
Apollo++: Automated Assessment of
Learning Outcomes in Programming Projects

Master Thesis
University of Twente

Arthur Rump

Thursday, 30 November 2023

Contents

1 Introduction 3

I Background and requirements 6

2 Background 8
2.1 Assessment starts with ILOs . 8
2.2 Assessment criteria are sometimes ill-defined 9
2.3 Automated assessment tools are built for small, well-defined exercises 9

3 Stakeholders, concerns and requirements 11
3.1 Scope and environment . 11
3.2 Stakeholders . 12
3.3 Stakeholder interviews . 13

3.3.1 Participants . 15
3.3.2 Procedure . 15
3.3.3 Analysis . 16

3.4 Use cases . 16
3.5 Requirements . 22
3.6 Mission . 28

II Architecture 30

4 Components 32

5 Datamodel 36

6 Assessment pipeline 39
6.1 Type graph . 42
6.2 Pattern rules . 42

7 Assessment configuration 47

8 User interface 50

1

III Prototype and evaluation 56

9 Prototype 58
9.1 Extractors . 58
9.2 Graph matcher . 59

9.2.1 Subgraph matching algorithm 61
9.3 LLM suggestions . 63

10 Evaluation 65
10.1 Methods . 65
10.2 Addressing requirements . 67
10.3 Prototype experiments . 68

10.3.1 Feasibility of the design 68
10.3.2 Appropriateness of the assessment method 69

11 Discussion 76
11.1 What works well . 76
11.2 Patterns need more expressiveness 76
11.3 The pipeline could be more flexible 77
11.4 Configuration needs better support 78

IV Conclusion and backmatter 80

12 Conclusion 81

Acronyms 83

Glossary 84

References 86

Appendices 91

A Criteria 91
A.1 Algorithms in Creative Technology 91
A.2 Software Systems . 102

B Analysis results 119

2

Chapter 1

Introduction

Learning to program requires feedback, especially when it comes to complex
issues like style and structure. At the University of Twente, courses tend to
include a project which allows students to learn in practice and be assessed
on their practical skills, but this poses a challenge for feedback: since students
are working on their own projects with some freedom to make decisions, every
project is different (Mader et al., 2020). In some cases this is limited to different
programs that solve the same problem, while in others the functionality of the
program could also take different directions between students. With a large
number of students, the only way to scale this feedback practice is with a large
number of tutors, but this increases the chances of inconsistent assessments
(Bloxham et al., 2015; Jonsson & Svingby, 2007). Another option is to partially
automate assessment, which is what we will examine in this study.

As a context, we particularly consider the project assignments given to first-year
bachelor students of the Technical Computer Science (TCS) and Creative Tech-
nology (CreaTe) programmes as part of a programming course that introduces
object-oriented programming. In TCS, students are tasked with implementing
a multiplayer board game with a client/server architecture. Beyond what was
covered in class and the rules of the game, students receive no further guidance
or boilerplate code to start from. In the CreaTe course, students are free to
choose what they build for the project, as long as they include topics covered in
the course. Code quality plays a major part in the assessment of both projects.

Existing tools for automated assessment and intelligent tutoring systems (ITSs)
aim to automate (part of) the assessment and feedback process. Many tools
use automated testing techniques and only work on smaller exercises, for which
there are a known number of typical solution strategies (Le & Pinkwart, 2014).
These tools are difficult to adapt to larger projects, because they are configured
with model solutions and/or test data, if they are configurable at all (Keuning
et al., 2019). When students build projects with more than 20 classes, creating
model solutions that cover all possible solutions is not a feasible endeavour.

We answer the question How, and to what extent, can an automated assessment
tool assess larger programming projects? With larger projects we mean those
projects where students are free to make significant decisions in their design of

3

a solution, like in the examples given before. Projects where students solve a
problem from scratch and where a solution with 10 to 20 classes is reasonably
sized. Projects that serve as the capstone of a course, assessing all intended
learning outcomes (ILOs) covered by that course. Assessing these projects is a
stepping stone towards automated assessment of ILOs throughout the course.

To answer this question, there are a few other questions to consider first, like (1)
What does assessment of projects look like, both manual and automated? and
(2) What are the requirements for an automated assessment tool that assesses
projects? We answer these questions in part I, with the first question in chapter 2
through a review of relevant literature and the second question in chapter 3
through a requirements elicitation process with stakeholder interviews. We
identified the relevant stakeholders, held interviews with some of our stakeholders
to discover their concerns and from those concerns distilled the use cases and
related requirements.

The main question asks how such a tool could work, so based on the requirements,
we ask (3) How to build this tool? As an attempt to answer this question, we
introduce Apollo++, a tool for automated assessment built specifically for larger
projects. We describe the architecture for this tool in part II, with chapters 4
to 8 covering different views on the architecture.

The key features of Apollo++ are its basis in ILOs and assessment criteria,
its support for different program representations and the goal of supporting
rather than replacing manual assessment. First, rather than starting from model
solutions or test cases, the configuration of Apollo++ starts with the ILOs of
a course and the criteria that follow from those. Using these criteria helps to
identify smaller parts of a project that are relevant to assess. Even though the
assessment of a project as a whole is a complex endeavour, some criteria allow
little variation and are thus easy to assess automatically (Rump & Zaytsev,
2022). Starting with ILOs builds on the approach of Apollo (Rump et al., 2021),
which linked the ILOs of a course with abstract syntax tree (AST) patterns to
provide an indication of mastery. In Apollo++ we introduce criteria in between,
to more closely reflect common assessment practice.

Second, to support a variety of criteria, Apollo++ supports the use of different
program representations. Criteria about the design of a class-hierarchy requires
a different view of the program than criteria about the use of arrays and
loops. These different levels of abstraction can be covered by different program
representations, while using the same unified pipeline and configuration.

Finally, the goal of Apollo++ is not to fully replace manual assessment or
feedback. It will not calculate grades or make conclusions about passing or
failing. The goal of the tool is to present information about the project in
relation to the assessment criteria, give an indication of mastery of different
ILOs and support assessment decisions made by human tutors.

As this architecture attempts to answer the question of how this tool could
work, we evaluate its success in part III, answering the question: (4) Is the
design feasible and appropriate? In other words: could a tool actually work
like this in practice? To answer this question, we built a prototype of the core
parts of our design, described in chapter 9. We included the core assessment
pipeline and some configuration functionality, to provide a minimum viable

4

prototype for experiments. In chapter 10, we then evaluate the feasibility
and appropriateness of the design, based on how it addresses the requirements
and through experiments with the prototype on actual student projects. We
discuss the results of the evaluation in chapter 11, highlighting the strengths
and weaknesses of our design regarding feasibility and appropriateness, while
also making suggestions for improvements.

In the closing chapter 12 we review the results from our subquestions and
formulate an answer to our main question: how, and to what extent, can an
automated assessment tool assess larger programming projects?

5

Part I

Background and
requirements

6

This first part continues the introduction by providing background information
on assessment practices, the state of the art of automated assessment and the
requirements we determined for our tool. The two chapters in this part answer
our first two questions: What does assessment of projects look like, both manual
and automated? and What are the requirements for an automated assessment
tool that assesses projects? The answers to these questions are used to guide the
design for our tool, which will be introduced in part II.

7

Chapter 2

Background

In this chapter, we answer the question what assessment of projects looks like,
considering both the manual practice and the state of the art in automated
assessment tools. We will introduce intended learning outcomes and discuss the
ill-definedness of assessment criteria, which are important ideas that inform the
design of Apollo++. We also discuss previous work in automated assessment
tools, with a focus on how they support larger projects and how they can be
configured.

2.1 Assessment starts with ILOs
Intended learning outcomes (ILOs) are statements of what a student is expected
to have learned at the end of a lecture, a course or study unit or even at the end
of a full programme. These statements focus on student behaviour: they describe
an action the student should be able to take after finishing the particular unit of
study, like “At the end of this lecture, students can …” or “After following this
course, you will be able to …” In English, the next parts of these statements will
naturally be a verb and some object. The verb is used to describe the action
a student should be able to take, and the object describes the relevant course
topic. ILOs cover two aspects of learning: they describe the content that should
be learned (the object in the sentence), as well as the level of understanding
that is desired (indicated through the verb). The level of understanding is often
categorised through a taxonomy like Bloom’s taxonomy (Krathwohl, 2002) or
the SOLO taxonomy (Biggs & Collis, 1982).

Including a verb in an ILO not only indicates the level of understanding students
are expected to acquire of that content, but it also helps to design learning
activities and assessment tasks that actually teach students how to perform
that activity. If our intention is for students to learn how to develop software
of average size (10-20 classes), a written exam is not well-suited to assess that
ability. In this case, students should actually spend time developing software
during the course. If the only learning activities are lectures on the principles
of object-oriented programming, it would not be surprising if students do not
meet the intended outcome of being able to develop software. This principle is

8

called constructive alignment: learning activities and assessment tasks should be
aligned with the ILOs of a course (Biggs & Tang, 2011).

2.2 Assessment criteria are sometimes ill-
defined

Projects are different from the typical assignments assessed by automated tools,
because there is no single definite solution to compare with. Open problems
that do not have a definite solution are often called ill-defined – this indefinite
endpoint is one of three criteria Simon (1978; as cited in Fournier-Viger et al.,
2010) gives for calling a problem ill-defined, for example. Fournier-Viger et al.
(2010) argue that ill-definedness is a continuum, ranging from well-defined to
ill-defined, rather than a boolean proposition. Le et al. (2013) describe the space
of ill-definedness along two axes: the number of alternative solution strategies
and implementation variability within a strategy, and the objective solution
verifiability.

In (Rump & Zaytsev, 2022), we extended the verifiability axis and used the
model to analyse two programming projects. Rather than trying to classify a
project as well- or ill-defined as a whole, we considered the assessment criteria
individually. We found that even though students get a lot of freedom to make
decisions in these projects, many criteria are on the well-defined side of the
spectrum, making automated assessment of these criteria feasible.

While ill-defined problems are more difficult to assess, a constructivist view of
education argues that these problems are necessary for learning. An open question
or problem is the starting point for learning in forms of learning with a base in
this tradition, like the driving question in project-based learning (Blumenfeld et
al., 1991; Krajcik & Shin, 2014) or wicked problems in challenge-based learning
(Gallagher & Savage, 2020; Lönngren, 2017).

2.3 Automated assessment tools are built for
small, well-defined exercises

Automated assessment tools for programming assignments have existed for a
long time and use a variety of techniques, but most are designed for small,
well-defined exercises that can be evaluated with tests or by comparing to model
solutions provided by teachers (Ala-Mutka, 2005; Ihantola et al., 2010; Le &
Pinkwart, 2014; Messer et al., 2023a). Configuring these tools to support new
exercises is often difficult or even impossible (Keuning et al., 2019).

More recently, tools have started using data-driven techniques (McBroom et al.,
2022; Messer et al., 2023b; Paiva et al., 2022), which seems a more promising
approach for ill-defined assignments. By analysing patterns in historical student
submissions, these tools can learn to recognize valid solutions without requiring
teachers to enumerate all possibilities. By leveraging the natural variation present
in student submissions, tools can cover variation in approaches without extra
configuration, as would be required for most other techniques. The only exception
is automated testing, which does not care about implementation variation at

9

all, but that approach is limited to only objectively assessable assignments with
strictly defined interfaces.

