step 1: Data preprocessing

Table 6.1 shows the results of the inventory classification based on the replenishment
frequency and ABC analysis. During the item selection, our focus is directed towards
items within the categories ’A-High’, ’B-High’, and ’A-Medium’. These categories
collectively result in a selection comprising 56 distinct items. In 2022, the cumulative
cost for this selection equals € 104 464, which is 70% of the overall cost of all items,
which is € 149 658. This is still a representative portion of the turnover in the
surgical department, and the number of items has been reduced back to a more
manageable quantity for simulation of the storage cabinets.
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Table 6.1: The results of the combination of the ABC and replenishment classifi-
cation, highlighting the selected group for this experiment in blue.

ABC-Replenishment matrix - Number of items

High Medium Low

Combined
category

Number
of items

Combined
category

Number
of items

Combined
category

Number
of items

Total number
of items

Percentage
of items

A A-High 31 A-Medium 12 A-Low 6 49 18%
B B-High 12 B-Medium 14 B-Low 50 76 28%
C C-High 1 C-Medium 14 C-Low 127 142 53%

44 40 183 267

16% 15% 69% 100%

ABC-Replenishment matrix - Cost

High Medium Low

Combined
category Costs Combined

category Costs Combined
category Costs Total costs Percentage

of costs

A A-High € 86 028 A-Medium € 14 973 A-Low € 5 520 € 106 520 80%
B B-High € 3 354 B-Medium € 3 942 B-Low € 12 372 € 19 668 15%
C C-High € 109 C-Medium € 986 C-Low € 5 680 € 6 775 5%

€ 89 491 € 19 900 € 23 572 € 132 963

67% 15% 18% 100%

6.1.1 Results step 1: Additional data preprocessing

Upon examination of the data from 2020 and 2021, it becomes clear a refined subset
remains suitable out of the initially identified 56 distinct items. The final selection
consists of 43 items from the storage cabinet of the surgical department. Table 6.2
shows the statistics of this selection.

Table 6.2: The statistics of the selection of 43 items compared to the total number
of items and costs of the surgical department in 2020-2022.

Overview number of items and costs 2020-2022

Items Costs

Year Total Selection Percentage Total Selection Percentage

2020 336 43 13% € 154 927 € 77 901 50%
2021 308 43 14% € 175 254 € 95 459 54%
2022 398 43 11% € 149 658 € 81 441 54%

Total 1042 129 12% € 479 839 € 254.801 53%

6.2 Results step 2: Current performance Zaans Medisch
Centrum

To obtain the current performance of Zaans Medisch Centrum based on the de-
termined Key Performance Indicators entails utilising the data sourced from ZMC.
In this research, our focus centres on the surgical department, and our data input
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encompasses the years 2020 to 2022. As depicted in Table 6.3, it is shown that an
average of twenty unplanned additional replenishments take place annually. The
cumulative reorder sizes indicate approximately 1600 instances of stockouts annu-
ally, and the estimated value of items in stock amounts to €2 175, providing an
average valuation of the items held in stock. While shadowing the logistics team
member during a department checkup, it became clear that the specified capacities
are not always accurate for every item. The logistics team members often use their
insights into which items are used more rapidly or slowly than the assigned capac-
ity indicates. Consequently, they manually adjust the replenishment quantities as
needed. As a result, the value of the items in stock can only be estimated, and it is
impossible to compute an actual annual average.

Stockouts result in additional costs, which are associated with the expenses for extra
replenishments. These costs are not tracked within ZMC. Therefore, the supplemen-
tary costs cannot be integrated into the comprehensive overview. As a result, our
focus remains on the value of the items in stock, and we do not include the expenses
associated with unplanned additional replenishments.

Table 6.3: The statistics of the annual averages of the number of unplanned addi-
tional replenishments, replenishment quantities and the value of the items in stock
at Zaans Medisch Centrum over the year 2020-2022.

The annual averages of the KPIs at ZMC

Number of additional
replenishment

Replenishment
quantities

Value of in
stock items

2020 25 2383 € 2.175
2021 15 890 € 2.175
2022 20 1528 € 2.175

Average 20 1600 € 2.175

The data presented in Table 6.3 includes the items utilised in this simulation. The
selected items represent 12% of the total inventory within the storage cabinets.
Despite their relatively small share, these items contribute significantly to the annual
revenue, accounting for approximately 53% of the total revenue.

6.3 Results step 3: Determining the distributions
for each item

Table 6.4 shows the final selections for the distributions and shows the influencing
factors upon which the items depends.
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Table 6.4: Overview of distribution selection and influential factors for 43 selected
items in the surgical department from 2020 to 2022.

