
Exploring Multimodal Data for Crime Recognition
Aditya Retissin Poozhiyil

Faculty of EEMCS
University of Twente

Enschede, The Netherlands

Dr. Estefanı́a Talavera
Faculty of EEMCS
University of Twente

Groningen/Enschede, The Netherlands

Abstract—With the generation of diverse forms of data being
produced exponentially by various forms of devices, researchers
have explored exploiting the inherent characteristics of the
modality to recognize human actions. The most widely generated
data, RGB(color) primarily contributes to the spatial informa-
tion but lacks the temporal attributes. Conversely, the skeleton
modality emphasizes the temporal aspect of the human joints but
lacks spatial features. Both these modalities present features that
can mutually complement each other. In the context of crime
recognition, earlier research focused on capturing and learning
temporal patterns by exploring different forms of Transformer
architectures with skeleton trajectories. This study extends the
work by investigating the fusion of visual context(RGB) with
the skeleton to leverage spatial and temporal dynamics of both
modalities. The dataset used for this study is the HR-Crime,
containing 13 human-related crime categories captured through
surveillance cameras. Our experiments show the fusion of both
modalities shows improvement compared to the baseline. In
addition, we discuss the limitations of our approach and possible
ways to tackle them.

I. INTRODUCTION

Closed-circuit television (CCTV) cameras have been widely
employed in both public and private settings for surveillance
purposes aimed at preventing and resolving criminal activi-
ties[1]. However, the manual monitoring of prolonged hours of
CCTV footage is a time-consuming and laborious task, thereby
reducing the efficiency of CCTV systems. The recognition
of criminal activity in CCTV cameras entails the automatic
detection and classification of acts such as theft, vandalism,
assault, and burglary, among others. The use of such systems
allows the authorities to take preparedness measures in ad-
vance, enabling them to respond more effectively to various
scenarios and potential emergencies.

In recent years, the progress made in novel hardware tech-
nologies, capable of capturing and generating diverse forms
of data, allowed researchers to employ Deep Learning algo-
rithms for the purpose of recognizing human activities. The
accessibility of data, generated by wide range of hardwares
such as Kinect, LiDAR and RGB sensors has paved the way
for extensive research on exploiting the inherent characteristics
of the data[2, 3, 4].

Each modality contains unique inherent characteristics that
contribute towards Human Activity Recognition(HAR) tasks.
For example, RGB modality is a widely employed color
model, that plays a significant role for solving computer vision
related tasks[5]. Depth data, generated by LiDAR sensors,
provides information about the distance of objects from the

camera, hence, encompassing the structural information of
the scene[6]. Another modality which is extensively used in
context of HAR task is skeleton data, which contributes as the
temporal component. The data is generated by the utilisation of
Kinect sensors or by employing pose estimation algorithms[7,
8] to extract the poses from video.

Although each modality has its merits, they also exhibit
certain limitations. For instance, RGB modality may contain
noise and is sensitive to light[9]. Conversely, skeleton data
lacks spatial information and may fail to capture subtle vari-
ations in human movement, such as nuanced shifts in posture
and appearance[10]. Hence, making it highly dependent on the
device and pose estimation algorithm employed. Consequently,
it becomes evident that each modality presents unique aspects
that is absent in the other. Therefore, it is a rational to fuse
modalities that exhibit mutual complementary, with the aim
of leveraging the distinctive characteristics inherent to each
modality.

In the field of Natural Language Processing(NLP), there
has been many works combining modalities, primarily text and
image, that has proven to be effective, achieving state of the art
results in image captioning[11], text to image generation[12],
indicating, information when aligned properly, is able to learn
relationships between modalities. In context of HAR, it has
been observed that employing a single modality may not
always yield optimal results due to inherent limitations such
as noise, occlusion, and variability in sensor placement[13].
Therefore, researchers have explored the possibility of effec-
tively utilizing multiple modalities, to capture complementary
information and improve the performance of HAR systems.

To this end, various fusion techniques have been explored
attempting to fuse different modalities[14, 15, 16, 17, 18,
19]. These techniques encompass early, intermediate, and late
fusion approaches, where, early fusion refers to combining
raw data from different modalities at earlier stages of training,
more specifically at the input level, while intermediate fusion
involves the fusion of features from both modality at a certain
stage of the within the training process. This step allows the
model to learn inter-modality relationships. Lastly, late fusion
combines the outputs of both modalities at the final stage,
thereby enabling the model to only learn relationship between
modalities at the decision level.

The primary objective of these fusion methods is to allow
the model to exploit the strengths of each modality and
overcome their limitations by learning complementary and



discriminative representations. By combining the information
from multiple modalities, the model can capture a more
comprehensive representation of the activity being performed.

In context of crime recognition, earlier works explored dif-
ferent architectures utilising transformers[20]. Whereas, in the
study conducted by Joseph[21], which is an extension of the
aforementioned work, explore using Tubelet Embedding[22]
on skeleton trajectories. However, the presented work solely
utilizes skeleton trajectories. This study extends their work by
the fusion of the RGB with the skeleton trajectory in order to
provide visual context to the skeleton trajectory. Which brings
us to our main research question:

1) How does the fusion of visual descriptors affect the
classification performance of a skeleton-based model?

a) How to effectively include the visual information,
through full frames or person-centric bounding
boxes?

The paper is organized as follows. Section II presents the
technical background. In Section III, provides an in-depth
exploration is conducted to review the literature on how the
modality, specifically, RGB and skeleton are utilised, and
the following we review the approaches followed to fuse
both the modalities. Section IV explains the approach for
the study at hand. In Section V, a detailed description of
the experimental setup is presented. This includes pertinent
information regarding the dataset used in the study, as well
as the training strategies employed to train the model under
examination. Section VI is dedicated to the presentation of the
experimental results obtained from the study. The outcomes
of the conducted experiments are thoroughly elucidated and
analyzed in this section. Section VII presents the discussion
about the experiments. Finally, SectionVIII concludes the
study.

II. TECHNICAL BACKGROUND

A. Transformer

A novel work by Vaswani et al., originally introduced trans-
formers to solve wide range of NLP tasks. The model consists
of two components. An encoder and decoder shown in Figure
1. The role of the encoder is to extract features, and capture the
relationship between words in a sequence. Prior to being fed
into the encoder, the input undergoes a transformation into
embeddings. Which is essentially a vector representation of
the sequence. After which, a positional encoding is added to
the input embedding to give a sense of order to the input
sequence. The positional encoding contains information of the
words in the input sequence, allowing the model to exploit this
information to understand the order of the sequence, since
the inputs are not processed sequentially. In the encoder and
decoder lies module the Multi-Head Self-Attention(MHSA)
layer, the core to what drives the transformer architecture[23].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Fig. 1: Transformer architecture[23]

Where each attention head is denoted by Equation 1. Where
Q,K, V are the query, key and values respectively, which is
obtained by linearly projecting the embedding. As depicted
in Equation 1, the calculation involves dot product between
the query and the transposed of the key matrix. In this step,
every word in the input sequence attends to other words in
the sequence to learn their inter-relationships. The term

√
dk is

used to control the weights to avoid large gradient during back
propogation. Subsequently, a softmax operation is applied to
the result, which yields the relevancy scores of each word with
respect to the other. The resultant factor is multiplied with the
associated value vectors to obtain the weights for each word.
Similary, in the decoder, contains MHSA block. However the
key different lies in the “Masked Multi-Head Attention”. The
approach is similar to MHSA, but, here the model tries to
decode the next possible input based on the input its already
seen. This allows the model to condition its prediction based
on the sequence that its already seen and doesn’t allow the
model to look ahead.