There are several approaches to using student data: clustering techniques, for
example, identify groups of similar solutions (Choudhury et al., 2016; Glassman
et al., 2015; Gross et al., 2012; Moghadam et al., 2015; Zhang et al., 2023),
allowing teachers to efficiently provide feedback at the cluster level. Other tools
extract common code patterns across submissions to highlight patterns that
might prove of interest (Mens et al., 2021; Nguyen et al., 2014) or use these
patterns as features to train machine learning models to identify positive and
negative examples (Lazar et al., 2017; Možina & Lazar, 2018). Some data-driven
tools interactively involve teachers in the learning phase, for example to mark
which patterns indicate correct and incorrect solutions (Možina et al., 2018),
to guide the system in finding equivalent approaches (Xu & Chee, 2003) or to
define rules based on model solutions (Mitrovic, 2011; Suraweera et al., 2005).

Existing tools that work on assignments that are not objectively verifiable
typically depend on heuristic techniques that only consider some aspects, rather
than the full solution (Le et al., 2013). Nye et al. (2016) recommends that
ill-defined domains are split into well- and ill-defined parts, such that the well-
defined parts can be handled by a tool.

Recent advances in generative AI lead many to reconsider how we will teach
programming in the future and also how we will assess students’ programming
skills (Becker et al., 2023). Experiments with GPT-3.5 show, however, that
current models still struggle to provide accurate feedback on programming
assignments, even on relatively small exercises (Balse et al., 2023). Even when
these models improve and are able to give more accurate feedback, the lack of
transparency in their workings will remain an issue when using them directly in
the assessment process.

10

Chapter 3

Stakeholders, concerns and
requirements

In this chapter, we answer our second question: what are the requirements for
an automated assessment tool that assesses projects? We determined these
requirements through interviews with our stakeholders, but the next section
first introduces the scope and environment for the project. Then we discuss the
stakeholders who have an interest in our tool (in section 3.2), how we interviewed
those stakeholders to find their concerns (in section 3.3) and the use cases and
requirements condensed from those concerns (in sections 3.4 and 3.5). Finally,
we summarize this into a short mission statement in section 3.6.

3.1 Scope and environment
Apollo++ is designed with two programming courses at the University of Twente
in mind: the programming part of the module Software Systems (SS) in the
Technical Computer Science (TCS) programme and the course Algorithms in
Creative Technology (AiC), which is part of the fourth module in the Creative
Technology (CreaTe) programme. Both courses introduce students to object-
oriented programming and let them create a final project to demonstrate their
skills. In these projects, students have considerable freedom to make their own
choices.

In SS, students are tasked with implementing a multiplayer board game in a
client/server architecture. The rules of the game are given, but the students
receive no boilerplate code or guidance beyond the generic principles covered
in the course. On average, these projects contain about 24 classes of Java
code (including tests). Besides the correct implementation of the functionality
(following the rules of the game), the project is also assessed on the design and
quality of the code, (automated) tests, documentation, and the explanations and
reflection in the report.

In AiC, students learn about object-oriented structure in Processing, along with
algorithms to represent physical phenomena in their animations, like flocking

11

and mass-spring-damper systems. Students are free to choose the topic for their
project, as long as they combine at least three elements covered in the course.
The final projects contain about 12 classes on average. The students are assessed
primarily on complexity of the program (is there enough interaction with the
user, are there at least two (non-trivial) classes, etc.), programming style and
code quality. The assessment takes place during an oral examination, where
students are asked to explain their project.

To scale the assessment tasks, both courses use a large group of teaching assistants,
who provide feedback to students during tutorial sessions and also grade the final
submissions. In AiC, a system for code sharing, Atelier, is used during these
tutorials: students can upload their code when asking a question and tutors
can browse the code on their own device with additional comments provided by
tools integrated in the system (Fehnker et al., 2021). Both courses also use an
learning management system (LMS) where students hand in assignments and
the final project. Grading also happens trough this LMS.

We intend Apollo++ to be used to give feedback during tutorials and for grading
a submitted project. The primary users are all teaching staff. Especially for this
first version, we believe that it is best for feedback to be curated by a human
tutor, because they are able to provide context to students and determine what
is the most relevant at a certain point. Thus, we assume that students will not
interact directly with the tool, but they may receive feedback from tutors that
originated in the tool.

While we will focus on this environment for our design, we intend the resulting
architecture to be usable more generally, for example by treating integration with
Canvas and Atelier as a more general integration problem. Still, the intended
environment remains a programming course where students have relatively large
freedom in the code they write, like in the mentioned projects. If a course does
not contain coding assignments with such a degree of freedom, then Apollo++
is likely not the right tool and one of the simpler approaches based on model
solutions or test cases might be better suited.

3.2 Stakeholders
To find the requirements for our tool, we first need to consider which stakeholders
have an interest to take into account in those requirements. We identified a
starter list of stakeholders and during the interviews (see section 3.3) asked the
participants who else we should talk to. This resulted in the following list of
stakeholders:

• Teaching staff, both teachers and teaching assistants. They have different
relations to the tool depending on their role in a course: coordinators may
choose to use the tool in a course, configurators set the tool up with the
appropriate assessment configuration, tutors “in detail” give feedback to
students on an individual level or grade a single submission, and tutors
“in overview” want to incorporate generic feedback in plenary teaching.

• Students are of course stakeholders, even though they do not interact
directly with the tool.

12

• The examination board is responsible for the quality of assessment and
grading.

• Program management is responsible for the study program as a whole
and the quality of content.

• Educational support helps educators in the organisation of their teaching,
including choosing the tools they may want to use.

• Developers and maintainers are, of course, responsible for building the
tool and adapting it to a changing environment.

• System administrators are responsible for deploying the tool and keeping
it running and up-to-date.

These stakeholders can be organized in a power-interest matrix, to determine
how we should treat the concerns of each group. In the power-interest matrix in
figure 3.1, we take power to be the ability to make decisions whether and how
the tool is used in the educational context and interest to be a measure of how
usage directly influences a stakeholder’s (role in) education. We came to this
arrangement by comparing stakeholders on the different axes. Developers/main-
tainers and coordinators have a similar high level of power, as they have similar
power over whether and how the tool is used; teaching staff that directly uses the
tool has a slightly higher interest than the coordinator, and much larger interest
than anyone not using the tool directly; system administrators and educational
support have similar levels of power in an organizational manner, but educational
support has a slightly higher interest when it comes to educational aspects etc.

The matrix clearly shows that the teaching staff are the most important stake-
holders for our project, with both high power and high interest, so their concerns
should be prioritized. The examination board, system administrators, educa-
tional support and program management have lower power and interest, though
they are certainly not in the bottom left corner. While teaching staff is likely
to win when concerns conflict, the concerns of this group should be taken into
account. To a lesser degree, this also holds for students. Opposite to how the
matrix is typically read, we think the student’s concerns should be defended
in the tool, since they have little power over how it is used. With conflicting
concerns, however, they are unlikely to win. Lastly, developers and maintainers
should be kept satisfied, but their concerns are not the most important.

3.3 Stakeholder interviews
To determine the stakeholder’s concerns, we held interviews with representatives
from our stakeholders.1 The stakeholders are or were all involved with teaching or
organisation at the University of Twente, specifically the two courses described at
the start of this chapter. The participants were active as teaching staff, teaching
assistants, members of the examination committee or program management for
one of these courses. Participants were asked about their use case for Apollo++,
specifically about their concerns and the priority of those concerns. The answers
were written in a document during the interview, which participants were asked
to review. These interviews were not recorded.

1These interviews were conducted according to the outlined procedure with approval from the
Ethics Committee Computer & Information Science of the University of Twente. This is known to
them as request RP 2022-178.

13

Figure 3.1: Stakeholders organised in a power-interest matrix. Stakeholders
higher on the y-axis have more power and stakeholders more to the right on the
x-axis have more interest.

14

3.3.1 Participants
We asked 19 representatives from our stakeholders to participate in an interview.
Many of our participants represent multiple stakeholders, for example teaching
staff who will configure the tool and use it both in detail and in overview.
Participants were selected based on their publicly known role in a programming
course or through personal contact and approached via a personally addressed
email. 12 participated in an interview, distributed over the different groups of
stakeholders as shown in figure 3.2.

0 2 4 6
Sysadmins

Dev/maintainers
Educational support

Program management
Examination board

Students
Teaching staff: tutors in overview

Teaching staff: tutors in detail
Teaching staff: configurators
Teaching staff: coordinators

0
0

4
0

1
3

4
7

4
4

Figure 3.2: Number of participants in the interviews per type of stakeholder.
Note that many participants represent more than one type of stakeholder.

Unfortunately, not all stakeholders were represented in the interviews. We based
the concerns of these stakeholders on their role description, general concerns
and how those could relate to the project. The program management’s concerns
were discussed with one of the supervisors of this project, who also happens to
be a program director. The concerns of developers/maintainers were based on
previous experience creating and managing Apollo (Rump et al., 2021). Because
we only build a partial prototype in this study, we decided to not investigate the
concerns of system administrators further, as those would likely be at the edge
of our system and not important in the scope of the prototype.

3.3.2 Procedure
Each interview took about 20 to 30 minutes, depending on the number of
roles the participant represented, and was conducted online or in person on
campus. Each interview started with an introduction, briefing and consent. After
this introduction, we asked questions about what the participant would like a
tool like Apollo++ to do or not do from their different perspectives (e.g. as a
teaching assistant or as a student). Their concerns were summarised and noted
down during the interview. After discussing the concerns from each perspective,
the participants were asked to review the concerns that were recorded in the
document and make any corrections or clarifications. Finally, we asked them to
rate (1) how satisfied they would feel if the tool met that concern and (2) how
dissatisfied or disappointed they would feel if the tool did not meet that concern.
The interview concluded with a debriefing about the next steps and how their
responses were to be used.

By taking notes and repeating back what was written, we guided our participants

15

into formulating concerns. This aids the validity of this method, because
it ensures that we actually get the concerns from our stakeholders, rather
than a story from which concerns are distilled in the analysis phase where the
stakeholder’s point could more easily be misinterpreted.

We believe this format also helped to ensure the reliability of our results, because
our participants were able to review the final artefact and make corrections if
there were any misunderstandings during the interview. By doing the first step
of analysis with the participant present, we can ensure that there is no loss
of meaning or confusion in this step. We also tried to create similar starting
circumstances for each participant by using the same questions, only providing
suggestions from a predetermined list and not referencing concerns mentioned in
previous interviews.

During the interviews we found that the satisfied/dissatisfied scoring system
was difficult for our participants, especially when it comes to dissatisfied scores:
some participants seemed to interpret high scores as high dissatisfaction while
others interpreted low scores as being highly dissatisfied. Clarification during
the interviews did not help and only led to internally inconsistent results. This
means that these scores were not usable to make any conclusions and had to
be discarded. Also, some participants first decided on a MoSCoW category for
each concern and then tried to translate that into satisfied/dissatisfied scores, so
using that system might have been more intuitive for our participants.

Another problem that arose is that some participants had difficulty separating
their different roles, despite repeated guidance in the formulation of our questions.
This means that a concern like “the tool supports Python and GitHub” was
recorded as a concern for a tutor in detail even though it is not their decision to
use the tool in a course or not. It might have been easier for our participants to
describe their role as a teaching staff and distinguish in different use cases.

3.3.3 Analysis
The results of these interviews were lists of concerns for each stakeholder. To
determine the requirements for our tool, we combined all similar concerns for
one or multiple stakeholders. We also recorded the number of participants that
voiced a certain concern to serve as a weak indicator of importance. Next, we
distinguished functional requirements and quality requirements, resulting in the
list of requirements can be found in table 3.1. From requirements that specify
concrete actions we extracted use cases and those concrete actions, which are
shown in figures 3.3 to 3.7.