Overview of types of costs of the surgical deparment of ZMC

Normal DF Poisson DF

Name of the article Monday Thursday Monday Thursday Influence
factor

Afvalzak, blauw (80 x 110 cm) 1 1 1
Afvalzak, groen 75x65cm. 20st. 1 1 3&4
Bloedafnameset Safety-Lok 21G 178mm 1 1 3&4
Braakzak, Mediplast 1 1 4
Cath.ballon ch16 silk.tieman rusch 1 1 1&2
Cutisoft onsteriel 10x10cm. 4 laags 1 1 3&4
DISCOFIX® C 3-WEGKRAAN 10 CM 1 1 3&4
Elastomull 4m x 10cm. 1 1 3&2
Elastomull 4m x 8cm. 1 1 3&2
Elastomull 4m x6cm. 1 1 3&4 + 3&2
Handschoen maat M, NITRILE 1 1 3&2
Handschoen maat S, NITRILE 1 1 2
Hechtingverwijderset, steriel 1 1 3&4
Heupverband large 1 1 2
Incidin Oxywipes 1 1 2
Infuussysteem, belucht met male luerlock 1 1 3&2
Isolatiejas XXL elastisch manchet 1 1 3&2
Kidney Bowl - Nierbekkenschaaltjes 1 1 2
Naald, Injectie Eclipse Oranje 25G 5/8" 1 1 3&2
Naald,transfer 2xstalen naald 1,5/8-22mm 1 1 4
Naaldencontainer Sharpsafe 3 liter 1 1 1&2
NACL 0,9% Inf.vloeistof freeflex 100ml. 1 1 3
NACL 0,9% Inf.vloeistof freeflex 500ml. 1 1 3&2
NACL 0,9% Inf.vloeistof freeflex 50ml. 1 1 3&4
NACL 0,9% Spoelvloeistof 3000ml. 1 1 3&1&4
Onderlegger Molinea 60x60 pak 1 1 3&2
Oordopjes tbv oorthermometer Genius 2 1 1 1
Pleister Leukopor 9.2m x 2.50cm. 1 1 3
Pleister, Leukomed IV film 7x9cm. 1 1 4
Schaar chirurgisch disposable spits/stomp 1 1 3&2
Spuit, 20ml. 1 1 3&2
Spuit, 3ml, luer tip, centrisch 1 1 3&1
Spuit, 50ml ct 1 1 3&2
Spuit,10ml, luer tip, centrisch 1 1 3&4
Spuit,50 ml ll 1 1 3&1&4
STERICAN MIX 18G,1.20X40MM 1 1 -
TDS Basic, belucht, 200µ, naaldloos 1 1 3&4
TDS Plus, belucht, 200µ, naaldloos 1 1 3&1
Tissues facial 1 1 1
Urinemeter, 2 kamers, 450ml + 2000ml 1 1 2
VASOFIX® SAFETY 20 G X 33 MM 1 1 3&2
Washandjes Tena doos 8x30stuks 1 1 2
Wasset 4x2.0 gr non-woven steriel 1 1 3&4

Total 36 34 7 9

1 1Chosen distributor
for Mondays

Chosen distributor
for Thursdays
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6.4 Results step 4: Implementation of the Markov
chain model

To evaluate the performance of the Markov chain model implementation, we con-
ducted 51 experiments across a range of the probability thresholds from 50% to
100%. This probability threshold assesses the likelihood that usage will be equal to
or less than the in-stock items for the upcoming period, denoted as P(Usage <=
InStock). Each experiment consisted of a hundred replications, and we employed
a unique random number stream for each replication of each experiment. This ap-
proach is implemented to minimise the influence of external factors, ensuring that
the chosen probability threshold remains the primary determinant of the outcomes.
The comprehensive results of all 51 experiments are visually presented in Figures
6.1 through 6.4.

Figures 6.1, 6.2, 6.3, and 6.4 present two distinct baselines. The first baseline, de-
picted in blue, is based on the results of the present state, where on every traditional
ordering day, the items in the storage cabinets are replenished to their maximum
capacity. The second scenario, highlighted in red, is based on the results of the
present state & revised capacity, where on every traditional ordering day, the items
in stock are replenished to their maximum revised capacity. Additionally, each fig-
ure illustrates a trendline that shows the experiment’s outcomes. This experimental
approach initiates with a probability threshold of 50% and progressively increases
it by 1% until it reaches the maximum threshold of 100%. This comprehensive rep-
resentation allows for a detailed examination of how different probability thresholds
impact the results across various aspects of the experiment.
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Figure 6.1: Comparison of average handling time for one item in storage cabinets:
present state, present state & revised capacity, and Markov chain decision strategy
with probability threshold.

Figure 6.1 displays the average handling time of items in the storage cabinets as
a function of the probability threshold used for item replenishment decisions. The
figure reveals a trend where the handling time decreases as the probability thresh-
old increases. This observation suggests that as the criteria for replenishing the
items become stricter (higher threshold), items spend less time within the storage
cabinets. This indicates an improved efficiency in managing the cabinets. In the
first stages of the graph, the handling time is notably greater compared to both the
baseline scenarios. However, as we progress through the graph, the handling time
falls below both baseline scenarios, indicating an improvement in efficiency.

Figure 6.1 illustrates two noteworthy deviations within the trendline, consistently
observed across hundred replications, indicating that they are not random anomalies.
These declines seem to be associated with distinct conditions influenced by the
established probability threshold, leading to an unexpected decrease in handling
time. These deviations could arise from the interplay of the probability threshold,
which prevents ordering a certain number of items in the cabinet, closely matching
actual consumption, resulting in minimal remaining handling time of the items.
This intriguing phenomenon calls for in-depth analysis and is a subject for future
research to delve into its underlying factors and confirm our hypotheses.
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Figure 6.2: Comparison of the frequency of unplanned additional replenishment
of the storage cabinets: present state, present state & revised capacity, and Markov
chain decision strategy with probability threshold.

