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Homomorphic encryption was long considered the holy grail of public encryption but was widely thought unobtainable. Being first
theorized to exist by Rivest, Adleman, and Dertouzos in 1978 after observing the homomorphic properties of RSA, homomorphic
encryption refers to a class of encryption methods capable of evaluating arbitrary boolean circuits on ciphertexts as if the operations
were applied to the plaintext directly. Since being conceptually conceived the academic community has been hard at work trying to
find a bounded, secure implementation. In 2009 Craig Gentry was the first to produce such a model[2][29], albeit not very practical
yet. This opened the floodgates and various research departments from prominent tech companies sought to find an all-encapsulating
solution, yielding large libraries such as Microsoft SEAL[38] and HElib[25]. Unfortunately, these solutions are largely based on
variations of LWE (Learning With Error) due to investing in being quantum secure, making them difficult to apply in real-life
situations[18]. Simpler homomorphic schemes do exist but haven’t been the target of recent research[41]. The goal of this thesis is
to attack the problem from the angle of performance first and foremost. Would it be possible to find a homomorphic encryption
scheme that we know abides by strict overhead limitations?

I. INTRODUCTION

AHomomorphism is a relation in algebra (abstract algebra)
that acts like a structure-preserving map. It abides by the

property f(x ∗ y) = f(x) × f(y), where the binary operator
is the one belonging to two different mathematical bodies
(e.g., groups, rings, and fields). Even though homomorphic
encryption does not entirely play by the same rules, one could
think of the homomorphic property between the plaintext and
ciphertext. In practice, it manifests itself as the feature allows
the evaluation of boolean circuits over the ciphertext as if
they were applied to the plaintext directly. Or slightly more
formally: Dec(Eval(C, c)) = C(p), where C is a boolean
circuit, c is a ciphertext, and p is a plaintext.

Homomorphic encryption has a wide range of applications,
but primarily in the field of outsourcing computing. In recent
years we have seen a surge in cloud computing solutions for
vast amounts of data, but the concept of remotely processing
potentially sensitive data comes with a lot of privacy concerns.
Homomorphic encryption would allow for cloud computing
without giving any insight in the underlying data. It would
be applicable in similar situations too: like the processing
of medical documents or financial data. Unfortunately not
all applications fall within practical feasibility even for the
latest generations of FHEs. In the last decades it has been
a common trend to construct large scale edge networks[15]:
networks dedicated to offering content much closer to the end
user, offering lower latency and cost. These networks tend
to consist of devices designed to offer computation power
almost perfectly proportional to their designation.

Most implementations of homomorphic encryption abide by
the ”C-evaluation structure”[6]. This is a small probabilistic
model consisting of a few basic properties and four functions.
The four functions in question are:

• The Generation function Gen : N×A → Kp ×Ks ×Ke

• The Encryption function Enc : Kp × P → X
• The Decryption function Dec : Ks ×Z → P .
• The Evaluation function Eval : Ke × C × Z∗ → Y

And a few important definitions. In the following all keys are
generated by the generation function:

pk, sk, evk ← Gen(1λ, α)

Definition 1. Correct Decryption

∀m ∈ P : Pr[Dec(sk,Enc(pk,m)) = m] = 1

Definition 2. Correct Evaluation

∀ci ∈ X :

Pr[Dec(sk,Eval(evk, C, c1, ..., cn)) = C(m1, ...,mn)] = 1−ε(λ)

Definition 3. Compactness

∀ci ∈ X ,∃p ∈ P [X] :

dim(Eval(evk, C, c1, ..., cn)) ≤ p(λ)

Definition 4. Correct: combination of definition 1 and 2

Furthermore, the definition explicitly limits the scope
to implementations of the aforementioned functions that
grow less fast than exponential run-time (usually sizable
polynomials). This constraint does not apply to memory
complexity. These definitions are also found but slightly
modified in the standardization of the consortium for
homomorphic encryption, published in 2018[5].

One of the simplest and earliest candidates for a FHE
(Fully Homomorphic Encryption) scheme was described
by Regev et al. [3]. In his publication, Regev describes
the LWE (Learning With Errors) problem. LWE, or more
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specifically RLWE (Ring Learning With Errors), and lattice-
based cryptography, such as those relying on GapSVP and
SIVP, are currently the standard for PQC (Post Quantum
Cryptography). Furthermore, he describes the “bootstrapping”
technique, that, once combined with a “squashing” phase
forms the basis of Gentry’s work in the same year[2],
producing the first secure FHE.

LWE-based cryptography is based on an inherent amount of
noise that needs to be corrected during decryption. However,
as boolean circuits, more specifically its gates, are applied
to the noisy ciphertext the noise grows too. Linearly with
addition operations, and exponentially with multiplication.
In Gentry’s paper, this was combated with the bootstrapping
technique by doubly encrypting, and then decrypting the
inner ciphertext to reduce noise. This technique is described
in more detail in IV-B. Unfortunately, this technique leads to
a significant increase in run-time complexity. Most RLWE-
based schemes tend to fall short in practical use by either
being very slow, producing massive ciphertexts (some even
exponential in the size of the plaintext as described in [3]),
or not even being able to generate keys for large amounts
of data altogether. Newer implementations belonging to later
generations also suffer issues like only being able to produce
approximate results, with as trade-off of being to operate on
complex numbers as well [34] [10].

Even though FHEs have come a very long way since
their first practical conception in 2009, the current schemes
are still a long way off from being considered ready for
most everyday use cases. This begs the question whether
the desirable properties of homomorphic encryption can be
leveraged in a smaller, more relaxed context.

II. PROBLEM DESCRIPTION

During this thesis, the goal is to find a simple scheme
offering homomorphic properties, preferably one abiding by
most requirements for a FHE, that imposes little overhead
in terms of memory- and computational complexity. The
evaluation function needs to be practically applicable on small
scale edge devices. These agents are commonly designed to
meet the processing power of the task they are designed for
and consequently do not offer much leeway in processing
power.

Even though optimally all functions in the evaluation
scheme would be fast, the Evaluation function itself is what
needs to be within feasible boundaries first and foremost. This
applies to both the input key size as well run-time complexity.
After all, both the Encryption and Decryption could, on paper,
be performed outside the processor’s workflow. Achieving
state-of-the-art security is not the objective, let alone post-
quantum security. Instead it must offer obfuscation at the least
amount of overhead we could possibly achieve. Consequently,
the current frontier of research on homomorphic schemes is
unlikely to offer an answer to this problem, but the path that
led up to the current implementations might have left a lot of

answers in its wake.

To illustrate some of the issues with current FHE schemes
we can look at BKV [17], which is a widely implemented
scheme. It is a RLWE based algorithm as many are. In order to
make use of its homomorphic properties one needs to convert
plaintexts to the coefficients of a bounded degree polynomial.
Even though this operation is not necessarily very compli-
cated (Encryption and Decryption are not the bottleneck),
key generation and operations applied by Evaluation might
be. In 2015 a testing framework was written by researchers
from MIT to measure the state of performance of applying
straightforward circuits in HElib[4]. In this paper some of the
most prominent issues with FHE schemes currently available
are laid bare: both key generation and the evaluation function
parametrized with a specified boolean circuit have best-fit run-
time functions exponential in the depth of the circuit, while
also growing aggressively with the size of the plaintext. To
reach 128 bits of security keys would grow into hundreds
of megabytes for very simple circuits. Needless to say for
industrial applications we would be talking about hundreds of
gigabytes at least and days to generate the required keys. It is
also worth noting that many FHE schemes are currently still
in the process of being optimized for domain-specific tasks.
For example convolution in CNNs (Convolutional Neural Net-
works) is notoriously slow using BKV and can be optimized
aggressively using synthesized logic as demonstrated in [45].
The point is that the current state of homomorphic encryption,
even a few generations (IV-A) later, isn’t quite suited for all
the applications it could find use in.

A. Research goals

In this thesis, we aim to find a homomorphic obfuscation
solution that compromises on state-of-the-art security to
achieve more “practical feasibility” (V-A). The primary
objective is that it needs to be applicable in the context of
small embedded devices that suffer memory and/or power
constraints. Examples of such devices include IoT agents.
This would ultimately result in an implementation compiled
for a RISC-V based ISA and run on an embedded device.
Rather than delivering an encryption scheme by conventional
standards, the aim is to provide provable obfuscation. Some
of the questions the thesis wishes to answer:

Is it possible to find a scheme derived from a FHE or
SWHE (SomeWhat Homomorphic Encryption) that abides
by the following characteristics?:
• Fast encryption and decryption, with key-sizes that scale

”reasonably” within the size of the parameters (less than
quadratic)

• A modest memory footprint that could be implemented
reasonably on small scale devices with limited available
memory

• Perfect compactness: the ciphertext does not grow with
any subsequent evaluations

• Fast evaluation, scaling no worse than linearly in the
circuit depth and plaintext width
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• Achieves a non-trivial amount of obfuscation suited for
specific use cases that value speed above all else

As the remainder of this paper will try to convey we
developed a very simple yet promising model abiding by most
of these specifications (which were set far prior to the actual
development and ultimate concessions).

