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ABSTRACT
Public transportation networks are an essential part of public in-

frastructure and have the potential to reduce society’s dependency

on personal cars. Making public transportation a more attractive

option requires better passenger demand forecasts, as these can be

used to guarantee enough seating capacity for everyone, especially

under event conditions. This Master thesis looks into short-term

passenger flow forecasting under event conditions by comparing

the performance of forecasting algorithms under event conditions

and looking at the impact of including event features in the fore-

casting approach.

Even though passenger demand in public transportation tends to

be quite regular, accurately forecasting the additional peaks of pas-

sengers caused by large events has proven to be quite challenging.

This research uses the types of events and their venues’ capacities

as indicators of their actual attendance; however, these indicators

have proven to be insufficient in the context of passenger flow fore-

casting. Some cherry-picked examples show promising results for

future works that have access to the correct data.

KEYWORDS
Crowdedness, Events, Occupancy Forecasting, Passenger Flow Fore-

casting, Public Transportation

1 INTRODUCTION
Many people rely on public transportation networks on a daily

basis; it is an essential part of the public infrastructure, which – if

implemented well enough – can reduce our collective ecological

footprint as more and more people switch to this more environ-

mentally friendly mode of transport [8, 29]. However, getting more

people to choose public transportation over their cars requires gov-

ernments and transportation companies to make it a more attractive

option.

Related works have concluded that factors such as fares [1],

service reliability [1], and crowdedness
1
[29, 30] have significant

impact on passenger demand. Crowdedness (or relative occupancy)

can bemanaged by, for example, schedulingmore or fewermaterials,

like altering the length of trains or service frequency. Furthermore,

it is in the best interest of transportation companies to properly

balance crowdedness and deployed materials as these directly relate

to long-term passenger demand and costs.

1
We define crowdedness to be the relative occupancy compared to the capacity of

passengers, measured by the number of seats.

Properly managing the crowdedness in public transportation

requires accurately anticipating future passenger demand, also

known as passenger flow forecasting. However, the patterns of

passenger demand can be significantly influenced by large events

like concerts, festivals, sports matches, et cetera [3, 12, 14, 22, 41].

These effects will only become more prominent as event organizers

stimulate visitors to travel by public transportation instead of by

car; one example of this is one of the big Dutch festivals, “Lowlands”,

which encourages visitors to travel by public transportation and

even organizes bus transport for attendees between the nearest

train station and the festival terrain [18].

Even though there has been some research into passenger flow

forecasting in public transportation under event conditions, most

of the current research focuses on a single station [21, 41], or de-

partures/arrivals [21, 41] instead of forecasting occupancy of inter-

station connections in a larger network under event conditions.

Therefore, this research sets out to compare the performance of var-

ious passenger flow forecasting algorithms under event conditions

and the impact of the selected features describing nearby events.

Furthermore, a Graph Neural Network approach is implemented

with the anticipation that it is more capable of dealing with the

spatial impact of events on passenger flow.

If successful, public transportation network operators could use

the approaches discussed in this research to improve their passenger

demand forecasts around events in order to be able to accommodate

the additional influx of passengers, making trips more pleasant for

all passengers and potentially increasing passenger demand in the

long term.

The rest of this document is structured as follows: First, a more

formal problem definition is given together with concrete research

objectives later in this introduction. Then, a background about

passenger flow forecasting problems and Machine Learning with

Artificial Neural Networks is given in Section 2, followed by an

overview of related works tackling passenger flow forecasting un-

der event conditions in Section 3. From there on, we first discuss

the influence of the capacity of an event’s venue on the observed

passenger flow in Section 4, the conclusion of which is used in

Section 5 to motivate choices in the configuration of the selected

algorithms. The results from the different forecasting algorithms

tested in this research are shown in Section 6, followed by a discus-

sion of the limitations of these results in Section 7. Finally, we have

the conclusion of this thesis in Section 8 and some opportunities

for future works in Section 9.
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Figure 1: Subgraph of the Dutch train network near Arnhem.

1.1 Problem Statement
Public Transportation Networks consist of stations and connections

between those stations. Passengers can move through the network

along the connections between the stations, where they can either

board, transfer to another route, or alight. Figure 1 shows an exam-

ple of a subsection of such a network, namely a part of the Dutch

train network.

More formally, public transportation networks (like a train net-

work) describing how passengers move through the network can be

represented by a bidirectional planar graph G = ⟨V, E, F ⟩, where:

V is the set of vertices (stations);

E ⊆ V ×V is the set of edges (connections between stations);

and

F : E → N is a function mapping between occupancy (num-

ber of passengers) and edges. Throughout this research

observations of F will be indicated by 𝑦, and their approxi-

mations by 𝑦.

An example of a bi-directional flow graph G is given in Figure 2,

where the labels of edges 𝑒 ∈ E correspond to F (𝑒).

Arnhem
CS

Velperpoort

Arnhem
Zuid

Oo
ste

rbe
ek

1 500

3 000

2 000

4 000

12 000

6 000

Figure 2: Example bi-directional flow graph on a subgraph
of the Dutch train network; the edge label for an edge 𝑒 ∈ E
corresponds to the occupancy F (𝑒) of a fictional observation.

Furthermore, since the bi-directional flow graph represents a pub-

lic transportation network, which generally offers transportation

in both directions along a route, it also has the following property:

Lemma 1. For a directed graph G representing a public transporta-
tion network, an edge (𝑣1, 𝑣2) ∈ E implies there also exists an edge
(𝑣2, 𝑣1) ∈ E:

∀𝑣1,𝑣2∈V (𝑣1, 𝑣2) ∈ E =⇒ (𝑣2, 𝑣1) ∈ E

In order to optimally balance the deployment of materials and

crowdedness, transportation companies need to anticipate how

passengers move through their networks. In other words, they

need to know how many passengers will traverse the directed edge

𝑒 ∈ E during a specific time window in the future. More specifically,

the forecasting target is the number of passengers F (𝑒) for every
single edge 𝑒 ∈ E. The goal is to be able to make accurate short-term

(up to 72 hours) passenger flow forecasts for a public transportation

network in order to make last-minute adjustments to the schedule

and show Real Time Crowding Information to passengers [8].

Current solution. The solution of one of the larger public trans-

portation companies in the Netherlands consists of two different

approaches: On the one hand, there is a LightGBM regression model

to forecast the number of passengers on a train. On the other

hand, an LSTM-based regression model is used to forecast Origin-

Destination flows, which are then mapped to the train schedule

to predict how passengers move through the train network. How-

ever, only a limited number of exogenous features are included and

only play a minor role in the forecasts; events are not taken into

account in the current forecast approaches yet and are adjusted for

manually.

1.2 Research Objectives
As mentioned earlier, while there is much research into passenger

flow forecasting, research into passenger flow forecasting in public
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transportation networks under event conditions is limited, espe-

cially for inter-station occupancy as forecasting target. Therefore,

this research aims to measure the impact of the selected event-

features and to compare the performance of the selected passenger

flow forecasting algorithms to determine which performs best un-

der both “normal” and event conditions. Therefore, this research

sets out to answer the following research questions:

RQ1 Which passenger flow forecasting algorithm has the

best overall performance under both “normal” and event

conditions?

RQ1.1 What is the minimum venue capacity of an event

for it to have a significant impact on occupancy in

public transportation networks?

RQ1.2 What is the impact on the performance of pas-

senger flow forecasting when including events in the

exogenous forecasting features?

The overall hypothesis for this research is that including event-

information in forecasting will positively impact the performance

of passenger flow forecasting algorithms under event conditions.

2 BACKGROUND
Passenger flow forecasting can be classified as a spatio-temporal
regression problem [6], where passenger flow can refer to arrivals

and departures at stations [22, 34, 36, 42], origin-destination (OD)

flows [38], demand in the number of trips per time-step [12, 14],

or inter-station crowdedness. There has been much research into

passenger flow forecasting recently, where different related works

look into passenger flow forecasting in different modes of travel

like road traffic [11, 14, 43], ride-hailing [11, 12], metro [3, 11, 22,

34, 35, 42], or trains [11].

Forecasting Algorithms. Many different works researching pas-

senger flow forecasting have tried many different algorithms, like

the Autoregressive Integrated Moving Average (ARIMA) and its

variants [37], Linear Regression (LR) [21, 43], Support Vector Ma-

chines (SVM) [11, 37, 42, 43], Artificial Neural Networks [11, 43],

Recurrent Neural Networks [11, 12, 37, 41], Graph Neural Networks

(GNN) [11, 37], Temporal Convolution Networks [37], and many

more.

Overall, the consensus appears that statistical and traditional

Machine Learning methods are easy to interpret and their results

relatively easy to explain. However, it is theorized that these meth-

ods would lack the capability to model complex and non-linear

relationships in the spatial and temporal domains [11]. Therefore,

recent related works mainly use Deep Learning approaches; more

specifically, Graph Neural Networks have been described as the

state-of-the-art for passenger flow forecasting problems because of

their capacity to model the spatial dependencies in transportation

networks [11, 37].

Manibardo et al. [17], however, are sceptical of these develop-

ments and argue that not every passenger flow forecasting problem

requires a Deep Learning approach with millions of trainable pa-

rameters. Their work concludes with a set of recommendations for

future passenger flow forecasting research, like taking the time to

reason about the need for deep learning methods to solve “complex”

relations in the data and comparing the results against a baseline

in order to determine whether the improvements are statistically

significant [17].

The forecasting algorithms used in this research are SARIMA,

Hybrid forecasting models (see Section 3), and a GNN approach.

Time step resolution. The proper time step resolution selection

is essential in any time series forecasting problem, as smaller res-

olutions tend to be noisier. In comparison, larger resolutions will

obfuscate the peaks in demand that one might be trying to predict.

The importance of the selection of the proper time step resolution

is confirmed by Zhang [40], who argues that – for an accurate and

reliable passenger flow forecast – an appropriate time granularity

needs to be chosen that is as small as possible while also provid-

ing regularity and stability in the measurements. To measure this

regularity, they use the Pearson Correlation Coefficient between

time steps at the same time of the day over different days (making

distinction – of course – between weekdays and weekends) such

that a higher correlation indicates better regularity. Zhang [40]

concluded that the often-used time granularity of 15 minutes in

subway passenger flow forecasting meets the requirements well

enough for that type of public transportation network.

The ideal time step resolution for passenger flow forecasting

(used for optimizing short-term service based on expected demand)

depends on the mode of travel and, therefore, the service interval.

Time step resolutions used in related works are 5 minutes [34], 10

minutes [3], 15 minutes [22, 34], 30 minutes [34], 1 hour [14, 42],

and 1 day [12].

In practical applications, however, the selection of the time step

resolution is often restricted by constraints posed by available data.

This research has one dataset with a time step resolution of 30

minutes and one of 1 hour.

Factors impacting demand. Balcombe et al. [1] researched the

important socioeconomic factors influencing the demand for public

transport across different modes. Their findings concluded that,

among others, fare prices, income, car ownership, population den-

sity, service intervals, service reliability, and station quality (i.e.

shelter from the weather, comfort, cleanliness, and safety) all influ-

enced the demand for public transport. Furthermore, they discussed

the correlation between income and car ownership and that it is

hard to separate the impact of these individual factors on demand

as they often go hand-in-hand [1]. However, this research is from

2004, meaning that the amount some of these factors influence

demand might have changed as the world around us has changed.

Some commonly used external factors by related works for fore-

casting passenger flows are weather [12, 14, 22, 33, 37], land use

[35], and holidays [15, 37]. Furthermore, some related works also

use indicators for short-term changes in passenger flow demand

like social media posts [21, 34], or views of an app or website [12].

In order to limit the scope, this research solely focuses on event

indicators as external factors in the forecasting algorithms.

Datasets. Many related works researching passenger flow fore-

casting in public transportation use passenger travel data collected

with Automatic Fare Collection (AFC) systems [43]; such systems

often register passengers’ origins, destinations, departure- and ar-

rival timestamps per trip. Zhu et al. [43] mentions that the reason

why Big Data collected from AFC systems is often used in research
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towards Intelligent Transportation Systems (ITS) is its “potential

capacity of offering comprehensive spatial-temporal information

on travel behaviour”.