The self-attention layer allows the model to attend different
parts of the input sequence which allows the model in pro-
cessing and capturing relationships for longer input sequences.
This mechanism enables the model to process large amounts of
data in parallel, since the tokens are not processed sequentially,
as opposed to Long Short Term Memory(LSTM) architecture,
where the sequence is processed sequentially[23].

The architecture initiated a paradigm of self-supervised pre-
training. Where the model can be pre-trained on large amounts
of data by unsupervised learning, allowing it to learn useful
representations of text that can be fine-tuned on specific down-
stream tasks with relatively small amounts of task-specific
data. This makes the transformer architecture highly versatile
and effective for a wide range of NLP tasks, such as machine
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translation, language modeling, text classification.

B. Vision Transformer

Motivated by transformers, Dosovitskiy et al., introduced
Vision Transformers(ViT). Here, the model takes in images as
input, treating each input as words. Initially, the input is first
split into patches, following after, the patches are converted
to embedding by linearly projecting the values as shown
in Appendix A.1. Now, each patches are linearly projected
and passed as input to the transformer encoder. In contrast
to the transformer model that incorporates both an encoder
and decoder block, ViT exclusively employs only encoder
block. Finally, a CLS token is prepended at the beginning
of the sequence, which is used for classification purposes as
in the original transformers. The authors demonstrate that ViT
surpasses convolution-based methods in performance.

III. RELATED WORK

This section presents a detailed summary of research con-
ducted on HAR tasks on different modalities. More specif-
ically, RGB and skeleton. We first review the uni-modal
approaches and how they are utilised for the task at hand.
After which, we explore different fusion approaches of both
the modalities.

A. Single Modality

1) Color Descriptors(RGB): As stated previously, RGB is
the most widely used modality for computer vision tasks. The
availability of RGB cameras, sensors promoted the growth
of data being generated exponentially on daily basis, allowed
researchers to investigate and solve wide range of computer
vision related applications. With the help of Convolutional
Neural Networks (CNNs), the modality enabled the develop-
ment of sophisticated models capable of extracting and learn-
ing meaningful features from visual data through a series of
convolutional blocks, leading to significant advances to solve
problems based on image classification, object detection[24,
25], and semantic segmentation[26].

There is currently a significant level of research activity
focused on HAR task utilising the foregoing modality. Ini-
tial methods involves using hand-crafted feature based ap-
proaches[27, 28, 3]. However, these approaches are highly
feature dependent and also demands a profound expertise
in the domain, thereby posing significant challenges when
it comes to deployment. The task has been further investi-
gated by utilising a simple CNN architecture to learn spatio-
temporal features from a sequence of frames by first ex-
tracting features independently from a sequence of frames,
and concurrently stacking them to form a sequence of de-
scriptors, which is then fed to the output layer. Nevertheless,
this approach demonstrates relatively lower performance than
handcrafted features[29]. Because standard CNN models, such
as AlexNet[30], VGG[31], and ResNet[32] learn spatial fea-
tures from a single frame. Thus, making them ineffective for
modelling the temporal information since the previous frames
are not taken into consideration until the final layer.

Subsequent approaches aim to leverage temporal informa-
tion by employing a two-stream CNNs-based architecture, in
which one stream is dedicated to extracting spatial features
from a sequence of frames, while the other stream focuses on
capturing temporal characteristics by providing motion flow
images as input. Afterwards, fusion strategies are implemented
to fuse the extracted features and obtain the final classifica-
tion[33].

A notable work by Karpathy et al., further investigated con-
nectivity of CNN in the time domain for video classification,
where different fusion methods was investigated. As per the
previous work, they adopt a two-stream architecture where
the model is trained by feeding low resolution frames by
downsampling, namely, the context stream and high resolution
frame which is the center cropped portion of the original
frame. Through a series of experiments, it was observed that
the networks operating on individual frames performed on
par with the networks processing the entire spatio-temporal
volume of the video[34].

Although the work uptil now is purely based on trying
to exploit temporal dependencies through spatial information,
due to the aforementioned limitation, it lacks the ability to
capture long-term dependencies, which is crucial component
when dealing with HAR related tasks[2]. To tackle this,
approaches have been made employing different Recurrent
Neural Network(RNNs) variants in the pipeline, primarily
Long Short Term Memory(LSTM). Vanilla RNNs have been
widely used to solve sequential tasks, however, they are prone
to vanishing and exploding gradient problems[35]. To tackle
this, the former architecture is used.

LSTMS has achieved state of the art performance in se-
quential tasks, more specifically, NLP tasks. With its ability
to capture long-term temporal dependencies, it has been ideal
choice to tackle sequential problem. In relation to HAR,
LSTMs lacks the ability to learn spatial context in images,
since it learns to mainly model temporal information. This
issue was addressed by utilising CNN as backbone to extract
rich features features[36, 37]. In the study by Donahue et al,
[36] demonstrate that the LSTM can effectively capture spatio-
temporal patterns in activity recognition tasks by leveraging
CNN as the underlying backbone. Further studies have ex-
tended this approach by incorporating attention mechanisms
to focus on relevant regions[38, 39, 2].

In the more recent work, ViT has been employed in HAR
tasks[40, 41, 42, 43] replacing CNN role as the backbone and
feeding it to an LSTM as input. By utilising the characteristics
of MHSA in ViT, allows for capturing long-range connections
and adaptively aggregating spatial information[44]. The pre-
ceding work have subsequently been extended to videos[22],
where the authors propose Tubelet embedding, which in
essence is a 3D convolution that performs a volumetric convo-
lution along the spatio-temporal axis to extract and encode the
spatio-temporal tokens as shown in Appendix A.2. Identical to
approach in transformers, the output is linearly projected to a
dimension D which is then passed as input to the transformer.
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2) Skeleton: Skeleton trajectories contains temporal infor-
mation about the human body. As discussed in section I
skeleton trajectories have the advantage of being invariant
to the background and focus more about the character[45].
These characteristics of the modality help focusing on the
temporal dynamics of the subject of interest. The data can be
obtained by using sensors or pose estimation algorithms[8, 46,
47, 48]. As inputs, they are essentially a pair of coordinates
representing the location of the joints in spatial space. The
representation of features makes the inputs easily processable
and computationally inexpensive[49].

With respect to HAR tasks, studies based on the skeleton
modality been focused on trying to capture relationships be-
tween joints with respect to the activity[50, 51, 4]. Approaches
were followed by grouping skeleton based on semantically
similar parts, and having a subnet, more specifically the
authors employed BILSTM for each group. The output of each
group is later fused with the output of other groups to finally
have a combined representation of the skeleton, which will be
used for classification[4].

However, since the approaches only the skeleton coordinates
as input to the model. Subsequent works utilised Graph Con-
volutional Networks(GCNs) were used to embed the skeleton
points specifically for HAR related tasks[52, 53, 54]. The
approach was first introduced by Yan et al., where the authors
proposed Spatio Temporal Graph Convolutional Network(ST-
GCN). A spatial graph is constructed by utilizing the inher-
ent interconnections of joints within the human body, while
incorporating temporal edges that link corresponding joints
across consecutive frames[52]. Since the approach involves
using a predefined skeleton graph, this restricts its ability to
capture important relationships between distant body parts,
limiting its effectiveness in recognizing actions that rely on
such relationships. To address this issue, Shi et al., proposed
a two-stream adaptive graph, where the graphs used in the
model are dynamically generated based on the data, thereby
mitigating the limitations of the predefined graphs in the
original ST-GCN and enhancing the model’s ability to capture
relevant relationships for action recognition[53].