III. PRELIMINARIES

Despite its simplistic nature understanding the scheme
requires a small amount of knowledge of abstract algebra.
For the uninitiated this section serves as a brief gentle
introduction. For more information on other involved topics
consult the appendix. This section does not constitute a small
course in any of these topics; they are a mere introduction
and only the ones relevant to this paper.

A. Modular arithmetic

Many people are familiar with the infinite sets such as
the integers Z or the rationals Q. These bodies can be
classified according to the properties they abide by. Both of
the aforementioned are spaces because they abide by strict
”define-able” rules, but, for example the integers form a ring
as well.

Even though the mentioned spaces are unbounded, com-
puters cannot work with structures of infinite dimensions.
Hence we often resort to modular arithmetic to reduce afore-
mentioned bodies while potentially preserving the properties
of their super space. The result is a structure that reduces
elements to its congruence class. For example 5∗3 % 4 reduces
to its congruence class x = 15 − n4 for x >= 0, which is
equal to 3.

B. Fields, groups and rings

As was briefly mentioned in the previous section
mathematicians like to categorize bodies by their properties.
A set is the most basic of such structures, with spaces
following closely. Once we start to equip it with operations
things become more interesting. An operation is a function
that transforms zero or more inputs to an output. The
most commonly known operations include addition and
multiplication, both abiding by the signature (X,X) → X .
Both these functions have an arity of 2, and are as such
referred to as ”binary operations”. From this signature it is
clear that applying this function yields an output that remains
within the same domain as its inputs.

A group, often denoted as (X, ∗) is a space equipped with
”some operation”. Take for example the integers and equip it
with the addition operator. For this to abide by the structure
of a group, it needs to follow the following axioms:

• Closure: a+ b ∈ Z
• Associativity: (a+ b) + c = a+ (b+ c)
• Identity element: ϵ+ a = a

• Inverses: a+−a = ϵ

It is easy to observe the integers abide by these
requirements, and thus form a group. The integers are
also an abelian group, which means the operation commutes:
a+ b = b+ a

To form a ring we equip the space with two operations:
addition and multiplication. For the integers we would denote
this as (Z, ∗,+). For a space to be considered a ring it needs
to abide by the following properties:
• Closure: a+ b ∈ Z and a ∗ b ∈ Z
• Associativity: (a+ b) + c = a+ (b+ c) and (a ∗ b) ∗ c =
a ∗ (b ∗ c)

• Identity elements: 0 + a = a and 1 ∗ a = a, the additive
and multiplicative identity respectively

• Additive inverses: a+−a = 0
• Additive abelianess: a+ b = b+ a
• Distributive: a∗(b+c) = (a∗b)+(a∗c) and (c+b)∗a =

(a ∗ c) + (a ∗ b)
Sometimes rings are defined without a multiplicative

identity, which is often referred to as a ”rng”. Notice how
rings are similar to groups but slightly more lenient than we
would expect from the additional operation it is equipped
with. Rings do not need to have multiplicative inverses!

Thanks to their lenience rings generalize fields, which are
a slightly more demanding structure. They must abide by all
the axioms of a ring, but also support multiplicative inverses.
So in total:
• Closure: a+ b ∈ Z and a ∗ b ∈ Z
• Associativity: (a+ b) + c = a+ (b+ c) and (a ∗ b) ∗ c =
a ∗ (b ∗ c)

• Identity elements: 0 + a = a and 1 ∗ a = a, the additive
and multiplicative identity respectively

• Additive inverses: a+−a = 0
• Multiplicative inverses: a ∗ −a = 1
• Additive abelianess: a+ b = b+ a
• Distributive: a∗(b+c) = (a∗b)+(a∗c) and (c+b)∗a =

(a ∗ c) + (a ∗ b)
The multiplicative inverses also give rise to being able to

define fractions of elements by defining: a/b = a ∗ b−1∗!
Similarly the ring, and consequently the field also support
subtraction through a− b = a+ b−1+.

C. Quotient groups

Quotient groups are groups made up of the cosets of
its corresponding subgroup. A quotient group may also be
referred to as a factor group. A quotient group over the natural
number may looks like N/aN. The index of a subgroup is
often denoted with [G : H] which informally reads as ”the
number of cosets of H in G”.

To form a quotient group the subgroup needs to be normal.
This is often denoted with H⊴G, which, informally, states ”H
is a normal subgroup of G”. For a subgroup to be considered
normal all its cosets must be invariant under conjugation
by members of its super-group. This is often denoted as
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ghg−1 ∈ H for all g ∈ G and all h ∈ H . In practice this
property simply guarantees the abelianess of operations on
the cosets, which is why the quotient of a quotient group
needs to be normal.

In some cases it might be easier to think of a quotient
group as a regular group. For example the group mentioned
previously N/aN could be seen as a group with modulus
a. Note that the modulus corresponds to the index of the
quotient in the super-group N. The associated operation on
these elements will abide by the axioms mentioned in the
previous section.

D. Finite fields

Finite fields combine the axioms in the previous sections.
They are bodies that map elements outside their space to the
corresponding congruence class, while still abiding by all
the aforementioned axioms of a field. Finite fields are often
denoted as GF (x), which stands for Galois field.

Galois fields can be constructed fairly easily by taking a
quotient constructed from an irreducible element in the same
field. For example in the polynomial field of GF (2)[x] the
polynomial x8 + x4 + x3 + x + 1 is irreducible; it cannot
be factored into polynomials of a smaller degree. We can
also refer to this concept as the element being prime. This
concept carries over neatly into the integers: the common
interpretation of prime numbers are irreducible in Z.

So we know that if the quotient is constructed from a prime
element the resulting quotient field will again be a field in
itself. For example Z/pZ is a field if p is prime.

E. Generators and Lagrange’s Theorem

Generators are elements in a set that generate a so called
generator set. A generator set is a set that is created by
propagating an element under an operation as many times as
its order in the same set. A set generated by a single element
S is often denoted as ⟨S⟩.

For example in the group (Z+/4Z+,+) the element 1 and
3 generate the whole group by repeated propagation under
addition:
• 1 = 1 mod 4 = (3 + 3 + 3) mod 4
• 2 = (1 + 1) mod 4 = (3 + 3) mod 4
• 3 = (1 + 1 + 1) mod 4 = 3 mod 4
• 0 = (1 + 1 + 1 + 1) mod 4 = (3 + 3 + 3 + 3) mod 4

Consequently the order of these elements equals the
size of the group: 4. The order can be considered
equal to the cardinality (size) of generated set. In this
case the generated set equals the entire group. Hence
(Z+/4Z+,+) = ⟨1⟩ = ⟨4⟩. The elements 2 and 0 generate
subgroups of the aforementioned group, but clearly not the
entirety of it. Their order is smaller. 0 has an order of 1 while
2 has an order of 2.

We can reason about the order of individual
elements by applying Langrange’s theorem, which states
|G| = [G : H] ∗ |H| if H < G. We can clearly see this holds
(G is the original group):

• [G : ⟨0⟩] = 4 and |⟨0⟩| = 1, hence |G| = [G : ⟨0⟩] ∗
|⟨0⟩| = 4

• [G : ⟨2⟩] = 2 and |⟨2⟩| = 2, hence |G| = [G : ⟨2⟩] ∗
|⟨2⟩| = 4

This theorem can also be interpret as |G|/|H| = [G : H],
and since we know the index is an integer this implies the size
of the generator group is a divisor of the size of the original
group. Equipped with this knowledge we can easily track down
generators of a specific order.

F. Homomorphisms and symmetries

Homomorphisms were discussed in earlier sections, but
are elaborated upon a little more here. A homomorphism is
a relation between two bodies and one of their operations.
Informally a homomorphism states that an operation acts
very similarly in both bodies under a specific mapping. It
is consequently often referred to as a “structure preserving
map”. A homomorphism is denoted as f(x ·y) = f(x)∗f(y),
where f abides by the signature A → B. In particular
group homomorphisms are a homomorphisms between two
groups and their corresponding operation. Morphisms span
various mathematical disciplines and generalize the concept.
A morphism is a form of an equivalence relation.

Homomorphisms come in various forms. A monomorphism
is an injective homomorphism. An isomorphism is a bijective
homomorphism. An endomorphism is a homomorphism
that maps to the same domain (mathematical structure). If
an endomorphism is also a bijection we refer to it as an
automorphism. Automorphisms form the symmetries of a
group and are essentially “structure preserving permutations”.

Automorphisms are classified in two distinct classes: inner-
and outer automorphisms. Inner automorphisms are formed by
conjugation under an element:

φg(x) : gxg
−1

Outer automorphisms are defined by taking the inner auto-
morphisms as quotient from all automorphisms:

Out(G) = Aut(G)/Inn(G)

It is easy to observe that the inner automorphisms in
an integer quotient group consist of merely the trivial
automorphism and hence the outer automorphisms contain
the non-trivial automorphisms.

