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ABSTRACT
Creating client-specific care plans is a complex task where mistakes

are easily made, especially by inexperienced caregivers. Supervised

machine learning models can support these caregivers by suggest-

ing relevant actions for client-specific care plans. In this research,

four different algorithms (ML-KNN, MLP, BR-SVM and BR-RF) are

compared to determine whether supervised machine learning can

provide actions based on scalar data of EHRs of clients. This is a

multi-label classification problem. These algorithms suggest actions

for clients with one of three illnesses: heart failure, dementia and

diabetes. The BR-RF has the highest weighted F1-score (0.78 for

heart failure, 0.67 for dementia and 0.63 for diabetes), precision

(0.89 for heart failure, 0.84 for dementia and 0.84 for diabetes) and

recall (0.53 for heart failure, 0.62 for dementia and 0.63 for diabetes)

on the test set. Furthermore, the created care plans of the BR-RF are

compared to experienced caregivers’ care plans. The comparison

shows that there is promise in the models, but that they are not

performing well enough. Out of eight caregivers, five preferred the

model’s care plans for heart failure clients, one selected the model’s

care plan for a client with dementia and none chose the model’s

care plan for clients with diabetes. The models cannot currently

be implemented in a real-life situation based on the values of the

performance metrics and the results of the comparison between a

model’s and an experienced caregiver’s care plans.
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1 INTRODUCTION
Approximately 585,000 people in the Netherlands use home care

services regularly [1]. All these people (from now on called ‘clients’)
need a personal care plan drawn up by caregivers to ensure they

receive the personal care they need. Multiple organisations pro-

vide platforms to monitor the Electronic Health Records (EHRs) to

support the creation and registration of these care plans. One of

these organisations is Ecare, which offers a platform called ‘PUUR.’,
an environment where caregivers can create and keep track of the

individual care plans of every client. These care plans are designed

using the ‘Omaha Classification System’, which looks at different

predefined areas related to a specific client’s well-being to define ac-

tions for the care plan. Unfortunately, Ecare notices that caregivers

find it challenging to apply the Omaha system correctly. Before we

elaborate on the problem description, we explain PUUR and the

Omaha System to provide the needed background information.

1.1 PUUR.
The idea of PUUR is to give caregivers the freedom and responsi-

bility to register the EHR of a client themselves by following a set

of easy steps. The advantage of PUUR with respect to other EHR

platforms is that caregivers keep track of information during all

the steps of a client’s EHR, from registering a client to evaluating

and keeping track of appointments. Caregivers are also flexible

in changing a care plan or adding new information when needed.

They keep track of the following items to ensure a complete EHR

for each client:

• Personal information: A client’s personal information is

stored (e.g. date of birth, address and general practitioner).

• History: The important activities of a client can be saved here

on a timeline. These activities do not have to be healthcare-

related, but can also cover personal moments. The client and

caregiver can both view and adjust this timeline.

• Care moments: The caregiver can add and keep track of ac-

tions in the form of a planning and notes.

• Main dossier: This is the most important item for this research.

The main dossier creates assessments and the main care plan

for each client. These are created using the Omaha System,

which is explained below. How Omaha is translated into PUUR

is explained in Section 1.3.

Caregivers must justify each action to ensure quality, which is

realised by applying the Omaha System.

1.2 The Omaha System
The Omaha System [3, 4] is a classification system to record clients’

health status, actions, and (medical) measurements. It consists of

three main components: the problem classification scheme, the

intervention scheme and the problem rating scale for outcomes.

These three components are briefly explained below. Figure 1 shows

the flow of the schemes in relation to each other.

• The problem classification scheme: This scheme consists

of 42 health concepts that are divided into four domains: En-

vironmental, Psychological, Physiological and Health-related

behaviours. Every concept is described with a unique set of

signs and symptoms that are either present or not present.

• The intervention scheme: This scheme is used to determine

specific actions for each health concept. The scheme comprises

four levels: problem, category, target and care description. The

problem level consists of all the concepts of the problem classi-

fication scheme. The category level is made up of four action

types: teaching/guidance/counselling, treatments and proce-

dures, case management and surveillance. The target level con-

sists of 76 terms that specify what a caregiver needs to do to



Figure 1: Flowchart of the Omaha system [2]

improve a concept. The care description allows for providing

extra-textual information.

• The problem rating scale for outcomes: This scheme con-

sists of three scales to rate the client’s knowledge, behaviour

and status about a specific problem. For every chosen concept,

these scales filled out twice: once for the current situation and

once for the desired situation.

With Omaha, every care-related problem can be categorised. The

fundamental idea behind Omaha is to work structurally and to

justify the defined actions.

1.3 The Omaha System in PUUR.
Omaha is used to systematically define assessments and care plans,

which are specified in the main dossier of PUUR. Every caregiver

follows a set of required steps, ensuring that Omaha is appropriately

applied. Figure 2 shows this workflow.

The dossier consists of five main parts. First, a caregiver fills out a

client’s personal information in free text fields that can be linked

to one (or more) of the Omaha concepts. This allows caregivers

to really record client-specific information, which can be used to

understand a client’s situation and provide personal care. This is

the only step that is not compulsory.

Next, the assessment is filled out in five different steps. This as-

sessment follows the Omaha System and will form the basis of

the chosen actions in the care plan. First, the caregiver fills out

any illnesses and symptoms. After that, the caregiver chooses all

relevant concepts and specifies the signs that make the concept

visible (e.g. for the concept circulation, irregular heartbeat could

be a sign). Each chosen concept is also ranked on status, knowl-

edge, and behaviour. After selecting the concepts, the caregiver has

to estimate the time needed for the care. With this last step, the

assessment is completed.

Once the assessment is completed, the care plan is defined. For each

previously chosen concept, the caregiver has to create actions that

will cover the client’s needs. These actions are chosen using the

intervention scheme. Some actions are already predefined based on

the previously selected concepts and symptoms. A caregiver can add

a predefined action, but this is not mandatory. Furthermore, there

are 38 example care plans available: one for each illness/symptom.

These example care plans combine the Omaha System, national

guidelines, and expertise from the field and are updated frequently.

A caregiver can use these as a starting point and see which actions

can be relevant for a certain combination of illness and concept.

An action in an example care plan is a combination of a concept, a

sort action and a target with some extra explanation of why this

action can be relevant. These plans ensure that a caregiver can gain

knowledge of the current healthcare standards easily and quickly.

After choosing the actions, the caregiver has to fill out why and how

the chosen actions will contribute to the well-being of the client to

ensure that every action contributes to the overall personal care.

The time planning is defined after the care plan is created. The

caregiver plans every action on the timeline to ensure that the

desired care is provided. Lastly, the rating scales are evaluated

whenever a caregiver deems this necessary. The caregiver keeps

track of these ratings in the evaluation section.

1.4 Problem description
The process of creating a care plan is quite complex. The complexity

leads to mistakes, especially when the Omaha system is not applied

properly. This can lead to incomplete or insufficient care plans.

Ecare notices that inexperienced caregivers make (a combination

of) the following mistakes:

• They choose concepts in which a client cannot improve (e.g.

the concept hearing, while a client is deaf and will never hear

again);

• They choose too few actions in a client-specific care plan and,

therefore, miss actions that contribute to the recovery of a

client;
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Figure 2: Workflow of the steps taken in the main dossier based on the Omaha System

• They choose the ‘sort action’ that does not match the situation

of the client (e.g. they choose the sort action ‘guidance’ for

a client that needs help with putting on clothes, while they

should choose ‘treatments and procedures, because they are

helping the client physically);

• They forget to add actions to a care plan that are less common,

but would make the care plan client-specific;

• They barely use the example care plans, even though these plans

follow national guidelines and cover all the possible actions

that correspond to a certain illness.

It is especially unfortunate that the example care plans are hardly

utilised, since these example plans contain many actions that are

often forgotten or wrongly implemented by caregivers. This re-

duces the quality of the client-specific care plan, while plans of

high quality that tackle the client’s problems are essential in health-

care. Lower quality of care plans can lead to insufficient care, which

leads to longer recovery times and higher costs. Furthermore, Ecare

notices a big difference in the quality of the client-specific care plans

between healthcare organisations and caregivers using their plat-

form. Even though every healthcare organisation receives training

when they start using the platform, Ecare sees that over time, some

caregivers seem to forget how to apply Omaha correctly within

PUUR.