Subsequent to the release of transformers, numerous studies
have been conducted on trying to exploit the characteristics
of self-attention mechanism to learn the relationship between
joints[55, 56, 57, 58]. In the study by Plizzari et al., they
employ a two stream transformer architecture, utilising self-
attention mechanisms to capture relationship between the
joints individually through time. The two streams are as
follows (a) Spatial Self Attention(SSA) (b) Temporal Self
Attention(TSA). The former focuses on capturing correlation
between each pair of joints independently whereas the latter
captures correlation between joints through time[56].

Similarly, the work presented by Wang et al., focused on
grouping the joints into a single body part. They use a single
transformer encoder block for computing spatial and temporal
features of the skeletal joints data. Their proposed method
involves computing correlations between joints in one part,
across parts in one frame and across frames for same part,

using a modified intra-inter part attention mechanism[57].
Similarly, in the work by Boekhoudt, explored different types
of transformer architectures, specifically for HAR tasks. One
of the proposed architecture involves grouping the body parts
and having a transformer block for each body part[20].

Following the aforementioned work, Joseph[21], extended
the work of Boekhoudt[20] by incorporating Tubelet embed-
ding to all different architectures presented. The findings of
the study indicated that incorporating Tubelet embeddings re-
sulted in comparable performance while reducing the model’s
complexity compared to the outcomes reported in the previous
research.

B. Multimodal

1) RGB & Skeleton: In the preceding section, the reviewed
literature shows the investigation of RGB and skeleton modal-
ities separately. The findings suggest that both modalities
possess features that are mutually complementary. Hence,
combining both modalities would be a logical approach, as
RGB would contribute towards the spatial information and
skeleton provides the temporal component. Thereby allowing
the model to to exploit their inherent features.

To combine both the modalities, diverse fusion techniques
were explored to capture the inter-modal relationships on a
feature level and decision level. Generally, approaches consists
of two streams architecture, where each stream provides a
different modalitiy, and performing a late fusion[14, 15]. The
approach involves training two models independently, where
one model focuses on learning a unimodal and the outputs
of both the modals are concatenated and passed to a fully
connected layer as input. However, this approach constraints
the model to learn complimentary information between modal-
ities[59] as each model learns features about a unimodal
independently.

In the study carried out by Verma et al., they propose a
two-stream architecture, where one stream takes in a sequence
of RGB frames and the other takes in skeleton sequence. In
the RGB stream they convert the sequence of frames into
a single image, namely, Motion History Image(MHI) and
Motion Energy Image(MEI). MHI, fundamentally represents
the motion of the video by increasing the pixels values which
have a higher change throughout the video. On the other hand,
MEI encodes the whole movement into a single binary image.
In the skeleton stream, they condense the sequence of skeletal
data into a singular composite image[15].

Subsequent approaches investigated different fusion strate-
gies prior to decision level. At this stage of fusion, infor-
mation between the modalities are attended on a feature
level, allowing the model to learn cross correlation between
both the modalities. Works have explored adopting attention
mechanisms to learn the information and importance of joints
by providing spatial-context[16, 17, 18, 19]. A notable work
by Liu et al. [51] proposed a Global Context-Aware Attention
LSTM(GCA-LSTM). The method assists the network to focus
on the joints in each frame to finally generate an attention
representation for the sequence. They utilise a cross attention
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block to attend features of both the skeleton and the frame.
In the study by Zhu et al. combines early and late fusion.
Additionally, they utilize a self-attention module to assist the
network in directing its attention towards specific body parts.

The studies of HAR tasks have been extended to understand-
ing the activity based on the actions within their surrounding
environment[60, 61]. In the study by Faure et al. [61] proposed
a ”Holistic Interaction Transformer”, which composes of RGB
and pose subnetwork. The aim of this network is to learn
the persons interaction with their surroundings by focusing
on key entities that drive most of the actions. The output of
both of these network is fused together by an Attention Fusion
Module and then to further model how actions evolve in time
by looking future and past frames using a temporal interaction
unit. Similarly, Li et al. [60] proposes fusion of skeleton and
RGB at a feature level where they aim to guide attention on
the objects caused by the action using a guided block

Inspired by Slowfast networks[62], researches have explored
different frame rates, making a slow and fast pathway using
transformer[63, 64]. By having the slow pathway, the model is
able to learn the spatial information. Whereas the fast pathway
aids in capturing the temporal information[62]. Similarly Jing
et al. [63] proposes a dual stream architecture, where the
input of the first stream consists of two sub-streams providing
the slow and fast image, and the latter provides sequence
of skeleton trajectories. Following, they utilise three different
fusion strategies(early, halfway and late fusion) to combine
the skeleton trajectories, where the outputs are finally con-
catenated. As per the previous work, Shi et al. [64] utilizes
a two-stream transformer named RGBSformer, that takes in
heat maps of high frame rate skeleton poses followed with
low frame rate RGB images as input.

The reviewed literature shows how different models learn
inter-modal relationships using different fusion approaches.
Specifically, transformers when used with skeleton trajectories
input have demonstrated remarkable proficiency in capturing
temporal dependencies and modeling intricate relationships of
the temporal dynamics of the skeletal structure. Leveraging
the self-attention mechanism characteristics, this approach
facilitates the acquisition of meaningful representations from
joint sequences. For ViT, is able to extract capture spatial
relationships among these patches. Hence by leveraging the
features of ViT, we can fuse them with output of the skeleton
transformer to enhance the overall representation of the data.

In the work presented by Joseph[21] and Boukedeth’s[20],
their research specifically explored skeleton modality with
transformers on the HR-Crime dataset. Currently, there is no
existing work that explores the fusion of both modalities in
the context of crime recognition. Building upon their work,
our paper extends this investigation by fusing RGB modality
to provide visual context to the skeleton trajectories.

.

IV. METHODOLOGY

In the subsequent sections, we will discuss about the input
representations that will be used throughout our experiments.

Followed by the choice and architecture of the model. Lastly,
we discuss the fusion methodology that has been chosen for
the study at hand.

A. Input Representations
For this study, our attention will be directed towards a

pair of distinct input representations. More specifically, our
research will focus on the fusion of RGB frames alongside
with skeletal structure. For the visual context, we utilize
only a single frame which will be the middle frame of
the corresponding sequence of skeleton trajectory(please refer
Appendix B.1 for a visual illustration).

1) Skeleton Representation: Skeleton data is usually pre-
sented as a series of 2D or 3D coordinates that track keypoints
of the human body over time. By extracting the poses of the
subject over a sequence of frames, we obtain a sequence of
trajectory coordinates Xskel = {(xi, yi) | i ∈ RT×J}, where
xi and yi represent the skeleton points of the joints in spatial
space. The variable T denotes the segment length, and J
represents the total points. It is also to note that, depending on
the pose extraction algorithm employed, the number of joints
can vary.

2) Visual Representation: In order to fuse the visual
context with the skeleton trajectory, our study entails two
different kinds of feature representation, namely, the full frame
and bounding-box level representation.

Full Frame. This input representation utilises the entire
frame as context. By using the entire frame, we provide a more
global representation of the scene. Additionally, we utilise only
the middle frame to represent a sequence of trajectories as
shown in Appendix B.1.