In this scheme we will exclusively work with outer auto-
morphisms for their obfuscation properties.
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IV. HOMOMORPHIC ENCRYPTION IN LITERATURE

This section serves as an all-encapsulating birds-eye-view
of the state and developments in the homomorphic encryption
scene. It also draws some connections to the current scheme
and how it aims to bring the concepts into practical reality for
small devices lacking the processing power of cloud networks.

Research into homomorphic encryption has experienced a
surge since Gentry’s influential dissertation in 2009. Since then
many interpretations, mostly LWE, RLWE or lattice based
(not mutually exclusive per say), have been proposed and
improved upon over the years. These are now classified in their
corresponding generations based on the iterative improvements
made to them [42].

A. History

After the conception and publication of RSA in 1977 [36]
its authors, the now famous Rivest, Shamir and Adleman,
recognized its homomorphic properties over multiplication of
two encrypted bundles. Only a year later they were the first
recorded instance to theorize the existence of homomorphic
encryption as we know it today [37]. In the short publication
they describe an algorithm that would act homomorphically
within an enclosed ”homomorphic domain” on unspecified
operations. This definition was later formalized as the
operation being over those of a ring [5].

Since its theorized existence more algorithms were
classified as being “partially homomorphic” (partial referring
to the fact they don’t enclose both addition and multiplication)
such as ElGamal [16] or the Goldwasser-Micali cryptosystem
[23], being homomorphic in multiplication and a bitwise
difference (XOR) respectively. Not much headway was being
made in the development of a scheme similar to described by
the authors of RSA however.

That changed three decades later when in 2009 Gentry
published his now influential dissertation “Fully Homomorphic
Encryption Using Ideal Lattices” [2], being the first person
to publish a plausible FHE (Fully Homomorphic Encryption)
by modern definitions, based on earlier work by Regev [3].
A year later the scheme was practically demonstrated during
EuroCrypt 2011 [19]. This opened the floodgates for a wealth
of new research in the field, with lattice based solutions
forming the basis for most.

It should come as no surprise a lot of iterative progress has
been made since then. This lead the need for a classification
system, which was provided by Vinod Vaikuntanathan in
the form of incremental generations [42]. A total of four
generations have been classified since 2009.

B. Implementations

This section is dedicated to the progression of the
groundbreaking work by Gentry as well newly introduced
algorithms that spawn as the generations pass by.

As mentioned in the previous section IV-A there are
currently a total of four generations of FHEs. Not all
schemes that are currently at the forefront of the research
originate from the first. This section is once again based on
V. Vaikuntanathan’s classification system [42]. Works that
do not abide by the modern definitions of a FHE are not
mentioned in this section. For example leveled or partially
homomorphic schemes such as for example Bram Cohen’s
simple public key algorithm [12].

In the first generation we have Gentry’s dissertation “Fully
Homomorphic Encryption Using Ideal Lattices”. It is the flag-
ship work of this generation. To the same generation belongs
a paper that shows that Gentry’s techniques of bootstrapping
and squashing could be applied outside the domain of ideal
lattices [41]. The basic premise is a LWE scheme that operates
on the coefficient of the polynomials in (which is the same
strategy applied in Rijndael as well this scheme V-D):

Z[x]/f(x)

For a prime polynomial (irreducible polynomial) in Z[x]
this forms a field, giving the author access to the field
operations which can then be used to express a set of
complete logic gates Γ (complete implies this would allow
the author to express any circuit C in the aforementioned
gates in Γ). For more details on the working on this scheme
consult the next section IV-C. The scheme is an improvement
of earlier work by Boneh, Goh and Nissim [8] according to
Gentry himself.

As mentioned in the previous section this opened the
floodgates to many new and/or iteratively improved schemes.
In the second generation we see some divergence, but most
schemes are still derived from lattice based cryptography
similar to Gentry’s. This is also a very productive generation
for Gentry himself and alongside Zvkika Brakerski and
Vinod Vaikuntanathan FHE is brought much closer to
practical reality by weakening some security assumptions and
showing the prowess of leveled homomorphic schemes that
can potentially circumvent the very expensive boostrapping
technique. This is known as the BGV scheme, named after
its authors Brakerski, Gentry and Vaikuntanathan. Later in
the same year they demonstrate this scheme by evaluating the
AES circuit without bootstrapping [20].

The third generation shows more improvements to the
relinearization step, which in term aggressively reduces
the cost of bootstrapping under certain conditions. These
implementations are primarily RLWE based[18]. Gentry
demonstrates a “simplified” alternative to previous LWE
based schemes that no longer requires an evaluation key
(similar to the public component in this scheme, see V-D)
[21]. This scheme also significantly reduces the overhead of
conventional multiplication on the homomorphic domain by
changing it to be more akin to matrix multiplication. They
refer to the new technique as “the approximate eigenvector
method”.
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The “unofficial” (as it isn’t recognized by Vaikuntanathan)
fourth generation is defined by the conception of CKKS [10],
which is a scheme that promises much faster scaling; an
operation that would require delinearization or boostrapping
in LWE based FHEs such as BGV. The primary rationale
behind the scheme being that real-world data often assumes
the form of approximate values, inherently including the noise
that would make (R)LWE work. It has also been under some
scrutiny due to proposed passive attacks by a lengthy paper on
the security of homomorphic schemes by Daniele Micciancio
and Baiyu Li [30], to the point that users of libraries that
implement it are now met with a disclaimer.

C. An evaluation of common schemes

The field of research into fully homomorphic encryption
schemes has expanded rapidly in the past decades to the
point of it being very difficult to provide an all-encapsulating
evaluation. However, many of the aforementioned schemes
originate from the same base principles. In this section I
would like to briefly evaluate the implications of this strategy
and how it is unlikely we will see a practical application
of even the newest generation of algorithms in devices that
cannot facilitate the processing power of cloud networks. In
particular this section builds from Gentry’s dissertation and
compares it to the goals set for the scheme developed in this
thesis [2][29][19]. The rationale behind opting for Gentry’s,
by now dated and improved scheme is because it encapsulates
the most common concepts and pitfalls even in modern day
FHEs. Even in the fourth generation these schemes see no
use outside cloud networks and are even being described by
SEAL’s principal software engineer as “inefficient”, while
describing the use cases as “specific”[13].

Gentry’s work “Fully Homomorphic Encryption Using
Ideal Lattices” is what kick started the first generation [2].
It builds off constructing a ring of “coefficient polynomials”
which comes equipped with the associated group operations
−ψ ← ψ1 + ψ2 or ψ ← ψ1 ∗ ψ2. (R)LWE, a generalisation
of Parity learning problem, is based on introducing some
amount of noise to the cipher block. This strategy thwarts
linear attacks that rely on trying to retrieve the secret from
a system of linear equations produced by the cipher because
solving it would propagate and increase the error, making the
system effectively unsolvable. Unfortunately the same issue
applies to performing operations on it: at some point the
error exceeds what the decryption algorithm would be able to
detect. Equipped with no solution to this problem the scheme
would only be partially homomorphic; it can only encode
circuits of up to a specified depth.

Gentry applies the concept of bootstrapping to allow for
the evaluation of arbitrary length circuits [3] [2]. To achieve
this effect Gentry must first make sure the scheme is boot-
strappable to begin with; implying that the expressiveness of
the gate operations Γ are such that the the entirety of the
decryption function can be evaluated homomorphically plus an
additional NAND gate (serving as connector). On top of this

requirement the complexity of the circuit needs to be such that
it can be considered boostrappable in first place. Gentry refers
to this as “bootstrappale with respect to Γ”. Then, assuming
some plain π that is encrypted under pk1 resulting in a cipher
ψ1 we wish to refresh. We need the secret sk1 used to decrypt
psi1 ecrypted under a second public key pk2 denoted as sk1j .
After that we can define the bootstrapping procedure as:

Recryptε(pk2, Dε, ⟨sk1j⟩, ψ1) :

ψ1j ← Encryptε(pk2, ψ1j)

return Evaluateε(pk2,Dε, ⟨sk1j , ψ1k⟩))

Which Gentry describes as “An encryption under pk2
of Decryptε(sk1, ψ1)”. This strategy both induces and
reduces the error as it is another evaluation, but when applied
strategically the decryption would reduce the size of the error
vector dramatically. Since the complexity of the decryption
scheme is too great to apply this strategy Gentry introduces
the concept of squashing the circuit (which has little relevance
to this section, but is still fundamental to the overall strategy).
The combination of these two procedures is later applied
identically in other works [41].

Unfortunately these reliniarization steps are very expensive
and continue to form a big bottleneck in the first and (most
of the) second generation of works. Note that in the second
generation big advances have been made with regard to
preventing linearization by bounded circuit depth, this was
demonstrated by a homomorphic evaluation of the AES
circuit[20]. Not only does bootstrapping take a full evaluation
of the decryption circuit - potentially multiple times, it also
requires a sequence of secret encrypted keys to be exposed to
the operating (public) party. These are strikingly large as seen
from the test bench we executed on SEAL (see IV-D). In
2013 Gentry, Sahai and Waters proposed a new scheme they
dub the “approximate eigenvector method” [21] specifically
designed around conceptual simplicity. Since it is Gentry’s
latest theoretical framework it is a good, probably even the
best basis to compare from. This evaluation does not include
the ABE solution (Attribute Based Encryption) due to a lack
of relevancy. The remainder of this section serves as a guided
analogy to the issues our new approach attempts to tackle
(see V-A).