Nonetheless, Ecare aims to support caregivers in creating care plans

of the highest possible quality, where all suitable actions are imple-

mented in the client-specific care plan. All relevant actions from the

example care plans should be implemented to obtain this. One way

to achieve this is to use the knowledge of experienced caregivers

who implement the suitable actions correctly and make this knowl-

edge available for every caregiver and healthcare organisation that

uses PUUR. This can be accomplished by offering suggestions for

relevant actions that are often forgotten or wrongly implemented

by inexperienced caregivers, based on the knowledge of these ex-

perienced caregivers and the example care plans. This will create a

moment for the inexperienced caregivers to reflect on the actions

they have already chosen and consider other suitable actions that

they may have forgotten or wrongly defined. Experienced care-

givers, however, do not have time to always assist inexperienced

caregivers. Therefore, models can be used to automate this process

of providing suggestions. To propose suggestions that are suitable

for a client-specific care plan, the EHR of that specific client needs

to be used, since the EHR contains the client-specific information.

Therefore, in this research, a model will be built to suggest suitable

actions based on the client’s characteristics. To define which ac-

tions are appropriate, previously defined care plans of experienced

caregivers from five healthcare organisations are combined with

the example care plans. This model uses two types of input, namely

knowledge of experienced caregivers to establish connections be-

tween the client’s characteristics and suitable actions, and EHRs

of new clients to propose suitable actions for this client. Since the

model needs predetermined data to find connections between a

client and appropriate actions, supervised machine learning is ap-

plied [5]. This leads to the following research question:

‘How accurately can a supervised machine learning model, trained on
care plans defined by experienced caregivers, suggest suitable actions
(a combination of action type, target and concept) based on example
care plans to create a client-specific care plan?’

These suggested actions are selected from the previously mentioned

example care plans based on the knowledge of these experienced

caregivers. This will guarantee that the proposed actions are valu-

able, fit a client’s symptoms and follow national guidelines. The

suggestions should on the one hand increase the quality of the plans

and, thus, the quality of healthcare. On the other hand, it should

decrease the time to create the care plans, since the suggestions

help with drawing up care plans.

The remainder of this article is structured as follows: In Section 2,

we review literature on imbalanced data and different supervised

machine learning models. In Section 3, we describe our applied

approach and explain the data processing and the implementa-

tion of the different chosen models. Section 4 shows the results of

our approach, which are discussed in Section 5 together with the
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drawbacks of this research and possible future research. Finally, we

conclude this research in Section 6.

2 LITERATURE
Since our work focuses on creating a model that can suggest mul-

tiple possible combinations of actions (i.e. labels) based on client

characteristics (i.e. independent features), we restrict this section

to multi-label supervised machine learning. Furthermore, we focus

on only scalar input data, since this research will be limited to

using the numerical and categorical data of the EHRs. First, this

section provides literature on imbalanced data, which is used as

input, because the number of occurrences of a specific action differs

greatly within the data. We do not restrict this literature research to

the healthcare domain, because processing data and implementing

machine learning models is a generic process that can be applied

to different fields of study. Multi-label classification has already

been successfully applied in other areas, such as recommendation

systems [6, 7, 8], genomics [9] and natural language processing [10,

11].

2.1 Multi-label imbalance
Imbalanced data is a common problem that affects the learning

process of any classification model when using a multi-labelled

dataset. In our research, certain actions are not as common as other

actions, which results in minority and majority classes (i.e. actions

that rarely occur versus actions that are frequently added to a care

plan). Since minority instances occur less frequently, prediction of

a minority class is scarce, and samples belonging to a minority class

are misclassified more often than samples belonging to a majority

class [12]. With multi-label classification, there are three possible

imbalance types [13]:

• Imbalance within labels: In this case, a label experiences

imbalance on its own. This manifests in many negative samples

(= 0) and little positive samples (= 1) within one label.

• Imbalance between labels: The frequency of positive in-

stances between the labels is considered for this type. The

number of positive instances may be higher in one label than

in another label, which causes imbalance between labels.

• Imbalance among the label-sets: A combination of labels is

often more frequent in a dataset than others. This implies that

some label-sets can be considered a majority while others are

considered a minority case.

There are four approaches to tackle the problems that arise with

multi-label imbalanced data: resampling data, classifier adaptation,

ensemble methods and cost-sensitive methods [13].

• Resampling data: Resampling data is the most common ap-

proach to handle an imbalanced dataset. With this approach,

the data is pre-processed to create a more balanced dataset

before it is used as input for a model. Resampling consists of

either undersampling [14], which removes samples from the

majority class, oversampling [15], which creates new samples

based on the minority class, or a combination of both. There

are two subcategories within resampling: random methods and

heuristic methods [13]. Randommethods randomly choose sam-

ples to delete or produce using undersampling or oversampling,

respectively. Because of the randomness of random resampling,

there is no consideration of the distribution of classes w.r.t.

each other. Random sampling is also more prone to replicating

noise, leading to a less robust model. With heuristic methods,

heuristic techniques are applied to find the proper samples to

delete or produce. These techniques will apply some rule to

choose which instance is altered. There are both downsides to

heuristic under and oversampling. With undersampling, one

is at risk of removing valuable data, especially if there is not

much data to begin with. With oversampling, the model is at

risk of overfitting, which results in a model that performs very

well on the train set, but poor on unseen data. It also does not

introduce new data, so it does not tackle the problem of lack of

data [16].

Research of Zeng [17] and Batista [18] show that a combina-

tion of over- and undersampling could be the solution. They

both use a combination of Synthetic Minority Oversampling

Technique (SMOTE) and Tomek-Links for over- and undersam-

pling, respectively. Their research shows that combining these

sampling techniques improves the performance of their mod-

els. They both first apply SMOTE and then Tomek-Links to

resample their data.

• Classifier adaptation:With classifier adaptation, the machine

learning algorithms are adapted to directly learn the distribu-

tions of the imbalanced data and incorporate that in the predic-

tions. One of the proposed classifier adaptations in literature is

the use of a min-max modular [19]. They break the classifica-

tion down into two class sub-problems. For each sub-problem,

a prediction can be made using a classification algorithm, after

which all classifiers are combined using the minimisation and

maximisation principles to generate predictions. Another ap-

proach is cross-coupling aggregation (COCOA) [20]. COCOA

combines binary and multi-class machine learning algorithms

to create predictions for each label.

• Ensemble methods: Ensemble methods [21] combine several

individual base models to generate a model that improves in

terms of generalisation and reduction of overfitting. Common

ensemble methods are based on binary relevance. Binary rel-

evance fits a model for every label separately and combines

those into one model. It does not consider the combination of

labels, but looks at each label on its own. On the one hand,

this type of modelling is less prone to overfit, but on the other

hand, it does not look at any relationship between labels [21].

Ensemble methods try to overcome the latter. One of those

binary relevance ensemble methods is Multi-Label Stacking

(MLS) [22] or 2BR, since it applies binary relevance twice. MLS

first fits separate models for all labels. After that, it fits a second

level of models, taking the outputs of all first-level models as

input for the second level. This ensures that the relationship

among the labels is taken into account.

Another ensemble method is the random forest of predictive

clustering trees (RF-PCT) [21]. It creates an ensemble with

clustering trees as classifier. Due to the random forest, every

classifier uses a different set of instances. To make a prediction,

the RF-PCT averages the output of all classifiers for each label

and applies a threshold to determine whether a label is present.

• Cost-sensitive methods: Cost-sensitive methods [23] use a

cost metric to link a certain cost to a misclassified sample to
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minimise the total cost. To tackle the imbalanced learning prob-

lem, higher costs are associated with the minority classes. This

approach is not typical for multi-label classification, due to the

fact that defining a cost matrix is very difficult and, most of the

time, the appropriate misclassification cost is unknown [24].

2.2 Multi-label classification models
When tackling a multi-label classification problem, there are two

different types of strategies, namely methods that process the labels

one by one (problem transformation methods) and methods that

handle multi-label data directly (algorithm adaptation methods)

[25]. One of the most popular and intuitive problem transformation

methods is binary relevance [26], where the multi-label problem

is divided into binary learning tasks, one for each label. Binary

relevance can be applied with different modelling techniques, such

as decision trees/random forest or support vector machines, and

using binary relevance is computationally cheap. However, the

downside of this approach is that it cannot take label dependency

into account.

An algorithm that considers label-dependency is the widely used

algorithm adaptation method Multi-label KNN (ML-KNN) [25, 27].