Bounding-Box Level. For the second feature representation,
we expand the coordinates of the skeleton to obtain a Region
of Interest(ROI) points. These points are subsequently used
to crop a more finely localized visual cue. We scale the
coordinates to provide a slightly broader context as opposed
to completely isolating the background and focusing on the
subject in the video.

To calculate the ROI from the obtained skeleton points, we
first determine the bounding box of the skeleton by calculating
the width and height of the skeleton coordinates. Given the
sequence of trajectory coordinates Xskel, the width and height
of the skeleton trajectory is calculated as specified in Equation
2,

w = max(xi)−min(xi),

h = max(yi)−min(yi).
(2)

Where, w and h is obtained by subtracting the maximum
and minimum of the x and y coordinates respectively. Subse-
quently, we introduce a scaling factor α and multiply it with
the terms w and h to obtain the scaled terms Ewidth and
Eheight respectively as specified in Equation 3. Where Ewidth

and Eheight is the expanded width and height of the ROI,

Ewidth = α ∗ w,
Eheight = α ∗ h.

(3)
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Fig. 2: The Figure illustrates the overall architectural design, Visual Temporal Transformer(VT-Tran). Given a sequence of
video frames, AlphaPose[7] is used to estimate the pose representation. Consequently, the middle frame is chosen to represent
a sequence. Both the visual cue and skeleton trajectories are then simultaneously passed to the spatial and temporal encoders.
Where the outputs of the spatial encoders and the CLS token of the temporal encoder is fused through concatenation. The CLS
block in the temporal encoder denotes the class token. Subsequently, the features undergo a series of fully connected layers
to learn features from both modalities.

We then calculate the expanded region of interest coordi-
nates by finding the minimum and maximum limit with respect
to Ewidth and Eheight to restrict the coordinates from going
above or below the original image height or width as shown
in Equation 4,

Exmin = max(0,min(xi)− Ewidth),

Eymin = max(0,min(yi)− Eheight),

Exmax = min(max(xi) + Ewidth, 320),

Eymax = min(max(yi) + Eheight, 240).

(4)

In Equation 4, Exmin, Exmax, represents the lowest and
the highest extents of the expanded coordinates along x-axis.
Similarly, Eymin, Eymax denotes minimum and maximum
of the expanded coordinates along y-axis. The calculation of
Exmin and Eymin ensures the values are non-negative, and
the terms Exmax, Eymax ensures that values stay within the
region of the image. Using these points we crop the ROI to
obtain the final context.

Additionally, we resize the image with a width and height
of 224 ensuring consistent image size. Furthermore, this
step is done to align the input dimensions with the spatial
encoder which will be discussed further in Section IV-C. We
investigated different values for α and it was observed that
having a scaling factor α = 0.5 gives satisfactory localized
visual context as shown in Appendix B.2.

B. Temporal Encoder

For the temporal stream, we will be using the Temporal
Transformer presented by Boekhoudt, with the aim of captur-
ing mainly the temporal patterns[20]. Given the sequence of
trajectories, S ∈ RT×J , the sequence is linearly projected to a
higher dimension D by using a fully connected layer to obtain
Sproj ∈ RT×D. Additionally, we utilise a class token, where

Xclass ∈ R1×D which is prepended along the temporal axis of
the sequence, to obtain the dimension S ∈ R(T+1)×D(Similar
to BERT). The inclusion of class token summarizes the
sequence by capturing the global temporal information of all
the trajectory in a sequence by utilising the characteristics of
self-attention mechanism. Furthermore, positional embedding
is added to the embedding of the sequence Spos ∈ R(T+1)×D

to learn the positional information of the sequence. Where
(T +1) accounts for the class token(please refer to Appendix
C.1 for visual illustration). The final input representation is as
follows:

O = [xclass; s
1Sproj ; s

2Sproj ; ...; s
tSproj ] + Spos (5)

The input O is subsequently fed into transformer encoder
layers to learn relationships between trajectories. Concurrently,
the class token is obtained, which will be the final represen-
tation of the temporal encoder which will be further fused
with output of the spatial encoder which will be discussed in
Section IV-D.

C. Spatial Encoder

For the spatial stream we will adopt ViT as backbone
pre-trained on ImageNet[65]. The image x ∈ RH×W×C is
first decomposed into non-overlapping patches of the shape
xp ∈ RN×(P 2·C). Where (H,W ) represents the height and
width, and C represents the number of channels in the image.
After the following, the patches are linearly projected to a
higher dimension xp ∈ RN×D. In order utilise the pre-
trained weights, gradient computations are disabled across
the entire network. Concurrently, the classification head is
removed to attain image descriptors where xdesc ∈ RN×768.
Simultaneously, the classification head is replaced by adding
two sets of fully connected layers, where the second layer is
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Class
T 8 14 20 24 32

R D R D R D R D R D
Abuse 0.052 58.4 0.052 57.6 0.052 56.8 0.052 93.0 0.048 40.3
Arrest 0.046 52.1 0.046 50.9 0.046 49.7 0.045 48.9 0.059 49.1
Arson 0.029 32.8 0.029 32.1 0.029 31.4 0.029 31.0 0.011 9.6

Assault 0.062 70.0 0.062 68.7 0.062 67.4 0.062 66.5 0.055 12.6
Burglary 0.074 83.7 0.075 82.3 0.075 80.9 0.075 80.0 0.043 35.4

Explosion 0.029 32.5 0.029 31.9 0.029 31.4 0.029 31.0 0.015 12.6
Fighting 0.067 75.0 0.066 73.3 0.066 71.5 0.066 70.4 0.140 116.3

Road Accidents 0.064 72.1 0.064 70.8 0.064 69.5 0.064 68.7 0.028 23.1
Robbery 0.087 98.3 0.087 96.3 0.087 94.3 0.087 93.0 0.133 109.8
Shooting 0.074 83.6 0.074 82.1 0.074 80.6 0.074 79.6 0.018 15.3

Shoplifting 0.287 321.5 0.289 317.6 0.291 313.7 0.292 311.1 0.372 307.4
Stealing 0.071 78.6 0.069 76.4 0.068 74.3 0.068 72.95 0.059 48.7

Vandalism 0.052 58.6 0.052 57.1 0.051 55.6 0.051 54.64 0.013 11
Total 1 1117.1 1 1097.1 1 1077.1 1 1100.7 1 791.2

TABLE I: Number of trajectories after dividing fixed segment lengths (T) on the test set. Where D depicts the total number
of trajectories(expressed in thousands) and R denotes the probability of random guess for each class.

the spatial encoder output as shown in Figure 11. Making these
two layers the only trainable layers in the spatial encoder.

It is also important to note that the spatial encoder output
does not correspond to the classification scores, but a layer to
align the dimensions with the temporal stream which will be
fused in the later stage. From here on, we will use ViT and
spatial encoder interchangeably.

D. Fusion Layer

To combine both the modalities, we train both the unim-
odals independently as illustrated in Figure 2. Before fusion,
the output of the temporal and spatial encoder are aligned
with a dimension D to ensure same dimensionality. Note the
alignment is done at the initial stages, where we ensure both
the encoders outputs the same dimension D. Subsequently,
the resulting output of both the encoders are concatenated
along the feature axis where Flate ∈ RN×(D∗2) to obtain
the combined input representation xi = [xskel

i ;xrgb
i ]. Where

xskel represents the output of the temporal encoder and xrgb

signifies the spatial encoder output and ; denotes concatena-
tion. The combined representation then undergoes a series of
fully connected layers, facilitating the learning of features from
both modalities. Finally, we employ a log-softmax function
to convert the scores for each class on a logarithmic scale,
yielding the final prediction scores.

