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Executive Summary

Introduction

Slimstock and many of its clients struggle with identification and forecasting of seasonal time series.
These are time series that show structural fluctuations over time that occur due to influences
of natural forces and human behaviour. Therefore, the objective of this research is as follows:
"Select the best method to classify and forecast future demand of different types of stock keeping
units (SKUs)."

Context analysis

In the current situation, our relevant SKUs are first classified into one of four classes based on
the presence of a trend and seasonality. Different SKU types use different models. Stationary
SKUs, which are SKUs with no trend nor seasonality use simple exponential smoothing. SKUs
that also have a trend use double exponential smoothing. In case a SKU has seasonality present,
it uses triple exponential smoothing, where a trend is modeled only in case it is significant.

Literature

Although our research only has a single objective, we need to solve two problems to reach our goal.
Firstly, we have a classification problem. Classification of time series has been widely studied in
the past, but despite all these efforts there is no general consensus on the best method. In our
literature studies, we find two potentially suitable tests for seasonality, being a standard Fisher’s
F-test and the Friedman test. For trend classification, we find linear regression generally works
well.

The second problem we have is selection of suitable forecasting models. During our literature
research, we found three different types of methods, being statistical methods, regression methods,
and machine learning methods. In our research, we will mostly focus on two types of methods.
Firstly, the currently used statistical methods and some extensions and adaptations of these
methods. Secondly, we look into Prophet, which is a regression model developed by Facebook.

Approach

The first step in our research is is evaluating the performance that we obtain by using the
classification method and forecasting models that are currently used by Slimstock. The current
classification method uses a Fisher’s F-test and linear regression, with a trend first approach. We
evaluate the performance based on a short, medium, and long cover period of 3, 7, and 21 days
respectively. Classification is done on a monthly level.

After evaluating the performance of the current classification method, we evaluate the performance
of alternative classification methods using the same forecasting models. Our evaluated alternative
classification methods use a seasonality-first approach instead of a trend-first approach, a Friedman
test instead of an F-test, or a combination of both for a total of three alternatives to the current
method. Comparing the current method to explored alternatives, we find that the current method
works best for all of our cover periods.

We then extend the classification method to include weekly and daily seasonality. This allows for
SKUs to have multiple levels of seasonality, which allows us to extend the current models to use
nested seasonality. Nested seasonality allows us to detect patterns over the weeks in a year and
over the days in a week which we would otherwise not be able to detect.
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Our other extensions are a Fourier transform used to ensure seasonality progresses smoothly over
the year, and an adaptation to updating of model parameters that occur when we start to use
multiple levels of seasonality.

Lastly, Prophet. Prophet is a fully automatic regression model that breaks down time series into
three components, being trend, seasonality, and holidays and events. It uses a piecewise trend
model for its trend, a Fourier series for seasonality, and regression for holiday and event effects.

Results

As mentioned, we found that linear regression for trend in combination with an F-test for
seasonality was the best method for classifying our time series. We then made a further distinction
between our different time series. During our experiments we find that including daily seasonality
in our current models leads to a significant improvement in performance for short cover times.
Using a cover time of 3 days, we find SKUs that were classified as having a daily seasonality
and no trend see and improvement of 11.47%. SKUs that have a daily seasonality and a trend
see an improvement of 12.82%. Note that improvement is based on root mean squared error,
which is directly linked to our safety stocks. As these two classes cover 14.02% and 33.89% of
our total SKUs respectively, we conclude that this extension is certainly worthwhile. Some other
SKU types may also benefit from this change but we do not have sufficient evidence this benefit
is statistically significant. Application of our Fourier transform leads to a significantly lowered
RMSE for our daily-weekly-monthly SKUs without a trend for long cover periods (improvement:
15.41%). The same applies to daily-weekly-monthly SKUs with a trend, though here we find the
improvement occurs for all cover periods (short: 8.18%, medium: 12.89%, long: 17.17%). These
classes cover 1.43% and 3.05% of our SKUs so this change is much less impactful.

Moreover, we found that switching to Prophet appears to work very well for multiple classes of
SKUs, with the model being particularly effective for shorter cover periods and more complex
time series. Switching to Prophet where applicable leads to improvements in RMSE of at least
11.17% for short cover periods, 1.77% for medium cover periods, and 3.07% for long cover periods.
Note that some SKUs may benefit more than others.

Recommendations

Based on our findings, we recommend Slimstock to implement daily seasonality in their
classification and forecasting as it was able to improve short term forecasts by a significant
margin based on RMSE. We also recommend implementation of the Fourier extension as it yields
significant improvements in performance with very little effort. Implementing Prophet for suitable
classes of SKUs leads to even better performance, though this change is much more rigorous and
thus will take a lot longer to develop.
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1 Introduction

The research for this thesis is on the topic of forecasting demand of products in the maturity
phase of their product life cycle. This research was done as the final part of my master’s program
in Industrial Engineering and Management at the University of Twente in Enschede, Netherlands.
The research itself is conducted at Slimstock B.V. in Deventer, Netherlands. Data for this research
have been obtained from one of Slimstock’s customers. The origin of the data is kept confidential,
and any data present in the report is obfuscated such that no information on the customer can be
extracted.

This chapter starts off by providing a short description about Slimstock in Section [I.I Then, in
Section [1.2] we motivate our research by identifying our core problem and explaining the problem
context. In the following section, Section [1.3, we describe the problem statement, where we
describe the ideal scenario, the actual scenario, and a general direction for our research such that
we can get closer to the ideal scenario. The research goal and deliverables are then covered in
Section [I.4] We finish off this chapter by providing the research questions in Section [I.5]

1.1 Concise Company Description

Inventory management is a core part of a lot of businesses, but it is also very complex. Because
of this complexity, businesses oftentimes outsource the task of managing their inventory to other
companies, such as (Slimstock, [2022]).

Slimstock, founded in 1993, is a company that provides services in the form of inventory
management. With over 1300 clients in 23 countries, they are the market leader in the field
of demand forecasting, planning, and inventory/supply chain management. Using their own
software package, Slim4, Slimstock maximizes performance. Clients and experts work together
on minimising inventory levels and maximising service levels, such that costs are kept low and
customer satisfaction is as high as possible. In short, Slimstock helps their clients get the right
inventory, at the right place, at the right time.

1.2 Research Motivation

In this section, we identify our core problem. We also provide a brief introduction to the core
problem by making a general analysis as of why this problem exists and why it is so difficult to
solve.

We are unable to

Items are not in stock
ve el : . We do not always / ., J
identify cferlam Ly Demand fu_reu:aEt NN have correct
patterns in our not optimal \

inventory levels ™
demand Clients encounter

unnecessary
\ inventory costs
Figure 1.1: Problem Cluster.

Keeping inventory is part of nature. Humans have goods in their house, squirrels collect acorns
for winter, and companies keep inventory such that they can sell their products to their customers.
Knowing how much inventory to keep can be a difficult problem. Having too little inventory leads
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to stockouts whilst having too much inventory leads to high costs. In this research, we are going
to investigate methods to optimise inventory levels.

We first make a problem cluster to identify our core problem, which describes what exactly needs
to be improved. This problem cluster is depicted in Figure above.

As can be seen in the problem cluster, we identify a sub-optimal forecast as a big contributor to
our problem. Therefore, we are going to look at improving the forecast. In order to improve the
forecast, we look at patterns that exist on a smaller scale than the patterns we are detecting now.
In addition, we explore alternative forecasting algorithms.

Basics of Forecasting

Without going into the details of the functioning of forecasting models, most forecasts are made
like this:

Ft:(a—l—bt)-St

Where a is the level of today (which is the base value we would expect without seasonal effects or
growth), b is the long-term average growth of the value, also known as the trend, and S; is a
multiplier based on our the present seasonality at time t.

When looking at this basic model, we notice that a good forecast is dependent on estimating
three factors well. These are the level, the trend, and seasonal factors.

Many of Slimstock’s clients struggle to identify patterns that are present in demand
over time. In general, products that have a more stable demand (e.g. toothpaste) are easier to
forecast than products that are rising or declining in popularity, meaning they have a trend (an
example we came up with is induction stoves, though finding examples for this class is difficult as
products only keep rising/declining in popularity for a shorter period..

The most difficult products to forecast are the products that are constantly undergoing changes in
demand as well as being affected by seasonality. A good example of a product in this class would
be petrol. Petrol has a very dynamic trend as demand greatly varies over time, rising in popularity
as more people get access to cars and start driving more, and declining in demand as less people
drive less and/or switch to electric engines. In addition to having a very dynamic trend, petrol is
also exposed to seasonal effects, having increased demand in summer and decreased demand in
winter. In addition to being exposed to trending and seasonal effects, demand of petrol is also
highly affected by cyclical effects such as economical cycles.

Core Problem

We identify the inability to identify certain patterns in our demand to be our core problem. This
inability to identify patterns leads to suboptimal forecasts, which in turn leads to suboptimal
inventory, which has its consequences as explained in the next paragraph.

Consequences

Ideally, we would always have exactly as much of a product as we need. In case we are going to
sell 7 bottles of water before we get our next replenishment, we would want to have exactly 7
bottles on hand. That way, we do not have to use more storage space than necessary, and we do
not lose out on sales because we did not have an item our customer wanted. In reality though,
knowing how much of a given product we will need is extremely difficult, which leads to either
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reduced revenue because of lost sales in case we have too little inventory, or increased inventory
costs in case we have too much inventory.

1.3 Problem Statement and Solution Directions

In this section, we explain how this problem has emerged and what impact the problem has. After
introducing the problem, we describe the basic idea of how we intend to solve the problem in our
research.

1.3.1 The Early Stages of Slim4 and Origin of the Problem

When Slimstock was founded in 1993, its main customers were wholesalers and industry. These
customers are customers that generally have lots of space to store their products in their very large
warehouses and production facilities. This combined with the fact that logistics in the previous
century were nowhere as developed as they are today meant that Slimstock’s main customers
had a fairly simple strategy. Regularly but infrequently order large amounts and store them
in their gigantic warechouses until they are needed. Oftentimes, these companies had massive
replenishment orders coming in about once a month. For Slimstock, this meant inventory was
managed on a monthly basis and in turn, forecasts were made on a monthly basis.

With the rise of Slimstock, Slimstock has attracted many customers in various different industries
and sectors, such as supermarkets and pharmacies. These are generally customers that have little
storage space, a greater number of stock keeping units (SKUs), and lower demands per SKU.
In addition, some customers have highly perishable goods. This all leads to the very different
inventory management strategy and ordering policy of ordering smaller lot sizes more frequently,
and this is exactly where our core problem has started to emerge.

We hypothesize we are currently unable to extract certain demand patterns because Slim4 restricts
seasonality extraction to monthly. In our research, we investigate whether the usage of different
binning periods can possibly assist in revealing seasonal patterns in our data. In addition, we
explore some more modern alternatives to the forecasting methods and algorithms that have been
the backbone of Slim4 forecasting since the early days of Slim4 up until now.

1.3.2 Ideal Scenario

As mentioned before, we want to better identify repeating patterns for SKUs where we suspect
such a pattern may be present. This means we will have to select a suitable method for classifying
our different classes of SKUs, as well as selecting the best methods to develop forecasts for these
SKUs.

1.3.3 Solution Directions

Our research has two main objectives. The first objective of our research is selecting a suitable
method to classify SKUs by demand pattern (which includes classification of trend and classification
of seasonality). The second objective of our research is selecting the best algorithms/forecasting
methods to forecast demand for each of our SKUs.

Selection of Classification method

To select our classification method, we investigate the current classification method (which is a
Fisher’s F-test combined with linear regression), and compare it to alternatives found in literature.
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Classification methods explored in our research will always consist of a statistically based test in
combination with regression.

Selection of Forecasting Methods

To select the best forecasting method for each of our SKU types, our research will include
exploration of a combination of numerical algorithms and machine learning. Although prior
research has shown that numerical algorithms vastly outperform more advanced methods such
as machine learning, especially when seasonality and/or other patterns are present (Makridakis
et al., [2018)), we will not completely disregard machine learning methods. The early stage of the
research (specifically, our literature research) covers a very wide range of forecasting methods,
ranging from very simple regression and smoothing algorithms to very complex machine learning
algorithms.

1.4 Research Goal

The goal of our research is fairly straightforward. Firstly, we identify the best way to classify
our SKUs based on the presence of trend and seasonality. Secondly, we select the best method
to forecast these SKUs, depending on their characteristics. The objective of the research is
formulated as follows:

e "Select the best method to classify and forecast future demand of our different types of stock
keeping units.”

Deliverables of the research will be a thesis report, as well as the source code of all algorithms
and machine learning models used in our research. The application will mainly be written using
Python. In addition to Python, which is used for processing the data and running the actual
models, we will use Excel for model validation and model development. Any useful Excel files
will also be delivered along with the report.

1.5 Research Questions & Approach

Now that we have made a problem statement and research goal, we are going to look into solving
the problem. To solve the problem, we develop a set of research questions. When answered, these
research questions will lead us to a solution to the problem. We start off by posing our main
research question.

e Main Question: "How can we better detect patterns in our time series and improve our
forecasts?"

To answer our main question, we compose a set of smaller research questions. We divide these
research questions into four types. These are: preparatory questions, questions on the theoretical
background, experimental questions, and roundup questions.

We first cover the preparatory questions. These questions cover the current modus operandi, and
the general workings of Slim4.

Our first research question is as follows:
e Research question 1: "How does Slim4 currently make its forecasts?"

In order to know how to improve on the current situation, we first have to know the in and outs
of the current situation. To answer this question, we break down this research question into a
set of sub-questions. These are deployed below. We will answer these questions by talking to
colleagues at Slimstock, and through the internal training on Slim4.
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o Sub-question A: "Which types of SKU use which forecasting model?"

o Sub-question B: "What are the relevant parameters in these models?"

o Sub-question C: "How does Slim/ measure the performance of used forecasting models?"
o Sub-question D: "What is the performance of these models?"

o Sub-question E: "What are the advantages of these models?"

o Sub-question F: "What are the disadvantages of these models?"

o Sub-question G: "Which assumptions are made when applying these models?"

Secondly, the theoretical background. After diving deeper into the current way of working and
the abilities and limitations of Slim4, we are going to conduct a literature study. In this literature
study, we explore solutions and ideas to problems similar to ours. This leads us to our third
research question:

e Research question 2: "What can we learn from literature on pattern recognition and
forecasting?"

We break this down into the following sub-questions:

o Sub-question A: "How can we classify the presence of trends and seasonal effects in demand
of products?"

o Sub-question B: "Which forecasting models are available for forecasting demand for different
SKU types?"

e Sub-question C: "How can we measure performance of used forecasting models?"

Now that we have a solid idea of the theory behind our problem, we will work on developing
a model to solve our problem. After developing the model, we will also be researching model
optimisation. In order to start developing our model, we first have to answer our next research
question. This question is as follows:

e Research question 3: "How can we evaluate our newly developed model?"
We break this down into the following sub-questions:
o Sub-question A: "How are the data collected and prepared?”

o Sub-question B: "How are we going to measure and express our model performance and
select the best method?"

o Sub-question C: "How do we validate and verify our models?"

After these questions have been answered, we can start on the design and implementation of our
solution. To get a good starting point, we answer the following question:

e Research question 4: "What will our models look like?"
We break this down into the following sub-questions:

o Sub-question A: "Which classification methods on trend and seasonality (from literature)
are we going to compare in our research?"

o Sub-question B: "Which methods (from literature) are we going to be using as a starting
point for our forecasting models?"

o Sub-question C: "What are the main parameters in these models?"
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e Sub-question D: "How are we going to optimise our model parameters?”

e Sub-question E: "How are we going to modify these models such that we can improve their
performance?”

At this point in the research, we are going to do our implementation. Once implementation is
done, we can proceed to the final step.

The final step is evaluation of performance of our models, our implications and findings. Although
we will have a finalized model at this point, we want to explain why the model performs the way
it does. In addition, we look into the pros and cons, recommendations, and directions for further
research. This leads us to our next and final research question:

o Research question 5: "What are our findings?"
Breaking this down:
o Sub-question A: "What is the best classification method?"
e Sub-question B: "What is the best forecasting model for each of our SKU types?"
o Sub-question C: "What is the performance of the new method?"

o Sub-question D: "What are the advantages and disadvantages of newly found models?"

Sub-question E: "Based on performance, advantages, and disadvantages, what can we
recommend to our client?"”

Sub-question F: "Similarly, what are our recommendations to Slimstock?"

1.6 Research Scope

The research will be done using a combination of numerical algorithms and machine learning
methods. We are going to look at established models such as simple exponential smoothing,
double exponential smoothing, and the Holt-Winters triple exponential smoothing model. We will
explore the use of numerical methods such as the Fourier transform, as well as more advanced
models such as Prophet.

Our research will not include pure machine learning models such as deep neural networks or
reinforcement learning. Prior research shows models that are combinations of statistical /numerical
models and regression models outperform pure machine learning methods (Makridakis et al.
2020), and thus we will not put an emphasis on pure machine learning models.

We will be limiting our scope to the items classified as Frequent, Normal, and Lumpy
as specified by Slim4. More on this can be found in Section [2.1]

In addition to limiting ourselves to Frequent, Normal, and Lumpy items as specified by
Slim4, we will only research products that are in the maturity phase of their product life cycles.
These are products that have been on the market for a while, and thus their demand patterns
have had the time to stabilise. These products are also still actively sold, and thus we expect
their demands in the near future to follow the same distribution as demands in the recent past.
More on product life cycles can be found in (Rink and Swan, 1979).

Data used in our research originates from a single customer of Slimstock. This means
the data originates from a single field, meaning results found in our research may not necessarily
be applicable to any field. The developed method can be applied to any data set that has
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sufficient history such that we can evaluate the performance of the models in different fields. As
some methods used in our research require at least four years worth of data, the methods and
models are not applicable to emerging markets.



2 Context Analysis

We start off by analysing the current situation. We answer our first research question:

e Research question 1: "How does Slim4 currently make its forecasts?”

2.1 Types of SKU and Their Forecasting Models

The first step in finding out how forecasts are currently made is finding out which models are
used for which types of SKU. This means we have to find the answer to the following research
question:

o Sub-question A: "Which types of SKU use which forecasting model?"
To answer this question, we first have to find out how Slim4 currently distinguishes its products.

We obtain this information from the internal training on Slim4.

Slim4 currently makes a distinction between five main classes of Slim4-controlled items.
These classes are: Frequent, Normal, Lumpy, Irregular, and Slow. These five classes and their
characteristics are shown in Table below. (Slimstock, 2022)

Table 2.1: Demand Patterns

Forecast | Months w/o Forecasting .
Demand Forecasting
class each demand taken based on method
month into account | forecasted orders
Frequent Yes N/A No Exponential Smoothing
Normal Yes N/A No Exponential Smoothing
Lumpy Yes Yes No Exponential Smoothing
Irregular No No Yes Croston’s Method
Slow No No Yes Croston’s Method

We will now explain the basic properties of these classes. As our research only covers Frequent,
Normal, and Lumpy items, we will not go into too much detail on Irregular and Slow items. That
being said, we think it is important there are classes other than Frequent, Normal, and Slow.

2.1.1 Frequent, Normal, and Lumpy Items

Frequent, Normal, and Lumpy items are items that have a demand greater than 0 in most periods.
The class "Frequent" is the class that is assigned to the most stable of items. These are items
that are ordered every month or nearly every month. "Normal" items are similar to "Frequent"
items, but they are ordered a bit less often and thus we have fewer data points. "Lumpy" items
have more months with demand than months without demand, but do not have demand in every
month. Slim4 uses a couple more characteristics for this classification. These characteristics are
kept confidential, but it is sufficient to know that Frequent, Normal, and Lumpy items are items
that are relatively stable over time. As can be seen in Table 2.1 "Frequent", "Normal", and
"Lumpy" items are forecasted using exponential smoothing. (Slimstock, 2022)

Exponential Smoothing

Items that are forecasted by exponential smoothing use either single, double, or triple exponential
smoothing. In single exponential smoothing, we make a forecast based on past observations,
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putting a greater emphasis on more recent observations. Single exponential smoothing only
smooths the level of the observations by a single parameter «, and does not take trend or
seasonality into account. Double exponential smoothing works in a similar manner to single
exponential smoothing, but it also takes a trend into account. Parameters for double exponential
smoothing are « for the level and g for trend (Holt, |2004)), (Silver et al., [2016)).

Triple exponential smoothing is the most advanced of the three, taking into account the
level, trend, and seasonalities present in our time series. Level and trend are calculated as before.
Seasonality is a bit more complex, and is only calculated once we have sufficient evidence to
assume the time series have a seasonality present. To test for this, we use a statistical Fisher’s
F-test. This test is explained in Appendix [A] Triple exponential smoothing has two variants,
being one that includes and one that excludes the modeling of a trend. Note that, from now on,
"exponential smoothing" can refer to any level of exponential smoothing. In case we need to be
more specific, the level is specified.

We dive deeper into exponential smoothing in Section [2.2] [3.2.1] [6.3] and Appendix [C] [F] and [G|

2.1.2 Irregular Items and Slow Items

"Trregular" items are items that typically have high spikes and many periods of no demand. For
these SKUs, we do not make a forecast for each month. Instead, we use Croston’s forecasting
method, meaning we make a forecast based on expected future orders. To do this, we use historical
transaction data instead of aggregated demand data. "Slow" items are like irregular items, but
demands are low when compared to irregular items. (Slimstock, 2022)

2.2 Model Parameters

Now that we know which models are used for our SKUs, we further look into the exact workings
of these models. More specifically, we are going to look at the relevant parameters in these models,
answering the following sub-question of our research:

o Sub-question B: "What are the relevant parameters in these models?"

Slim4 uses a single value for its smoothing parameters for all of its customers. The exact value is
kept confidential, but the value is in line with values proposed in (Silver et al. 2016). Models use
either one or two smoothing parameters, being just « for level or a and f for level and trend.
Seasonality is never smoothed, just recalculated.

2.2.1 Single Exponential Smoothing

Single exponential smoothing uses a single parameter, which is a. « is used to smoothen the level.

2.2.2 Double Exponential Smoothing

Double exponential smoothing uses two parameters, being « for level and § for trend. Slim4 uses
the same value for both of these parameters (i.e. a = ().

2.2.3 Triple Exponential Smoothing (Holt-Winters)

Triple exponential smoothing, also known as Holt-Winters is a well-established method for
"Forecasting seasonals and trends by exponentially weighted moving averages" (Holt|, 2004]).
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We explain traditional triple exponential smoothing in detail in Appendix [C] but at it’s core,
triple exponential smoothing is exponential smoothing that is applied three times.

In triple exponential smoothing, we apply exponential smoothing once on the level of the time
series, once on the trend, and once on the seasonal factors. Each of these smoothing procedures
has its own parameter, being « for the level smoothing factor, 8 for the trend smoothing factor,
and 7 for the seasonal smoothing factor. These parameters represent the weight of the most
recent data point, meaning older data have a weight of (1 - «) for level, (1 - 3) for trend, and (1 -
~v) for seasonal factors (Silver et al., 2016)), (Holt, |2004).

At Slimstock, only level and trend are smoothened as before. Seasonality is never smoothed,
just recalculated. Slim4 uses values that are in line with values proposed in (Silver et al., [2016)).
(Slimstock], 2022])

As mentioned before, forecasts are made according to the following formula.
Ft: ((l+bt) 'St

Where a is the level, b is the trend, and S; is seasonality at time t. Note that, when forecasting for
the longer term, trend is usually dampened (meaning we decrease (if trend is positive) /increase
(if trend is negative) our value for trend when we forecast farther into the future). This is done as
trends often flatten out in the long term, converging to a value of zero (Gardner, [1985). Note
that this dampening is never done by slim4 automatically. Instead, this is manually done by the
consultant.

2.3 Performance Measures

Now that we know which parameters are relevant in our models, we can move on to the next
research question, which covers measuring of performance. The question is as follows:

o Sub-question C: "How does Slim/ measure the performance of used forecasting models?"

No matter which model we use, a forecast will never be perfect 100% of the time. In statistics, we
make a distinction between two sources of imperfection, being error and bias. We briefly clarify
the difference between those two.

Error

We define error as uncontrolled variation that causes our prediction to be off. Error is a metric that
indicates the degree to which our forecast is correct (where lower errors mean better forecasts). It
is the part of imperfection that occurs due to chance alone.

Bias

When forecasting multiple data points, we have an error for each individual data point. In case
this series of errors structurally deviates from zero, we say our forecast is biased. In case our
forecast is structurally higher than reality, the mean of our error is greater than zero and thus we
have a positive bias. In case our forecasts are structurally lower than reality, our mean error is
smaller than zero, we have a negative bias. In both cases, our forecast contains systematic errors,
which we would like to be as close to zero as possible.



2.4 Model Performance 11

2.3.1 Implementation in Slim4 and Automatic Re-Initialization of
Forecast Parameters

As of currently, Slim4 does not measure the Error of the forecasts it makes. For our research,
this means we will have to implement the current model and measure forecasting performance
ourselves. This is covered in Section [6.1]

Contrary to the error of the forecasts, which is not measured, slim4 does measure the bias of the
forecast. In slim4, this is called the tracking signal. When actual demand significantly deviates
from the forecast for multiple months, Slim4 generates a structural exception. In case Slim4
generates such an exception, the SKU should be reviewed urgently.

Note that there are two levels of structural exceptions in Slim4, being the tracking signal warning
and the tracking signal critical. In case the tracking signal is of level warning, the review is left
to be evaluated by the consultant. In case the tracking signal reaches the level of critical, Slim4
automatically re-initializes the item, updating its parameters and forecasts. Values as to when
the tracking signal reaches levels warning and critical are kept confidential. (Slimstock, 2022)

2.4 Model Performance

As Slim4 does not currently measure the error of our forecasts, we do not have immediate access
to the values of our performance measures. This makes answering our following research question,
which is as follows:

e Sub-question D: "What is the performance of these models?"

A bit more difficult, as we have to measure baseline performance ourselves. This is done in Section
In our research, we decide to use three different metrics for measuring the error of a model.
These metrics are: Normalised RMSE, average SMAPE, and normalised MAD. More on these
metrics is found in Section 3.3l

2.5 Model Advantages

Now that we have covered used models and their performances on our data set, we can answer
our next research question. This question is as follows:

e Sub-question E: "What are the advantages of these models?"

We find single, double, and triple exponential smoothing have three main advantages. Firstly,
exponential smoothing has declining weights on older input data. This is desirable, as newer
data are usually more representative of reality. Secondly, exponential smoothing is very easy to
compute and thus does not require much computational power. Lastly, we need minimum input
data. Triple exponential smoothing requires at least two years worth of data for determining
seasonality and seasonal factors. Single and double exponential smoothing can be done with only
a handful of data points.

2.6 Model Disadvantages

In addition to advantages, each model will also have its disadvantages. These are explored in our
sixth research question.

o Sub-question F: "What are the disadvantages of these models?"
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Despite being a well-established forecasting model, exponential smoothing models also have their
drawbacks. We identify fitting to noise to be the main downside of these models.

When determining the smoothing factors for our exponential smoothing models, we have to make
a tradeoff between responsiveness and stability of our models. We can use high smoothing values
to put more emphasis on recent data, but this comes at a cost. When we put a lot of emphasis
on our recent data, the models become less stable as it is more sensitive to recent changes in
the underlying data, even if these changes are not representative to the current environment.
This results us fitting the model to random fluctuations and noise rather than fitting a model
that closely represents reality. The opposite also holds. When we use very low values for our
smoothing parameters, we will have a very stable model that is not susceptible to noise. However,
this model will likely perform poorly as it is unable to capture the changes that happen in our
environment and thus should be taken into account. (McClain and Thomas, [1973))

In addition, due to the nature of the workings of these numerical models, exponential smoothing
does not take any information other than historical demand as its input. This means that any
known information about the future is not and cannot be taken into account. As explained in
Appendix [C], it is possible to improve the quality of exponential smoothing forecasts by including
known information about the future. This is confirmed by (Chatfield and Yar| [1988), who were
able to do this in their research.

2.7 Model Assumptions

Lastly, model assumption. We answer the last sub-question of this chapter.
o Sub-question G: "Which assumptions are made when applying these models?"

Single, double, and triple exponential smoothing make some basic assumptions, with the main
assumption being that history will repeat itself in the future. We do not necessarily see this as a
bad thing as repeatability of the past is why forecasting even works in the first place. The second
assumption is that, by exponentially smoothing rather than averaging our model parameters, we
assume more resent data is more representative for the future than older data. This also seems
reasonable under most circumstances.

2.8 Conclusion

To summarise, Slim4 makes its forecasts using either exponential smoothing or Croston’s method.
For the SKUs that are relevant in our research, Slim4 uses exponential smoothing only.

The level of exponential smoothing is determined based on a Fisher’s F-test, and linear regression.
The Fisher’s F-test is used to determine whether or not seasonality is present. Linear regression
is used to examine the presence of a trend.

SKUs that have neither seasonality nor a trend use classical single exponential smoothing. For
SKUs that have a trend but no seasonality, double exponential smoothing is used. SKUs that have
a seasonality present use a modified version of triple exponential smoothing. This modification
comes in the form of in/exclusion of a trend, and a modification to the updating of seasonality. In
Slim4, seasonality is not smoothened. Instead, Slim4 recalculates seasonality whenever needed.
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3 Literature Review

This chapter consists of a literature study on time series forecasting for inventory management.
We aim to provide a comprehensive overview of existing literature on the subject, covering both
commonly used methods as well as modern alternatives to these methods. In doing so, we answer
our second research question.

e Research question 2: "What can we learn from literature on pattern recognition and
forecasting?"

Note that our literature studies covers many methods that we did not end up using in our
experiments or final model. Some of these methods were immediately discarded based on
literature itself, and some were later discarded for other reasons. These reasons include, but
are not limited to: insufficient access to data needed by the model, high computational cost
for customers if implemented (and thus infeasible in practice), and extreme computational cost
for researching purposes to the point where the research would be infeasible. Models that were
covered in our literature research, but have not ended up in our experiments and final model, can

be found in Appendices [J] and [K]

First, we explore the difference between stationary, trending, and seasonal time series. Next, we
research regularity and periodicity of our time series, exploring different methods to identify the
presence of seasonality and different ways to extract the underlying seasonal factors. Finally, we
discuss several forecasting methods, algorithms, and regressors that can be used to make good
forecasts. We will explore both statistical as well as machine-learning based models. We finish
this chapter by discussing relevant performance metrics.

We begin by answering our first sub-question. This question is as follows:

e Sub-question A: "How can we classify the presence of trends and seasonal effects in demand
of products?”

3.1 Classification of Different Types of SKUs

We first look at (Silver et al., 2016). In (Silver et al., 2016)), time series are broken down into five
components, being the level (a), trend (b), seasonal variations (S), cyclical movements (C), and
noise (€).

Starting off with the simplest form of time series, which are time series that only have a level.
These are time series with a constant demand over time. A level is part of all of our time series.

The next component is the trend. The trend is the component that is responsible for the growth
of decline of demand over time.

Thirdly, we have seasonal variations. These are variations over time that occur because of natural
forces such as the weather, or from human behaviour, such as increased sales during the holiday
season. Seasonal factors are regular fluctuations in sales, repeating every period with similar
intensities and timings.

Cyclical variations are variations over time that occur as a result of changes in the economical
environment and fundamental business changes over time. They behave similarly to seasonal
effects, but they are much more irregular, and do not necessarily repeat every year. (ARSHAM]|
1985)

Lastly, the elephant in the room: noise. Noise is the inexplicable part of the time series, and thus
it has no analytical formula. Noise is oftentimes assumed to be normally distributed around 0.
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In our research, we focus on just four of these five effects, being the level, trend, seasonal factors,
and noise. Focusing on these four effects yields four different types of time series, being as follows:

e Time series that consist of just level + noise (Stationary time series)

e Time series that consist of level + trend + noise (Trending time series)

e Time series that consist of level + seasonals + noise (Seasonal nontrending time series)

e Time series that consist of level + trend + seasonals + noise (Seasonal trending time series)

These four types of time series are illustrated in Figure [3.1| on the next page.
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Figure 3.1: Different Types of Time Series

Due to the fundamental differences in these time series, we may need to use a different model
for each type of SKU. Therefore, we need to find a method to classify the presence of trend and
seasonality in our time series.

3.1.1 Classification of Trends

One of the distinctions we need to make is based on the presence of a trend (Hyndman and
Athanasopoulos, [2018)). There are many different available methods available for checking the
presence of a trend, but one of the most common methods is ordinary least squares (OLS), which
is a method of performing linear regression (Hess et al., 2001)) (Silver et al., 2016). Using OLS,
we can extract both the level and trend from our time series.
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The equations for OLS are as follows:

Z?:l twy — (nT—H) Z?:l Tt

Trend = b =
ren n(n? —1)/12

Level:d:ixt/n—l;(n—i—l)/Q (3.2)

t=1

For time series that only have a level (no noise), the level will be perfectly extracted, and the
trend will be exactly zero. For time series that have a level and trend (again, no noise), OLS
is also optimally able to extract level and trend. This is because, if a line is a straight line, all
points in that line will fall on the regression line. Therefore, the vertical distance between each
point on the line and and the regression line itself is equal to zero. In this case, we can conclude
a time series is stationary if its trend is equal to zero. In case trend is not equal to zero, the time
series is trending.

Once we introduce noise, however, we will no longer have the scenario where all points in the line
fall on the regression line. Therefore, our error will no longer be equal to zero, and we will likely
not be able to perfectly extract our level and trend. This also means that our previous method of
checking whether a trend is exactly equal to zero is no longer sufficient for classification of a trend.
Therefore, we need to test our trend for statistical significance of correlation. (Santer et al., 2000)).

3.1.2 Classification of Seasonality

In addition to classification of trend, we also need to check whether or not a time series is seasonal.
Currently, Slimstock uses a Fisher’s F-test to perform this analysis. In this section, we explore a
non-parametric alternative to this test.

Friedman Test

The Friedman test is a non-parametric method that tests whether or not samples are drawn from
populations with equal medians. That is, we test whether or not each period in our timespan has
approximately the same median, or if there are some periods that have a significantly lower /higher
median. In case a period has a significantly lower or higher median than the other periods, it
means the time series have significant present seasonal effects. Being a nonparametric test, the
Friedman-Chi-Squared test does not require any distributional assumptions. (Friedmanl 1937)),
(Friedman) 1940). A numerical example of the Friedman test is provided in Appendix

3.1.3 Combined Classification of Trend and Seasonality

When looking at just a single year worth of data, we notice that we cannot be sure as to why a
SKU may have an increasing / decreasing demand over the course of a year. This is because this
effect can have two sources, being seasonality and presence of a trend.

We construct an arbitrary time series, and provide its decomposition. This is depicted in Figure
on the next page. When looking at the figure, we notice that our seasonality component does
not only have seasonality, it also has a trend. When we apply regression for trend first, we notice
that this "trend" component of the seasonality is wrongly attributed to trend. In case we were to
remove seasonality first, we would wrongly attribute our trend to seasonality. As we get access to
multiple years of data, the impact of this decreases, but it never fully vanishes.