Zhu et al. [43] observed that – even though theoretically a lot

of data should be available from AFC systems – most existing

literature on passenger flow forecasting base their experiments on

datasets that span less than a year. Therefore, it is often uncertain

how those models perform throughout the year (or over the span

of multiple years).

In this research, we have one dataset that spans more than a year

and a smaller one.

Metrics. Common metrics for evaluating the forecast accuracy

across many related works are the Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE) and the Root Mean Squared
Error (RMSE) with approximation 𝑦𝑖 of observed passenger flow 𝑦𝑖
for 𝑛 measurements [3, 11, 21, 22, 34, 41]:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (1)

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

· 100% (2)

𝑅𝑀𝑆𝐸 =

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (3)

The MAE metric indicates how much the average approximation

𝑦 differs from the observed value 𝑦. Similarly, the RMSE metric also

indicates how the average approximation differs from the observed

value, but the RMSE metric weights larger errors more than smaller

errors. Then, MAPE is a relative metric and measures the average

forecast error as a percentage of the observation; this metric, how-

ever, is highly dependent on the scale of the observations and is,

therefore, more helpful in comparing the performance of different

outcomes under the same circumstances, rather than comparing

different circumstances.

This research compares the different forecasting approaches

using the MAE, MAPE, and RMSE.

2.1 Regression with Artificial Neural Networks
WithinMachine Learning, there are typically two types of problems,

namely classification or regression:
Classification The goal of a classification problem is to dis-

tinguish between any amount of predefined classes.

Regression The goal of a regression problem is to estimate

the value of a (most likely continuous) variable.

As mentioned before, passenger flow forecasting is a regression

problem, which – in this research – is approached using Artificial
Neural Networks (ANN) [39] (or approaches generalized to ANNs).

This subsection explains the mathematical basis behind this Ma-

chine Learning approach, whereas the next subsection (Section 2.2)

explains how Artificial Neural Networks are trained using Gradient
Descent.

Artificial Neural Networks are – as the name suggests – a net-

work made up of artificial neurons, which are – in term – inspired

by how the human brain works [39]. Such neurons take multiple

𝑥1

𝑥4

𝑦1

𝑦2

Input layer Hidden layers Output layer

𝑼 𝑽 𝑾

.

.

.

Figure 3: Example of a Multi-Layer Perceptron with two hid-
den layers and weight matrices 𝑼 , 𝑽 and𝑾 .

continuous variables as inputs, each of different importance; then,

if the aggregated weighted inputs exceed a predefined activation
threshold, the neuron activates and gives an output. In practice, each
artificial neuron also has a weighted bias term to make it easier

or harder to overcome the activation threshold; these biases are

excluded from this explanation to reduce its complexity. When

excluding the bias term for the artificial neurons, the mathematical

equation for a single neuron looks like this:

ℎ(𝒙) = 𝜎
©­«
|𝒙 |∑︁
𝑖=1

𝒘𝑖 · 𝒙𝑖ª®¬ = 𝜎

©­­­«

𝑤1

.

.

.

𝑤𝑛


𝑇

·

𝑥1
.
.
.

𝑥𝑛


ª®®®¬ = 𝜎

(
𝒘𝑇 · 𝒙

)
(4)

where:

𝒙 is a vector of input variables;

𝒘 is a vector of weights, such that |𝒘 | = |𝒙 |; and
𝜎 : R→ R is an activation function.

The activation function 𝜎 maps input space R onto output space

R and simulates the aforementioned “activation threshold” and

neuron activation. Among many potential activation functions, the

activation function used in this research is the popular Rectified
Linear Unit (ReLU) [39]:

𝜎 (𝑧) = max(0, 𝑧) =
{
0, if 𝑧 < 0

𝑧 otherwise

(5)

What we have described so far (minus the activation function)

is basically Linear Regression; however, the real strength of Artifi-

cial Neural Networks comes in when combining multiple neurons

to form a “layer” and multiple layers to form the network. The

mathematical equation for a layer of neurons then looks like this:

ℎ(𝒙) = 𝜎 (𝑾 · 𝒙) (6)

where𝑾 ∈ R𝑛×|𝒙 | is a matrix of weights such that vector size of

output vector ℎ(𝒙) is equal to 𝑛. When combining multiple layers,

the last layer is called the output layer, whereas all other layers are
called hidden layers. It is common not to have an activation function

on the output layer. An example of a Multi-Layer Perceptron (MLP),

an Artificial Neural Network with one or more hidden layers, is

given in Figure 3. The equation of this example MLP is as follows:

𝒚 = 𝑼 · 𝜎 (𝑽 · 𝜎 (𝑾 · 𝒙)) (7)

where:
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𝒙

𝑾

× 𝜎
𝒉(1)

𝑽

×
𝒉(2)

𝜎
𝒉(3)

𝑼

×
𝒉(4)

𝒚

𝐿

𝒚

𝑙

Figure 4: Computational graph of a forward pass of an MLP with two hidden layers (Eq. 7) and loss function 𝐿.

𝒚 is the approximation of the target outcome vector 𝒚; and
𝑼 , 𝑽 ,𝑾 are matrices of weights.

Throughout this subsection, the termweightswas thrown around

a lot without mentioning how these weights are obtained: These

weights are estimated by observing sample data and – in this re-

search – “trained” specifically with Gradient Descent, which is

covered in the next subsection. This training or learning step is

why Artificial Neural Networks are sometimes referred to as learn-
able functions, often represented by 𝜙 ,𝜓 or 𝜃 .

2.2 Learning with Gradient Descent
As hinted at in the previous subsection, one of the ways to “learn”

weights for Artificial Neural Networks is Gradient Descent [39].
Gradient Descent essentially consists of iteratively tweaking all

trainable parameters (or weights) to optimize the outcome of a

given loss function by computing the gradients of every trainable

parameter with respect to the computed loss for a training sample

and applying those gradients to the parameters. This subsection

explains the mathematical basis behind Gradient Descent.

Forward propagation. The previous subsection (Section 2.1) ex-

plained the mathematics behind a Multi-Layer Perceptron; to obtain

the “optimal” weights, the output of a loss function 𝐿 will need to

be minimized. The loss function used in this research is the Mean
Squared Error (MSE, see Eq. 20 in Section 5.3); so comparing the

estimated output vector 𝒚 to the correct value vector 𝒚 will yield a

loss 𝑙 :

𝑙 = 𝐿(𝒚,𝒚) = 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (8)

The entire computation from input to loss is called a forward pass
and is visualized in Figure 4, where each of the (hidden) intermediate

outcomes is labelled with 𝒉(1) through 𝒉(4) .

Backpropagation. In order to correctly update the weights, we

need to know how much each of the trainable parameters, which

are in this case weight matrices 𝑼 , 𝑽 , and 𝑾 , contributed to the

obtained loss 𝑙 . This is done by doing the computation in reverse

and computing the partial derivative of the loss with respect to each

trainable parameter; the process of computing these derivatives (or

gradients) is called backpropagation.
The gradient of each set of weights can be computed by applying

the product rule on the partial derivatives of each of the intermedi-

ate steps of the computation. So the gradient of weights matrix𝑾
is equal to the partial derivative of the computed loss 𝑙 with respect

to the𝑾 , and can be calculated using the following equation:

𝜕𝑙

𝜕𝑾
=

𝜕𝑙

𝜕𝒚

𝜕𝒚

𝜕𝒉(4)
𝜕𝒉(4)

𝜕𝒉(3)
𝜕𝒉(3)

𝜕𝒉(2)
𝜕𝒉(2)

𝜕𝒉(1)
𝜕𝒉(1)

𝜕𝑾
(9)

Updating the weights. Finally, after obtaining the derivative of
the loss with respect to each of the weight matrices, the weights

can be updated to reduce the loss, so in the case of weight matrix

𝑾 , the weights are updated as follows:

𝑾 ←𝑾 − 𝜂 · 𝜕𝑙

𝜕𝑾
(10)

where 𝜂 is the learning rate with 𝜂 ∈ [0, 1].
If this process of updating the weights is repeated many times

for all samples of a sufficiently large dataset, then the weights will

slowly converge to a point where any changes in weights will

yield worse results; at this point, we say that the Artificial Neural

Network is done training.

3 RELATEDWORK
Multiple authors argue that passenger flow is significantly impacted

by holidays [42], large public events [3, 8, 22, 28, 41], or both [12, 14,

37] for different modes of travel. However, there is little research

into passenger flow forecasting under such conditions. Next to that,

research into passenger flow forecasting under anomaly conditions

(like holidays and events) is limited by the availability of data [11].

Holidays. In 2017, Laptev et al. [12] used a Long Short-Term

Memory (LSTM) model to forecast the daily amount of rides for

the ride-hailing company Uber during the holidays. Their initial

implementation performed worse than a baseline of Quantile Ran-

dom Forests. However, significant performance improvements were

achieved when using the latent space of an Auto-Encoder as inputs

for the LSTM model.

Later, in 2020, Zhou and Tang [42] used an SVM to forecast

the hourly inbound passenger flow of metro stations during the

holidays.

Events. In 2017, Ni et al. [21] forecast the aggregate in- and out-

flow of a single subway station in 4-hour intervals using Twitter

hashtags with a hybrid model between SARIMA and Linear Regres-

sion. Similarly, in 2022, Xue et al. [34] attempted to use hashtags and

geotags in social media posts to predict disturbances in the regular

passenger flow patterns related to events with a multi-stage fore-

casting framework. Their proposed framework yielded significantly

more accurate forecasts than the selected baselines.

In 2018, Noursalehi et al. [22] forecasts deviations of arrivals

per 15 minutes at stations along a single metro route in London
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caused by planned events. For their 2-step real-time forecasts (30

minutes), Dynamic Factor Models (DFM), which are often used for

time series forecasting in finance, are applied because such models

tend to scale well to higher dimensionalities and are transparent in

their forecasting. Their model appears to have performed well but

was not compared to other baselines.

Then, in 2020, Chen et al. [3] constructed a hybrid model consist-

ing of ARIMA and Nonlinear and Asymmetric Generalized Autore-

gressive Conditional Heteroscedasticity (NAGARCH) to forecast

the arrivals and departures of two subway stations at 10-minute

intervals. This hybrid model performed significantly better than

the ARIMA baseline, but the authors did not compare their results

to other models.

In 2021, Santanam et al. [28] investigated the additional influx of

passengers in the MARTA rail network in Atlanta; they compared

the performance of multiple Machine Learning approaches (Linear

Regression, Random Forests, and a combination of the two) for esti-

mating the amount of influx in ridership at the end of an event based

on, among others, the event type, location and expected attendance.

They showed a clear linear relationship between event attendance

and ridership in public transportation, and their combined model

outperformed the Linear Regression and Random Forests baselines.

Finally, in 2022, Zhao and Ma [41] tackled the forecasting prob-

lem with a whole other approach; they argue that it is “hardly

possible” to train a single model that fits different scenarios. There-

fore, they proposed a Naïve Bayes-based Transition model that

transitions between a Gradient Boosting Decision Tree for regular

passenger flow and a Deep Learning model including an LSTM for

passenger flow forecasting under planned events [41]. Their model

performed better than the selected baselines on forecasting in- and

outbound passenger flows for a single station.

Hybrid Forecasting Approaches. Like the various works described
above researching passenger flow forecasting, we instinctively

know that large events can cause additional passenger flow in

public transportation networks; similarly, Xue et al. [34] (2022) be-

lieves that for an observed passenger flow 𝑋 = 𝑆 +𝑇 + 𝑁 , a signal

composed of a seasonal component 𝑆 , trend 𝑇 , and noise 𝑁 , the

trend and noise components can be caused by additional in- and

outbound passenger flow because of external factors like events.

Similar reasoning can be observed in the application of hybrid al-
gorithms, an ensemble model which combines multiple forecasting

algorithms with addition, in passenger flow forecasting problems.