Recall the original definition of the Learning With Errors
(LWE) problem[3]:

For a security parameter λ, let n = n(λ) be an integer
dimension. Let q = q(λ) ≥ 2 be an integer and X = X (λ) be
a distribution over Z. The LWEn,q,X -problem is defined as to
distinguish the two following distributions: a distribution with
samples (⃗ai, bi) taken uniformly from Zn

q , and a distribution
with s⃗ ← Zn

q drawn uniformly at random with a⃗i → Zn
q

sampled uniformly, ei ← X and setting bi = ⟨⃗a1, s⃗⟩+ ei. The
LWE assumption states that this problem is infeasible.

Definition 5. The LWE problem
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This infeasibility is achieved by a reduction to a classic
quantum hard lattice problem, described informally as[21][35]:

Solving an n-dimensional LWE with poly(n) modulus im-
plies an equally efficient solution to a worst-case lattice
problem described by GapSVP in dimension

√
n.

Definition 6. The LWE reduction theorem

Gentry’s method operates on the same basis which he
refers to as a “noisy” method. To understand the naming
of the method we merely have to look at the way data is
encrypted. Below is Gentry’s informal description:

For some modulus q and dimension parameter N , generate
C ← ZN×N

q uniformly, with entries “much smaller” than q.
Then v⃗ ← Zq with randomly sampled entries with at least
one vi ≫ vx,∀vx ∈ v⃗, x ̸= i (at least one vi is a significantly
larger outlier). Then the message µ ∈ Zf , f ≪ q (the message
is significantly smaller than the quotient). Assume e⃗ ← Xn,
some small error vector, then C is said to encrypt µ if

C ∗ v⃗ = µ ∗ v⃗ + e⃗

Since C is a matrix clearly v⃗ is its eigenvector with
eigenvalue µ differentiated only by the small error vector e⃗.
Decryption is similar to Regev’s PKE method[3]. Note that the
decrypting party can index the outlying values in the cipher C:

x← ⟨Ci, v⃗⟩ = µ ∗ vi + ei

µ = ⌊x/vi⌉

For the following paragraph we must introduce the defini-
tion of a B-bounded distribution:

Pre←Xn
[|e| > B] = negl(n)

Definition 7. A B-bounded distribution

Which can be intuitively understood as a distribution that,
upon sampled, has a negligible chance of producing an error
offset from 0 with a magnitude greater than B.

Consider the following homomorphic operations:

C+ = C1 + C2, C
+ ∗ v⃗ = (µ1 + µ2) ∗ v⃗ + (e⃗1 + e⃗2)

C× = C1∗C2, C
x∗v⃗ = µ1∗µ2∗v⃗+µ2∗e⃗1+C1∗e⃗2 = µ1∗µ2∗v⃗+er

in which er denotes the remaining “small” error. To evaluate
the level of “how homomorphic” the scheme is we need to
evaluate it at a B-bound. When bound to B the magnitudes of
Ci, µi and ei do not exceed B. In such a case we can express
the bounded error in terms of the aforementioned operations:

er(C+) ≤ 2B

er(Cx) ≤ (N + 1)B2

...or expressed in terms of the evaluation of a multivariate
polynomial with degree d where P represents the coefficient
vector associated to the polynomial:

(
∑
p∈P
|p|)(N + 1)d−1Bd

Clearly this circuit’s error grows at worst according to the
function

Ter(L) 7→ B2L

which is doubly exponential in the circuit depth (or
exponential in the degree of the function). Here L represents
the circuit depth. The resulting scheme would fit the definition
of a SWHE (SomeWhat Homomorphic Encryption). To
“promote” the scheme to a FHE the authors introduce the
concept of flattening. To understand flattening we need the
definition of a strong B-bound (or B-strongly-bounded):

For some cipher Ci, if all coefficients in C and µi are at
most 1, with the associated coefficients of e⃗i have a magnitude
of at most B then Ci is considered B-strongly-bound.

Definition 8. A B-strongly-bounded cipher C

Consider a new operation, NAND, on two ciphers C1, C2

yielding a new cipher C3:

NAND(C1, C2) : IN − C1 ∗ C2 = C3

Using the earlier expansion of classical multiplication
and the assumption of C1 and C2 being B-strongly-bound
the resulting error is contained within (N + 1)B, which
would yield an exponential version of Ter(L) = (N + 1)LB,
promoting the scheme to the classification of LFHE (Leveled
Fully Homomorphic Encryption). Unfortunately this does not
hold, as C3 is no longer B-strongly-bound; it’s coefficients
are clearly no longer bound by just 1.

To tackle this issue flattening is applied, which utilizes
various functions that have proven to be agnostic towards the
dot product over vectors (i.e. the result of the dot product
between two vectors is unaffected after application)[9]:

BitDecomp(⃗a) = (a1,0..., a1,ℓ−1, ..., aκ,0..., aκ,ℓ−1)

Which decomposes a vector a⃗ with κ coefficients in Zq into
its base 2 representation of length ℓ = ⌊log2(q)⌋. The resulting
is of length N . It’s inverse is defined as:

BitDecomp−1(⃗a) = (
∑

2j ∗ a1,j , ...,
∑

2jak,j)

Which can be understood at reducing the individual bit-
strings back to their base 10 representation. The auxiliary
function Powersof2(⃗b) is defined as:

Powersof2(⃗b) = (b1, 2b1, ...2ℓ−1, ..., bk, 2bk, ..., 2
ℓ−1bk)

yielding another N -dimensional vector. This function can
be understood intuitively as “stretching” the coefficients of
the input vector b⃗ into powers of 2. Then we can define
Flatten(⃗a′) as

Flatten(⃗a′) = BitDecomp(BitDecomp−1(⃗(a)′))
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Flattening makes the coefficients of the affected vector
small, but has the additional property that it leaves the inner
product with some Powersof2(⃗b) intact:

⟨BitDecomp(⃗a), Powersof2(⃗b)⟩ = ⟨⃗a, b⃗⟩

To facilitate this flattening v⃗ must be picked such
that v⃗ = Powersof2(s⃗) for some secret s⃗. Clearly
Flatten(C) ∗ v⃗ = C ∗ v⃗ (assuming the aforementioned
identity of v⃗). Now CNAND can be defined as Flatten(C3),
which in turn yields a cipher that is again B-strongly-bounded,
effectively obtaining a Leveled Fully Homomorphic scheme.

As one might have noticed the scheme is expressed closely
to the classical homomorphic operations, which makes it
algebraically interesting for workloads that expose a similar
circuit (for example convolution). This was an implicit demand
in one our goals described in V-A. The scheme allows for a
circuit evaluation up to a variable depth, which too is sufficient
for our goals. The key sizes are drastically reduced due to no
longer requiring any form of boostrapping. Unfortunately for
our use case this approach seems infeasible due to the high
amount of data inflation (as seems to be the common issue
with LWE based solutions): messages can only be expressed
in µ ≪ q and the resulting cipher assumes the form of
C ← ZN∗N

q . Even though a direct comparison cannot be made
within reason (as Gentry’s work is a full encryption scheme,
whereas here we are describing a mere starting point) it is
very unlikely to ever reach the dimensionality we deliberately
sought to achieve.

D. A demonstration in SEAL
Microsoft SEAL is an open source library and

implementation of BGV, CKKS and BFV [38]. In this
demonstration we have opted for the use of BGV as was
described in IV-B. In this example we use the batching
strategy as described by the SEAL documentation to speed
up the process. Batches are formed for similar coefficients
of values ranging from 1 to 255, explicitly excluding 0. The
demonstration was performed as a corroboration on the rather
extreme memory differential between the size of the input
data and the cipher. The testbench has been published in the
research group repository[44]. Below is the depiction of the
logic involved. It mimicks a single layer of a feed-forward
neural network with an increase size, excluding the ReLU.
It is designed to fit the description of being suitable as an
application of SEAL as it is explicitly encoding logic trivially
expressed in addition and multiplication. All calculations are
performed on a Ryzen 9 5900x @4.2Gh with 48GB of DDR4
RAM.

Below, in Fig.2, are the results of the increase in dimen-
sions of the input data. The input data consists of arrays of
bytes (which is not technically true as SEAL doesn’t allow
for anything less than long encoding, but the overhead is
corrected with this knowledge accordingly). The oscillations
occur when the batches exceed the current lowest possible
modulus, which will then, according to the documentation’s
specification increase by a power of two.

Fig. 1. The circuit executed by the SEAL testbench
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Fig. 2. Size input batches in bytes vs increase output

Even though it is not immediately apparent from the graph
in Fig.2, even at the tightest fit of a single batch (close to the
size the modulus allows) the output size almost quadruples
(lowest point in the graph is at 282% increase).