ML-KNN is the famous KNN algorithm adapted for multi-label

problems. ML-KNN finds the nearest neighbours of the instance

and takes the instances into account that at least have a positive

value for a specific label. Furthermore, ML-KNN can create a rank-

ing of the labels as output. According to Zhang [27], ML-KNN

outperforms a set of well-known multi-label algorithms, such as

BoosTexter and rank-SVM. ML-KNN considers label dependency

by operating in a multi-label space, and the neighbours it uses for a

given instance with unknown labels will inherently capture some

aspects of correlation between labels (i.e. if two instances are simi-

lar in their feature space, they will probably also have similarities

in their labels).

Another flexible but easy model that can be used for multi-label

classification is a multilayer perceptron (MLP) [28]. An MLP is

a neural network that consists of an input layer, one or multiple

hidden layers, and an output layer. The output layer consists of

the same amount of neurons as there are labels to predict, to be

able to predict each label simultaneously. MLPs can learn complex

non-linear relationships within data, which makes them suited to

handle high-dimensional input data and capture patterns in a multi-

label dataset. According to the work of Zhang [29] and Rajput [30],

an MLP and an ML-KNN have very similar performance. However,

due to the structure of both MLPs and ML-KNNs, they do not have

an explicit mechanism to capture label dependencies, but rather an

implicit one. This can result in models that do not entirely capture

the relationship between labels, unlike approaches that do take

label dependency explicitly into account. One of these approaches

to create explicit label dependency is to apply Label-Power set [31].

With this approach, each set of present labels is considered a single

label. This approach also has one major drawback, namely that the

newly created dataset experiences sparseness; the data is likely to

have a large number of optional labels, but only has a few instances

per label. Other types of models that also exploit label dependency

are label correlation models [32] or multi-dimensional Bayesian

network classifiers (MBCs) [33]. Unfortunately, the main drawback

of the latter is the high computational cost while finding the most

optimal network structure.

Computational cost is a challenge in general when working with

machine learning models. Law et al. [34] states that more complex

models are computationally expensive, whereas extremely simple

models may not be able to classify as desired. Thus, while creat-

ing a classifier, efficiency and simplicity should be considered and

handled simultaneously. Al-Jarrah et al. [35] states that while en-

semble methods (i.e. methods that combine multiple models into

one) improve performance, model complexity and computational

cost will grow exponentially if large-scale data is used. Since we

are working with a lot of client information, we have to consider

the balance of performance and computational cost when creating

a model that generates suggestions for care plans.

2.3 Contribution
Based on the literature, we will use resampling methods to resample

our data. With this method, we are flexible in choosing and compar-

ing different models in comparison with classifier adaptation and

ensemble methods where the resampling is incorporated into the

model itself. Furthermore, we choose resampling over cost-sensitive

methods, since we cannot define the cost matrix appropriately with

our data. Because a combination of SMOTE and Tomek-Links seems

successful [18, 17], we combine these two strategies to resample

our dataset.

To see the effect of label dependency and computational cost on the

performance of the models, we compare different models. We apply

Binary relevance in combination with SVM and random forest,

ML-KNN, and we build an MLP model. We will not look into label

powerset, due to the fact that our data is already sparse, and this

approach will only create an even sparser dataset. All the chosen

models are compared on their performance in terms of different

metrics (Section 3.5 shows which performance metrics are used).

Addressing the research question and the related work, the contri-

butions of this research will be as follows:

• We will demonstrate how to process EHR data that consists of

scalar (structured) data;

• We will show and provide insights if relatively computationally

inexpensive supervised machine learning algorithms can be

applied to give suggestions for actions;

• Our study is based on unique data, namely EHRs of five Dutch

home care organisations;

• We will demonstrate how care plans created using supervised

machine learning compare to care plans created by experienced

caregivers.

3 METHOD
In this section, we explain the method applied to design the super-

vised machine learning models. Figure 3 provides a short workflow

of the steps taken to create the models which is based on the work-

flow presented in [36]. Creating a multi-label supervised machine

learning model starts with gathering labelled data, in our case the

EHRs of clients. After that, the data needs to be processed to create

datasets that can be used as input for the models. Next, the data is

split into a train, validation and test group, after which the train and

validation data is resampled to create more even distributions over
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Figure 3: General workflow of the applied methodology based on [36]

the labels. This data is used as input to create and train the model.

Subsequently, the test data is used to determine the performance

of the models. Lastly, the care plans of the model with the high-

est performance will be compared to care plans of an experienced

caregiver.

3.1 Available data
Ecare has provided data from clients of five different healthcare

organisations that all use PUUR and the Omaha classification sys-

tem. These healthcare organisations apply the system correctly in

general, but to filter out any exceptions, only clients with at least

five actions in their care plan are considered. This number is based

on expert knowledge provided by Ecare. Furthermore, Omaha has

been used since 2017; thus, only patients registered in 2017 or later

are included. Since the example care plans are used as a basis and

cover only one illness at a time, three models are created for the

most common illnesses among the clients, namely dementia (10,702

clients), heart failure (6,286 clients), and diabetes (5,511 clients).

This will ensure that only relevant actions are suggested for a spe-

cific illness. We have chosen these three, since we want to see if

a model is generalisable for the most common illnesses and does

not only work for one specific disease. Furthermore, these three

illnesses have the most available data and are the most relevant

for the clients. Based on the example care plans, heart failure has

44 possible actions, dementia has 65, and diabetes has 49 possible

actions. These actions present the number of labels, where each

action is either present or not (binary variable).

Since we work with three different diseases and create three sep-

arate models, three different data sets have been made, one for

each disease. In these datasets, only the clients with said disease

are included. All three datasets consist of the independent features

presented in Table 1. We have not taken the symptoms of each

problem into account, because it creates highly sparse datasets,

which is undesirable due to the fact that sparse data is more likely

to overfit [37].

3.2 Data processing
To be able to design a model with the given data, the data needs to

be processed. The steps are discussed in the following subsections.

3.2.1 Change old codes to new codes.
The first step of the data processing consists of creating consistency

in the numerical codes used for the features. All diseases, problems,

targets, and sort actions have certain numerical encodings. Over

time, these encodings have changed, and it is essential to ensure

Figure 4: Example of transformation from vector feature to
binary features

that the same code has the samemeaning for every client. Therefore,

all the old codes are adjusted to the new encodings.

3.2.2 Filter actions on actions example care plans.
In this step, we have only kept the actions that are part of the

example care plans for the three diseases. So for heart failure, we

have filtered out the 44 relevant labels, for dementia 65 labels and

for diabetes 49 labels. This ensures that only relevant actions are

suggested for one of the specific diseases. These labels are the

dependent features, i.e. the features that will be predicted.

3.2.3 Delete duplicates.
The next step of the data processing is to remove any duplicate

rows, if present. If there is an exact duplicate, an evaluation of a

client of the exact same moment ended up twice in the database.

Duplicates will bias the model, which results in the model learning

extra patterns for the duplicate instances. No duplicate rows are

present in our three datasets, so we have not removed any entries.

3.2.4 Feature vectors to separate features.
To ensure that the features currently displayed as a vector can

be used as input for the models, we have split all vectors into

separate binary features. Figure 4 displays how these vectors are

split into binary features. This transformation is applied to the

features ‘Present illnesses’, ‘Present problems’, ‘Current status’, and

‘Target status’. We have also transformed the dependent features

to separate binary labels to create multi-label datasets.