In the next sections, we will describe those requirements and use cases. The
next section starts with the latter, because the overview of use cases provides
more structure to then understand the requirements.

3.4 Use cases
The list of use cases started from the main use cases mentioned in the scope
of this project: provide individual feedback during tutorials, provide common
feedback in plenary sessions and grade projects. Additionally, there is a need to

16

configure the tool, which we also considered as a use case. Of course, students
have a use case to receive their feedback or grade.

From this starting point, we tried to map each requirement to one of those use
cases. This resulted in additional use cases for teaching staff: as specialized
versions of grading a project, we have “grading a project during an oral exam”
and “grading a project in a grading session”, which have slightly different
requirements. Additionally, teaching staff indicated they would like to help
groups of students with similar needs, like those who make similar mistakes,
in addition to individuals and the whole cohort. Program management and
educational support, as well as teaching staff, would like to use the tool to
evaluate the course based on results as well as on the constructive alignment
between ILOs and assessment criteria. Based on the requirements, we also added
use cases for developers/maintainers to add support for additional languages
and to add support for additional types of criteria.

These use cases are shown in the use case diagram in figure 3.3. All use cases
include an identifier, written between square brackets in this diagram. These
identifiers will be used to refer back to the use cases, indicated by the marker
UC where needed.

Note that not all use cases fall within the system boundary: the developer use
cases do not happen within the system, but rather in development of the system.
Similarly, we keep the student use cases to receive feedback and grades out of
the system, because these should primarily be served by the platforms our tool
integrates with. Use case [C] Configure the tool is not really a use case in the
sense that users want to use the tool purely with the goal to configure it. We
included this as a use case within the system, because stakeholders indicated
that the tool should support them in the configuration phase and many actions
were related to this.

Also note that the actors in these figures do not always correspond directly
to the stakeholder who voiced a concern. External tools were, for example,
not in the group of stakeholders we interviewed, but they are an actor in
the requirement that the tool “integrates with existing platforms” voiced by
coordinators. Likewise, the examination board has concerns about the tool, but
they are not actors interacting with the system themselves.

Because many requirements were focused on actions our stakeholders wanted to
perform, we extended the use case diagram with concrete actions. Figure 3.4
shows the actions related to configuration of the tool, figure 3.5 shows the actions
related to grading and giving individual feedback, figure 3.6 shows the actions
related to plenary feedback, feedback for groups and course evaluation, and
figure 3.7 shows the actions related to the student use cases. In each diagram,
dotted lines indicate which use cases relate to which actions. Like the use cases,
actions include an identifier between square brackets, to refer to them in later
chapters.

Finally, note that even though the RF and RG use cases mainly fall outside the
system boundary, two detailed actions related to receiving feedback are within
the system boundary, because not all external systems include the affordances
needed to perform these actions. Some student-facing interfaces within the

17

Figure 3.3: Use case diagram with the main use cases for Apollo++.

18

Figure 3.4: Concrete actions related to use case C and configuring the tool.

19

Figure 3.5: Concrete actions related to use cases G and FI about grading and
providing individual feedback.

20

Figure 3.6: Concrete actions related to use cases FC, FG and E on plenary
feedback, feedback for groups and course evaluation.

21

Figure 3.7: Concrete actions related to student use cases RF and RG about
receiving feedback and grades.

system will be required for students to receive extended feedback and review
their progress beyond what may be possible in external platforms.

3.5 Requirements
The use cases and concrete actions described in the previous section are derived
from the full list of requirements, which can be found in table 3.1. Each
requirement is linked to related use cases or concrete actions (or “General” if it
concerns the system as a whole), to give this long list some structure. For further
reference in this document, each requirement has a unique identifier, starting
with F for functional requirements and Q for quality requirements. The table
also shows the stakeholders that voiced concerns that led to this requirement
and the number of participants that voiced these concerns during the interviews.
The last column shows the chapters of this document in which each requirement
is mentioned.

Table 3.1: Requirements based on the concerns voiced by stakeholders

ID Use case Stakeholder Count Requirement
Sec-
tion

F1 1 Tutor in
detail

1 Provides suggestions for
where an assessor should
look at the code

8

F2 1 Tutor in
detail

3 Groups similar problems
and repetitions of the same
problem

8

22

ID Use case Stakeholder Count Requirement
Sec-
tion

F3 1 Tutor in
detail

4 Gives quick and clear
overview of assessment

8

F4 1 Tutor in
detail

1 Provides option to ignore all
similar mistakes

7

F5 2, 21 Tutor in
detail,
Student

4 Shows a student’s
progression over multiple
exercises

8

F6 4 Tutor in
detail

3 Gives evidence for
assessment with relevant
code snippets

6

F7 5 Tutor in
overview

1 Assesses overarching ILOs
(e.g. security as a
cross-cutting concern)

5

F8 6 Tutor in
detail

1 Lets tutor extend an
automatic comment with
constructive feedback

4, 8

F9 6 Tutor in
detail

3 Never shows feedback
directly to students
automatically

8

F10 7 Tutor in
detail

2 Allows tutor to share
feedback with students

8

F11 8 Coordinator,
Examination
board

3 Allows teachers to make
their own assessment, e.g. in
a rubric

4, 8

F12 8 Coordinator,
Tutor in
detail,
Examination
board

6 Does not give an
(automatic) grade

6, 8

F13 9 Tutor in
detail, Tutor
in overview

3 Supports comparing
projects by criteria, e.g. to
grade projects per criterion
(with anonymized
submissions, for some cases)

8

F14 12 Tutor in
overview

2 Shows progress of the
cohort during the course

8

F15 13 Tutor in
overview

1 Shows clusters of students
making similar mistakes

8

F16 15 Tutor in
overview

1 Shows clusters of mistakes
that happen together

8

F17 15 Tutor in
overview

1 Links to code examples for
common mistakes

8

F18 16 Tutor in
overview

1 Shows normalized structural
issues / patterns

8

23

ID Use case Stakeholder Count Requirement
Sec-
tion

F19 17 Tutor in
overview

1 Compares metrics like
execution times

8

F20 18 Tutor in
overview

1 Compares groups based on
meta-information
(e.g. gender, pre-knowledge)

8

F21 19 Tutor in
overview

1 Compares with previous
editions of the course
(retroactively, to test the
results of interventions)

8

F22 20 Tutor in
detail,
Student

3 Provides insight into / extra
explanation of feedback,
e.g. by linking to
terminology

8

F23 1, 3 Tutor in
detail

3 Aids in understanding and
navigating the program

8

F24 1, RF Tutor in
detail

1 Uses objective language for
objective observations

8

F25 10, 11 Tutor in
overview

3 Highlights ILOs which are
commonly (not) achieved

8

F26 3, 4 Tutor in
detail

2 Provides quick access to
code context and details

5, 8

F27 4, 20 Coordinator 1 Provides explanation of
assessment on demand

8

F28 BS, BR Coordinator,
Tutor in
detail

5 Integrates with existing
platforms, like Canvas,
Atelier and GitHub

4, 8

F29 C Configurator 1 Can separate parts of
criteria that change
(e.g. rules of the game) and
parts that stay the same
(e.g. overall structure)

F30 C Coordinator 1 Assess non-functional
aspects

6

F31 C Coordinator 1 Does not impose restrictions
on the type of exercise

6

F32 C1 Configurator 1 Has a small language to
formulate ILOs

8

F33 C10 Configurator 1 Supports rules about
variables in camelCase

6

F34 C10 Configurator 1 Supports rules about
if-statements

6

F35 C10 Configurator 1 Supports rules about overly
long methods

6

24

ID Use case Stakeholder Count Requirement
Sec-
tion

F36 C10 Configurator 1 Supports rules about
consistent style

6

F37 C10 Configurator 1 Supports measuring relevant
metrics (e.g. execution time)

6

F38 C10 Tutor in
detail

2 Recognizes code patterns /
design patterns

6

F39 C10 Tutor in
detail

1 Reports code smells 6

F40 C10 Tutor in
detail

1 Recognizes improvement in
code quality

5, 8

F41 C10 Tutor in
detail

1 Supports marking unused
code

6

F42 C10 Tutor in
detail

2 Assesses comments and
code file headers

6

F43 C11 Configurator 1 Gives suggestions for rules 7
F44 C12 Configurator 1 Supports grouping of

criteria
5

F45 C13 Configurator 2 Supports different ILOs for
consecutive parts of a course

5

F46 C13, 1 Tutor in
detail

2 Only shows learning
outcomes relevant to the
current part of the course

5

F47 C14 Coordinator 1 Works with exercises where
students improve existing
code

5

F48 C2 Configurator 1 Provides option to copy
relevant parts from previous
course editions

5

F49 C2 Configurator 5 Has a community/library to
share ILOs, criteria and
rules with others and other
courses, with explanation
and interpretation

8

F50 C3 Configurator 1 Allows criteria without link
to an ILO (e.g. on grammar
in a report)

5

F51 C4 Configurator 1 Can link criteria to multiple
ILOs

5

F52 C5 Configurator 1 Can configure importance of
criteria (to aid sorting)

5

F53 C6 Configurator 1 Allows configurator to
match discovered patterns
to criteria

7

25

ID Use case Stakeholder Count Requirement
Sec-
tion

F54 C7, C8 Configurator 4 Gives support while
configuring ILOs, criteria
and rules, with
documentation, examples
and/or live assessment of
example project

8

F55 C9 Configurator 1 Gives feedback on ILOs and
suggests what can be
assessed in the tool

7, 8

F56 C9 Configurator 1 Gives feedback on link
between ILOs and criteria

7, 8

F57 E Tutor in
overview

1 Provides dashboard or
report for evaluation at the
end of the course

8

F58 EA Examination
board,
Educational
support

2 Can provide information
about constructive
alignment

8

F59 FI, RF, 7 Student 1 All feedback is checked by a
teacher or TA

8

F60 General Coordinator 1 Fits in the context of the
module

6

F61 General Coordinator,
Tutor in
detail

2 Supports the programming
language(s) used in the
course

6

F62 General Tutor in
detail,
Examination
board

2 Assessment of a criterion is
not binary

6

F63 Out of
scope

Coordinator,
Tutor in
detail,
Examination
board

3 Works with a plagiarism
checker

F64 Out of
scope

Examination
board

1 Helps in the inspection of
borderline cases

F65 Out of
scope

Tutor in
overview

1 Reports on consistency
between assessors

F66 Out of
scope

Tutor in
overview

1 Reports on consistency
between assessors for a
single project

F67 RF Student 1 Also notes things that are
done well, not just mistakes

8

26

ID Use case Stakeholder Count Requirement
Sec-
tion

F68 RF Student 1 Is less hesitant in the
wording than to tutors

F69 RF Student 1 Shows who (which tutor)
shared the feedback

5, 8

F70 RF, RG Student 1 Shows assessment as a
rubric

Q1 AL Developer /
Maintainer

1 Can easily be extended to
support additional
languages

6

Q2 AP Developer /
Maintainer

1 Can easily be extended with
different metrics and types
of patterns

6

Q3 BS, BR Coordinator 1 Integrations with other
systems are seamless
(details are important here)

4

Q4 C Configurator 1 Sensibly groups options in
the configuration UI

8

Q5 C Configurator 1 Hides unused options in the
configuration UI

8

Q6 C Coordinator 1 Provides basic funtionality
with minimal configuration

8

Q7 C Coordinator 1 Rubrics are easy to import
and export

Q8 G, FI,
FC

Coordinator 1 Is not overwhelming with
300 projects

8

Q9 General Coordinator 1 In summative contexts,
assessment has high
reliability and validity

7

Q10 General Coordinator 1 In formative contexts,
assessment has sufficient
reliability and validity to
serve as a discussion starter

7

Q11 General Coordinator 1 Works correctly and does
not spew error messages

Q12 General Coordinator 1 Provides option to tweak
every little setting

Q13 General Coordinator,
Configurator

4 Is easy/simple/intuitive to
use, especially on first
interaction

8

Q14 General Coordinator,
Tutor in
detail,
Examination
board

3 Assessment is reliable
enough to be trusted

7

27

ID Use case Stakeholder Count Requirement
Sec-
tion

Q15 General Examination
board,
Educational
support

2 Assessment is reliable, valid
and transparent

7

Q16 General Student 1 Has an understandable
assessment process

7

Q17 General,
3

Tutor in
detail

1 Has fast and easy
interaction, quick navigation

8

Q18 RF Student 2 Gives constructive feedback,
or keeps silent otherwise

8

From the list of requirements, we can see that the most requested feature of
our tool is that it will not automatically give a grade (F12). Six participants
mentioned this during the interview, including coordinators, tutors in detail and
members of the examination board. Next on the list is the integration with
existing platforms (F28) and the ability to share course configuration, including
ILOs, criteria and rules with others to reuse or as an example (F49).