Ideally, we are able to assign the trend component to our trend, and the seasonality component
to our seasonality, without getting these two mixed up. Given we have access to multiple years
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worth of data (which, in fact, is required to be classified as a seasonal item), (Silver et al., [2016)
find a way to do exactly this, making use of moving averages. A full explanation is provided in
section 3.4.4.3 of (Silver et al., [2016), but what it ultimately boils down to is a removal of the
trend effect, after which seasonal factors can be obtained. Then, the entire time series can be
deseasonalised, and we can perform linear regression for our trend component. From now on, we
refer to this as being the seasonality first approach.
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Figure 3.2: Time Series Decomposition
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3.2 Forecasting Methods, Algorithms, and Regressors

Now that we have researched which methods can be used to classify various time series, we are
going to look into the available forecasting models to forecast said time series. We answer our
next sub-question.

e Sub-question B: "Which forecasting models are available for forecasting demand for different
SKU types?"”

To get a good idea of how much inventory to keep for the upcoming period, we need to make a
forecast on how many units we are going to need. In order to make such a forecast, we need to
select an appropriate forecasting model. There are many different types of forecasting models,
some being fairly simple statistical models such as time series models, regression models, and
exponential smoothing, and some being more complex methods such as neural networks and
machine learning regressors. In this section, we will cover a wide variety of models by exploring
their workings, strengths, and weaknesses. During the modeling phase of our research, we will
come up with some ideas to use these models and improve our forecasts.

We start off with the statistical models. Statistical forecasting models have been around for a long
time, and for good reason. They are oftentimes simple to compute, and they tend to work fairly
well. In fact, statistical models such as Holt’s method (dating back as early as 1957 (Holt, 2004)))
have dominated for a very long time, with statistical methods still beating out Machine-Learning
models in the M3 competition (Makridakis et al., 2018). Only in recent years have hybrid models
and pure machine learning models started to arise, with 2020’s M4 competition (Makridakis et al.,
2020) featuring hybrid models and 2022’s M5 competition featuring mostly machine learning
models among top performers (Makridakis et all 2022)). Despite most state-of-the-art models
being machine learning models, statistical methods have not disappeared. Many machine learning
models still benefit from statistical preprocessing such as trend removal and deseasonalisation
(Makridakis et al., [2020)), (Zhang and Qi 2005).

3.2.1 Statistical Models

There are two widely applied statistical models in the field of time series forecasting. These are
exponential smoothing and its extensions, and ARIMA and its extensions. We will briefly cover
these models here. More details can be found in Appendices [C] and [D}

Simple Exponential smoothing

Simple exponential smoothing (SES) is a simple forecasting model suitable for time series that do
not have a trend or seasonality present. The forecasting formula for SES is as follows:

Ft =a-+¢ (33)

Simple exponential smoothing only forecasts based on level a. This level is updated every period.
We use smoothing parameter o to update the level. Greater values for a correspond to greater
updating (Silver et al., [2016]).

Double Exponential Smoothing

Double exponential smoothing is an extension to simple exponential smoothing, including one
additional parameter S for a present trend. Double exponential smoothing forecasts based on the
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following formula:
Fo=a+bt+¢ (3.4)

Where b is the trend. This trend is updated in a similar manner to the level as covered before.
(Silver et al., 2016)).
Holt-Winters Exponential Smoothing

In addition to a trend and a level, some time series also have a seasonality present. Seasonality at
a given time t is indicated by S;. This yields the following forecasting formula:

Ft = (a, —|— bt) . St + €¢ (35)

Seasonality is smoothened with parameter v in a similar manner to level and trend (Silver et al.,
2016). More on Holt-Winters exponential smoothing can be found in Appendix .

Auto Regressive Moving Average methods (ARMA Family)

The main alternatives to exponential smoothing models are models of the ARMA family, most
notably ARIMA and seasonal ARIMA. We explore these models as described in (George E|
P. Box, |1994) and (Wan Ahmad and Ahmad, [2013). Models belonging to the ARMA class consist
of two main parts, being an autoregressive (AR) part, and a moving average (MA) part. ARMA
models are always based on a predetermined number of past observations for both the AR and
the MA part. This number of observations is referred to as the order.

The autoregressive part of the model models the value of a time series as a linear combination of
its past values. The AR(p) model is denoted by:

P
F, = Z 0iXi—i + € (3.6)
i=1

Where p is the number of significant time periods, X;_; is the value at period t — i, and ¢; is
some scalar dependent on the significance of the period.

The moving average part of the model models the value of the time series based on
past forecast errors. It has order q. We define the M A(q) model as follows:

Xi=p+ Z(cbi C€-i) 6 (3.7)
i=1

Where 1 is the level. Other parameters are as before.

Combining these AR and MA models, we get the following ARM A(p, ¢) model:

p q
Xy =p+ Z OiXi—i + Z(¢z €—) + €& (3.8)
i=1 i=1

Note that this model only works for stationary time series. We can extend the ARMA model to
the ARIMA model, which first differentiates non-stationary time series by order d in order to
make them stationary. We can then further extend the model to also allow for seasonality. This
seasonality extension is commonly referred to as seasonal ARIMA. More on ARMA models and
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their extensions can be found in Appendix [D]

Fourier Transforms

Fourier analysis is a mathematical technique that is often used in signal processing and time
series analysis, although it is not very common in demand forecasting. Despite this, prior research
shows potential to the application of FFTs for forecasting highly seasonal SKUs. The paper
by (Musbah and El-Hawary, [2019)) proposes an improvement to the seasonal ARIMA model
by extracting seasonal factors using the Fast Fourier Transform algorithm. The Fast Fourier
Transform (FFT) is an algorithm that can transform a time series into its frequency components,
all of which correspond to certain fluctuations over time. In case a pattern is present, some
frequency components will be dominant. After filtering out dominated frequency components,
which we assume to be mostly noise, we can apply the inverse Fourier transform (IFFT) to obtain
the pattern that is present in our time series.

(Fumi et al.| 2013) go even further in applying the Fourier transform for forecasting,
proposing a simple FFT forecasting model for forecasting demand in the fashion industry, which
is an industry that often has uncertain products, consisting of short-lifespan products that are
often highly influenced by seasonal effects, promotional effects, and social factors among others.
Despite being a field that appears to be highly unpredictable, the Fourier transforms yielded
large improvements over moving averages and exponential smoothing.

3.2.2 Machine Learning Models

Machine learning models have seen a sharp rise in the field of demand forecasting over the
last couple of years. Starting with a transition from purely statistical models to hybrid
models (Makridakis et al. [2018), (Makridakis et al) [2020). The era of hybrid models
did not last for long, however, as the transition from statistical models to hybrid models
was quickly followed up by the transition to pure machine learning models (Makridakis et al., 2022).

In 2018, about five years ago, dominant machine learning models were Bayesian Neural
Networks (BNN), Multilayer Perceptrons (MLP) and Support Vector Regressors (SVR)
(Makridakis et al., [2018)), though none of these models managed to outperform statistical models.
Despite not being as performant in (Makridakis et al., 2018), the Long Short-Term Memory
(LSTM) recurrent neural network saw some action as an alternative to ARIMA in 2018 and
2019 (Siami-Namini et al., 2018), (Siami-Namini and Namin|, 2018), (Siami-Namini et al. 2019)
(Abbasimehr et al.| [2020]), though this seemed to be short-lived as it had already fallen out of
flavour and showed no presence in 2020’s M4 competition (Makridakis et al., 2020)).

Gradient Boosters

Gradient boosting algorithms are very popular machine learning algorithms due to their high
performance and versatility. They perform well in a wide variety of tasks, including time series
forecasting as shown by their dominance in 2022’s M5 forecasting competition (Makridakis et al.,
2022). Gradient boosting is a ensemble machine learning method that is highly suitable for
classification and regression. Being an ensemble method, gradient boosting can be used to create
well-performing models through combining several weak learners, typically coming in the form of
decision trees (classification) and regression trees (regression) (Bentéjac et al., 2021). In the case
of time series forecasting, we are dealing with the latter.

Gradient boosting starts off by a single value or regression tree, known as the base learner.
Oftentimes, this single value of regression tree will not perform well. To improve performance
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of the model, we extend the model by creating an additional regression tree based on the errors
made by our previous regression trees. The new tree improves the performance of the model
by reducing error through minimisation of a loss function. After adding the newly constructed
tree, we can update our predictions and recompute errors. We iteratively improve the model by
adding more trees until we reach the maximum number of trees. This iterative approach allows
use to generate models tend to perform well and are relatively easy to train (Friedman, 2001,
(Friedman et al., |2000), (Friedman, 2002).

During our literature study, we investigated the three most popular gradient boosting algorithms,
being CatBoost (Prokhorenkova et al., 2018), (Dorogush et al., 2018), Light GBM (Ke et al., 2017)),
and XGBoost (Chen and Guestrin) 2016). Information on these algorithms is found in Appendix
[K] As we do not use them in our final model, they have been excluded from the main body of
this report.

Prophet

Another candidate model is Prophet, which is a forecasting model developed by Facebook. In
addition to the usual level and trend, Prophet is able to fit yearly, weekly, and daily seasonalities.
Moreover, Prophet supports adjustment for holiday effects by default. It is able to handle missing
data and outliers very well and thus does not need a lot of preprocessing (Taylor and Letham,
2018). Several studies have shown Prophet to outperform ARIMA and Seasonal ARIMA by a
significant margin (Aditya Satrio et al., 2021)), (Samal et al. [2019), (Yenidogan et al., 2018]).

Prophet was designed with ease-of-use in mind. Although analysts and consultants often have a
lot of knowledge in their field, this knowledge is not often paired with a deep understanding of
time series and forecasting. Models like ARIMA often demand a deeper understanding of the
workings of the models to work well, as the model is sensitive to parameters such as the order of
differencing, order of moving average components, and the order of auto-regressive components.
Prophet was designed to make forecasting scalable, accurate, and intuitive. (Taylor and Letham,
2018)

Prophet is a time series model based on decomposition of the time series (Harvey and
Peters, 1990)). The model has four components, being three components that we can model and
a noise component, which is simply estimated by a normal distribution. The three modeled
components are trend, seasonality, and holidays. (Taylor and Letham, 2018) provide the following
equation:

y(t) = g(t) + s(t) + h(t) + & (3.9)

Where y(t) is the forecast, g(t) is the trend function, s(t) denotes seasonality, h(t) represents
holidays and events, and ¢; is noise. As we can see in Equation [3.9] Prophet uses an additive
model by default, though we can change the model to use multiplicative seasonality by means of
a log transform (Taylor and Lethaml| [2018)). The additive model is similar to the generalized
additive models as described in (Hastie and Tibshirani, |1987)) and (Gardner, 1985).

Prophet allows us to fit the model for two types of trends, being the saturating growth
model and the piecewise linear model. The saturating growth model is essentially an extended
exponential growth model, as the model allows for exponential growth that stagnates once it
starts to reach a certain level known as the carrying capacity. In its most basic form, the model
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is denoted by:

C

9lt) = 1+ exp(—k(t —m)) (3.10)

With C being the carrying capacity, k being the growth rate, and m denoting the offset. As
mentioned in Appendix [C| our research does not cover SKUs that are in the exponential
growth /decline phase of their product life cycle, and thus we will not explore the saturating
growth model in more depth than we have done so far.

The type of trend we will likely encounter is the piecewise linear trend. The piecewise
trend is a model that allows us to use a linear trend with changepoints. This means we model the
trend as a constant rate of growth for each time period, and allow for this rate of growth to
change at each of our changepoints. The number of changepoints can be estimated by the analyst
or automatically selected by Prophet (Taylor and Letham, |2018). In our research, we let Prophet
determine the number of changepoints.

Allowing these growth rate changes and trend reversals introduces some uncertainty
into the model as we cannot be certain about the changes the trend will undergo in the future.
To overcome this uncertainty, (Taylor and Letham) 2018)) make an assumption the trend will
continue to change with similar magnitude and frequency. (Taylor and Letham) [2018])

Prophet relies on a Fourier series for modeling seasonalities and periodic effects (Harvey
and Shephard| [1993). As Fourier series are dependent on the period we are analysing, choice
of this parameter is important. Prophet uses a period T' = 365.25 for yearly seasonality and
T = 7 for weekly seasonality. Note that Prophet does not use monthly seasonalities by default. If
desired, we can manually add custom seasonalities to Prophet and include monthly seasonality
despite this not being allowed by means of a Fourier transform (Taylor and Letham)| 2018).

Using all components of the Fourier series often causes the model include noise and
thus overfit. To overcome this, we can use a filter known as a low-pass frequency filter. A
low-pass frequency filter is a filter that truncates the Fourier series at a certain frequency known
as the cutoff frequency. That is, we modify the Fourier series such that only fluctuations over
longer timespans remain. This ensures the modeled seasonality only contains fluctuations that
slowly and steadily occur over time. Fluctuations that occur rapidly over time are assumed to be
noise. An example of how a low-pass filter works can be found in Appendix [E.2.2] By default,
Prophet uses a cutoff frequency of 10 for its yearly seasonality. This means that we allow the
Fourier series to contain at most 10 components. These are a level component (which is a sine
that has a frequency of 0), and sines with frequencies of 1 Hz to 9 Hz. A single Hz corresponds
to one dip and one peak per year. For daily seasonality, Prophet uses a cutoff frequency of 3.
One can choose to manually alter these parameters, or automatically change them based on the
Akaike Information Criterion (AIC) (Stoica and Selen|, 2004)). (Taylor and Letham) 2018)). In our
research, we use the default settings as provided by Prophet.

Inclusion of holidays and events is an area where Prophet may have an advantage over
traditional statistical models. Holidays and events often change demand for certain SKUs around
their date of occurrence, and Prophet allows us to model them and include these changes in our
forecast. Prophet models the effects of holidays using regression. This also includes a window
around the holiday/event itself as demand on these days are oftentimes also affected by the
holiday. (Taylor and Letham) 2018)).
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Generalized additive models such as prophet have some practical advantages when compared
to generative models such as ARIMA. Firstly, the model is able to fit very fast by using an
optimization algorithm known as L-BFGS (Byrd et al| [1995). L-BFGS is an optimisation
algorithm that works on minimising the error function by iteratively adjusting input parameters.
Because Prophet essentially models the problem as a curve-fitting regression problem instead of
solving the problem by means of ensemble methods such as CatBoost, we face less computational
costs for making our forecast. Secondly, the components of the model are very intuitive and thus
easy to interpret and evaluate for our analysts. Consultants in the field of inventory management
often know a lot more about seasonality than they do about measures such as autocorrelation,
which inherently makes the additive Prophet model more intuitive than the generative ARIMA
model. This allows the analyst/consultant to better estimate seasonality and trend over multiple
periods. (Taylor and Letham), [2018)

3.3 Performance Measures

Having researched a wide range of classification methods and forecasting algorithms, we can
proceed on to the last part of the literature studies, which covers measuring of performance. We
answer the third sub-question, which is as follows:

o Sub-question C: "How can we measure performance of used forecasting models?"

There are two important variables in measuring performance of our forecasts. These are the
accuracy of the forecast, and the bias of the forecast. In this section, we cover metrics that can
be used to numerically express and compare these variables.

Accuracy

We need to measure their performance by means of performance measures for two main reasons.
First, "historical performance of a forecasting process helps us create the description of future
demand to support resource allocation decisions" (Silver et al., |2016]). Second, by keeping track
of forecasting performance, we can potentially find ways to improve our forecasts (Silver et al.,
2016).

Forecast performance is commonly evaluated by accuracy measures (De Gooijer and
Hyndman|, |2006), (Makridakis et all [2022). Some commonly used performance measures are:
MSE, RMSE, MAD/MAE, MAPE, sMAPE (De Gooijer and Hyndman, 2006]), (Silver et al. 2016).
In the M5 accuracy competition, MASE (Hyndman and Koehler, 2006), RMSSE (Hyndman and
Koehler, 2006) and WRMSSE (Makridakis et al., 2022) are brought up as additional performance
measures. For all performance measures covered here, lower scores mean lower forecasting errors
and thus more accurate forecasts. Covered performance measures, definitions, and potential
remarks are provided in Table on the next page.

Choosing a suitable forecast metric depends heavily on the cost of forecast error, which is the
type of error that is least desirable. In addition, when comparing performance across different
time series, we commonly use percentage errors as they are scale-independent. (Hyndman and
Koehler| 2006). Depending on the case, we may need different performance measures.

Bias

We track the bias of our forecasts such that we can know whether we are consistently
underforecasting or overforecasting. (Trigg, (1964) propose tracking the bias by means of a
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Table 3.1: Performance Measures

Measure Definition Comments

Forecasts are medians of
future distributions.

For Normal distributions:
o = \/g-MAD ~ 125 - MAD

MAD/MAE | MAD/MAE=LS" |D, - F|

Not useful for low demand,
MAPE MAPE=100% - 320, |75 undefined for D; =0
L1y DR MASE is the ratio of
MASE MASE = 7T i [Di=F| current MAD to prior MAD
MSE MSE= 15" (D, — F)? Vv
RMSE RMSE = \/% Yo (Dy — Fy)? RMSE =0, =vMSE
Lsnth (D~ F})2 Only computed for products
— h t=n+1
RMSSE RMSSE = 77 Dtea(De—Dy—1)? that are actively sold.
Like MAPE, but symmetric
sMAPE | sMAPE=100%- 13" '@;5;") unlike MAPE, has an

upper and lower bound.
Weighted RMSSE. X denotes
WRMSSE WRMSSE = Z _ Wy - RMSSE number of SKUs,
w, is weight of SKU x

tracking signal, defined as follows:

Smoothed error = (1 — ) previous smoothed error + « latest error (3.11)
M.A.D. = (1 — «a) previous M.A.D. 4 « latest absolute error (3.12)

Smoothed error
M.A.D.

Tracking signal = (3.13)
Using this system, a tracking signal of 0 implies no bias. Values close to -1 means we are
consistently overforecasting, whilst values close to 1 mean we are underforecasting.

3.3.1 Conclusion

Based on our literature research, we see value in extending the seasonal models to include multiple
levels of seasonality. In our research, we will investigate the effects of including weekly and daily
seasonality in addition to the currently used monthly seasonality.

In addition, we find inspiration in the use of Fourier transforms. (Musbah and El-Hawary| 2019)
propose an improvement to the seasonal ARIMA model by using Fourier transforms. In our
research, we investigate whether triple exponential smoothing can also benefit from seasonal
extraction and processing using Fourier transforms.

Lastly, we find that Light GBM and Prophet are candidate alternatives to exponential smoothing.
Both of these algorithms have proven to perform well based on the M5 accuracy competition
(Makridakis et al., 2022) and we will consider both of these models during our experimental
design.
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4 Methodology

In this chapter, we explain the methodology we use in our research. We first explain how the
data used in our research are collected and preprocessed. Then, we explain the strategy used to
evaluate model performance and select the best model. Lastly, we explain how our models are
validated. We recite our research third question for clarity,

e Research question 3: "How can we evaluate our newly developed model?"

4.1 Data Collection & Preparation

To answer our fourth research question, we first answer our first sub-question:
e Sub-question A: "How are the data collected and prepared?”

Data used in the research have been collected from one of Slimstock’s customers, whom will be
kept confidential in this report. Data have been provided in the form of a plain text file that
includes all historical transactions from May 1st, 2018 to May 10th, 2023. The data set includes
over 100.000.000 transactions of over 50.000 different stock keeping units.

In addition to transaction data, we also have access to the demand classifications as made specified
by Slim4. These are the classifications covered in Section [2.1]

We preprocess the data by aggregating all transactions for each product on a daily level. Then,
we filter out all SKUs that are not in demand class frequent, normal, or lumpy. This data is then
cast to a tabular format.

Once we have this tabular format, we filter out all SKUs that are not in the maturity phase of
their product life cycle. Although we do not have exact classifications on which products are in
the maturity phase of their product life cycles, we use a heuristic. This means that, to remove
SKUs that have been introduced somewhere during the five years of our data, we remove all SKUs
that do not have any demand in the first 10 days (being between 01-05-2018 and 10-05-2018). To
remove SKUs that are no longer sold, we remove all SKUs that are in our data, but not in our
list of currently managed products as obtained from Slim4.

Once we have completed this procedure, we are left with a very large table of 9.419 rows (one for
each product) and 1826 columns (one column for each day). This table will be used as an input
for our models.

4.2 Model Performance

Now that our data have been prepared, we proceed on to answering our second sub-question:

o Sub-question B: "How are we going to measure and express our model performance and
select the best method?"

Following from our literature on performance metrics, combined with the fact that we now have
more insights into our data, we can choose a set of performance metrics that will be used to
evaluate and express model performance. Chosen metrics will be used to select the best models
later in our research.

Cost of Forecasting Error

As mentioned before, the best metric to evaluate and compare performances depends on the
cost of the forecasting error. Although we use data from a single customer in our research, the
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research aims to be applicable to as many similar fields as possible. In addition, we do not have
any information on which types of errors are more costly for our customer.

Selected Error Metrics

Because of this, we have chosen to use four different performance metrics, three of which give an
indication of accuracy. These three metrics are: RMSE, sMAPE, and MAD.

We have chosen to use these metrics for several reasons. Having researched the metrics of:
MAD/MAE, MAPE, MASE, MSE, RMSE, RMSSE, sMAPE, and WRMSSE, we selected our
three metrics for the following reasons.

Firstly, MAD/MAE. We have chosen to use MAD as one of our performance metrics as mean
absolute deviation gives a good indication of the average magnitude of our forecasts, although it
does not measure costs in any way.

Our second metric of choice is RMSE. RMSE, or root mean squared error, is a suitable metric
for measuring the accuracy of our forecasts, especially when larger deviations are punished more
heavily. Note that RMSE is often used in determining the level of safety stocks.

Lastly, we have selected sMAPE. sMAPE, sMAPE, like MAPE, gives an indication of the
percentage error of the forecast. Higher percentages mean larger errors. Note that, because
sMAPE is symmetric, values for sMAPE range from 0% to 200%.

Excluded Metrics

In addition to our chosen metrics, we also researched some metrics that we decided not to use.
We will briefly explain why we have excluded these measures.

Firstly, MAPE. MAPE was not selected because it is undefined in cases where demand is equal
to 0. Instead of MAPE, sMAPE is used, which solves this problem.

Secondly, MASE. MASE is a scaled variant of MAD. Because we are going to scale our time series
for evaluation of performance manually for the purpose of fairly comparing our other performance
metrics, MASE is not included. MAD is included instead.

Thridly, MSE. MSE has been excluded because its more common counterpart, RMSE, has been
used.

Fourthly, RMSSE. Although RMSSE is an interesting metric for sure, we note that its main
advantage lies in the fact that it only computes products that are actively sold. In our research,
all products are actively sold and thus this metric appears to be obsolete. Note that RMSSE is a
variant of MASE, which in turn is a variant of MAD.

Lastly, WRMSSE. WRMSSE has been excluded from our research for the same reasons as RMSSE.
In addition, WRMSSE is a scaled version of RMSSE. As we do not have access to the weights of
our time series, this metric is not feasible.

Bias

As the main aim of the research is the development of an accurate forecasting method, we focus
mostly on measures of accuracy. That being said, bias of a model is still evaluated as a tiebreaker.
Bias of models is also evaluated in Slim4 by default. The metric is used to indicate which
forecasts perform poorly (i.e. which time series see an unexpected change in demand), allowing
the consultant to take action immediately.
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Normalisation

Our research uses many different time series, some of which are of larger magnitude than others.
To prevent the time series of larger magnitude from having a greater impact on our performance
metrics, all time series have been normalised such that the maximum demand is equal to one.
This is done by dividing every time series by its own maximum value. Doing so ensures all time
series are considered to be equally important in our comparisons.

4.2.1 Selection of the best Models

The aim of this research is to find methods that are significantly better than the current method.
We make this assessment mainly based on our three accuracy-based performance metrics.

Simply looking at the values of our performance metrics for the old and new models is not enough.
Although a lower number for our RMSE is better, we cannot directly conclude the model with
the lower number is always the better model.

We can confidently conclude a model is better than another model when two requirements are
met. Firstly, the difference has to be sufficiently large. Secondly, the difference has to be present
consistently. This way, we know the difference in performance is not due to chance alone.

To check whether a model is better than another model, we use a statistical test that checks
whether both of these requirements are present. Specifically, we use a Student’s t-test on the
difference between two means.

Our research use a two-tailed test rather than a one-tailed test because we are interested in
finding whether the mean values of our performance metrics are statistically different. Although
the use of a one-tailed test is better for checking whether or not a model is significantly better
than another model, this will give us some problems later on. This is because it is possible for a
model to be better on a certain performance metric, and worse on another performance metric
(although by a smaller margin). In these cases, we have to evaluate both if a model is significantly
better and if it is significantly worse.

Domination, Multiple winners, and Finding the best Method

The use of multiple performance metrics has its advantages and disadvantages. Although the
use of three performance metrics gives more information on performance than the use of a single
metric would, this also means we can end up in difficult situations.

Selection of the best model when comparing two models is easiest in case one of the models is
clearly better than the other model on all of our performance metrics. The better model scores
significantly lower on all of our accuracy measures as confirmed by our t-test, so that model is
the better model. Extending this, a model is also better than another model in case at least one
of its performance metric scores is significantly better, and the other ones are a tie.

The most difficult choices need to be made in case a model is better on a certain performance
metric, and worse on another. In this case, we have to test for two things. Firstly, we have to
test whether the performance on the better metric is significantly better, and if the performance
on the worse metric is significantly worse. In case the better performance is significantly better,
and the differences in performance on the other metric is not statistically significant, it is still
possible to pick our best model. In case both tests return significant differences, we cannot make
a decision and we have to re-evaluate our metrics and method.

It can occur that we find multiple methods that are significantly better than the current method,
though the difference between the two found alternative methods is not significant. In that case,
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we make our decision based on the p-value of our t-test. The model that has the lower p-value is
selected as the better model. In case neither of the models have lower p-values than the other
model on all performance metrics, we make our decision based on root mean squared error. This
is because a lower value for root mean squared error is directly linked to lower safety stocks.

Decision Making Regarding Model Selection

When comparing two distinct models, one of the two models will be better than the other unless
their performance is exactly identical, which is rarely the case. In theory, we can always find the
better model by providing both models with an infinite number of samples, and seeing which one
performs best. In reality though, we do not have an infinite number of samples we can use to
evaluate our model. This can lead to either of four scenarios:

1. The current method is significantly better based on our t-test.
2. The alternative method is significantly better based on our t-test.

3. The current method is better based on performance metrics, but the difference is not
significant based on our t-test.

4. The alternative method is better based on performance metrics, but the difference is not
significant based on our t-test.

Deciding on a model in scenarios 1 and 2 is trivial. We select the model that is significantly better.
Making a decision in the third scenario is also fairly easy, as we can stick to the current method,
and either refine the third method or evaluate it using more samples (or a combination of both).
The fourth and last scenario is the scenario where risk-takers may opt for the alternative method,
whereas the risk-averse may stick to the current method. In case we have multiple models that
are significantly better than the current method, we pick the best one based on RMSE.

This leads us to two different ideologies we will use for selection of our best forecasting models.
We refer to these as the conservative approach, and the progressive approach.

Conservative Approach

The conservative approach is the approach that likes to stick to the current method unless another
method is proven to be better. This means that, when making the decision to change from
one approach to another approach, the decision maker can be fairly certain of a net gain in
performance.

Progressive Approach

The progressive approach is focused on making improvements at all cost. Like the conservative
approach, the progressive approach always favours a model over another model in case its
performance is significantly better. Unlike the conservative approach, however, the progressive
approach will always select the model that is best based on performance metrics, even if the
difference is not proven to be statistically significant.

4.3 Validation & Verification of the Models

Ultimately, a correct model has two requirements. Firstly, a model has to be specified to complete
the task we want it to perform using a suitable method. Secondly, the model has to be implemented
such that it performs as specified.
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Checking whether the first requirement of a model is met is known as validation. When validating
a model, we check whether a method (e.g. exponential smoothing) is suitable for solving the
problem we attempt to solver (i.e. forecasting demand).

The second requirement is related to the output and implementation of the model. We check
whether the model output is correct. This is known as verification.

This leads us to the following research question:

e Sub-question C: "How do we validate and verify our models?"

4.3.1 Validation

All methods and algorithms we use in our studies are established models that have appeared in
prior research. We refer to literature on these models for the verification of our methods. For our
used methods, literature is provided in Chapter [3| and in the appendices that cover these models.
These are Appendix [G] and Appendix

4.3.2 Verification

Verification of the models is fairly straightforward. After implementing a model, we look at
examples that are present in literature, and check whether our model outputs the same results.
Validation for our models is mainly done using (Silver et al., |2016) and (Facebook| 2023).

Our research also includes adaptations of the model as specified by Slimstock. These models are
not present in literature. Therefore, these models have been verified internally by Slimstock.

4.4 Notes on Implementation

All of our models are evaluated using the general-purpose programming language Python, version
3.11.5. An implementation report is found in Appendix [G] and Appendix [}
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5 Experimental Design

Now that we know how our models will be evaluated, we move on to selection and specification of
our models. We will do this by answering our fourth research question.

o Research question4b: "What will our models look like?"

5.1 Classification Methods

Our first sub-question is as follows:

o Sub-question A: "Which classification methods on trend and seasonality (from literature)
are we going to compare in our research?"

We have decided to use linear regression for classification of trends. We will research the Fisher’s
F-test and the Friedman-Chi-Squared test for classification of seasonalities. More information on
the Fisher’s F-test can be found in Appendix [A] More information on the Friedman test can be
found in Chapter A numerical example can be found in Appendix [B]

5.2 Forecasting Models

o Sub-question B: "Which methods (from literature) are we going to be using as a starting
point for our forecasting models?"

Our literature research yielded three potentially suitable types of models, being exponential
smoothing methods, regression methods, and machine learning methods. We have several types
of models in each of these classes.

For exponential smoothing methods, we have single exponential smoothing, double exponential
smoothing, triple exponential smoothing, double nested exponential smoothing, and triple nested
exponential smoothing. In addition to models found in literature, we also have triple exponential
smoothing as specified by Slimstock. For regression methods, we have found ARIMA and Prophet.
For machine learning methods, we have found Light GBM, CatBoost, and XGBoost.

5.2.1 Exponential Smoothing Methods

We first explain the workings of exponential smoothing as implemented in our research. All
models are based on the same methodology, though some models have one or multiple extensions
depending on their complexity. The exact specification of all of our exponential smoothing models
is provided in Appendix [G|

At its core, all of our models have three phases. These phases are: the initialisation phase, the
updating phase, and the forecasting + updating phase. Note that our research uses 5 years worth
of data. We explain the full procedure in the following paragraphs.

Initialisation phase

The initialisation is the first step in all of our models. In this phase, we use the first 3 years of
data (in our case, data from 11-05-2018 to 10-05-2020) to get an initial estimate of the parameters
in our model. For stationary time series, this is just the level. For trending time series, this is
level and trend. Seasonal time series have level and seasonality parameters. Seasonal time series
that also have a trend use all parameters, being level, trend, and seasonality.
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Updating Phase

The updating procedure is a natural extension of exponential smoothing (Silver et al., |2016]).
The updating phase serves two main purposes. Firstly, updating a model removes the need
to initialise it again every time we need to make a forecast. This reduces computational cost
significantly. Secondly, the updating phase allows us to assign exponentially more weight to more
recent observations, with higher smoothing factors increasing this effect. An example of the
updating procedure is found in Section [G.1.1} where model 1 (SES) is validated. In our models,
level is always updated. If present, trend is also updated. Seasonalities are never updated. Instead
of updating seasonalities, they are recalculated. This is done as by specifications of Slim4.

Our research does not change this specification, and thus all of our models use re-computation
of seasonality rather than smoothing of seasonality. Seasonalities are updated at the beginning
of a new period, not halfway during a period (i.e. we only update seasonality for January once
we need to calculate a forecast for a given day in January). In practice, for Months and Weeks,
this comes down to updating seasonalities once a year. For daily patterns, we decide to update
once a year as well. Although we can theoretically update every week, we have chosen not to
do so for computational reasons. This may lead to slightly different results compared to weekly
updating, but as our experiments are not computationally feasible without this simplification, we
have opted for this approach. We estimate effects of this simplification are very minor if at all
significant. In our research, updating the models is done over the course of a year, using data
from 11-05-2020 to 10-05-2021.

Forecasting + Updating Phase

Once we have performed initialisation and updating as described before, we are going to make
forecasts. These forecasts will be used to evaluate the performance of our models. Evaluation of
the forecasting performance is done over the course of a year.

Slim4 creates forecasts for 1 period ahead every time we need to make a forecast. This means
we are always using the latest information available, without using information about the future.
Once we have made the forecasts, we let time pass, meaning the model is updated on a daily basis.
Once we need to make a new forecast, we again forecast 1 period ahead. The entire procedure of
forecasting and updating is done until we have made forecasts for an entire year.

Our research uses 3 cover periods, being short (3 days), medium (7 days), and long (21 days). This
allows us to make some computational optimisations regarding our forecasts. These optimisations
are due to the fact that we can make forecasts simultaneously, and do not have to run the model
three times. We cover the entire procedure in Appendix which covers the verification of
model 1 (SES).

5.2.2 Regression Methods

Our literature research yielded two different regression methods, being ARMA models, and
Prophet. In our model design, we opted to select Prophet as a candidate and discarding all

models of the ARMA family.

As covered in Appendix D] ARMA models have been an alternative to exponential smoothing
models, and although various research has been conducted on finding which of the two performs
better, no general consensus has been found. We have discarded the ARMA models as researching
them did not align with the interests of our stakeholders. In addition, both exponential smoothing
and ARMA models have been shown to be outperformed by Prophet (Aditya Satrio et al., [2021]),
(Samal et al., 2019), (Yenidogan et al., 2018)).



5.3 Parameters 31

As we just mentioned, Prophet, which is our other regression model, has been shown to outperform
exponential smoothing and ARMA methods. In addition, it is easy to implement and use.
Therefore, we have decided to include Prophet in our research.

5.2.3 Machine Learning Methods

Although machine learning methods have shown to perform very well in the M5 accuracy
competition (Makridakis et al., [2022)), we have dropped them from our research at a fairly early
stage. This is mainly because, upon further research, we found these algorithms rely heavily on
external features such as historical sales price data, which we do not have access to. Using the
model without access to these features delivers performance nowhere near the performance of the
other models we research. Being a machine-learning model, performance is heavily dependent
on hyperparameter tuning, which takes a very long time. Because of these reasons, we decided
machine learning methods in the form of gradient boosters are beyond the scope of this research.
Despite exclusion of these methods for now, in case Slimstock can get more access to data in the
future it may be worthwhile looking into those methods again.

5.3 Parameters

Now that we have selected our forecasting models, being exponential smoothing models and
Prophet, we are going to look at the relevant parameters in these models. This answers our next
sub-question:

o Sub-question C: "What are the main parameters in these models?"

5.3.1 Exponential Smoothing Parameters

Exponential smoothing as we are going to implement in our research has a single parameter «
for single exponential smoothing, and two parameters, being a and [ for double exponential
smoothing. In addition to these parameters, model performance is affected by the duration of the
initialisation period and the updating period. (Silver et al., [2016]) suggest an initialisation period
of at least 4 years and an updating period of a single year or more. Having access to 4 years of
data for initialisation, we decide the best we can do is three years for initialisation and a single
year for updating the model. Once this is completed, the model can continue to be used using
just forecasting and updating. Exact workings and implementation of the model is covered in

Appendix [G|

5.3.2 Prophet Parameters

Although the prophet model has a large number of parameters that can be adjusted in our
code, Facebook does an excellent job highlighting the most important parameters for us. These
parameters and their effects are as follows:

1. Changepoint prior scale. This parameter is responsible for the flexibility of the trend. This
parameter is essentially a lasso penalty. Values that are too low cause the trend to underfit,
meaning changes in trend are considered to be noise. Values that are too high cause the
trend to overfit |Facebook| (2023).