3.2.5 Handling missing/unknown values.
Features with more than 10% missing data will be removed from

the dataset. If a specific client misses more than 50% of the features,

this client will also be removed. The remaining missing values

will be replaced based on the distribution of the present data for

categorical data and the mean of the feature for numerical data. In

all three datasets, no client misses more than 50% of the features,

so no clients are removed. Furthermore, the following adjustments

are made in the three datasets:
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Table 1: Description of independent features present in heart failure (n= 6,286), dementia (n= 10,702) and diabetes (n= 5,511)

Feature Description Datatype Values

Age Age of client in years Numerical

Range heart failure: [-23;141]

Range dementia: [-76; 141]

Range diabetes: [1; 123]

Sex Gender of client Categorical

1: man

2: woman

3: unknown

Civil status Client’s relationship status Categorical

0: unknown

1: not married

2: married

3: divorced

4: widower

5: registered partner

6: divorced

7: separated from registered partner

9: not married and no registered partner

NaN: not filled out

Living condition

Type of living arrangement

of client

Categorical

0: unknown

1: lives alone and independently

2: lives as child together with parent

3: lives with partner

4: lives with partner and children

5: lives with adult and children

6: other multi-person household

7: lives in care institution with residence

9: unknown

NaN: not filled out

Present illnesses

37 possible diseases that a client

can have next to the main disease

Binary vector

Length of vector: 39 possible illnesses that are either

present or not (binary variable)

Present problems

41 possible problems that a client

can have

Binary vector

Length of vector: 41 possible problems that are either

present or not (binary variable)

Current status

Current status that accompanies

present problem

Vector

Length of vector: 41 values for current status that

are filled out for each present problem

Range: [1;5]

NaN: not present

Target status

Desired status that accompanies

present problem

Vector

Length of vector: 41 values for target status that

are filled out for each present problem

Range: [1;5]

0: not filled out

NaN: not present

• Sex: For the heart failure dataset, there are five people with
unknown sex. These are replaced based on the existing dis-

tribution in this dataset, namely a probability of 0.42 for men

and 0.58 for women. The dementia dataset has seven people

with unknown sex, which are replaced based on the following

probabilities: 0.39 for men and 0.61 for women. The diabetes

dataset has seven people with unknown sex, which are replaced

based on the following distribution: a probability of 0.46 for

men and 0.54 for women.

• Civil status: The set threshold of 10% is not met for any dataset,

so this feature is removed from all three sets.

• Living condition: There are 5404 clients with NaN, two clients
with category 0 and 178 clients with category 9 in the heart

failure dataset. These are replaced based on the known proba-

bilities: 0.57 for category 1, 0.38 for category 3, 0.01 for category

4, 0.02 for category 5, and 0.02 for category 6.

In the dementia dataset, there are 7136 clients with NaN, 37

with category 0, and 148 with category 9. These are replaced

with the following probabilities: 0.51 for category 1, 0.44 for

category 3, 0.01 for category 4, 0.01 for category 5, 0.02 for

category 6, and 0.01 for category 7.

For diabetes, there are 3825 clients with NaN, five with cate-

gory 0, and 163 with category 9. These are replaced with the

following probabilities: 0.52 for category 1, 0.01 for category 2,

0.4 for category 3, 0.02 for category 4, 0.02 for category 5, 0.02

for category 6, and 0.01 for category 7.
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• Present illnesses: For each illness it is determined if it reaches

the set threshold of 10%. This results in 19 illnesses that are

removed from the heart failure dataset, 26 diseases removed

from the dementia dataset, and 19 diseases removed from the

diabetes dataset.

• Present problems: For every problem it is determined if the

threshold of 10% is exceeded. This results in 17 problems that are

removed from the heart failure dataset, 20 problems removed

from the dementia dataset, and 19 problems removed from the

diabetes dataset.

• Current status: The accompanying current status is removed

for every present problem that is removed.

• Target status: For each present problem that is removed, the

accompanying target status is also removed. Furthermore, for

all clients with a particular problem, a current status must be

filled out (see Section 1.3 for the explanation). The target status,

however, is optional. If the target status is not filled out for a

client, it is assumed that it is the same as the current status. The

target status and current status are further processed during

feature engineering.

3.2.6 Range of numerical features.
The only numerical feature is the age. Based on the type of clients

that need care and the oldest registered age in the Netherlands (115

years), we have changed the age of the clients younger than 50 and

older than 110. The age of these clients is replaced with the mean

value, which is 90 years for clients with heart failure, 89 years for

clients with dementia, and 87 years for clients with diabetes.

3.2.7 Feature engineering.
Four new features are created based on the available data:

• Number problems illness: This feature is a numerical feature

that shows the number of problems a client has that matches

the main illness;

• Number problems not illness: This feature is a numerical

feature that shows the number of problems a client has that do

not match the main illness;

• Number other illnesses: This feature is a numerical feature

that shows the total number of other illnesses a client has;

• Difference status: This feature replaces the current status

and target status to make the datasets less sparse. It shows

the difference between the current status and the target status,

i.e. the desired status progress of a client. Next, this feature is

binned into three categories. This is needed because zero is a

possible value, but does not represent the value ‘zero’, but the

value ‘not filled out’. To avoid a correlation between zero and

the other values, the values are categorised into three categories:

negative (values below -1), stable (values between and including

-1 and 1), and positive (values higher than 1).

3.2.8 Remove outliers.
We have removed outliers, since it increases model performance.

Outliers can only exist in numerical features and are defined as an

instance bigger or smaller than the mean ± 3 times the standard

deviation [36].

3.2.9 Feature scaling.
To make the optimisation process faster while training the model,

we have scaled the numerical features. The scaled features are

‘Age’, ‘Number problems illness’, ‘Number problems not illness’

and ‘Number other illnesses’. We have normalised the data using

the following standard equation, where 𝑥 displays a feature:

𝑥 ′ =
𝑥 −min(𝑥)

max(𝑥) −min(𝑥) (1)

3.2.10 One-hot encoding.
We have applied one-hot encoding to transform the categorical

features with more than two categories into binary variables. These

features are ‘Living condition’, ’Present problems’ and ’Present

illnesses’. This ensures that all categories within a feature have

equal importance and that the machine learning algorithms do not

misinterpret the categories for integers with a meaning.

3.2.11 Remove multicollinear parameters.
The variance inflation factor (VIF) is an indicator of multicollinear-

ity [37]. The lowest possible value for the VIF is 1, and a value of

10 or higher indicates a lot of collinearity between features. When

there is high correlation between independent variables, multi-

collinearity occurs. This phenomenon is undesirable, since it makes

the statistical inferences less reliable. If the VIF for one or multiple

features is higher than 10, we have removed the feature with the

highest VIF. We have repeated this process until all features have a

VIF lower than 10.

In general, the present problems have a very high VIF with their

matching difference in status. This makes sense, since a differ-

ence in status is only present if the problem itself is present as

well. Therefore, we have decided to split each dataset into two

new datasets: one dataset with the binary features that represent

whether a problem is present and one dataset with the binary fea-

tures that represent the desired difference between the current and

target situation. This leads to six new datasets in total.

Furthermore, we have removed one of the ‘Sex’ features that was

created during one-hot encoding, one of the ‘Living condition’ fea-

tures created after one-hot encoding, ‘Number of problems illness’

and ‘Number of diseases’ for the heart failure datasets. We have

removed one of the ‘Sex’ features created during one-hot encoding,

one of the ‘Living condition’ features created after one-hot encod-

ing and ‘Number of problems illness’ for the dementia and diabetes

datasets.

After processing the data, we have obtained the following datasets:

• Heart failure problem: 6,286 clients, 51 independent features
(Age, Sex, 5 features for Living condition, nr problems not

illness, 18 features for present illnesses, 25 features for present

problems) and 44 binary labels;

• Heart failure difference: 6,286 clients, 99 independent fea-
tures (Age, Sex, 6 features for Living condition, nr problems

not illness, 18 features for present illnesses, 72 features for

difference present problems) and 44 binary labels;

• Dementia problem: 10,702 clients, 43 independent features
(Age, Sex, 6 features for Living condition, nr problems not

illness, nr other diseases, 11 features for present illnesses, 22

features for present problems) and 65 binary labels;

• Dementia difference: 10,702 clients, 87 independent features
(Age, Sex, 6 features for Living condition, nr problems not
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illness, nr other diseases, 11 features for present illnesses, 66

features for difference present problems) and 65 binary labels;

• Diabetes problem: 5,511 clients, 50 independent features (Age,
Sex, 6 features for Living condition, nr problems not illness, 18

features for present illnesses, 23 features for present problems)

and 49 binary labels;

• Diabetes difference: 5,511 clients, 93 independent features

(Age, Sex, 6 features for Living condition, nr problems not ill-

ness, 18 features for present illnesses, 66 features for difference

present problems) and 49 binary labels.

3.3 Sampling data
As stated in Section 2.1, imbalanced data is a common problem that

affects the learning process of any classification model when using

a multi-labelled dataset. To tackle this problem, we have split the

datasets into a train and test group and only apply the sampling

strategy on the train dataset so that the models can be tested with

the actual data and not the sampled data. The datasets are split with

a ratio of 75/25 (train, test resp.). We have counted each disease’s

number of appearances per label in the train group, as shown in

Figure 5. The figure shows that there is a strong imbalance between

the labels regarding appearance (the label counts are the same for

the datasets with the problem and the difference).