Figure 6.2 delves into the frequency of unplanned additional replenishments due
to stock out at varying probability thresholds, represented as percentages ranging
from 50% to 100%. The figure reveals a downward trend: as the probability thresh-
old increases, signifying a higher probability for P (Usage <= x), the frequency of
unplanned additional orders decreases. This finding suggests that proactive risk
management reduces critical stock shortages, leading to fewer emergency orders and
improved inventory stability. The experiment’s trendline consistently positions itself
below the baseline of the present state and converges towards the baseline of the
present state & revised capacity as the probability threshold increases.

Figure 6.2 illustrates one noteworthy deviations within the trendline, consistently
observed across hundred replications, indicating that they are not random anoma-
lies. These decline seem to be associated with distinct conditions influenced by the
established probability threshold, leading to an unexpected decrease in the number
of additional replenishments in one year. These deviations could also arise from the
interplay of the probability threshold, which prevents ordering a certain number of
items in the cabinet, closely matching actual consumption, resulting in significant
reduction of the number of additional replenishment over one year.

57



Figure 6.3: Comparison of the number of item stockouts: present state, present
state & revised capacity, and Markov chain decision strategy with probability thresh-
old.

In Figure 6.3, we explore the relationship between the number of stockouts and the
associated risk, expressed as the probability threshold. The probability threshold
signifies the likelihood that the number of items in the storage cabinets is sufficient
to meet the upcoming period’s consumption needs (P (Usage <= x)). The data
presented in this figure reveals a compelling pattern: as the probability threshold
increases, the quantity of items falling below the desired stock level in the cabinets
decreases. This trend emphasises the significance of selecting a higher probability
strategy. With lower risk, there is a reduced probability of stockouts, resulting in
fewer unplanned additional replenishment orders. The experiment’s trendline consis-
tently positions itself below the baseline of the present state and converges towards
the baseline of the present state & revised capacity as the probability threshold
increases.
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Figure 6.4: Comparison of the annual value of items stocked in the storage cab-
inets: present state, present state & revised capacity, and Markov chain decision
strategy with probability threshold.

Finally, in Figure 6.4, we conduct a cost analysis with the probability threshold
spanning from 50% to 100%. The data in this figure demonstrates that the asso-
ciated costs increase as the probability threshold increases, with a peak at 100%
probability threshold. This cost-probability threshold relationship is a critical in-
sight for decision-makers, highlighting the financial implications of risk management
strategies. As the probability threshold increases, the experiment’s trendline con-
sistently starts below the present state baseline, surpasses it halfway through the
experiment, and continues converging towards the present state + revised capacity
baseline.

Summary

In summary, Figures 6.1 through 6.4 collectively emphasise the significance of risk
management in inventory control. A higher probability for P (Usage <= x) means
lower risks. Increasing the probability thresholds is associated with reduced stock-
outs, fewer unplanned additional replenishments, and increased costs. These findings
emphasise the need for a balanced approach to material logistic processes consider-
ing risk reduction and cost efficiency. Further analysis and discussion of these results
will be presented in subsequent sections of this research paper.
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6.5 Results step 5: Planned additional replenish-
ments

For the second experiment, a fixed probability threshold is set for replenishment
decisions on Mondays and Thursdays. For example, consider the simulation with
a probability threshold of 94%. In this scenario, the annual average number of
unplanned additional replenishments over a hundred replications is 16, and the in-
stances of stockouts amount to 146 samples. The total average value of the items in
stock is €2 463, which is €637 less than the value incurred in stock compared to the
€3 100 observed in the simulation with a probability threshold of 100%. The setup
with a probability threshold of 94% showcases a lower in-stock value than opting for
greater certainty. However, it also highlights the potential for improvement in man-
aging stockout quantities, producing a matching setup for the second experiment,
which aims to explore the possibility of predicting stockouts on non-traditional or-
dering days in advance.

Figures 6.5, 6.6, 6.7, and 6.8 show two distinct baselines. The first baseline, rep-
resented in blue, employs a fixed probability threshold of 100% for replenishment
decisions exclusively on Mondays and Thursdays. The second scenario, shown in
red, employs a fixed probability threshold of 94% for replenishment decisions on the
same traditional ordering days. Both scenarios do not involve planned additional re-
plenishments on non-traditional ordering days. Additionally, each figure illustrates a
trendline that shows the experiment’s outcomes. This experimental approach initi-
ates with a probability threshold of 50% and progressively increases it by 1% until it
reaches the maximum threshold of 100%. This comprehensive representation allows
for a detailed examination of how different probability thresholds impact the results
across various aspects of the experiment.
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Figure 6.5: Comparison of average handling time for one item in storage cabinets:
Exp 1: Probability threshold of 100%, Exp 1: Probability threshold of 94%, and
Exp 2: Markov chain decision strategy with probability threshold on non-traditional
ordering days.

Figure 6.5 reveals that the handling time closely resembles the baseline with a prob-
ability threshold of 94% without planned additional replenishment. When the prob-
ability threshold reaches 100%, a noticeable peak in handling time emerges. Intro-
ducing the option for planned additional replenishments on non-traditional ordering
days seems to have minimal impact on the handling time.
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Figure 6.6: Comparison of the frequency of unplanned and planned additional
replenishment of the storage cabinets: Exp 1: Probability threshold of 100%, Exp
1: Probability threshold of 94%, and Exp 2: Markov chain decision strategy with
probability threshold on non-traditional ordering days.