Unlike Mixture of Experts models [2], which form a gated ensemble

of the same model, hybrid approaches often use one forecasting

algorithm to forecast a (seasonal) baseline and another algorithm

to forecast the deviations on top of the baseline [8]. Furthermore,

Hoppe et al. [8] (2023) found that the usage of simple models (like

ARIMA) in hybrid models with another predictor can result in high

accuracy and efficiency of the forecasting method.

Some of the baseline models that have been mentioned are His-

torical Average (HA), K-Nearest Neighbours (K-NN), Linear Regres-

sion, and Seasonal Auto-Regressive Integrated Moving Average

(SARIMA) [8]. The deviation forecasting models that have been

tried are K-Means and K-Medioids [8].
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Arnhem CS - 500 200 600

Arnhem Zuid 300 - 400 700

Oosterbeek 500 200 - 400

Velperpoort 0 500 100 -

Table 1: Example Origin-Destination matrix on a subgraph
of the Dutch train network with fictional data.

This research tests various Hybrid model architectures based

on a SARIMA baseline and several components outside of this

structured architecture.

4 IMPACT OF EVENT SIZE ON PASSENGER
FLOW (RQ1.1)

As discussed in Section 3, Xue et al. [34] brought forward the hy-

pothesis that external factors could explain the trend and noise

components of an observed passenger flow signal. Furthermore,

Santanam et al. [28] showed a clear linear relationship between

attendance at sports matches and additional inbound passenger

flow at three train stations.

In this research, however, the goal is to forecast passenger flows

on a larger network of stations and connections; next to that, there

are many more types of events other than sports, which can also

impact passenger flow. Therefore, we analyze the impact of events

on passenger flow for all kinds of events on the entire Bay Area

Rapid Transit (BART) [26] rail network. As this is the same dataset

that we will be using for forecasting later in this research, we can

use the conclusions from this section to guide our decisions later.

4.1 Data
The dataset used for this analysis is the public ridership dataset

from the Bay Area Rail Transit (BART) network in California [26].

The dataset consists of hourly Origin-Destination (OD) matrices

𝑨 ∈ N |V |× |V | , where the cell 𝑨𝑡,(𝑜,𝑑 ) describes the number of

passengers with origin station 𝑜 and destination station 𝑑 at time

𝑡 . So, the time series OD matrices with a time step resolution of 1

hour denote the number of people that arrived at their destination

station in one hour. Table 1 gives a fictional example of such an OD

matrix.

Data regarding events was sourced from the DoTheBay website

[5], which lists many events in the California Bay Area. Event

information (name, date, start time, venue, location) is scraped

from the website for the year 2022. After that, the expected number

of visitors is matched based on the published capacity
2
of the venue.

This part of the research, the data analysis into the relationship

between event size and passenger flow, uses the data from the BART

network in 2022 and the 35 769 scraped events that occurred in that

time frame.

2
The published capacity is manually searched using search engines and not available

for all venues.
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Figure 5: Mean and 80
th percentile range of (trend-corrected) alighting passenger flow at station Embacadero throughout 2022.

Pre-processing. Before analyzing the data, it needs to be pre-

processed in order to ensure it is usable. First, the BARTODmatrices

are tackled, which exclude any observations without any passen-

gers. Therefore, these missing observations are re-introduced and

set to 0.

Then, in order to be able to compare data points throughout the

year, the overall trend needs to be removed from the data. This,

however, proves to be more challenging than it sounds, as passenger

flow data contains multiple seasonalities, namely a daily- and a

weekly seasonality. Therefore, the data is grouped per station, day

of the week, and hour of the day; then, the trend is removed per

group using Season-Trend decomposition [4].

Next to passenger flow data, we also have scraped data describing

events. First, all events which do not have a location are discarded

so that events can be matched to the nearest station in the BART

network. Then, any event which lies more than 5𝑘𝑚 from any

station is discarded as it appears to be very unlikely that attendees

would walk more than 1 hour (assuming an average walking speed

of 5𝑘𝑚/ℎ) from the nearest station to the event.

4.2 Measuring Event Impact
Observing Figure 5, which shows the mean and the 80

th
percentile

range of alighting passenger flow per hour of the day per day of the

week for the station Embarcadero throughout the year 2022, we see
that passenger flow tends to be highly regular. So, similarly to the

approach of Santanam et al. [28], we should be able to determine the

amount of extra passengers in public transportation based on the

amount the observed amount of passengers deviates from what is

considered to be “normal”. First, the amount of alighting passengers

at destination station 𝑑 is needed; this can be computed from the

OD matrices by combining the observations for all origin stations

𝑜 :

𝑝𝑑 (𝑡) =
∑︁
𝑜∈V

𝑨𝑡,(𝑜,𝑑 ) (11)

As Figure 5 shows, passenger flow tends to be highly regular un-

der “normal” conditions. Therefore, the number of extra passengers

caused by events could be estimated by the difference between the

observed amount of passengers 𝑝𝑑 (𝑡) and the historic average 𝜇𝑑,𝑡 ,

if the observed amount of passengers 𝑝𝑑 (𝑡) exceeds the historic
90

th
percentile

3 𝜁𝑑,𝑡 . 𝜇𝑑,𝑡 and 𝜁𝑑,𝑡 are computed using the trend-

corrected observations at station 𝑑 with the same weekday and

hour of the day as 𝑡 . Combining this for an event 𝑒 near station 𝑑 ,

3
The 90

th
percentile threshold was determined by Pereira et al. [25] based on the

authors’ domain knowledge and input from local experts.

Figure 6: Alighting passenger flow at station Embarcadero
around theWarriors Victory Parade on 2022-06-20 at 11:00.
The additional 10 240 arrivals at this station caused by the
event are highlighted in red. Figure representation inspired
by [25].

we get the amount of extra arriving passengers 𝑝𝑒 :

𝑝𝑒 (𝑡) =
{
0, if 𝑝𝑑 (𝑡) < 𝜁𝑑,𝑡

𝑝𝑑 (𝑡) − 𝜇𝑑,𝑡 otherwise

(12)

The total passenger event attendance 𝑃𝑒 (𝑡) for an event at time

𝑡 can then be estimated using:

𝑃𝑒 (𝑡) =
∑︁

𝑖∈[𝑡−4,𝑡+2]
𝑝𝑒 (𝑖) (13)

Figure 6 shows how additional passenger flow caused by events

is identified using Equation 12 for one of the most significant events

in 2022. In this figure, the highlighted area between theObservations
and Mean curves corresponds to the amount of extra passengers

taking the train in order to attend the event; in the case of theWar-
riors Victory Parade on 2022-06-20 an additional 10 240 passengers

were observed arriving at just one of the jam-packed stations.

Matching events. Doing the same computation for every event

in the dataset will yield many candidate matches between observed

additional passenger flow and the event. However, there are a lot of

false positives or insignificant results; therefore, candidate matches

are dropped if:

- 𝑃𝑒 (𝑡) < 50, as train cars have at least 50 seats (and many

more standing spots) [27] and trains often have multiple

cars, therefore fewer than 50 passengers do not significantly

impact the perception of crowdedness on an entire train;

- 𝑃𝑒 (𝑡) is bigger than the event venue’s capacity; or

- Another event with a bigger venue occurs near the same

station within 4 hours.
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Figure 7: Lot-plot of events with their corresponding venue
capacity and observed extra passengers on the train attending
the event.

This filtering method will – of course – discard some correct

matches. However, it is more important to accurately identify a

relationship between events and passenger flow than to include

more false negatives at the cost of noise.

The resulting number of events after filtering is 1 363.

4.3 Minimum Event Size
Figure 7 shows for eachmatched event the event venue capacity and

the number of extra passengers on the train attending that event.

There appears to be a clear upward trend in maximum observed

passengers as the venue capacity increases. However, there are also

observations with very few passengers for any of the venue sizes.

The fuzziness of the results combined with the density of ob-

servations with fewer extra passengers suggests that there are a

lot of false positives, presumably caused by noise in the data that

cannot be attributed to events. Therefore, no definitive conclusion

will be drawn for research question RQ1.1; however, a threshold

for event sizes still needs to be set for use later in this research.

Starting around a venue capacity of 1100, the observations appear

less densely positioned, and there appears to be a slight upward

trend in some of the observations. Therefore, the minimum venue

capacity of 1100 will be used in the rest of the research.

This tentative decision, however, is highly subjective and should

be taken with a grain of salt. Future work will need to look into bet-

ter indicators of event attendance than those used in this research.

Event Distance. Furthermore, Figure 8 shows how many events

can be matched as the distance from the station to the event venue

increases. The largest observation appears to be smaller than 900𝑚,

but most observed events are within 500𝑚 of the nearest station.

5 PASSENGER FLOW FORECASTING
The research aims to determine which – out of the given options –

performs best at multi-step passenger flow forecasting under both

“normal” and event conditions. The prediction target is the volume

of passengers along all inter-station connections in a rail-based

public transport network within the selected time step resolution.

Figure 8: Distance from station to event for the matched
events.

5.1 Forecasting Datasets
In this research, two datasets are used from two different regions

of the world:

BART The primary subject of this research’s experiments

is the Bay Area Rapid Transport (BART) network [26] in

California since both ridership and event data are publicly

available online. This concerns the same dataset as the one

used in Section 4.

NS In cooperation with Nederlandse Spoorwegen (NS), a pri-

vate dataset describing passenger flow in parts of the Dutch

train network has been obtained. Even though the Nether-

lands and the United States are significantly different, we

hope to observe similar results for forecasts on the NS

dataset. Events related to this dataset have been manually

collected by exhaustively searching for event venues in the

region and scraping their past events.

The two datasets are described in Table 2.

Next to the historic passenger flow observations 𝑦𝑡 , the fore-

casting models also have access to exogenous features 𝜖𝑡 for the

destination station per edge 𝑒 ∈ E, which consists of the following

features:

Weekday (one-hot encoded) describing the day of the week.

Time of day (one-hot encoded) describing the time of day in

blocks of 4 hours.

Event capacity describing the capacity of the event venue.

Event distance describing the distance between the event

location and the station.

Event type (one-hot encoded) describing the type of the event

(music, sports, et cetera).

Pre-processing. This research’s forecasting target is the inter-

station passenger flow F (or 𝑦). And while the NS dataset was de-

livered as the inter-station passenger flow F (as defined in Section

1.1), the BART dataset consists of hourly OD matrices. Therefore,

these hourly ODmatrices𝑨𝑡 are aggregated to hourly bi-directional

flow graphs such that F𝑡 (𝑒) for 𝑒 ∈ E is equal to the number of all

passengers that traversed the given section of rail. This is obtained

by summing the number of passengers along all paths that traverse
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BART NS
# stations 50 14

# connections 102 28

max. passengers 11 288 2 363

mean passengers 354 306

# total observations 1 336 608 123 648

# events 6 764 51

resolution 1 hour 30 minutes

train set 2022-01-01→ 2022-12-31 (66.8%) 2022-07-01→ 2022-08-15 (50.0%)

validation set 2023-01-01→ 2023-03-31 (16.5%) 2022-08-16→ 2022-08-31 (17.4%)

test set 2023-04-01→ 2022-06-30 (16.7%) 2022-09-01→ 2022-09-31 (33.7%)

Table 2: Overview of datasets used in this research

(a) 07:00 - 08:00 (b) 10:00 - 11:00

Figure 9: Example observed passenger flow in the BART net-
work on 2022-06-20, where blue indicates very fewpassengers
and red a lot of passengers.

edge 𝑒:

F𝑡 (𝑒) = sum

({
𝑨𝑡,(𝑜,𝑑 ) for 𝑜, 𝑑 ∈ V ×V if 𝑒 ∈ P(𝑜, 𝑑)

})
(14)

where P : V ×V → E∗ is a function that gives the shortest path

from origin station 𝑜 to destination station 𝑑 as a sorted list of edges.

An example of observed passenger flow throughout the entire BART

network is given in Figure 9; the visualization of passenger flow

throughout the entire day is given in Appendix A.