V. EXPERIMENTAL SETUP

A. Dataset

The dataset we employ for our experiments is the Human
Related Crime Recognition(HR-Crime) dataset[66], which is
a subset of UCF-Crime[67] dataset, consists of 950 anomaly
videos. The dataset is categorized into 13 classes, namely,
Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting,
Road Accidents, Robbery, Shooting, Shoplifting, Stealing and
Vandalism(please refer Appendix D.2 for class visualization).
The dataset contains skeleton trajectory which was obtained
by first detecting the human body proposals using YOLOv3-
spp and then Alphapose[7] estimate the pose which is tracked
using PoseFlow[68]. In our experiments, we sample the data

using the Stratified split in the proportion of 80:20 ratio.
This step is taken to ensure a balanced proportion of each
class since we are dealing with class imbalance problems.
A comprehensive overview of the distribution of videos &
trajectories is present in Appendix D.1.

Baseline Approach In the results presented by [20], the
train/test/val was split based on trajectory level, essentially
having subjects in the same video appear across all the splits.
This approach, however, exhibits a limitation when fusing
visual cues with trajectory. Given that multiple subjects within
a scene share identical visual cues, it can result in data leakage,
leading the model to overfit the entire dataset. Hence, to align
the baseline with our experiments, we reproduce the results
by splitting the data on video-level, after which, we divide
the trajectories into fixed segment trajectory. The split ensures
the absence of data leakage within any of the splits. Table
II presents the results of T-Tran[20] before and after the new
split.

Model Accuracy(w) F1 score Segment Length

T-Tran-V1-6 0.476 +/- 0.009 0.611 +/- 0.004 24

T-Tran-V1-6* 0.121 +/- 0.030 0.205 +/- 0.030 24

TABLE II: Reported baseline accuracy before and after the
split where * denotes the the new split

B. Implementation Details

Input preprocessing. The trajectories are divided into fixed
segments T , ensuring same segment length for each trajectory.
Table I presents the distribution after dividing fixed segments
along with the corresponding random guess values(calculated
by c

n , where c denotes the total number of samples per class,
and n denotes the total number of samples in the test set) for
each class on the test set. Whereas, for the spatial encoder, the
dimensions of the image are resized to 224.

Temporal Encoder. We fix the same hyper parameters pre-
sented by Boekhoudt[20], having Ndepth = 4 and Nheads = 8.
The weights of the network are uniformly initialized from the
range of -0.1 to 0.1.
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Spatial Encoder. As for the spatial stream, the RGB frames
are divided into non overlapping patches with Npatches = 16.
Subsequently, the input is normalized according to the mean
and standard deviation of the ImageNet dataset. Table III
presents the mean and standard deviation of the entire Im-
ageNet dataset over the 3 channels of the images.

Channel Mean Standard Deviation

1 0.485 0.229
2 0.456 0.224
3 0.406 0.225

TABLE III: Mean and standard deviation of ImageNet dataset.

Training. To train the model, we fix a learning rate of
0.0001, and a batch size of 500. Adam optimizer was used
throughout our experiments in order to update weights. Train-
ing strategies such as early stopping was implemented to
avoid over-fitting. To ensure robustness in the performance, the
video-level data was split over 5 K-folds, followed by dividing
the segment into fixed length.

C. Evaluation Metrics

To evaluate the performance of the model, we validate using
balanced accuracy and F1 score as the primary metric as
shown in Equation 7 and 6 respectively.

Accuracy =
sensitivity + specifity

2
, (6)

F1 = 2× precision ∗ recall
precision+ recall

. (7)

Where precision defines as the ratio of true positive pre-
dictions to the total number of instances identified as positive,
incorporating both true positives and false positives as denoted
by Equation 8. Whereas recall measures the ability of a model
to correctly identify and classify all instances of a positive
class within a given dataset. It is computed as the ratio of true
positives to the sum of true positives and false negatives as
shown in Equation 9

Precision =
TruePositive

TruePositive+ FalsePositive
, (8)

Recall =
TruePositive

TruePositive+ FalseNegative
. (9)

Additionally, we assess the misclassification by visualizing
and interpreting the confusion matrix. Furthermore, we quali-
tatively analyze the top prediction under different background
scenarios to understand the visual contribution towards classes.
Finally, we examine the attention weights of the temporal
encoder.

VI. RESULTS

In this section we present the results of the experiments
conducted on VT-Tran(Visual Temporal Transformer). Table
IV provides a comprehensive comparison of VT-Tran utilising
the two different types of visual context, namely, the entire
frame and bounding-box level context while diversifying the
parameter T and D to understand its implication on the
model’s performance.

A. Quantitative Analysis

Ablation study on Segment Length(T ) & Alignment
Dimension(D). The results of VT-Tran is presented in Table
IV. The table encompasses distinct sections, each correspond-
ing to specific segment length (T ), which is further divided
into sub-sections in order to make comparison between both
the input representations.

Table IV indicates an increasing trend across all metrics
when increasing T , specifically when fusing the skeleton
trajectories with the entire-frame input representation. At T =
8, utilising the entire frame has achieved highest accuracy,
outperforming the bounding-box representation at D = 256,
where the model reported an accuracy of 0.228 coupled with
an F1 score of 0.308. Whereas, the use of the bounding
reported a balanced accuracy of 0.184 with an F1 score of
0.237 for D = 64, highlighting a 4% difference in the balanced
accuracy. The same was observed at T = 14, where using the
entire frame reported the highest accuracy at D = 64, where,
the resulting balanced accuracy is 0.232, which again, showing
a 5% difference comparing to the highest accuracy when using
the bounding box representation.

As we extend our analysis to longer temporal segments(T =
20, 24, 32), the pattern remains consistent, demonstrating the
fusion of entire frame consistently surpasses the bounding-
box level representation. At T = 20, the model achieved
the highest accuracy of 0.172 when D = 64 when using the
entire frame. In contrast, the reported balanced accuracy for
the bounding box of the foregoing segment length is 0.122.
Similarly, for T = 24, we observe that utilization of full-
frame context obtained the highest accuracy of 0.235 with
D = 256. Lastly, for T = 32, the model attains an accuracy
level of 0.280 for D = 256, which, notably reported the
highest performance across all metrics among all T values.

The findings show that increasing segment length increases
the overall performance. However, the standard deviation of
the performance indicates low variance for higher D values
at shorter segment lengths, indicating stable performance at
different folds. Whereas for longer segment lengths(T=24,32),
the standard deviation indicates higher variance for larger D
values, indicating longer lengths require.

Confusion Matrix. To further assess the misclassification
instances made by the model, we visualize the confusion
matrix shown in Figure 3. The Figures 3a and 3b depict the
confusion matrices of T-Tran and VT-Tran respectively.