When evaluating the overall impact on the total number of additional replenishments
in Figure 6.6, it becomes clear that while the total number of unplanned additional
replenishments decreases, the number of planned additional replenishments increases
more significantly surpassing the decrease. For example, at the probability threshold
of 99%, for planned additional replenishment, there is a substantial 400%, increase in
the total number of additional replenishments compared to the baseline with a fixed
probability threshold of 100%, and zero unplanned or planned additional replenish-
ments. Even when the probability threshold of the planned additional replenishment
days is set to 100%, the total number of unplanned and planned additional replenish-
ments becomes equivalent to carrying out a planned additional replenishment daily.
This unintended consequence highlights the importance of carefully considering the
trade-offs when implementing planned additional replenishment strategies.
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Figure 6.7: Comparison of the number of item stockouts: Exp 1: Probability
threshold of 100%, Exp 1: Probability threshold of 94%, and Exp 2: Markov chain
decision strategy with probability threshold on non-traditional ordering days.

When examining Figure 6.7, it becomes clear that despite the planned additional
measurements, the reduction in the number of stockouts is minimal. The number
of stockouts hardly decreases compared to the baseline with a fixed probability
threshold of 94% for replenishment decisions exclusively on Mondays and Thursdays.
The decrease in the number of stockouts remains consistently within the range of
20 to 30 items, maintaining this pattern until the probability threshold reaches
approximately 90%. At this point, a notable decline in the number of stockouts is
observed. Once the probability threshold reaches 100%, it aligns with the baseline
of the fixed probability threshold of 100% for replenishment decisions exclusively on
Mondays and Thursdays.
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Figure 6.8: Comparison of the annual value of items stocked in the storage cabi-
nets: Exp 1: Probability threshold of 100%, Exp 1: Probability threshold of 94%,
and Exp 2: Markov chain decision strategy with probability threshold on non-
traditional ordering days.

Figure 6.8 shows that the trends of the values of the in-stock items from the experi-
ment align with the result of the fixed probability threshold of 94% for replenishment
decisions exclusively on Mondays and Thursdays. There is a prominent peak in the
in-stock value where it doubles at the probability threshold of 100% set for the
planned additional replenishment decision. Besides this peak, the in-stock value re-
mains significantly lower than those associated with the fixed probability threshold
of 100% for replenishment decisions exclusively on Mondays and Thursdays. This
suggests that the experimental approach still offers a more cost-effective solution
while seeking a higher level of certainty.

Summary

In summary, Figures 6.5 through 6.8 illustrate that it is not feasible to find a proba-
bility threshold that reduces the number of stockouts to nearly zero without increas-
ing the total number of additional replenishments to daily levels. However, when
considering a trade-off, it is possible to reduce the number of stockouts by 30 while
the total number of unplanned additional and planned additional replenishments
remains at approximately 16.

It is also possible to opt for a total number of additional replenishments exceeding
16 replenishments, such as selecting 22 replenishments in total. This setup reduces
the number of stockouts to approximately 102, representing a decrease of 30% com-
pared to the results when no planned additional replenishments occur. The annual

64



average number of unplanned additional replenishments over a hundred replications
of this setup equals 8, and the number of planned additional replenishments equals
14. Table 6.5 summarises the results of the second experiment. The selection of
the replenishment probability threshold depend on the hospital’s preferences. The
hospital can formulate various experimental designs with customised replenishment
probability thresholds for the traditional ordering days as per their specific require-
ments.

Table 6.5: Comparison of results between the first and second experiments using
the same fixed probability threshold for traditional ordering days.

Comparison - Results experiment 1 vs. experiment 3

Number of
stock outs

Number of additional
replenisments

In stock
value

Probability threshold for
traditional ordering days

Probability threshold for
non-traditional ordering days

Exp 1: Only traditional
ordering days 146 16 € 2 463 91% NA

Exp 2: Additional non-
traditional ordering days 102 24 € 2 471 91% 81%

6.6 Results step 6: optimise capacity

The third experiment explores the option of optimising the capacity while setting the
replenishment policy probability at 100%. In the baseline scenario with the generous
capacity, the annual average number of stockouts over one hundred replications is
approximately four stockouts, and the average value of the in-stock items is €3 100.
This approach to reducing the in-stock value involves determining the capacity of
each item in such a way that stockouts do not significantly decrease, but the overall
stock value decreases. This is accomplished through a 2k factorial design, which
required 217 experiments before stopping the simulation. Table 6.6 presents the
outcomes of this simulation.

Table 6.6: Comparison of results between the first and third experiments, with a
capacity reduction in the third experiment.

Comparison - Results experiment 1 vs. experiment 3

Number of
stock outs

Number of additional
replenisments

In stock
value

Probability threshold for
traditional ordering days

Probability threshold for
non-traditional ordering days

Exp 1: Only traditional
ordering days with
generous capacity

4 1 € 3 100 100% NA

Exp 3: Only traditional
ordering days with
minimised capacity

5 1 € 2 754 100% NA

The table reveals that the quantity of stockouts and additional orders remains prac-
tically identical when comparing the optimised and generous capacity. Conversely,
the in-stock costs have experienced an 11% reduction, €346, declining from €3 100
to €2 754.
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6.7 Comparison of the statistics of Zaans Medisch
Centrum and the experiment results

Let’s revisit the initial scenario of our case study. This research examines the data
of Zaans Medisch Centrum within their circumstances, explicitly focusing on the
surgical department. We only look at the items used for our simulation within their
data. Table 6.7 presents the statistic related to this selection. The selection of items
includes 12% of all items located in the storage cabinets, and on an annual basis,
these items generate 53% of ZMC’s turnover. Throughout 2020-2022, annually, an
average of 20 unplanned additional replenishments occurred, and the average total
reorder sizes amounted to 1600 stockouts per year. The estimated value of the items
in stock equals €2 175. Keep in mind that this value is an approximation, as elab-
orated in Section 4.3, and the actual value is likely higher.