Furthermore, events are matched based on location and start

time to the directed flow of an edge if:

- the edge’s destination is the same station as the event’s

nearest station;

- the event’s venue has a capacity of > 1 100 attendees (as

determined in Section 4); and

- the distance between the event’s venue and the nearest

station is < 500𝑚.

On the NS dataset, however, we also include events up to 2 500𝑚

distance from the nearest train station, since the same experiments

as those in Section 4 could not be done for the NS dataset due to the

limited amount of scraped events for this dataset. Moreover, based

on domain knowledge of the author, it is not uncommon to walk

up to 30 minutes from public transportation to an event location in

the Netherlands for larger events and festivals.

5.2 Forecasting Algorithms
As mentioned in Section 3, there has been much research towards

Passenger Flow Forecasting, and with that, many different algo-

rithms have been tried. However, the research under event con-

ditions, especially with inter-station occupancy as a forecasting

target, remains limited.

Therefore, this research compares a few forecasting algorithms to

determine which one(s) can be used for passenger flow forecasting

under normal and event conditions in real-world scenarios. Based

on these results, we implement a Graph Neural Network (GNN)

algorithm (as will be discussed later in this section). The model

architectures listed below have been keeping a few things in mind:

- Following the thoughts set forward by Manibardo et al.

[17], it might not always be necessary to use overly com-

plex Deep Learning approaches with millions of trainable

parameters for Passenger Flow Forecasting problems.

- The models must have the capability to take exogenous

features (like holidays and events) as input.

- The models must be able to handle public transportation

networks of different sizes without re-training the entire

model.

Baseline - SARIMAX. The baseline model is SARIMAX [31], con-

sisting of some extensions on top of a commonly used and tradi-

tional time series forecasting model across many domains, namely

the AutoRegressive Integrated Moving Average (ARIMA) model [10].

The SARIMAX model (as shown in Figure 10) is essentially a Lin-

ear Regression model that is very effective for its subjectively low

complexity compared to more complex Deep Learning approaches.

This model will serve as a baseline for comparing differences in

performance against the added complexity of the other selected

models.

After selecting the proper order (𝑝,𝑑, 𝑞) (𝑃, 𝐷,𝑄)𝑚 of the SARI-

MAX model as described in Appendix B, the future passenger flow,
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Figure 10: SARIMAX model architecture for example config-
uration 𝑆𝐴𝑅𝐼𝑀𝐴𝑋 (2, 1, 2) (2, 0, 1)3.

𝑦𝑡 , can be forecast using the following formula:

𝑦𝑡 =

𝑝∑︁
𝑘=1

𝑢𝑘 · 𝑦
(𝑑 )
𝑡−𝑘 +

𝑞∑︁
𝑘=1

𝑣𝑘 · 𝑒𝑡−𝑘 + 𝑒𝑡 + 𝑐︸                                         ︷︷                                         ︸
ARIMA

+
𝑃∑︁

𝑘=1

𝑤𝑘 · 𝑦
(𝐷 )
𝑡−𝑘 ·𝑚 +

𝑄∑︁
𝑘=1

𝑧𝑘 · 𝑒𝑡−𝑘 ·𝑚︸                                     ︷︷                                     ︸
Seasonal component

+
|𝜖𝑡 |∑︁
𝑘=1

𝑠𝑘 · 𝜖𝑡,𝑘︸       ︷︷       ︸
Exogenous parameters

(15)

where:

- 𝑦 (𝑖 ) is the 𝑖th order difference of observed passenger flow

𝑦;

- 𝑒 is i.i.d. white noise and is often normally distributed;

- 𝜖𝑡 is a vector with observed exogenous variables at time 𝑡 ;

- 𝑐 is a bias / constant; and

- 𝑢, 𝑣 ,𝑤 , 𝑧, and 𝑠 are vectors with learnable weights.

Hybrid Forecasting. Aswas discussed in Section 4, passenger flow
tends to be highly regular, but large-scale events can correlate with

additional passenger flow on top of the “normal” patterns. Similar

𝑦Δ𝑡

𝜖Δ𝑡𝜖

S

D

+ 𝑦𝑡

Figure 11: Hybrid model architecture.

theories were also discussed in Section 3 like Hoppe et al.’s Hybrid

Models [8], which consist of a simple baseline such as SARIMA to

predict the basic patterns and another model to predict additional

peaks (deviations) caused by exogenous influences (like events).

Let S be a tuned SARIMA model (see Equation 15, without the

last summation), then the future passenger flow𝑦𝑡 can be forecasted

using the following formula:

𝑦𝑡 = S(𝑦Δ𝑡 ) + D(S(𝑦Δ𝑡 ), 𝜖Δ𝑡𝜖 ) (16)

where:

D is the Deviation model;

Δ𝑡 is the set of indices of historical observations for the

SARIMA model, such that ∀𝑡 ∈Δ𝑡 𝑡 < 0;

Δ𝑡𝜖 is the set of indices of observations of exogenous fea-

tures that can be negative as well as positive.

The Deviation model D can be any regression model; whereas

Hoppe et al. [8] used K-Means or K-Medioids, we implement a

Linear Regression (LR) model and Multi-Layer Perceptron (MLP)

model with two hidden layers as Deviation models.

In contrast to the SARIMAX model, our implementation of the

Hybrid model does not just consider the exogenous features at time

𝑡 , but, as seen in the equation above (Equation 16), the Deviation

model also considers exogenous features in the past and future as

events also have an impact on passenger flow for some time before

their start and after their end.

The following equations define the MLP and LR deviation mod-

els:

𝐿𝑅(𝑧, 𝜖) = 𝑻 ·
[
𝑧

𝜖

]
(17)

𝑀𝐿𝑃 (𝑧, 𝜖) = 𝑼 · 𝜎
(
𝑽 · 𝜎

(
𝑾 ·

[
𝑧

𝜖

] ))
(18)

where:

𝑧 is the output of the SARIMA model;

𝜖 is the set of exogenous features for multiple time steps;

𝜎 is the ReLU activation function (see Eq. 5); and

𝑻 , 𝑼 , 𝑽 ,𝑾 are matrices consisting of learnable weights.

The architecture of the hybrid models is visualized in Figure 11.

Furthermore, the selected Deviation architectures (MLP and LR)

are also tested in a standalone configuration in order to test the

potential benefit of the Hybrid model architecture over its simpler

counterparts.

Graph Neural Networks. The aforementioned models only op-

erate on a single edge 𝑒 ∈ E at a time instead of simultaneously

considering the entire network of edges E. Incorporating informa-

tion about the entire network in forecasting in a structured way

might positively impact short-term forecasting performance, as
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SARIMA SARIMAX Hybrid LR Hybrid MLP LR MLP GNN
# trainable parameters 31 52 138 1 888 136 2 321 3 973

# historic observations (Δ𝑡 ) 168 168 168 168

# exogenous features - 23 23 23 23

# exogenous observations (Δ𝑡𝜖 ) - {0} {−2, . . . , 4} {−2, . . . , 4} {−2, . . . , 4}
Batch size 256 256 32

Epochs 10 25 50

Initial learning rate 1 · 10−3 1 · 10−3 1 · 10−3
Criterion Mean Squared Error (Eq. 20)

Optimizer AdamW [16]

Learning rate decay Exponential (0.9𝑖 )

Table 3: Hyper-parameters

𝑦Δ𝑡 𝜖Δ𝑡𝜖

Encoder

GNNMLP

𝑦𝑡

Figure 12: GNN model architecture.

extra crowdedness in one region can often impact crowdedness in

other regions.

Graph Neural Networks (GNN) offer a way to model the complex

spatial dependencies in public transportation networks [11, 37].

Temporal dependencies in Spatio-Temporal Graph Neural Networks
(STGNN) are often modelled using either time-convolutions [11, 37]

or recurrent neural networks [11, 37].

In this research, we implement a Message-Passing Graph Neural
Network (MPNN) [11] to model the spatial dependencies of just

the event features. Peeking forward to the results in Section 6,

we observe that the plain MLP model performs best; so for this

architecture, we use the MLP architecture to model the edge-level

temporal complexities. Furthermore, to limit the computational

complexity of the GNN component, the exogenous features 𝜖 are

encoded using an MLP with one hidden layer.

To generally explain the functionality of an MPNN, we consider

an edge 𝑒 ∈ E with edge-level features 𝜖𝑒 , then the output 𝑓 (𝑒) is
computed as follows:

𝑓 (𝑒) = 𝜙
©­«

⊕
𝑛∈N(𝑒 )

𝜓 (𝜖𝑛)ª®¬ (19)

where:

N(𝑒) : E → E∗ yields a set of neighbouring edges incident

to 𝑒;

⊕
is a permutation-invariant4 aggregation operator, which

is the sum operator

∑
in the case of this implementation;

and

𝜙,𝜓 are learnable functions (such as MLPs).

The architecture of this GNN-based model is visualized in Figure

12.

5.3 Implementation Details
All models are implemented and trained using the popular Python

library PyTorch [24]; Table 3 shows the hyper-parameters used for

each of the trained models. However, since the time step granularity

of the NS dataset is half of the BART dataset, more past observations

and exogenous observations are included tomatch the same amount

of time these observations would have been in the BART dataset.

Furthermore, after observing the training of multiple forecasting

algorithms, the amount of epochs during training for the NS dataset

has been set to 25 epochs based on how long it took each algorithm

to converge during training.

In order to stabilize the performance of the model, observations𝑦

of F are normalized per edge 𝑒 ∈ E by scaling these observations to

a [0, 1] range based on the maximum observation 𝑦 in the window

of past observations Δ𝑡 .
All models, even the Linear Regression-esque models, are trained

using Mini-Batch Gradient Descent for two reasons:

(1) It allows us to train the same model multiple times (with

multiple random seeds) to end up with slightly different

weights (stochasticity), giving a distribution of forecasts

allowing us to interpret how confident certain forecasts are.

(2) It allows us to trainmore complexmodels based on SARIMA

in a single framework so that gradients for the entire model

can be computed and applied during training.

The selected implementation of Gradient Descent isAdamW [16]

because of its popularity. The same reasoning goes for the selection

of the ReLU activation function in the forecasting algorithms with

multiple layers of neurons.

The loss function that was selected for this research is the Mean
Squared Error (MSE), which is essentially the squared variant of the

RMSE (see Eq. 3). This loss metric was chosen as the goal of this

4
We call a function 𝑓 permutation-invariant if the order of items (or in this case, edges)

has no impact on the outcome of the function, so for all possible permutations 𝑃 :

𝑓 (𝑋 ) = 𝑓 (𝑃𝑋 )
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research is to accurately predict the additional passengers in public

transportation caused by large events; therefore, an error metric

which “punishes” larger errors more is needed. The equation of the

MSE is given below:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (20)

Finally, the actual implementations of the models can be found

on this research’s GitHub repository:

jeffreybakker/passenger-flow-forecasting5

5.4 Experiments
This subsection describes the experiments that will be performed

in order to answer the research questions defined in Section 1.2. All

experiments are performed on both datasets separately.

Forecast Performance Metrics. The performance of the different

forecasting approaches is measured using the different error metrics

highlighted in Section 2, namely the MAE (Eq. 1), MAPE (Eq. 2),

and RMSE (Eq. 3).

Furthermore, another popular performance metric in regression

problems is theCoefficient of Determination𝑅2, which is an indicator
of how well the forecasts 𝑦 represent the observations 𝑦:

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )

2∑𝑛
𝑖=1

(
𝑦𝑖 − 𝜇𝑦

)
2

(21)

where 𝜇𝑦 is the mean observation of 𝑦.

Since every model is trained multiple times, the values of each

of these metrics (MAE, MAPE, RMSE, and 𝑅2) are averaged over all

sets of trained weights per model. The results displayed in Section 6

show the mean of these metrics, or in the case of figures, the mean

forecast value per forecasting algorithm.

Forecasting Performance. To get an overview of the forecasting

performance of the different forecasting approaches, the afore-

mentioned metrics are compared for all models under different

conditions:

Overall performance The overall performance is sampled

over the entirety of the test set and across the entire net-

work, giving an overview of the overall performance of

the different approaches on the passenger flow forecasting

problem.