Assessing the predictions made by T-Tran(Figure 3a), the
classes that achieved the highest accuracy is Abuse, Robbery
and Shoplifting reporting an accuracy of 0.22 for all classes.
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Frame Type D Balanced Accuracy F1-score Top-3 Accuracy Top 5 Accuracy

(a) Segment Length = 8

Full Frame 64 0.216 ± 0.014 0.283 ± 0.016 0.536 ± 0.022 0.689 ± 0.018
128 0.181 ± 0.006 0.237 ± 0.013 0.540 ± 0.015 0.704 ± 0.012
256 0.228 ± 0.008 0.308 ± 0.021 0.555 ± 0.021 0.705 ± 0.016
512 0.224 ± 0.004 0.306 ± 0.029 0.556 ± 0.039 0.711 ± 0.026

Bounding Box 64 0.184 ± 0.011 0.237 ± 0.026 0.546 ± 0.015 0.705 ± 0.014
128 0.103 ± 0.011 0.153 ± 0.078 0.434 ± 0.004 0.567 ± 0.001
256 0.177 ± 0.007 0.226 ± 0.010 0.534 ± 0.010 0.697 ± 0.009
512 0.174 ± 0.009 0.227 ± 0.009 0.526 ± 0.009 0.691 ± 0.010

(b) Segment Length = 14

Full Frame 64 0.232 ± 0.009 0.308 ± 0.009 0.548 ± 0.035 0.697 ± 0.015
128 0.220 ± 0.013 0.300 ± 0.016 0.557 ± 0.032 0.706 ± 0.017
256 0.225 ± 0.009 0.298 ± 0.020 0.537 ± 0.018 0.701 ± 0.019
512 0.151 ± 0.007 0.263 ± 0.030 0.531 ± 0.035 0.668 ± 0.016

Bounding Box 64 0.184 ± 0.012 0.246 ± 0.028 0.542 ± 0.012 0.707 ± 0.012
128 0.181 ± 0.010 0.238 ± 0.016 0.542 ± 0.019 0.701 ± 0.015
256 0.178 ± 0.009 0.233 ± 0.018 0.531 ± 0.018 0.696 ± 0.010
512 0.136 ± 0.014 0.238 ± 0.010 0.474 ± 0.032 0.625 ± 0.021

(c) Segment Length = 20

Full Frame 64 0.172 ± 0.008 0.313 ± 0.020 0.539 ± 0.020 0.688 ± 0.019
128 0.163 ± 0.016 0.287 ± 0.028 0.533 ± 0.012 0.678 ± 0.015
256 0.169 ± 0.026 0.298 ± 0.016 0.547 ± 0.030 0.607 ± 0.029
512 0.155 ± 0.013 0.258 ± 0.027 0.515 ± 0.012 0.673 ± 0.011

Bounding Box 64 0.111 ± 0.008 0.198 ± 0.027 0.403 ± 0.017 0.550 ± 0.028
128 0.103 ± 0.030 0.287 ± 0.013 0.585 ± 0.001 0.678 ± 0.006
256 0.122 ± 0.002 0.219 ± 0.014 0.410 ± 0.021 0.551 ± 0.029
512 0.098 ± 0.020 0.140 ± 0.073 0.456 ± 0.029 0.603 - 0.013

(d) Segment Length = 24

Full Frame 64 0.225 ± 0.013 0.259 ± 0.019 0.548 ± 0.017 0.708 ± 0.016
128 0.234 ± 0.014 0.307 ± 0.020 0.551 ± 0.034 0.698 ± 0.024
256 0.235 ± 0.021 0.308 ± 0.036 0.535 ± 0.032 0.695 ± 0.018
512 0.225 ± 0.008 0.304 ± 0.013 0.570 ± 0.018 0.724 ± 0.014

Bounding Box 64 0.097 ± 0.006 0.153 ± 0.061 0.431 ± 0.007 0.565 ± 0.011
128 0.182 ± 0.010 0.241 ± 0.023 0.541 ± 0.015 0.700 ± 0.012
256 0.174 ± 0.008 0.230 ± 0.013 0.528 ± 0.012 0.694 ± 0.013
512 0.175 ± 0.009 0.222 ± 0.014 0.522 ± 0.021 0.688 ± 0.017

(e) Segment Length = 32

Full Frame 64 0.277 ± 0.020 0.383 ± 0.056 0.606 ± 0.055 0.728 ± 0.044
128 0.267 ± 0.018 0.364 ± 0.035 0.605 ± 0.037 0.747 ± 0.020
256 0.280 ± 0.018 0.396 ± 0.045 0.633 ± 0.044 0.760 ± 0.025
512 0.272 ± 0.012 0.369 ± 0.033 0.609 ± 0.026 0.745 ± 0.011

Bounding Box 64 0.211 ± 0.019 0.295 ± 0.053 0.610 ± 0.026 0.755 ± 0.015
128 0.205 ± 0.015 0.283 ± 0.038 0.604 ± 0.020 0.753 ± 0.016
256 0.205 ± 0.017 0.282 ± 0.040 0.599 ± 0.018 0.745 ± 0.008
512 0.201 ± 0.018 0.268 ± 0.035 0.580 ± 0.023 0.727 ± 0.014

TABLE IV: Ablation study on alignment dimension D and segment length T based on two kinds of visual input representation,
namely, (a) Full Frame (b) Bounding Box. Where the bold text indicates the highest performance between both the input
representations.

Whereas the categories Arrest, Fighting, Road Accidents,
Stealing and Vandalism shows an accuracy more than 10%.
Lastly, the categories that exhibited the lowest performance is
Shooting, Explosion, Burglary, Assault and Arson resulting in
accuracy less than 10%, where, Arson and Explosion showed
the reported the lowest accuracy of 3% in both classes.

Observing the misclassified instances, the confusion matrix
shows that T-Tran predicts Arrest, Assault, Fighting and Rob-
bery for the majority of the classes, indicating a bias towards

these specific classes. The category Shoplifting reported the
highest number of misclassifications with a score of 0.30.
Followed by the class Shooting for Arrest reporting an accu-
racy of 0.28 respectively. Interestingly, instances are observed
where semantically similar classes undergo misclassifications.
The category Fighting experiences misclassification towards
the category Assault with an accuracy of 0.18 and vice versa.
Similarly, for the class Abuse and Assault, where, 9% of
instances were misclassified as Assault, and 11% have been
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(a) Confusion matrix of T-Tran baseline results at T = 24 and D =
256

(b) Confusion matrix of VT-Tran utilising full frame input representa-
tion at T = 32 and D = 64

Fig. 3: Confusion matrix of T-Tran and VT-Tran.

classified as Fighting. This observation is also evident in theft-
related categories, where, the classes Robbery and Shoplifting
were mutually misclassified.

Upon investigating the confusion matrix of VT-Tran from
Figure 3b, it becomes evident that a notable reduction in
misclassifications and improvements have been observed in
numerous instances. The categories Robbery and Road Acci-
dents reported the highest accuracy of 0.78 and 0.76 respec-
tively. In contrast to T-Tran, demonstrates an improvement of
60% and 56%. The categories Shoplifting and Stealing, Abuse,
Burglary reported accuracies in the range of 40%-60%, where,
Shoplifting yielded the highest accuracy of 0.61, whereas
Burglary reported the relatively lowest score of 0.42. Notably,
the performance of these categories significantly outperforms
that of T-Tran. In contrast, the remaining categories, namely
Arson, Assault, Explosion, Shooting and Vandalism exhibited
significantly lower accuracy levels in comparison to the rest
of the classes, all falling below the 10%. Where, the case of
Vandalism, reported the lowest accuracy, where no instances
being accurately predicted.

By assessing the misclassification instances of VT-Tran,
the category Abuse is often predicted as Arrest, Assault, and
Fighting with accuracies of 0.23, 0.09, and 0.13, respectively.
Within the Assault category, misclassifications are evident for
Robbery and Road Accidents with accuracies of 0.36 and 0.23.