We deemed four requirements to be out of scope for this project, namely that

• the tool includes or works with a plagiarism checker (F63). This is out of
scope, because Apollo++ should integrate in other platforms, which often
already come with tools for plagiarism checking or can integrate with those
tools.

• the tool helps in the inspection of borderline cases when it comes to grades
(F64). This is out of scope, because the tool does not perform automatic
grading and thus has no ability to highlight borderline cases automatically.

• the tool can analyse the consistency between different assessors (F65, F66).
This would require comparing manually entered assessments, which is
beyond the scope of this project.

Based on these requirements, the next section describes the mission for this
tool. In the coming chapters, we will assume that these requirements describe
the intended behaviour of the system. Each statement about the design will be
accompanied by a reference to one or more requirements, both to explain why
that statement is needed and to show how all requirements are implemented.

3.6 Mission
Apollo++ aims to be supporting and flexible. It is flexible, because it supports
every criterion that could be assessed by looking at code and every such criterion
in a course is configurable in the tool. It integrates with LMSs and other
tools and can be extended to support multiple programming languages. It is
supporting, because it helps teachers assess projects by highlighting the code
that is relevant to certain assessment criteria, rather than performing automatic

28

grading. The tool also leverages previous submissions to support teachers during
the configuration phase with suggestions and immediate feedback.

29

Part II

Architecture

30

In part I, we determined the requirements for a tool that performs automated
assessment on larger programming projects and formulated support and flexibility
as the two guiding principles for our design decisions. In this part, we introduce
a design for Apollo++ based on those requirements as an attempt to answer
our third question: How to build this tool? In part III we will then evaluate this
design.

The chapters in this part describe the design for Apollo++ from different
viewpoints. Chapter 4 describes the components that make up this system,
which gives an overview of the system as a whole and helps to place the other
views in context. Next, chapter 5 describes how the data in the system is
structured, chapter 6 describes how the assessment pipeline works, chapter 7
describes how the tool supports users in the configuration phase and chapter 8
describes how the user interface is organized to provide access to all functionality
in relation to the interfaces provided by an existing system. Together, these views
should provide a clear picture of the system and include the most important
decisions for an implementation.

31

Chapter 4

Components

Given the aim of a flexible system, an architecture of loosely coupled components
is an obvious choice. This primarily addresses the integration with multiple
other systems (F28) and enabling these integrations to be as seamless as possible
(Q3). Each component, of course, also addresses its own concerns, which are
described below.

This decomposition is visualised using a UML component diagram, with a few
extensions: a dashed line is used to indicate a direct correspondence between
a back-end and front-end component, which need no other interfaces than to
communicate between each other; and incoming and outgoing interfaces are
not all connected like they would normally be. Interfaces with the same labels
should be read as if they are connected to the corresponding interfaces on other
components. Communication between the components is visualised with a UML
activity diagram.

Figure 4.1 shows the components of Apollo++. The diagram shows three types
of components, namely the Integrator component on the left, which connects
the tool to other systems; the core components in the centre, which provide
the backend functionality; and the UI components at the right, which provide
different parts of the user interface. Overall, this component decomposition allows
us to integrate with different external systems by providing multiple Integrator
components for systems like Canvas, Atelier or GitHub (F28). Because the UI is
split in different components, it allows parts of the UI to be integrated in an
external system if that system supports such integrations. This helps to make
the integration as seamless as possible (Q3).

All components play a role in fulfilling one or more of the use cases described in
figure 3.3:

• The configuration (UC C) is handled in the Assessment Configuration and
Configuration UI components.

• External tools can submit code and retrieve the assessment (UC BS, BR)
through the Integrator component.

• Grading and providing individual feedback (UC G, GO, GS, FI) happen
through the Integrator component where possible and the Code Review UI

32

Figure 4.1: Component decomposition of Apollo++, with three types of com-
ponents: the Integrator connects with other systems, the core components in the
centre provide the backend functionality and the UI components on the right
provide the user interface.

33

where it is not, backed by the Assessment Pipeline. The integrated system
or the internal UI allow users to view the automated assessment (UC 1,
5), navigate the project (UC 3), review relevant code snippets (UC 4),
edit feedback and assessment or grading (UC 6, 8) and share the feedback
with students (UC 7). The Assessment Pipeline provides the automated
assessment data (UC 1, 4, 5).

• Students receive feedback and/or grades (UC RF, RG) through the Integ-
rator in an external system and/or in the Code Review UI.

• Feedback for groups of students (UC FG, FG) and course evaluation (UC
E, EA) happen through the Analysis UI, which is backed by the Analytics
Engine. The latter performs all analysis that spans multiple submissions,
over time or by multiple students. This covers all actions that are related
to the mentioned use cases, but also includes the progress over time of a
single student (UC 2) and reviewing projects “horizontally” per criterion
(UC 9).

• The Course Management, Course Management UI and the Homepage are
necessary for all use cases. The tool needs to be linked to a course in an
external system for any functionality to work. If the external system does
not allow for deep linking, then the Homepage provides access to all UIs
within the tool.

To clarify how these components communicate, the activity diagram in figure 4.2
shows how the components interact when a student uploads a submission, which
gets automatically assessed and then manually reviewed by a teacher. (Also see
figure 8.2 in chapter 8 for a more user-centric version of this activity diagram.) As
soon as an (automated) assessment is available, this is pushed back to integrated
systems via the Integrator component and when a tutor updates the assessment
this is again propagated through the system. This allows teaching staff to
extend the automated assessment or include their own feedback (F8, F11), while
integrating with an external system as seamless as possible (Q3).

Given this reactive behaviour in the communication between components and the
need to work with different types of Integrator components, a central messaging
bus should be used for this communication. This helps to keep track of updates
to the data and propagate it throughout the system, while also aiding in building
new Integrators without changing all components that produce data.

Overall, the most important feature of this component decomposition is the
ability to include different Integrator components to integrate with multiple
platforms without changing the rest of the application. The reactive nature of
communication between components allows for a combination of automated and
manual assessment, while keeping all parts of the application and integrated
systems up-to-date. The next chapter describes the structure of data at the
interfaces between these components.

34

Figure 4.2: Activity diagram showing communication between components when
a student submits their project and a tutor assesses it. The rounded boxes
represent actions within a component, while the rectangular boxes indicate the
type of data passed between components.

35

Chapter 5

Datamodel

This chapter introduces the datamodel for Apollo++: it describes the information
that is shared between components when it comes to configuration, submissions
and assessments. This model does not include the information around the ana-
lysis part of the system, as that is concerned with relatively standard analytical
information and does not require much elaboration. The datamodel for configur-
ation and results has some special features to meet the requirements of the tool,
so it is worth discussing. The datamodel is presented as a UML class diagram,
but the diagram is not exhaustive. Standard features like titles, descriptions,
names and dates are omitted to focus on the structure of the model.

Figure 5.1 shows the datamodel for Apollo++. The central part of the system is
the configuration: ILOs, criteria and rules. ILOs can be linked to many criteria,
but a criterion does not necessarily link back to an ILO. This may be the case
when grammar in a report is assessed but “the student can write grammatically
correct reports”1 is not an intended outcome of the course (F50). A criterion
could also apply to multiple ILOs (F51). Criteria are automatically assessed
through rules configured by a teacher. These rules can be based on code patterns
or based on metrics, which will be explained in chapter 6. Criteria can be related
to multiple rules, which can be marked as providing positive or negative examples
for meeting a criterion.

Courses come with a set of ILOs, but can also include those criteria that
are not linked to an ILO. To provide more organization, assignments can be
created, which can reference their own set of ILOs and criteria. This allows
the configurator to indicate which ILOs are relevant at each point in the course
(F45), so that the tool will only show those ILOs and criteria when assessing a
submission for that assignment (F46).

Metadata around a criterion in a course can optionally be added through a
separate data structure. This allows grouping of criteria by category to create
an organization similar to a rubric or assessment form (F44) and an importance,
which can be used to highlight important criteria when assessing a submission
(F52). Note that the cardinalities round ILOs, criteria, courses and assignments

1Note that Apollo++ will only automatically assess code, but ILOs and criteria around reports
could still be added in the system.

36

Figure 5.1: Datamodel for configuration, submissions and assessments in
Apollo++. The top part describes the structure of courses, assignments, ILOs
and criteria. Criteria are linked to rules, described in the centre-right. Sub-
missions relate to an assignment and receive an assessment, which includes
comments and results that are based on a rule.

37

are very flexible to allow reusing ILOs (and their related criteria and rules)
across multiple courses (F7, F49) or reuse them from previous editions (F48).
Assignments also include a special reference to a submission, which enables it
to be used as a baseline on which students can build or improve (F47). The
assessment results for this submission can be compared to new submissions to
see how students improved the code using the analysis features (F40, described
in chapter 8). Besides the hard link to one or more courses, Apollo++ poses no
restrictions on the type of assignment given, as long as it involves submitting an
artefact (F31). With this flexible structure, the tool should be suitable for use
in any course where the assessment approach makes sense (F60).

Each submission can get a single assessment, which combines automatic assess-
ment results and comments written by a human. The results link back to the
rule that produced the result, which in turn links it to a criterion. Pattern
results have a reference to the source code location (F26) and metric results
include the value of the metric that triggered the result. Manual comments also
reference a criterion and are marked as positive or negative examples, so they
can be included in the same overviews as the automated assessments. They
include a reference to the relevant location in source code and who authored the
comment (F69).

This datamodel describes how the data that is passed between components
relates and what information is available in the application. The next chapter
describes how the rules in this model are used to give assessment results for a
submission.

38

Chapter 6

Assessment pipeline

In this chapter we discuss the inner workings of the Assessment Pipeline compon-
ent, which takes in the student’s code and outputs the assessment results based
on a configuration, addressing requirements about the assessment process. The
pipeline is visualized using a “pipeline diagram”, which is explained in figure 6.1.
The square in the centre represents a component in the pipeline, which is similar
to a process step in flowcharts. The slanted boxes represent different types of
information flowing through the pipeline and the curved box represents stored
information that is used in the process. The difference between pipeline input
and stored information is that the pipeline input varies for every run of the
pipeline, whereas the stored information stays the same.