We have applied SMOTE and Tomek-Links to resample the data

as explained in Section 2. Since we are working with a multi-label

dataset, SMOTE and Tomek-Links are extended to their multi-label

variant, namely Multi-label SMOTE (MLSMOTE) and Multi-Label

Tomek Links (MLTL). Below, the two strategies are elaborated on.

3.3.1 Multi-Label Synthetic Minority Over-sampling Technique.
For heuristic oversampling, we have applied MLSMOTE [38]. This

method uses interpolation of instances that belong to the nearest

neighbours to create new instances. The corresponding labels are

also based on the same nearest neighbours. By interpolating, dupli-

cates are mostly avoided. MLSMOTE uses two metrics to determine

the imbalanced labels: the imbalance ratio per label (IRLbl) and the

mean imbalance ratio (MeanIR). The IRLbl is calculated as follows:

IRLbl(𝑦) =
(𝑚𝑎𝑥
𝑦
′
𝜖𝐿

∑ |𝐷 |
𝑖=1

ℎ(𝑦′
, 𝑌𝑖 ))∑ |𝐷 |

𝑖=1
ℎ(𝑦,𝑌𝑖 )

(2)

With 𝐷 = multi-label dataset, 𝑌 = set of labels, 𝑌𝑖 = ith label, and

𝑦 = the specific label. The larger the IRLbl, the higher the imbalance

for the examined label. The MeanIR is calculated as follows:

MeanIR =
1

|𝐿 |

𝑌|𝑌 |∑︁
𝑦=𝑌1

IRLbl(𝑦) (3)

𝐿 shows the disjoint set of the labels. TheMeanIR shows the average

imbalance in a multi-label dataset. These metrics are both used to

identify imbalanced labels, identify majority and minority labels,

and determine the average level of imbalance. This is done with

the following steps:

(1) Determine the minorities using the IRLbl and the MeanIR. An

instance is a minority if the IRLbl(l) < MeanIR. This can be

interpreted as follows: the frequency of the label is below the

average, and is thus a minority.

(2) Choose a minority and find the nearest neighbours.

(3) Based on the neighbours, generate new features. For numerical

features, interpolation is used. For categorical features, the

category that appears most in the neighbours is chosen. If

multiple categories appear the most, a category is randomly

selected from these categories.

(4) Generate a new label set. For this, nearest neighbours are used.

If a label is present in half or more of the neighbours, it is

selected for the new label set.

3.3.2 Multi-Label Tomek Links.
For heuristic undersampling, we have applied the MLTL approach

[39]. MLTL preserves the relationship between samples across mul-

tiple labels, which is important for multi-label classification. MLTL

removes data points in four steps:

(1) Identify the nearest neighbours of each instance. The distance

or similarity is determined for each instance w.r.t. the other

instances.

(2) Determine majority-minority pairs where one instance belongs

to the majority and another to the minority across all labels

using the IRLbl and the MeanIR.

(3) For each majority-minority pair, check if the instances are

neighbours by setting a threshold for the distance.

(4) Remove the majority instance to improve the data balance for

each majority-minority pair.

We have first applied MLSMOTE and, afterwards, MLTL, as pro-

posed in Section 2.1. We have created 1000 oversamples for the two

heart failure datasets, 1200 oversamples for the dementia datasets

and 800 oversamples for the diabetes datasets based on trial and

error. After applying MLTL as well, this results in the distributions

visible in Figure 6, where the labels are sorted on the frequency.

The number of appearances is similar for the datasets with the

problems and the differences. The labels do not have the exact same

frequency after resampling, due to their dependency/correlation

between them. The labels with a higher number of appearances

correlate with a higher number of other labels than those with a

lower number of appearances. Resampling happens on a combined

level and not for each label independently.

3.4 Supervised machine learning algorithms
A prediction of relevant actions for a certain client is made using

four different models, namely ML-KNN, an MLP, Binary relevance

with SVM and Binary relevance with Random Forest, as discussed

in Section 2.3. In this case, an action is a combination of a problem,

target and sort action, as mentioned earlier. The models have been

built using Python. During training, the train set is divided into

a train and validation set using k-fold cross-validation with k=5.

Cross-validation is applied to mitigate overfitting by averaging the

performance over the five folds [37]. The hyper-parameters of each

model are all fine-tuned to find the ‘optimal’ settings for each model,

i.e. the settings that result in the highest combination of precision,

recall and F1-score.

3.4.1 Multi-label K-Nearest Neighbours (ML-KNN).
The first model that we have fitted is the ML-KNN. One hyperpa-

rameter needs to be tuned, namely the number of neighbours (K)

that is considered when a new instance is predicted. We have used
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(a) Heart failure (b) Dementia (c) Diabetes

Figure 5: Number of appearances of each label for each illness, sorted on frequency

(a) Heart failure (b) Dementia (c) Diabetes

Figure 6: Number of appearances of each label for each dataset after resampling, sorted on frequency

Table 2: Optimal number of neighbours for ML-KNN

Dataset Number of neighbours

Heart failure problem 4

Heart failure difference 5

Dementia problem 4

Dementia difference 6

Diabetes problem 5

Diabetes difference 5

a range of 2 to 30 with an increment of 1 to determine the most

suitable number of neighbours. Each dataset’s optimal number of

neighbours lies between four and six (Table 2).

3.4.2 Multi layer perceptron (MLP).
Since the problem at hand is a multi-label classification function, we

have used the ReLU activation function for the hidden layers, the

sigmoid activation function for the last layer, and the binary cross

entropy function as loss function [40, 41]. The number of input

neurons is the number of independent features, and the number of

output neurons is the number of dependent features, i.e. the number

of labels. S. Karsoliya [42] states that one or two hidden layers are

adequate to solve a non-linear complex problem. A third layer

can be added to increase the overall accuracy, but it also increases

complexity. Therefore, we have fitted 1-3 hidden layers. For the

number of neurons in each layer, we have used different settings

based on the following rule of thumb: ‘The number of hidden neurons
should be between the size of the input layer and the size of the output
layer’ [43]. This leads to the following ranges: heart failure problem:

40-50 with an interval of 5, heart failure difference: 40-100 with

an interval of 10, dementia problem: 40-70 with an interval of 10,

dementia difference: 60-90 with an interval of 10, diabetes problem:

40-50 with an interval of 5, and diabetes difference: 40-100 with an

interval of 10. Table 3 displays the optimal settings for each dataset.

3.4.3 Binary relevance with Random Forest (BR-RF).
Random forest applies multiple decision trees, which are combined

and averaged in the model. The combination of decision trees re-

duces the variance compared to using an individual decision tree

[37]. Therefore, random forest is preferred over decision trees. For

each label, we perform a grid search with the following settings:

• Number of estimators: The number of trees in the forest

(200-2000 with an interval of 200);

• Max features: the number of features consideredwhen looking

for a split (log2, sqrt);

• Max depth: The maximum depth of the tree (10-80 with an

interval of 10);

• Min samples split: The minimum number of samples required

to split a node (2, 5, 10);

• Min samples leaf: the minimum number of samples required

to be at a leaf node (1, 2, 5, 10);
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Table 3: Optimal settings for MLP

Dataset # neurons
first layer

Second
hidden layer

# neurons
second layer

Third
hidden layer

# neurons
third layer

Heart failure problem 50 True 45 True 45

Heart failure difference 100 True 80 False -

Dementia problem 70 True 70 True 70

Dementia difference 80 True 90 True 80

Diabetes problem 50 True 50 True 45

Diabetes difference 90 True 90 False -

• Bootstrap: If bootstrap samples are used (always True).

One of the possible combinations is chosen for each label, depending

on the label and the dataset. This results in 44 separate models for

the heart failure datasets, 65 models for the dementia datasets, and

49 models for the diabetes datasets.

3.4.4 Binary relevance with SVM (BR-SVM).
Support vector machines apply kernels to try and make the data

linearly separable. It is one of the more robust models for super-

vised learning, but data is rarely completely linearly separable, so

it is not used often [37]. Therefore, BR-SVM will have a different

performance for each label, which will influence the overall perfor-

mance of the model. For each label, the following parameters are

optimised using grid search:

• Estimator C: This is the regularisation parameter, which is a

hyperparameter that controls the trade-off betweenmaximising

the margin and minimising the classification error. For a high

C, the margin is ‘hard’, and fewer data points are allowed to

lay in the ‘wrong’ area (0.1, 1, 10);

• Estimator gamma: This presents the kernel coefficient (0.001,

0.01, 0.1, 1);

• Estimator kernel: Specifies the used kernel type (RBF, linear,

sigmoid).