2. Seasonality prior scale. This parameter is responsible for the magnitude of seasonal effects.
This parameter is essentially a ridge penalty. Higher values mean there is less regularisation.
Lower values apply more regularisation. (Facebook, 2023) note that the default value of
10 oftentimes works well as there is inherent regularisation because of the way seasonality
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is modeled. The use of a Fourier series combined with a low-pass filter effectively reduces
overfitting by itself, and this additional regularisation is oftentimes not needed.

3. Holidays prior scale. This parameter is responsible for the magnitude of the effect of holidays
on our model. Like seasonality prior scale, this parameter applies a ridge penalty. (Facebook,
2023) note that the default value of 10 (very little regularisation) usually works well if we
have multiple observations of each of our holidays. In case we have fewer observations, we
can decrease the value of this parameter to apply more regularisation such that we do not
overfit to our holiday effects.

4. Seasonality mode. This parameter is used to specify whether the model used is an additive
model or a multiplicative model.

5.4 Parameter Optimisation

Now that we have selected our models and identified the most important parameters, we are
going to look into optimisation of the models. Hence, our next research question is as follows:

e Sub-question D: "How are we going to optimise our model parameters?”

We start off by covering the optimisation of parameters for the default model and its derivations,
being the exponential smoothing models. Then, we will look into optimisation of Prophet.

Optimisation of Exponential Smoothing Parameters

Slim4 uses a single value for its updating parameters o and 5. As of now, updating is done on
a monthly basis. Slimstock wishes to transition to the use of daily models, which are also used
in our research. Therefore, we have to find new values for o and 5. As we explore in Appendix
, (Silver et al., 2016) explore various ranges of values for different updating periods. For our
research, we decide to go with a = = 0.01 daily. We have chosen to use this value as this is the
lower end of the range defined in (Silver et al., 2016). We use the lower end of the range because
the models have been modified to use a higher updating frequency than before. Higher updating
frequencies work better with lower smoothing factors. As by specifications of Slim4, smoothing
parameter 7y for seasonality, is not used.

Although optimal values for our smoothing parameters may vary depending on the environment,
Slim4 does not optimise its smoothing parameters due to computational constraints. Therefore,
our research uses values as recommended by literature.

Parameter Optimisation of Prophet

Like exponential smoothing, if implemented at all, Prophet will not be optimised for individual
scenarios due to computational constraints. Therefore, we have to propose a suitable range of
values that can be used by Slimstock in case Prophet ends up being implemented in Slim4.

To perform this optimisation, we can choose for either manual or automatic optimization. We have
chosen to automatically optimise our model parameters as this can be done without supervision,
meaning we can perform a greater number of experiments. This leaves us the options of grid
search and random search. We have chosen to perform a random search as random search has
been proven to be more efficient than grid search (Bergstra and Bengio|, 2012)). This is because
we search a larger (albeit less promising) solution space.

As found in Research Question [5.3.2] Facebook suggests to restrict tuning of the model to just
four parameters. These parameters, as well as their value ranges, can be found in Table below.
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We optimise Prophet based on its score for RMSE over our full dataset. To do so, we run 500
iterations of random search, using 4 years worth of data for initialisation, and 1 year for evaluation.
We then calculate the RMSE of all of our individual SKUs, and validate whether or not the
difference between models is statistically significant using a two-tailed t-test.

Table 5.1: Prophet Parameters

Parameter Name Functionality Suggested Range | Recommended
. . Adjusts flexibility
changepoint prior scale of the trend [0.001, 0.5] 0.05
. . Adjusts flexibility
seasonality prior scale of the seasonality [0.01, 10] 10
. . Adjusts flexibility
holidays prior scale of the holiday effects [0.01, 10] 10
Switches between
. additive and Additive/ .
seasonality mode multiplicative Multiplicative Additive
seasonality effects

After performing 500 iterations of random search, we notice that the performance of our model is
mostly dependent on a single parameter: seasonality mode. The additive model was significantly
better in all iterations, no matter the configuration of the other parameters. Use of a two-
tailed t-test with o = 0.05 leads to the conclusion that the default value for seasonality
mode, which is additive, yields significantly better performance than its alternative, being
multiplicative seasonality. This holds true even when comparing the worst additive model to the
best multiplicative model.

The difference in performance between the best and worst performing additive models is not
statistically significant. This leads us to conclude that the effect of the other three parameters is
very minor if at all present and thus we do not optimise these parameters any further. In our
research, we use the default values as recommended by Facebook. These values are found in Table

(.1l above.

5.5 Modifications to Existing Models

In addition to researching Prophet, which is an alternative of exponential smoothing, we explore
different alternatives in the form of modifications to the current models. In this section, we will
elaborate on these modifications and answer our research question of:

o Sub-question E: "How are we going to modify these models such that we can improve their
performance?”

We first provide a quick overview of all the starting points for forecasting models that will be
part of our research. We also provide information on which SKU types for which these SKUs are
suitable.
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Table 5.2: Starting Forecasting Models

Model SKU Types

Single Exponential Smoothing Stationary SKUs
Double Exponential Smoothing Trending SKUs

Triple Exponential Smoothing without Trend | Seasonal SKUs

Triple Exponential Smoothing with Trend Trending Seasonal SKUs
Prophet Any

We are going to modify two of these models, being the triple exponential smoothing models. We
are going to modify these models in two different ways, which will be covered shortly. We will
also explore models that use both of these modifications.

5.5.1 Triple Exponential Smoothing with Nested Seasonality

As covered in our literature studies in Chapter 3 the use of nested seasonalities is a natural
extension to traditional exponential smoothing. Instead of using just monthly seasonalities, we
are also going to classify SKUs based the presence of seasonality between weeks. In addition,
we do the same for seasonality over the days within a week. Seasonality will only be extracted
in case it is deemed significant by our test as we find by answering research question 5.A. This
leads to fourteen additional variations of triple exponential smoothing. These fourteen variations
come from the 7 possible combinations of seasonality and the presence/absence of a trend. As
each of our seasonalities is either present or absent, we find 2% = 8 combinations. One of these is
the combination where all seasonality is absent, leaving 7 possible different levels of seasonality.
Including/excluding the presence of a trend yields another 7 combinations.

5.5.2 Fourier Transforms

We hypothesise that seasonality over the year is not nearly as erratic as numerical analysis of
limited historical data may make it seem to be. Under the assumption that most products
smoothly transition between periods of increased demand and periods of decreased demand, we
know that seasonality should always be either at a local extrema (i.e. Syy1 < Sy and Si11 < Spiz
for a low seasonality, or Syy; > S; and Sy, > Syyo for high seasonality), or in a phase where it
transitions (i.e. Sy < Spy1 < Spyg or Sy > Siy1 > Siio). In addition, local extrema should always
be preceded and followed by a period of transition. Periods of transition may be preceded and
followed by either a local extrema or another period of transition (if the latter, we consider these
combined periods to be a single period). These requirements ensure seasonal transitions occur
smoothly.

We illustrate our point in Figure [5.1] below. Observed demand is depicted by the blue line.

Looking at the blue line, we see demand of the product is approximately periodic in 6 months,
meaning the seasonal pattern repeats approximately every 6 months, or twice a year. This means
we should have two periods of high seasonality, two periods of low seasonality, and four periods of
transition. More specifically, we expect the following pattern: Transition > Max > Transition >
Min > Transition > Max > Transition > Min, to repeat.
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Time series and modeled seasonality
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Figure 5.1: Observed Demand and Smoothened Seasonality

We now look at the blue line, and the constraints we proposed earlier. We see that the blue line
follows the following pattern: Transition > Max > Transition > Transition > Min > Transition
> Max > Min > Max > Transition > Min. This violates our hypothesis of smooth transitions of
seasonality:.

Multiplicative Fourier Seasonalities

As covered in Section of Chapter 3| (Musbah and El-Hawary] [2019) were able to improve the
performance of ARIMA models by extracting seasonal factors by means of a Fourier transform
rather than using the traditional method. Prophet takes a similar approach for modeling seasonality
(Taylor and Letham, [2018]).

This leads us to a simple extension of the exponential smoothing models. After regular extraction
of seasonalities as specified by Slim4, we apply a Fourier transform to the seasonal factors. This

is done in an attempt to smoothen the transitions of seasonality. Full implementation is covered
in [G.5

An example is provided in Figure above. Applying a Fourier transform and some filtering and
scaling to our previously covered blue line as described in Appendix [E| we are able to extract a
much smoother pattern for seasonalities.

In our research, we implement the Fourier Transform as described in Appendix [G.5] We use a
single Fourier transform for our monthly seasonal factors, combined with a low-pass frequency
filter of cuttoff frequency 10. We use a cutoff frequency of 10 as (Taylor and Letham, [2018)) have
found this works well for the modeling of seasonality in Prophet.

5.5.3 Combination

A logical further extension is the combination of these models. As we expect the majority of
noise to be present in the detection of monthly seasonal patterns, we apply the modifications on
a monthly level only. We apply the same transformation as before.

5.5.4 Prophet

Prophet has a single advantage over our other methods, which comes in the form of holiday
support. Prophet allows us to include the modeling of holidays, and thus we will also test the
effect this has on our performance.
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5.6 Conclusion

Our experiments are divided into parts, being the classification part and the forecasting part.
During the classification part, we are going to evaluate the overall forecasting performance of four
different classifiers. This is done by dividing the data set into four classes, all of which currently
use a different exponential smoothing model. Division of the data set will be different for each
classifier. We will select the classifier that results in the best division based on overall performance
to be the best classifier.

In the second part of our experiments, we extend the classification to include daily and weekly
seasonality. This results in sixteen classes of SKUs rather than the four classes we identified
before. For each of these sixteen classes, we evaluate a variety of forecasting models. We evaluate
the performance of our forecasting models based on accuracy, using a t-test to check whether or
not the newly researched model is better than the current model.
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6 Results

In this chapter, we provide the results of our experiments. We start off by an analysis of the
current performance, after which we proceed to analysing the performance of our alternative
classifiers. After selecting the best classification method, we introduce classification for multiple
levels of seasonality, also known as nested seasonality.

In the following sections, we analyse the performance of nested triple exponential smoothing, and
a slightly modified version of triple exponential smoothing that uses a different way to update the
level parameter. Furthermore, we provide the results of our experiments on the use of a Fourier
series for seasonality processing. We do this for both the current methods and for the nested
triple exponential smoothing adaptation.

After performing our analysis on exponential smoothing methods, we proceed to the experiments
of our alternative forecasting model: Prophet. We evaluate the performance of this model for our
various types of SKUs over our different cover periods. Lastly, we will be looking at the difference
in forecasting performance in case holidays are included or excluded in the model.

Note that our research uses 9419 time series of five years each. These are all time series that have
been classified as "Frequent", "Normal", or "Lumpy" by the specifications of Slim4. We further
classify these time series based on the presence of seasonality and trend.

Analyses in this chapter are as concise and objective as possible. Interpretation, conclusion, and
discussion of the results are found in Chapter [7]

6.1 Determining a Baseline

We start off our experiments by evaluating performance of the current method. We do this, such
that we can compare it to our alternative methods, and determine whether or not the alternative
method is significantly better than the current method.

The current method consists of two phases, being classification and forecasting. The current
classification method is as follows:

1. Classify whether or not the time series has a trend. This is done using linear regression. In
our research, we use a significance level of & = 0.05 to do this.

2. If the time series has a significant trend, detrend the time series.
3. Classify the presence of seasonality based on the F-test.

Now, if neither trend nor seasonality was found, use single exponential smoothing. If a significant
trend is present but seasonality is not, use double exponential smoothing. If seasonality is present
but a trend is not, use triple exponential smoothing without a trend. If both trend and seasonality
are present, use traditional triple exponential smoothing.

We evaluate the performance of the current method over three different cover times, being short
(3 days), medium (7 days) and long (21 days). We do this based on the 1 period ahead forecast.
We will refer to these performances as our baseline performance. Results are provided in Table
6.11
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6.2 Alternative Classification Methods

Table 6.1: Performance of the Current Method for Each of our Cover Times
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Short (3 days) 0.188 | 74.8 | 0.14 | -0.003
Medium (7 days) | 0.282 | 50.87 | 0.214 | -0.013
Long (21 days) 0.652 | 37.6 | 0.515 | -0.029

6.2 Alternative Classification Methods

Slimstock currently use a combination of linear regression and a Fisher’s F-test for classifying its
SKUs using a trend-first approach. In our research, we explore three alternatives to this approach.
These are a Fisher’s F-test using a seasonality first approach, a Friedman test using a trend first
approach, and a Friedman test using a seasonality first approach. Note that the seasonality first
approach removes seasonality before trend regression regardless of significance. Significance levels
are a = 0.05 for both trend regression and seasonality classification. Results of the classification
process are provided in Appendix [M] Full performance figures of the classification can be found
in Appendix [7] We provide the most important results in Table [6.2] [6.3] and [6.4]

Table 6.2: Performance of each of our Classifiers for Short Cover Times
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F, Trend first 0.188 | 74.8 | 0.14 | -0.003
F, Seasonality first 0.188 | 74.79 | 0.141 | -0.005
Friedman, Trend first 0.2 | 7597 | 0.15 | 0.028
Friedman, Seasonality first | 0.201 | 75.99 | 0.151 | 0.028
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Table 6.3: Performance of each of our Classifiers for Medium Cover Times
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F, Trend first 0.282 | 50.87 | 0.214 | -0.013
F, Seasonality first 0.283 | 50.85 | 0.216 | -0.015
Friedman, Trend first 0.32 | 52.82 | 0.243 | 0.035
Friedman, Seasonality first | 0.322 | 52.91 | 0.245 | 0.041
Table 6.4: Performance of each of our Classifiers for Long Cover Times
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F, Trend first 0.652 | 37.6 | 0.515 | -0.029
F, Seasonality first 0.656 | 37.57 | 0.518 | -0.03
Friedman, Trend first 0.792 | 40.23 | 0.619 | 0.044
Friedman, Seasonality first | 0.801 | 40.36 | 0.624 | 0.058

6.2.1 Conclusion on the Best Classification Method

Now that we have evaluated the model performances for each of our test and each of our cover
periods, we can compare the results and find which classification method works best. We start off
by comparing the classifiers for our short cover period, for which the results are provided in Table
6.2

For our short cover period, we see that both variants of the F-test have very similar performance,
being close enough for us to consider their performances to be equal. The same holds for the
Friedman tests. We notice that none of the investigated alternatives perform significantly better
than the current method, and thus we conclude the current method is optimal. Analysing Table
6.3] we come to the same conclusion for our medium cover times. From Table[6.4] we conclude that
this also holds for our long cover times. To summarize, the F-test, trend first approach seems to be
the best classifier in our research. We make the assumption the best test for monthly seasonality
will also be the best test for other levels of seasonality, and thus we use this classification method
for the rest of our experiments.
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6.3 Nested Classification of SKUs

Slimstock currently only uses monthly seasonality for classification. A possible way of improving
the quality of our forecasts is the use of nested seasonality as described in (Taylor, |2003b) and
(Taylor, [2010). In this section, we reclassify our SKUs using nested seasonality. In the following
sections, we conduct experiments using this new classification.

Currently, Slimstock classifies its SKUs based on the presence of trend and monthly seasonality
only. In our research, we extend this method by including classification based on daily and weekly
seasonality in addition to monthly seasonality and trend. In our classification, we use the F-test,
trend first approach. Our new classification is provided in Table below.

Table 6.5: Nested Classification of SKUs
SKU Class ‘ SKUs in Class

Stationary SKUs: Nonseasonal SKUs without a trend 894
Daily SKUs without a trend 1 283

Weekly SKUs without a trend 24

Monthly SKUs without a trend 5

Daily-weekly SKUs without a trend 140
Daily-monthly SKUs without a trend 25
Weekly-monthly SKUs without a trend 17
Daily-weekly-monthly SKUs without a trend 131
Trending SKUs: Nonseasonal SKUs with a trend 3071
Daily SKUs with a trend 3101

Weekly SKUs with a trend 67

Monthly SKUs with a trend 15

Daily-weekly SKUs with a trend 294

Daily-monthly SKUs with a trend 40
Weekly-monthly SKUs with a trend 33
Daily-weekly-monthly SKUs with a trend 279

Analysing our newly made classification, we see the number of SKUs in each class varies a lot.
Our biggest classes of SKUs are the daily SKUs without a trend, nonseasonal SKUs with a trend,
and daily SKUs with a trend. We also note that we have a handful of classes that are very small.

Intuitively, the biggest gains can be made in the larger classes of SKUs. Improving performance
of a lot of SKUs can lead to significant improvements across the board, even if the improvement
is relatively small.

In this research, we compare different models for each of our classes separately. We use a t-test
to compare the difference between two means. It is important to note that this test essentially
tests for two criteria at the same time. Firstly, the difference between our two groups has to be
sufficiently large. Secondly, the difference has to be consistently present over a large number of
samples.

For our research, this means that it will be difficult to come to conclusions for our smaller classes.
While we will oftentimes be fairly certain about which model performs best for classes that have
a large number of SKUs, making this decision is much more difficult for our smaller classes. This
leads us to a limitation related to the data used in our research, more on this later in Section [7.9]

In the following sections, we will go over each of our alternative models. We will only cover the
most significant results in this chapter. Overall impact of the changes is found in Chapter [7] All
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intermediate results for our experiments are reported in the corresponding appendices.

6.4 Effect of Inclusion of Nested Seasonality for Triple
Exponential Smoothing

The first alternative forecasting model we explore is nested triple exponential smoothing. Full
experiment results are found in Appendix [O] where we also provide a brief analysis on each of
our experiments. We now go over our most significant findings.

To begin, we note that our stationary SKUs, monthly seasonal SKUs without a trend, trending
SKUs, and monthly seasonal SKUs with a trend have not had their models changed and are
thus not affected. We can be fairly brief in analysing the results of our experiments on the other
classes. Based on our experiments, we find that nested triple exponential smoothing is never
better than the current method. In fact, the current method is always significantly better on at
least one of our performance metrics, even for our smaller classes.

6.5 Effect of Inclusion of Nested Seasonality for Triple
Exponential Smoothing: Modified version.

We note that the performance of nested triple exponential smoothing is extremely poor when
compared to regular triple exponential smoothing in all cases.

Upon further investigation of the issue, we notice that triple exponential smoothing has a
fundamental flaw that is very difficult to overcome. The problem lies in the updating of the level,
which is done according to the following equation:

ay = aDy/(Fii—p1) + (1 — a)(ae1) (6.1)

The updating of the level includes a division by the seasonality of the current period, which, if 0,
is undefined. This causes our model to break. Slim4 currently solves this issue by implementing a
minimum seasonal factor, such that this division is no longer undefined. Note that, using the
current method (in which we only use monthly seasonality), this does not occur often in practice.

During our research, we conducted some experiments on a good value to use for our minimum
seasonal factor. We ran various experiments with values ranging anywhere from 0.01 to 0.2.
Deciding on a suitable value is a trade-off between sensitivity of the level update (where lower
values will cause the level to update by a large amount, in fact, this update is often undesirably
large for very low values) and creation of accurate forecasts, which prefers this minimum value to
be as close to 0 as possible as higher values cause high values for our forecast even if seasonality
of the current period is, in fact, 0. For the current method, we found a value of 0.01 to work fairly
well.

Problems start to arise once we allow for the nesting of seasonality, where level is updated
according to the following equation:

a; = aDt/(Fl,t—PIFZt—PZFS,t—PS) + (1 —a)(a-1) (6.2)

In case we have historically not seen demand on a given day, week, and month, we note that



6.5 Effect of Inclusion of Nested Seasonality for Triple Exponential Smoothing: Modified
42 version.

all of our seasonal factors are, in fact, 0. As an example, we look at a situation where we have
never had demand occur on January, week 1, on Saturdays. Using a minimum seasonality of 0.01,
this leads to a seasonal factor of 0.000001 (1.0E-6) for this day. In case demand occurs on that
day in our recent data, even though it does not occur in our historical data, this means the first
part of our updating equation will evaluate to one million in case demand is a single unit. This
ultimately means our level gets increased by 10 000 when we use a smoothing factor of a = 0.01
(like we do in our research).

Although many of our SKUs will not have this problem, we note our dataset contains a handful of
outliers which cause very poor overall performance. In an attempt to fix the fundamental flaws of
triple exponential smoothing, we run experiments that exclude deseasonalisation in the updating
of our level. The new updating equation is now as follows:

ar = aDy 4+ (1 — a)(a—1) (6.3)

Results of Experiments

After implementing this change, we run our new experiments. Results of these experiments are
provided in Appendix [P where we again provide a brief analysis for each class. In this section,
we go over our most significant findings. Classes that are not covered in this section were either
negatively affected by the new model, or the difference in performance was not statistically
significant.

Daily Seasonal SKUs without a trend

Analysing our daily seasonal SKUs without a trend, which is a class consisting of 1 283 SKUs.
Analysing Table [6.6] we notice that for short cover times, the new model is significantly better
based on RMSE and MAD. Performance based on Bias is significantly worse, but the difference is
minimal at just 2.78%. RMSE of the new model is 11.48% better. MAD is 16.18% better.

Table 6.6: Effects of changing from SES to TES Nested Adjusted for Daily Seasonal SKUs for
Short Cover Times

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short SES 0.183 77.54 [ 0.136 | -0.036

TES Nested Adjusted | 0.162 74.2 | 0.114 | -0.037
p-value - 0.0 0.07 0.0 0.0

Note that our medium and long cover times are not affected by the presence of daily seasonality
as these cover times are integer multiples of 7, which is the number of days in a week.

Daily-weekly SKUs without a trend
The next class for which we find significant results is the class that covers Daily-weekly SKUs

without a trend. This is a class consisting of 140 SKUs. Results of our experiments are provided
in Table [6.7] below.
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Table 6.7: Effects of changing from SES to TES Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.204 72.11 | 0.157 | -0.065

TES Nested Adjusted 0.19 69.63 | 0.136 0.076
p-value - 0.144 0.67 | 0.006 0.0
Medium SES 0.273 45.38 | 0.211 | -0.095

TES Nested Adjusted 0.319 47.68 | 0.243 | 0.007
p-value - 0.009 0.63 | 0.022 0.0
Long SES 0.606 31.42 | 0.486 | -0.111

TES Nested Adjusted 0.723 33.15 | 0.566 | 0.108
p-value - 0.027 0.65 | 0.056 | 0.006

We note that, for short cover times, the adjusted nested model sees improvements to MAD at the
cost of bias. For medium and long cover times, single exponential smoothing is better based on
our accuracy metrics.

Daily seasonal SKUs with a trend

The next class for which we find the new model to be significantly better is the class of daily
seasonal SKUs with a present trend. This is a very large class, consisting our 3101 SKUs. Note
that only short cover times are affected.

Table 6.8: Effects of changing from DES to TES Trending Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short DES 0.195 67.65 | 0.148 | 0.016
TES Trending Nested Adjusted 0.17 63.51 | 0.123 | 0.011
p-value - 0.0 0.0 0.0 0.0

Looking at Table [6.8, we see that the new model is significantly better based on all of our
performance metrics. RMSE is improved by 12.82%. sMAPE is improved by 6.12%. MAD is
improved by 16.89%. Bias is improved by 31.25%.

Daily-weekly seasonal SKUs with a trend
The class containing Daily-weekly seasonal SKUs is a medium sized class at just 294 SKUs.
Results of our experiments are provided in Table below.

Table 6.9: Effects of changing from DES to TES Trending Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short DES 0.219 61.78 0.17 | 0.046
TES Trending Nested Adjusted | 0.213 58.91 | 0.155 | 0.183
p-value - 0.443 0.44 | 0.022 0.0
Medium DES 0.317 42.49 | 0.245 | 0.045
TES Trending Nested Adjusted 0.381 44.88 0.29 | 0.207
p-value - 0.0 0.5 0.0 0.0
Long DES ‘ ‘ 0.766 34.68 | 0.616 | 0.043
TES Trending Nested Adjusted 0.941 36.88 | 0.736 | 0.234
p-value - 0.0 0.51 | 0.002 0.0
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As was the case for daily-weekly SKUs without a trend, we notice that the nested triple exponential
smoothing model is better than the current model based on short term MAD. For medium and
long cover periods, the current model remains the better model.

6.5.1 Conclusion on Nested Triple Exponential Smoothing

In this section, we analysed the impact of inclusion of nested seasonalities for triple exponential
smoothing and the modifications made to the updating of our level parameter. Firstly, we note
that adjustments made to the updating of the level parameter are necessary for nested triple
exponential smoothing to work. Secondly, Looking at our most significant findings, we see that
inclusion of daily seasonality yields significant short-term improvements over the current method.
We also see some short term improvements to the models that include daily-weekly seasonality,
though these improvements are a lot smaller than the improvements obtained by including daily
seasonality alone. We hypothesise that inclusion of daily seasonality is beneficial, while inclusion
of weekly seasonality is not. This hypothesis is confirmed when looking at the performance
differences that occur when including just weekly seasonality. We therefore conclude that it is best
to classify our SKUs based on monthly and daily seasonality rather than just monthly seasonality.
This improvement is most significant for short cover times. For longer cover times that are not a
multiple of 7 days, the improvement will be present, but to a much lesser extent.

6.6 Fourier Seasonalities

As covered in Section we run experiments that use a Fourier transform to smoothen our
monthly seasonality extraction. For now, this only affects SKUs that have a monthly seasonality
present. Full experiment results are provided in Appendix [Q] In this section, we analyse the
classes of SKUs for which performance between the current model and the Fourier adaptation are
statistically significant.

Daily-weekly-monthly SKUs without a trend

The first class of SKUs for which we find the difference in performance between the current model
and the Fourier adapted model is significant is the class of daily-weekly-monthly SKUs without a
trend. This class contains 131 SKUs.

Table 6.10: Effects of changing from TES to TES Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.214 73.22 | 0.158 | -0.117

TES Fourier 0.202 73.05 | 0.151 | -0.045
p-value - 0.302 0.98 | 0.493 0.43
Medium TES 0.34 50.45 | 0.248 | -0.132

TES Fourier 0.304 50.44 | 0.227 | -0.034
p-value - 0.072 1.0 | 0.153 0.348
Long TES 0.863 38.98 | 0.639 | -0.175

TES Fourier 0.73 39.37 0.56 | -0.085
p-value - 0.035 0.94 | 0.094 | 0.049

Analysing the results as provided in Table [6.10] above, we find that the Fourier adaptation of
the model is significantly better than the current model for long cover periods. RMSE of the

adaptated model is 15.41% better. Bias is 51.43% better. Difference in sMAPE and MAD is not
statistically significant.
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For our medium cover times, we see that the p-value of our test on RMSE is just 0.072, which is
very close to the threshold value of 0.05. We suspect the adaptation is also better for medium
cover periods, but we need more data to back up this claim.

Daily-weekly-monthly SKUs with a trend

Daily-weekly-monthly SKUs with a trend is a class consisting of 279 SKUs. For this class, we
also find statistically significant differences in performance between the current model and the
Fourier adaptation.

Table 6.11: Effects of changing from TES Trending to TES Trending Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.22 76.22 | 0.157 | -0.052

TES Trending Fourier | 0.202 77.1 | 0.148 0.177
p-value - 0.04 0.8 0.201 | 0.013
Medium TES Trending 0.388 53.42 | 0.274 | -0.077

TES Trending Fourier | 0.338 55.39 | 0.253 0.21
p-value - 0.008 0.55 | 0.101 0.106
Long TES Trending 1.06 42.91 | 0.754 | -0.086

TES Trending Fourier | 0.878 45.59 | 0.678 0.211
p-value - 0.003 0.38 | 0.069 | 0.531

Analysing the results in Table [6.11] we again see the Fourier adaptation outperform the current
model by a significant margin based on RMSE. For our short cover periods, this difference is

8.18%. For medium cover periods, the difference is 12.89%. Long cover periods see the greatest
benefit at 17.17%.

6.6.1 Conclusion on Fourier Series for Seasonality

In this section, we analysed the difference in performance between the current model and the
Fourier adaptation of the model. We find that daily-weekly-monthly seasonal SKUs, both with
and without a trend, see a significant benefit to long term RMSE. Daily-weekly-monthly SKUs
with a trend also see this improvement for short and medium cover periods.

Other affected SKU classes are monthly SKUs, daily-monthly SKUs, and weekly-monthly SKUs,
all with and without a trend. These six classes of SKUs are all very small and thus we are not
able to come to a significant conclusion in our research. Although we do not have sufficient data
to back up a meaningful claim on these classes, we note that accuracy of the Fourier adaptation
is better for five of these six classes. The exception to this is the class of monthly seasonal SKUs
without a trend, is a class that consists of just 5 SKUs. This leads us to believe the Fourier
adaptation of the model has a positive effect in most cases.

6.7 Nested Seasonality with Fourier Adjustments

In the previous sections, we explored both inclusion of nested seasonality as well as the proposed
Fourier adaptation of the current implementation of triple exponential smoothing. We found both
of these adjustments lead to improvements in some classes. Full results of our experiments, as
well as in-depth analyses of experiments, are found in Appendix [R] In this section, we analyse
our most significant results.

After combining the modifications made to adjusted nested triple exponential smoothing and the
application of a Fourier transform, we see that eight of our sixteen classes get a change to their
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models. These are the eight classes that include monthly seasonality. Analysing our eight classes,
we find that the combined model yields significantly better performance than the current model
for two of our eight classes. These are the daily-weekly-monthly SKUs without a trend, and the
daily-monthly SKUs with a trend.

Daily-weekly-monthly SKUs without a trend
The combined model shows a significant short-term improvement for daily-weekly-monthly SKUs
without a trend, which is a class that consists of 131 SKUs.

Table 6.12: Effects of changing from TES to TES Nested Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short TES 0.214 73.22 | 0.158 | -0.117
TES Nested Fourier 0.199 70.6 | 0.136 | 0.052
p-value - 0.188 0.65 | 0.019 | 0.314

We previously saw neither nesting nor Fourier filtering was able to significantly perform the
performance of the model. Now, when combining these two methods, we actually start to reap
the benefits. Short term MAD was significantly improved, making the nested TES Fourier model
the better model for short cover periods. MAD gets improved by 13.92%. RMSE also sees an
improvement of 7.01%, but this difference is not statistically significant.

Daily-monthly SKUs with a trend

Daily-monthly SKUs with a trend is a class that contains 40 SKUs. Despite containing just 40
SKUs, we found that the difference in performance between the two models was statistically
significant for both short and long cover periods. Difference in performance of the two models
was not statistically significant for medium cover periods.

Table 6.13: Effects of changing from TES Trending to TES Trending Nested Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

TES Trending Nested Fourier | 0.154 87.27 0.11 | 0.057
p-value - 0.055 0.71 | 0.036 0.871
Long TES Trending 0.764 40.81 | 0.543 | -0.069

TES Trending Nested Fourier | 0.531 35.55 | 0.409 0.117
p-value - 0.038 0.3 | 0.042 | 0.524

Like found when analysing the performance of this model on daily-weekly-monthly seasonal SKUs
without a trend, we find that our combined model produces significantly better results than the
current model, even though neither adaptation of the model was significantly better by itself.
For short cover periods, this is solely based on MAD. For long cover periods, this conclusion is
based on RMSE and MAD. Short cover times see an improvement of 17.20% to RMSE, though
this difference was not statistically significant. MAD sees a significant improvement of 19.12%.
For long cover times, RMSE and MAD see significant improvements of 30.50% and 24.68%
respectively.

6.7.1 Conclusion on Nested Seasonality with Fourier Adjustments

Analysing the results of our experiments on the combined model, we find that, when combined to
the current model, the combined model shows a significant improvement in short-term forecasts
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for daily-weekly-monthly SKUs without a trend. The combined model also shows improvements
for both short and long cover periods for daily-monthly SKUs with a trend. This is interesting, as
neither of our two adaptations was able to significantly improve the performance by itself. Based
on our experiments, we conclude that combining nesting and the Fourier adaptation of the model
is beneficial to performance for short cover time forecasts for daily-weekly-monthly SKUs without
a trend, and for short and long cover period forecasts for daily-monthly SKUs with a trend.

6.8 Alternative Forecasting Method: Prophet

In addition to exponential smoothing models and covered adaptations to these models, we explore
the Prophet forecasting model. As covered in Chapter is a regression-based forecasting
model. We run experiments on the performance of Prophet compared to performance of the
models currently used by Slimstock. Full experiment results as well as analyses are provided in

Appendix [

We start off this section by mentioning Prophet performs extremely well for most of our SKU
classes, where performance is either significantly better or not significantly worse for fourteen of
our sixteen classes. For ten of those fourteen classes, Prophet performs significantly better based
on accuracy for at least one of our three cover periods. In this section, we provide an analysis on
our four largest SKU classes, being stationary SKUs, trending SKUs, and daily SKUs with and
without a trend. This includes the two classes for which Prophet is significantly worse than the
current model, being stationary SKUs and daily seasonal SKUs without a trend.

Stationary SKUs
Starting off with our first class of SKUs, being stationary SKUs. Being a class containing 894
SKUs, we have quite a lot of data to back up our claim.

Table 6.14: Effects of changing from SES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short SES 0.158 94.6 | 0.112 | -0.017
Prophet | 0.151 94.1 | 0.108 -0.12
p-value - 0.096 0.83 | 0.151 0.0
Medium SES 0.241 66.03 0.18 | -0.011
Prophet 0.25 68.13 0.19 | -0.151
p-value - 0.166 0.32 | 0.033 0.0
Long SES 0.519 44.9 | 0.411 | -0.011
Prophet 0.564 4771 0.449 | -0.209
p-value - 0.008 0.1 | 0.006 0.0

Analysing the results in Table above, we find that Prophet has better short-term performance
based on accuracy, but this difference is not statistically significant. For medium and long cover
periods, SES is superior to Prophet for this class of SKUs.

Daily SKUs without a trend
The second class of SKUs we cover is the class of daily SKUs without a trend. This class is a
fairly large class, containing 1 283 SKUs.
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Table 6.15: Effects of changing from SES to Prophet
Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short SES 0.183 77.54 | 0.136 | -0.036
Prophet 0.166 74.93 0.12 | -0.111
p-value - 0.0 0.16 0.0 0.0
Medium SES 0.26 49.33 | 0.195 | -0.045
Prophet 0.27 50.55 | 0.206 | -0.147
p-value - 0.082 0.44 | 0.005 0.0
Long SES 0.542 33.2 | 0.423 | -0.056
Prophet 0.586 34.89 | 0.461 | -0.194
p-value - 0.002 0.2 0.0 0.0

Analysing Table [6.15] we find that Prophet significantly outperforms the current method for short
cover times based on RMSE and MAD. For medium and long cover times, we find the opposite
holds true, with the current method outperforming Prophet. We conclude Prophet is best for
short cover times, and SES is better for medium and long cover times.

Trending SKUs without seasonality
The next class we cover is the class of trending SKUs without seasonality. At 3 071 items, this
class makes up almost a third of our total.