Figure 6.1: Example of a pipeline diagram. The square box represents a
component, the slanted boxes represent types of information flowing through the
pipeline and the curved box shows stored information that remains the same
across runs.

Figure 6.2 shows the assessment pipeline for Apollo++. The pipeline starts
at the top with some input data, which is the code a student submitted in a
certain programming language. Boxes with the <lang> marker are specific for a
certain programming language, so these components need to be implemented
when adding a new programming language to the system. The pipeline only
contains two components that are language-specific, so the changes needed to
support another language are contained in those modules (Q1, F61).

39

Figure 6.2: Pipeline diagram of the Apollo++ assessment pipeline. The slanted
box at the top represents the input data (code in a certain programming language),
which flows through the pipeline. Boxes marked with <lang> are specific to a
certain programming language and all others are generic components.

40

The first component in the pipeline is the Extractor, which takes the source
code and translates it into different models. This Extractor should be based
on a compiler or editor API where possible to prevent reimplementing the full
compiler with possibly slight changes in semantics. The first model provided by
the extractor is the M3 model described by Basten et al. (2015). This model
defines a set of relations that describe a program, such as the containment
of methods in classes, the reference of a type in a field declaration etc. This
makes it a good candidate for a universal representation which can be used to
compute metrics by the Generic Metric Computation component. The other
models created by the Extractor are graphs, such as a graph with type relations
(inheritance, references, containment, see section 6.1), a program dependence
graph (PDG) or other graph representations.

New graph representations can be added here to support specialised features in
a programming language or a type of pattern that is hard to define using the
other representations. This flexibility allows the tool to be extended with new
types of patterns by extending an Extractor to produce this new type of graph
(Q2). All graphs are passed on to a universal Pattern Matcher, which takes a
graph and matches the stored pattern rules configured by a teacher against that
graph. In the simplest form this is just subgraph matching: checking if a pattern
graph is contained in the extracted program graph, but more complex situations
may require extensions such as checking for the absence of nodes or edges. In
section 6.2 we describe a structure that also enables patterns that forbid certain
elements.

By using a generic component for this task, rules at different levels of abstraction
can be implemented with different graphs while maintaining a common infra-
structure for all rules (F33 to F36, F39, F41, F42). On an appropriate graph,
these rules could also be used to recognize design patterns (F38). The Pattern
Rules are configured by teachers and provided as subgraphs with a relation to
some assessment criterion, such that the matches can be linked to a criterion in
the Results.

The top half of the pipeline shows how metrics are handled (F37). A Generic
Metric Computation component takes the M3 model generated by the Extractor
to compute common metrics based on the relations in that model. A language
specific Metric Computation is used to calculate metrics that require access
to the source code or AST and thus are only applicable to one programming
language. These Metrics are combined and passed to the Metric Analyser which
uses Metric Rules to make conclusions about criteria related to those rules.
These rules can be used to define ranges in which a metric should fall to meet
a criterion, for example. The combination of graph matching rules and metric
rules covers most types of criteria, including non-functional aspects of the code
(F30).

The Results are a list of criteria with examples and counterexamples found in the
code as evidence that a criterion has been met or not (F6), but without a yes or
no decision on meeting the criterion (F62). Additionally, this includes pointers
to parts of the program that were not used in examples or counterexamples, to
help assessors find the blind spots of the tool and evaluate those parts manually.
A grade or other summative conclusion is not included in these results (F12).

41

6.1 Type graph
Besides common program representations, such as a control flow graph or program
dependence graph, we propose a graph that represents the class structure of an
object-oriented program. The nodes in this graph represent the classes, interfaces,
primitive types, fields, constructors, methods, parameters and variables in the
program, with directed labelled multi-edges indicating the relationships between
these elements. For classes this includes extends and implements indicating that
the class extends the class or implements the interface the edge points to; an
invoke edge means that the element invokes the method pointed to, overrides
indicates a method overriding a method on a base class and accessesField
indicates that an element reads or writes a field. Any element that uses a type
in some way has an edge to indicate that it dependsOn that type: fields use the
edge to indicate their type, methods point to their return type and parameter
types etc. Finally, the contains relation means that one element contains another:
classes contain their fields and methods, a method contains its parameters etc.

The invokes, accessesField and dependsOn relations are extended to all elements
that contain the element with the relation. So if methodA in classA invokes
methodB, then classA also gets an invokes edge to methodB. This makes it
easier to define patterns without having to include every element.

The nodes of the type graph can also have one or more labels, which can be
encoded as labelled self-edges. These include either inProjectDecl for elements
that are declared within the project or externalDecl for elements from the
standard library or other external libraries. Elements with inProjectDecl also
include a scheme: the type of element that node represents, e.g. a class or field.
Elements with externalDecl include the scheme as well as the fully qualified
name of that element. Lastly, the elements can be labelled with a modifier like
public or private and a nameClass, which means that the name of the element
includes a certain substring. The latter can be useful to detect patterns with
common names, such as a *Factory or *Visitor.

6.2 Pattern rules
Some criteria require checking for the absence of certain nodes or labels, rather
than a simple subgraph check. Take for example the criterion “All fields except
constants are private.” This should positively match all fields that have a private
modifier but no final modifier (in Java), and negatively match all fields that do
not have either modifier. This is called a negative application condition, which
is commonly used in graph transformation techniques (Heckel, 2006). Figure 6.3
shows two patterns, which both match a single field in the TypeGraph and have
a forbidden node-label indicated by an exclamation mark and red colour. The
left pattern is a positive match on a field that has a private modifier and no
final modifier, whereas the right pattern is a negative match on a field that
does not have either a private or a final modifier.

This can be implemented by first finding all matching subgraphs for the pattern
without any of the forbidden labels and then discarding all mappings that can
be extended to include one of the forbidden elements. One drawback of this
approach is that it is more difficult to extract forbidden elements from code.

42

Figure 6.3: Two patterns for “All fields except constants are private.” using
negative application conditions. The left pattern positively matches fields that
are marked as private, whereas the right pattern negatively matches fields that
are neither private nor final.

Instead, we propose a structure that also enables patterns to forbid certain
elements, but also makes it easier to create variations of a pattern and to grow
the pattern with nodes that are connected in previously submitted solutions (see
chapter 7).

Figure 6.4 shows a tree of patterns, where each child extends its parent. This
notation is convenient for a case with many variations, because the base pattern
is not repeated in every pattern. Figure 6.5 shows how the patterns are combined
into a full pattern at each node of the tree.

Rather than only positive or negative matches, there are also neutral matches
to ignore certain conditions. The final verdict is given by the deepest matching
patterns in the tree. In this example, all fields will match with the root of the
tree (a). Then we recursively try to extend the match with each child. If none of
the children match, then this is our final match. If one or more of the children
return a match, then we continue searching in those branches and discard the
current node. We can consider four cases that match the root pattern (a):

• A non-private, non-final field. Neither of the children (b) and (c) can
extend the mapping, so we return the mapping at (a) with the verdict
negative.

• A private, non-final field. The mapping can be extended by (b), so
we discard the result from (a). At (b), we recursively try to extend the
mapping with the only child (d), which does not extend the mapping, so
we return the mapping at (b) with verdict positive. The pattern at (c) can
not extend the mapping, so that branch is discarded.

• A final, non-private field. The mapping can be extended by (c), so we
discard the result from (a). (c) has no children, so we return the mapping
at (c) with the verdict neutral. The pattern at (b) can not extend the
mapping, so that branch is discarded.

• A private final field. The mapping can be extended by both (b) and
(c), so we discard the result from (a). (c) has no children, so we return
the mapping at (c) with the verdict neutral. At (b), we can extend the
mapping with (d), so the result from (b) is discarded. (d) has no children,
so we also return the mapping at (d) with the verdict neutral.

43

Note that because the tree has multiple branches, multiple results can be returned.
In this case, the result is equivalent to the patterns with negative application
conditions in figure 6.3: non-private, non-final fields are marked negative;
private, non-final fields are marked positive; and other variations are neutral,
which we consider to be the same as no match.

Figure 6.4: A pattern tree for “All fields except constants are private.” with
the same semantics as the two patterns in figure 6.3. The top node negatively
matches fields that are not private or final, the left node on the second level
positively matches private fields, the node on the third level discards fields that
are private and final and the right node on the second level discards nodes that
are final.

Note that this process requires repeated subgraph matching of similar query
graphs. To do so efficiently, the subgraph matching algorithm should include a
way to extend a mapping found for a subgraph of the query into a full mapping
for the entire query. Most subgraph matching algorithms work by recursively
extending a mapping and building a search tree of all possibilities, so this should
be possible to do with most algorithms. It is important to note, however, that the
extension of a query may invalidate what was a valid mapping for a subgraph of
that query. This is easily solved by checking the validity of the existing mapping
against the subgraph of the query induced by the nodes of the original subgraph.

The benefits of this pattern tree structure are that small variations on large
patterns can be described succinctly and that many variations can be checked
efficiently by reusing the mappings found for parent nodes in the graph. The
configuration engine can suggest extensions to the tree based on common neigh-
bours that were found for each pattern in previous submissions. This and other

44

Figure 6.5: The pattern tree from figure 6.4 with each pattern expanded to the
full subgraph.

45

functions of the configuration component are described in the next chapter.

46

Chapter 7

Assessment configuration

This chapter gives a functional decomposition of the Assessment Configuration
component. The user that configures the tool uses the Configuration UI com-
ponent to build the configuration as described in chapter 5. The Assessment
Configuration component provides services to support the user during this pro-
cess and which are, of course, surfaced in the Configuration UI. The different
functionalities are visualised using a functional decomposition diagram.

Figure 7.1 shows the three main areas of functionality provided by the Assess-
ment Configuration component: discovery of graph patterns (F53), providing
suggestions for rules (F43) and evaluating constructive alignment (F55, F56).

Graph patterns to be used in rules can be discovered from old submissions. This
helps teachers in the configuration process by surfacing common patterns in
students code which can be positive or negative examples for certain assessment
criteria. As described in chapter 6, Apollo++ uses different graph representations
of a program to assess different types of criteria. These same graphs can be
made of a large set of past submissions in order to find common graph patterns
using well-known subgraph mining techniques (e.g. (Yan & Han, 2002)), but
previous work (Mens et al., 2021) and some experiments showed that configuring
these algorithms to find useful graphs is rather fiddly. Instead, we propose to use
a large language model (LLM) to suggest starting patterns based on the written
criteria, by simply providing the criterion and asking it for a graph pattern that
would match code that fits with that criterion. This way we can harness the
power of these models, but still provide a transparent and reliable assessment,
because a teacher is still in charge of the actual rules that are used in the
assessment process (Q9, Q10, Q14, Q15, Q16). These patterns are then matched
against the set of old submissions and extensions and variations are suggested
based on the neighbourhood of the matched subgraph in those submissions.

While using the tool, examples may pop up where the tool made an incorrect
assessment. By highlighting these cases, the tool can provide suggestions to
change graph patterns to exclude these cases from the positive examples and
create a new rule to highlight the case as a negative example (F4). This can be
done by extending the subgraph with elements found in the new situation, using
the existing set of already assessed submissions for cross-checking.

47

Figure 7.1: Functional decomposition of the Assessment Configuration compon-
ent, showing the three main areas of functionality and the specific functions in
that area.