Event conditions The performance under event conditions

is sampled for all events in the test set between 4 hours

before the event’s start and 2 hours after the event’s start

on all edges within 2 steps of the event.

Impact of Event Features on Forecasting Performance (RQ1.2). In
order to determine the impact that including event-related features

(as mentioned in Section 5.1) in the forecasting approaches has, all

forecasts are done twice, once including all features and once with

the event-related features masked out.

5
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Multi-step Forecasting Performance. Public transportation com-

panies need forecasts for multiple different steps into the future;

therefore, the forecast performance for multiple 𝑛-step forecasts

is compared for the different algorithms using the Mean Absolute

Error (MAE, see Eq. 1):

1 hour in order to be able to provide Real Time Crowding
Information to passengers [8]. This allows them to alter

their travel plans and select a less busy route if they wish

to do so [29].

6 hours in order to make some last-minute adjustments to

the schedule; as the NS does up to 4 hours before departure

[20].

72 hours in order to schedule materials and staff.

Residual Diagnostics. Next to the various metrics that have been

described above, some tests can be performed on the residuals of the
various forecasting algorithms to verify the quality of the trained

forecasting algorithms. The residuals are defined as the difference

between the estimated value 𝑦 and the actual observation 𝑦:

residual = 𝑦 − 𝑦 (22)

First, a good estimator should be unbiased [10]; therefore, the av-

erage bias of all residuals must equal 0. The formula for computing

the bias is given below:

bias =
1

𝑛

𝑛∑︁
𝑖=1

𝑦 − 𝑦 (23)

Secondly, the residuals should be normally distributed [10]; the

plotted residual densities should resemble the bell curve shape

associated with a normal distribution.

Then, the residuals should be uncorrelated [10]; if there are any

significant correlations in the residuals, there are still patterns in

the data that could be learned.

Transfer. Finally, this research has two datasets from two dif-

ferent geographical and societal locations. It would be interesting

to see how algorithms trained on one dataset (BART) are able to

perform out-of-the-box on the other dataset (NS). However, as these

two datasets have different time step resolutions, forecasting on

the NS dataset using the trained weights from the BART dataset is

done by discarding every other observation in the NS dataset such

that the expectations of daily and weekly seasonality in the data

from the trained forecasting algorithms will still hold.

6 RESULTS
As mentioned in the previous section (Section 5.4), each forecasting

algorithm is trained multiple times to end up with different sets of

trained weights. This section only displays the averaged metrics

or results from the various forecasts with different sets of weights;

Appendix E also displays the standard deviation (𝜎) between the

different sets of weights for each forecasting algorithm. Overall,

over various runs of the same forecasting algorithms, most of the

forecasting algorithms appear to have converged to the same (local)

optimum.

This is confirmed by the figures in Appendix D, which show how

the MAE and RMSE on the training and validation datasets evolved

as the forecasting algorithms continued training. Most forecasting
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(a) Forecasting results.

(b) Forecasting errors.

Figure 13: 1-step forecasting results and errors from station 12th St (12) to station 19th St (19).

algorithms converged to very similar metrics on the training and

validation datasets with every set of weights; the exception to this

statement is the GNN model, which converged to slightly different

(local) optima.

Furthermore, the run times of training the various forecasting

algorithms are summarized in Appendix C.

Then, before delving into the performance metrics, a sample of 1-

step forecasts of the different forecasting algorithms in this research

are compared against the observed passenger flow in Figure 13; all

of the models appear to follow the line of observations relatively

well, however, there are some forecast errors. These errors are

highlighted in Figure 13b, where most errors appear to resemble

random noise, except for some larger peaks, which coincide with

the peaks in the observed passenger flow (as seen in Figure 13a).

Overall forecasting performance. The overall performance of the

different models over the entire test set and across the entire BART

network is given in Figure 14a and Table 4; both of these show how

the different models perform overall when having access to data

regarding events, versus having event-related features masked out.

As can be seen in both Table 4 and Figure 14a, there are no signifi-

cant differences in forecasting performance between the forecasts

with event data compared to the forecasts without event data. More

specifically, most models’ forecasts with event data have slightly

worse performances across most metrics.

Next to that, the SARIMA, SARIMAX, and Hybrid algorithms

all have similar performance, but the MLP and GNN algorithms

perform measurably better across all metrics. The cause of this

is presumably that the MLP and GNN models can better model

the distribution of previous observations with multiple layers of

neurons. In contrast, these past observations are bottle-necked by

a single neuron in the SARIMA, SARIMAX, and Hybrid algorithm

architectures.

Forecasting performance under event conditions. Then, looking
at a different subset of the testing data, Figure 14b and Table 5

MAE MAPE (%) RMSE 𝑅2

W
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ut
ev
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td

at
a

SARIMA 67.02 101.76 143.83 0.9616

SARIMAX 67.36 110.49 144.03 0.9615

LR 67.59 110.64 144.72 0.9611

MLP 50.94 49.90 103.55 0.9801

Hybrid LR 67.29 111.36 143.95 0.9615

Hybrid MLP 66.08 78.94 142.46 0.9623

GNN 58.44 66.26 129.40 0.9689

W
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h
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SARIMA - - - -

SARIMAX 67.37 110.50 144.04 0.9615

LR 67.72 110.67 144.80 0.9611

MLP 51.14 49.94 103.90 0.9799

Hybrid LR 67.35 111.38 143.96 0.9615

Hybrid MLP 66.10 78.97 142.37 0.9624

GNN 58.42 66.27 129.28 0.9689

Table 4: Difference in overall 1-step forecasting performance
in the BART dataset.

summarize the performance of the various forecasting algorithms

under event conditions. And again, both of these show the difference

in performance when forecasting with event data versus forecasting

without event data. Once more, all forecasting approaches appear

to perform slightly worse when forecasting with event data than

without event data, except that the differences in performance under
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(a) 1-step forecasting performance. (b) 1-step forecasting performance under event conditions.

Figure 14: 1-step forecasting performance for the entire test set or specifically under event conditions in the BART dataset.

MAE MAPE (%) RMSE 𝑅2

W
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SARIMA 125.07 14.93 211.19 0.9588

SARIMAX 121.42 14.66 205.76 0.9608

LR 115.51 15.73 197.66 0.9635

MLP 91.78 13.41 161.11 0.9765

Hybrid LR 115.57 15.05 198.08 0.9619

Hybrid MLP 114.07 15.54 196.46 0.9621

GNN 102.05 14.44 182.42 0.9714

W
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h
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SARIMA - - - -

SARIMAX 121.51 14.68 205.95 0.9607

LR 118.24 16.37 198.96 0.9630

MLP 96.48 14.26 166.55 0.9749

Hybrid LR 116.83 15.35 198.36 0.9618

Hybrid MLP 116.12 16.20 197.14 0.9619

GNN 102.66 14.57 182.77 0.9713

Table 5: 1-step forecasting performance under event condi-
tions in the BART dataset.

event conditions are slightly more pronounced, especially for the

MAE metric.

Regardless of the difference in performance with or without

event data, the difference between the performance of the MLP and

GNN algorithms compared to the rest of the algorithms is evenmore

significant under event conditions. Furthermore, whereas the MLP

model performs measurably worse when forecasting with event

data than without event data, the GNN algorithm’s performance is

more stable.

Something that does give a slightly optimistic outlook on the

impact of forecasting using event-related features is Figure 15; this

is a cherry-picked example of how using event-related features can

have a positive impact in passenger flow forecasting. In this figure,

we can observe how a part of the peak in passenger flow, which is

– presumably – caused by the event, is accounted for by the MLP

algorithm’s forecast when provided with information regarding

upcoming events.

Figure 15: Impact of event features on 6-step rolling forecast-
ing results using the MLP model under event conditions in
the BART dataset on the connection from Embarcadero to
Montgomery St. on 2023-05-02.

1 hour 6 hours 72 hours

SARIMA 67.02 75.28 80.07

SARIMAX 67.37 76.10 81.26

LR 67.72 76.55 82.12

MLP 51.14 63.28 67.41

Hybrid LR 67.35 75.58 80.09

Hybrid MLP 66.10 73.37 77.48

GNN 58.42 66.79 69.59

Table 6: Comparison of multi-step rolling forecasting per-
formance in the BART dataset measured with MAE over the
entire network.

Multi-step rolling forecasting performance. On another note, Fig-

ure 16 and Table 6 indicate how the models perform as they have to

make predictions for further in the future. Over the first hours into

the future, some significant drops in performance can be observed

across all forecasting algorithms. The plain MLP model still seems

to outperform all of the other models. However, there are two more

pressing observations to be made:

- There is a significant drop around the 24 hour mark, and

another smaller one around the 48 hour mark suggesting a

loss in the quality of indicators between days; and

- Models with similar architectures (MLP-based, LR-based

with exogenous features, or SARIMA) appear to converge

to similar errors as our forecasts continue.
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Figure 16: Multi-step rolling forecasting error for the different forecasting approaches in the BART dataset, measured with
MAE.

Figure 17: Overall distribution density of forecasting residuals and under event conditions in the BART dataset. The mean
residual (or bias) is given by the vertical dashed lines.

Figure 18: Averaged autocorrelation of forecasting residuals
of all forecasting algorithms on the connection between Em-
barcadero andWest Oakland in the BART dataset.

Residual diagnostics. Figure 17 shows the distribution density

of forecasting residuals over the entire test set and under event

conditions. All distributions in this figure resemble the bell curve

of the normal distribution, although some of these bell curves are

a bit more stretched out horizontally. Furthermore, the overall

bias of most algorithms is very close to 0, but the bias of these

same algorithms tends to be slightly more negative under event

conditions. Furthermore, 18 shows no significant correlations in

the forecasting residuals.

6.1 NS Dataset
This subsection covers the results that follow from the NS dataset;

in some cases, the data might be represented slightly differently

compared to the results from the BART dataset due to the sensitive

nature of the dataset. This also means that this thesis does not men-

tion the specific stations or dates of certain sensitive observations.

However, this should not diminish the value of the insights gained

from these results.

The first thing to do is to sketch the context of these results;

as was seen in Figure 5, passenger flow in the BART dataset ap-

peared to be highly regular with steep peaks every day, which are

– presumably – caused by daily commutes. Trends such as these

are not as apparent in this example from the NS dataset between

neighbouring stations 𝑄 and 𝑅 in Figure 19. In contrast to the sam-

ple from the BART dataset, there are some observable peaks at the

beginning and end of the day on Monday through Thursday, but

the passenger flow appears to be more steadily dispersed through-

out the day. Furthermore, there appears to be more noise between

observations in this figure because the time step regularity here is

30 minutes instead of 1 hour, and there is probably a train that is

not scheduled twice per hour.

Then, just as before with the BART dataset (in Figure 13), we

observe a generic forecast example in Figure 20; it immediately

becomes evident that the additional noise that is present in the pas-

senger flow data has a negative impact on the forecast performance

as the forecasting errors are relatively quite large. Overall, the er-

rors tend to resemble a noise pattern, except for some significant

errors at the morning commutes.

Overall forecasting performance in the NS dataset. This negative
impact on the forecasting performance can also be observed in

Table 7, which shows the performance of the different forecasting
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Figure 19: Mean and 80
th percentile range of (trend-corrected) passenger flow between stations R and Q in the NS dataset.

Figure 20: 1-step (30minutes) forecasting errors from station R to station Q in the NS dataset.

(a) 1-step forecasting performance. (b) 1-step forecasting performance under event conditions.

Figure 21: 1-step (30minutes) forecasting performance for the entire test set or specifically under event conditions in the NS
dataset.

algorithms over the entire test set and across all stations in the NS

dataset; even though the overall passenger flow in the NS dataset

is smaller than the passenger flow in the BART dataset, the MAE is

significantly higher and the 𝑅2 score is significantly worse for the

NS dataset. Next to that, the RMSE and MAE lie relatively closer

together, which – combined with the higher MAE – means that

forecasting algorithms have worse overall performance compared

to the performance on theBART dataset, but there are relatively

fewer large errors in the forecasts. However, this can also be caused

by fewer events or other anomalous conditions.