Table 6.7 shows that the in-stock value of the cabinets tends to increase as the num-
ber of stockouts and total number of additional replenishments decreases. When
the number of stockouts decreases, the total number of additional replenishments
also tends to increase. This trade-off between these three outputs should be con-
sidered when making decisions regarding inventory management strategies. After
evaluating the various experiments conducted in this research, it becomes clear that
no one-size-fits-all ideal method can be universally selected. The choice of method
ultimately depends on the preferences and priorities of the hospital itself.

Table 6.7: Comparison of results of the first, second and third experiments with
the statistics of Zaans Medisch Centrum.

Comparison - Results experiment 1 vs. experiment 3

Number of
stock outs

Number of additional
replenisments

In stock
value

Probability threshold for
traditional ordering days

Probability threshold for
non-traditional ordering days

Statistics Zaans Medisch
Centrum 1600 20 € 2 175 NA NA

Exp 1: Only traditional
ordering days with
generous capacity

4 1 € 3 100 100% NA

Exp 1: Only traditional
ordering days with
generous capacity

146 16 € 2 463 91% NA

Exp 2: Additional non-
traditional ordering days 102 24 € 2 471 91% 81%

Exp 3: Only traditional
ordering days with
minimised capacity

5 1 € 2 754 100% NA

6.8 Conclusion

This research explores the optimisation of material logistics processes in health-
care facilities, with a focus on the Surgical department of Zaans Medisch Centrum.
Through three experimental designs, the research examines the applicability of the
Markov chain method for determining replenishment quantities. The results sug-
gest that integrating an automated material logistics system using this method is
feasible but has not yet achieved optimal operational efficiency. The comparison of
the results of the first, second and third experiments with the statistics of Zaans
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Medisch Centrum indicates the potential for a significant reduction in the number
of stockouts. Moreover, it demonstrates the feasibility of decreasing the frequency
of unplanned additional replenishments. However, these improvements are counter-
balanced by an increase in the overall value of the stocked items within the storage
cabinets. The findings underscore the presence of a trade-off between a reduction
in item stockouts and unplanned additional replenishments, while also maintaining
a minimal in-stock value.

In Section 2.1, we examined the issues within material logistic processes from three
perspectives: the customer, financial, and internal process. Based on these perspec-
tives, we also evaluate the results of the KPIs:

1. Customer perspective: Elimination of unforeseen shortages leads to increased
departmental satisfaction and improved employee morale. In addition, the
prevention of delays in patient care ensures the maintenance of service quality,
thereby enhancing the overall service level.

2. Financial perspective: Implementation results in a significant reduction in
financial waste, due to decreased handling time, fewer shortages, and the as-
sociated extra costs. Additionally, automation of the reorder decision strategy
minimises wasted time spent on manual estimation of reorder decisions, as the
logistics team no longer need to monitor each item individually.

3. Internal process perspective: The elimination of manual verification and stock
point estimation simplifies the logistics process, allowing the logistics team to
allocate their time to more valuable and challenging tasks.

In conclusion, the research highlights the effectiveness of automated material logis-
tics systems in reducing stockouts and additional replenishments. Confirming that
the integration of an automated material logistics system based on the Markov chain
decision strategy can efficiently track inventory and improve operational efficiency
in the department’s material logistics process. However, the increase in in-stock
value poses a trade-off. Hospitals must consider these findings and their specific
preferences when making decisions about system implementation.
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7 Conclusion and discussion

The primary objective of this research is to address the fundamental question: "How
can the integration of an automated material logistics system efficiently track inven-
tory and improve operational efficiency in the department’s material logistic pro-
cess?". This simulation generates insights and conclusions by employing a concep-
tual model based on the Markov chain model, which can be found in Section 7.1 of
this report. Section 7.2 also delves into a discussion of these conclusions, assessing
whether they align with the initial expectations, and provides an overview of the
research’s limitations and potential implications. Section 7.3 outlines recommenda-
tions for future research.

7.1 Conclusion

This research explores various experimental designs to optimise material logistics
processes at the departmental level of healthcare facilities. In our case study, we
evaluated our conceptual model and its enhancements within the scope of Zaans
Medisch Centrum, with specific attention directed toward the Surgical department.
The results of this investigation show the importance of efficient inventory control
within the context of material logistics processes at the department level of hospitals.