48

Finally, the tool should give some feedback on the constructive alignment between
ILOs, criteria and rules. Ideally the assessment criteria should cover all ILOs,
but it can be difficult to keep track of this when creating an assessment form.
Since the tool requests teachers to link their criteria to an ILO, it can easily
provide feedback on this alignment during the configuration process (F56). It is
also important to see what is assessed automatically by Apollo++ and which
criteria are not covered by assessment rules. This can either be used to find
which criteria should be configured with more rules, but can also serve as a
reminder that manual assessment of these aspects remains important (F55).

This component is relatively simple and only needs to provide interfaces to
execute the described functions from other components, which are mostly in
the Configuration UI component. In the next section, we describe how this and
all other information is available to users in the UI and how they interact with
these and other features.

49

Chapter 8

User interface

This chapter discusses the user interface of Apollo++: the workflows and what
information is available where in the UI. This addresses concerns from many
direct users, because it describes how they interact with the tool. We use a
UML activity diagram to visualise the typical workflow and a “navigation and
information diagram” to describe how the UI of the tool is organised.

Figure 8.1 shows how a navigation and information diagram is organised: the
system contains multiple UI components or pages, each represented by a box with
the name of that component. These components represent pages within a website
or sections of an application, but in the abstract represent a grouping of similar
information that is commonly accessed together. The list of elements below
the divider describes the information that is available through that component,
either to be viewed, or to be edited. Arrows describe navigation actions (links,
in the case of a webpage). These links can point to a component or page in
general if it points to the header or to a specific bit of information if it points to
that item. Similarly, links can originate from the general page, in which case
you could expect to find them in a header or menu, or from a specific item, for
example to link items in a collection view to a page with more detail about one
element. Arrows are drawn in the direction of a typical navigation flow, but
navigation in the reverse direction should also be possible.

Figure 8.1: Schema of a navigation and information diagram. The boxes represent
UI components or pages, listing the information that is shown. Navigation links
are shown as arrows: between the headers for general page navigation and
between specific lines of information for deep links.

50

Figure 8.2 shows the workflow of a student uploading a submission, which gets
automatically assessed and reviewed by a tutor after which the student can
review the feedback. After automated assessment takes place, the assessment is
shared with the external system, but should not yet be visible to the student
(F9, F59). If the external system does not support such access-control, then
this assessment will not be available there. In this example the tutor uses the
Apollo++ UI to review the assessment, update it and share it with the student,
after which the updated assessment is again forwarded to the external system
where the student is able to review the feedback (F10). This process helps to
ensure that only constructive feedback reaches the student (Q18), which often
requires more context than is viable to produce automatically in large projects.

Alternative flows include that the tutor first reviews the assessment in the
external system and shares it with the student from there or that the students
want to see more detail than is available in the external system and opens the
Code Review UI of Apollo++ to review the feedback.

Figure 8.3 shows the navigation and information diagram for Apollo++ integ-
rated with an external system like an LMS. The model for the external system
is, of course, not complete, but includes only the components that are relev-
ant when integrating Apollo++. The links between these systems show how
Apollo++ integrates in the UI of an external system (F28). How much and which
information can be displayed in there differs: when integrating through Learning
Tools Interoperability (LTI) Assignment and Grade Services (AGS) (Learning
Tools Interoperability (LTI) Assignment and Grade Services Specification, 2019),
for example, assessment information is limited to a grade and a comment; the
Canvas LMS additionally allows embedding an iframe in its SpeedGrader to
directly access an LTI tool; Atelier and GitHub on the other hand are more
focused on code and support inline code comments, but have no native notion
of a grade. In all cases, there should be the option to link to Apollo++’s Code
Review UI, so that all information can be accessed.

To make integrations as seamless as possible (Q3), as much information as
possible should be shown in the native UI of the external system, with links to
Apollo++ to get more details. If the system allows embedding, Apollo++ UI
components can be embedded in the relevant places. Custom CSS could be used
for each integration to match the style of the platform and provide a seamless
integration. If neither is possible, links to Apollo++ should be added. The tool
also has its own Course Homepage, to ensure all other components are accessible
even if the external system is unable to link there. The Course Management
UI is necessary to set up the tool, create courses and link it to the external
system. The only requirement for these pages is that they have clear structure
and search functionality, so that it remains usable with many submissions (Q8).
Other than these, the components are typical for any such system and do not
need further elaboration.

The most important part of the system for regular users is the Code Review UI,
used for grading and individual feedback by tutors (UC G, FI) and receiving
feedback by students (UC RF). This component should provide a great UI for
assessing code projects, even if no automated assessment were available. The
automated assessment is provided as assistance in this UI, so that tutors are in
charge of their feedback and assessment (F8 to F12). This also makes sure that

51

Figure 8.2: Activity diagram showing the actions taken when a student submits
their project and a tutor assesses it. Rounded boxes represent actions and the
rectangular boxes represent the data that is created.

52

Figure 8.3: Navigation and information diagram for Apollo++, with an external
system (like Canvas or GitHub) on the left and the internal Apollo++ UI
components on the right.

53

even with minimal configuration the tool is still useful (Q6).

The Code Review UI has a clear overview of the assessment, which highlights
some criteria that have clearly been met, criteria for which some counterexamples
were found and criteria for which no evidence was found at all (F1, F2, F3, F67).
Users can drill down in these criteria to view the relevant code snippets (F26).
This part also links to the Analysis UI component to see the progression over
time of this student (F5).

The main part of the Code Review UI shows both the submitted code and
all assessment/feedback information. Both parts should include bidirectional
navigation to the relevant assessments from some location in the code and to
relevant code snippets from some assessment, such that tutors can quickly find
the information they are looking for (Q17). The code viewer aids in navigating
the project, similar to the tools found in a modern code editor (F23). Terminology
in the assessment texts, either automatically generated or provided by a tutor,
should link to an explanation of that terminology (F22, F27) and automatically
generated texts should use objective language (F24). The author of the feedback
(automated or a person) should be clearly shown (F69).

The Configuration UI is used to configure the ILOs, criteria, rules and course
structure (UC C). Within the Configuration UI, the navigation between those
four should be seamless, because while adding criteria, the user may discover
a missing ILO, for example (Q13). Ideally, the flow should start with the
configuration of ILOs (F32), then the criteria by which those ILOs can be
judged and the rules that encode those criteria. Finally, these can be mapped to
assignments throughout the course. Splitting these into separate sections helps
to keep the UI organised (Q4, Q5), but, in reality, this process is of course not
as linear, so the parts should be closely interconnected.

Writing good ILOs is not easy, so the tool should provide teachers with guidance
at this point. A community or library where teachers share their ILOs, criteria
and rules, combined with some explanation was one of the top requests by con-
figurators (F49), as well as direct support from the tool during the configuration,
for example by showing the results on an example project (F54). Configurators
also want feedback on which ILOs are assessable automatically by the tool (F55)
and which criteria relate to each ILO (F56).

Finally, the Analysis UI shows all aggregated information across multiple sub-
missions, to provide feedback to groups of students (UC FC, FG), evaluate
the course (UC E, EA), view a students progress over time (UC 2) or perform
horizontal grading of projects by criterion (UC 9). The information related to
these use cases can be covered in multiple sections or subpages: the criteria
that are commonly met or missed (F17, F25); the results of all projects per
criterion (F13); progress over time (F5, F14, F40); common code patterns (F18)
and statistics on metrics (F19); clusters of mistakes that happen together (F16);
clusters of students who make similar mistakes (F15); and the alignment between
ILOs, criteria and assignments (F58). For all of these it should be possible to
view the data of the cohort, a selected group or a specific student (F5) and to
compare different selections (F20). It should also be possible to compare the
data with previous editions of a course (F21).

To bring everything together in a single Analysis UI, the main view consists of a

54

dashboard that shows an overview for each type of information, with the ability
to dig in deeper in a detailed view (F57). Given the flexibility required to make
comparisons, an existing dashboard and data analysis solution should be used,
so that users get full access to all data they find interesting, without the need
to integrate all different aspects in the application itself. The tool should come
with the common use cases described above already configured.

Overall, the UI makes all functionality of Apollo++ available to users, but we
also aim to let users stay within the systems they are already using as much as
possible.

55

Part III

Prototype and evaluation

56

Based on the design formulated in part II, this part answers our last question:
Is the design feasible and appropriate? In chapter 9 we introduce a prototype
that implements the core parts of the design. In chapter 10, the prototype is
used for an empirical evaluation of the tool on real student data, alongside an
analytical evaluation of the design. Chapter 11 discusses the results, highlighting
its strengths and weaknesses.

57

Chapter 9

Prototype

We have implemented a partial prototype of Apollo++1, consisting of the
graph-based parts of the Assessment Pipeline component and the Discovery
functionality of the Assessment Configuration component. These parts were
selected because they form the core of the system and allow us to evaluate the
configuration flow and the assessment method with real data. The prototype is
built in three parts:

• Extractors for Java and Processing. These take the code as input and out-
put graphs as JSON files. Currently, only the TypeGraph is implemented.

• Graph matcher. This implements the Pattern Matcher part of the Assess-
ment Pipeline and the Discovery functionality of the Assessment Configur-
ation, providing a simple textual UI for both.

• LLM suggestions. This program takes in a list of criteria and asks ChatGPT
for TypeGraph patterns that could be used to evaluate those criteria.

Each part of the prototype works with JSON files that can be read by the other
parts. The extractors output JSON files for the TypeGraph, the graph matcher
can read those graphs and patterns defined in JSON and the LLM suggestions
are returned in that same JSON format. The following sections describe how
each part works in more detail.

9.1 Extractors
The extractor parses and analyses code to extract graph representations used in
the other parts of the assessment pipeline. It does so for Java and Processing
projects and outputs a TypeGraph (see section 6.1). Processing projects first
need to be converted to Java code using the processing-java tool included with
the Processing IDE. The prototype includes a Python script to perform this
conversion for a set of projects exported from the Canvas LMS.

The extractors are implemented in Rascal (Klint et al., 2011), a metaprogramming
language for implementing DSLs and performing language analysis. It supports

1The code of these prototypes is open source and available on GitHub at https://github.com/art
hurrump/apollopp/

58

https://github.com/arthurrump/apollopp/
https://github.com/arthurrump/apollopp/

analysis of Java code based on the compiler from the Eclipse Java Development
Tools. We chose to use Rascal for this part, because it comes with comprehensive
language analysis tooling built in and builds on an existing compiler, so we can
be confident that, for example, name resolution happens correctly.

The extractors are ultimately quite simple, because they rely on the M3 model
provided by Rascal to build the TypeGraph. The M3 model is a set of relations,
mostly between locations. The uses relation, for example, relates every usage of
a name to its declaration and the containment relation links e.g. classes to the
methods they contain. The TypeGraph turns this set of relations into a triple
relation from * label * to, representing an edge-labelled multigraph. The nodes
in the TypeGraph are all locations and labels represent the type of relation, like
containment, class inheritance, method invocation etc.

The node labels of the TypeGraph are encoded as labelled loops, edges from a
node to itself. Encoding node labels as edge labels like this simplifies all code
that works with graphs, since it only needs to consider edge labels. This means
we can use the type and functions for an edge-labelled multigraph built into
Rascal, and we only need to check edge connectivity with the appropriate labels
in the subgraph matching algorithm.

The extractors write the TypeGraph for each project to a JSON file, which can
then be used by the Graph matcher, as described in the next section.