Table 6.16: Effects of changing from DES to Prophet
Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short DES 0.183 75.14 | 0.137 | 0.006
Prophet 0.167 72.26 | 0.123 | -0.169
p-value - 0.0 0.02 0.0 0.0
Medium DES 0.283 52.58 | 0.217 | -0.008
Prophet | 0.281 52.44 | 0.217 | -0.213
p-value - 0.703 0.9 0.868 0.0
Long DES 0.671 39.92 | 0.538 | -0.031
Prophet 0.675 39.81 | 0.538 | -0.273
p-value - 0.716 0.91 | 0.992 0.0

Analysing Table [6.16] above, we find that Prophet significantly outperforms the current method for
short cover times based on accuracy. Difference in performance for medium and long forecasting
horizons is not statistically significant.

Daily SKUs with a trend
The last class we cover is our largest class of SKUs. At 3 101 items, daily SKUs with a trend
make up almost a third of our total.
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Table 6.17: Effects of changing from DES to Prophet
Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short DES 0.195 67.65 | 0.148 | 0.016
Prophet 0.172 63.69 | 0.126 | -0.141
p-value - 0.0 0.0 0.0 0.0
Medium DES 0.283 45.21 | 0.217 | 0.006
Prophet 0.285 45.25 | 0.219 | -0.177
p-value - 0.514 0.97 | 0.354 0.0
Long DES 0.652 34.18 | 0.519 | -0.013
Prophet 0.665 34.11 | 0.524 -0.22
p-value - 0.185 0.94 | 0.507 0.0

For this class of SKUs, we again see Prophet outperform the current method for our short cover
time. Difference in performance for medium and long cover times is statistically insignificant.

6.8.1 Conclusion on Performance of Prophet Compared to the Current
Method

To summarise, we find that Prophet is a very good method for creating short-term forecasts,
significantly outperforming the current method for our three largest SKU classes. Medium and
long term forecasting performance of the model varies across the board. An analysis for each of
our individual SKU classes is found in Appendix [J

6.9 Effects of Holidays on performance of Prophet

Another advantage Prophet has over the other methods is the fact that Prophet has access to
information on holidays. In this section, we research the difference in model performances when
holidays are excluded and when they are included. Note that we only use Dutch holidays as the
data used in our research have been provided by a Dutch company. In this experiment, we do not
perform any form of classification. Instead, we use all of our data to evaluate the performance of
our two different models (being Prophet with holidays and Prophet without holidays). Results of
our experiments are provided in Table [T.1] [T.2] and [T.3] of Appendix [T}

Analysing our results, we find that our data does not provide enough evidence to conclude there
is a significant difference between the performance of the two models. This holds for all three
of our cover periods. We select Prophet without holidays as our best model as it has slightly
(though not significantly) better bias than its holiday-adjusted counterpart. In addition, it is also
the more generalisable model as it is not bound to a single country.
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7 Findings, Conclusion, and Discussion

In this chapter, we finalise our research. We start off by discussing our findings. We look
at our best found classification and forecasting methods, their associated performances, and
the advantages and disadvantages of these methods. After discussing our findings, we discuss
implications and recommendations of our research for both Slimstock and our client.

After discussing our findings and the implications and recommendations for our stakeholders, we
compare our research to prior research. Next, we look at the limitations of our research. We
also discuss scientific relevance. We wrap up our research by providing our recommendations for
further research.

7.1 Findings

We start off by answering research question 5, discussing our findings. Reciting:
e Research question 5: "What are our findings?"

The findings in our research are twofold, consisting of findings on classification of time series and
findings on time series forecasting. We first cover classification.

7.1.1 Best Classification Method

In the first step of our research, we investigated several classification methods. This allows us to
answer the first sub-question:

o Sub-question A: "What is the best classification method?

This question was covered in Section [6.2.1] In our experiments, we find the F-test, trend first
approach yields the best performance. Performance for the F-test, seasonality first approach
is nearly identical. As the trend-first approach requires less computation, we consider it to be
better than the seasonality first approach. We find that using a Friedman test instead of a more
traditional F-test does not result in better performance. Experiments were executed on a monthly
aggregated level. We later assume that the F-test, which works best for this level of aggregation,
can be applied to other levels of seasonality without loss of generality.

Making this assumption allows us to classify our SKUs into more specific classes. In addition to
monthly seasonality, we can now identify weekly and daily seasonality. These two new levels of
seasonality allow use to further tailor the forecasting models to our needs. In our later experiments,
we found that including the presence of weekly seasonality in our forecasting models does not
result in better performance. Including daily seasonality results in significant improvements
for SKUs that have structural fluctuations in demand over the week. Note that classification
on a weekly seasonality not being beneficial is a retrospective finding. The remainder of our
experiments therefore do include the possibility of weekly seasonality.

To conclude, we can best classify seasonality in our time series on a monthly and daily level. To
do so, we use a Fisher’s F-test as described in Appendix [A] Classification of trend is best done
using linear regression.

7.1.2 Best Forecasting Models

Although the use of a single forecasting model would reduce the need for classification, we find that
a combination of different forecasting models for different types of SKUs yields better forecasting
performance than the use of a single method. Now that we have found our best classification
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method, we can select the best forecasting models for our different SKU classes under our two
different ideologies. By doing so, we answer our second sub-question, which is as follows:

o Sub-question B: "What is the best forecasting model for each of our SKU types?”

Our research identifies sixteen classes of SKUs. In this section, we use a shorthand notation to
describe these classes. This notation is as follows: (T: (y/n), D: (y/n), W: (y/n), M: (y/n)),
where T is trend, D denotes daily seasonality, W is for weekly, and M is for monthly. y is for
yes (inclusion), and n is for no (exclusion). We select our best models as described in section
[4.2.1] Model selection is done independently for our three different forecasting horizons. We look
at the most significant improvements in this section. For a full analysis and results, we refer to

Appendix [U}

Best Models for Short Cover Times

For short cover times, we see a lot of changes for both a progressive and a conservative ideology.
Under a progressive ideology, we find that all of our SKU classes benefit from a change to Prophet.
Under a conservative ideology, we see nine of our sixteen classes have their models switch to
Prophet. Overall improvements based on RMSE are about 12% for the progressive ideology and
11% for a conservative ideology.

Looking at our four largest SKU classes in Table below, we see some very interesting things.
Firstly, the class of stationary SKUs sees an improvement of 4.43% based on RMSE, but this
change is not statistically significant. Classes two and nine see an improvement of around 9%.
For class 10, which is the class of daily seasonal SKUs with a trend, Prophet is very good, but it
is not actually the best option. For this class, we see an improvement of a little under 12% when
using Prophet and a little under 13% when using the level-updating-adjusted variant of nested
triple exponential smoothing.

Best Models for Medium Cover Times

For medium cover periods, we see that improvements are of a much smaller magnitude. Whereas
we previously saw improvements of around 10%, improvements for medium cover times are
approximately 2.5% for a progressive ideology and approximately 1.8% for a conservative ideology.

Again looking at our four largest SKU classes in Table below, we see that classes 1, 2, and 9,
being stationaries and daily seasonal items with an without a trend, do not benefit from a model
change at all and thus these classes are not improved. Trending SKUs without seasonality see a
small improvement from changing to Prophet, but the difference is not statistically significant.
Performance gains for this class actually originate from our smaller SKU classes switching to
Prophet as shown in Appendix [U}

Best Models for Long Cover Times

As seen in Table [7.3] none of our four largest classes benefit from a model change for long cover
times. Despite the fact that our largest four classes do not see any benefit, switching from the
current model to Prophet does yield improved performance. This performance improvement
is around 3.4% under a progressive ideology and around 3.1% under a conservative ideology.
Changes originate from our smaller classes of SKUs as shown in Appendix [U]

Conclusion on the Best Models

To conclude, we find that the best way to forecast our different SKUs is to use a combination of
currently used methods and Prophet, with Prophet being more prevalent when forecasting on a
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shorter horizon. The biggest performance gains are made on a short forecasting horizon, though

longer cover periods also benefit from the new models to some extent.

There is one exception to this, being daily seasonal SKUs with a trend on a short cover period.
These SKUs are best forecasted using the adjusted version of nested triple exponential smoothing.
As this is the only situation in which a not yet implemented model is the best model, and using
Prophet instead of exponential smoothing yields very similar performance, we conclude that using

Prophet here, despite not being optimal, is also a good option.

Table 7.1: Short Cover Periods: Changes for our Largest Classes
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SKU types @) X < o
SES 0
1: (T: n, D: n, W: n, M: n) | SES 894
Prophet 4.43
2: (T: n, D: y, W: n, M: n) SES Prophet 1283 | 9.29
9: (T:y, D: n, W: n, M: n) | DES Prophet 3071 | 8.74
Prophet
11.79
10: (T:y, D:y, W: n, M: n) | DES| Trending | 3 101
TES Nested 12.82
Adjusted
Table 7.2: Medium Cover Periods: Changes for our Largest Classes
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1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES SES 1283 | 0.00
DES 0
9: (T:y, D:n, We:n, M: n) |DES| — |3071 | ——
Prophet 0.71
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Table 7.3: Long Cover Periods: Changes for our Largest Classes

SKU types
1: (T: n, D: n, W: n, M: n) || SES | SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES | SES | 1283 | 0.00
9: (T:y, D: n, W: n, M: n) || DES | DES | 3 071 | 0.00
10: (T:y, D: y, W: n, M: n) | DES | DES | 3 101 | 0.00

7.2 Performance of the New Models

Now that we have identified the best classification method and forecasting models, we take a
more detailed look at our overall performance gains. We answer our third sub-question.

o Sub-question C: "What is the performance of the new method?"

As covered in the previous question and Appendix [U] the new method is most beneficial for short
cover periods, where we the new method is better than the current method by a little over 10%
based on RMSE. We analyse the effects on overall performance in Table below. Looking at
Table [7.4], we see that accuracy is improved at the cost of bias. Whereas Bias of the current
method is very close to zero, we see that the Bias of the new models is slightly negative. This
means that the new models structurally over-forecast by a slight margin.

Table 7.4: Performance of the Different Approaches for Short Cover Times

Q
Ny
& &
< R &
§ & F
< 2
> o 4
3 s & &
> % & %
g g g g
8§ L L &
Method < N N4 N4
Current Approach | 0188 | 748 | 014 [ -0.003
New Approach: Conservative 0.167 71.58 0.122 -0.082
Performance Gain (+) / Loss (-) | + 11.17% | + 4.30% | +12.86% | - 2633.33%
New Approach: Progressive 0.166 71.49 0.121 -0.094
Performance Gain (+) / Loss (-) | + 11.70% | + 4.43% | + 13.57% | - 3000.33%

When moving on to the medium cover times (Table [7.5)), we see that although performance gains
found here are still significant and very welcome, these gains are nowhere as large when compared
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to short-term gains found earlier. Despite gains not being anywhere as large as they were before,
we are fairly certain they are present based on our statistical t-tests as covered in Chapter [0]
When looking at bias we again find that although the percentage difference is certainly large, the
absolute difference is fairly minor.

Table 7.5: Performance of the Different Approaches for Medium Cover Times

Q
g*
I s
< Q) S
s & F
< %
> o Y
& 5 < Q
> % % &
g Ry Ry g
S L L L
Method < N v N
Current Approach \ 0.282 \ 50.87 \ 0.214 \ -0.013
New Approach: Conservative 0.277 50.72 0.211 -0.02
Performance Gain (+) / Loss (-) | + 1.78% | + 0.29% | + 1.40% | - 53.85%
New Approach: Progressive 0.275 50.59 0.210 -0.09
Performance Gain (+) / Loss (-) | + 2.48% | + 0.55% | + 1.87% | - 592.31%

Looking at our long cover times (Table [7.6)), we again see that performance of the new model is
significantly better than the old model. With gains in RMSE being a little over three percent, we
think our new method provides our stakeholders with a relatively small though very welcome
improvement. Looking at bias, we find that bias is worse than it was before, though absolute
difference of bias is fairly small.

Table 7.6: Performance of the Different Approaches for Long Cover Times

9
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g & & &
3§ L L L
Method < N4 N N
Current Approach | 0652 | 376 | 0515 | -0.029
New Approach: Conservative 0.632 37.35 0.49 -0.031
Performance Gain (+) / Loss (-) | + 3.07% | + 0.66% | + 4.85% | - 6.90%
New Approach: Progressive 0.630 37.29 0.500 -0.038
Performance Gain (+) / Loss (-) | + 3.37% | + 0.82% | 2.91% |- 31.03%

Summarising, we see that the new method improves short term performance by approximately
11-12% and medium to long term performance by approximately 2-3%. Differences in performance
of the progressive and conservative approach are very small.
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7.3 Advantages and Disadvantages of the Newly Found
Models

Now that we know more about the effects of adopting a new model, we find ourselves asking the
very difficult question of: Is this model worth implementing?

To answer this question, merely looking at numbers does not suffice. Even though a method may
be better than another method based on numerical analysis, we always need to look at the bigger
picture. To do so, we are going to cover the advantages and disadvantages of our new method
compared to the current method. This answers the next sub-question of:

o Sub-question D: "What are the advantages and disadvantages of newly found models?"

Firstly, the advantage of the new models. The main advantage of the new models is significantly
improved performance based on accuracy. This allows for a reduction in safety stock and, in turn,
safety stock costs.

Then, the disadvantages of the models. We identify two disadvantages that come with our new
models.

Firstly, maintenance and development. With the new method adding both a new classification
level and a new forecasting algorithm, the system has become more complex and thus more
difficult to maintain and develop.

Secondly, computation. The new method is more computationally complex than the method
that is currently used in Slim4. This means that forecasting will take longer to complete, and
customers may need to invest in better hardware to make up for this.

7.4 Recommendations for our Client

Having analysed performance, advantages, and disadvantages of the new method, we can proceed
to the recommendations for our client, answering the following sub-question:

e Sub-question E: "Based on performance, advantages, and disadvantages, what can we
recommend to our client?"”

With our client being a customer of Slimstock, this research provides very little direct results
until Slimstock finishes implementation of the models. Despite this, we can provide them with
one single recommendation, which is related to the presence of daily seasonality.

We notice that our client’s portfolio contains many SKUs that have daily seasonality present.
This means they are heavily exposed to the effects of daily seasonality, which is not currently
supported by Slim4. We recommend our client to incorporate processing of daily seasonality as
soon as Slimstock adds this functionality.

7.5 Recommendations for Slimstock

With Slimstock as an intermediary, we provide more recommendations to them than to our client.
We answer our penultimate sub-question:

o Sub-question F: "Similarly, what are our recommendations to Slimstock?"

Firstly, we recommend to include seasonality classification on a daily level. With 4 384 of our
client’s 9 419 SKUs having daily seasonality, this is a distinction worth making. This is most
beneficial on a short forecasting horizon. Contrarily to daily seasonality, inclusion of weekly
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seasonality does not seem to be a great contributor to forecasting performance. None of the
models that include weekly seasonality do any better than their counterparts and thus we do not
recommend them.

Secondly, Prophet appears to be a much more accurate forecasting algorithm than exponential
smoothing for many classes of SKUs. We recommend Slimstock to include it in their software.

Modifying the current software to use Prophet instead of exponential smoothing requires a lot of
time and effort, making the transition more of a long-term plan. In our research, we researched
modeling of seasonality using a Fourier transform, which is similar to the way Prophet models its
seasonality. Our experiments (Appendix () show that inclusion of a Fourier transform allows us
to significantly improve forecasting performance with very little effort. We therefore recommend
Slimstock to include this modification before fully transitioning to our new models.

7.6 Conclusion

Now that all of our experiments are done and results have been thoroughly analysed, we can
answer our main research question, which is as follows:

e Main Question: "How can we better detect patterns in our time series and improve our
forecasts?"

Based on our experiments and analysis of results, we conclude the quality of our forecasts can
be improved by making two changes. Firstly, adding support for daily seasonality. By including
daily seasonality, we can model and predict demand fluctuations on an intraweek level, which
in turn vastly improves the quality of our short-term forecasts. Secondly, changing some of our
forecasting algorithms. Although exponential smoothing remains a good method for forecasting
on longer time horizons, recent developments in the field of time series forecasting have provided
us with more modern algorithms such as Prophet. Our research shows Prophet is very good at
forecasting all types of SKU on a short horizon. In addition, Prophet is very good at forecasting
complex time series on medium and long horizons, outperforming exponential smoothing methods
in some of our experiments. For simpler time series on longer time horizons, however, exponential
smoothing remains the best method.

7.7 Discussion

This leaves us with just the discussion. Some of the results of our experiments contradict our
expectations based on prior research on the same topics. We start by investigating why this is
the case, analysing the differences between our research and the relevant studies in detail.

7.8 Comparison to Prior Research

During our research, we investigated the effects of including different levels seasonality for triple
exponential smoothing. We investigated three levels of seasonality, being monthly, weekly, and
daily. We also investigate combining multiple levels of seasonality.

Combination of multiple levels of seasonality is commonly referred to as nested seasonality. During
our literature studies, we found two papers on nested seasonality for triple exponential smoothing.
The first paper: "Short-term electricity demand forecasting using double seasonal exponential
smoothing.", covers forecasting using two levels of seasonality (Taylor, 2003b)). The second paper
we used is called "Triple seasonal methods for short-term electricity demand forecasting.". This
paper covers forecasting using three levels of seasonality (Taylor, 2010)).
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In both of these papers, including multiple levels of seasonality positively affected forecasting
performance. In our research, we found that neither double nor triple seasonal methods were
able to outperform the current method. In fact, using multiple levels of seasonality oftentimes
caused more harm than good. Despite both double and triple seasonal exponential smoothing
having their place at times, we note that there are some fundamental differences between demand
forecasting for supply chains as in our research, and demand forecasting for electricity as in
(Taylor}, 2003b) and (Taylor, [2010).

Firstly, (Taylor, 2003b)) and (Taylor, |2010) research forecasting on a much shorter term, with
their forecasting period being anywhere from half an hour to a day ahead instead of the multiple
day and / or multiple week forecasts that are required for demand forecasting in supply chains.

Secondly, (Taylor, 2003b) and (Taylor, 2010) make use of different levels of seasonality. Instead of
daily, weekly, and monthly seasonality, (Taylor, 2010) makes use of intraday (hourly), intraweek
(daily), and intrayear (weekly) levels. Although we do not recommend the use of weekly seasonality
for demand forecasting in supply chains, we can see why it does work in other fields.

The main reason we expect the use of weekly seasonality in demand forecasting has a negative
impact whilst it has a positive impact in short-term electricity forecasting is mainly related to
human behaviour. We find energy consumption is naturally linked to the levels of seasonality as
used in (Taylor, [2010). With society generally consuming more energy in winter than we do in
summer, during weekdays, and during waking hours of the day, this makes a lot of sense.

For demand forecasting, however, the use of weekly seasonality introduces a problem, being
misalignment of impact caused by social constructs. Whereas energy consumption is mostly linked
to natural forces, which are generally fairly smooth over time, human behaviour can be fairly
dynamic. Some examples of this are : Christmas, which does not always occur in the same week,
holidays, which start and end at a different time of year each year, and external events, which
can influence our short term buying behaviour way more than it influences energy consumption.
It would be possible to extend the triple exponential smoothing models to include additional
seasonal factors for special events, but this is beyond the scope of our research.

The last problem that we identify emerges when looking at demand forecasting for supply chains
instead of forecasting for energy consumption has to do with deseasonalisation. For energy
consumption, we note that seasonality is never zero. When we look at the following equation:

ay = aDt/(Sl,t—PISZt—PQS:‘),t—PS) + (1 — a)(a-1) (7.1)

This means that aD;/ (Sylvt_ p1524—p2Ss—p3) is never undefined. Not only is it never undefined,
we also note that, in energy forecasting, none of our seasonal factors ever get remotely close to
zero. This means that, in addition to never being undefined, this part of the equation will never
blow up like we had occur during our research.

7.9 Limitations

Inventory management and forecasting are both extremely complex topics, and objectively
researching these topics is extremely difficult if at all possible. Therefore, we have to make some
simplifications and assumptions, which leads to our research having a couple limitations. In
addition, external effects have introduced some limitations to our research that we have not been
able to overcome.
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Firstly, as our research focuses on improving detection and forecasting of seasonal SKUs, we have
limited ourselves to items that are sold throughout most of the year as specified by Slim4. These
are the SKUs that have a demand occur in most months of the year. This means our conclusions
do not necessarily apply to SKUs that have mostly intermediate demand or demand due to one-off
events.

Secondly, our research focuses on products that are in the maturity phase of their product life
cycles. This decision has been made as we limited the scope of our research to numerical methods,
which are applicable under the assumption that history repeats itself to some extent. Limiting
our research to SKUs that are in the maturity phase of their product life cycles ensures their
demand patterns have had time to stabilise as much as possible.

Thirdly, we have analysed all of our SKUs over three different cover periods, being short (3 days),
medium (7 days) and long (21 days). Although we would ideally want to analyse SKUs depending
on their forecasting frequency and timing (i.e. grouping together all trending daily-monthly
seasonal SKUs that are reviewed every Monday and Thursday), this would lead to a major
problem. Introducing so many different groups will mean each group is extremely small. This
means that we will not have sufficient samples to perform our statistical analysis. Adding onto
this, cover periods are oftentimes not static. Depending on the forecasting frequency and timing
of a single SKU, there may be multiple cover times present. An SKU that is reviewed on Mondays
and Thursdays has review intervals of 3 and 4 days respectively. Even when assuming that lead
time is static at a single week, this SKU will have two different cover times. As we did not have
access to the review timings of each SKU during our research, this simplification is compulsory,
and even if we did, this simplification is likely to have still been required due to reasons mentioned
before.

Fourthly, data used in our research have been collected between May 1st of 2018 and May 10Th
of 2023. During this period, COVID-19 has had a very large effect on the supply chains and
demands of many companies, and we have very good reason to believe this has also been the
case for Company X, whose data was used to conduct this analysis. With demand of many
products from many companies all over the world being highly affected, analysis of time series has
become very difficult. For Company X, we estimate that COVID-19 has had a negative influence
on demand, especially during 2020 and the beginning of 2021 when measures such as working
from home, quarantine, bans on large gatherings, and curfews were prevalent. As these measures
were later lifted and / or loosened, this means models that assign more weight to more recent
observations (such as exponential smoothing models that use very high smoothing factors) are
favoured. This is also one of the main reasons our research does not entail extensive research on
the optimisation of smoothing factors for exponential smoothing. The other reason we do not
optimise our smoothing factors to fit our data is because this is also not done by Slimstock per
specifications of Slim4.

Lastly, our research makes an assumption regarding classification. In finding the best classification
method, we only investigated performance of classification on a monthly level of aggregation. We
make the assumption that the found method is also best for identifying the presence of seasonality
on different levels of aggregation. This assumption had to be made to reduce the required number
of experiments for our research.

7.10 Scientific Contribution

This research contributes to the scientific database in multiple ways. Firstly, our research proposes
an improvement to triple exponential smoothing by means of a Fourier transform. Although not
always significant, we saw the application of a Fourier transform often had a positive influence on
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model accuracy.

Secondly, our research highlights the fundamental flaws of exponential smoothing for demand
forecasting in supply chains. Although the use of double and triple nested triple exponential
smoothing has a positive impact on forecasting electricity consumption, which is the field researched
in the papers that cover the nesting of seasonality, our research has shown this is not the case
for demand forecasting in supply chains. We identified two reasons for this, being the problems
related to deseasonalisation used for updating the level of our time series, and the problem of
misalignment of weekly seasonalities. In addition to highlighting these issues, our research has
provided a more effective approach to the first of these two problems.

7.11 Recommendation for Further Research

During both our literature research as well as during our experimentation we found several
interesting topics that may be worth investigating in the future. We identify four research
directions to be particularly interesting.

Firstly, as mentioned during our literature review in Chapter [3] machine learning forecasting
methods such as gradient boosters have been able to outperform numerical methods in the M5
competition. Despite this, we have not researched them extensively for computational reasons
as well as data-related reasons. Machine learning algorithms have an advantage over time series
forecasting algorithms we used in our in the sense that they allow for input of more features such
as sales price. Slimstock does not currently collect these data, but starting collection of this data
may mean machine learning methods are worth revisiting.

Secondly, updating of Prophet rather than refitting. With Prophet showing significant
improvements to accuracy of our forecasts, we recommend implementing it despite its high
computational cost. As mentioned in Appendix [, Prophet does have a way of reducing this
computational cost by eliminating the need to refit the model every time we need to make
a forecast. Instead, the model can be updated by means of a warm start. As mentioned in
documentation (Facebook, 2023), this may yield sub-optimal results, but we are uncertain of the
extent to which this occurs. Therefore, we recommend investigation of the difference between
refitting and the use of warm starts for this model.

Thirdly, we have a recommendation that is related to our fourth limitation. Whereas traditional
models such as exponential smoothing have no way to circumvent the influence of external events
such as COVID-19, Prophet actually allows us to account for events that we do not expect to
repeat in the near future. This can be done by modeling the periods of lockdown and other
measures as a one-off holiday. We are interested in seeing the effect this has on our model
performance and consider this to be suitable topic for further research.

Fourthly, significance of both trend and seasonal classification. Our research uses a significance
level of e = 0.05 for both trend detection as well as seasonal classification. Although o = 0.05 is
fairly standard, it may not be optimal. Investigation of different significance levels may lead to
better classification of our time series.
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Appendices

A Fisher’s F-test

As of currently, Slimstock uses a slight modification of the Fisher’s F-test to classify seasonality
of their SKUs. As we do not have access to these modifications and these modifications are to be
kept confidential, we use the default Fisher’s F-test in our research. In the following paragraphs,
we describe the workings of this F-Test.

Fisher’s F-Test tests whether seasonality is present in a time series. The test evaluates whether the
two time series are sufficiently correlated. In addition, the test also tests whether the differences
between our time buckets are significant enough to apply a seasonal pattern.

Fisher’s F-test takes in two time series as well as our parameter alpha as an input. The two time
series represent our aggregated demand data. Time series 1 represents our most recent year of
data, and time series 2 represents our second most recent year of data. Parameter alpha is our
significance level. In our research, the Fisher’s F-test, as well as all other statistical tests, use
a = 0.05.

We explain the test using an example. Our example uses quarterly aggregated demands.

Table A.1: Example input data for our F-Test

Time Series | Q1 Q2 Q3 Q4
Year 1 100 200 100 50
Year 2 80 100 100 40
Average 90 150 100 45

Firstly, the test first calculates the arithmetic average of each of our time buckets. Our aggregated
demand data, as well as these averages, are provided in Table above.

After computing the averages of our time buckets, we compute the average of these averages. We
get WM = 96.25. This is our double average.

Now that we know our double average, we compute two values, being the variance within our
groups, and the variance between our groups.

First, the variance within our groups. Variance within our groups is defined as the sum of the
squared differences between our double average and the actual data, for each time bucket. Thus,
for year 1, this value is

ss within (year 1) = (100 — 90)? + (200 — 150)? + (100 — 100)? + (50 — 45)? = 2625

For year 2, this computation yields the same result as year 1 and 2 are symmetric around the
average. Thus, ss within = 2625 - 2 = 5250.

Second, the variance between groups. The variance between groups is computed by summing the
squared differences between the averages and the double average. Hence,

ss between = (90 — 96.25) 4 (150 — 96.25)% + (100 — 96.25)% + (45 — 96.25) = 5568.75

We now compute 2 values, being MSb and MSw. To compute these values, we need to know our
degrees of freedom. To compute MSb, we need the degrees of freedom related to the length of
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our input data. Our degrees of freedom are length of the input data minus one. In our case,
DFb=4—-1=3.

We can now compute MSb as M Sh == kgtFV]VDeen = 556§‘75 = 1856.25.

Then, MSw. To compute MSw, we need our degrees of freedom DFw. DFw is defined as the
length of our input series of year 2 minus one. In our case, DFw = 4 — 1 = 3. We can now

compute MSw as M Sw = % = % = 1312.50.

Now that we know our values for MSb and MSw, we can compute the value of our F-Test. The
value is defined as F-Test value = Aj\j—;a

_ MSb __ 1856.25 .
In our case, F-Test value = 72> = 137550 ~ 1.414

To check what this value implies, we need to find the critical value for our F-Test. This is
determined by the inverse F-Distribution. In our case, this value is F(m)ilg, 0.05 ~ 9.277.

Since 1.414 < 9.277, we conclude the data show sufficient evidence to assume a seasonal pattern
is present.
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B Friedman Test

One of the investigated methods for classification of seasonality is the Friedman test. The Friedman
test is a nonparametric alternative to the currently used F-test. In the following paragraphs, we
describe the workings of this Friedman test.

The Friedman test tests whether seasonality is present in a time series. It does so by checking if
the months of low and high demand appear in the same (or a comparable) order over the years.

The Friedman test uses three years worth of data, aggregated to the level for which we are testing
the seasonality. Parameter alpha is our significance level. In our research, the Friedman test, as
well as all other statistical tests, uses a = 0.05.

We explain the test using an example. Our example uses quarterly aggregated demands.
We first start off by providing our hypotheses.

Hy : There is no significant difference between our four quarters. H; : There is a significant
difference between our four quarters.

Table B.1: Example input data for our Friedman test.

Time Series Q1 Q2 Q3 Q4
Year 1 100 ->3[200->11]130->2|50->14
Year 2 80->31100->2|110->1|40->14
Year 3 120->11100->2| 30->4|80->3
Rank Sum 7 5} 7 11

Firstly, the test first calculates evaluates the order of our time series by the year. The highest
value gets rank 1, and the lowest value gets rank 4. Ranks are provided in Table above.

After evaluating the order within each year, we sum the ranks for each of our periods. We notice
that Quarter 1 has a value of 7, quarter 2 has a value of 5, quarter 3 has a value of 7, and quarter
4 has a rank sum of 11.

We then compute the expectation of the number of ranks for a given period. That is, the value
we would get for our rank sum in case there was no difference for all of our time points. In our
example, this is as follows:

B(R) = N(k+1)  3(4+1)

2 2

=75 (B.1)

Now, we calculate the value of our test statistic. This value is given by the following formula:

2 12 ) > R?—3n(k+ 1) (B.2)

Xr = nk(k+1
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For our example, this evaluates to:
s 12

TR A1)

s 12-(5*42-7*411?)

(P 452+ 7 +11*)—3-3-(4+1) (B.3)

= —-3-3-(4+1 B4
2928

2= 45 B.5

X2 =38 (B.6)

Now, we look up the critical value for our test statistic. Note that we have df =4 —1 = 3 degrees
of freedom. For 3 degrees of freedom, using a significance level of o = 0.05, this value is 7.815.

We can now check if the value of our test statistic is greater than our critical value. In our case,
3.8 < 7.815, and thus we do not reject H.

Thus, we find the provided data does not provide sufficient evidence to conclude that there is a
difference between our four groups, using a significance level of & = 0.05. Therefore, we consider
the time series to be nonseasonal.
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C Holt-Winters Exponential Smoothing

Although we already covered the workings of the general Holt-Winters exponential smoothing
method in Section we would like to highlight the alternative to this model, the extensions
that have been proposed over the years, as well as some problems related to parameter selection
and other shortcomings of the model.

Firstly, the alternatives to the model covered in Section [2.2.3] The model we covered
in Section 2.2.3] is of the form:

Fy = (a+b)- S (ATMS) (C.1)

Which is an additive trend multiplicative seasonality (ATMS) model. This model has three
alternatives, the choice of which heavily depends on the scenario. The three alternatives are
additive trend additive seasonality (ATAS), multiplicative trend additive seasonality (MTAS),
and multiplicative trend multiplicative seasonality (MTMS) (Pegels| 1969). Note that, although
(Pegels, 1969)) proposes nine alternatives to the original exponential smoothing models, being all
combinations of (no trend, additive trend, multiplicative trend) and (no seasonal effect, additive
seasonal effect, and multiplicative seasonal effect), we only cover the four options that have both
a trend and seasonality (either additive or multiplicative). This is done as the combinations that
have either no trend, no seasonality, or both, are subsets of these four models (no trend models
have parameter ¢t = 0, whereas no seasonality models have St = 1 for multiplicative and St =0
for additive).

Fy=(a+b)+5 (ATAS) (C.2)
Fo=(a-b)+S, (MTAS) (C.3)
F,=(a-b)-S, (MTMS) (C.4)

Like mentioned, we think all of these models have their place. We make a distinction based on
three basic generalizations provided in (Silver et al., [2016). These three generalizations are:

e Products have a limited lifespan, starting with a strong growth phase and ending with a
phase of decline.

e Products (and their profits) increase substantially during their growth phase, stabilize the
maturity stage, and decline towards the end of their life cycle.

e We need a different strategy for each stage. This includes inventory management and
forecasting.

Firstly, the maturity stage. This is the stable stage of the product lifespan, and will oftentimes
be the longest phase of them all. We consider two of the four models to be suitable for products
in this stage. Considered models are ATMS and ATAS. We exclude MTAS and MTMS models

as these cause exponential growth due to their b* components, which is not present during this stage.

Products that are either in the phase in or phase out stage of their life cycles oftentimes show an
exponential increase (phase in) and exponential decrease (phase out) in demand (with our trend
dampening over time for both of these phases (Gardner| [1985))). Thus, MTAS and MTMS are
suitable models for these phases. Models that include dampening of these trends are covered in
(Gardner, 2006) and (Taylor, 2003a)).

The best forecasts are made by combining statistical forecasting based on the past and
known information about the future (Silver et all 2016), the latter of which is not taken into
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account by the Holt-Winters model. Since establishment of Holt’s method in 1957 (Holt, |2004])
and Winters’ extensions in 1960 (Winters, |1960), researchers have attempted to solve some of
these practical and theoretical problems. We first focus on issues related to parameter selection,
initialization, and updating procedures.

Although a lot of research has been conducted on selection of smoothing parameters, a
general consensus has not been reached. Selection of smoothing parameters will always depend
on the degree to which the environment is dynamic, with more dynamic environments requiring
more smoothing, whilst perfectly stationary environments perform best when our smoothing
factors are 0 (Silver et al 2016)). Note that, for all smoothing parameters, the smoothing value
should increase as the length of the updating periods increase. (Silver et al.l 2016|) recommend
the following values: Level a = 0.01 — 0.30, compromise 0.10 for simple exponential smoothing
(no trend, no seasonals), and level and trend o« = = 0.01 — 0.30, compromise 0.10 for a trend
model. Triple exponential smoothing is a bit more complex, though (Silver et al., [2016) conduct
some experiments based on a = 0.01 — 0.30, compromise 0.10. Results are shown in Table
below. Note that vgy should be significantly lower than gy for a stable result (McClain and
Thomas, |1973)). (Chatfield and Yar, [1988]) recommend values of « = = 0.4 and v = 0.1 which
are in line with the stability requirement proposed by (McClain and Thomas|, [1973)) but violate
the upper limit of 5 = 0.176 proposed by (Silver et al., 2016]).

Table C.1: Smoothing Parameter Ranges as Explored by (Silver et al., [2016)).

‘ Underlying o ‘ W ‘ Buw ‘ YHW

Upper end 0.30 | 0.51 | 0.176 | 0.50
Reasonable 0.10 | 0.19 | 0.053 | 0.10
Lower end 0.01 | 0.02 | 0.005 | 0.05

These parameters are input parameters for the three update equations (Silver et al., [2016)):

iy = aw (@) Frep) + (1 — agw) (a1 + bi_1) (C.5)
i)t = Baw(d; — ap—1) + (1 — ﬁHW)[;tfl (C.6)
pt = yuw(ze/a) + (1 — ’YHW)thP (C.7)

Before we jump to conclusions on the optimal choices and ranges for smoothing parameters, we
would like to mention the downside of any exponential smoothing model. The main downside of
any exponential smoothing model is the fact that we always need to make a trade-off between
responsiveness of the model and variance of the model. When updating any value in our model,
we can never be sure we are updating because of a shift in the level/trend /seasonality in our

model, or if we are updating because of random fluctuations. This is extensively covered in
(McClain and Thomas|, [1973)).