Furthermore, both MAE and RMSE are visualized in Figure 21a,

where, in contrast to the same figure for the BART dataset (Figure

14a), the differences in forecasts with and without event data are

slightly more pronounced.

Forecasting performance under event conditions in the NS dataset.
In Figure 21b and Table 8, we observe similar patterns in the fore-

casting performance under event conditions in the BART dataset

(see Table 5); namely that most algorithms perform significantly

worse under event conditions when having access to features de-

scribing those events as opposed to those features being masked

out. This indicates that the very few events found for the NS dataset

Figure 22: Impact of event features on 6 hour (12 steps) rolling
forecasting errors under event conditions near station S in
the NS dataset.

are insufficient for forecasting algorithms to “learn” anything about

the impact of events on passenger flow.

Then, considering the cherry-picked example in Figure 22, there

appears to be an attempt to forecast the additional passenger flow

caused by the event, but the forecasting algorithm overshoots the

target; it is evident that both forecasts appear to be lacking in

matching all of the other observations in this figure.
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Figure 23: Multi-step rolling forecasting error for different forecasting approaches on the NS dataset, measured with MAE.

MAE MAPE (%) RMSE 𝑹2

W
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SARIMA 82.79 28.51 125.88 0.7897

SARIMAX 80.00 26.90 122.62 0.8004

LR 78.85 24.89 126.37 0.7880

MLP 72.95 23.43 114.11 0.8271

Hybrid LR 78.62 24.92 126.06 0.7890

Hybrid MLP 75.15 24.45 117.91 0.8154

GNN 82.87 27.57 127.92 0.7804

W
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SARIMA - - - -

SARIMAX 80.00 26.91 122.62 0.8004

LR 79.49 25.21 126.92 0.7861

MLP 73.62 23.72 114.72 0.8252

Hybrid LR 79.27 25.23 126.60 0.7872

Hybrid MLP 76.09 24.90 118.90 0.8123

GNN 82.87 27.57 127.93 0.7804

Table 7: Difference in overall 1-step (30 minutes) forecasting
performance on the NS dataset.

Multi-step rolling forecasting performance in the NS dataset. Table
9 and Figure 23 show the performance of the various forecasting

algorithms when performing a rolling forecast for multiple steps

into the future. The figure shows totally different results from

the BART dataset; here, SARIMA performs best over time, and

all other forecasting algorithms have varying rates of errors. This

suggests that there is too much noise and too little data for the

forecasting algorithms to learn the distributions of passenger flow

in this dataset properly.

Residual diagnostics in the NS datataset. Figure 24 shows the

distribution density of forecasting residuals over the entire NS

test set and under event conditions. All distributions in this figure

resemble the bell curve of the normal distribution, but some of

them appear to have a slight skewness to either the positive or

negative side. Furthermore, the overall bias of most algorithms is

obviously not close to 0 (or at least not as close as was observed

MAE MAPE (%) RMSE 𝑹2
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SARIMA 72.33 28.15 92.84 0.7703

SARIMAX 66.53 25.46 86.48 0.8006

LR 54.04 20.53 70.12 0.8723

MLP 50.91 18.99 67.17 0.8873

Hybrid LR 54.12 20.88 70.19 0.8683

Hybrid MLP 53.75 21.51 69.60 0.8705

GNN 62.99 23.31 83.49 0.8167
W
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h
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SARIMA - - - -

SARIMAX 66.55 25.60 86.47 0.8006

LR 63.87 25.30 83.92 0.8171

MLP 61.40 23.49 81.85 0.8326

Hybrid LR 63.66 25.57 83.48 0.8137

Hybrid MLP 67.64 28.12 91.17 0.7776

GNN 63.03 23.31 83.54 0.8165

Table 8: 1-step (30minutes) forecasting performance under
event conditions around station Q in the NS dataset.

30 minutes 1 hour 6 hours 72 hours

SARIMA 82.79 99.25 119.13 139.30

SARIMAX 80.00 95.37 116.46 153.91

LR 79.49 95.77 122.46 179.99

MLP 73.62 83.90 119.15 160.33

Hybrid LR 79.27 95.45 121.24 173.86

Hybrid MLP 76.09 90.84 127.40 164.70

GNN 82.87 99.67 126.63 182.35

Table 9: Comparison of multi-step rolling forecasting perfor-
mance measured with MAE over the entire network in the
NS dataset.
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Figure 24: Overall distribution density of forecasting residuals and under event conditions in the NS dataset. The mean residual
(or bias) is given by the vertical dashed lines.

Figure 25: Averaged autocorrelation of forecasting residuals
of all forecasting algorithms on the connection between Q
and R in the NS dataset.

for the BART dataset in Figure 17). This, again, suggests that the

forecasting algorithms have not seen enough examples to properly

learn the relationships in the data of the NS dataset.

This belief is once more confirmed by looking at Figure 25, which

shows some note-worthy correlations in residuals at 48 lags (1

day), 288 lags (6 days) and 336 lags (7 days). Therefore, there are

noticeable patterns in the residuals that have not yet been learned

by the forecasting algorithms.

6.2 Transferred Weights
This subsection summarizes how the weights trained on the BART

dataset perform out-of-the-box on the NS dataset, which is perfectly

done in Figure 26. This figure shows how the transferred weights

all perform worse than the weights trained on the training set,

which corresponds to the test set. However, the out-of-the-box

performance of the transferredweights lies within the same ballpark

as the weights trained on the NS training set.

Amazingly, the out-of-the-box overall forecasting performance

of the transferred weights for the MLP forecasting algorithm per-

forms even better than some of the other forecasting algorithms

trained on the NS training set. However, the same cannot be said

for such performance under event conditions, where all forecasting

algorithms with transferred weights performed significantly worse

than their counterparts, which have been trained on the NS training

set.

More detailed performance metrics of the transferred weights

can be found in the tables of Appendix E.

7 DISCUSSION
In this section, we discuss the limitations of this research and hint at

some potential starting points for future works; the actual starting

points for future works are discussed in further detail in Section 9.

Event attendance. In this research, we have operated under the

assumption that the events’ venue capacities, in combination with

the type of the event, were adequate indicators of the eventual

attendance of the event; however, the opposite has proved to be true.

Santanam et al. [28], for example, showed a direct linear relationship

between event attendance and the amount of extra passengers using

public transportation at a few selected stations, the relationship

between the events’ venue capacities and the extra passengers

shown in Section 4 is a lot more fuzzy and does not show such a

clear linear relationship.

Data quantity. As is visible in Table 2 in Section 5, events are

under-represented in both datasets, but even more so in the NS

dataset than the BART dataset. That events are under-represented

in the NS dataset is evident from the fact that the difference in

performance between forecasting with and without event data

under event conditions is significantly larger than those in the

BART dataset. Therefore, the limited number of events scraped for

the NS dataset was definitely too few to properly train forecasting

algorithms.

Modes of transport. This research only covers the rail network

in the California Bay Area and a part of the train network in the

Netherlands. In reality, however, the commute of a passenger often

does not stop at the destination station, but a passenger often uses a

secondary form of transportation (like walking, cycling, bus, metro,

taxi, et cetera) to arrive at their destination; for example at station

Arnhem Centraal, which is also represented in for the NS, which

observed that 30% of alighting passengers continued their trip by

bus in 2022 [19]. Back in Section 4, we saw the number of events

we could match with significant peaks in passenger flow decreased

significantly as the distance to the event location increased. So,

while these passengers might have travelled using the BART public
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(a) Overall forecasting performance. (b) Forecasting performance under event conditions.

Figure 26: Comparison of the forecasting performance on the NS test dataset between weights trained on the NS training set
versus weights trained on the BART training set.

transportation network, we were not able to detect their presence

in the data because not all of themwould have arrived at the nearest

BART station.

8 CONCLUSION
This research has tested and compared various forecasting algo-

rithms and the impact of features pertaining to large events for

passenger flow forecasting under different conditions. While the

hypothesis of a positive performance impact of the event-related

features in passenger flow forecasting cannot be accepted based on

the results of this research, there have been some indications that

including large events in passenger flow forecasting algorithms

might yield improved forecasts under event conditions given the

better event-indicators.

All of the selected forecasting algorithms performed admirably

overall, but there were significant performance improvements for

the MLP-based model architectures (namely the MLP and GNN

algorithms). The Hybrid MLP algorithm, while having an MLP com-

ponent, does not show these overall performance improvements;

since the auto-regressive part of the Hybrid forecasting algorithms

is bottlenecked by a single neuron output, which is not the case for

the MLP and GNN algorithms, this indicates that there are more

complex relationships in the past observations that cannot be solved

by SARIMA or a single neuron and require multiple neurons (and

potentially multiple layers of neurons) to model correctly.

The main problem of this research, however, lies in the fact

that the currently selected event-related features are not enough

to model the number of passengers in public transportation that

are caused by events, as was already indicated by the non-linear

results obtained in Figure 7 of Section 4. Presumably, one needs to

obtain the actual (or anticipated) attendance of the event in order to

correctly model the amount of extra passengers caused by the event;

even though the linear relation showed by Santanam et al. [28] only

accounts for two types of sport events at two train stations, it is

likely that the linear relationship extends beyond the scope of the

research by Santanam et al. [28].

That being said, event conditions are relatively rare, especially

for larger events, so obtaining a dataset with enough large events

for forecasting algorithms to learn their behaviour might be hard.

Luckily, it was observed that algorithms with weights transferred

from the BART dataset showed decent out-of-the-box performance

on the NS dataset. Therefore, there is a lot of potential for using

Transfer Learning in the case that the target dataset is insufficient.

9 FUTUREWORK
This section gives some pointers for future works based on the

limitations of this research, as discussed in Section 7, and experience

gained from doing this research.

Event data. As discussed in Section 7, venue capacity is not a

good enough indicator for actual event attendance and, therefore,

limits the potential performance of the different forecasting ap-

proaches used in this research. Future research into passenger flow

forecasting under event conditions or public transportation network

operators should approach various event/music/theatre locations

to get a proper dataset of events along with attendance estimates.

Santanam et al. [28] showed a linear relationship between event

attendance and extra passengers in public transportation for a

small set of large sports events; if this relationship holds for many

other types and sizes of events, then event attendance should be an

excellent indicator for additional passengers in public transport.

Feature selection. The exogenous features selected for events in

this research are based on some basic domain knowledge of the

author. Many different target demographics of events will have dif-

ferent preferences and patterns when it comes to travel preferences.

However, this is just one example of the many factors impacting

the usage of public transportation for travel to and from events. So

this means that there are potentially many better features to use

for passenger flow forecasting under event conditions. Therefore, a

possible direction of future work is to do a data analysis to inves-

tigate which external factors influence the number of additional

passengers in public transport due to events.

Transfer learning. This research’s small weight transfer exper-

iment showed some decent out-of-the-box performance; transfer
learning [23] using pre-trained weights from other datasets could

offer better results for smaller datasets or require less computa-

tional power to converge to an optimum for the target dataset. This

might be a solution in the case of forecasting under event condi-

tions, as large impactful events are less common and will require

more samples to learn properly.

Federated learning. Continuing in the direction of trainingweights
on multiple datasets yields the next opportunity for future work.

As was seen in the small transfer learning experiment, the out-of-

the-box forecasting performance of transferred weights was quite

decent even though the two datasets concerned strictly different
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public transport networks from different socio-political environ-

ments. If this same thing works for manymultiple public transporta-

tion networks, then there could be opportunities for inter-operator

collaboration, in which multiple public transport operators would

train a forecasting algorithm together, which would be able to fore-

cast passenger flow on all of their respective networks. One of the

ways to achieve this is through federated learning [13], in which

multiple parties train the weights of a shared Machine Learning

model without sharing each party’s private dataset with any of the

other parties involved. Future work could look into the feasibility

of such a cooperation between operators.

Multi-modal transportation. As mentioned in the discussion in

Section 7, this research only considers a single mode of transporta-

tion. In contrast, public transportation commutes might often use

a secondary mode of transport after arriving at their destination

station. Some future work might look into this by accounting for

more favourable connections to secondary modes of transport pas-

sengers might use to get to their event; proper attribution of the

likely alighting station for passengers attending an event might

improve the performance of passenger flow forecasting under event

conditions.