One of the possible combinations is chosen for each label, depending

on the label and the dataset. This results in 44 separate models for

the heart failure datasets, 65 models for the dementia datasets, and

49 models for the diabetes datasets.

3.5 Performance measurements
To compare the performance of the different models and to see if

the models capture the knowledge of experienced caregivers, the

weighted precision, recall and F1-score are compared. We also look

at the hamming loss [44], which is a performance measurement

specifically for multi-label categorisation problems and looks at the

number of wrongly predicted labels over the complete prediction

set as follows:

1

nrSamples · nrLabels ·
∑︁

(predicted ≠ true) (4)

We want to achieve a high F1-score, precision and recall, but a

hamming loss that is as small as possible.

3.6 Testing in real-life environment
Based on the performance of the models, the model with the best

performance is applied in a real-life environment. Best performance

is here defined as the model with the highest F1-score, since this

metric is a balance between precision and recall. A comparison is

made between a care plan created using the best-performing model

and a care plan created by an experienced caregiver to see the

performance of the models with respect to experienced caregivers.

This is done as follows:

(1) eight caregivers of two healthcare organisations (five caregivers

from the first organisation and three caregivers from the second)

receive profiles of three clients, one with heart failure, one with

dementia and one with diabetes;

(2) For each client, the caregivers are presented with two care plans:

one drawn up by an experienced caregiver and one created by

the model. The caregivers do not know which care plan is

which;

(3) The caregivers decide which care plan is most suitable for the

client at hand. They also indicate if they would add/remove any

actions from the most suitable care plan;

(4) They can add any additional notes if needed.

To ensure that the two care plans can be compared, we have re-

moved any additional notes of the experienced caregiver concerning

the chosen actions, since this would indicate which care plan was

drawn up by the experienced caregiver.

Due to privacy, each organisation only receives clients from their

own database. So, in total, six clients are used (three clients of the

first organisation and three of the second organisation).

4 EXPERIMENTAL RESULTS
This section is divided into two parts: the performance of themodels

and the results of the best-performing model applied in a real-life

environment.

4.1 Performance models
The four performance measurements have been determined after

training the four different models on all six datasets.

Figure 7 shows the F1-score, precision and recall for both heart

failure datasets, where the problem dataset is visualised in blue

and the difference dataset in red. The figure shows that the BR-RF

model with the problem dataset has the highest F1-score (0.94 train,

0.78 test), precision (0.95 train, 0.89 test) and recall (0.56 train, 0.53

test). The figure also shows that the ML-KNN with the difference

dataset has the lowest performance with an F1-score of 0.59 and

0.43 (for train and test, resp.), a precision of 0.72 and 0.48 (for train

and test, resp.), and a recall of 0.56 and 0.43 (for train and test,
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Figure 7: Heart failure - Performance measurements of the train/validation and test split for both datasets

Figure 8: Dementia - Performance measurements of the train/validation and test split for both datasets

12



Figure 9: Diabetes - Performance measurements of the train/validation and test split for both datasets

Figure 10: Hamming loss for all three illnesses
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resp.). Furthermore, it shows that the test set’s performance with

the difference datasets is lower for each model compared to the

problem dataset. Lastly, the figure shows that for heart failure, the

models that use binary relevance as a principle (BR-RF and BR-

SVM) have a higher F1-score than those that predict all labels at

once (ML-KNN and MLP). This is due to the fact that the recall for

the BR models is higher, which indicates that these models predict

fewer false negatives.

For both dementia datasets, Figure 8 shows the F1-score, precision

and recall, where once again blue visualises the problem datasets

and red the difference datasets. For dementia, we see similar trends

comparable to the heart failure models. The BR-RF model with the

problem dataset is the model with the highest F1-score (0.87 - train,

0.67 - test), precision (0.89 - train, 0.84 - test) and recall (0.84 - train,

0.62 - test). The figure displays that the test set for the problem

datasets consistently outperforms the test set for the difference

datasets. The least performing model for dementia is the ML-KNN

with the difference dataset with an F1-score of 0.53 and 0.38, a

precision of 0.68 and 0.45 and a recall of 0.48 and 0.36 (all train and

test, resp.).

Figure 9 displays the F1-score, precision and recall for both diabetes

datasets, again in blue the problem datasets and in red the difference

datasets. For diabetes, there are also similar outcomes compared to

heart failure and dementia. The best-performing model for diabetes

is the BR-RF with problem dataset with an F1-score of 0.90 and 0.69,

a precision of 0.92 and 0.84, and a recall of 0.91 and 0.63 (all train

and test, resp.) Again, the test results of the difference datasets are

lower than those of the problem datasets. The worst performing

model for diabetes is again the ML-KNN in combination with the

difference dataset with an F1-score of 0.54 and 0.38, a precision of

0.69 and 0.45 and a recall of 0.50 and 0.37 (all train and test, resp.).

Lastly, we have looked at the hamming loss, visible in Figure 10.

The figure shows that the hamming loss for the test set is lowest

for the models that use the problem dataset as input compared to

those that use the difference dataset as input. This can be linked

to the higher performance measurements of the problem datasets,

since a higher precision and recall leads to a lower hamming loss.

All values for the train set of the problem datasets are below 0.1,

except for the BR-SVM model for dementia (0.13). For the test set

of the same dataset, all values are between 0.11-0.14, except for

the BR-RF models with values of 0.058, 0.09 and 0.07 (heart failure,

dementia and diabetes, resp.). Looking at the difference datasets, we

see a similar range for the train group with every value below 0.12.

With regards to the test group, however, the values are between

0.11-0.16.

4.2 Real-life environment
Based on the performance of the models, we have chosen BR-RF as

a model for all three illnesses. All three models use the ‘problem’

dataset as input, since these show the highest F1-score and the

lowest hamming loss for the BR-RF model. This model type is used

to create six care plans, two for each illness as explained in Section

3.6. Table 4 shows the number of actions present in the care plans

for every used client, one created by an experienced caregiver and

the other by the model. The last column shows the number of

Table 4: Number of actions in each care plan and number of
identical actions present in both care plans.

Illness
(# organisation)

Experienced
caregiver Model # identical

actions

Heart failure (1) 5 8 0

Heart failure (2) 7 8 3

Dementia (1) 10 16 4

Dementia (2) 4 12 2

Diabetes (1) 5 5 0

Diabetes (2) 7 7 1

Table 5: Number of caregivers that have chosen each client-
specific care plan

Illness
(# organisation)

Experienced
caregiver Model

Heart failure (1)
1

1 4

Heart failure (2) 2 1

Dementia (1) 3 1

Dementia (2) 3 0

Diabetes (1) 4 0

Diabetes (2) 3 0

identical actions present in both care plans. There is at most 25%

overlap between the model’s and caregiver’s care plan.

Table 5 displays the number of caregivers choosing each client’s

preferred care plan. The number behind the illness shows the num-

ber of the organisation, so a distinction is made between the or-

ganisations’ outcomes. The table shows that for heart failure five

caregivers prefer the model’s care plan over the experienced care-

giver’s care plan and for dementia one caregiver prefers the model’s

care plan.

The number of actions caregivers would add to the heart failure care

plan when they have chosen the model’s care plan is between 3-5.

They would remove 0-2 actions from the care plan. The caregiver

who chose the model’s plan for dementia would have added 2

actions and removed none.

5 DISCUSSION
In this section, we discuss the results, the influence of missing data

and alterations to the data, the relevance of this research for Ecare

and home care in general, and relevant recommendations.

5.1 Interpretation of results
To interpret the results, we look at the following aspects: the differ-

ent types of datasets, models, and the influence of the main illness.

We also discuss the comparison of the models to the care plans

drawn up by experienced caregivers.

5.1.1 Problem versus difference datasets.
As shown in the results, the test sets of the problem datasets con-

sistently outperform the test sets of the difference datasets. This

1
One caregiver of organisation 1 only assessed the heart failure client.
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can be explained by the fact that the difference datasets experience

more sparsity, which leads to poorer results. We do see that the per-

formance of the difference dataset’s train set is sometimes higher

than the problem datasets (e.g. BR-SVM for all three diseases) even

though the test set is lower. This indicates that the model is overfit-

ting on the train set. The sparsity of the difference datasets can once

more explain this phenomenon, because a model trained on sparse

data is more likely to overfit [37]. The problem datasets, therefore,

capture the relationship between the independent and dependent

features better and are preferred as input sets over the difference

datasets.