This research initially focuses on techniques for determining in-stock quantities of
items in the storage cabinets. The utilisation of Radio-Frequency Identification-
equipped storage cabinets allows tracking cabinet quantities daily or even multiple
times a day, facilitating more detailed consumption data. Despite the high turnover
of items within hospital cabinets, there is a scarcity of data concerning the consump-
tion date and time of these items, as well as the precise reasons for their usage. Given
the anticipated future growth and increasing complexity of healthcare demand, in-
vesting in RFID-equipped storage cabinets becomes highly valuable for in-depth
data analysis. This investment contributes to the advancement of integrating an
automated material logistics system, which in turn eliminates the necessity for the
logistics team to perform manual cabinet content counts, resulting in significant
time savings of approximately 2 hours per day for one employee. Additionally, this
automation reduces the risk of counting errors and ensures that consumption data
is no longer influenced by employee replenishment decision-making.
This research also delves into an automated system to enhance operational efficiency.
To accomplish this, the application of the Markov chain method has been thoroughly
examined through three distinct experimental designs. The first experimental design
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shows the applicability of the Markov chain in determining replenishment quanti-
ties and the necessity of replenishing items on traditional order days. The findings
indicate that to minimise the risk of stockouts, it is essential to maintain stock lev-
els near their maximum capacity. So, the replenishment policy deviates minimally
from the current method to achieve an optimal reduction in stockouts. It can be
concluded that integrating an automated material logistics system using the Markov
chain is feasible.

The utilisation of the conceptual model shows improvements in the reduction of
additional replenishment and the associated stockout quantities. At the same time,
this enhancement facilitated by implementing the conceptual Markov chain model
leads to an increase in both the capacity and the value of in-stock items within
the storage cabinets, implying that operational efficiency has not yet been reached.
This implication does not imply an immediate abandonment of the integration of
the Markov chain method.

An advantage of automated RFID-equipped storage cabinets is the ability to scan
the cabinet contents any time during the week, allowing for temporary stock level as-
sessments. This possibility creates a trade-off strategy, where replenishment strate-
gies deviate from maximum replenishment on every traditional ordering day, and
the in-stock level is assessed to determine if additional replenishment is required on
non-traditional ordering days to prevent additional replenishments. The trade-off
strategy provides opportunities to reduce the value of items in stock while still min-
imising the number of stockouts.

The results of the second experimental design further emphasise the difficulty of
achieving zero stockouts without replenishing items to their maximum capacity on
every traditional ordering day or increasing additional replenishments to a daily
occurrence. Nevertheless, the implementation to stop replenishing items to their
maximum capacity on every traditional ordering day and reduce the frequency of
additional replenishments can still lead to a decrease in additional replenishments
and stockouts. The results of this simulation conducted with the conceptual model
outperform the existing statistics at Zaans Medisch Centrum.

A trade-off involving the probability threshold employed in the Markov chain method
offers flexibility in material logistics process strategies addressing specific hospital
preferences, thereby enhancing operational efficiency. However, this enhancement
comes at the cost of incrementing the in-stock value. This increase in in-stock value
does not align with the preferences of ZMC. As a result, a third experimental design
is conducted to examine the impact of optimised capacity on in-stock value and the
number of stockouts. The experimental findings reveal that optimising capacity can
keep the number of stockouts and additional replenishments low while also resulting
in an 11% reduction in the value of in-stock items. This shows the potential for cost
savings through capacity adjustments. Unfortunately, it is impossible to directly
compare the obtained annual value of the items in stock to the annual in-stock
value at ZMC, as the determined value represents an estimated value.
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In conclusion, this research demonstrates that implementing an automated material
logistics system effectively reduces instances of stockouts and additional replenish-
ments. However, this improvement is linked to an increase in the overall value of
stocked items. The implementation offers significant benefits, such as saving employ-
ees two hours of daily work and reducing errors associated with manual counting.
Additionally, the integration of RFID-equipped storage cabinets presents an oppor-
tunity to collect additional data with potential relevance. Ultimately, deciding to
opt for the automated material logistic system is up to the hospital, as they must
assess the associated costs against the achieved improvements and their preferences.

7.1.1 Recommendations for Zaans Medisch Centrum

Based on the findings and insights gained through this research,we propose the
following two recommendations for ZMC:

1. Evaluate and adjust the storage cabinets capacities : One crucial area for im-
provement is reevaluating the capacity of storage cabinets. Often, the capacity
of items in storage cabinets does not align with actual consumption, leading
to frequent occurrences of either stockouts or excess inventory. By carefully
reassessing and adjusting the cabinet capacity to better match consumption
patterns, the hospital can significantly reduce stockouts and enhance overall
inventory management.

2. Implement automatic tracking systems : The integration of an automatic track-
ing system, as demonstrated in this research, is highly valuable. Given the
current scarcity of data recorded at ZMC, it provides a wealth of data that
can be used to fine-tune inventory management and optimise material logistics
processes. Especially since the technique shows a growing trend of improved,
more efficient, and cost-effective RFID-equipped storage cabinets. Monitoring
this technology’s advancements and evaluating its adoption can be a valuable
step in enhancing the operational efficiency.

By taking these steps, your hospital can enhance its material logistics processes,
reduce stockouts, and capitalise on the wealth of data for continuous improvement.

7.1.2 Recommendations for Coppa

Based on the findings and insights gained through this research,we propose the
following two recommendations for ZMC:

1. Explorer the implement automatic tracking systems : We recommend Coppa to
explore opportunities for automatic stock level maintenance systems in hospi-
tal settings. While such systems are prevalent in non-hospital inventory man-
agement, they remain underutilised within healthcare due to the complexity of
the system. Implementing RFID-equipped storage cabinets, as demonstrated
in this research, offers a viable solution. Integrating this technology optimises
material logistics processes in hospitals, generate valuable data for improved
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advisory services, and ultimately enhance efficiency. Given the advancing tech-
nology related to RFID-equipped storage cabinets, it is recommended that
Coppa closely monitors these developments.