Model architectures. Finally, there are some potential improve-

ments for the architectures of the various Machine Learning models

applied in this research:

Bottleneck in Hybrid algorithms In the current implemen-

tation of the Hybrid algorithms, there is a single scalar

output of the SARIMA component to the deviation fore-

casting component; this bottleneck is not present in the

MLP model architecture, which performs significantly bet-

ter. Therefore, a slightly larger bottleneck (in the form of a

small vector) could be tried to see whether it would increase

the performance of the Hybrid model architectures.

Attention The current GNN approach is based on a Message

Passing Graph Neural Network, which – in this implemen-

tation – treats all incoming messages equally. However,

spatial influences from one connection might be less im-

pactful than those from another. Therefore, an attention

component could be added to tune the different levels of

importance of spatial information from neighbouring con-

nections.

REPRODUCIBILITY
The results obtained in this research can be reproduced as both the

code and one of the datasets are publicly available online:

- The BART dataset is published by San Francisco Bay Area

Rapic Transit District [26] under the Creative Commons
Attribution License (cc-by):
bart.gov/about/reports/ridership

- The code used in this research is copyrighted by Info Sup-

port B.V. and published under the Apache-2.0 license on

GitHub:

github.com/jeffreybakker/passenger-flow-forecasting
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A VISUALIZED PASSENGER FLOW
The figure below, Figure A.1, visualizes passenger flow in the BART network throughout the day on 2022-06-20:

(a) 00:00 - 01:00 (b) 01:00 - 02:00 (c) 02:00 - 03:00 (d) 03:00 - 04:00 (e) 04:00 - 05:00 (f) 05:00 - 06:00

(g) 06:00 - 07:00 (h) 07:00 - 08:00 (i) 08:00 - 09:00 (j) 09:00 - 10:00 (k) 10:00 - 11:00 (l) 11:00 - 12:00

(m) 12:00 - 13:00 (n) 13:00 - 14:00 (o) 14:00 - 15:00 (p) 15:00 - 16:00 (q) 16:00 - 17:00 (r) 17:00 - 18:00

(s) 18:00 - 19:00 (t) 19:00 - 20:00 (u) 20:00 - 21:00 (v) 21:00 - 22:00 (w) 22:00 - 23:00 (x) 23:00 - 00:00

Figure A.1: Visualized passenger flow throughout the day on 2022-06-20 in the BART dataset, where blue indicates very few
passengers and red a lot of passengers.

23



B SARIMA ORDER SELECTION
This appendix covers how the order (𝑝,𝑑,𝑞) (𝑃, 𝐷,𝑄 )𝑚 for the SARIMA models is determined, namely by interpreting the data’s stationarity, autocorrelation
and partial autocorrelation as described by Hyndman and Athanasopoulos [10]. In this appendix, we focus on a single connection in the BART dataset in 2022,
namely between stations Embarcadero and West Oakland, and assume that the patterns on this connection are indicative of the rest of the network.

Stationarity. Whether the data is stationary is determined using the Augmented Dickey-Fuller test (ADF) at significance level 𝛼 = 0.05; the null-hypothesis

of the ADF test is that the time series data has a unit root, and therefore would be non-stationary.

The null hypothesis is not rejected (p-value = 0.1226); therefore, the time series data is non-stationary, and we will select a differencing order of 𝑑 = 1.

AR and MA order. The figure below (Figure B.1) shows the autocorrelation and partial autocorrelation: The autocorrelation gives for every lag 𝑘 the

correlation between 𝑦𝑡 and 𝑦𝑡−𝑘 for all 𝑡 in the dataset; and the partial autocorrelation, which is similar, but accounts for the influences of lags 1, 2, . . . , 𝑘 − 1

and is therefore a metric of the new information that lag 𝑘 brings.

(a) Autocorrelation (b) Partial autocorrelation

Figure B.1: Autocorrelation and partial autocorrelation on edge-level passenger flow from stationWest Oakland to Embarcadero.

Due to the sinusoidal resemblance of the autocorrelation plot (Figure B.1a), we will select an Auto-Regressive (AR) model over a Moving-Average (MA)

model; therefore, we set 𝑞 = 0. Then, observing the partial autocorrelation plot (in Figure B.1b), we select an auto-regressive order of 𝑝 = 23 as it is the last

significant partial correlation smaller than the seasonal lag (24) we will select in the next subsection.

B.1 Seasonal Order
As observed in Figure B.1b, there is a strong seasonal pattern with a wavelength of 24 lags; therefore, the seasonal lag of𝑚 = 24 has been selected for the

SARIMA model. Then, similarly to what we did for the regular ARIMA order, we will determine the seasonal order, but this time on a set of every 24
th

observation.

This time, the null hypothesis of the ADF test is rejected (p-value = 0.0232); therefore, the seasonal data is stationary, and we select a seasonal differencing

order of 𝐷 = 0.

(a) Seasonal autocorrelation (b) Seasonal partial autocorrelation

Figure B.2: Seasonal autocorrelation and partial autocorrelation on edge-level passenger flow from stationWest Oakland to
Embarcadero for a seasonality of 24.

Similarly, from observing Figure B.2, we set𝑄 = 0 and 𝑃 = 7. So, with these final two parameters, we have selected order (23, 1, 0) (7, 0, 0)24 for SARIMA in

the BART dataset; the order of the NS dataset is found using the same methodology and is equal to (47, 1, 0) (7, 0, 0)48.
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C TRAINING TIMES
The table below (Table C.1) shows the training times for the various forecasting algorithms using an Intel(R) Core(TM) i7-12800H with a NVIDIA GeForce
MX550 GPU:

# Epochs Time per epoch Total training time
SARIMA 10 ∼ 7.4 min ∼ 1.2 hrs

SARIMAX 10 ∼ 9.6 min ∼ 1.6 hrs

LR 25 ∼ 9.4 min ∼ 3.9 hrs

MLP 25 ∼ 9.5 min ∼ 4.0 hrs

Hybrid LR 25 ∼ 9.6 min ∼ 4.0 hrs

Hybrid MLP 25 ∼ 9.5 min ∼ 4.0 hrs

GNN 50 ∼ 3.3 min ∼ 2.7 hrs

Table C.1: Training times for the forecasting algorithms.

D LEARNING CURVES
Table D.1 (on the next page) gives an overview of the improvement in the performance of the various algorithms on the training and validation datasets

during training.

All lines appear to have converged to their (horizontal) asymptote, suggesting that each forecasting algorithm has reached as much as there is to learn,

given the distribution of the dataset and the selected hyperparameters. For most models, all five lines (for the training or validation set separately) converge to

the same point, except for the GNN algorithm, for which at least one run has converged to a local optimum.

Furthermore, there was no sudden increase in validation errors as the training errors decreased. So, since the training set and validation set are strictly

separated (temporally), this suggests that none of the forecasting algorithms overfitted on the training data.
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BART NS
Algorithm RMSE MAE RMSE MAE

SARIMA

SARIMAX

Hybrid LR

Hybrid MLP

LR

MLP

GNN

Table D.1: 1-step forecasting performance of algorithms during training with training set in blue and validation set in orange.
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E COMPARISON OF FORECASTING PERFORMANCE
This appendix gives more detailed performance results for the averaged sets of weights per forecasting algorithm. It is meant to complement this thesis’s

results section (Section 6). The mean 𝜇 and standard deviation 𝜎 of the aggregated metrics per forecasting algorithm is given as 𝜇 ±𝜎 throughout this appendix.

First up is the overall forecasting performance of the various forecasting algorithms in Table E.1; looking at the MAE, RMSE and 𝑅2
metrics, all forecasting

algorithms have very stable results, except for the GNN approaches, which have significantly more variance between different sets of weights.

MAE MAPE (%) RMSE 𝑅2

W
it
ho

ut
ev

en
td

at
a

SARIMA 67.02 ± 0.67 101.76 ± 6.12 143.83 ± 0.24 0.9616 ± 0.0001
SARIMAX 67.36 ± 0.26 110.49 ± 2.60 144.03 ± 0.24 0.9615 ± 0.0001

LR 67.59 ± 0.57 110.64 ± 8.47 144.72 ± 0.72 0.9611 ± 0.0004
MLP 50.94 ± 0.71 49.90 ± 2.24 103.55 ± 1.70 0.9801 ± 0.0007

Hybrid LR 67.29 ± 0.11 111.36 ± 1.62 143.95 ± 0.23 0.9615 ± 0.0001
Hybrid MLP 66.08 ± 0.11 78.94 ± 7.53 142.46 ± 0.28 0.9623 ± 0.0002

GNN 58.44 ± 1.11 66.26 ± 4.03 129.40 ± 5.37 0.9689 ± 0.0026

W
it
h
ev

en
td

at
a

SARIMA - - - -

SARIMAX 67.37 ± 0.25 110.50 ± 2.59 144.04 ± 0.23 0.9615 ± 0.0001

LR 67.72 ± 0.57 110.67 ± 8.47 144.80 ± 0.65 0.9611 ± 0.0004
MLP 51.14 ± 0.69 49.94 ± 2.24 103.90 ± 1.71 0.9799 ± 0.0007

Hybrid LR 67.35 ± 0.10 111.38 ± 1.62 143.96 ± 0.21 0.9615 ± 0.0001
Hybrid MLP 66.10 ± 0.12 78.97 ± 7.53 142.37 ± 0.34 0.9624 ± 0.0002

GNN 58.42 ± 1.12 66.27 ± 4.03 129.28 ± 5.36 0.9689 ± 0.0026
Table E.1: Difference in overall 1-step forecasting performance in the BART dataset.

Then, Table E.2 shows a different subset of the testing data; therefore, the results in this table cannot be directly compared to the previous table. Since this

table zooms in on event conditions in the test dataset, the differences in performance of all the models are more significant as the entire goal of this table is to

show how the forecasting performance changes when including event data in the forecast. Surprisingly, the variance of the performance metrics between the

forecasts with and without event data is very similar.
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MAE MAPE (%) RMSE 𝑅2

W
it
ho

ut
ev

en
td

at
a

SARIMA 125.07 ± 1.54 14.93 ± 0.39 211.19 ± 1.00 0.9588 ± 0.0004
SARIMAX 121.42 ± 2.44 14.66 ± 0.15 205.76 ± 4.44 0.9608 ± 0.0013

LR 115.51 ± 1.16 15.73 ± 0.12 197.66 ± 2.24 0.9635 ± 0.0007
MLP 91.78 ± 1.37 13.41 ± 0.25 161.11 ± 2.43 0.9765 ± 0.0005

Hybrid LR 115.57 ± 1.26 15.05 ± 0.16 198.08 ± 2.38 0.9619 ± 0.0006
Hybrid MLP 114.07 ± 0.38 15.54 ± 0.21 196.46 ± 1.29 0.9621 ± 0.0007

GNN 102.05 ± 2.11 14.44 ± 0.24 182.42 ± 4.57 0.9714 ± 0.0014

W
it
h
ev

en
td
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a

SARIMA - - - -

SARIMAX 121.51 ± 2.47 14.68 ± 0.15 205.95 ± 4.49 0.9607 ± 0.0014

LR 118.24 ± 1.13 16.37 ± 0.19 198.96 ± 1.81 0.9630 ± 0.0006
MLP 96.48 ± 0.90 14.26 ± 0.14 166.55 ± 2.44 0.9749 ± 0.0005

Hybrid LR 116.83 ± 1.28 15.35 ± 0.16 198.36 ± 2.39 0.9618 ± 0.0006
Hybrid MLP 116.12 ± 0.50 16.20 ± 0.20 197.14 ± 1.72 0.9619 ± 0.0009

GNN 102.66 ± 2.18 14.57 ± 0.18 182.77 ± 4.77 0.9713 ± 0.0014
Table E.2: 1-step forecasting performance under event conditions in the BART dataset.