In the Fighting category, misclassifications occur for Rob-
bery, Stealing, and Assault, yielding accuracy scores of 0.26,
0.18, and 0.10. This can be attributed to the fact that these

categories share visual and temporal similarities, particularly
the challenges encountered by the model in distinguishing
between Assault and Fighting. Unlike, Shoplifting, the cate-
gory Robbery and Stealing, where the former includes videos
depicting theft incidents and, at times, physical altercations
involving the perpetrators and victims, typically occurring in
both retail and outdoor environments. Hence, contributing to
the overall complexity in differentiating between categories.

Additionally, the Arrest categories, shows analogous mis-
classifications, where Assault, Road Accidents and Robbery
is associated with accuracy scores of 0.23, 0.12 and 0.11
respectively. The misclassifications for Assault, stem from
situations where authorities are seen grappling with or en-
gaging in combat against the perpetrators. Furthermore, the
consideration of Road Accidents is prompted by the visual
similarities shared with other categories, primarily due to the
presence of vehicles in both classes. This common element
presents a challenge for the model in differentiating between
them.

Concerning theft-related categories, a similar observation
for the categories Shoplifting and Stealing, where, the mis-
classification for the former is seen primarily seen towards
the Robbery class, where approximately, 26% of cases were
inaccurately classified. Additionally, 8% for the class Stealing.
Regarding the category Stealing, a substantial portion of 21%
has been misclassified as Road Accidents. For the justification
of misclassification in this category, the perpetrators were seen
stealing vehicles. The presence of vehicles in the scenes leads
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Fig. 4: Predictions made by VT-Tran(T = 32 and D = 64) for different classes containing similar background. In the context
where the highlighted subject(in the color red) serves to denote the trajectory for which the model is making predictions on.

the model to be overly confident in assigning them to this
class.

Comparison of VT-Tran with random guessing. The
confusion matrix shows in many cases the model exhibited
accuracy greater than random guessing(please refer Table I).
Conversely, substantial categories are seen to perform lower
than random guess. Notably, these categories include Vandal-
ism, Assault, Fighting and Explosion. Where, the confusion
matrix indicates that no accurate predictions were made for
the former, which by default is considered worse than random
guessing. The category Assault reports an accuracy of 0.02,
where the random guessing probably for this class is 0.055,
implying the model’s performance for this class is significantly
subpar. Similarly, the class Fighting, shows an accuracy of
0.10, where the probability of random guessing for this class
is 0.14, highlighting 4% difference. Finally, the Explosion class
reported an accuracy 0.02, which is marginally higher than its
corresponding random guessing probability of 0.015.

Comparison with Baseline & Best performing model.
Table V presents comparative results of VT-Tran and T-Tran.
In addition, we include the performance of just the spatial
encoder to understand the significance of visual contribution.
The table indicates that VT-Tran surpassed T-Tran by 16%.
However, results show the performance mainly comes from
the spatial encoder, showing a 4% difference compared to
VT-Tran. Nevertheless, the outcomes reveal that the primary
source of performance mainly comes from the spatial encoder,
showing a 4% difference compared to VT-Tran.

Model Balanced Accuracy F1-Score

T-Tran 0.121 ± 0.030 0.205 ± 0.030
Spatial Encoder 0.240 ± 0.033 0.351 ± 0.031

VT-Tran 0.280 ± 0.018 0.396 ± 0.045

TABLE V: Performance comparison with the baseline ap-
proaches.

B. Qualitative Analysis

To qualitatively assess the model, we investigate how the
background affects the predictions made. Next, we compute
the attention score of the temporal encoder of VT-Tran.

Feature & Context Overlap. This section conducts a qual-
itative evaluation of the model’s performance under varying
background image conditions. To streamline this analysis,
we investigate the behavior of the model in the context of
crimes pertaining to retail and non-retail environments. Figure
4 illustrates the top predictions made by the model, where
each sub-figure corresponds to the visual context and the
trajectory(marked in red) on which the predictions are. Figures
4a,4b,4c,4d depicts scenarios of actions taking place within a
retail-based environment, while Figures 4e,4f,4g,4h illustrates
the same in a non-retail environment.

From Figure 4a, the subject is seen engaging in crime under
a retail environment, where the subject is wielding a firearm
and pointing towards the victim under a retail environment.
Whereas for Figure 4e, the subject is seen wielding a firearm
more specifically in an outdoor environment. Although the
confusion matrix shows the performance for this class is
marginally higher than random guessing, it is interesting to
observe the top predictions made by the model. The predic-
tions indicate the influence of the background, as we see
Robbery, Shoplifting among the top predictions, indicating
visual overlap among classes.

The observation remains consistent for Figure 4b, 4c and
4d where we see Shoplifting and Robbery in the retail envi-
ronments. Interestingly, in Figure 4c, the subject is observed
wielding a firearm in a retail environment, and the true label
for the corresponding figure is Robbery. While the model suc-
cessfully predicts the class for this instance, it is also important
to recognize that the top predictions Fighting,Shooting, and
Shoplifting, indicate the complexity in deciding the crime.
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(a)

(b)

(c)

(d)

Fig. 5: Mean attention score of all the heads for the T-Tran and the VT-Tran. Figure 5a and 5c are the attention scores of
the T-Tran and Figure 5b and 5d depicts the attention score of VT-Tran. For the visualization purpose, we select the classes
Assault and Shoplifting. The drawn skeleton trajectory indicates the subject at which the model is making prediction to.

Influence of visual context on the attention heads
within the temporal encoder. We further analyze the internal
representation of VT-Tran, namely the attention heads of
the temporal encoder. The attention score is determined by
averaging the values across all individual heads. Subsequently,
the class token is used as the final score. We compare the
attention scores of the baseline(T-Tran) in parallel to empiri-
cally observe significance when visual cues are fused. For this
analysis, we examine the attention of the categories Abuse and
Stealing. Figure 5 illustrates the first 10 frames alongside its
corresponding attention score. Additionally, Figure 5a and 5c
displays the attention scores of T-Tran, while Figure 5b and
5d depicts the attention score of VT-Tran.

Analyzing Figure 5a and Figure 5b for the class Abuse,
it becomes evident that the attention score of the temporal
encoder achieves peak attention within the temporal span,
spanning frames from 4 to 7 with an attention score of 0.07,
0.07, 0.08 and 0.06 respectively. Interestingly, the temporal
window aligns with the action taking place. Whereas for T-
Tran, the attention score for the foregoing temporal span is
0.04, 0.02, 0.02, and 0.08 respectively.

Upon examining the Stealing category, Figure 5c and 5d
depicts a scenario wherein an individual is seen appropriating
an item from a retail store. Unlike the previous observation
where increased attention is seen over a span of multiple
frames. In this specific instance, peak attention is observed
only at certain frames. Frames 5, 8, and 9 attained the highest
attention, where the obtained attention score is 0.09, 0.11, and

0.09 respectively. Conversely, in the context of T-Tran, the
highest attention is particularly concentrated on frames 3 and
1, exhibiting attention scores of 0.11 and 0.1, respectively.

VII. DISCUSSION

Effect of Visual Context. In this study, we have explored
two different kinds of input representation. The results from
Table IV indicate that fusion of the entire frame as visual
context reported the highest balanced accuracy of 0.280 with
an F1 score of 0.396 and Top-3 and Top-5 accuracy of 0.633
and 0.760 respectively. Evidently, it surpasses the baseline
performance. By considering the entirety of the frame, the
model learns a broader range of visual information and po-
tentially extracts more relevant and nuanced details for its
learning process. However, a problem arises because of the
noise the background can contain, causing the model to learn
features that do not represent the class. Conversely, using
a more localized visual cue eliminates a substantial portion
of the background, resulting in fewer features to learn from.
Hence, resulting in a lower performance.