2. Additional advisory services : Examination of our case studie reveals significant
benefits in advising on capacity and safety level determinations within hospi-
tals. Utilising straightforward methods in this context can yield substantial
advantages with minimal implementations. This approach can offer additional
value to the advisory services provided by Coppa.

7.2 Discussion

This research assumes a flawless operation of RFID-equipped storage cabinets. How-
ever, despite these cabinets’ confirmed functionality, it is essential to assess the
reliability of RFID-equipped storage cabinets. This assessment should include an
examination of how accurately items are tracked and the time required for cabi-
net scanning. Moreover, considering sustainability, exploring the potential use of
sustainable RFID tags and their reusability is necessary. Lastly, a thorough cost-
benefit analysis is required, weighing the acquisition and maintenance costs of the
RFID-equipped storage cabinets and RFID tags against the benefits derived from
the automation and optimisation of the material logistics processes.

To create an informed decision, it is essential to gain insight into the current expenses
associated with additional replenishments and the costs incurred for replenishments
on regular ordering days. Unfortunately, the precise costs associated with additional
replenishments remain unknown and, as a result, have not been factored into the
findings and comparisons presented in this research. Moreover, the value of items in
stock is an estimation instead of a precise measurement of the annual average value.
The absence of these values adds complexity to determining the optimal approach
and is likely to alter the optimal approach once these costs are known.

The consequences of planned additional replenishments still need to be investigated.
Feasibility must be considered, both from the delivery from the external warehouse
and from the logistics team staff. This investigation should encompass an in-depth
analysis of how planned additional replenishments impact not only the overall in-
ventory management but also the broader material logistics processes.

The item consumption of the simulation of the conceptual model is based on the
replenishment quantities obtained from the replenishment data of ZMC. The replen-
ishment decisions are influenced by employees’ ordering behaviour, which results in
scenarios where no consumption occurs in one period, while in another period, there
is a significant consumption (e.g., 100 items). In reality, consumption typically does
not exhibit such extreme fluctuations from week to week. These substantial gaps in
consumption patterns affect the predictive accuracy of the Markov chain model. By
incorporating precise daily usage for items withdrawn from the cabinets, it is possi-
ble to achieve a more accurate distribution prediction, and the model’s performance
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will better align with the dynamic nature of consumption. As the consumption dis-
tributions change, the simulation’s outcomes and, consequently, the results of the
model’s application will also change accordingly.

The reported capacities of the storage cabinets are adjusted for the simulation, and
this adjustment may not align with the preferences of ZMC. Choosing different ca-
pacities will also have an impact on the experiment results. Nonetheless, it is crucial
to make capacity adjustments to enhance operational efficiency. Without these ad-
justments, achieving zero stockouts is not feasible.

Ultimately, our research predominantly centres on capacity enhancement, which is
prominently researched in the existing literature, alongside the prediction of con-
sumption numbers. Hence, our research significantly intersects with numerous stud-
ies outlined in the literature. However, the application of the Markov chain is rela-
tively limited research within the existing literature. After conducting this research,
it becomes clear that the problem does not solely shape the research direction and
prior findings within the literature but also depends on the accessibility of data for
analysis and the potential to gain new insights. The availability of data facilitated
by RFID-equipped storage cabinets offers a unique opportunity to access a wealth of
previously unexplored information. This data and the insights it yields are expected
to diverge significantly from the insights employed in known inventory management
techniques, both within the manufacturing industry and healthcare facilities. As
a result, this field remains open for further exploration, particularly in the con-
text of the automated material logistics system based on the Markov chain decision
strategy.

7.3 Future research

The utilisation of RFID-equipped storage cabinets offers the potential for more
comprehensive data collection, supporting future models’ development. The cur-
rent data collection does not include all the characteristics related to consumption.
Consequently, significant measurable factors influencing consumption may not be ac-
counted for despite their potential to enhance predictive accuracy greatly. Obtaining
this additional information allows for a more thorough examination of consumption
influences, including specific consumption patterns by doctors, the date and time of
the item removal and return to the cabinets and the correlation between consump-
tion and the patient’s treatment and treatment schedule. This data can then be used
to investigate whether an improved consumption prediction is possible, thereby po-
tentially reducing replenishment quantities.

In this research, we utilised fixed input parameters for the distributions. This means
that the parameters were derived from historical data from 2020 to 2022, with equal
weight given to each year’s data. It could be interesting to investigate whether the
reliability of the Markov chain model can be enhanced by adopting a time-varying
Poisson and Normal processes approach. In this alternative approach, determining
parameters such as the mean, standarddeviation(sigma), and lambda would place
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more emphasis on recent historical data than older historical data. When employing
the Markov chain model within the automated material logistics system, it is crucial
to accurately evolve the parameters over time to reflect the changing event rates.
Consequently, conducting further research into time-varying parameters based on
input data becomes essential for enhancing the performance of the automated ma-
terial logistic system.

Additionally, future research can explore the feasibility of partial replenishment
rather than replenishing to maximum capacity. This research could delve into the
associated costs, benefits, drawbacks, as well as the potential risks and advantages
of maintaining a smaller stock. This research can provide valuable insights into
finding an optimal balance between stock levels and operational efficiency, allowing
healthcare facilities to tailor their inventory management strategies more precisely
to their specific needs.