5.1.2 Comparison different models.
The binary relevance models have a higher performance on the

F1-score and recall than the models that predict all labels at once.

As said in the experimental results, the BR models predict fewer

false negatives. This is desirable, since one does not want to miss

essential actions that will contribute to a client’s recovery. This

finding is interesting, since the BR models do not consider label

dependency and thus miss information about labels that occur

often together or that do not occur together at all. These outcomes

show that for this particular research, the models perform better

when they look at each action individually rather than the whole

action set. The multi-label classification research of Huang [45]

has looked into the comparison of ML-KNN and BR models for

the labelling of tweets. This research has shown that for a multi-

label classification problem with six labels, ML-KNN outperforms

BR. This does not match with our results. However, the study of

Luaces [46] shows that if a multi-label classification problem has

a substantial amount of labels (in Luaces’ research, more than 75

labels), the BR is competitive and even shows better performance

than ensemble methods. They concluded that BR is competitive

with more complex approaches when the proposed data has a large

number of labels and high label dependency. This would explain

why, for this research, the BR models perform better than the other

two models, since all three illnesses have a substantial amount of

labels and there is a high amount of label dependency present. It

also explains why the research of Huang demonstrates that ML-

KNN has a higher performance than BR, since they only have six

possible labels for their problem.

When we compare the BR-RF and BR-SVM, we see that the BR-RF

outperforms the BR-SVM, especially for the problem datasets. This

matches the results of the research of Song [47]. Song investigated

EHR data as input for models. Their results show that random forest

outperforms the SVM when only the scalar data of the EHR is used,

which matches our discoveries. However, their research tackles a

binary classification problem instead of a multi-label classification

problem, so the effect of multiple labels on the performance of

the models is not shown. If we look at the research of Alonso

[48], we see that RF and SVM perform very similarly for a multi-

label classification problem with five labels. These results slightly

differ from our results, but this difference can occur because the

dependent feature set of Alonso experiences less sparsity. Random

forest is known to handle sparsity quite well [49].

When we look at the difference between ML-KNN and MLP, we

see that they have very similar performance for the test groups.

The research of Rajput [30] and the study of Zhang [29] show

corresponding results. They demonstrate that for a multi-label

classification problem with six and five possible labels, respectively,

the ML-KNN and MLP have very similar performance. This is in

line with our results.

5.1.3 Comparison between illnesses.
When we compare the performance of the models between the

three different illnesses, we see that the models for heart failure

have a slightly better overall performance than those for dementia

and diabetes. This can be explained by the fact that heart failure

has the least amount of labels that need to be predicted, but the

most independent features. It is, therefore, easier to find valuable

relations between the independent features and the labels.

5.1.4 Hamming loss.
Figure 10 shows that all hamming loss values of the test set are

between 0.1-0.16, except for the test set of the problem datasets

with BR-RF, which has a hamming loss between 0.058-0.09. These

hamming losses are generally low and suggest that the models work

quite well. But if we put these values into context and look at the

recall as well, we can conclude that the hamming loss is low due

to the fact that most labels have been given a zero as a prediction.

These zeros are predicted often, because it is more common that

an action is not present than that it is part of the care plan, even

though this is not necessarily the best suggestion. This is shown in

the recall, which takes the false negatives into account. The recall

is always too low for the models to be implemented in real life. This

shows that it is essential to look at the performance metrics as a

whole and not individually, since the hamming loss on itself gives

a distorted picture.

5.1.5 Comparison BR-RF’s and experienced caregiver’s model.
Table 5 shows that only for heart failure multiple caregivers have

chosen the model’s care plan. For dementia and diabetes, the care-

givers almost always preferred the experienced caregiver’s care

plan. Two of the three caregivers who did not choose the model’s

plan for heart failure knew the client at hand, so they could have

been biased in their decision. The same goes for one dementia and

one diabetes client. These results are in line with the F1-score, pre-

cision, recall and hamming loss, which all have better performance

values for heart failure than dementia and diabetes.

When we look at the changes the caregivers would have made

to the model’s care plan for heart failure, we see that on average

they would have added 4.3 actions and removed 1.5 actions. For the

dementia care plan, the caregiver would have added 2 actions. This

indicates that even though they prefer the model’s care plan, the

care plan is still not without its shortcomings.

Considering the notes the caregivers have provided while making

a decision, we see the following trends:

• They prefer the model’s plan for heart failure, because it focuses

more on providing instructions and less on treatments;

• They think the model’s care plans for dementia are too lengthy;

• For dementia, the caregivers of organisation 2 conclude that

there are actions in the model’s care plan that do not make

sense (care of urinary tract, while there is no indication that

the client has urinary tract problems).

These notes show that sometimes fewer actions suit the situation

better and that the models, in this case for dementia, can provide
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suggestions that do not fit the client-specific context. The latter can

create undesirable situations when inexperienced caregivers blindly

trust the provided actions of the model and copy the suggestions

without considering the client-specific situation.

Taken together, the findings in this section display that there is

promise in the models, especially for heart failure, but that they

do not work well enough to implement them right now without

facing unsafe consequences. Even if you would use the model as

a starting point to save time and let caregivers make adaptations

to the model, the risks are too high. If a caregiver still forgets to

remove or add an important action, the care plan could result in

unsuitable care.

5.1.6 Performance of the models w.r.t. implementation.
The best-performing model is the BR-RF with the problem dataset.

However, this model only reaches an F1-score of 0.78 for heart

failure, 0.67 for dementia and 0.69 for diabetes. These values are

too low to implement these models and provide suggestions while

caregivers draw up care plans. Especially since the recall is low,

as mentioned before. This is also shown in the comparison of the

models and an experienced caregiver, where only for heart failure

the model’s care plan is preferred. These outcomes illustrate that

there is potential, but they also suggest that as of now, the mod-

els are not suitable for implementation. This research aims to see

if machine learning can provide suggestions for actions that are

mostly forgotten (among other aspects), but with a low recall, the

models cannot be used for this aspect right now.

5.2 Assumptions and data modifications
The first main assumption for this research is that every experienced

caregiver always creates perfect care plans (and thus never makes

mistakes). This assumption has been drawn up in consultation with

Ecare, but still influences the used data. Even though the models

do not perform as desired, we still have to take into account that

the used data could bias the models due to these assumptions. This

could lead to models creating suggestions based on partly noisy

data. However, it is difficult only to include care plans correctly

drawn up with 100% certainty.

The following assumption we have made with respect to the used

data is that a client’s current (or last known) care plan is most

suitable for that client. We have not considered older versions of

care plans, since we have assumed that the latest version of the

care plan would suit the client best at that moment. However, there

is always the possibility that the latest version of the care plan

contains actions that do not contribute to a client’s recovery or

misses essential information. Especially if we link this back to

the assumption that every caregiver always creates perfect care

plans, which we cannot guarantee. Nonetheless, we believe that

the chances of this situation occurring are slim and have little to

no effect on the performance of the model.

The next alteration that has an impact on the performance of the

models is handling the unknown values and the adjustment of

the range of the age feature. For the categorical features, we have

applied distribution based imputation. By replacing the categori-

cal unknown values with a value based on the distribution of the

dataset, we have kept the distribution of these independent features

intact, but we have not looked if the replaced values make sense on

a client-specific level. For the age feature, we have applied value

based imputation by replacing the impossible values with the mean

value. Again, we have not looked if these values are logical on a

client-specific level. In general, distribution based imputation is

preferred over value based imputation for machine learning appli-

cations [50]. Nonetheless, we think that for the age feature, the

influence would be minimal to change value based imputation to

the distribution variant, especially since the most occurring age is

always within a range of two years of the mode. Furthermore, we

believe that looking at a client-specific level is not worth the time,

since it is computationally expensive to verify the feasibility of the

new value for each client and using standard imputation techniques

should tackle the change of picking an infeasible new value.