The speed of the evaluation function and key generation is
determined entirely by the modulus and displays only minute
oscillations when the batch size increases. A rather speculative
comparison is drawn in the following graph in Fig.3, which
compares a very naive “native” implementation of the same
operations to using BGV. Here we see that the run-time starts
to converge as the batch size increases, but this might also
very well be due to the fact that SEAL is simply much better
optimized (it is best not to read too much into this graph):
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Fig. 3. Runtime comparison naive (blue) vs BGV (red)
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Throttling starts to occur at the end of the graph due
to the machine running out of available RAM. Upon this
occurring the circuit appears to have been terminated, yielding
a uncharacteristically low run-time.

V. THE PROPOSED SCHEME

The resulting scheme is a consequence of very specific
design goals. It is incomplete as a cryptographic scheme but
comes with potential associated improvements mentioned in
section VIII-B. It is designed to accommodate little overhead
above all else, making it a practical and feasible angle to
homomorphic obfuscation in e.g. embedded- or edge devices.

A. The design goals

The current state of fully homomorphic encryption schemes
make it wildly infeasible for practical use in small scale
applications. Even though it already has some application for
specific computationally simple circuits in the cloud there are
a myriad of problems when applied on smaller consumer-
or embedded hardware. These include problems like a large
operation overhead, very large keys and a very large memory
overhead. This scheme was specifically designed to be
feasible in the aforementioned cases, while sacrificing many
of the properties conventional FHEs offer.

Specifically the design goals were to trade in the high
conventional security demands to obtain a FHE-scheme that
abides by the following strict requirements (expressed in
functions from the C-evaluation scheme mentioned in I):
• |P | = |Enc(pk,m)| + ϵ(m), informally ”negligible co-

domain bloat”
• |P | = |Eval∗(evk, C, c1, ..., cn)| + ϵ(m), informally

”negligible evaluation bloat”
• Overhead imposed by addition and multiplication close

to the native cost of said operations
While still striving for the maximum obfuscation achievable

by abiding by Shannon’s fundamental requirements[1] of
diffusion and confusion. A combination of both is known
to thwart statistical attacks and both are considered the
building blocks of any cryptographic scheme. Unfortunately
the current scheme does not offer proper confusion and as
such should not (yet) be considered for practical use.

The summarized definitions of confusion and diffusion can
be understood as was described by Shannon (these are heavily
reliant of the context in which they are applied, as recognized
by the authors of Rijndael [14])[1]:
• Confusion means that each binary digit (bit) of the

ciphertext should depend on several parts of the key,
obscuring the connections between the two

• Diffusion means that if we change a single bit of the
plaintext, then about half of the bits in the ciphertext
should change, and similarly, if we change one bit of the
ciphertext, then about half of the plaintext bits should
change

Both can be understood visually in terms of a cipher on
an image as demonstrated in VII: diffusion implies that even

the most marginal change in the pixel value can completely
change it corresponding output. Confusion would imply that
even the same pixel values are not necessarily mapped to the
same output value.

Early in the scheme’s design it became apparent it would
be operating on the same bundle (word size) as its input.
The properties of operating on a bundle level would allow for
very efficient encryption and decryption which automatically
abiding by the first two requirements. This design is one of
the many inspirations taken from the Advanced Encryption
Standard (AES, Rijndael) [14].

B. High level overview

The scheme corresponds closely to the common interpreta-
tion of a C-evaluation scheme mentioned in I, but rather than
having conventional keys it has LookUp Tables (LUTs). The
image blow depicts the relation between the components:

Fig. 4. A high level overview

Direct edges depict a transition, whereas dotted edges depict
a one way dependency. As the image shows the public
component, or evaluation key depends on the constructed
lookup tables that are being used to encrypt the message.
The logic circuit C can be performed remotely with only
the knowledge of the evaluation key. Once the computation
has been performed and decrypted the user can re-obtain their
plaintext, but now transformed by the provided circuit. This
process is demonstrated in VII.

C. The template

The design of the scheme is very generic, allowing for a
wide range of applications of various sizes.

The basic construction can be described as follows:
1) Determine the maximum value the application needs to

encode at any time and to what field or ring this value
belongs

2) Find a prime that is part of the same field or group as
the value mentioned in 1)

3) Construct a prime quotient field or group using the
prime to construct a quotient ranging over the irreducible
(prime) elements
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4) Deconstruct the field or ring into its corresponding
groups and determine outer automorphisms for either

5) Compose the automorphisms in such a way that would
suit the circuit one would wish to encode

6) Construct the public component
In the associated implementation the scheme over con-

structed over the integers, but there is no inherent limitation of
the underlying datatype as long as it contains a field structure
and the concept of a prime. One could opt for polynomial
evaluation or perhaps even evaluation of lattice- or vector
spaces just as easily.

D. Implementation details

The scheme relies on utilizing the automorphisms of the
groups that compose the closest encapsulating prime field of
the largest value in the input data. This field is defined as a
quotient group over the integers. More formally:

GF (pe) = Z/peZ, pe = inf({p | p ∈ Z, p >= sup(i)})

This construction consequently yields two well defined
groups as both come from the generalization of the underlying
ring:

G+ = (Z/peZ,+)

G∗ = (Z/peZ,+)

The construction of the latter groups is a necessity for we
want to generate a permutation of automorphisms, and the
original group GF (pe) has only the single trivial one.

At this point we make the observation that the underlying
ring has a prime characteristic and is an integral domain. This
implies the Frebenius morphism is an automorphism in this
ring:

F (r) = rp ∈ Aut((Z/peZ, ∗,+))

This gives some insight in what to expect when applying
each of the individual group automorphisms in composition
(hint: multiplication will be trivial, whereas addition will
require additional work). Our next step is to actually define
this composition. Given two automorphisms, each on their
corresponding group, we define it as follows:

F+(x) ∈ Out(G+)

F∗(x) ∈ Out(G∗)

E(x) = F∗ ◦ F+

It is worth noting that even though the composition of
these functions does not technically form a group (it is not
abelian), the algebraic structure of defining them “the other
way around” is almost identical. The choice of the final
composition is thus also chosen entirely arbitrarily.

To find both the required functions to construct e we need
to find outer automorphisms for each individual group. This is
achieved by sending the smallest generator of an order equal
to the characteristic of the ring for each corresponding group
to any other generator of an order equal to the characteristic

of the ring. We parameterize the function with this ”target”.
For each individual group the set of candidate generators we
will define thusly:

CG+(i+, G+) = {g | gcd(g, pe) = 1, g ̸= i+}

CG∗(i∗, G∗) = {g | ord(g) = char(GF (pe)), g ̸= i∗}

Note: i here is not an imaginary component, it is mnemonic
variable for ”input”!

Since the multiple of the quotient (the modulus) is prime
it follows the entirety of the additive generator set minus the
first argument (which can be fixed at 1) is available as a
target generator. For the multiplicative set this is not the case,
and the generators must be actively filtered on their order
first. To do so we apply Legrange’s theorem to check whether
each element does not yield the multiplicative identity when
raised to a divisor of pe − 1 that isn’t exactly pe − 1.

With these functions fixed we can look into the resultant
function they encode. Since we assign generators to generators
these form a straightforward relation.

i+ 7→ t+ : F+(t+, x) 7→ abi = ci, ai = t, bi = x, c = ab

i∗ 7→ t∗ : F
∗(t∗, x) 7→ (id)e = ih, ie = t, id = x, h = ed

Here we expect that t+ ∈ CG+(i+, G+), t∗ ∈ CG∗(i∗, G∗).

The additive function encodes a multiplication, whereas the
multiplicative function encodes an exponential. The resulting
composition thus assumes the form:

E(t+, t∗, x) = F ∗(t∗, F
+(t+, x)) 7→ (zx)y, z = c, y = h

Clearly the targets, and consequently the scalar and
exponent form the secret of this simple encoding.

We now turn both the additive and multiplicative function
into a lookup table, where the index of the table corresponds
to the output.

Fig. 5. Lookup tables and their corresponding inverse

We obtain the inverse function by taking the output and
assigning it the value of the index it occurs at in our first
table. We can now look at the algebraic properties of our
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elements after having done some prior investigation. For
brevity the target arguments are not denoted here.

For multiplication we derive the following identities:

E(a) ∗ E(b) = (za)y ∗ (zb)y = z2yayby

F−1∗ (z2yayby) = z2ab

F−1+ (z2ab) = zab ̸= ab

Clearly the answer decodes wrong, but it is easily patched
by keeping track of the amount of multiplications in the
circuit and then applying the appropriate amount of additional
additive inverse transformations (another application in the
aforementioned case). For addition things are less trivial:

E(a) + E(b) = (za)y + (zb)y

F−1∗ ((za)y + (zb)y) = ((za)y + (zb)y)1/y

F−1+ ( y
√
(za)y + (zb)y) =

y
√
(za)y + (zb)y

z
̸= a+ b

The operands cannot be reduced in the first step due to being
mismatched terms, and the consequence is an escalating error.
One way to go about this is to simply take the yth root, but
unfortunately that would imply giving away a secret. Another
approach is to take the root of merely the mismatched terms
expressed as a multiple of the encoded generator:

E(a)+E(b) = (za)y+(zb)y = zywygy+zydygy, wg = a, dg = b

P (x) = y

√
(
x

gy
)gy

E(p(a))+E(p(b)) = zwgy+zdgy = (zw+zd)gy, wg = a, dg = b

P−1((zw + zd)gy) = (zw + zd)ygy, wg = a, dg = b

F−1∗ ((zw + zd)ygy) = (zw + zd)g

F−1+ ((zw + zd)g) = (w + d)g = a+ b

The function p is then distributed as a public component
to accommodate addition. This is done in the form of a
lookup-table. This strategy guarantees the intermediate value
is still parametric in the secret exponent, albeit at the cost of
having to provide the aforementioned function.