In response to the positive results of the three future research efforts described
above, a potential future application could involve storing the items in modular carts
specifically prepared for each patient’s treatment instead of keeping the items within
the storage cabinets in the department. This creates the possibility of eliminating or
joining the storage cabinets within the hospital, thereby freeing up space for patient
treatments.
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Appendix A - Organogram

List of the teams of Coppa

1. Team Facilitair & ICT,

2. Team Sociaal Domein & Juridisch,

3. Team Junioren Overheid en KC Zorg,

4. Team Inkoopconsultants Zorg,

5. Team Overheid,

6. Team Inkoopadvies,

7. Team Implementaties,

8. Team Outsourcing,

9. Team Procurement-to-Pay.
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Organogram of Zaans Medisch Centrum

Figure A.1: This figure shows the organogram of Zaans Medisch Centrum.
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Appendix B - Overview schedule ’Scan
and delivery day’ for the dempartments
within ZMC
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Table B.1: Schedule of the replenishment days for each department of Zaans
Medisch Centrum. The blue highlights indicate the scheduled days, and the depart-
ment chosen for our research is highlighted in red.

Schedule for the dempartments within ZMC - Scan and delivery day

Department Monday Tuesday Wednesday Thursday Friday Total

Beschouwend 0 1 0 0 1 2
Dagopname 0 1 0 1 0 2
Dialyse afdeling 1 0 1 0 1 3
Endoscopie en MDL 0 1 0 1 0 2
Gipskamer 1 0 1 0 1 3
Hart-Vaat Centrum 0 1 0 0 0 1
HCK 1 0 1 0 1 3
Intensive care afdeling 1 0 1 0 1 3
Kenniscentrum Midden 0 0 0 1 0 1
Kenniscentrum Noord 0 0 0 1 0 1
Kenniscentrum Zuid 0 0 0 1 0 1
Kliniek Cardiologie/
Acute opname afdeling 1 0 1 0 1 3

Kliniek gynaecologie/
Verloskunde 1 0 1 0 1 3

Kliniek kinderafdeling/
Neonatologie 1 0 1 0 1 3

Klinische OK 0 1 0 0 1 2
Nucleaire geneeskunde 0 1 0 0 0 1
Oncologisch dagcentrum 0 1 0 0 0 1
Pijncentrum 0 1 0 0 0 1
Poli allergologie 0 0 0 1 0 1
Poli dermatologie 0 0 0 1 0 1
Poli gynaecologie 0 1 0 0 0 1
Poli kindergeneeskunde 0 1 0 0 0 1
Poli KNO 0 0 0 1 0 1
Poli longziekten 0 0 0 1 0 1
Poli mond-, kaak- en
aangezichtschirurgie 0 1 0 1 0 2

Poli neurologie 0 0 0 1 0 1
Poli orthopedie 0 1 0 1 0 2
Poli urologie 0 1 0 0 0 1
Poliklinische OK 0 1 0 0 1 2
Radiologie 0 1 0 1 0 2

Snijdend 1 0 0 1 0 2

Spoedeisende hulp 1 0 1 0 1 3

Total 9 15 8 14 11
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Appendix C - Overview of types of
cost

Table C.1: This table gives an overview of the types of costs in the surgical
department of Zaans Medisch Centrum. The costs highlighted in blue are the
cost types predominantly consisting of items located in the storage cabinets.

Overview of types of costs in the surgical ward of ZMC

Type of costs Costs Type of costs Costs

423310 - dienstkleding schoeisel € 610 461910 - and. kost. onderz. funct. € 423
423320 - specifieke kleding € 9 497 462110 - geneesmiddelen € 5 737
431310 - dieetvoeding en produkten € 354 462170 - dialyse benodigdheden € 12 017
432210 - restauratieve app./ben. € 236 462610 - verband € 30 581
441110 - schoonmaak app./ben. € 12 352 462710 - hechtmateriaal € 130
441210 - afvalverwijdering € 2 599 462910 - and. kost. behand. funct. € 994
441310 - toiletbenodigdheden € 494 462920 - procedure trays € 26
441415 - meubilair € 39 464110 - pers. voorz. patienten € 1 356
441940 - verpakk.mat+dispocebles € 25 464210 - verplaats hulpmiddelen € 96
442110 - linnengoed € 1 455 464310 - incontinentie materiaal € 5 114
442120 - dekens kussens matras € 2 474 464910 - and. kst. verpleging € 14 888
442210 - wasbenodigdheden € 11 465110 - toed.- en afn.- systemen € 12 640
451110 - kantoorbenodigdheden € 1 563 465210 - katheters en sondes € 9 506
451120 - patiëntind. benodigdheden € 505 465310 - handschoenen € 10 684
451210 - drukwerk € 88 465910 - and. kst. ond. beh. verpl € 9 245
459333 - adm. kleine orderkosten € 45 466110 - instrumentarium € 2 452
461140 - registratiemiddelen € 397 466111 - onderhoudscontracten € 60
461210 - grond- hulpstoffen lab. € 10 466113 - disp. ok. lap. sc. mat. € 308
461290 - and. kost. laboratoria € 531

Total € 149 543
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Appendix D - Model frame of the fore-
cast model

A visualisation of the model frame of the forecast model as presented in
Plant Simulation.

Figure D.1: Part 1 of the model frame: A visualisation of the model frame
simulating the items.
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Figure D.2: Part 2 of the model frame: A visualisation of inputs and
outputs represented in the model frame.
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