Regarding the optimal value ranges of our parameters, we conclude a = 0.01 —
0.30, with a reasonable value being 0.10 for monthly works well for single exponential smoothing.
Having values of o > 0.30 will often imply we are ignoring a present trend/seasonality and thus
we selected the wrong model. We agree with (Silver et al.; 2016|) on double exponential smoothing,
where a = = 0.01 — 0.30, with a reasonable value being 0.10 for monthly are proposed. Note
that deviating in this range may not always have an effect as double exponential smoothing
parameters are symmetric, meaning o« = a and = b is equivalent to a = b and 5 = a (McClain
and Thomas, |1973). Triple exponential smoothing is most complex as it requires most parameters
and there is no general consensus on optimal values and value ranges. Although seasonality
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extraction is a large part of our research, we have decided selection of parameters is largely
beyond the scope of our research for two main reasons. Firstly, we may not have sufficient data
to include smoothing for all cases. Implementation of smoothing requires an initialization over an
x number of periods first. (Silver et al., 2016|) recommend at least 4, ideally 5, and sometimes
6 periods for their initialization, though we have not found any scientific sources to back this
claim. Secondly, optimisation of smoothing parameters is computationally costly, and it is not
performed in slim4 for that reason. Therefore, we select smoothing parameters that should work
well according to (Silver et al., [2016).

We now look at optimality of the models. Simple exponential smoothing and double
exponential smoothing are known to be optimal state-space models (meaning we do not include
knowledge about the future) for the no trend (simple) and linear trend (double) models (Abraham
and Ledolter, [1986|) (Chatfield and Yar, [1988]). For triple exponential smoothing, we can model
trend and seasonality in a similar way to the additive Holt-Winters model and optimally update
it by means of the Kalman filter (Chatfield and Yar, [1988) (Harvey, 1984) (Harvey, 1990).

It is possible to manually improve the Holt-Winters method by including knowledge
about the future. As (Silver et al., 2016) mention, the best forecasts are often made using a
combination of numerical analysis and a prediction of what will happen in the near future.
(Chatfield and Yar) |1988) successfully improve the quality of the Holt-Winters forecast by
including subjective modifications, but this is not an automatic process. Due to the sheer scale
of forecasts that need to be made by our problem owner Slimstock, we have excluded manual
methods.
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D Auto Regressive Moving Average methods
(ARMA Family)

A popular though more complex alternative to exponential smoothing methods are methods
belonging to the ARMA class. ARMA models are models that combine Auto Regressive (AR)
models and Moving Average (MA) models to make their forecast. In this part of our literature
review, we first research the AR and MA models. Then, we explore how we can combine these
models into the ARMA models. After we have researched the basic ARMA model, we look at
its most common extensions, being ARIMA for non-stationary models, and seasonal ARIMA for
non-stationary time series with seasonalities.

Auto Regressive (AR) models

First, we explore the auto regressive models as described in (George E. P. Boxl 1994)
and (Wan Ahmad and Ahmad, 2013). Auto regressive forecasting models are simple forecasting
models that make their forecasts based on the assumption that the future values of the time
series are a linear combination of its past values plus some random component ¢;,. We denote
the auto regressive model by AR(p), where p is the order of the model. The order of the model
describes the number of significant components taken into account.

We define the AR(p) model as follows:
p
Xt = Z ¢iXt—i + € (D].)
i=1

The simplest AR model possible is the AR(0) model. This model corresponds to a process where
past values do not significantly contribute to the future values and thus the process only consists
of white noise. In essence, this model models a process that does not show a significant pattern.

We define the AR(0) model as follows:
Xt = € (D2)

Once we get to an order of 1 or higher, the model starts to become useful. Suppose we have a
time series in which the future value is dependent on only the current value. In this case, we are
dealing with an AR(1) model.

Xi =01 Xio1 + e (D.3)

Here, we can see the value of our forecast is equal to the current value multiplied by some factor
plus some noise term. For very simple, stationary time series, this is a very naive though realistic
model. In the case of demand forecasting, we assume demand is nonnegative and thus we only
forecast values greater than or equal to 0. For the AR(1) model, we only consider nonnegative
values of ¢;. Starting from degree 2, we start considering negative values of ¢;, though we cannot
have the case where all values of ¢; are smaller than 0, as we do not want to make negative forecasts.

The order of the auto regressive model is often determined based on the PACF (as
explained in Section |J.4.3). The more significant terms we have, the higher the order of the AR
model.
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Moving Average (MA) models

Now, on to the Moving Average (MA) models. Again, we explore the MA model as
described in (George E. P. Box| 1994) and (Wan Ahmad and Ahmad, 2013). The MA model is
another very simple model that forecasts future values based on past forecast errors ¢;,_; and
some random component €. Just like the AR(p) model, which has order p, we denote the MA
model by its order q. We define the M A(q) model as follows:

Xt = U + Z(sz : Etfi) + € <D4)
=1

The M A(q) model functions in a similar way as the AR(p) model, except the model fits based on
errors instead of past observations. Just like the AR(p) model, we can use correlation metrics
to determine the order of the the M A(q) model. The relevant correlation metric for the M A(q)
model is ACF, as explained in Section

The Auto Regressive Moving Average model (ARMA)

The ARMA model is a forecasting model that combines previously described AR(p)
and MA(q) models into the ARMA(p,q) model, defined as follows:

p q
Xy =p+ Z GiXi—i + Z<¢z €—i) T €& (D.5)

=1 =1

The ARMA model serves as an improvement to both the AR and MA models by taking both
the autocorrelation and the moving average of our time series into account (Silver et al., 2016),
(George E. P. Box, 1994)), (Wan Ahmad and Ahmad, [2013), (Makridakis and Hibon| [1997). Just
like the individual AR(p) and M A(q) models, we can use the PACF and ACF for determining
the order of the model. Alternatively, we can use the Akaike Information Criterion (AIC) (Stoica
and Selen, 2004) for finding p and ¢ (Brockwell and Davis| 2009). Note that most stationary
time series can be modeled by ARMA models that have p 4+ ¢ = 2 (Silver et al., 2016). Models
belonging to the ARMA class are often used as an alternative to exponential smoothing, though
this requires some extensions for non-stationarity (ARIMA) and seasonality (seasonal ARIMA).
These extensions are covered in the next two paragraphs.

Auto Regressive Integrated Moving Average (ARIMA)

As mentioned, the ARMA model only applies to stationary time series. ARIMA is a
generalisation to the ARMA model, allowing for differencing of the time series in order to
obtain stationarity. Common notation for the model is ARIM A(p,d, q), where d is the order
of differentiation. p and q are defined as before (Wan Ahmad and Ahmad, [2013), (George E|
P. Box, |1994), (Shumway and Stoffer| 2017).

Seasonal Auto Regressive Integrated Moving Average (Seasonal ARIMA)

Although the ARIMA model allows for a bit more flexibility than the ARMA model,
it is not able to model seasonality. The Seasonal ARIMA model is an extension to the
ARIMA model that features an additional part to account for seasonality. It is denoted as
ARIMA(p,d,q)(P, D, @), where p,d,q are as before. P,D,Q are the seasonal counterparts to
p,d,q. Lastly we have our new parameter m, which indicates the number of seasons per year
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(Hyndman and Athanasopoulos, 2018). The Seasonal ARIMA model works well in environments
where seasonalities are present, though performance rapidly goes down if we do not select a
suitable value for our parameter m (Valipour} 2015), (Dabral and Murry, [2017)).

Comparison between Exponential Smoothing and ARMA Models

Based on literature alone it is difficult to say whether Exponential Smoothing or ARMA models
are better suited for forecasting retail demand data. (Alemu et al., |2023) finds that exponential
smoothing outperforms seasonal ARIMA models in less variable environments whilst seasonal
ARIMA performs better in highly erratic environments, though we have to note that the study
was conducted in a field that is fundamentally different from retail. (Wan Ahmad and Ahmad)
2013)) come to the same conclusion in their research though this study was also conducted in
another field. In addition, (Wan Ahmad and Ahmad, 2013) find seasonal ARIMA performs better
over the long horizon when compared to exponential smoothing.

It is interesting to note that both (Wan Ahmad and Ahmad, 2013) and (Alemu et al.
2023) base their conclusions on the metrics RMSE/MSE (use of either of these metrics will lead
to the same conclusion), MAD, and MAPE. As explained in Section [3.3] selection of the best
model is highly dependent on the cost of error unless either of the models strictly dominates all
other candidates. Therefore, we cannot come to a conclusion based on these two studies alone.
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E Fourier Analysis

In this appendix, we describe the mathematics and logic behind the Fourier transform. The
Fourier transform is used in the Fourier variants of exponential smoothing and nested exponential
smoothing, as well as in the Prophet algorithm also covered in our research. The Fourier transform
is used in these models for the purpose of modeling seasonality.

To support our explanations, we use part of an example data set. This data set is hourly energy
consumption from PJM Interconnection LLC (PJM), which is a regional transmission organization
(RTO) in the United States (source: https://www.kaggle.com/datasets/robikscube/hourly-energy-
consumption) Figures in Table below are demand values at 0:00 on the first day of each
month. The Fourier transform can only be used in case the data has no trend. For time series
that have a trend, the algorithms handle trend removal themselves.

Table E.1: Monthly Demand Data Example

Date Value
01/01/2010 | 15116
01/02/2010 | 17604
01/03/2010 | 15925
01/04/2010 | 13150
01/05/2010 | 13124
01/06/2010 | 14076
01/07/2010 | 14350
01/08/2010 | 14071
01/09/2010 | 17008
01/10/2010 | 13014
01/11/2010 | 12974
01/12/2010 | 14796
01/01/2011 | 13694
01/02/2011 | 17479
01/03/2011 | 15845
01/04/2011 | 15699
01/05/2011 | 12121
01/06/2011 | 17811
01/07/2011 | 15669
01/08/2011 | 16872
01/09/2011 | 15940
01/10/2011 | 12998
01/11/2011 | 14817
01/12/2011 | 16718

E.1 Fourier Series

The Fourier Transform is a linear invertible mathematical transformation that allows us to
analyse discrete time signals in the frequency domain. The algorithm transforms a time series
into a series of sinusoids, all having their own magnitudes and frequencies. Analysis of a signal in
the frequency can allow us to detect patterns that would be very difficult to detect in the time
domain. The general form of the Fourier Transform is continuous, but it also has a discrete time
counterpart known as the Discrete Fourier Transform (DFT). In our research, we make use of the


https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
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DFT and its inversion (IDFT).

The Fourier Transform uses complex numbers. A key property of these complex numbers is
Euler’s formula, given by:

e® = cos(&) + isin(€) (E.1)

We also make use of the fact that we can rewrite any complex number of the form a + bi to the
form Ae*, where A is the magnitude, € is the angle, and i denotes the imaginary unit v/—1. Also
note that any real number of the form a can be written as a complex number a + bi, where a
number is real if and only if b = 0.

Now, using complex input sequence {x,} = zg,21,...,2y_1, we can use the DFT to
generate our output sequence {X,} = Xo, X1, ..., Xn_1. The DFT is defined as follows:

N-1
Xy = Z Ty - €N (E.2)
n=0

Suppose we use the first part of our time series:
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Figure E.1: Time series.

Given by the following data:
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Table E.2: Monthly Demand Data Example

Date Value
01/01/2010 | 15116
01/02/2010 | 17604
01/03/2010 | 15925
01/04/2010 | 13150
01/05/2010 | 13124
01/06/2010 | 14076
01/07/2010 | 14350
01/08/2010 | 14071
01/09/2010 | 17008
01/10/2010 | 13014
01/11/2010 | 12974
01/12/2010 | 14796

We now apply the Discrete Fourier Transform to this. This yields the following:

Table E.3: Discrete Fourier Transform of Monthly Demand Data Example

g
E

Real Part Imaginary Part
175208 + 01
3832.71 - 734.501
4060 - 8346.751
1999 - 26771
-4159  + 3491.81i
-3533.71 - 2350.50i
1786  + 0i
-3533.71  + 2350.501
-4159 - 3491.81i
1999 + 26771
4060 + 8346.751
3832.71  + 734.501

— = O 00 O Ul Wi+~ O

— O

Although these numbers are still a perfect representation of our time series, it doesn’t tell us
much as this representation is not intuitive. We can use the power spectral density (PSD) to get
a more intuitive idea of what is going on. The power spectal density shows the power of each
frequency in our time series. The PSD of our signal is depicted in Figure below. Note that
the y axis is logarithmic for viewing purposes.
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Power Spectral Density (PSD)
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Figure E.2: Power Spectral Density of our Time Series.

E.2 Filtering

Now that we have extracted the frequency components from our time series, we can choose to
use just the terms we desire. The operation of picking out just the desired terms of our Power
Spectrum is known as filtering. We make a distinction between two types of filters, being power
filters and frequency filters. We will start off by briefly describing the power filter, though this
filter is not used in our research. The power filter is an alternative to the later explained frequency
filter, which is the filter we ended up using in our research.

E.2.1 Power Filters

We can see the most powerful term is a sinusoid with frequency 0. This is a constant that
corresponds to the level. Other very significant terms appear to be the sinusoids with frequencies
2 and 10. We can model our seasonalities using just these three terms (0, 2, 10). This yields the
following Fourier series and modeled seasonality:
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Table E.4: High-Power filtered Discrete Fourier Transform of Monthly Demand Data Example

Term | Real Part Imaginary Part
0 175208 + 01

1 0 + 01

2 4060 - 8346.751
3 0 + 0i

4 0 +0

) 0 + 01

6 0 + 01

7 0 + 01

8 0 + 0i

9 0 +0

10 4060 + 8346.751
11 0 + 01

17000

uuuuu
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13000

Figure E.3: Modeled seasonality using 3 terms (0, 2, 10).

Whilst the modeled seasonality has significant visible deviations from our original time series,
we note that inclusion of just 3 Fourier terms is able to capture the biggest cyclical effects.
It also filters out effects that could be noise (such as the dip in the month having index 7 (August)).

Instead of picking the terms that are very powerful, we can also eliminate the terms
that are not very powerful. In our case, this is the term with a frequency of 6 as seen in Figure
[E.2l Removing just this term yields the following Fourier series and modeled seasonality:
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Table E.5: Low-Power Filtered Discrete Fourier Transform of Monthly Demand Data Example

Term | Real Part Imaginary Part
0 175208 + 01

1 3832.71 - 734.50i

2 4060 - 8346.751
3 1999 - 26771

4 -4159  + 3491.81i
) -3533.71 - 2350.501
6 0 + 01

7 -3533.71  + 2350.501
8 -4159 - 3491.81i
9 1999 + 26771
10 4060 + 8346.751
11 3832.71  + 734.501

00000

\ /AJ \J/

Month

Figure E.4: Modeled seasonality using all terms except 6.

Using all but our most significant of terms, we notice the modeled seasonality is very close to
the original time series. The main differences appear to be the modeling of lower seasonality
in months indexed 4 and 10 (May and November), and the flattening during summer months
indexed 5 to 7 (June, July, and August). This removes the dip in August, which is likely noise.
Despite being frequently used in the field of signal processing (for example, to remove annoying
sharp and high-pitched tones in audio), we have no reason to believe frequencies other than high
frequencies are responsible for the noise present in our time series.

E.2.2 Frequency Filters

Contrary to power filters, which manually pick out a set of frequencies, we can make use of a
frequency filter. Frequency filters are filters that only keep the frequencies within a certain range,
setting all other values to zero. A low pass filter only passes lower frequencies (e.g. a low-pass 3
filter only passes 0, 1, and 2), and a high pass filter only passes high frequencies (e.g. high pass 3
passes 9, 10, 11). We illustrate the low pass filter in Table and Figures and below.
Filters can be combined to filter out certain ranges of frequencies, but this is not done in our
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research as we hypothesise the low and medium frequencies are responsible for the macroscopic
effects we wish to extract and use for modeling seasonality.

Table E.6: Discrete Fourier Transform of Monthly Demand Data Low Pass Example

Term | Real Part Imaginary Part
0 175208 + 01

1 3832.71 - 734.50i
2 4060 - 8346.751
3 0 + 0i

4 0 +0

) 0 + 01

6 0 + 01

7 0 + 01

8 0 + 01

9 0 +0

10 0 + 01

11 0 +01

Now, this yields the following Power Spectrum:

Power Spectral Density (PSD): Low-Pass (3)
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Figure E.5: Low-Pass Power Spectrum

And leads to the following modeled seasonality:
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Figure E.6: Time series and Seasonality using a Low-Pass (3) filter

As we can see, the seasonality we modeled using just 3 terms is able to capture the longer cycles
(level, yearly and half-yearly), but the magnitude of the effect appears to be very small. This is
because the frequencies responsible for our fluctuations do not have enough energy to represent
the entire time series. The following section proposes a solution to this problem, though this
solution is not used in our research. The solution used in our research is covered in Section [G.5l

E.2.3 Scaling

As depicted in Figure [E.6] the effects of seasonality are very small. This is because we lose energy
in our power spectrum when we apply any filter. This was most notable when we applied the
low-pass filter. This is due to the removal of frequencies that carried a lot of power, and we did
not do anything to compensate for this.

To overcome this issue, we need to scale all of our terms except for the first term, which is
the level (we do not scale the level as we wish to keep this the same) by a certain value. We
determine this value to be the ratio between the energy present in the frequencies of the power
spectrum before and after the low-pass filter was applied (note that the frequency 0 is excluded
as this is, again, the level).

The total energy of all nonzero frequencies in Figure is approximately 26 940 037.
In the filtered power spectrum, this is approximately 8 448 417. This gives us a ratio of
290 BT ~ 3.18. Scaling all Fourier terms except our first by this number yields the following

Fourier series and modeled seasonality:
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Table E.7: Scaled Discrete Fourier Transform of Monthly Demand Data Low Pass Example

5
2
3

Real Part Imaginary Part
175208 + 01

12188.00 - 2335.70i
12910.80 - 26542.67i

+ 0

+ 0

+ 01

+ 01

+ 01

+ 0

+ 0

+ 01

+ 01
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Figure E.7: Time series and Scaled Seasonality using a Low-Pass (3) filter

We note that the modeled seasonality now has comparable amplitudes to the original time series.

E.3 Inversion

When we applied the Fourier Transform to our time series, we ended up with a Fourier series that
perfectly represents the original signal. We then applied operations such as filtering and scaling to
our Fourier series. To go from the modified Fourier series to our modified time series, we need to
invert the Fourier transform. This is done using the Inverse Discrete Fourier Transform (IDFT),
which functions similarly to the Discrete Fourier Transform as provided before.

Now, using complex input sequence {X,} = X, X1, ..., Xn_1, we can use the IDFT to generate
our output sequence {z,} = g, x1,...,zx_1. The IDFT is defined as follows:

X, -e'Nhn (E.3)
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E.4 Computation and the Fast Fourier Transform

The DFT and IDFT are both algorithms that run in O(N?) time, where N is the length of our
time series. For both the DTF and the IDFT, we can reduce this computational complexity to
O(NlogN) using an algorithm known as the Fast Fourier Transform (FFT). The FFT makes use
of symmetry present in both the DF'T and IDFT. The FFT is simply a way to efficiently compute
the DFT, and we use the terms DFT and FFT interchangeably from now on. We will use IFFT
and IDFT to refer to the Inverse DF'T. The code used in our research uses the more efficient
variants of the algorithm.
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F  Multiplicative Models and Nested Seasonalities

Our forecasting models all use a level, an additive trend, and either a multiplicative or an additive
seasonality. Multiplicative forecasts are made based on the following equation:

F,=(a+0t) St (F.1)

Seasonality usually comes in the form of a monthly, weekly, or daily seasonality. Some SKUs,
however, may face multiple seasonal patterns. These SKUs can have different demands depending
on the week of the year, but also different demands depending on the day of the week.

To account for the presence of multiple seasonal patterns, we have two possible solutions. We will
cover both of these briefly in the following paragraphs.

The first solution is the use of 365 seasonal indices, one for every day of the year. This
solution maintains the form of Equation [F.I] Maintaining this form comes at a cost, however. As
we have 365 seasonal indices, and also 365 data points per year, we have a 1:1 ratio of parameters:
data. We improve on this ratio by adding more data, but even when we use five years worth of
data (which is a lot), we only have a 1:5 ratio of parameters:data.

The second solution is adaptation of our models to use nested seasonal factors. Instead
of having a seasonal factor for every day of the year, we now have a factor for every day of
the week, week of the year, and month of the year. This results in a total of 7+ 53 4+ 12 = 72
parameters, which is a lot less than 365. By using nested seasonal factors, we are able to
update each of our seasonals much more frequently. Now, our days of the week will have 52/53
(depending on the year) data points, our weeks will have 7 data points. Each of our months has a
variable number of data points depending on the length of the month.

F.1 Nesting

For our research, we have chosen to use individual indices for days, weeks, and months. This
approach is similar to the approach described in (Taylor, |2010). For both seasonality extraction
and deseasonalisation, we process our time series in the order of month -> week -> day. We need
to process from largest to smallest time frame to obtain the correct seasonal factors. We use
this approach for Holt-Winters, and also for deseasonalisation of time series in case we use the
Seasonality first, Trend second approach for classification of our time series.



86

G

Implementation and Verification of Single,
Double, and Triple Exponential Smoothing

This appendix describes the implementation of used single, double, and triple exponential
smoothing models, as well as the modifications made. This implementation is written using
Python version 3.11.5 and has the following external dependencies:

e numpy 1.24.2

e pandas 1.5.3

e tabulate 0.9.0

e scipy 1.10.1

e scikit-learn 1.2.2

Our research includes the following exponential smoothing models:

1.
2.
3.

10.

Single Exponential Smoothing (Currently used)
Double Exponential Smoothing (Currently used)

Triple Exponential Smoothing with trend, monthly seasonality only (Currently used in a
modified variant)

. Triple Exponential Smoothing without trend, monthly seasonality only (Currently used in a

modified variant)

. Triple Exponential Smoothing with trend, Fourier-processed monthly seasonality only

(Alternative to the current method)

. Triple Exponential Smoothing without trend, Fourier-processed monthly seasonality only

(Alternative to the current method)

Triple Exponential Smoothing with trend, nested seasonality (Alternative to the current
method)

Triple Exponential Smoothing without trend, nested seasonality (Alternative to the current
method)

. Triple Exponential Smoothing with trend, Fourier-processed nested seasonality (Alternative

to the current method)

Triple Exponential Smoothing without trend, Fourier-processed nested seasonality
(Alternative to the current method)

G.1 Single Exponential Smoothing

Single exponential smoothing is our simplest forecasting model, using just a level. We use the
definition from (Silver et al., 2016|). Demand is assumed to be distributed according to the
following formula:

Ty = a; + € (G.1)
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As mentioned before, initial level for each SKU is equal to the average value of the time series
belonging to that SKU. After this, level is updated daily, according to the following formula:

dt = OéDt + (1 - Oé)dt_l <G2)

G.1.1 Single Exponential Smoothing: Verification

Suppose we have the following time series:

Table G.1: SES: Verification

Day | Value
1 1
2 2
3 1
4 2
5 1
6 2
7 1
8 2
9 1
10 2

We now validate the implementation of the model using the following parameters: Initialisation
period: 4 days Updating period: 2 days Forecasting + Updating period: 4 days alpha: 0.2.

For our short cover time, we use 1 day here. Medium cover time is 2 days. Long cover time is 3
days.

Initialisation: Initialisation of this model is done by averaging out the first 4 observations. Manual
computation yields an initial level of level = H2H+2 = 1.5,

Updating: After performing 4 periods worth of initialisation, we perform 2 days of updating. This
is done as follows: On day 5, our level was 1.5. Actual demand is 1. At the end of day 5, we
compute the level for day 6. We obtain: levels = (1 — 0.2) x 1.5+ 0.2 % 1 = 1.4. On day 6, our
level was 1.4. Actual demand is 2. At the end of day 6, we compute the level for day 7. We
obtain: level; = (1 —0.2) * 1.4 + 0.2 % 2 = 1.52.

Forecasting + Updating: Now, at the end of day 6, we need to make forecasts for all three of
our time periods. This means we forecast 1 day ahead for short cover times, 2 days ahead for
medium cover times, and 3 days ahead for long cover times. We forecast the value of 1.52, as this
is our most recent level.

We now update the model to compute the level of day 8. At the end of day 7, we need to make
forecasts for our short cover period, as day 7 is a review day. Note that we do not need to forecast
for our medium and long cover periods, as day 7 is not a review day. Updating the level as before
yields levelg = (1 — 0.2) % 1.52 + 0.2 % 1 = 1.416. We forecast this value for day 8 for our short
cover period.

At the end of day 8, we compute the level of day 9 as we need to make make forecast for the
short and medium cover times.

Following this updating and forecasting procedure should yield the following output:
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Table G.2: SES: Verification Output

Day | 7| 8| 9 | 10
Cover time: 1 day | 1.52 | 1.416 | 1.5328 | 1.42624
Cover time: 2 days | 1.52 | 1.52 | 1.5328 | 1.5328
Cover time: 3 days | 1.52 | 1.52 1.52 | 1.42624

Which is in line with our Python model. We conclude SES is correctly implemented.

G.2 Double Exponential Smoothing

Double exponential smoothing is fairly similar to single exponential smoothing, with the difference
being the introduction of a trend parameter. We again use the definition provided in (Silver et al.,
2016). Demand is assumed to be distributed according to the following formula:

Ty = ay + bt + € (GB)

With updating equations:
&t = Ogw I -+ (1 — OéHw>(€Lt_1 + lA)t—l) (G4)
by = Baw (ar — ap—1) + (1 — 5Hw)l;t—1 (G.5)

Initialisation of a and b is done using linear regression. Updating is done in a similar manner as
described before.

We implement Double Exponential Smoothing, and validate the implementation using Table 3.3
of (Silver et al., |2016). Our model outputs the correct values, so we conclude the implementation
is correct.

G.3 Triple Exponential Smoothing Monthly Only (Holt-
Winters)

Our implementation of the Holt-Winters triple exponential smoothing model is designed along
the specifications of slim4. This means we use the exponential smoothing model where level and
trend are smoothed, and seasonality is recalculated. Initialisation of the model is done using the
seasonality-first, level + trend second methodology as described in (Silver et al., [2016)). Note that
we use full seasons for initialisation.

For Triple Exponential Smoothing, demand is assumed to be distributed according to the following
formula:

Dt = (CI/ -+ bt)FLt + € <G6)

As Slim4 currently only uses monthly seasonality, we only have a single level of seasonality, which
si monthly seasonality. This means we have 12 seasonal factors, one for each month. Seasonal
factors are normalised such that their sum is 12. Seasonal factors are used for both forecasting,
as well as updating. Updating our level and trend requires deseasonalisation of actual demand,
which is done using the seasonal factor corresponding to the current month.
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This makes our updating equations:

iy = Dy /(S14—p1) + (1 — @) (a1 + br_y) (G.7)
by = Blay — 1) + (1 — B)by—s (G.8)

Note that oth/(SLt_pl) is undefined in case SLt_pl = 0. In case aD; = 0, demand is 0, so
we consider deseasonalised demand to be 0 as well, even though % is undefined. This makes
the assumption seasonality is constant in a sense that, in case demand in a given month is
historically 0 (meaning we have a computed seasonality of 0), the product has not been sold
on that month in the past and will not be sold in this month in the future. We consider this
assumption to be acceptable as a historic seasonality of 0 implies a forecast of 0 anyway, and in
case the actual demand in that month is not 0, the seasonal factor for next year will not be 0 due
to the re-computation of seasonality in Slim4.

Lastly, we forecast according to the equation:

ﬁt,t—i—r = (a4 + Z;tT)gl,t—Pl (G.9)

We have implemented and validated the initialisation of the model along specification of Section
3.4.4.3 of (Silver et al., [2016)). After implementing this model (which is a quarterly model), we
have made a model that implements the extension to daily forecasts using monthly seasonality
in MS Excel. This model has been validated by Slimstock. Lastly, we validate the total model
implementation in Python using a synthetically generated data set. The model is able to extract
the parameters used to generate the data set within margin of error.

G.4 Triple Exponential Smoothing Monthly Only, No Trend
(Holt-Winters)

Implementation and verification of Triple Exponential Smoothing using monthly seasonality and
no trend is almost identical to the model that does include a trend. Omitting the trend yields the
following new equation for updating:

ar = aDy/(S1—p1) + (1 — a)(a—y) (G.10)

And forecasting is done according to:

Lastly, we forecast according to the equation:

Divir = (a0)S14-p1 (G.12)

G.5 Triple Exponential Smoothing with trend, Fourier-
processed Monthly Seasonality

This model is an extension to Triple Exponential Smoothing with Trend as described in Section
[G.3] The models and implementation is identical, except for a small modification to the seasonal
factors in forecasting (note that these are not the seasonal factors used for deseasonalisation, that
part remains unchanged).
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The modification is as follows: Currently, the model stores our 12 seasonal factors in a numpy
array (which we can treat as a list of numbers here). Our first value is the value for January,
the second value is the value for February, and so on. In the modification, we apply a Fourier
transform (as explained in Section , then a low-pass frequency filter (as explained in Section
[£.2.2) which filters out the high frequencies. We use a value of 10 as our cutoff frequency, this is
in line with (Taylor and Letham, 2018). Finally, we invert the filtered transform (as explained in

Section [E.3)).

In code, this looks as follows:
MONTHS IN YEAR = 12

# Seasonal factors are stored in the array monthly seasonal factors
# Apply Fourier Transform
fft array = numpy. fft.{ft (monthly seasonal factors)

# Set filtering frequency
cutoff frequency = 10

# Filter out the high frequencies by setting them to 0
for idx in range(cutoff frequency, MONTHS IN YEAR):
fft array|idx| = 0

# Inversion
monthly seasonal factors = numpy. fft.ifft (fft array).real

# Normalisation
monthly seasonal factors = (monthly seasonal factors \
/ numpy.sum(monthly seasonal factors)) % MONTHS IN YEAR

The application, filtering, and inversion of the Fourier Transform has been validated and is
correctly implemented.

G.6 Triple Exponential Smoothing without trend, Fourier-
processed Monthly Seasonality

This model is a simplification of the previous model, as the model is identical except for the fact
that this model does not include a trend. Omission of the trend is described in Section [G.4]

G.7 Triple Exponential Smoothing with trend, nested
seasonality

As described in Appendix , which in turn is based on (Taylor, 2010) , we can extend Triple
Exponential Smoothing to include nesting of seasonalities. The model functions in a similar
manner to Triple Exponential Smoothing with trend, monthly seasonality only (which is described
in Section , except we iteratively remove seasonal effects in case they are present. We start
off by removing monthly seasonal effects in case monthly seasonal effects are present. Then, we
test for weekly seasonal effects using the F-test, trend first approach. In case weekly seasonality
is present, we remove this as well. Lastly, we do the same for daily seasonality. In case any of
our seasonality levels is not present, we do not modify the time series (which is a computational
shortcut of deseasonalisation using seasonal factors of 1).
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G.8 Triple Exponential Smoothing without trend, nested
seasonality

This model is identical to nested Triple Exponential Smoothing with trend, except the trend is
not modeled. Again, omission of the trend is described in Section [G.4l

G.9 Triple Exponential Smoothing with Trend, Fourier-
processed Nested Seasonality

This model is a combination of Triple Exponential Smoothing with trend, nested seasonality as
explained in Section [G.7] and the Fourier processing of seasonality as described in Section [G.5]
We only apply the Fourier processing to our monthly seasonal factors, meaning only SKUs that
have monthly, monthly-weekly, monthly-daily, or monthly-weekly-daily seasonality are affected.

G.10 Triple Exponential Smoothing without Trend, Fourier-
processed Nested Seasonality

This model is identical to our previous model, except trend is not modeled as explained in Section
G4l
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H Performance of Classifiers for our Time Series

This appendix contains the full performance evaluation tables of our experiments on finding the
best classifier for trend and seasonality.