The analysis of the data presented in Table V reveals that
the spatial encoder alone reports a balanced accuracy of 0.240,
indicating over-fitting towards the RGB modality. To address
this imbalance, utilizing a weighting procedure within the loss
function to add more weight toward the output of the temporal
stream may aid the training process.

In a comprehensive analysis of misclassifications, VT-Tran
indeed demonstrates significant improvements compared to
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T-Tran. Reduced misclassifications and improved accuracy
are evident in many instances, which is a positive outcome.
However, it’s worth noting that both approaches still strug-
gle with differentiating between semantically similar classes,
highlighting the inherent complexity of the problem.

To address these challenges and further improve the overall
classification performance, one potential approach is to utilise
Motion-flow images. Motion-flow images can capture tem-
poral information and movement patterns, which may aid in
distinguishing between classes that share visual similarities.
By adding this additional modality, the model could gain a
better understanding of the dynamics within the video data,
potentially leading to more accurate and reliable predictions

Ablation study of Segment Length & Alignment Di-
mension. Apart from the input representation, two tuneable
parameters were investigated. Segment length T and align-
ment dimension D. Empirically, it is observed that as T
increases, the performance increases across all metrics. We
speculate the reason for this behavior is that as we increase
T , trajectories shorter than the specified length are removed,
essentially discarding any important features shorter than the
specified length(please refer to Table I), making the model
learn fewer features compared to shorter segment lengths,
thereby increasing accuracy. Conversely, using shorter segment
lengths increases the number of data points, but they may not
fully represent the class itself, hence, introducing noise to the
model.

However, it is to be noted that the standard deviation in
performance shows an increasing trend when varying the
segment length, indicating high sensitivity towards the dataset.
It can plausibly be attributed to the fact that certain videos
benefit from shorter or longer segment lengths, indicates a
trade-off in choosing the right segment length for a specific
D. To accommodate a larger number of samples in shorter
segment lengths, it may be necessary to employ higher values
of the variable D, and a similar requirement arises for longer
segment lengths, although the number of samples decreases.

Limitations. During this study, several limitations have
been encountered, including:

1) The dataset used in this study is weakly labeled, specifi-
cally based on video-level annotations. This labeling ap-
proach assumes that every individual within the scene is
engaged in the action being categorized. Consequently,
the accuracy of such annotations may be compromised.

2) The data collection process relies on a pose extraction
algorithm to obtain key information. However, the ac-
curacy of this extraction is contingent upon the quality
of the input video. Variations in video quality may
introduce inaccuracies in the extracted pose data.

3) In this study, only the middle frame is taken into
consideration. This approach may not always capture the
full contextual information required for precise action
classification, potentially leading to misclassifications.

4) Since our experiments are based on a new split, it makes
it difficult to have fair comparisons with the existing
state of the art.

Deployment Readiness. Although the fusion of visual
context with skeleton trajectory has shown to have an overall
improvement compared to the baseline approach. A compre-
hensive assessment of the balanced accuracy and the confusion
matrix reveals the model’s performance is less than optimal
for categorizing violent categories but also in several other
categories, which is an essential need for such a system. Con-
sequently, this suggests that further refinements or alternative
strategies such as exploring different architectures and feature
engineering strategies are necessary to ensure the readiness of
the model for deployment.

VIII. CONCLUSION

For this study, we investigated the fusion of RGB with
skeleton modality for crime recognition. Additionally, we
explore two kinds visual representations, namely, full-frame
and bounding box level. Notably, the highest performance is
achieved when using full-frame visual context. Additionally,
we observed the fusion of visual context improved the perfor-
mance on the existing state-of-the-art approach reporting an
accuracy of 28%, indicating the benefits of introducing a visual
modality. While the performance indicates the model is not
ready for deployment, further experimentation by deriving new
features from the existing modality or exploration of different
model architecture is required for further improvement.

IX. FUTURE WORK

1) Employing motion-flow techniques like MHI and MEI
to convert the skeleton trajectory to an image[15], and
subsequently fusing this image representation with RGB
frames.

2) Diverse fusion approaches should be explored, including
early fusion and the utilization of a cross-attention
mechanism.

3) By visualizing the saliency map of the spatial encoder,
we’ve observed the model focusing on the boundaries
of the image. In the future work, center crop during the
preprocessing phase would be essential.

4) In numerous study, cosine annealing learning rate sched-
uler has been employed. This scheduler initially em-
ploys a significantly elevated learning rate, which is
subsequently diminished at a relatively swift pace until
reaching a minimum threshold before undergoing a rapid
increment once more.

5) In the context of class imbalance, future work may ben-
efit from the consideration of class weighting strategies
in the loss function, where the assignment of weights
to classes is determined by their respective frequencies,
as this approach has the potential to improve the per-
formance, as we are penalizing the classes with high
distribution.
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APPENDIX

A. Related Work

1. Vision Transformer: Figure 6 illustrates the working of vision transformer. Where, the image is first divided into non-
overlapping patches. Consequently, the patches are projected to linearly projected to a higher dimension. The output of the
projection is then passed to the temporal encoder to learn patch based descriptors.

Fig. 6: Vision Transformer(ViT) architecture[69]

2. Tubelet Embedding: Figure 7 shows how 3D convolutions are employed to extract spatio-temporal tokens in videos.

Fig. 7: Tubelete Embedding
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B. Input Representation

1. Overall input representation
Given a skeleton trajectory and its corresponding RGB frames, we utilise only the middle frame as the context.

Fig. 8: Extracting the context frame given a sequence of skeleton trajectories. Where the visual context frame for a sequence
of trajectory is the middle-frame of the sequence

2. Bounding box input representation

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: On the first row(a,b,c,d) we have full frame context of different videos. The second row(e,f,g,h) corresponds to the
extracted ROI with scaling factor α = 0.5
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C. Model

1. Temporal Encoder

Fig. 10: Temporal transformer architecture[20]

2. Spatial Encoder

Fig. 11: Spatial Encoder, namely, ViT. Which takes in non-overlapping image patches as input and passes through ViT to
extract patch based features. Which is further refined by a series of fully connected layers

D. HRC Class Dataset

Number of Videos & Trajectories
Category Total Videos Number of Trajectories

Abuse 50 718
Arrest 50 1465
Arson 50 373

Assault 100 1210
Burglary 100 856

Explosion 50 513
Fighting 50 1640
Robbery 150 2011

Road Accidents 150 982
Shoplifting 50 1666

Stealing 100 1418
Shooting 50 830

Vandalism 50 787

Video distribution
Train Test Video

40 10
40 10
40 10
80 20
80 20
40 10
40 10

120 30
120 30
40 10
80 20
40 10
40 10

TABLE VI: Comprehensive overview of the HRC dataset
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2. Visualization of HRC dataset

(a) Abuse (b) Arrest (c) Arson

(d) Assault (e) Burglary (f) Explosion

(g) Fighting (h) Road Accidents (i) Robbery

(j) Shooting (k) Shoplifting (l) Fighting

Fig. 12: Class visualization HRC dataset
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E. Results

1. Spatial encoder attention heatmap

(a) Arrest (b) Shoplifting (c) Vandalism

(d) Stealing (e) Fighting (f) Road Accidents

(g) Burglary (h) Abuse (i) Shooting

Fig. 13: Visualizing attention head of the spatial stream
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