The last alteration that we have performed on the data that impacts

the models’ performance is keeping the label dependency intact

during the resampling phase of the data. This has resulted in a

slight imbalance in the number of appearances between the labels,

due to the fact that the labels that appear more often correlate with

a higher number of other labels than the ones that almost never

appear. We have chosen this approach, because we wanted to keep

the label dependency intact, since we believe that a lot of valu-

able information can be extracted from the combination of actions

within a care plan. However, for the BR based models, resampling

per label could have been an approach, since these models in gen-

eral do not take label dependency into account. Despite that, we

have chosen to use the same input data for all models to have an

unbiased comparison between the models. Another option could

have been removing the labels that almost never appear in a care

plan to create more balance among the labels. However, we have

decided against this, since the actions that rarely appear are the

most interesting actions for a care plan. Those actions make a care

plan really client-specific and can add valuable information to a

care plan.

5.3 Limitations of the data
A drawback of this research is the amount of independent features

we have used. Because we have only used structured data in this

research and removed the features where less than 10% of the data

was available, the number of possible independent features for each

illness was limited. It even resulted in fewer independent features

than labels for dementia with the problem dataset. As said in the

interpretation of the results, the results show that the heart failure

models have a better performance in general, which can be ex-

plained by the fact that there are proportionally more independent

features than labels. However, adding extra independent features

does not always result in better-performing models, as this research

also shows. The difference datasets do have more independent fea-

tures than the problem datasets, but have a lower performance. This

is due to the sparsity of the datasets. Therefore, extra independent

features must be selected carefully and sparse datasets should be

avoided.

Furthermore, we have only taken the data of five healthcare organ-

isations into account. This can lead to unintentional bias, because

we have not assessed the demographic variations between the used

organisations and the other organisations that are part of Ecare.
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This makes the models less generalisable, and it creates more dif-

ficulty to apply the models for all organisations that are part of

Ecare, especially if it turns out that there is a difference in clients

between the organisations.

Lastly, we have only looked at one example care plan at the time,

while clients can have multiple illnesses simultaneously. This is a

considerable simplification with respect to the real-life situation.

Even though the example care plans contain all the essential ac-

tions for a specific illness, they do not take the influence of having

multiple illnesses into account. A combination of illnesses present

in a specific client can lead to extra needed actions for the other

illnesses that are currently not considered. This can lead to incom-

plete care plans. Even though the models do not work properly for

the situation where one example care plan is used, it must be noted

that the current set-up is thus a simplification, especially since

80.55% of the currently used clients have two or more illnesses. A

combination of care plans will lead to a higher number of possible

actions (and thus labels), but it will also create a more accurate

representation of the possible actions for a client.

5.4 Ethical consequences
During this research, the models have already been compared to

experienced caregivers, but have not yet been integrated within

the actual design phase of the client-specific care plans. Section

5.1.5 has shown that for now, the models are not ready to be im-

plemented. Nonetheless, it is important to already look into the

ethical consequences when such a model will be implemented, and

discuss the implications that will arise. Machine learning addresses

three areas of ethical concern: privacy and surveillance, bias and

discrimination, and the role of human judgement [51]. Especially

the role of judgement plays a role in this research. This area is

extremely relevant, because the implementation of the models will

influence the decision-making process of the caregivers and thus

their judgement. It will also raise the question to what extent a

model can take over the tasks of a caregiver and to what extent

this is even desirable [51]. Especially since machine learning makes

suggestions appear like a standalone objective statement rather

than showing that suggestions are based on connections within

historical data. In our research, the models must only support, and

a caregiver should always make the final decision. This is essential,

since caregivers deal with client-specific situations that are more

often an exception than a rule, and only trained medical personnel

can assess the situation at hand. A model in home care should,

thus, only have an advisory position and never create a complete

client-specific care plan without the involvement of a caregiver.

5.5 Recommendations and future research
We do not recommend using any of the models proposed in this

report based on the current datasets to suggest actions for client-

specific care plans. Making predictions on medical data and peo-

ple must be done carefully, and it is, therefore, not responsible to

use these models with the current assumptions and outcomes of

the performance measurements. Especially since the values of the

performance metrics are too low and suggestions must be given

carefully. However, we do have some recommendations to improve

the performance of our models.

The first recommendation is to extend the independent feature set

and add personal information. The research of Song [47] shows that

extracting information from notes from EHRs increases the perfor-

mance of machine learning models. There is a lot of client-specific

information available in the personal information text fields that

could increase the performance of the models, such as types of

medicine used, emotional state, hospital visits, character traits, fam-

ily history or substance abuse. To extract interesting information

from these text fields, text mining has to be applied. One effective

method for text mining is BERT (Bidirectional Encoder Representa-

tions from Transformers), designed by Google AI Language [52].

The main advantage of the structure of BERT is that it takes the se-

mantic meaning, i.e. the relationship between words and sentences,

into account. This is useful, because the context of words is more

important than the definition of a word itself. There are already

many pre-trained models available that use BERT, which can be

used as a starting point to incorporate the personal information in

the models. The University of Groningen has even designed a BERT

model that is pre-trained on Dutch data, named BERTje [53] that

is also partly trained on healthcare-related text. We recommend

adding the interesting independent features to the problem datasets,

since these datasets outperform the difference datasets.

The second recommendation is to use multiple example care plans

at once instead of using only one example care plan for a model.

By combining the example care plans, the model will be able to

take multiple illnesses into account at once. This can lead to more

accurate client-specific care plans, sincemore than 80% of the clients

have multiple illnesses. One approach is to apply binary relevance

models and train the models for each possible label. When the

illnesses of a client are known, the model will only predict the labels

that are related to the illnesses. The upside of this approach is that

the labels can be filtered on the relevant actions while providing

suggestions. The downside is, once again, that label dependency

cannot be taken into account when making predictions. Another

method that could be applied is the Label Powerset method, which

creates a separate class for each possible label combination [44].

This will tackle part of the sparsity problem that is created when

you combine multiple example care plans, but the data needs to be

resampled heavily to compensate for the label combinations that

are almost never present.

Based on the comparison between the experienced caregiver’s and

the model’s care plan, we also suggest examining the advantages

of providing suggestions over applying treatments for heart failure

clients and exploring what makes care plans lengthy. These are

the two main points that were addressed in the caregivers’ notes.

This could provide insights into why the models show potential,

but currently do not completely work as intended. These insights

can help improve the models by for example only suggesting the

top five-ten suitable actions or mainly focusing on actions that are

advise-related, depending on the situation.

Lastly, when a model is implemented in PUUR, it is important to

make sure that it will increase either the quality of the care plans

or decrease the time of creating a care plan while the quality stays

the same (preferably both). This can be researched in a case study

where, for a small amount of clients, care plans are created using

the suggestions of the model and compare the recovery time and

overall satisfaction of clients with a control group, and measure
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the time that it takes to create a care plan. Furthermore, it is of

great importance that when a model is implemented in PUUR,

it should only support caregivers and not take over the decision

process of the caregivers. The judgement of the caregivers should

always be prioritised over the suggestions of the models, as stated

in Section 5.4. It is, therefore, of great importance that the influence

of visualisation techniques on the suggestions is researched and

taken into account to make sure that the model really contributes

to creating care plans and does not have a counterproductive effect.

6 CONCLUSION
Creating client-specific care plans is a complex and time-consuming

task. In this research, we have presented several supervisedmachine

learning models that can support this process by suggesting actions

for client-specific care plans. We have focused on clients with one

of the following illnesses: heart failure, dementia or diabetes. The

compared models for this specific problem are ML-KNN, MLP, BR-

RF and BR-SVM, and are based on the client’s EHRs and predefined

example care plans.

After fine-tuning, the BR-RF shows the best performance for all

three illnesses with a weighted precision between 0.84-0.89, a recall

between 0.53-0.63 and an F1-score between 0.63-0.78. We have

also looked at the hamming loss, which is between 0.05-0.1. These

hamming losses indicate that the models work quite well, but if

we put them into perspective and look at the recall as well, we can

conclude that the hamming loss is low due to the fact that most

labels have been given a zero as a prediction.

To see the effects of machine learning in a real-life environment, we

have compared care plans created by the BR-RFmodels to care plans

created by an experienced caregiver. From the eight caregivers that

compared three client-specific situations, six chose the model’s care

plan over the experienced caregiver’s care plan.i Looking at the

performance of the models and the comparison with the caregiver,

the models are currently underperforming and can, therefore, not

be used in a real-life environment. Additional data from personal

information must be gathered to increase the performance of the

models, and the models need to be revised after alterations before

implementing them in the software.
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