H.1 F-test, Trend First (Current Method)

Table H.1: Performance of the Current Method for Short Cover Times

9
S’
5 §
< & F
§§&§
< )
> o W
& 5 & &
S 7 & & & %
5 N T & g &
0 S L L L A;‘ZJN
SKU types < S 2 R 7
Stationaries SES 0.175 [ 83.94 [ 0.128 | -0.031 | ¢
Trending DES 0.19 [71.07 [ 0.144 | 0.013 | &
Seasonal Nontrending | TES no trend | 0.204 | 79.34 | 0.149 | -0.108 %
Seasonal Trending TES with trend | 0.215 [ 80.71 [ 0.153 | -0.058 | 2°%
Total \ - | 0.188 | 74.8 | 0.14 [ -0.003 | 1

Medium cover times give the following results:

Table H.2: Performance of the Current Method for Medium Cover Times

Q
é\v
& &
& Q) &
g & F
N4 < ©
> S .
&£ 5 & &
> A B S S
5 I & g & %0
& N L L & S@
SKU types < SR R R 7
Stationaries SES 0.254 | 55.69 | 0.19 [ -0.035 | 21
Trending DES 0.285 | 48.75 | 0.219 | 0.002 | =2
Seasonal Nontrending | TES no trend | 0.326 | 53.66 | 0.236 | -0.128 %
Seasonal Trending TES with trend | 0.38 [ 56.39 | 0.268 | -0.084 | 2%

Total \ - | 0.282 | 50.87 | 0.214 | -0.013 | 1
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And lastly, long cover times give the following results:

Table H.3: Performance of the Current Method for Long Cover Times

Q
gv
& &
< Q) &
g & §
< 9
> o -
S 5 £
> S o8 & & 3
$ § &‘v &‘v &,‘v 30
o O AQ) A‘Z) AQ) é‘b
SKU types < < ¥ ¥ ¥
Stationaries SES 0.538 | 37.76 | 0.424 | -0.042 %
Trending DES 0.667 | 37.1 [ 0.534 | -0.018 | &35
Seasonal Nontrending | TES no trend | 0.814 | 40.57 | 0.6 | -0.149 %
Seasonal Trending TES with trend | 1.027 [ 44.15 [ 0.728 | -0.083 | 2°%

Total

|

1 0.652 | 37.6 | 0.515[-0.029 | 1

To summarise, we have the following performances for our short, medium, and long cover times:

Table H.4: Performance of the Current Method for Each of our Cover Times

Q
S’
N >
&% Q) &
g & F
< ()
> Q) R
$F 5 £ &
F £ & &
§ & & §
§ L L L
SKU types < A4 X A4
Short (3 days) | 0.188 | 74.8 | 0.14 | -0.003
Medium (7 days) | 0.282 | 50.87 | 0.214 | -0.013
Long (21 days) 0.652 | 37.6 | 0.515 | -0.029
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H.2 F-test, Seasonality First

Table H.5: Performance of the F-test, Seasonality First Method for Short Cover Times

<
S*
9 g
< Q) N
s &
< 2
> o W
S 5 £ &
S 7 & & & %
S § 4 4 4 3
0 S L L L AY
SKU types < SR R R
Stationaries SES 0.174 [ 84.47 [ 0.128 | -0.041 | 200
Trending DES 0.191 | 70.11 | 0.145 | 0.015 | &=
Seasonal Nontrending | TES no trend | 0.175 | 89.1 | 0.126 | -0.106 %“9
Seasonal Trending TES with trend | 0.263 | 74.91 | 0.189 | -0.029 | 2=
Total \ - | 0.188 | 74.79 | 0.141 | -0.005 | 1

Table H.6: Performance of the F-test, Seasonality First Method for Medium Cover Times

Q
S*
& S
% Q) \40
g & §
< (%)
> S .
> 'éb w§/ cz)% ;3
~N
,;Qo /S‘v &‘§0 &{go 5’% g
) S L L L &‘27
SKU types @ < N X X
Stationaries SES 0.252 | 55.82 | 0.189 [ -0.045 | 200
Trending DES 0.286 | 48.17 | 0.22 | 0.004 | &0
Seasonal Nontrending | TES no trend | 0.281 | 58.3 | 0.282 | -0.147 %
Seasonal Trending TES with trend | 0.486 | 56.29 | 0.345 | -0.038 | 2

Total \ - | 0.283 | 50.85 | 0.216 | -0.015 | 1
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Table H.7: Performance of the F-test, Seasonality First Method for Long Cover Times

Q
S*
& &
% Q) \40
g & 7§
< (%)
> S .
& 5 &£ &
> > & & DN
3 g i i & .20
0 3 L L L A2
SKU types $ < N X X
Stationaries SES 0.538 | 38.19 | 0.423 [ -0.056 | 210
Trending DES 0.671 | 36.74 | 0.537 | -0.014 | &0
Seasonal Nontrending | TES no trend | 0.667 | 40.54 | 0.488 | -0.174 %
Seasonal Trending TES with trend | 1.378 [ 46.98 | 0.978 | -0.025 | 2&

Total

|

1 0.656 | 37.57 | 0.518 | -0.03 | 1

Table H.8: Performance of the F-test, Seasonality First Method for Each of our Cover Times

Q
S*
& S
%) Q) R
g & F
< 9
> o Q4
&£ § < Q
> % % %
s &£ &£ §
d L L L
SKU types < v v v
Short (3 days) 0.188 | 74.79 | 0.141 | -0.005
Medium (7 days) | 0.283 | 50.85 | 0.216 | -0.015
Long (21 days) | 0.656 | 37.57 | 0.518 | -0.03




96 H.3 Friedman-Chi-Squared-test, Trend First

H.3 Friedman-Chi-Squared-test, Trend First

Table H.9: Performance of the Friedman-Chi-Squared-test, Trend First Method for Short Cover
Times

9
S*
& &
< Q) &
§ & 5
< &
> o -
£ 5 £ &
N o8 & & s
< ¢° i & I R,
@ & L L L S‘D
SKU types < SR R R 7
Stationaries SES 0.171 | 89.33 | 0.125 | -0.034 %
Trending DES 0.19 | 76.14 [ 0.143 | 0.033 | 2363
Seasonal Nontrending | TES no trend [ 0.201 | 75.19 | 0.149 | 0.001 | g2
Seasonal Trending TES with trend | 0.223 | 69.98 | 0.169 | 0.057 %
Total \ - | 02 [75.97] 0.15 | 0.028 | 1

Table H.10: Performance of the Friedman-Chi-Squared-test, Trend First Method for Medium
Cover Times

Q
g*
© $
9 Q) &
g & 3§
<) %]
> S .
&£ § S
> > % & DN
S § 4 & N .
0 S L L L AY
SKU types < S R 7
Stationaries SES 0.253 | 59.49 | 0.192 [ -0.042 | £°¢
Trending DES 0.291 [ 53.04 | 0.225 | 0.031 | =%
Seasonal Nontrending | TES no trend 0.31 | 51.58 | 0.231 | 0.022 %
Seasonal Trending TES with trend | 0.38 [ 49.93 [ 0.287 | 0.078 | 2

Total \ - | 0.32 | 52.82]0.243 | 0.035 | 1
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Table H.11: Performance of the Friedman-Chi-Squared-test, Trend First Method for Long Cover
Times

Q
S*
& §
< Q) <
§ &7
< 2
> o W
S 5 £
S 7 & & & %
S g & £ & &
0 S L L L S@
SKU types <~ S A A 7
Stationaries SES 0.541 | 39.79 | 0.429 | -0.055 | ;25
Trending DES 0.685 | 39.98 | 0.552 | 0.015 | 222
Seasonal Nontrending | TES no trend | 0.744 | 38.87 [ 0.572 | 0.052 | J=&
Seasonal Trending TES with trend | 1.02 | 41.01 | 0.781 | 0.114 gi—i’g
Total \ - 1 0.792 [ 40.23 | 0.619 | 0.044 | 1

Table H.12: Performance of the Friedman-Chi-Squared-test, Trend First Method for Each of
our Cover Times

Q
gY"
@ $
< Q) R
g 8§
< ()
> o W
& s & &
T & & &
s & £ &
§ g & g
SKU types < L2 2
Short (3 days) 0.2 | 75.97 | 0.15 | 0.028
Medium (7 days) | 0.32 | 52.82 | 0.243 | 0.035
Long (21 days) 0.792 | 40.23 | 0.619 | 0.044
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Table H.13: Performance of the Friedman-Chi-Squared-test, Seasonality First Method for Short
Cover Times

9
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& 5 &£ &
S 7 & & & %
5 g T i T .0
o S & & £
SKU types < SR R R 7
Stationaries SES 0.17 ] 90.79 | 0.125 [ -0.039 | 2%
Trending DES 0.199 [ 72.74 | 0.15 | 0.049 | &s
Seasonal Nontrending | TES no trend | 0.201 | 71.87 | 0.15 | 0.017 %
Seasonal Trending TES with trend | 0.213 | 73.54 | 0.161 | 0.05 | 5o
Total \ - [ 0.201 | 75.99 | 0.151 | 0.028 | 1

Table H.14: Performance of the Friedman-Chi-Squared-test, Seasonality First Method for
Medium Cover Times
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SKU types < S R 7
Stationaries SES 0.253 [ 60.59 [ 0.192 | -0.048 [ 321
Trending DES 0.313 [ 51.57 | 0.244 | 0.051 | &2
Seasonal Nontrending | TES no trend | 0.319 | 50.04 | 0.24 | 0.052 %
Seasonal Trending TES with trend | 0.355 [ 51.82 [ 0.268 | 0.066 | o=

Total \ - [ 0.322 | 52.91 [ 0.245 | 0.041 | 1
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Table H.15: Performance of the Friedman-Chi-Squared-test, Seasonality First Method for Long
Cover Times

Q
S*
& §
< Q) <
g & §
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S 5 £
S T & & 4 %
S g & £ & &
3 & & L & S@
SKU types <~ S A A 7
Stationaries SES 0.54 | 40.43 | 0.428 | -0.066 | o200
Trending DES 0.752 [ 39.52 | 0.612 | 0.04 | 75
Seasonal Nontrending | TES no trend [ 0.782 | 38.9 | 0.605 | 0.095 | &2
Seasonal Trending TES with trend | 0.934 | 41.36 | 0.714 | 0.098 | 5=
Total \ - | 0.801 | 40.36 | 0.624 | 0.058 | 1

Table H.16: Performance of the Friedman-Chi-Squared-test, Seasonality First Method for Each
of our Cover Times
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SKU types < L2 2
Short (3 days) 0.201 | 75.99 | 0.151 | 0.028
Medium (7 days) | 0.322 | 52.91 | 0.245 | 0.041
Long (21 days) 0.801 | 40.36 | 0.624 | 0.058
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I Implementation of Prophet

This appendix describes the implementation of used single, double, and triple exponential
smoothing models, as well as the modifications made to support paralellisation. This
implementation is written using Python version 3.11.5 and has the following external dependencies:

e numpy 1.24.2

pandas 1.5.3
tabulate 0.9.0

prophet 1.1.2
holidays 0.22

e cmdstanpy 1.1.0
Our research covers the default model of Prophet as well as Prophet with holiday support.

I[.1 Implementation of Individual Experiments

Implementation of Prophet for a single time series is fairly simple, as described in the official
documentation (Facebook| 2023). In our research, we make forecasts for a single cover period at
a time. For the first cover period, this means we initialise the model and fit it to the first four
years worth of data. We then forecast ahead for our three different forecasting horizons. Once
this is done, we skip forward to the next day on which forecasts need to be made. Contrary to
exponential smoothing methods, which are updated every day, Prophet needs to be refitted on
our entire dataset.

Although it is possible to refit every day, we note that we only need to refit on days that are
multiples of any of our cover periods. This means that, for our cover periods of 3, 7, and 21 days
respectively, we need to refit on day 0, 3, 6, 7, 9, 12, 14, 15, 18, 21, 24, ... , 364, for a total of 157
unique fits per time series. The first fit uses the first 4 years worth of data. The second fit uses
the first 4 years + 3 days, the third uses the first 4 years + 6 days, and so on, all the way to our
last fit on day 364, which uses almost 5 years worth of data.

I.1.1 Complexity

Performing initialisation, fitting, and forecasting of a single SKU takes approximately 100 seconds
on the CPU our experiments were run on, which is an Intel(R) Xeon(R) Platinum 8352V CPU @
2.10GHz. Although this would be doable for a single SKU, fitting 9419 SKUs as we have in our
experiments, would take approximately 11 days in this way. As we need to run these experiments
twice (once with holidays and once without holidays), we get a total runtime of approximately 22
days.

As a runtime of 11 days for each of these experiments is too long, we have two options, being
either parallelisation, or updating of the models rather than refitting. Updating of models rather
than refitting is possible as described in the documentation of Prophet. As mentioned in the
documentation of Prophet, updating of models rather than refitting can lead to worse performance,
especially if a lot of data is added. In addition, the number of changepoints (which are data points
where a change in either seasonality or trend is detected) cannot change from model to model, or
an error will be raised and thus the experiment will terminate. Facebook expects about a 5X
speedup when using updating (so-called "Warm starts") rather than refitting. This would reduce
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our runtime from approximately 22 days to approximately 4.4 days, which is a nice speedup, but
still results in very long runtimes.

Although updating of models rather than refits would certainly be a good recommendation for
further research in case the Prophet model turns out to yield the best performance, our research
uses a different approach to reduce runtime for several reasons.

Firstly, updating models rather than refitting can lead to a suboptimal fit. Although the process
may be faster, we are looking for optimal performance in our research to make the best comparison.

Secondly, as the addition of new data might raise an error rather than finish the experiment, we
are forced to refit in case an error is thrown anyway. Refitting skus from scratch sometimes and
updating some other times results in unpredictable behaviour in our experiments, which is not
desired.

Thirdly, although the reduction from approximately 22 days to approximately 4.4 days is nice, we
still think 4.4 days is too slow. Although an actual implementation of the model would only need
a single fit rather than 157 fits for every time we need to forecast, the forecasting procedure will
take multiple hours if a customer needs to fit thousands of time series each day (which is not as
uncommon as one may expect).

1.1.2 Parallelisation

This leads us to the other approach, which is parallelisation. Instead of fitting our SKUs
sequentially, we can fit multiple at the same time. Our implementation breaks down our data set
into a configurable number of groups. In our case, we break down the dataset into 134 groups of
approximately 70 SKUs each. Doing so results in a computational time of a little under 18000
seconds, or just under 5 hours. Note that the use of heavy parallelisation may require very
expensive hardware, which not all of Slimstock’s customers will have access to. Our research
implements parallelisation using the multiprocessing library.
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J Researched Unused Classification Methods

This appendix describes classification methods that were investigated in our literature study, but
that have not been researched in more detail.

J.1 Chi-Square Goodness-of-Fit

For items where seasonality is not present, we expect to encounter a uniform distribution in
demand after we have corrected for our trend. In cases where seasonality is present, this uniform
distribution will not hold. We can test for the presence of seasonality by using a Pearson’s
Chi-Square test, with the Null hypothesis being that demand is evenly spread over time, where n
is the number of periods. The Challenger hypothesis is then that demand is not evenly spread out
over time. (Sarmukaddam and Rao, [1987)), (Edwards| [1961). Despite its popularity, (Edwards,
1961) mention this test has its downfalls and may even be a very bad test for seasonality. This is
evident from the fact that, despite there being n! ways to rearrange the time series, the Chi-Square
test is not affected by any rearrangements we make.

J.2 Regression of Trigonometric Functions and Chi-Square
Test

(Stolwijk et al., [1999)) extend this Chi-Square approach by iteratively applying sine and cosine
function by means of regression, evaluating the regressed curve at each time point and using these
values as an input to the Chi-Square test. This is done until either incorporated functions are not
a significant component (in which case seasonality is not present), or until the regressed functions
and values are no longer rejected. Advantages of this approach are the fact that this test also
extracts seasonals, as well as the fact that the Chi-Square test is now sensitive to the order of our
time series.

J.3 Kolmogorov-Smirnov Goodness-of-Fit

(Freedman), [1979) propose the Kolmogorov-Smirnov Goodness-of-Fit test as an alternative to the
Chi-Square test. (Mitchell, |1971) investigate the differences between the two tests and find that
the Kolmogorov-Smirnov test is suitable when the assumptions of the Chi-Square test are not
met. The main difference between the Chi-Square test and the Kolmogorov-Smirnov test are that
the Chi-Square test is suitable for binned data, whereas the Kolmogorov-Smirnov test is more
suited for continuously distributed data. As we are mainly dealing with aggregated data, we will
exclude the Kolmogorov-Smirnov test from our research.

J.4 Correlation, Autocorrelation and Partial
Autocorrelation

Another approach to checking the periodicity/cyclicity of a time series is the use of correlation
metrics. We cover the most important ones here.

J.4.1 Correlation

In time series analysis, we often make use of a metric known as Pearson’s Correlation Coefficient.
It is a metric that describes the similarity between two different time series. Being defined as the
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covariance of the two time series divided by the product of their variances, its value ranges from -1
to 1. A correlation of 1 means time series are perfectly correlated. That is, any increase/decrease
in value present in A is also present in B. A correlation of 0 means the two time series are not
related at all, meaning the changes in A and B are not related. A value of -1 means changes are
inversely related, meaning an increase in A corresponds to a similar decrease in B and vice versa.
(Schober and Schwarte, [2018), (Gubner, 2006])

J.4.2 Autocorrelation (ACF)

Autocorrelation, commonly referred to as the Autocorrelation Function or ACF, is a function
that checks for the relation between a variable at time T and its k-lagged variant (where k is an
integer representing the number of periods lagged). ACF includes both direct and indirect effects.
Autocorrelation is computed in a similar manner to Pearson’s Correlation Coefficient. Range and
implications for its values are identical. (George E. P. Box, [1994)), (Park, 2018).

J.4.3 Partial Autocorrelation (PACF)

Partial autocorrelation, like regular autocorrelation, is a metric that checks for similarity between
a time series signal and a lagged version of itself. PACF is an extension to ACF, as PACF excludes
the presence of indirect effects by means of regression. (Hagan and Behr, [1987).

J.4.4 Conclusion on Correlation, ACF, and PACF

Despite the fact that correlation does not imply causation and we have to ensure findings in
this field are in line with the scientific method (Holland, 1986), we see value in the use of all of
correlation metrics for time series forecasting. Although clustering is beyond the scope of our
research, we see potential for the use of correlation for forecasting groups of SKUs. Like mentioned
in (Silver et al.| [2016), we can aggregate demands of similar SKUs in order to make better
forecasts. A well known example of related SKUs is different types of ice cream. Suppose we have
ice cream type A and B, but we have no historical data on B. We do have historical data on A. In
case we assume A and B are indeed positively related, we can use seasonal parameters of A in order
to make a forecast for B. This works because we assume A and B have a strong positive correlation.

In addition to strong positive correlation, we can make examples of strong negative
correlations. In case product A is negatively correlated with product B, we have what is known
as an inverse correlation. This means that, whenever SKU A sells a lot, SKU B sells very little.
The other way around also applies. Examples of inversely correlated products are inflatable
swimming pools and snow shovels.

We intuitively know that any time series that is perfectly correlated with a lagged version of
itself is trivial to predict as the pattern that is present infinitely repeats. In case a time series is
almost perfectly correlated with a lagged version of itself, our predictions will likely not be too
far off (although they are no longer perfect). Note that ACF and PACF are both metrics that are
often used as they are often used to determine the orders of the Auto Regressive Moving Average
model (ARMA) and its extensions (e.g. ARIMA, sARIMA). This family of models is covered in

Appendix D]
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J.5 Approximate Entropy

Entropy is a scientific concept that relates to the degree of order that is present in a certain
field or system. Greater entropy represents more chaos and thus less predictability. Entropy is
measured in different ways depending on the field.

In time series analysis, we can use approximate entropy (ApEn) to indicate the regularity or
predictability of our data. Approximate entropy assumes values ranging from 0 to infinity, where
0 indicates perfect predictability and higher values indicate more chaos.

Approximate entropy calculates the logarithm of conditional probability that two sub-
sequences of size m are similar to a certain degree (this degree is determined by our tolerance
parameter).

Approximate entropy has its advantages and disadvantages. Advantages of approximate
entropy are its insensitivity to the length of the original time series, and its computational
efficiency. Despite these advantages, approximate entropy can be a difficult metric to use.
Although insensitive to the length of the original input series, approximate entropy is very
sensitive to the used sub-sequence length m. Using an m that is too small (shorter than the length
of the present pattern) means approximate entropy cannot identify the patterns that are present
in our data, and thus the complexity of the time series is not properly assessed. On the other
hand, using an m-value that is too large means the complexity of the time series is overestimated,
as these sub-sequences can contain a lot of redundancy and noise. The same problems arise when
our tolerance parameter r is not properly selected. Values of r that are too small will result in an
inability to capture the complexity of the time series (under-fitting problems). Using values that
are too large causes over-estimations of the complexity (over-fitting). Lastly, the metric assumes
our input data to be stationary. This means that, for non-stationary data, we need to apply some
transformations to our data before evaluating the metric. (Pincus et al. [1991), (Pincus, [1991)).
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K Researched Unused Forecasting Methods
K.1 LightGBM

Light GBM is an extension to traditional gradient boosting machines and is developed by Microsoft.
Light GBM introduces several optimizations that makes it faster, more memory-efficient, and
slightly more performant. We base our analysis of Light GBM on the paper written by (Ke et al.,
2017).

The first optimisation regarding to speed comes from optimisations made in the sampling method.
LightGBM introduces a new approach going by the name of Gradient-based One-Side Sampling
(GOSS). GOSS is suitable for large or very large data sets and speeds up the learning process by
focusing on samples that have larger gradients. Samples that have larger gradients allow for a
greater reduction of error in each step without reducing accuracy of the model. Although we will
eventually run into the vanishing gradient problem (Hochreiter] [1998) in case we end up using
all samples in our data set, we will often reach our stopping criterion long before doing so and
thus this method is an efficient way to speed up learning without compromising model performance.

The second optimisation regarding training efficiency comes in the form of memory optimisations.
Using a method known as Exclusive Feature Bundling (EFB), Light GBM aggregates several
features which allows for a reduction in dimensionality of the input data. This reduction in
dimensionality makes the model less memory-intensive and improves computation speed.

The third optimization in training speed comes from early stopping. Once LightGBM
fails to improve the performance of the model over several iterations as it is no longer able to
construct trees that reduce model error, the training process terminates before reaching the
maximum number of trees. This saves computation time and resources.

The last major optimization made is mostly related to model performance, although it
may also speed up computation in some cases. Traditional GBMs expand the model by growing
trees on a per-level basis, meaning the tree is constructed by adding one level of depth at a time.
Light GBM takes a different approach, growing trees on a per-leaf basis. This allows us to expand
the tree by growing the leaf that results in the greatest loss, resulting in a lower value to our
objective loss function. This produces trees that have lower loss when compared to traditional
gradient boosted trees, though this comes at the potential cost of generating more complex trees
(i.e.g trees with greater depth).

In addition to these major optimizations, we can speed up the training process of Light GBM by
parallelising the learning process. As Light GBM supports multi-core and GPU processing, the
training time can be reduced at the cost of more resources.

K.2 CatBoost

An alternative to Microsoft’s Light GBM is CatBoost, which is developed by Yandex. Like
Light GBM, CatBoost builds upon the general idea of GBMs, introducing a set of optimisations.
(Prokhorenkova et al., |2018)), (Dorogush et al., [2018]).

The first optimisation comes in the way the weak learners are constructed. CatBoost
uses a type of decision tree known as an Oblivious decision tree (Ferov and Modry, 2016)),
(Friedman et al.| |2000). The oblivious decision tree uses a single splitting criterion for each level.
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This results in more balanced trees that are less prone to overfitting and can be evaluated more
efficiently. This optimisation introduces both increased performance and more efficient training.

Bayesian bootstrapping. CatBoost uses sampling with replacement, assigning a probability to
each sample according to a Dirichlet distribution. This sampling method allows us to reduce
overfitting by introducing randomness to the algorithm at the cost of increased computational
cost. (Rubin 1981)

Similar to LightGBM, another optimization comes in the form of parallelisation. Parallel
processing by using multiple CPU or GPU cores allows for more rapid training at the cost of
computational power.

K.3 XGBoost

The third and last extension to the traditional GBMs is XGBoost. XGBoost is an open-
source machine learning algorithm that extends traditional GBMs both by improving system
optimizations (e.g. parallelisation, caching, and optimizations to the way the data is structured

in memory), and by introducing both an exact and approximate algorithm for splitting the input
data. (Chen and Guestrin, [2016)).

XGBoost introduces two algorithms for splitting the input data, one of which is exact
and one of which is an approximation. Choice of which algorithm to use depends on the size of
the data and available memory. In case the input data completely fits into memory, the exact
algorithm is used. In cases where data is distributed among multiple machines (distributed
computation is another system optimization made by XGBoost) or where not all of our data fit
into memory, we have to use the approximate algorithm. Both algorithms use a histogram-based
partitioning, basing their decision on information gain.

XGBoost deals with overfitting in two ways. Firstly, the generated trees have a maximum depth,
which means the trees have to generalize and thus we get a model with a more generalized fit.
Secondly, XGBoost uses a combination of Lasso (L1) (Park and Hastie, |2007) and Ridge (L2)
(McDonald, 2009) regression for its regularization. This also prevents the model from overfitting.

Like LightGBM and CatBoost, XGBoost allows for early stopping once fitting more
trees does not significantly improve performance. Other optimisations such as parallel processing
and GPU processing are part of the beforementioned system optimisations. We do not cover
system optimisations in detail as these are not relevant to the fundamental workings of the
algorithm.

K.4 Conclusion on Gradient Boosters

(Bentéjac et al., [2021)) and (Al Daoud, [2019)) compare the three algorithms and find CatBoost
performs best although difference in performance between the three models is not statistically
significant. Light GBM was the fastest out of the three, whilst CatBoost was the slowest, leading
us to believe Light GBM is most suitable for our task. This is in line with (Makridakis et al.,
2022), where Light GBM came out on top.
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L Breakdown of Performance of Conservative and
Progressive Approach

L.1 Conservative Approach

Table L.1: Performance of the Conservative Approach for Short Cover Times

Q
S*
>
g & &
) 3
SIS
N s 7 & 8
< § & & & 5
0 N L L L o
SKU types < S 2 vy v A&
1: (T: n, D: n, W: n, M: n) SES 0.158 | 94.6 |0.112]-0.017 | 22%
2: (T: n, D: y, W: n, M: n) Prophet 0.166 | 74.93 | 0.12 | -0.111 %
3: (T: n, D: n, W: y, M: n) SES 0.182 [ 98.41 [ 0.135 [ -0.045 | o
4: (T: n, D: n, W: n, M: y) TES 0.125 | 123.39 | 0.08 | 0.075 ﬁ
5: (T: n, D: y, W: y, M: n) Prophet 0.168 | 67.24 | 0.124 | -0.134 %
6: (T: n, D: y, W: n, M: y) TES 0.175 | 94.4 0.13 | -0.031 %
7: (T: n, D: n, W: y, M: y) TES 0.192 | 91.44 | 0.13 [ -0.208 | 55
8 (T:n,D:y, W:y, M: y) Prophet 0.165 | 67.82 | 0.119 | -0.131 | 525
9: (T: y, D: n, W: n, M: n) Prophet 0.167 | 72.26 | 0.123 | -0.169 gg—g
10: (T:y, D:y, W: n, M: n) | TES Nested Adjusted | 0.17 | 63.51 | 0.123 | 0.011 %
11: (T:y, D: n, W: y, M: n) DES 0.183 | 83.5 | 0.135 | 0.073 %
12: (T:y, D: n, W: n, M: y) TES Trending 0.175 | 114.7 | 0.119 | -0.043 %
13: (T:y, D: y, W: y, M: n) Prophet 0.182 | 56.0 | 0.134 | -0.12 %
14: (T:y, D: y, W: n, M: y) Prophet 0.149 | 86.26 | 0.109 | -0.06 %
15: (T:y, D: n, W: y, M: y) Prophet 0.166 | 86.49 | 0.115 [ -0.062 | 555
16: (T:y, D:y, W: y, M: y) Prophet 0.159 [ 69.57 [ 0.114 [ -0.199 | 22
Total - 0.167 | 71.58 | 0.122 | -0.082 1
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Table L.2: Performance of the Conservative Approach for Medium Cover Times

Q
év
>
& Q) '\@e
s &
a N § ¢
. § & e &
s § &‘go @éo &‘go 5§
2 S L L L o
SKU types S < 4 4 4 S
1: (T: n, D: n, W: n, M: n) SES 0.241 [ 66.03 | 0.18 [ -0.011 [ 2%
2: (T: n, D: y, W: n, M: n) SES 0.26 | 49.33 | 0.195 | -0.045 %
3: (T: n, D: n, W: y, M: n) SES 0.3 [70.82]0.234]-0.022 | 2
4: (T: n, D: n, W: n, M: y) TES 0.234 | 71.99 | 0.142 | 0.036 | 525
5: (T: n, D: y, W: y, M: n) SES 0.273 | 45.38 | 0.211 | -0.095 %
6: (T: n, D: y, W: n, M: y) TES 0.261 | 58.45 | 0.195 | -0.051 %
7: (T: n, D: n, W: y, M: y) TES 0.348 | 66.0 | 0.235 | -0.259 %
8 (T:n, D:y, W: y, M: y) Prophet 0.275 | 48.42 | 0.207 | -0.154 %
9: (T: y, D: n, W: n, M: n) DES 0.283 | 52.58 | 0.217 | -0.008 %
10: (T: y, D: y, W: n, M: n) DES 0.283 | 45.21 | 0.217 | 0.006 | 2%
11: (T:y, D: n, W: y, M: n) DES 0.316 | 64.13 | 0.248 | 0.089 %
12: (T:y, D: n, W: n, M: y) | TES Trending | 0.321 | 82.45 | 0.223 | -0.02 ﬁ
13: (T:y, D: y, W: y, M: n) DES 0.317 | 42.49 | 0.245 | 0.045 %
14: (T:y, D: y, W: n, M: y) | TES Trending | 0.307 | 58.25 | 0.223 | -0.106 | 5,%5
15: (T:y, D: n, W: y, M: y) Prophet 0.281 | 64.17 | 0.209 | -0.092 | 5=
16: (T:y, D:y, W: y, M: y) Prophet 0.271 | 50.0 | 0.204 | -0.259 %
Total - 0.277 | 50.72 | 0.211 | -0.02 1
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Table L.3: Performance of the Conservative Approach for Long Cover Times

Q
$V
>
§ & &
s & &
SISO
& & S
o Fo& & &3
g F & & & F
9 A A A A
SKU types é’ < X X h4
1: (T: n, D: n, W: n, M: n) SES [0.519 | 44.9 [ 0.411 [ -0.011 | 2%
2: (T: n, D: y, W: n, M: n) SES 0.542 | 33.2 | 0.423 | -0.056 %
3: (T: n, D: n, W: y, M: n) SES 0.706 | 52.52 | 0.578 | -0.031 %
4: (T: n, D: n, W: n, M: y) TES 0.603 | 48.35 | 0.355 | 0.091 ﬁ
5. (T: n, D: y, W: y, M: n) SES | 0.606 | 31.42 [ 0.486 | -0.111 | 5. &
6: (T: n, D: y, W: n, M: y) TES 0.568 | 39.86 | 0.44 | 0.016 %
7: (T: n, D: n, W: y, M: y) TES 0.861 | 51.56 | 0.607 | -0.265 ﬁ
8 (T:n,D:y, W:y, M: y) Prophet | 0.636 | 36.54 | 0.488 | -0.26 %
9: (T:y, D: n, W: n, M: n) DES 0.671 | 39.92 | 0.538 | -0.031 %
10: (T: y, D:y, W:n, M: n) | DES |0.652 | 34.18 | 0.519 [ -0.013 | 20
11: (T:y, D: n, W: y, M: n) | Prophet | 0.677 | 48.89 | 0.541 | -0.264 %
12: (T:y, D: n, W: n, M: y) | Prophet | 0.431 | 50.91 | 0.328 | 0.052 9}1—“;’9
13: (T:y, D: y, W: y, M: n) DES 0.766 | 34.68 | 0.616 | 0.043 %
14: (T:y, D: y, W: n, M: y) | Prophet | 0.515 | 34.7 | 0.401 | -0.051 %
15: (T:y, D: n, W: y, M: y) | Prophet | 0.661 | 46.43 | 0.507 | -0.112 | ;25
16: (T:y, D:y, W: y, M: y) | Prophet | 0.635 | 38.45 | 0.49 | -0.377 %
Total - 0.632 | 37.35 | 0.502 | -0.031 | 1
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L.2 Progressive Approach

Table L.4: Performance of the Progressive Approach for Short Cover Times

Q
S*
>
g o
S R 3
SIS
N g 7 5 8
< g & & & 3
0 S L L L &
SKU types S S vy ¥ &
1: (T: n, D: n, W: n, M: n) Prophet 0.151 | 94.1 ]0.108] -0.12 | 2%
2: (T: n, D: y, W: n, M: n) Prophet 0.166 | 74.93 | 0.12 | -0.111 éifg
3: (T: n, D: n, W: y, M: n) Prophet 0.169 | 97.42 | 0.124 | -0.058 9?1—19
4: (T: n, D: n, W: n, M: y) Prophet 0.11 | 121.04 | 0.065 | 0.186 ﬁ
5: (T: n, D: y, W: y, M: n) Prophet 0.168 | 67.24 | 0.124 | -0.134 %
6: (T: n, D: y, W: n, M: y) Prophet 0.159 | 91.37 | 0.113 | -0.096 %
7: (T: n, D: n, W: y, M: y) Prophet 0.167 | 91.57 | 0.121 | -0.294 %
8 (T:n,D:y, W:y, M: y) Prophet 0.165 | 67.82 | 0.119 | -0.131 | 525
9: (T: y, D: n, W: n, M: n) Prophet 0.167 | 72.26 | 0.123 [ -0.169 | 2023
10: (T:y, D:y, W: n, M: n) | TES Nested Adjusted | 0.17 | 63.51 | 0.123 | 0.011 %
11: (T:y, D: n, W: y, M: n) Prophet 0.166 | 79.67 | 0.119 | -0.168 %
12: (T:y, D: n, W: n, M: y) Prophet 0.136 | 112.12 [ 0.089 | 0.033 | 505
13: (T:y, D: y, W: y, M: n) Prophet 0.182 | 56.0 | 0.134 | -0.12 %
14: (T:y, D: y, W: n, M: y) Prophet 0.149 | 86.26 | 0.109 | -0.06 %
15: (T:y, D: n, W: y, M: y) Prophet 0.166 | 86.49 | 0.115 [ -0.062 | 575
16: (T:y, D:y, W: y, M: y) Prophet 0.159 | 69.57 | 0.114 | -0.199 %
Total - 0.166 | 71.49 | 0.121 | -0.094 1
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Table L.5: Performance of the Progressive Approach for Medium Cover Times

Q
$V
>
§ & &
s R 8
SISO
& & S
o Fog & E 3
g F & & & F
9 A A A A
SKU types é’ < X X h4
1: (T: n, D: n, W: n, M: n) SES [0.241]66.03 ] 0.18 |-0.011 | 2%
2: (T: n, D: y, W: n, M: n) SES 0.26 | 49.33 | 0.195 | -0.045 %
3: (T:n, D: n, W: y, M: n) | Prophet | 0.285 [ 70.75 | 0.22 | -0.031 | 21
4: (T: n, D: n, W: n, M: y) | Prophet | 0.193 | 69.19 | 0.116 | 0.178 ﬁ
5: (T: n, D: y, W: y, M: n) SES 0.273 | 45.38 | 0.211 | -0.095 %
6: (T: n, D: y, W: n, M: y) | Prophet | 0.235 | 55.86 | 0.176 | -0.096 %
7: (T: n, D: n, W: y, M: y) Prophet | 0.293 | 67.61 | 0.224 | -0.36 ﬁ
8 (T:n,D:y, W:y, M: y) Prophet | 0.275 | 48.42 | 0.207 | -0.154 %
9: (T: y, D: n, W: n, M: n) | Prophet | 0.281 | 52.44 | 0.217 | -0.213 %
10: (T:y, D:y, W:n, M: n) | DES |0.283 | 45.21 | 0.217 | 0.006 | 3%
11: (T:y, D: n, W: y, M: n) | Prophet | 0.286 | 60.89 | 0.219 | -0.208 %
12: (T:y, D: n, W: n, M: y) | Prophet | 0.22 | 76.15 | 0.158 | 0.068 9}1—“;’9
13: (T:y, D: y, W: y, M: n) | Prophet | 0.306 | 41.37 | 0.234 | -0.149 %
14: (T:y, D: y, W: n, M: y) | Prophet | 0.239 | 54.71 | 0.186 | -0.077 %
15: (T:y, D: n, W: y, M: y) | Prophet | 0.281 | 64.17 [ 0.209 | -0.092 | 525
16: (T:y, D:y, W:y, M: y) | Prophet | 0.271 | 50.0 | 0.204 | -0.259 %
Total - 0.275 | 50.59 | 0.210 | -0.09 1
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Table L.6: Performance of the Progressive Approach for Long Cover Times

Q
g*
>
§ & &
s & &
SISO
& & S
o Fo& & &3
g F & & & F
9 A A A A
SKU types é’ < X X h4
1: (T: n, D: n, W: n, M: n) SES [0.519 | 44.9 [ 0.411 [ -0.011 | 2%
2: (T: n, D: y, W: n, M: n) SES 0.542 | 33.2 | 0.423 | -0.056 %
3: (T: n, D: n, W: y, M: n) | Prophet | 0.672 | 54.16 | 0.539 | -0.025 %
4: (T: n, D: n, W: n, M: y) | Prophet | 0.466 | 42.49 | 0.265 | 0.274 ﬁ
5. (T: n, D: y, W: y, M: n) SES | 0.606 | 31.42 [ 0.486 | -0.111 | 5. &
6: (T: n, D: y, W: n, M: y) | Prophet | 0.458 | 36.27 | 0.359 | -0.091 %
7: (T: n, D: n, W: y, M: y) Prophet | 0.685 | 52.51 | 0.558 | -0.511 ﬁ
8: (T:n, D:y, W:y, M: y) | Prophet | 0.636 | 36.54 [ 0.488 | -0.26 | o°&
9: (T:y, D: n, W: n, M: n) DES 0.671 | 39.92 | 0.538 | -0.031 %
10: (T: y, D:y, W:n, M: n) | DES |0.652 | 34.18 | 0.519 [ -0.013 | 20
11: (T:y, D: n, W: y, M: n) | Prophet | 0.677 | 48.89 | 0.541 | -0.264 %
12: (T:y, D: n, W: n, M: y) | Prophet | 0.431 | 50.91 | 0.328 | 0.052 9}1—“;’9
13: (T:y, D: y, W: y, M: n) | Prophet | 0.73 | 32.96 | 0.565 | -0.171 %
14: (T:y, D: y, W: n, M: y) | Prophet | 0.515 | 34.7 | 0.401 | -0.051 %
15: (T:y, D: n, W: y, M: y) | Prophet | 0.661 | 46.43 | 0.507 | -0.112 | ;25
16: (T:y, D:y, W: y, M: y) | Prophet | 0.635 | 38.45 | 0.49 | -0.377 %
Total - 0.630 | 37.29 | 0.500 | -0.038 | 1
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Classifications for each of our Different Methods

Table M.1: Number of SKUs by Seasonal Properties using the F-test.