The final table for the BART dataset is Table E.3, which shows the MAE of the forecasts of the various forecasting algorithms as the forecast goes further

into the future. Unsurprisingly, for most models, the standard deviation (and thus the variance) increases for forecasts further into the future.

1 hour 6 hours 72 hours

SARIMA 67.02 ± 0.67 75.28 ± 1.10 80.07 ± 1.84
SARIMAX 67.37 ± 0.25 76.10 ± 0.45 81.26 ± 0.97

LR 67.72 ± 0.57 76.55 ± 0.82 82.12 ± 1.08
MLP 51.14 ± 0.69 63.28 ± 1.19 67.41 ± 1.85

Hybrid LR 67.35 ± 0.10 75.58 ± 0.08 80.09 ± 0.41
Hybrid MLP 66.10 ± 0.12 73.37 ± 0.16 77.48 ± 0.63

GNN 58.42 ± 1.12 66.79 ± 1.18 69.59 ± 1.37
Table E.3: Comparison of multi-step rolling forecasting performance in the BART dataset measured with MAE over the entire
network.

E.1 NS Dataset
Continuing to the NS dataset, Table E.4 gives the overall forecasting performance of the forecasting algorithms. One thing that stands out is that – in contrast

to the BART dataset – the SARIMA model has the lowest standard deviation across most performance metrics compared to the rest of the forecasting

algorithms. The standard deviation of the GNN algorithm is the biggest, which is quite logical, considering this approach converged to many different local

optima (as seen in Appendix D).
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MAE MAPE (%) RMSE 𝑹2
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SARIMA 82.79 ± 0.17 28.51 ± 0.20 125.88 ± 0.23 0.7897 ± 0.0008
SARIMAX 80.00 ± 0.24 26.90 ± 0.04 122.62 ± 0.29 0.8004 ± 0.0010

LR 78.85 ± 0.26 24.89 ± 0.02 126.37 ± 0.33 0.7880 ± 0.0011
MLP 72.95 ± 1.89 23.43 ± 1.00 114.11 ± 2.68 0.8271 ± 0.0082

Hybrid LR 78.62 ± 0.42 24.92 ± 0.03 126.06 ± 0.51 0.7890 ± 0.0017
Hybrid MLP 75.15 ± 0.97 24.45 ± 0.32 117.91 ± 1.83 0.8154 ± 0.0057

GNN 82.87 ± 8.95 27.57 ± 4.19 127.92 ± 14.84 0.7804 ± 0.0541
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SARIMA - - - -

SARIMAX 80.00 ± 0.24 26.91 ± 0.04 122.62 ± 0.30 0.8004 ± 0.0010

LR 79.49 ± 0.29 25.21 ± 0.04 126.92 ± 0.37 0.7861 ± 0.0012
MLP 73.62 ± 1.91 23.72 ± 0.99 114.72 ± 2.67 0.8252 ± 0.0082

Hybrid LR 79.27 ± 0.46 25.23 ± 0.04 126.60 ± 0.55 0.7872 ± 0.0019
Hybrid MLP 76.09 ± 0.88 24.90 ± 0.34 118.90 ± 1.69 0.8123 ± 0.0053

GNN 82.87 ± 8.95 27.57 ± 4.19 127.93 ± 14.84 0.7804 ± 0.0541
Table E.4: Difference in overall 1-step (30minutes) forecasting performance on the NS dataset.

The situation concerning the standard deviation of the forecasting metrics is slightly different under event conditions, as seen in Table E.5. However, the

GNN algorithm still stands out, with a significantly larger standard deviation across all metrics.

MAE MAPE (%) RMSE 𝑹2

W
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ut
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a

SARIMA 72.33 ± 1.01 28.15 ± 0.43 92.84 ± 1.30 0.7703 ± 0.0065
SARIMAX 66.53 ± 0.24 25.46 ± 0.12 86.48 ± 0.44 0.8006 ± 0.0020

LR 54.04 ± 0.61 20.53 ± 0.37 70.12 ± 0.70 0.8723 ± 0.0061
MLP 50.91 ± 2.07 18.99 ± 1.06 67.17 ± 2.01 0.8873 ± 0.0068

Hybrid LR 54.12 ± 0.45 20.88 ± 0.11 70.19 ± 0.52 0.8683 ± 0.0019
Hybrid MLP 53.75 ± 0.83 21.51 ± 0.52 69.60 ± 0.96 0.8705 ± 0.0036

GNN 62.99 ± 16.72 23.31 ± 6.11 83.49 ± 22.78 0.8167 ± 0.1095

W
it
h
ev

en
td

at
a

SARIMA - - - -

SARIMAX 66.55 ± 0.34 25.60 ± 0.26 86.47 ± 0.57 0.8006 ± 0.0028

LR 63.87 ± 1.05 25.30 ± 0.55 83.92 ± 1.63 0.8171 ± 0.0080
MLP 61.40 ± 2.28 23.49 ± 0.97 81.85 ± 3.74 0.8326 ± 0.0147

Hybrid LR 63.66 ± 1.21 25.57 ± 0.55 83.48 ± 1.79 0.8137 ± 0.0080
Hybrid MLP 67.64 ± 1.92 28.12 ± 1.12 91.17 ± 3.01 0.7776 ± 0.0148

GNN 63.03 ± 16.70 23.31 ± 6.11 83.54 ± 22.75 0.8165 ± 0.1094
Table E.5: 1-step (30minutes) forecasting performance under event conditions around station Q in the NS dataset.

The same trend continues in the final table of this subsection, Table E.6. Moreover, just like for the BART dataset, the standard deviation of the MAE

increases as the forecasts go further into the future.
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30 minutes 1 hour 6 hours 72 hours

SARIMA 82.79 ± 0.17 99.25 ± 0.18 119.13 ± 0.38 139.30 ± 0.60
SARIMAX 80.00 ± 0.24 95.37 ± 0.35 116.46 ± 0.78 153.91 ± 1.48

LR 79.49 ± 0.29 95.77 ± 0.39 122.46 ± 1.50 179.99 ± 8.28
MLP 73.62 ± 1.91 83.90 ± 3.22 119.15 ± 14.79 160.33 ± 16.17

Hybrid LR 79.27 ± 0.46 95.45 ± 0.63 121.24 ± 2.25 173.86 ± 12.85
Hybrid MLP 76.09 ± 0.88 90.84 ± 1.99 127.40 ± 7.24 164.70 ± 21.86

GNN 82.87 ± 8.95 99.67 ± 7.88 126.63 ± 10.39 182.35 ± 37.23
Table E.6: Comparison of multi-step rolling forecasting performance measured with MAE over the entire network in the NS
dataset.

E.2 Transferred Weights
Finally, this subsection shows the out-of-the-box forecasting performance on the NS dataset of all forecasting algorithms with weights trained on the BART

dataset. Similarly to what was concluded in Section 6, even though the results lie within the same ballpark, the out-of-the-box performance of the forecasting

algorithms with transferred weights is measurably worse than the performance of the forecasting algorithms trained on the NS dataset and tested on the NS

dataset. This becomes abundantly clear when looking at the results in Tables E.7 and E.8.

However, one thing that stands out is how the out-of-the-box long-term multi-step rolling forecasts for the forecasting algorithms with transferred weights

(in Table E.9) are significantly better than the forecasts from the weights trained on the NS dataset (in Table E.6). Presumably, the weights from the BART

network have learned to properly take both daily and weekly seasonalities into account (as can be seen in Figure 18), whereas the weights trained on the NS

dataset leave some more significant correlations in residuals around 24 hours (48 lags) and 7 days (336 lags), as can be seen in Figure 25.

MAE MAPE (%) RMSE 𝑹2
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SARIMA 91.88 ± 0.60 35.90 ± 0.33 130.26 ± 0.76 0.7822 ± 0.0025
SARIMAX 91.62 ± 0.54 35.62 ± 0.17 129.76 ± 0.66 0.7839 ± 0.0022

LR 92.19 ± 1.13 35.69 ± 0.22 130.59 ± 1.42 0.7811 ± 0.0048
MLP 80.92 ± 1.14 28.21 ± 0.11 118.94 ± 3.83 0.8183 ± 0.0117

Hybrid LR 92.16 ± 0.53 35.81 ± 0.14 130.41 ± 0.61 0.7817 ± 0.0020
Hybrid MLP 91.34 ± 0.47 35.18 ± 0.19 130.53 ± 0.75 0.7813 ± 0.0025

GNN 91.48 ± 1.34 32.36 ± 0.89 133.68 ± 3.80 0.7705 ± 0.0131
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SARIMA - - - -

SARIMAX 91.61 ± 0.53 35.62 ± 0.17 129.75 ± 0.65 0.7839 ± 0.0022

LR 92.23 ± 1.10 35.72 ± 0.23 130.63 ± 1.39 0.7810 ± 0.0047
MLP 80.96 ± 1.14 28.21 ± 0.14 118.98 ± 3.87 0.8182 ± 0.0118

Hybrid LR 92.19 ± 0.53 35.83 ± 0.14 130.43 ± 0.61 0.7817 ± 0.0020
Hybrid MLP 91.32 ± 0.46 35.14 ± 0.19 130.53 ± 0.74 0.7813 ± 0.0025

GNN 91.49 ± 1.35 32.36 ± 0.90 133.70 ± 3.81 0.7704 ± 0.0131
Table E.7: Difference in overall 1-step out-of-the-box forecasting performance for weights trained on the BART dataset and
tested on the NS dataset.
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MAE MAPE (%) RMSE 𝑅2
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SARIMA 83.13 ± 0.68 32.35 ± 0.16 105.71 ± 0.84 0.7333 ± 0.0042
SARIMAX 83.19 ± 0.73 32.07 ± 0.20 106.43 ± 0.63 0.7296 ± 0.0032

LR 83.62 ± 1.54 32.05 ± 0.23 107.04 ± 2.02 0.7265 ± 0.0103
MLP 78.04 ± 5.33 28.83 ± 1.79 100.88 ± 4.29 0.7569 ± 0.0207

Hybrid LR 83.62 ± 0.59 32.13 ± 0.12 106.82 ± 0.70 0.7277 ± 0.0036
Hybrid MLP 81.29 ± 0.69 30.22 ± 0.27 103.50 ± 0.86 0.7444 ± 0.0043

GNN 84.12 ± 2.96 30.74 ± 0.51 108.92 ± 3.26 0.7167 ± 0.0169
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SARIMA - - - -

SARIMAX 83.10 ± 0.70 32.08 ± 0.20 106.26 ± 0.60 0.7305 ± 0.0031

LR 84.54 ± 0.97 32.62 ± 0.26 108.10 ± 1.28 0.7211 ± 0.0066
MLP 78.30 ± 5.08 28.67 ± 1.17 101.48 ± 3.20 0.7541 ± 0.0155

Hybrid LR 84.33 ± 0.57 32.43 ± 0.14 107.45 ± 0.62 0.7245 ± 0.0032
Hybrid MLP 81.17 ± 0.77 29.73 ± 0.26 103.71 ± 1.24 0.7433 ± 0.0061

GNN 84.31 ± 2.88 30.73 ± 0.47 109.30 ± 3.23 0.7147 ± 0.0168
Table E.8: 1-step out-of-the-box forecasting performance under event conditions around station Q for weights trained on the
BART dataset and tested on the NS dataset.

1 hour 6 hours 72 hours

SARIMA 91.88 ± 0.60 105.96 ± 0.69 105.56 ± 1.37
SARIMAX 91.61 ± 0.53 105.31 ± 0.78 105.38 ± 1.21

LR 92.23 ± 1.10 106.35 ± 1.46 107.02 ± 2.39
MLP 80.96 ± 1.14 105.82 ± 1.03 108.30 ± 0.25

Hybrid LR 92.19 ± 0.53 106.32 ± 0.69 106.80 ± 1.20
Hybrid MLP 91.32 ± 0.46 106.54 ± 0.64 107.92 ± 0.90

GNN 91.49 ± 1.35 103.48 ± 1.07 108.65 ± 2.53
Table E.9: Comparison of out-of-the-box multi-step rolling forecasting performance measured with MAE over the entire
network for weights trained on the BART dataset and tested on the NS dataset.
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