These form the fundamentals of the scheme and provide ob-
servable impressive diffusion, but no confusion. Even though
this is an unsolved problem potential solutions are discussed
in the following section VIII-B.

E. A demonstration on the SparkFun RED-V

To corroborate the feasibility of the scheme even in the
context of small scale embedded devices the template was
applied and run on a SparkFun RED-V thing Plus. As the
name suggests this board implements the RISC-V ISA.
Central to the board is the FE310 SoC (Freedom E310),
which includes the E31 CPU.

The board has 16Kb of available SRAM and offers 1.61
DMIPS/MHz operating at 150 MHz. More information about
this board can be found in the attached manual[40].

In the run test-bench operations very similar to the ones
described in IV-D are performed. The data-sets are either
added or multiplied according to the column in both table
1 and 2, the data is then reduced under addition to yield a
scalar value. These operations happen element-wise. Similar
to SEAL zero encoding is explicitly forbidden and excluded
from the input range. Operations are performed over 8 bit
bundles with the prime quotient chosen to be 251. The tests
are run over 5 differently sized randomized data sets, with
the last set being specifically designed to target the largest
amount of available RAM (98,1% usage). The included values
are unsigned and the operations include no integer promotion
at any stage; instead the modulation occurs through explicit
wraparound overflowing.

The memory footprint of the LUTs scales exclusively with
the choice of quotient (and hence the bundle size). For the
choice of this quotient the encryption tables consume exactly
1kb, whereas the public component consumes 0.5kb.

The discrepancy between plain- and encoded data displays
a clear pattern: some initial overhead is involved, but the
actual performance thereafter is very comparable. I.e., the
strategy scales well with circuit complexity, but has to pay for
the initial footprint. The recorded data is captured in table 1
and 2. The metric of choice is in ticks. One tick corresponds
to 1e − 4 seconds, or 0.1ms. Each stage is subjected to 10
runs, over which the average is calculated in conclusion.

Input size ■+ □ ■ ∗ □+△ ■ ∗ □ ∗ ◦+△
4kb 2246 2276 2309
6kb 3369 3413 3460
8kb 4490 4552 4612
10kb 5611 5683 5755
12Kb 6732 6821 6909

TABLE I
PERFORMANCE EVALUATION OVER ENCODED DATA

Input size ■+ □ ■ ∗ □+△ ■ ∗ □ ∗ ◦+△
4kb 32 62 92
6kb 47 92 138
8kb 62 123 184
10kb 77 148 220
12Kb 93 178 263

TABLE II
PERFORMANCE EVALUATION OVER PLAIN DATA
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Table 3 displays the cost of encryption (or analogously
decryption as the circuit complexity is completely identical).
It would be unusual for data to be both encrypted as well
evaluated on the same device, hence the separation into
different tables.

Input size ■+ □ ■ ∗ □+△ ■ ∗ □ ∗ ◦+△
4kb 2967 4427 5902
6kb 4450 6642 8851
8kb 5930 8856 11800

10kb 7413 11068 14754
12Kb 8895 13282 17704

TABLE III
ENCODING EVALUATION PER CIRCUIT

As was discussed in earlier sections the memory inflation
is practically zero in most use cases. As the quotient was
deliberately chosen to fit within the range of base 2 encodings
of the bundle size (log2(251) < 8) there is no inflation on the
encoded date. Hence no data is presented addressing this.

VI. THEORETICAL EVALUATION

The overall complexity of the scheme depends strongly on
the knowledge of the logic to be executed. This is a common
theme in homomorphic encryption schemes, and often even a
requirement [5]. For example in the standard implementation
of a C-evaluation scheme the circuit must be fully known
prior to execution (see I). Equipped with prior knowledge
of the circuit one could reduce the amount of modulo
operations and lookups aggressively on the computational
end. This would yield operations surprisingly close to their
corresponding computations on native (plain) data.

Due to its rather generic nature especially the memory
overhead scales primarily in the choice of parameters. This
is also discussed in the previous and coming sections.

A. Computational overhead

The computational overhead of the individual operations
is very modest in comparison to homomorphic encryption
schemes. The primary factor causing overhead is the append-
ing of a modulo operation to both addition and multiplication.
This can be optimized by working on larger, local intermediate
values. Upon being fed to a lookup table the values need to
be reduced back to elements in GF (pe). The application of
the inverse of the public component can also be optimized.
Below is an elaborate example of a juxtaposition between a
naive and optimized approach for multiplying and summing:

a)

n∑
i=0

xi = P−1(P (x0) + P (x1) mod pe)+

...+ P−1(P (xn−1) + P (xn) mod pe)

b)

n∑
i=0

xi = P−1(P (x0) + ...+ P (xn) mod pe)

Example 1. Naive (a) versus optimized chain addition (b)

a)

n∏
i=0

xi = (x0 ∗ x1 mod pe) ∗ ... ∗ (xn−1 ∗ xn mod pe)

b)

n∏
i=0

xi = (x0 ∗ ... ∗ xn mod pe)

Example 2. Naive (a) versus optimized chain multiplication
(b)

a)

n∑
i=0

xiyi = P−1(P (x0∗y0 mod pe)+P (x1∗y1 mod pe)mod pe)+

...+P−1(P (xn−1 ∗ yn−1 mod pe)+P (xn ∗ yn mod pe) mod pe)

b)

n∑
i=0

xiyi = P−1(P (x1 ∗y1 mod pe)+ ...+P (xn ∗yn mod pe))

Example 3. Naive (a) versus optimized multiply then sum (b)

As is evident from the above examples the user stands
to gain a lot of performance knowing and optimizing their
logic in advance. Compared to native operations the cipher
introduces two new sources of overhead:

1) The modulo operations
2) The lookups from the public component

For each example we can reduce the complexity in which these
scale.

1) For example 1 and 3
a) Modulo operations from O(n) to O(1)
b) Inverse lookups from O(n) to O(1)

2) For example 2
a) Modulo operations from O(n) to O(1)

These reductions can be achieved practically by trying to
work on intermediate values for as long as possible. This
in term can be achieved by not performing any lookups or
alternation of operations in between.

Lookup tables are known to impose very little overhead
during runtime and have an indexing complexity of just O(1).
Since all lookup tables in this scheme are static by design they
could potentially be further optimized in tailored hardware.
When knowledge of the circuit is present and the operations
are consistent the amount of required lookup tables to encrypt
and decrypt can be halved from 4 to 2, further reducing the
amount of lookups required.

B. Memory overhead

One of the strong points of the scheme is that it imposes
no memory overhead on the data outside the expected
range of values. Better yet, due to its inherent simplicity it
can be easily adapted to the user’s needs by simply taking
the nearest greater prime number than they envision to encode.

On average one should expect to require one bit more
than would be needed to encode the desired values natively,
but this is stated without a formal proof (which would be
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extremely elaborate). This is to facilitate the expected ”gap”
between the maximum desired value and the nearest prime
greater than the aforementioned’ largest value.

The total amount of bit bloat could be computed according
to:

b = ⌈log2(pe)⌉ − ⌈log2(sup(i))⌉

Further memory overhead is imposed by the requirement for
lookup tables. The lookup tables are all of the size (in bits):

2 ∗ sup(i) ∗ log2(sup(i))

The scaling of two is imposed by every lookup table
having a corresponding inverse. When knowledge of the circuit
is known beforehand and the operations are consistent the
amount of lookup tables can be condensed into just E,
reducing the the total amount of tables from 4 to 2. The
computating side always has a single lookup table, so 2 tables
in total.

C. Non-linearity and diffusion

When it comes to the design of S-boxes the design is rather
meticulous, as described in [14]. Rijndael describes the design
criteria for SRD (S-box for RijnDael) as follows:

1) Non-linearity
a) Correlation: The maximum input-output correla-

tion must be as small as possible
b) Difference propagation: the maximum difference

propagation must be as small as possible
2) Algebraic complexity: the algebraic expression for SRD

has to be complex
To achieve a low input-output correlation the authors of

the paper take a candidate from a paper by K. Nyberg [33]
described simply as the multiplicative inverse over GF (2)[x]:

g : a→ b = a−1

This choice is not particularly surprising and aligns quite
well with the minimum input-output correlation this scheme
can achieve, which will be described later in this section.