H No Seasonality ‘ Monthly Seasonality H Total

No Trend 2341 178 2519
Trend (Trend First) 6533 367 6900
Total | 8874 \ 545 | 9419

Table M.2: Number of SKUs by Seasonal Properties using the F-test, Seasonality First.

H No Seasonality ‘ Monthly Seasonality H Total

No Trend 2710 194 2904
Trend (Seasonality First) 6205 310 6515
Total | 8915 \ 504 | 9419

Table M.3: Number of SKUs by Seasonal Properties using the Friedman-Chi-Squared-test,

Trend First.

H No Seasonality ‘ Monthly Seasonality H Total

No Trend 1598 921 2519
Trend (Trend First) 3363 3537 6900
Total | 4961 \ 4458 | 9419

Table M.4: Number of SKUs by Seasonal Properties using the Friedman-Chi-Squared-test,

Trend First.

H No Seasonality ‘ Monthly Seasonality H Total

No Trend 1601 1862 3463
Trend (Trend First) 1844 4112 5956
Total | 3445 \ 5974 | 9419
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N SKU Classification using the F-test, Trend First
Approach for Multiple Levels of Seasonality

Table N.1: Number of SKUs by Seasonal Properties using the F-test.

A
3
$Q
S8
S
. s $F7
§ . s5F Sy
F O s &SI
F o TSy TS 8
Q> 4 QO 4
L AT ITEJF R
No Trend 894 | 1283 | 24 51140 | 25 | 17 | 131 || 2519
Trend (Trend First) 3071 | 3101 | 67 | 15 | 294 | 40 | 33 | 279 || 6900
0

Total | 3965 | 4384 | 91 [ 20 | 434 | 65 | 50 | 410 || 9419
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O Performance of Nested Exponential Smoothing
Compared to the Current Method

Now, we look at each of our SKU classes except for Classes 1, 4, 9, and 12. Classes 1 and 9 do
not have their models changed, and although classes 4 and 12 have techinically had their models
changed, we note that this change has no effect as the changes made to the models only affect
daily and weekly seasonalities, which are not present in SKUs within these classes.

Class 2: Daily seasonal SKUs without a trend. (1 283 items)

Table O.1: Effects of changing from SES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.183 77.54 | 0.136 | -0.036

TES Nested 0.396 91.93 | 0.304 | -0.514
p-value - 0.0 0.0 0.0 0.0
Medium SES 0.26 49.33 | 0.195 | -0.045

TES Nested 0.809 72.12 | 0.667 | -0.544
p-value - 0.0 0.0 0.0 0.0
Long SES 0.542 33.2 | 0.423 | -0.056

TES Nested 2.346 59.79 | 1.952 | -0.557
p-value - 0.0 0.0 0.0 0.0

We see that, for this class of SKUs, SES outperforms nested triple exponential smoothing by a
significant margin based on all of our performance metrics. SES is the best model here.

Class 3: Weekly seasonal SKUs without a trend. (24 items)

Table O.2: Effects of changing from SES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.182 98.41 | 0.135 | -0.045

TES Nested 0.698 111.43 0.43 | -0.546
p-value - 0.0 0.35 0.0 0.0
Medium SES 0.3 70.82 | 0.234 | -0.022

TES Nested 1.48 93.7 | 0.951 | -0.592
p-value - 0.0 0.09 0.0 | 0.001
Long SES 0.706 52.52 | 0.578 | -0.031

TES Nested 4.191 84.8 | 2.859 | -0.638
p-value - 0.0 0.01 0.0 | 0.003

For this class, SES outperforms nested TES by a significant margin on all metrics except short and
medium term sSMAPE, where SES is still better but the difference is not statistically significant.
We conclude SES is our best model here as well.
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Class 5: Daily-weekly SKUs without a trend. (140 items)

For Daily-weekly SKUs without a trend, SES outperforms nested TES by a significant margin on
all performance metrics for all cover periods. SES is the superior model.

Table O.3: Effects of changing from SES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.204 72.11 | 0.157 | -0.065

TES Nested 1.299 89.34 | 0.782 | -0.693
p-value - 0.001 0.0 0.0 0.0
Medium SES 0.273 45.38 | 0.211 | -0.095

TES Nested 2.497 76.89 | 1.785 | -0.744
p-value - 0.0 0.0 0.0 0.0
Long SES 0.606 31.42 | 0.486 | -0.111

TES Nested 7.274 70.66 | 5.524 | -0.776
p-value - 0.0 0.0 0.0 0.0

Class 6: Daily-monthly SKUs without a trend. (25 items)

Here, we note that TES is a better model than nested TES based on all performance metrics except
for short and medium term sMAPE, where the difference found is not statistically significant.

Table O.4: Effects of changing from TES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.175 94.4 0.13 | -0.031

TES Nested 0.335 106.35 | 0.244 | -0.367
p-value - 0.033 0.28 | 0.028 0.0
Medium TES 0.261 58.45 | 0.195 | -0.051

TES Nested 0.616 79.78 | 0.505 | -0.412
p-value - 0.011 0.05 | 0.011 0.0
Long TES 0.568 39.86 0.44 | 0.016

TES Nested 1.742 64.02 | 1.434 | -0.379
p-value - 0.008 0.02 0.01 0.0

Class 7: Weekly-monthly seasonal SKUs without a trend. (17 items)

Table O.5: Effects of changing from TES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.192 91.44 0.13 | -0.208

TES Nested 2.156 114.6 | 1.353 -0.68
p-value - 0.013 0.21 | 0.014 0.0
Medium TES 0.348 66.0 | 0.235 | -0.259

TES Nested 4.879 103.34 | 3.162 | -0.718
p-value - 0.012 0.04 | 0.014 | 0.001
Long TES 0.861 51.56 | 0.607 | -0.265

TES Nested | 1.457E1 99.77 9.93 | -0.803
p-value - 0.012 0.01 | 0.013 0.0
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Once again, we see that nested TES gets significantly outperformed by regular TES on all metrics
except for short term sSMAPE, where the difference is not statistically significant.

Class 8: Daily-weekly-monthly seasonal SKUs without a trend. (131 items)

Table O.6: Effects of changing from TES to TES Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.214 73.22 0.158 | -0.117

TES Nested | 1.575E1 91.61 6.184 | -0.713
p-value - 0.065 0.0 0.065 0.0
Medium TES 0.34 50.45 0.248 | -0.132

TES Nested | 3.179E1 79.84 | 1.462E1 | -0.767
p-value - 0.06 0.0 0.064 0.0
Long TES 0.863 38.98 0.639 | -0.175

TES Nested | 8.163E1 74.08 | 4.617E1 | -0.786
p-value - 0.06 0.0 0.069 0.0

For daily-weekly-monthly seasonal SKUs, TES significantly outperforms nested TES by a

significant margin based on both sMAPE and Bias.

It is interesting to note that, although TES has better scores on both RMSE and MAD by several
orders of magnitude, the difference between the two models is not statistically significant. This is
likely because this difference is not a structural difference. Instead, most of this effect originates
from a handful of outliers, which perform so poorly that overall performance on RMSE and MAD
is tens to hundreds of times worse than the current method. We will see this phenomenon occur
for all models that include multiple levels of seasonality, with the error exponentially compounding
as more levels of seasonality come into play. We attempt to solve this in the next section, which

is Section [6.5]

Class 10: Daily seasonal SKUs with a trend. (3 101 items)

Table O.7: Effects of changing from DES to TES Trending Nested

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short DES 0.195 67.65 | 0.148 | 0.016

TES Trending Nested 0.537 88.76 | 0.415 -0.34
p-value - 0.0 0.0 0.0 0.0
Medium DES 0.283 45.21 | 0.217 | 0.006

TES Trending Nested 1.152 76.27 | 0.939 -0.34
p-value - 0.0 0.0 0.0 0.0
Long DES 0.652 34.18 | 0.519 | -0.013

TES Trending Nested 3.504 69.83 | 2.865 -0.32
p-value - 0.0 0.0 0.0 0.0

For this class of SKUs, we see that DES is significantly better than nested TES with a trend all
across the board.
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Class 11: Weekly seasonal SKUs with a trend. (67 items)

For this class of SKUs, DES is significantly better than nested TES with a trend for all cover

periods.

Table O.8: Effects of changing from DES to TES Trending Nested

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

Short DES 0.183 83.5 | 0.135 | 0.073
TES Trending Nested 0.779 97.4 | 0477 | -0.212
p-value - 0.0 0.1 0.0 | 0.028
Medium DES 0.316 64.13 | 0.248 | 0.089
TES Trending Nested 1.712 83.54 | 1.078 | -0.221
p-value - 0.0 0.02 0.0 | 0.081
Long DES . 0.795 53.91 | 0.664 | 0.079
TES Trending Nested 5.111 77.58 | 3.357 | -0.217
p-value - 0.0 0.0 0.0 | 0.096

Class 13: Daily-weekly seasonal SKUs with a trend. (294 items)

Again, DES outperforms nested TES by a significant margin based on both sSMAPE and bias.

Table O.9: Effects of changing from DES to TES Trending Nested

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short DES 0.219 61.78 0.17 | 0.046

TES Trending Nested | 8.139E11 88.08 | 4.57TE11 | -0.382
p-value - 0.318 0.0 0.318 0.0
Medium DES 0.317 42.49 0.245 | 0.045

TES Trending Nested | 1.27E12 80.31 | 1.10E12 | -0.379
p-value - 0.318 0.0 0.318 0.0
Long DES 0.766 34.68 0.616 | 0.043

TES Trending Nested | 3.828E12 77.29 | 3.267E12 | -0.354
p-value - 0.318 0.0 0.318 0.0

Class 14: Daily-monthly SKUs with a trend. (40 items)

Table O.10: Effects of changing from TES Trending to TES Trending Nested

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

TES Trending Nested 0.577 110.44 | 0.417 | -0.233
p-value - 0.016 0.03 | 0.025 0.0
Medium TES Trending 0.307 58.25 | 0.223 | -0.106

TES Trending Nested 1.203 89.74 | 0.951 | -0.228
p-value - 0.009 0.0 | 0.015 0.0
Long TES Trending 0.764 40.81 | 0.543 | -0.069

TES Trending Nested 3.602 78.66 | 2.864 | -0.208
p-value - 0.005 0.0 | 0.009 0.0
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For this class of SKUs, we see that regular TES outperforms nested TES by a significant margin
based on all of our performance metrics.

Class 15: Weekly-monthly SKUs with a trend. (33 items)

Table O.11: Effects of changing from TES Trending to TES Trending Nested

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.225 91.07 0.154 | -0.102

TES Trending Nested | 2.867E1 106.75 | 1.417E1 | -0.437
p-value - 0.273 0.19 0.279 | 0.003
Medium TES Trending 0.427 67.37 0.293 | -0.14

TES Trending Nested | 6.530E1 91.69 | 3.363E1 | -0.494
p-value - 0.275 0.05 0.279 | 0.006
Long TES Trending 1.163 50.99 0.799 | -0.119

TES Trending Nested | 1.954F2 83.32 | 1.097TE2 | -0.498
p-value - 0.276 0.01 0.28 0.068

For weekly-monthly SKUs with a trend, we see that the current method has better performance
all across the board. Both medium and long cover times have significantly better sMAPE, and
short and medium cover times have a significantly better bias. Therefore, we conclude the current
method is the superior method.

Class 16: Daily-weekly-monthly SKUs with a trend. (279 items)

Table O.12: Effects of changing from TES Trending to TES Trending Nested

Horizon | Model | RMSE | sMAPE| MAD | Bias
Short TES Trending 0.22 76.22 0.157 | -0.052

TES Trending Nested | 2.497E12 98.77 | 1.426E12 | -0.485
p-value - 0.318 0.0 0.318 0.0
Medium TES Trending 0.388 53.42 0.274 | -0.077

TES Trending Nested | 3.853E12 87.91 | 3.359E12 | -0.497
p-value - 0.318 0.0 0.318 0.0
Long TES Trending 1.06 42.91 0.754 | -0.086

TES Trending Nested | 1.162E13 83.27 | 1.016E13 | -0.507
p-value - 0.318 0.0 0.318 0.0

For our last class of SKUs, being the SKUs with a trend and all levels of seasonality, we see
that the current method is significantly better across all performance horizons based on both
sMAPE and Bias. Despite the current method also being better by several trillions of orders of
magnitude based on RMSE and MAD, the difference is not statistically significant. Again, this is
likely because this difference is not a structural difference. Instead, this difference is caused by a
handful of outliers.
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P Performance of Adjusted Nested Exponential
Smoothing Compared to the Current Method

Class 2: Daily seasonal SKUs without a trend. (1 283 items)

Table P.1: Effects of changing from SES to TES Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.183 77.54 | 0.136 | -0.036

TES Nested Adjusted | 0.162 74.2 | 0.114 | -0.037
p-value - 0.0 0.07 0.0 0.0
Medium SES 0.26 49.33 | 0.195 | -0.045

TES Nested Adjusted 0.26 49.33 | 0.195 | -0.045
p-value - 1.0 1.0 1.0 1.0
Long SES 0.542 33.2 | 0.423 | -0.056

TES Nested Adjusted 0.542 33.2 | 0423 | -0.056
p-value - 1.0 1.0 1.0 1.0

The class of daily seasonal SKUs without a trend is an interesting class as this class only has its
model adjusted for cover periods that have a number of days that is not a multiple of seven (the
number of days in a week). In our research, this is the case for our short cover period only. For
this period, we notice that the modifications we made to the nested exponential smoothing model

actually result in the new model being better than the current model by a significant margin
based on RMSE, MAD, and Bias.

We conclude nested triple exponential smoothing is better than simple exponential smoothing
for this class of items, at least for our short cover time. For our medium and long cover times,
performance is identical.

Class 3: Weekly seasonal SKUs without a trend. (24 items)

Table P.2: Effects of changing from SES to TES Nested Adjusted

For weekly seasonal SKUs without a trend, we note that SES outperforms nested TES all across
the board, although this difference is only statistically significant when looking at bias.

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short SES 0.182 98.41 | 0.135 | -0.045

TES Nested Adjusted 0.21 102.1 | 0.148 0.178
p-value - 0.241 0.79 | 0.504 0.0
Medium SES 0.3 70.82 | 0.234 | -0.022

TES Nested Adjusted 0.375 75.58 | 0.277 | 0.248
p-value - 0.126 0.7 0.27 | 0.001
Long SES 0.706 52.52 | 0.578 | -0.031

TES Nested Adjusted 0.895 56.91 0.69 | 0.279
p-value - 0.197 0.7 0.346 | 0.003
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Class 4: Monthly seasonal SKUs without a trend. (5 items)

Table P.3: Effects of changing from TES to TES Nested Adjusted

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

Short TES 0.125 123.39 0.08 | 0.075
TES Nested Adjusted 0.117 125.01 | 0.069 | 0.345
p-value - 0.827 0.9 0.392 | 0.758
Medium TES 0.234 71.99 | 0.142 | 0.036
TES Nested Adjusted 0.207 71.38 | 0.123 | 0.426
p-value - 0.75 0.97 | 0.361 | 0.663
Long TES . 0.603 48.35 | 0.355 | 0.091
TES Nested Adjusted | 0.489 44.3 | 0.286 | 0.628
p-value - 0.644 0.67 | 0.368 | 0.158

Due to our adjustment to the way updating of our level works, we actually see the nested model
perform differently from the current model, even though the nested model only uses monthly
seasonality here. We see that, with the exception of short term sMAPE, this adjustment improves
accuracy of the model at the cost of bias. This improvement is not statistically significant,
however.

Class 5: Daily-weekly SKUs without a trend. (140 items)

Table P.4: Effects of changing from SES to TES Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short SES 0.204 72.11 | 0.157 | -0.065

TES Nested Adjusted 0.19 69.63 | 0.136 | 0.076
p-value - 0.144 0.67 | 0.006 0.0
Medium SES 0.273 45.38 | 0.211 | -0.095

TES Nested Adjusted 0.319 47.68 | 0.243 | 0.007
p-value - 0.009 0.63 | 0.022 0.0
Long SES 0.606 31.42 | 0.486 | -0.111

TES Nested Adjusted 0.723 33.15 | 0.566 | 0.108
p-value - 0.027 0.65 | 0.056 | 0.006

For the daily-weekly seasonal SKUs that do not have a trend, we notice that the nested TES model
is significantly better than the current method for short cover times based on MAD. Difference in
RMSE and sMAPE is not statistically significant.

For medium cover periods, we see that SES is still the better method based on RMSE, MAD, and
Bias. For the long term, our conclusion is the same, though it is only based on RMSE and Bias.
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Class 6: Daily-monthly SKUs without a trend. (25 items)

Table P.5: Effects of changing from TES to TES Nested Adjusted

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES 0.175 944 [ 0.13 | -0.031

TES Nested Adjusted | 0.169 |  93.43 | 0.116 | 0.141
p-value - 0.682 0.93 | 0.338 | 0.023
Medium | TES 0.261 | 58.45 [ 0.195 | -0.051

TES Nested Adjusted | 0.256 5849 | 0.19 | 0.174
p-value | - 0.859 1.0] 0.834] 0.185
Long TES | 0.568 39.86 [ 0.44 ] 0.016

TES Nested Adjusted | 0.528 39.0 0.41 0.29
p-value | - 0.573 0.93 | 0.585| 0.08

Here, we conclude the current method is superior to nested TES for the short term, based on
Bias. Although the adjusted nested TES model outperforms the current method based on some
measures, the difference is not statistically significant. This makes the current method better for
the conservative approach, and the alternative method is better for the progressive approach.

Class 7: Weekly-monthly seasonal SKUs without a trend. (17 items)
Table P.6: Effects of changing from TES to TES Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

For this class of SKUs, the current method is scores better than the alternative method on all of

Short TES 0.192 91.44 0.13 | -0.208
TES Nested Adjusted 0.244 96.6 | 0.157 | 0.129
p-value - 0.201 0.76 | 0.315 0.6
Medium TES 0.348 66.0 | 0.235 | -0.259
TES Nested Adjusted 0.456 72.19 | 0.299 | 0.173
p-value - 0.199 0.68 | 0.252 0.55
Long TES ' 0.861 51.56 | 0.607 | -0.265
TES Nested Adjusted 1.072 56.36 | 0.754 | 0.229
p-value - 0.374 0.73 ] 0.363 | 0.798

our accuracy measures, but the difference is not statistically significant.




123

Class 8: Daily-weekly-monthly seasonal SKUs without a trend. (131 items)

Table P.7: Effects of changing from TES to TES Nested Adjusted

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES 0.214 73.22 | 0.158 | -0.117

TES Nested Adjusted 0.234 72.82 | 0.156 0.125
p-value - 0.168 0.94 | 0.911 0.01
Medium TES 0.34 50.45 | 0.248 | -0.132

TES Nested Adjusted 0.437 54.37 0.31 0.16
p-value - 0.002 0.45 | 0.007 | 0.077
Long TES 0.863 38.98 | 0.639 | -0.175

TES Nested Adjusted 1.07 42.62 | 0.793 | 0.179
p-value - 0.026 0.45 | 0.029 0.945

For this class of SKUs, we note that the current method and the alternative method perform
similarly for the short period, as differences for our accuracy measures are not statistically
significant. For medium and long cover times, the current method is more performant by a
significant margin based on RMSE and MAD.

Class 10: Daily seasonal SKUs with a trend. (3 101 items)

Table P.8: Effects of changing from DES to TES Trending Nested Adjusted

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short DES 0.195 67.65 | 0.148 | 0.016

TES Trending Nested Adjusted 0.17 63.51 | 0.123 | 0.011
p-value - 0.0 0.0 0.0 0.0
Medium DES 0.283 4521 | 0.217 | 0.006

TES Trending Nested Adjusted | 0.283 45.21 | 0.217 | 0.006
p-value - 1.0 1.0 1.0 1.0
Long DES 0.652 34.18 | 0.519 | -0.013

TES Trending Nested Adjusted 0.652 34.18 | 0.519 | -0.013
p-value - 1.0 1.0 1.0 1.0

For our daily seasonal SKUs with a trend, we notice that adjusted nested triple exponential
smoothing is better than double exponential smoothing by a significant margin for the short term.
For medium and long cover times, performance is identical. Again, this is because, for cover times
that have a length that is an integer multiple of seven days, daily seasonality is not relevant.
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Class 11: Weekly seasonal SKUs with a trend. (67 items)

Table P.9: Effects of changing from DES to TES Trending Nested Adjusted

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

For our weekly seasonal SKUs with a trend, DES remains the better model for all of our cover

times.

Short DES 0.183 83.5 | 0.135 | 0.073
TES Trending Nested Adjusted 0.236 87.37 | 0.165 | 0.258
p-value - 0.003 0.63 | 0.029 | 0.001
Medium DES 0.316 64.13 | 0.248 | 0.089
TES Trending Nested Adjusted 0.451 69.01 | 0.325 | 0.304
p-value - 0.0 0.52 | 0.009 | 0.001
Long DES ‘ . 0.795 53.91 | 0.664 | 0.079
TES Trending Nested Adjusted 1.161 57.77 | 0.873 | 0.331
p-value - 0.001 0.6 0.02 | 0.002

Class 12: Monthly seasonal SKUs with a trend. (15 items)

Table P.10: Effects of changing from TES Trending to TES Trending Nested Adjusted
Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.175 114.7 | 0.119 | -0.043

TES Trending Nested Adjusted 0.157 116.05 | 0.104 0.272
p-value - 0.526 0.93 | 0.494 0.236
Medium TES Trending 0.321 82.45 | 0.223 | -0.02
TES Trending Nested Adjusted 0.269 83.12 | 0.192 0.365
p-value - 0.386 0.96 | 0.459 0.147
Long TES Trending 0.82 61.27 | 0.582 | 0.025
TES Trending Nested Adjusted | 0.614 59.71 | 0.459 | 0.439
p-value - 0.272 0.89 | 0.324 0.106

Similar to what we saw for monthly seasonal SKUs without a trend, adjustment of the level
updating procedure has a positive though insignificant effect on RMSE and MAD at the cost of
bias. Despite being marginally better based on RMSE and MAD, the difference is not significant.
This leads us to believe that the current method is the better method for the conservative approach,
and the alternative method is better for the progressive approach.
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Class 13: Daily-weekly seasonal SKUs with a trend. (294 items)

Table P.11: Effects of changing from DES to TES Trending Nested Adjusted

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

Short DES 0.219 61.78 0.17 | 0.046
TES Trending Nested Adjusted | 0.213 58.91 | 0.155 | 0.183
p-value - 0.443 0.44 | 0.022 0.0
Medium DES 0.317 42.49 | 0.245 | 0.045
TES Trending Nested Adjusted 0.381 44.88 0.29 | 0.207
p-value - 0.0 0.5 0.0 0.0
Long DES ' . 0.766 34.68 | 0.616 | 0.043
TES Trending Nested Adjusted 0.941 36.88 | 0.736 | 0.234
p-value - 0.0 0.51 | 0.002 0.0

For our daily-weekly seasonal SKUs with a trend, we see that the adjusted version of nested triple
exponential smoothing actually outperforms double exponential smoothing on the short term.
This conclusion is based on MAD. For medium and long cover times, the current method is still
the best approach.

We conclude that nested TES is better on the short term, and double exponential smoothing is
better for our medium and long cover periods.

Class 14: Daily-monthly seasonal SKUs with a trend. (40 items)

Table P.12: Effects of changing from TES Trending to TES Trending Nested Adjusted
Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

TES Trending Nested Adjusted 0.159 88.12 | 0.113 0.107
p-value - 0.119 0.78 | 0.067 0.16
Medium TES Trending 0.307 58.25 | 0.223 | -0.106
TES Trending Nested Adjusted 0.26 56.47 | 0.197 | 0.122
p-value - 0.2 0.81 | 0.271 ] 0.263
Long TES Trend%ng ' 0.764 40.81 | 0.543 | -0.069
TES Trending Nested Adjusted 0.58 37.84 | 0.447 | 0.191
p-value - 0.111 0.56 | 0.161 0.107

For our daily-monthly seasonal SKUs with a trend, adjusted nested TES is better than the current
method, though the difference is not statistically significant. The differences in performance are
not statistically significant for any of our cover times. Looking at the table, we see that the
current method is better under our conservative ideology, whilst the alternative method is better
for our progressive ideology.
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Class 15: Weekly-monthly seasonal SKUs with a trend. (33 items)

For this class of SKUs, we find the current method is the better method based on all

performance metrics, though the difference is not statistically significant for any of them.

Class 16: Daily-weekly-monthly SKUs with a trend. (279 items)

Table P.13: Effects of changing from TES Trending to TES Trending Nested Adjusted
Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.225 91.07 | 0.154 | -0.102

TES Trending Nested Adjusted 0.254 95.38 | 0.167 | 0.212
p-value - 0.429 0.68 | 0.623 | 0.108
Medium TES Trending 0.427 67.37 | 0.293 | -0.14
TES Trending Nested Adjusted 0.483 73.32 | 0.334| 0.244
p-value - 0.497 0.53 | 0.483 0.181
Long TES Trend%ng . 1.163 50.99 | 0.799 | -0.119
TES Trending Nested Adjusted 1.198 55.53 | 0.873 | 0.344
p-value - 0.888 0.55 | 0.674 | 0.265

of our

Table P.14: Effects of changing from TES Trending to TES Trending Nested Adjusted
Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.22 76.22 | 0.157 | -0.052

TES Trending Nested Adjusted 0.243 76.89 0.16 0.292
p-value - 0.03 0.85 | 0.691 0.0
Medium TES Trending 0.388 53.42 | 0.274 | -0.077
TES Trending Nested Adjusted 0.467 59.37 | 0.328 0.334
p-value - 0.001 0.07 | 0.001 0.0
Long TES Trending 1.06 42.91 | 0.754 | -0.086
TES Trending Nested Adjusted 1.203 48.6 | 0.877 | 0.366
p-value - 0.045 0.06 | 0.013 0.0

For our final class of SKUs, we see that the current method is significantly better than the
alternative method based on RMSE and Bias. For medium and long cover times, MAD is also
significantly better.
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QQ Performance of Fourier Processed Exponential
Smoothing Compared to the Current Method

Class 4: Monthly seasonal SKUs without trend. (5 items)

Table Q.1: Effects of changing from TES to TES Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short TES 0.125 123.39 0.08 | 0.075
TES Fourier 0.183 122.71 | 0.087 | -0.03
p-value - 0.398 0.96 | 0.679 | 0.672
Medium TES 0.234 71.99 | 0.142 | 0.036
TES Fourier 0.379 70.87 | 0.162 | -0.071
p-value - 0.401 0.94 | 0.591 | 0.673
Long TES ' 0.603 48.35 | 0.355 | 0.091
TES Fourier 0.554 46.57 | 0.327 | 0.057
p-value - 0.839 0.86 | 0.747 | 0.871

For monthly seasonal SKUs without a trend, we find no statistically significant differences between
the two models. Being a class with just 5 items, we need more data to come to a conclusion.

Class 6: Daily-monthly SKUs without trend. (25 items)

Table Q.2: Effects of changing from TES to TES Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.175 94.4 0.13 | -0.031

TES Fourier 0.17 93.61 | 0.126 | -0.055
p-value - 0.745 0.94 | 0.821 0.736
Medium TES 0.261 58.45 | 0.195 | -0.051

TES Fourier 0.244 56.82 | 0.183 -0.08
p-value - 0.476 0.88 | 0.542 0.587
Long TES 0.568 39.86 0.44 | 0.016

TES Fourier 0.498 37.5 | 0.388 | -0.046
p-value - 0.301 0.8 0.308 0.577

For daily-monthly seasonal SKUs without a trend, we do not find a statistically significant
differences between the two models. Being a class with just 25 items, we need more data to find
which of these models performs better.
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Class 7: Weekly-monthly SKUs without trend. (17 items)

Similar to SKUs of class 4 and 6, this class of SKUs is very small with just 17 items. We do not

Table Q.3: Effects of changing from TES to TES Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES 0192 91.44| 0.13| -0.208

TES Fourier | 0.182 92.09 | 0.129 | -0.119
p-value - 0.69 0.97 | 0.969 0.476
Medium | FES 0.348 66.0 | 0.235 | -0.259

TES Fourier | 0.319 67.21 | 0.231 | -0.14
p-value | - 0.582 0.94 | 0.908 | 0.487
Long TES 0.861 [ 51.56 | 0.607 | -0.265

TES Fourier | 0.75 53.14 | 0.575 | -0.202
p-value | - 0.509 091 0.792| 0.56

find any significant differences between the two models.

Class 8: Daily-weekly-monthly SKUs without trend. (131 items)

Table Q.4: Effects of changing from TES to TES Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES 0.214 73.22 | 0.158 | -0.117

TES Fourier 0.202 73.05 | 0.151 | -0.045
p-value - 0.302 0.98 | 0.493 0.43
Medium TES 0.34 50.45 | 0.248 | -0.132

TES Fourier 0.304 50.44 | 0.227 | -0.034
p-value - 0.072 1.0 | 0.153 0.348
Long TES . 0.863 38.98 | 0.639 | -0.175

TES Fourier 0.73 39.37 0.56 | -0.085
p-value - 0.035 0.94 | 0.094 | 0.049

We see the Fourier modified variant of the model outperform the current model, but this change
is only significant for long-term RMSE and bias. We conclude the modified version is the better
model for the long term, with us needing more data to validate whether this claim also holds for
the short and medium cover periods.
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Class 12: Monthly SKUs with trend. (15 items)

Table Q.5: Effects of changing from TES Trending to TES Trending Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.175 114.7 | 0.119 | -0.043

TES Trending Fourier 0.159 113.6 | 0.108 0.078
p-value - 0.583 0.94 | 0.647 | 0.562
Medium TES Trending 0.321 82.45 | 0.223 | -0.02

TES Trending Fourier | 0.276 81.09 | 0.199 | 0.147
p-value - 0.466 0.93 | 0.582 | 0.765
Long TES Trending 0.82 61.27 | 0.582 | 0.025

TES Trending Fourier | 0.664 60.49 | 0.489 | 0.219
p-value - 0.428 0.95 0.47 | 0.907

This class of items is very small at just 15 items, providing us with insufficient evidence to
conclude which of the two models is better.

Class 14: Daily-monthly SKUs with a trend. (40 items)

Table Q.6: Effects of changing from TES Trending to TES Trending Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

TES Trending Fourier | 0.175 90.13 0.13 | -0.009
p-value - 0.523 0.95| 0.639 | 0.683
Medium TES Trending 0.307 58.25 | 0.223 | -0.106

TES Trending Fourier | 0.275 56.8 | 0.206 | -0.028
p-value - 0.412 0.85 | 0.496 | 0.806
Long TES Trending 0.764 40.81 | 0.543 | -0.069

TES Trending Fourier 0.65 38.73 | 0.481 | -0.003
p-value - 0.365 0.71 | 0.394 0.841

We see the Fourier variant of the model outperform traditional TES all over the board, but
changes are not significant.

Class 15: Weekly-monthly SKUs with a trend. (33 items)

Table Q.7: Effects of changing from TES Trending to TES Trending Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.225 91.07 | 0.154 | -0.102

TES Trending Fourier | 0.199 91.41 0.14 | 0.161
p-value - 0.296 0.97 | 0.444 0.82
Medium TES Trending 0.427 67.37 | 0293 | -0.14

TES Trending Fourier | 0.353 68.0 | 0.257 | 0.179
p-value - 0.175 0.95| 0.336 | 0.723
Long TES Trending 1.163 50.99 | 0.799 | -0.119

TES Trending Fourier | 0.916 52.48 | 0.686 | 0.237
p-value - 0.171 0.85 | 0.369 | 0.324
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The Fourier variant of the model scores better on both RMSE and MAD for all forecasting
horizons. The traditional variant scores better on sMAPE. None of these differences are statistically
significant. Although bias of the traditional model is better, this difference is not statistically
significant. This leads to the current model being better for the conservative approach, and the
alternative model being better for the progressive approach.

Class 16: Daily-weekly-monthly SKUs with a trend. (279 items)

Table Q.8: Effects of changing from TES Trending to TES Trending Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.22 76.22 | 0.157 | -0.052

TES Trending Fourier | 0.202 77.1 | 0.148 0.177
p-value - 0.04 0.8 0.201 | 0.013
Medium TES Trending 0.388 53.42 | 0.274 | -0.077

TES Trending Fourier | 0.338 55.39 | 0.253 0.21
p-value - 0.008 0.55 | 0.101 0.106
Long TES Trending 1.06 42.91 | 0.754 | -0.086

TES Trending Fourier | 0.878 45.59 | 0.678 | 0.211
p-value - 0.003 0.38 | 0.069 0.531

For our last class of SKUs, we see that RMSE of the Fourier adaptation of the model is significantly
lower, whilst SMAPE and MAD are not significantly different when compared to the traditional
model. We conclude that the adapted model is an improvement over the traditional model.
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R Performance of Fourier Processed Nested

Exponential

Current Method

Class 4: Monthly seasonal SKUs without a trend. (5 items)

Table R.1: Effects of changing from TES to TES Nested Fourier

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

Short TES 0.125 123.39 0.08 | 0.075
TES Nested Fourier 0.114 122.97 | 0.067 | 0.277
p-value - 0.751 0.97 | 0.286 1.0
Medium TES 0.234 71.99 | 0.142 | 0.036
TES Nested Fourier 0.195 68.66 | 0.114 | 0.335
p-value - 0.647 0.83 | 0.187 | 0.983
Long TES ' 0.603 48.35 | 0.355 | 0.091
TES Nested Fourier 0.444 38.95 | 0.248 | 0.537
p-value - 0.534 0.32 | 0.179 | 0.369

Smoothing Compared to the

For this class of SKUs, we see the nested Fourier adaptation outperform the currently used model,
the nested model, and the monthly Fourier model based on accuracy, though the difference is
never statistically significant. We note that the bias of the nested Fourier version is worse than
the currently used model, though this difference is also insignificant. We suspect the increase
in bias mostly originates from the change in the updating method as applied in Section [6.5] as
the increased bias was present there as well. If anything, the Fourier adaptation reduced the
magnitude of this effect, but as none of the differences that are present are statistically significant,
we are not able to jump to a sound conclusion.