9.2 Graph matcher
The graph matcher program runs the Pattern Matcher in the assessment pipeline
to assess projects, as well as the Discovery functionality used in the configuration
phase. Thus, it has two subcommands: configure and run. Both take a folder of
target projects (as JSON graphs) and a folder of criteria with patterns. Patterns
can be defined as a JSON file, or as a JavaScript file that builds an object
with the same structure. The latter can be useful to generate many alternative
patterns that only vary based on the name of a variable or method. In this
section we describe how both subcommands are used and in section 9.2.1 we
describe the subgraph matching algorithm in more detail.

The configure subcommand watches the criteria folder for changes, and reruns
the graph matching algorithm each time one of the patterns changes. At each
update, the program prints the results for the given targets, suggestions for new
edges between the pattern nodes and new neighbouring nodes that were found
in many of the targets or in about half of the targets.

Listing 9.1 shows the output for a pattern that matches every class (to count
the number of classes as a metric) on a single Processing project. First, for each
project, the results are given: the verdict and which pattern in the pattern tree
matched, accompanied by the mapping of pattern nodes to nodes in the target.
In this example, the pattern node class is matched to the classes Main and
Boid (a subclass of Main). Next, the average count of positive, negative and
neutral matches over all targets is listed.

Suggestions to extend the pattern are given for each pattern in the pattern tree,
in this case only query_0. The suggested extensions are all labelled with the

59

Listing 9.1: Example output for the configure subcommand with a pattern that
matches every class, executed on a single Processing project with name 002. The
[...] lines show where the output was truncated for brevity.
- 002

Positive: 7
- Positive / query_0

- `class` ->
`java+class:///Main`

- Positive / query_0
- `class` ->

`java+class:///Main/Boid`
[...]

- Average:
Positive: 7.0

Suggested extensions:
- query_0

Edges:
- [1.00]

"class"
> DependsOn >
"class"

- [0.29]
"class"
> Annotated (NameClass "Particle") >
"class"

[...]
Nodes:
- [1.00]

"class"
> DependsOn >
| Annotated (ExternalDecl "java+class:///processing/

core/PVector") |
= "java+class:///processing/core/PVector"

in "002"
[...]
- [0.57]

"class"
> Invokes >
| Annotated (Modifier "public") |
| Annotated (InProjectDecl "java+method") |
= "java+method:///Main/Catapult/display()"

in "002"

60

fraction of matches that could be extended in that way. Edge extensions indicate
the label of the suggested new edge and the two nodes of the query graph it
connects. A node extension consists of a node in the query graph, the label of
an edge connecting to the new node, the loops that are on that node and which
node it corresponds with in some target projects. Since this example was created
with only a single project, these suggestions are a little specific (apparently every
class in this project makes use of a PVector) but when ran on a larger set of
projects, this can give more insight.

The run subcommand runs all patterns against all targets and outputs a list of
results for all patterns for each target project. The results are similar to the
results given with the configure command: the verdict and identifier for which
pattern in the pattern tree, along with the mapping from pattern nodes to target
nodes. The output can be written to the command line or to a file for each
target.

The next section describes how we implemented the graph matching algorithm
to efficiently match TypeGraphs with patterns across many targets and many
queries.

9.2.1 Subgraph matching algorithm
The TypeGraph is an edge-labelled loopy directed multigraph, but most off-
the-shelf subgraph matching tools only work on graphs with at most one edge
between nodes if they even support directed edges and labels. We implemented
a variation of the SuMGra algorithm for multigraphs (Ingalalli et al., 2016), but
adjusted it to work on edge-labelled loopy directed multigraphs with potentially
disconnected query graphs. In this section, we describe the algorithm and the
adjustments we made.

9.2.1.1 SuMGra on loopy directed multigraphs

SuMGra works by incrementally growing a mapping, trying to map the next
node of the query to all possible candidates from the target. If no candidate is
available, the mapping is discarded. To do this efficiently, the algorithm does
three things: map the next query node in a specific order, use an index to quickly
find initial candidates and use an index to find candidates to extend the mapping.
These indices can be calculated once for each target and pattern, so they can be
reused when targets and patterns are matched more than once. We will briefly
discuss each of these three strategies and how they are adapted to work with
directed loopy graphs.

The query order is determined by first selecting the most connected node and
then selecting the next node based on the maximal connectivity to the already
selected nodes. This helps to discard many potential mappings early on, so the
search space is pruned early in the process. To support loopy directed graphs,
we count both incoming and outgoing edges as connections, while discarding
loops.

Initial candidates are selected from a signature index. Each node in the target
graph is given a signature, a feature vector with features like the number of
connecting edges, the number neighbouring nodes (those are not always equal

61

in a multigraph) or the number of unique edge labels connected to the node.
Crucially, the signature of a query node is smaller than the signature of each
potential target node: the target node needs at least as many neighbours as the
query node, or a mapping would not be possible. These signatures are used as
keys in an R-Tree, by turning them into an (n-dimensional) rectangle with a
point on the origin and the other at the feature vector. We can then search this
R-Tree for all rectangles that contain the point given by the signature of a query
node to find all potential target nodes.

To support directed graphs, we changed the features to incorporate the direc-
tionality of edges: the number of neighbours with incoming edges, the number
of neighbours with outgoing edges, the total number of incoming edges, the total
number of outgoing edges, the number of unique edge labels on all incoming and
outgoing edges and the maximum number of edges (incoming or outgoing) with
any neighbour. We changed the algorithm to support disconnected queries by
reusing this index when the next query node is not connected to the previous
query nodes.

When a partial mapping is available, next candidates are selected based on the
neighbourhood index. For each node in the target graph, this index contains a
trie keyed by edge labels, storing the neighbours that share edges with those
labels. If an edge with labels a, b and c connects node 1 with node 2, the trie for
node 1 has an entry with key {a,b,c} storing value 2. The trie can be queried to
find all superset keys, so a query for {b,c} would also yield value 2 (and possibly
other values). This enables us to find nodes in the target graph that have at
least the same edges as the current query node. For efficiency, the trie only
stores neighbours and not all nodes. When querying with the empty set, this
means that the result will be incomplete, because all nodes have at least zero
connections with any node, so really all nodes should be returned.

For this to work with directed graphs, we store two tries per node in the index,
one for incoming edges and one for outgoing edges. When searching, we can
simply take the intersection of the results for both tries, because we are interested
in nodes that include both the requested incoming and outgoing edges. As noted,
an empty query should return all nodes, so as an optimization we can avoid
taking the intersection and just query one trie if the requested incoming or
outgoing edges are the empty set.

9.2.1.2 Efficiently searching with extended patterns

Since the assessment rules are written as a pattern tree (see section 6.2), where
each child extends the pattern of its parent, it would be wasteful to search a
mapping for each node in the child pattern all over again if we already found
a mapping for the pattern in a parent node. Similarly, if no mappings were
found for the parent, we can be sure that the extended graph of the child will
not have a valid mapping either. To efficiently extend an existing mapping for
an extended query graph, we made a few changes in the algorithm: we added
another way to order the nodes in the query graph, and we added an entry point
to the search that accepts an existing mapping.

Given a query graph Q, we can determine the optimal order for Q according
to the rules described before. If we extend this query with additional nodes

62

and/or edges into query graph Q’ to search for extended mappings using the
results we already found for Q, we need to ensure that the nodes that are already
mapped from Q are also the first in the mapping order for Q’. This can be done
by simply copying over the original order and using the rules described before
for the additional nodes.

Since the algorithm works by recursively extending an existing mapping, working
with an extended query is relatively simple: just pass the original mapping
and extended query into the recursive function. There is a catch, however: the
extensions to the query may have invalidated the original mapping. If the original
query graph contained an edge a from node 1 to node 2 and the extended query
graph adds an edge b from node 2 to node 1, the original mapping may no longer
be valid if the target graph does not contain that edge b. For this reason, the
entry point that accepts an existing mapping first verifies the validity of that
mapping with the given query and target. If the mapping is invalid, an empty
list of mappings is returned, because there are no valid mappings that extend
the given mapping.

The result is a subgraph matching algorithm that can pre-compute indices for
targets and queries, such that these can be reused: the query indices are reused
for each target and the target indices are reused with every criterion. The ability
to extend the query graph allows us to efficiently work with pattern trees.

9.3 LLM suggestions
The final part of the prototype uses a large language model (LLM) to suggest
code patterns that can be used to assess a criterion. The program takes a list of
criteria as its input and outputs suggestions for patterns in JSON form. The
format is slightly different from what is used in the other parts, listing nodes with
node labels and edges separately, because this allows us to more clearly specify
which labels are valid node labels and which are valid edge labels. The program
is built using the TypeChat2 library, which uses TypeScript code to describe the
desired output structure to the LLM. We used OpenAI’s gpt-3.5-turbo model
in the prototype, but the tool can be configured to use other supported models
through an environment variable.

Listing 9.2 shows an example of a request sent to the LLM. The type definitions
are loaded from a TypeScript file, which also includes the structure of the
TypeGraph (omitted here, for readability). The results given by the LLM are
parsed and checked against this definition using TypeChat, which also runs
follow-up queries if the LLM does not respond with a validly typed JSON result.
Note that we only request a single pattern with a verdict and not a full pattern
tree, in order to keep the structure simple and increase the chances of getting
reasonable results. The types also include an explicit failure case, for criteria that
can not be assessed in code or using the abstractions provided by the TypeGraph,
which should help the LLM to fail quickly and prevent hallucination.

Together, these three parts implement a prototype of the most important func-
tionality in Apollo++: assessment and configuration. In the next chapter, we
will evaluate the design using this prototype.

2See https://microsoft.github.io/TypeChat

63

https://microsoft.github.io/TypeChat

Listing 9.2: Example request to an LLM for the criterion “All fields except
constants are private.” The TypeGraph type definitions are omitted here for
brevity, but are included in the actual request.
You are a service that translates assessment criteria for

programming projects into code patterns encoded as
JSON objects of type "PatternResult" according to the
following TypeScript definitions:

```typescript
export type PatternResult =
| SuccessResult
| FailureResult;

export type FailureResult = {
success: false;
reason:
// The criterion is not assessable based on source code
| "not_code"
// The criterion is not assessable based on information

in the type graph
| "not_typegraph"
// Other reason, explained in `message`
| "other";

message?: string;
}

export type SuccessResult = {
success: true;
patterns: Pattern[];
}

export type Pattern = {
verdict: "positive" | "negative" | "neutral";
graph: TypeGraph;
}

// ... TypeGraph definition
```

The following is a criterion:

"All fields except constants are private."

The following is the criterion translated into up to 4
patterns as a JSON object with 2 spaces of indentation
and no properties with the value undefined:

64

Chapter 10

Evaluation

In this chapter, we will discuss how we evaluate the design: based on how it
addresses the requirements and based on experiments with the prototypes. From
the latter, we are interested in the feasibility of the design and the appropriateness
of our configuration and assessment methods in practice. In terms of feasibility,
we consider the questions (1) if the design can be implemented and (2) whether
this results in a tool that could be practically used regarding issues like resource
requirements and execution time. For the appropriateness of our method, we
consider (3) which criteria can be expressed with the prototype, (4) what support
the tool can provide in the configuration process and (5) how the results based
on the configured rules match with manual assessments made by tutors.

The methods for the evaluations are described in section 10.1, with the results of
the requirement-based analysis in section 10.2 and the results of the experiments
with the prototype in section 10.3.