Furthermore they define a requirement in the form of finding
no fixed or opposite fixed point in the resulting transformation.
Described as follows respectively:

SRD[a]⊕ a ̸= 00,∀a

SRD[a]⊕ a ̸= FF,∀a

They then apply an affine transformation preserving the
aforementioned properties to achieve point 2). Unfortunately
this is not a valid strategy for this scheme because it would
not preserve the desired algebraic properties described in V-D.

The input-output correlation can be expressed as the branch
of the primitive, which in term is a measure of diffusion.
For a vectorial boolean function F the branch is defined as
(differential and linear respectively):

Bd(F ) = mina ̸=b(W (a⊕ b) +W (F (a)⊕ F (b)))

Bl(F ) = minα ̸=β,LAT (α,β)̸=0(W (α⊕β)+W (F (α)⊕F (β)))

Note that an S-box can be interpreted as a vectorial boolean
function of the form:

S : {0, 1}n → {0, 1}m

Unfortunately neither of these metrics is easily quantified
for this scheme, considering the size of the S-box is
parametric in the choice of the size of the field. However,
for demonstration purposes we can look at the differential
branch level of the S-box F in F4

2, which is constructed by
GF (pe), pe = 17.

First we fix b at 0, which results in a reduced formula:

Bd(F ) = mina ̸=0(W (a) +W (F (a))

Now if we assume (which is an informed choice) t+ = 12
and t∗ = 6 we end up with F :

F =


10 5 9 11
2 13 16 14
3 1 4 15
6 8 12 7


For which we find that Bd(F ) = 3 for a word length of just

4 bits, with a theoretical upper bound of s = 4, where s is the
number of components. This branch is frequently classified as
“near-MDS” [24]. This lower bound occurs at the values 1
and 5, and their respective inverse:

1 : 0001 7→ 1010

3 : 0010 7→ 0101

A theoretical perfect score would occur when every value
is sent to its respective complement.

When looking at the above construction the matrices pro-
duced are very unsurprising:

F+ =


12 7 2 14
8 4 16 11
6 1 13 8
3 15 10 5



F∗ =


1 9 6 13
7 3 5 15
2 12 14 10
4 11 8 16


F∗ corresponds perfectly to the choice made by the authors

of Rijndael mentioned earlier in this section, by being the
multiplicative inverse of each entry. The optimal choice for
the automorphism targets is determined by the highest average
Hamming distance of all values. Which can be defined as:

DW =

∑pe−1W (x⊕ F (x))
|F4

2|
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The resulting S-box has no fixed- or opposite fixed points.

Lastly, as explained in point 1) a) in the Rijndael require-
ments for SRD we wish to minimize difference propagation.
The latter is defined as:

Probh(a′, b′) = 2−n
∑
a

δ(b′ ⊕ h(a⊕ a′)⊕ h(a))

informally described as “for a pair chosen uniformly from
the set of all pairs (a, a∗) where a⊕ a∗ = a′ Probh(a′, b′) is
the probability that h(a)⊕ h(a∗) = b′”.

When applied to the aforementioned rather small S-box
we observe a maximum difference propagation of 0.4285..,
which occurs at the following differences (here C is an
auxiliary classification function to match pairs of an identical
difference):

C :W (△I) 7→ {(1+0, 14−0), (1+1, 14−1)...(8, 7)},△I = 4

|C(W (△I))| = 7

The above set consists of the pairs with an input difference,
expressed in the Hamming weight of the difference (W (a⊕b)),
of 4. There are 7 of such pairs.

In slightly less than 43% of the cases these will propagate to
an output difference of 2. This property is shared among other
input difference classes except the class for input difference
2, which yields a lower result at 100

3 %. Since there are a
total of 4 different input differential classes available the
best theoretical case for a random function would be 25%, a
perfect distribution. This implies there is unfortunately a very
noticeable difference propagation.

D. Security

As mentioned in the earlier sections, in particular V-A, this
scheme was not designed with security as a priority. This
section will elaborate upon its rather weak properties in this
regard.

Relative security is achieved when the workload of an
attack is no better than an exhaustive key search on the
scheme. Actual security is achieved when this also becomes
intractable to execute for the attacker. Actual ”proofs” of
security do not exist in cryptography because the existence of
such a proof would imply P ̸= NP ; instead we propose it as
an assumption [28]. It is a common practice in cryptography
to build ciphers around the concept of a computationally
hard problem, or one that reduces to a hard problem, to
facilitate this desired infeasibility [22]. This scheme does, as
was previously stated, not abide by this strategy and does not
achieve true security, potentially not even relative security in
its current form.

The security of the scheme relies on the secrecy of the
lookup tables to encrypt and decrypt, which effectively makes
it a symmetric scheme. It is also partially hybrid due to
having to expose a public table to facilitate addition, which

is supposedly shared at the start of a session.

The scheme has many security flaws and is extremely
prone to interpolation attacks in its current state. The exposed
function is parametric in only a single of the two secrets,
potentially weakening the scheme further. Interpolation
attacks were first mounted in 1997 by Thomas Jakobsen
& Lars Knudsen and describe a situation almost identical
to the form this scheme assumes [26]. Unfortunately there
appears to be no straightforward way to patch this. It ties
into the second requirement of SRD described in VI-C. The
reality of the situation is that the S-boxes in this scheme
need to maintain their algebraic structure to preserve the
homomorphic properties. As such interpolation attacks are
going to remain a prominent attack vector.

The scheme in its naive form acts like a substitution cipher,
implying it inherits all weaknesses associated to such a cipher.
Specifically frequency analysis is a straightforward attack
vector [39]. But being a homomorphic scheme and relying
solely on an S-box substitution it also inherits the issue of
zero encoding. Zero, either as input or as intermediary value,
will always be propagated as zero.

No security evaluation would be complete without
considering linear and differential crypt analysis. The
first recorded demonstration of linear crypt analysis was
performed by M. Matsui and A. Yamagishi in 1993 [32].
The basic concept of linear crypt analysis is to find the
linear relation between plain and cipher, yielding a system
of linear equations that would be easily solvable. Naturally
schemes with a large degree of linearity (which might
also occur under certain weak keys) are vulnerable to
this as the system could end up in a practically feasible
size. Differential cryptanalysis instead relies on finding the
difference between input and output and trying to expose
non-random behaviour. The most common interpretation is as
described by E.Bahim and A. Shamir[31]. Since it relies on
chosen plaintexts it is not particularly relevant for this scheme.

Like every other encryption scheme this one is prone to
weak keys. Keys can be classified to a class of weak keys
under a specific angle of attack [7]. Weak keys in this scheme
include for example reflections (which ironically yield the
highest Hamming-diffusion). Since inner automorphism are
explicitly excluded they are not part of any class of weak keys.

In terms of exhaustive search the space of possible permu-
tations would be equal to:

CG+ ∗ CG∗ ≤ sup(i)2

or in case the confusion as proposed in VIII-B is applied:

CG+ ∗ CG∗ ∗A

Which implies we could model the computational security
as follows:

√
κ = log2(sup(i)), E = ◦2fo, o ∈ {+, ∗}
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Note: the aforementioned notation of E is written as a
composition of the available automorphisms.

The resulting amount of computational effort would then be
expressed as:

O(2κ)

In a very esoteric situation one could also opt to expand
the composition of E, but this is very unlikely to yield either
meaningful or algebraically simple solutions. This is explored
briefly in VIII-B.

Clearly the security scales quadratically with the length of
the input. Assuming the scheme would be perfectly secure this
would yield an axis of optimisation. In case a third operation
would be applied to the composition of e this would be much
more lenient.

VII. PRACTICAL EXAMPLES

This section is entirely dedicated to some worked examples
of the involved theory. They are explicitly made very “visually
appealing” and involve little to no opaque concepts. Both
demonstrations in this sections can be performed locally using
the provided API and corresponding example source files.

A. Implementing a simple scheme

Assume a situation in which we would wish to operate on
values of 4 bits. We take the template as described in V-C as
blueprint.

1) We want to work on 4 bits, so our largest value would
need to be able to encode 24 − 1 = 15

2) We want to work on integers, so we seek the closest
greater prime than 15. This is 17

3) The prime quotient field would be F = Z/17Z or M =
Z mod 17

4) The corresponding groups are (M,+) and (M, ∗)
Now we wish to actually find the automorphisms. To find

an automorphism with a high degree of diffusion we look for
the highest average Hamming distance. This can be computed
automatically by the provided API. In our case this yields:

t+ = 12, t∗ = 6

which will send the smallest generator of the same order
to the aforementioned value. 1 in case of the additive auto-
morphism, and 3 in case of the multiplicative automorphism.
Equipped with the automorphisms we can construct the cor-
responding S-boxes (identical to the ones we see in VI-C):

F+ =


12 7 2 14
8 4 16 11
6 1 13 8
3 15 10 5



F∗ =


1 9 6 13
7 3 5 15
2 12 14 10
4 11 8 16



We now wish to perform a matrix multiplication and addi-
tion. We start with the following matrices:

a =

1 2 3
4 5 6
7 8 9


b =

1 0 0
0 3 0
0 0 1


c =

2 4 2
3 5 3
4 6 4


The operation we wish to perform is a ∗ b + c. We will

refer to this operation as our circuit. First we want to take
a look at whether anything needs optimizing before we
perform the calculation. In this particular case the operations
are simple enough nothing can be improved from the native
computation. We do however notice that the factor level of
the c matrix will be incompatible with the intermediary result
of multiplying a ∗ b. We can alleviate this issue by explicitly
raising c to a second factor level. This can be done through
the available API.