Class 6: Daily-monthly SKUs without a trend. (25 items)

Table R.2: Effects of changing from TES to TES Nested Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.175 94.4 0.13 | -0.031

TES Nested Fourier 0.162 92.17 | 0.112 0.058
p-value - 0.388 0.85 | 0.216 0.42
Medium TES 0.261 58.45 | 0.195 | -0.051

TES Nested Fourier 0.237 56.21 | 0.177 0.074
p-value - 0.326 0.84 | 0.362 0.883
Long TES 0.568 39.86 0.44 | 0.016

TES Nested Fourier 0.461 36.24 | 0.362 0.156
p-value - 0.106 0.7 0.126 0.442

For the daily-monthly SKUs without a trend, we see that performance based on accuracy also
benefits from changes introduced by the new model, but the difference is not statistically significant
anywhere. Like in our previous class, the nested Fourier version performs better than both nested
TES and Fourier TES, but the difference is not statistically significant.
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Class 7: Weekly-monthly seasonal SKUs without a trend. (17 items)

Table R.3: Effects of changing from TES to TES Nested Fourier

Horizon ‘ Model

| RMSE | sMAPE | MAD | Bias

Short TES 0.192 91.44 0.13 | -0.208
TES Nested Fourier 0.214 959 | 0.146 | 0.023
p-value - 0.494 0.79 | 0.502 | 0.484
Medium TES 0.348 66.0 | 0.235 | -0.259
TES Nested Fourier 0.385 70.96 | 0.271 | 0.047
p-value - 0.577 0.74 | 0.449 | 0.501
Long TES . 0.861 51.56 | 0.607 | -0.265
TES Nested Fourier 0.88 55.04 | 0.662 | 0.041
p-value - 0.919 0.81 | 0.682 | 0.273

Interestingly, this class of SKUs shows higher accuracy for the current model, and better bias
for the modified model. This is the complete opposite of what we saw before. As none of the
modifications we made so far have resulted in a statistically significant difference, we cannot get
to a conclusion on which model is better and why.

Class 8: Daily-weekly-monthly SKUs without a trend. (131 items)
Table R.4: Effects of changing from TES to TES Nested Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short TES 0.214 73.22 | 0.158 | -0.117
TES Nested Fourier 0.199 70.6 | 0.136 | 0.052
p-value - 0.188 0.65 | 0.019 | 0.314
Medium TES 0.34 50.45 | 0.248 | -0.132
TES Nested Fourier 0.353 51.62 | 0.257 | 0.081
p-value - 0.566 0.82 | 0.623 | 0.819
Long TES ' 0.863 38.98 | 0.639 | -0.175
TES Nested Fourier 0.822 39.49 0.62 | 0.066
p-value - 0.553 0.92 | 0.708 | 0.109

This class of SKUs shows very interesting results. Starting off with our short cover periods,
we previously saw neither nesting nor Fourier filtering was able to significantly perform the
performance of the model. Now, when combining these two methods, we actually start to reap
the benefits. Short term MAD was significantly improved, making the nested TES Fourier model
the better model for short cover periods.

For medium cover periods, we see that nested TES Fourier is not better than the current model.
We previously also saw that the Fourier adaptation was not significantly better than the current
model. What is interesting is that, whereas the current model was previously significantly better
than the nested model, this is no longer the case.

Although we previously saw the Fourier adaptation outperform the current method based on all
metrics, with the difference in RMSE being statistically significant in case we have a significance
level of a >= 0.072, we could not conclude that the adaptation was actually beneficial for our
dataset. Despite this, we see that this adaptation was able to undo some of the damage caused
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by the inclusion of nested seasonal factors in the sense that this adaptation turned a statistically
significant difference into a statistically insignificant difference, even though the sample population
remained the same. This leads us to believe that, unless we later find an even better method, the
Fourier adaptation to triple exponential smoothing is worth researching in more depth.

For our long cover periods, our conclusion is fairly similar, except the Fourier adaptation of the
model was already proven to be better bases on our statistical analysis.

Class 12: Monthly seasonal SKUs with a trend. (15 items)

Table R.5: Effects of changing from TES Trending to TES Trending Nested Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.175 114.7 | 0.119 | -0.043

TES Trending Nested Fourier 0.147 113.11 | 0.098 0.184
p-value - 0.327 0.92 | 0.342 | 0.932
Medium TES Trending 0.321 82.45 | 0.223 | -0.02

TES Trending Nested Fourier | 0.242 79.26 | 0.174 | 0.272
p-value - 0.168 0.83 | 0.233 0.622
Long TES Trending 0.82 61.27 | 0.582 | 0.025

TES Trending Nested Fourier | 0.525 56.88 | 0.408 0.335
p-value - 0.102 0.7 0.145 0.671

For this class, we also find some interesting results. The original Fourier adapted version uses
the updating of level as defined in literature, as neither Table nor Table proved the
adjustment to be better based on our statistical analysis.

Looking purely at the numbers in this table, and comparing them to the Fourier-only adaptation
(Table as well as the adjusted nesting-only adaptation (Table , we see that our accuracy-
based performance is better based on numbers alone, even though the difference is not statistically
significant. With p-values for the comparison of the combined model and the current model
being much lower than the p-values found when combining the current model to either of the two
adaptations alone, we suspect there is indeed a difference. Even though we are not able to prove
this difference does indeed exist based on our data alone, we hypothesise evaluating the model on
additional data may yield interesting improvements to our models.

Class 14: Daily-monthly SKUs with a trend. (40 items)

Table R.6: Effects of changing from TES Trending to TES Trending Nested Fourier

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

TES Trending Nested Fourier | 0.154 87.27 0.11 | 0.057
p-value - 0.055 0.71 ] 0.036 0.871
Medium TES Trending 0.307 58.25 | 0.223 | -0.106

TES Trending Nested Fourier | 0.245 55.09 | 0.187 | 0.065
p-value - 0.083 0.67 | 0.125 | 0.895
Long TES Trending 0.764 40.81 | 0.543 | -0.069

TES Trending Nested Fourier | 0.531 35.55 | 0.409 0.117
p-value - 0.038 0.3 | 0.042 | 0.524
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Like found when analysing the performance of this model on class 8 SKUs (daily-weekly-monthly
seasonal SKUs without a trend), we find that our combined model produces significantly better
results than the current model, even though neither adaptations of the model were significantly
better by themselves. With our combined model being significantly better than the current model
for both short and long cover periods, we conclude that, for the conservative approach, this model
is better for short and long cover periods, whilst the current model is still better for medium cover
periods. For the progressive approach, the adapted model is best for all of our cover periods.

We note that, as a class of just 40 SKUs, this class is fairly small. Despite this, differences for
short and long cover periods are statistically significant. As the p-value for medium-term RMSE
is just 0.083, we hypothesise this may also hold for our medium cover periods. Collection of a
couple more samples may be able to back up this claim.

Class 15: Weekly-monthly seasonal SKUs with a trend. (33 items)

Table R.7: Effects of changing from TES Trending to TES Trending Nested Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.225 91.07 | 0.154 | -0.102

TES Trending Nested Fourier 0.222 94.19 | 0.152 0.149
p-value - 0.899 0.76 | 0.896 | 0.715
Medium TES Trending 0.427 67.37 | 0.293| -0.14

TES Trending Nested Fourier | 0.401 70.58 | 0.287 | 0.176
p-value - 0.691 0.74 | 0.892 0.771
Long TES Trending 1.163 50.99 | 0.799 | -0.119

TES Trending Nested Fourier | 0.976 52.72 | 0.735 0.263
p-value - 0.356 0.82 | 0.648 0.945

This class of SKUs does not see any significant benefits of adopting the combined model. In fact,
performance appears to be worse than just the Fourier adaptation alone, even though gains made
by this adaptation were also not statistically significant.

Class 16: Daily-weekly-monthly SKUs with a trend. (279 items)

Table R.8: Effects of changing from TES Trending to TES Trending Nested Fourier

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.22 76.22 | 0.157 | -0.052

TES Trending Nested Fourier | 0.208 75.77 | 0.144 | 0.214
p-value - 0.223 0.9 0.06 0.0
Medium TES Trending 0.388 53.42 | 0.274 | -0.077

TES Trending Nested Fourier | 0.387 57.95 | 0.287 | 0.249
p-value - 0.958 0.16 | 0.368 | 0.006
Long TES Trending 1.06 42.91 | 0.754 | -0.086

TES Trending Nested Fourier | 0.979 4751 | 0.754 | 0.253
p-value - 0.195 0.12 0.99 0.823

With the Fourier adaptation outperforming the current model by a significant margin, we find that
our numbers for RMSE are better across the board. Despite this, the difference is not statistically
significant. We attribute this to the negative impact of the including of nesting, which we found
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to be statistically inferior to the current method. For this class of SKUs, we conclude the Fourier
adaptation without nesting is the best model.
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S Performance of Prophet Compared to the
Current Method

Class 1: Stationary SKUs. (894 items)

Table S.1: Effects of changing from SES to Prophet
Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short SES 0.158 94.6 | 0.112 | -0.017
Prophet 0.151 94.1 | 0.108 -0.12
p-value - 0.096 0.83 | 0.151 0.0
Medium SES 0.241 66.03 0.18 | -0.011
Prophet 0.25 68.13 0.19 | -0.151
p-value - 0.166 0.32 | 0.033 0.0
Long SES 0.519 44.9 | 0.411 | -0.011
Prophet 0.564 47.7 | 0.449 | -0.209
p-value - 0.008 0.1 | 0.006 0.0

For this class of SKUs, we notice that SES performs better on all of our performance metrics for
both medium and long horizons. For the short horizon, Prophet outperforms SES on the metrics
RMSE, sMAPE, and MAD, but the difference is not significant. SES scores a better bias on
the short term, with the difference between SES and Prophet being statistically significant. We
conclude that this class of SKUs is best forecasted using SES.

Class 2: Daily seasonal SKUs without a trend. (1 283 items)

Table S.2: Effects of changing from SES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short SES 0.183 77.54 | 0.136 | -0.036
Prophet 0.166 74.93 0.12 | -0.111
p-value - 0.0 0.16 0.0 0.0
Medium SES 0.26 49.33 | 0.195 | -0.045
Prophet 0.27 50.55 | 0.206 | -0.147
p-value - 0.082 0.44 | 0.005 0.0
Long SES 0.542 33.2 | 0.423 | -0.056
Prophet 0.586 34.89 | 0.461 | -0.194
p-value - 0.002 0.2 0.0 0.0

For daily seasonal SKUs without a trend, we see that Prophet performs significantly better on
both RMSE and MAD for the short horizon, although we note that its bias is significantly worse
than that of SES. Despite having a worse bias, we identify Prophet as the better model for short
horizons as by the selection rules proposed in Section [4.2.1]

For both medium and long horizons, SES remains the best model as it performs better on all
metrics.
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Class 3: Weekly seasonal SKUs without a trend. (24 items)

Table S.3: Effects of changing from SES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short SES 0.182 98.41 | 0.135 | -0.045
Prophet | 0.169 97.42 | 0.124 | -0.058
p-value - 0.497 0.94 | 0.499 0.57
Medium SES 0.3 70.82 | 0.234 | -0.022
Prophet | 0.285 70.75 0.22 | -0.031
p-value - 0.681 1.0 | 0.643 0.491
Long SES 0.706 52.52 | 0.578 | -0.031
Prophet | 0.672 54.16 | 0.539 | -0.025
p-value - 0.766 0.89 | 0.687 | 0.561

For this class of SKUs, we see Prophet outperform the current method by most measures, but none
of the differences are significant. Either method will work fine here. This means the conservative
approach will stick to SES, whilst the progressive approach changes to Prophet.

Class 4: Monthly seasonal SKUs without a trend. (5 items)

Table S.4: Effects of changing from TES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short TES 0.125 123.39 0.08 | 0.075
Prophet 0.11 121.04 | 0.065 | 0.186
p-value - 0.648 0.86 | 0.253 | 0.944
Medium TES 0.234 71.99 | 0.142 | 0.036
Prophet 0.193 69.19 | 0.116 | 0.178
p-value - 0.615 0.85 | 0.222 | 0.933
Long TES 0.603 48.35 | 0.355 | 0.091
Prophet | 0.466 42.49 | 0.265 | 0.274
p-value - 0.586 0.56 | 0.259 | 0.557

We notice Prophet outperform the current method on all error metrics. We notice the current
method scores better on bias. Despite Prophet having better scores by a wide margin, we cannot
conclude the model is significantly better. This is likely because this class of SKUs consists of just
five products. Again, either method will work fine here. Like before, the conservative approach
will stick to the current method, whilst the progressive method will switch over.
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Class 5: Daily-Weekly seasonal SKUs without a trend. (140 items)

Table S.5: Effects of changing from SES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short SES 0.204 72.11 | 0.157 | -0.065
Prophet | 0.168 67.24 | 0.124 | -0.134
p-value - 0.0 0.39 0.0 | 0.006
Medium SES 0.273 45.38 | 0.211 | -0.095
Prophet 0.274 45.52 | 0.213 | -0.174
p-value - 0.962 0.98 0.85 | 0.026
Long SES 0.606 31.42 | 0.486 | -0.111
Prophet 0.609 30.97 | 0.484 | -0.228
p-value - 0.948 0.9| 0.956 | 0.002

For our short horizon, we notice Prophet outperform SES by a significant margin based on
RMSE and MAD. For medium horizons, the difference between the two models is not statistically
significant. For long horizons, the difference in accuracy is not statistically significant, but SES
has a significantly better bias. This makes Prophet the best method for short term, and SES
remains the better method for medium and long term horizons.

Class 6: Daily-Monthly SKUs without a trend. (25 items)

Table S.6: Effects of changing from TES to Prophet
Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias

Short TES 0.175 94.4 0.13 | -0.031
Prophet | 0.159 91.37 | 0.113 -0.06
p-value - 0.283 0.79 1 0.214 | 0.068
Medium TES 0.261 58.45 | 0.195 | -0.051
Prophet | 0.235 55.86 | 0.176 | -0.096
p-value - 0.268 0.81 ] 0.333 ] 0.151
Long TES 0.568 39.86 0.44 | 0.016
Prophet | 0.458 36.27 | 0.359 | -0.091
p-value - 0.089 0.7 0.104 | 0.085

We again see a very small class of SKUs, having just 25 items. This is not sufficient to conclude
either model is better than the other. Despite being not significant, we notice that Prophet has
better scores on its error metrics by a large margin.
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Class 7: Weekly-Monthly SKUs without a trend. (17 items)

Table S.7: Effects of changing from TES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES 0192 91.44| 0.13|-0.208

Prophet | 0.167 91.57 | 0.121 | -0.294
p-value | - 0.29 0.99 | 0.652 | 0.822
Medium | TES 0.348 66.0 | 0.235 | -0.259

Prophet | 0.293 67.61 | 0.224 | -0.36
p-value | - 0.285 092 ] 0775 | 0.891
Long TES 0861 [ 51.56 [ 0.607 [ -0.265

Prophet | 0.685 52.51 | 0.558 | -0.511
p-value | - 0.289 0.95 | 0.696 | 0.384

This class has just 17 items, which again is very little to conclude whether either of our two
models is better than the other. We notice TES is better based on sMAPE and bias, and Prophet
scores better on RMSE and MAD. None of the differences are significant so we conclude either

method is fine.

Class 8: Daily-Weekly-Monthly seasonal SKUs without a trend. (131 items)

Table S.8: Effects of changing from TES to Prophet

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES 0.214 73.22 | 0.158 | -0.117

Prophet 0.165 67.82 | 0.119 | -0.131
p-value - 0.0 0.34 0.0 0.618
Medium TES 0.34 50.45 | 0.248 | -0.132

Prophet 0.275 48.42 | 0.207 | -0.154
p-value - 0.001 0.69 | 0.003 0.971
Long TES 0.863 38.98 | 0.639 | -0.175

Prophet 0.636 36.54 | 0.488 -0.26
p-value - 0.0 0.61 | 0.001 0.138

We see Prophet outperform TES on all error metrics, with the difference in RMSE and MAD
being significant. This makes Prophet the best model for this class.
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Class 9: Trending SKUs. (3 071 items).

Table S.9: Effects of changing from DES to Prophet
Horizon | Model | RMSE | sMAPE | MAD | Bias

Short DES 0.183 75.14 | 0.137 | 0.006
Prophet 0.167 72.26 | 0.123 | -0.169
p-value - 0.0 0.02 0.0 0.0
Medium DES 0.283 52.58 | 0.217 | -0.008
Prophet 0.281 52.44 | 0.217 | -0.213
p-value - 0.703 0.9 ] 0.868 0.0
Long DES 0.671 39.92 | 0.538 | -0.031
Prophet 0.675 39.81 | 0.538 | -0.273
p-value - 0.716 0.91 | 0.992 0.0

We notice Prophet outperform DES on all of our error metrics on the short term. This makes
Prophet the better model, despite DES having a lower bias. For medium and long horizons, either
method works fine as none of the differences on our performance metrics are significant.

Class 10: Daily seasonal SKUs with a trend. (3 101 items)

Table S.10: Effects of changing from DES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short DES 0.195 67.65 | 0.148 | 0.016
Prophet | 0.172 63.69 | 0.126 | -0.141
p-value - 0.0 0.0 0.0 0.0
Medium DES 0.283 45.21 | 0.217 | 0.006
Prophet 0.285 45.25 | 0.219 | -0.177
p-value - 0.514 0.97 | 0.354 0.0
Long DES 0.652 34.18 | 0.519 | -0.013
Prophet 0.665 34.11 | 0.524 -0.22
p-value - 0.185 0.94 | 0.507 0.0

We see Prophet perform significantly better on the short term, despite bias being worse when
compared to the current method. For medium and long horizons, DES remains the better method
due to having a significantly better bias whilst not being statistically different based on our other
metrics.
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Class 11: Weekly seasonal SKUs with a trend. (67 items)

Table S.11: Effects of changing from DES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short DES 0.183 83.5 | 0.135 | 0.073
Prophet 0.166 79.67 | 0.119 | -0.168
p-value - 0.135 0.64 | 0.113 | 0.087
Medium DES 0.316 64.13 | 0.248 | 0.089
Prophet 0.286 60.89 | 0.219 | -0.208
p-value - 0.177 0.68 0.13 | 0.053
Long DES 0.795 53.91 | 0.664 | 0.079
Prophet 0.677 48.89 | 0.541 | -0.264
p-value - 0.093 0.5] 0.035 | 0.03

For these SKUs, DES has a better bias across the board. Prophet scores better on all other
metrics, with only long-term MAD being statistically significant. This makes Prophet the better
model for long term. For medium and long term, the best model for the conservative approach is
DES, and for the progressive approach Prophet is the better model.

Class 12: Monthly Seasonal SKUs with a trend. (15 items)

Table S.12: Effects of changing from TES Trending to Prophet

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.175 114.7 | 0.119 | -0.043

Prophet 0.136 111.12 | 0.089 | 0.033
p-value - 0.157 0.82 | 0.156 | 0.773
Medium TES Trending 0.321 82.45 | 0.223 | -0.02

Prophet 0.22 76.15 | 0.158 | 0.068
p-value - 0.077 0.67 | 0.107 | 0.802
Long TES Trending 0.82 61.27 | 0.582 | 0.025

Prophet 0.431 50.91 | 0.328 | 0.052
p-value - 0.03 0.37 0.03 | 0.908

We see Prophet being the better model on for our long cover period, having a significantly better
RMSE and MAD. For the short and medium term, either method will work fine as none of the
differences are statistically significant. Again, this class contains very little SKUs and thus we
have very little evidence Prophet is the better model despite its accuracy being better all across

the board.
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Class 13: Daily-Weekly seasonal SKUs with a trend. (294 items)

Table S.13: Effects of changing from DES to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias

Short DES 0.219 61.78 0.17 | 0.046
Prophet 0.182 56.0 | 0.134 | -0.12
p-value - 0.0 0.11 0.0 0.0
Medium DES 0.317 42.49 | 0.245 | 0.045
Prophet 0.306 41.37 | 0.234 | -0.149
p-value - 0.387 0.75 | 0.261 0.0
Long DES 0.766 34.68 | 0.616 | 0.043
Prophet 0.73 32.96 | 0.565 | -0.171
p-value - 0.335 0.61 | 0.085 0.0

We see Prophet outperform DES on the short term, having a significantly better RMSE and MAD.
sMAPE is also better, hut the difference is not significant. For the medium long term, accuracy is
not statistically different on any of our accuracy measures, whilst DES has a significantly better
bias. Like before, selecting the best model for medium and long term will depend on your ideology.

Class 14: Daily-Monthly SKUs with a trend. (40 items)

Table S.14: Effects of changing from TES Trending to Prophet

Horizon ‘ Model ‘ RMSE ‘ sMAPE ‘ MAD ‘ Bias
Short TES Trending 0.186 90.73 | 0.136 | -0.076

Prophet 0.149 86.26 | 0.109 | -0.06
p-value - 0.027 0.63 | 0.027 0.985
Medium TES Trending 0.307 58.25 | 0.223 | -0.106

Prophet 0.239 54.71 | 0.186 | -0.077
p-value - 0.053 0.63 | 0.104 0.715
Long TES Trending 0.764 40.81 | 0.543 | -0.069

Prophet 0.515 34.7 | 0.401 | -0.051
p-value - 0.026 0.23 0.03 0.524

Here, we see Prophet perform better all across the board, though the difference is only significant
for short and long forecasting horizons. This makes Prophet the better model for short and long
forecasting horizons, and either model being fine for medium horizons. As Prophet has better
numbers for the medium horizon as well, combined with the fact that p-value for medium-term
RMSE is just 0.053, we expect it is the better model here as well. With this class having just 40
SKUs, we need more data to back up this claim.
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Class 15: Weekly-Monthly SKUs with a trend. (33 items)

Table S.15: Effects of changing from TES Trending to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending |  0.225 91.07 [ 0.154 | -0.102

Prophet 0.166 | 86.49 | 0.115 | -0.062
p-value - 0.01 0.66 | 0.023 0.156
Mediy | TES Trending | 0.427 67.37 [ 0293 | -0.14

Prophet 0.281 | 64.17 | 0.209 | -0.092
p-value | - 0.004 0.74 | 0.015 | 0.278
Long TES Trending |  1.163 50.99 [ 0.799 | -0.119

Prophet 0.661 | 46.43 | 0.507 | -0.112
p-value - 0.003 0.56 0.01 0.736

We see Prophet being dominant all across the board, making it the better model. Note that only

differences in RMSE and MAD are statistically significant.
Class 16: Daily-Weekly-Monthly SKUs with a trend. (279 items)

Table S.16: Effects of changing from TES Trending to Prophet

Horizon | Model | RMSE | sMAPE | MAD | Bias
Short TES Trending 0.22 76.22 | 0.157 | -0.052

Prophet 0.159 69.57 | 0.114 | -0.199
p-value - 0.0 0.06 0.0 | 0.002
Medium TES Trending 0.388 53.42 | 0.274 | -0.077

Prophet 0.271 50.0 | 0.204 | -0.259
p-value | - 0.0 0.29 0.0 | 0.003
Long TES Trending 1.06 4291 | 0.754 | -0.086

Prophet 0.635 38.45 | 0.49 | -0.377
p-value - 0.0 0.13 0.0 0.0

Prophet has a significantly better RMSE and MAD score for all forecasting horizons and thus we
conclude it is our best model.
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T Performance of Prophet Compared to the
Current Method

Short Cover Times

Table T.1: Performance of the Prophet Model with and without Holidays for Short Cover Times
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§ s & 8
g Ry L Ry
S L L L
Model < N4 v N4
Prophet Holidays 0.167 | 71.55 | 0.122 | -0.144
Prophet No Holidays | 0.167 | 71.56 | 0.122 | -0.122
p-value | 092 | 0985 | 0.93 | 0.611

We find that the models are tied on RMSE and MAD. Inclusion of holidays yields a better
performance on sMAPE, and exclusion yields a better bias. Performing a t-test with ae = 0.05 for
all four of our metrics, we find the difference between the two models is not significant for any of
our metrics.

Medium Cover Times

Table T.2: Performance of the Prophet Model with and without Holidays for Medium Cover
Times
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Model < N N7 N4
Prophet Holidays 0.278 | 50.97 | 0.213 | -0.182
Prophet No Holidays | 0.278 | 50.94 | 0.213 | -0.176
p-value | 0.916 | 0.959 | 0.881 | 0.63

We again find that the model that does not include holidays performs slightly better. Using a
two-sided t-test with av = 0.05, we conclude the difference is not significant for any of our four
performance metrics.
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Long Cover Times

Table T.3: Performance of the Prophet Model with and without Holidays for Long Cover Times
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Model < v v Y
Prophet Holidays 0.646 | 37.72 | 0.511 | -0.234
Prophet No Holidays | 0.646 | 37.67 | 0.51 | -0.227
p-value | 0.898 | 0.936 | 0.852 | 0.819

Again, we find that the model that does not include holidays performs slightly better. Using a
two-sided t-test with a = 0.05, we conclude the difference is not significant for any of our four
performance metrics.



146

U Performance Improvements as a Result of Model
Changes

In this appendix, we analyse the performance gained from switching forecasting models based on
RMSE. We do this for each cover time, for each ideology, for each class of SKU. We start off by
looking at short cover times.

U.1 Short Cover Times

We start off by analysing Table [U.I], where the improvements that can be made to short-term
performance under a progressive ideology are shown. Changing our forecasting method to Prophet
for all of our classes yields the greatest improvement in RMSE, for an overall improvement in
RMSE of 11.70%. We conclude that completely switching to Prophet is the best decision.

The exception to this is class 10: Daily seasonal SKUs with a trend. For this class, the level-
updated adjusted variant of nested triple exponential smoothing is the best model, although
differences with Prophet are very small. Using the level-updated adjusted variant of nested triple
exponential smoothing instead of yields an improvement over the current method of 12.82% rather
than 11.79% for this class. Overall performance increase after rounding is still 11.70%.

Analysing our results, we see that the improved performance of our models is statistically significant
for nine out of our sixteen classes. This means that, under a conservative approach, seven out of
our sixteen classes do not see a model change. The classes that do not see a model change are all
very small, with the exception of the class of stationaries. Under a conservative approach, we see
an overall improvement to performance of 11.17% based on RMSE. Full results are provided in

Table [T2

U.2 Medium Cover Times

We now look at our medium cover times under a progressive ideology. Results are provided in
Table [U.3] Analysing this table, we see that model changes are not as prevalent as they are for
short cover times. Twelve of our sixteen classes see a model change under a progressive ideology
for an overall performance improvement of 2.48% based on RMSE.

Under a conservative ideology, we see only three of our sixteen classes change models for a total
improvement of 1.77% based on RMSE. Full results are provided in Table [U.4]

U.3 Long Cover Times

For long cover times, we see that, under a progressive ideology, we switch to Prophet for eleven
of our sixteen classes for a total performance improvement of 3.37% based on RMSE. Under a
conservative ideology, we see three classes see a model change for a total improvement of 3.07%

based on RMSE. Full results are provided in Tables and [U.6]
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Table U.1: Short Cover Periods: Progressive Approach
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SKU types O < < R’
1: (T: n, D: n, W: n, M: n) | SES Prophet 894 | 4.43
2: (T: n, D: y, W: n, M: n) SES Prophet 1283 | 9.29
3: (T: n, D: n, W: y, M: n) SES Prophet 24 | 7.14
4: (T: n, D: n, W: n, M: y) | TES Prophet 51 12.00
5: (T: n, D: y, W: y, M: n) SES Prophet 140 | 17.65
6: (T: n, D: y, W: n, M: y) TES Prophet 25| 9.14
7: (T: n, D: n, W: y, M: y) TES Prophet 17 ] 13.02
8 (T:n, D:y, W:y, M:y) TES Prophet 131 | 22.90
9: (T:y, D: n, W: n, M: n) DES Prophet 3071 | 8.74
Trending
10: (T:y, D: y, W: n, M: n) || DES TES Nested | 3 101 | 12.82
Adjusted
11: (T:y, D: n, W: y, M: n) || DES Prophet 67 | 9.29
12: (T:y, D: n, W: n, M: y) || TES Trending | Prophet 15 | 22.29
13: (T:y, D: y, W: y, M: n) || DES Prophet 294 | 16.89
14: (T:y, D: y, W: n, M: y) || TES Trending | Prophet 40 | 19.89
15: (T:y, D: n, W: y, M: y) || TES Trending | Prophet 33 | 26.22
16: (T:y, D:y, W: y, M: y) || TES Trending | Prophet 279 | 27.73
Total 9419 | 11.70
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U.3 Long Cover Times

Table U.2: Short Cover Periods: Conservative Approach
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SKU types O < < >
1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES Prophet 1283 | 9.29
3: (T: n, D: n, W: y, M: n) SES SES 24 | 0.00
4: (T: n, D: n, W: n, M: y) | TES TES 51 0.00
5: (T: n, D: y, W: y, M: n) SES Prophet 140 | 17.65
6: (T: n, D: y, W: n, M: y) TES TES 25 | 0.00
7: (T: n, D: n, W: y, M: y) TES TES 171 0.00
8 (T:n, D:y, W:y, M: y) TES Prophet 131 | 22.90
9: (T: y, D: n, W: n, M: n) DES Prophet 3071 | 8.74
Trending
10: (T:y, D: y, W: n, M: n) || DES TES Nested 3101 | 12.82
Adjusted
11: (T:y, D: n, W: y, M: n) || DES DES 67 | 0.00
12: (T:y, D: n, W: n, M: y) || TES Trending | TES Trending 15| 0.00
13: (T:y, D:y, W: y, M: n) || DES Prophet 294 | 16.89
14: (T:y, D: y, W: n, M: y) || TES Trending | Prophet 40 | 19.89
15: (T:y, D: n, W: y, M: y) || TES Trending | Prophet 33 | 26.22
16: (T:y, D:y, W:y, M: y) || TES Trending | Prophet 279 | 27.73
Total 9419 | 11.17
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Table U.3: Medium Cover Periods: Progressive Approach
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SKU types O < < o
1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES SES 1283 | 0.00
3: (T: n, D: n, W: y, M: n) SES Prophet 24 | 5.00
4: (T:n, D: n, W: n, M: y) | TES Prophet 5| 17.52
5: (T: n, D: y, W: y, M: n) SES SES 140 | 0.00
6: (T: n, D: y, W: n, M: y) TES Prophet 25| 9.96
7: (T: n, D: n, W: y, M: y) TES Prophet 17 | 15.80
8 (T:n,D:y, W:y, M:y) TES Prophet 131 | 19.12
9: (T:y, D: n, W: n, M: n) DES Prophet | 3071 | 0.71
10: (T:y, D: y, W: n, M: n) || DES DES 3101 | 0.00
11: (T:y, D: n, W: y, M: n) || DES Prophet 67 | 9.49
12: (T:y, D: n, W: n, M: y) || TES Trending | Prophet 15 | 31.46
13: (T:y, D:y, W: y, M: n) || DES Prophet 294 | 3.47
14: (T:y, D: y, W: n, M: y) || TES Trending | Prophet 40 | 22.15
15: (T:y, D: n, W: y, M: y) || TES Trending | Prophet 33 | 34.19
16: (T:y, D:y, W:y, M: y) | TES Trending | Prophet 279 | 30.15
Total 9419 | 248
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U.3 Long Cover Times

Table U.4: Medium Cover Periods: Conservative Approach
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SKU types O < < >
1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES SES 1283 | 0.00
3: (T: n, D: n, W: y, M: n) SES SES 24 | 0.00
4: (T: n, D: n, W: n, M: y) | TES TES 51 0.00
5: (T: n, D: y, W: y, M: n) SES SES 140 | 0.00
6: (T: n, D: y, W: n, M: y) TES TES 25 | 0.00
7: (T: n, D: n, W: y, M: y) TES TES 171 0.00
8 (T:n, D:y, W:y, M: y) TES Prophet 131 | 19.12
9: (T: y, D: n, W: n, M: n) DES DES 3071 | 0.00
10: (T:y, D:y, W: n, M: n) || DES DES 3101 | 0.00
11: (T:y, D: n, W: y, M: n) || DES DES 67 | 0.00
12: (T:y, D: n, W: n, M: y) || TES Trending | TES Trending 15| 0.00
13: (T:y, D:y, W: y, M: n) || DES DES 294 | 0.00
14: (T: y, D: y, W: n, M: y) | TES Trending | TES Trending 40 | 0.00
15: (T:y, D: n, W: y, M: y) | TES Trending | Prophet 33 | 34.19
16: (T:y, D:y, W:y, M: y) | TES Trending | Prophet 279 | 30.15
Total 9419 | 1.77
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Table U.5: Long Cover Periods: Progressive Approach
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SKU types O < < o
1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES SES 1283 | 0.00
3: (T: n, D: n, W: y, M: n) SES Prophet 24 | 4.82
4: (T:n, D: n, W: n, M: y) | TES Prophet 5| 22.72
5: (T: n, D: y, W: y, M: n) SES SES 140 | 0.00
6: (T: n, D: y, W: n, M: y) TES Prophet 25 | 19.37
7: (T: n, D: n, W: y, M: y) TES Prophet 17 | 20.44
8 (T:n,D:y, W:y, M:y) TES Prophet 131 | 26.30
9: (T:y, D: n, W: n, M: n) DES DES 3071 | 0.00
10: (T:y, D: y, W: n, M: n) || DES DES 3101 | 0.00
11: (T:y, D: n, W: y, M: n) || DES Prophet 67 | 14.84
12: (T:y, D: n, W: n, M: y) || TES Trending | Prophet 15 | 47.44
13: (T:y, D:y, W: y, M: n) || DES Prophet 294 | 4.70
14: (T:y, D: y, W: n, M: y) || TES Trending | Prophet 40 | 32.59
15: (T:y, D: n, W: y, M: y) || TES Trending | Prophet 33 | 43.16
16: (T:y, D:y, W:y, M: y) | TES Trending | Prophet 279 | 40.09
Total 9419 | 3.37
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U.3 Long Cover Times

Table U.6: Long Cover Periods: Conservative Approach

~
‘Qé\—g
<) S‘DQ
2 &8
o ~ @ <
S A s &
3 & & o
'@@ A éo é)
$ 3 5 N

SKU types O < < >
1: (T: n, D: n, W: n, M: n) | SES SES 894 | 0.00
2: (T: n, D: y, W: n, M: n) SES SES 1283 | 0.00
3: (T: n, D: n, W: y, M: n) SES SES 24 | 0.00
4: (T: n, D: n, W: n, M: y) | TES TES 51 0.00
5: (T: n, D: y, W: y, M: n) SES SES 140 | 0.00
6: (T: n, D: y, W: n, M: y) TES TES 25 | 0.00
7: (T: n, D: n, W: y, M: y) TES TES 171 0.00
8 (T:n, D:y, W:y, M: y) TES Prophet 131 | 19.12
9: (T: y, D: n, W: n, M: n) DES DES 3071 | 0.00
10: (T:y, D:y, W: n, M: n) || DES DES 3101 | 0.00
11: (T:y, D: n, W: y, M: n) || DES DES 67 | 0.00
12: (T:y, D: n, W: n, M: y) || TES Trending | TES Trending 15| 0.00
13: (T:y, D:y, W: y, M: n) || DES DES 294 | 0.00
14: (T: y, D: y, W: n, M: y) | TES Trending | TES Trending 40 | 0.00
15: (T:y, D: n, W: y, M: y) | TES Trending | Prophet 33 | 34.19
16: (T:y, D:y, W:y, M: y) | TES Trending | Prophet 279 | 30.15
Total 9419 | 3.07
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