We then proceed to construct the public component. Once
again this is automated by the provided API. The result is
another S-box we distribute to the computing party. The public
component is calculated from F∗ and looks like this:

P =


8 13 12 2
14 11 7 16
1 10 6 3
15 5 4 9


After having done so we can start to actually encrypt our

matrices and ready them for transmission! As was described
in the previous paragraph we will explicitly raise matrix c to a
higher factor level. The resulting computation looks like this:

ca = F∗(6, F+(12, a))

cb = F∗(6, F+(12, a))

cc = F∗(6, F+(12, F+(12, a)))

The obfuscated matrices resulting from the aforementioned
transformations assume the following form:

ca =

14 10 13
12 1 2
9 11 6


cb =

14 0 0
0 13 0
0 0 14


cc =

 4 15 4
12 14 12
13 11 15


The example displays a prominent issue: zero encoding!

Since no automorphism can map zero to anything but itself,
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zero will be propagated as zero always. It is advisable to try
and prevent sparse matrices from occurring where possible,
lest the information isn’t too confidential.

After applying the circuit and decoding it according to the
appropriate factor level we obtain the result as expected:

result =

 3 10 5
7 3 9
11 13 13


This brief demonstration was initially conceived to demon-

strate how to use the simple API, and can be found in the
attached repository under Matrix example.py.

B. Image convolution

Image convolution is an operation derived from mathemat-
ical convolution, which in term is defined as:

(F ◦G)(x)
∫ ∞
−∞

F (τ)G(x− τ) dτ

Intuitively it can be understood as a measure of ”similarity”
in two functions. In the above example G is flipped upside
down (reflection over the y-axis) and then the overlap between
the product is integrated. Convolution and cross correlation
have a very wide range of applications, including image
process and artificial intelligence [46] [11]. In this particular
example we will take a look at image convolution through a
kernel.

Convolution is a very straightforward use case of
homomorphic schemes because it is easily expressed in
addition and multiplication. Similar use cases include
statistics and numerical methods. For this scheme’s particular
case it is also very easy to optimize, allowing for performance
almost identical to native operations.

We start this example with one image taken from Quake.
Quake is a title developed by ID Software in 1996 [27]. It
is renowned for many reasons but was also critiqued for it’s
rather “muddy and brown” color palette. The latter makes
it an excellent title to take as example for this particular
demonstration. The image we will perform convolution on is
shown in Fig.6.

The image kernel we will apply is known as the ”embross
kernel” and is depicted below:

K =

−1 −1 0
−1 0 1
0 1 1


For convolution to perform as expected we need

intermediate values significantly larger than the bytes
that encode the RGB values. This is due to the fact
that comparisons are very expensive once the data has
been transformed to the cipher domain, implying that
just performing a local bound operation (max(x, y) or
min(x, y)) should be considered impractical. To facilitate

Fig. 6. A screenshot taken from Quake

these larger intermediate values we construct our scheme
from GF (pe), pe = 2039, or F 11

2 .

We then apply the transformation, yielding a cipher with
some notable flaws/features:

Fig. 7. The screenshot after transformation

Most of the image turns into white noise, but clearly
it leaves some recognizable features intact. All of these
originate from the lack of confusion in the current scheme.
The grenade-launcher (the weapon at the bottom of the
screen) has contours consisting of equally valued pixels,
which translate to the same values in the cipher. The same
problem arises much more prominently when looking at the
particles on the left of the image. But when looking at the
image some closer we can start to distinguish more shapes
suffering the same issue.

This makes the image we obtain after convolution even
more interesting, because it introduces a form of “local
confusion” by introducing the aforementioned similarity of
neighbouring pixels. The cipher after convolution is in Fig.8.

Many of the features recognizable in the previous image
have now faded, excepting the big black blob (dark grey, in
fact) that encodes the particles. As explained previously this
effect is caused by the aggregation of neighbouring pixels the
kernel imposes. Unfortunately the kernel dimensions are too
modest to overcome the blob, which has merely shrunk in size.
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Fig. 8. The cipher after convolution

Upon decoding the above image we obtain the recognizable
image after the application of the embross kernel, which is an
easily recognizable effect:

Fig. 9. The convoluted cipher after decoding

This example was part of a demonstration. It can be per-
formed locally with the file Imageconvolution example.py
To view this demonstration in real time please take a look at
the attached reference [43].

C. The associated library

At the time of writing the library has not been published
publicly. It is a single (double in case you would also want to
export generated S-boxes to a statically compiled language)
file library with minimal dependencies. In case of interest
please contact the CAES-group at the University of Twente.

VIII. CONCLUSION

This thesis set out to scrutinize an unorthodox angle to
a well-known problem: can we achieve the homomorphic
properties of FHEs at a theoretical overhead low enough to
make it practically feasible to implement on devices with little
processing power? In doing so equally unorthodox sacrifices
would be made in the form of conventional security require-
ments and quantum security. Even though the scheme is not
a complete cryptosystem in its current form it meets those

requirements and might offer some insight into avenues other
authors might not yet have considered.

A. The achievements

Despite its many shortcomings as a full product, the
primitive offers some remarkable features. The amount of
overhead when operating on the cipher (the Eval function
in the C-evaluation scheme discussed in I) is very close to
the native cost of the same operations. Due to it being a very
simple, generic template above all else, it can be applied
to operate on many domains, as long as they offer a ring
structure and some concept of an irreducible element or prime.

The overall computational overhead imposed by the scheme
is entirely dictated by the use of the public component (which
acts a lookup table) and the modulo operator associated to
each. As was described in VI-A, even these operations can
be optimized aggressively provided the user has an intimate
knowledge of the circuit they wish to apply. Fortunately in
all devices that would benefit from this implementation that
follows almost naturally. The memory overhead imposed
on the input data, as was described in VI-B, is negligible,
increasing the length of the boolean vector by at most a mere
bit.

Despite not always being easy to evaluate by conventional
metrics the scheme performs admirably on some of them
(VI-C). Though not offering any form of confusion the
diffusion of the scheme is high, opening potential new angles
to explore such as the use in reliability schemes.

The trade-offs are also significant: offering only a small
key space to explore for exhaustive key search (see V-D) and
not being a complete cryptographic scheme due to lacking
any confusion properties. On top of that the initial memory
footprint is marred by the need to store the lookup tables
required for encryption and decryption.

B. Future work

This section is dedicated primarily to conjecture about
potential improvements that could be made to the scheme. It
includes little to no corroboration on the effect of any such
changes and should be treated as pure speculation.

Even though rather simple, the current implementation does
certainly not lack its share of issues. As mentioned in V-A
it offers no confusion whatsoever. Confusion is defined as
having different key components occur at parts of the cipher,
”confusing” the relation between the index and the key.
Whereas diffusion is commonly achieved through nonlinear
functions in the form of s-boxes [31], confusion is commonly
achieved by permuting or mixing.

Confusion is achieved by some form of permuting, which in
this scheme’s case is most easily achieved by mixing of some
kind. Permuting also allows for covering a larger part of the
key space, which is an additional bonus. Since no confusion
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has been achieved with the current incomplete scheme the
effectiveness will not be evaluated. A proposition would be to
turn the scheme into an effective block cipher similar to Ri-
jndael, as opposed to its current form as a substitution cipher.
Blocks of a variable size would be encoded by sequentially
mixed layers of the current S-boxes. The concept of such a
modification is depicted below:

Fig. 10. Confusion through permutating blocks

In this depiction, one would expect to mix the second
box filled with differently parameterized compositions as
described in the previous section. This would not sacrifice any
parallelism but would cause severe overhead in terms of the
initial memory footprint. It would not cause any overhead on
the actual computational complexity either. It could diminish
the diffusion properties on a local scale due to the need for
a larger spanning of the key space (which, as mentioned
earlier, is a double-edged sword). It would serve as protection
against the scheme’s strongest attack vector: interpolation
attacks. The concept would collide with the need for the
public component. It would also cause the scheme to be
harder to evaluate from a security perspective.

The public component could potentially be eliminated if
knowledge of the circuit before execution is made a strict
requirement on the user’s end. This is not uncommon in
current FHE libraries such as FHELib.

Lastly one could increase the span of the compositions by
adding another function to it, but finding such a function with
nice algebraic properties is surprisingly difficult. The most log-
ical candidate would be a simple addition, but unfortunately, it
has very poor algebraic properties. Currently, the composition
function E only spans a very small part of the symmetric
group Spe , which is an issue considering the strength of the
scheme relies on its secrecy.
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