10.1 Methods
The architecture described in this document is evaluated in two ways: based on
how the requirements are addressed in the design and using experiments with
the prototype, through which we determine the criteria that are supported by
the tool and how the results compare to manual assessments.

Our first evaluation method is similar to the scenario-based methods typically
used to evaluate software architectures (Dobrica & Niemela, 2002; Patidar &
Suman, 2015). In these methods, different scenarios are considered, and the
architecture is evaluated on whether those scenarios would be supported. Rather
than building new scenarios, we reuse the use cases and requirements that were
gathered from the stakeholder interviews, as described in chapter 3. Throughout
the document we referenced these use cases and requirements to explain our
design decisions, which also gives us a quick way to evaluate which requirements
were indeed addressed. We discuss the results of this analysis in section 10.2.

Second, we use the prototype described in the previous chapter to evaluate the
feasibility of the design and the appropriateness of the methods, based on the five

65

questions listed at the start of the chapter. To answer the first question about
the feasibility of implementing the design, we rely on our experience building
the prototype, which we briefly discuss. For the other questions, we use the
assessment criteria for the Software Systems (SS) and Algorithms in Creative
Technology (AiC) courses introduced in chapter 3 and programs submitted by
students in previous editions of these courses, as well as the assessment forms
for those programs. We received this data from the respective teachers of each
course, asking them for permission to use their assessments and report on it
in this report. We provided the teachers with a script to anonymize the code
and assessments before sharing it with us, so that we would not receive any
personally identifiable information of the students. We did not ask students for
their consent, because we are dealing with anonymous data, the students do not
personally participate, nor are they the subject of this research, and we do not
publish or share their code (to which students retain their copyright).1

The list of criteria for the evaluation is based on the course materials. For both
courses, the project description includes a list of requirements that each project
should meet. In SS, this includes some detailed functional requirements, like2

• When the server is started, it will ask the user to input a port
number where it will listen to. If this number is already in use,
the server will ask again.

and for AiC, the project description specifies, for example, how much original
work should be in a student’s project:3

• Flocking and particles should not both be from Shiffman (or
other sources on the web), at least one of them self written.

• It will count how much code you have written yourself. A major
part of significant complexity has to be written by yourself.

Both projects also include a rubric, which describes the requirements in more
detail and categorized by subject. For SS, this is a full rubric with different
criteria per level of achievement. In AiC, the cells of the rubric are left open,
but they indicate different levels of achievement of the criteria listed per block.
From these project descriptions and rubrics, we extracted a flat list of criteria to
use for the evaluation. Note that this means that a perfect submission does not
fulfil all requirements, since some of them are from lower achievement levels in a
rubric. The full list can be found in appendix A.

The student programs we used were stripped of all files except for code files and
included dependencies, in order to prevent deanonymisation through, for example,
images. Within the code files, we replaced all occurrences of student names and
other identifiers with randomly generated identifiers, such that comments and
file names were also anonymized.4 The assessment forms we received consist
of a few comments per category in the rubric, which provide justification for

1The usage of anonymized student data for the outlined evaluation was approved by the Ethics
Committee Computer & Information Science of the University of Twente. This experiment is known
to them as application 230346.

2From the Software Systems manual dated 18th January 2022, page 22.
3From the reader for Algorithms in Creative Technology used in the 2021 edition, page 23.
4The script that performs the anonymization is available at https://github.com/arthurrump/ap

ollopp/, together with the prototype code.

66

https://github.com/arthurrump/apollopp/
https://github.com/arthurrump/apollopp/

a certain level of achievement for that category. For SS, we used data from
the 22/23 edition with 170 submissions, of which 3 were unusable because the
students packed their source files in a .rar archive, which was not supported
by the anonymization script. For AiC, we used data from the 20/21 and 22/23
editions, with 53 and 39 submissions respectively.

To answer questions (3) and (4) about the supported criteria and configuration,
we considered all criteria from both courses and tried to configure rules in the
tool for each. The result is a pattern if successful or an explanation why this
criterion does not fit in the tool if not. Based on the full process, we could also
evaluate how well the tool supported us in the configuration process. Here, we
considered the usefulness of suggestions generated through an LLM and the
suggestions provided by extending a pattern with nodes and edges found in
student programs. We used a random subset of 20 programs from each course
to serve as test programs during the configuration phase. This means that
suggestions for new nodes and edges were extracted from these 20 programs.

Finally, we used the configured rules and the submissions to answer question
(5), by running the tool and comparing the results with the assessments by
the teacher. Here, we ran the tool on all submissions, except for those 20 that
were used in the configuration phase, and compared the results for 10 randomly
selected submissions in each course. The tool reports the amount of positive and
negative matches found for each criterion, as well as specific locations, which
we compared with the notes and scores given in the rubric by the teacher. The
main classifications are Agree if the manual assessment is in agreement with the
results of Apollo++ (e.g. all fields are indeed private), Disagree if that is clearly
not the case, or Rubric-not-mentioned if that criterion is not mentioned in the
filled-in rubrics. Note that there are different reasons why a criterion may not
be mentioned, for example if a project does not meet the criteria set out for the
“sufficient” level, there is no point to mention the criteria on the “good” level.
On the other hand, it might also be an oversight by the assessor. Besides those
three categories, some criteria require more information. In AiC, some criteria
mention “how much” there is of something, like “How many classes are there?”
(12). In those cases we recorded the number reported by Apollo++, as well
as what is mentioned in the rubric, because the criteria are not clear on “how
many” is considered sufficient or good. Some other labels were added to include
relevant context, which will be explained in the results.

The results related to all 5 questions are described in section 10.3.

10.2 Addressing requirements
First, we review how the design addresses the requirements that were gathered
from the stakeholder interviews. Table 3.1 shows for each requirement which
chapters address it in the last column. Out of 89, we have not addressed ten
requirements, four of which were already marked out of scope. The other six
were all mentioned just once during the interviews:

• F29. Can separate parts of criteria that change (e.g. rules of the game)
and parts that stay the same (e.g. overall structure)

• F68. Is less hesitant in the wording than to tutors

67

• F70. Shows assessment as a rubric
• Q7. Rubrics are easy to import and export
• Q11. Works correctly and does not spew error messages
• Q12. Provides option to tweak every little setting

We decided not to include provisions for F29 in the datamodel, since the sharing
model works per criterion and thus there is no need to differentiate between
these in the system. If a configurator wants to use this distinction to structure
their criteria, they can simply use the categories that are present in the model.
From the project descriptions for SS, where this issue is relevant, we see that this
is already how the criteria are structured, with the game logic criteria relegated
to their own category. Likewise, we have not directly addressed F68, but tutors
are able to extend and/or modify the feedback before it is presented to students
(addressing F8), so they could change the wording if that is desired. In the
prototype, no texts are presented beyond the literal text of the criterion and
whether an example is positive or negative, so there is not much to adjust.

F70 and Q7 are both about rubrics, for which we have not made any specific
provisions. The reason is that we focus on providing feedback, rather than on
calculating grades (following F12, which was mentioned by six participants).
Thus, it is more important to get feedback on each specific criterion, rather than
seeing what score you would receive according to a rubric. Importing rubrics
would also be a difficult endeavour, since there is no standard format for rubrics
and a platform like the Canvas LMS does not support exporting rubrics created
on their platform.

Q11 is possibly the biggest omission from our design, for which there indeed is
little consideration. We do not believe there are design decisions that directly
oppose this requirement, but the many integration points might make failures
more likely. We have not made any statements on development techniques and
practices, which could help to address this requirement.

Finally, we have not addressed Q12 in this design. We have not specifically
addressed tweaking small details, mainly because many of those small details are
not specified in the design. The workflow in general, however, provides a very
flexible assessment model which certainly does not prohibit this configurability
when it comes to the assessment.

Overall, this shows that the design is successful in addressing the requirements,
even considering those that were not explicitly addressed.

10.3 Prototype experiments
In section 10.1 we listed five questions that can be answered using the prototype.
The first two questions about the feasibility of the design are answered in
section 10.3.1 and the last three about the appropriateness of the assessment
method in section 10.3.2.

10.3.1 Feasibility of the design
First, we asked if the design can be implemented in practice. Given the description
of the prototype in chapter 9, the answer to this question is clearly yes, at least

68

for those parts that were implemented. Since those form the core functionality
of the system, we can be confident that the system as outlined is feasible to
implement.

Second, we asked whether the tool resulting from this design would be practically
usable regarding resource requirements and execution time. To answer the
remaining questions, we ran the tool on real data from two courses, for which we
also took some time measurements to answer this question. In terms of resources,
we used a recent laptop with an AMD Ryzen 9 5900HX CPU and 32 GB RAM
running Windows 11. First, we ran the Extractor to generate the TypeGraphs
from the source projects. On the 167 projects for SS, this took 274 seconds in
total, or about 1.6 seconds on average per project. On the 92 projects for AiC,
this took 18 seconds in total, or about 0.2 seconds on average per project. This
difference is likely due to the difference in size between the projects for those
courses, and the fact that the Processing compiler writes its Java output to a
single file and the extractor thus only has to read one file per project.

During the configuration phase, we ran the patterns for one criterion on 20
submissions at a time, while also searching for possible extensions. Depending
on the complexity of the pattern and the size of the projects, this took a few
hundred milliseconds for most criteria, and about five seconds for two of the
more complex criteria (AiC 11 and SS 63, see appendix A).

After configuration, we ran the tool with all patterns on all remaining submissions.
For SS, we ran 10 criteria against 147 projects (with an average size of about
24 classes). This took about 26 seconds total, or less than 200 milliseconds
per project on average. Of the 26 seconds, 16 seconds were spent on parsing
the target project TypeGraphs and building the graph matching indices, 100
milliseconds on parsing the criteria and preparing those for matching and 10
seconds on actually running the graph matching algorithm and writing out
the results. For AiC, we ran 9 criteria against 72 projects (with an average
size of about 12 classes). This took slightly above 7 seconds, or less than 100
milliseconds per project on average. Parsing the TypeGraphs and preparing
the indices took about 2 seconds total, reading the criteria again about 100
milliseconds and running the graph matching about 5 seconds.

Overall, this shows that the approach is certainly feasible for providing results
on demand, like when giving feedback during a tutorial session.

10.3.2 Appropriateness of the assessment method
Next, we are interested in the appropriateness of the assessment method we
implemented: can it perform the assessments we want it to perform? This means
that the criteria of a course should be configurable in the tool, and that the
results given by the tool should align with the assessment made by a human
tutor. Given the effort involved in the configuration, the tool should support
that process to make it as easy as possible.

10.3.2.1 Configurability of criteria

The third question we asked is which criteria can be expressed with the prototype?
We went through the list of criteria for the SS and AiC courses, trying to configure

69

patterns in our prototype for each, assisted by the LLM-generated suggestions
and the proposed extensions derived from the set of 20 projects we used to test
the configuration while working on it.

Appendix A lists all criteria and whether we were able to configure a rule within
the prototype for that criteria. For SS, we were able to configure 9 patterns in
the prototype, out of 81 criteria. Since we only implemented the TypeGraph in
the prototype, all patterns use that program representation. These patterns do
not all fully cover the criterion, but match an important part of it. For example,
criterion 78 from SS states “Custom exceptions are defined where appropriate
and no equivalent predefined exceptions exist.” We configured a pattern to
match custom exceptions, but were unable to devise a pattern that separates
the appropriate from the inappropriate custom exceptions.

Figure 10.1 (the right side for SS) shows the results as a Venn-diagram, with
criteria which were partially implemented as the intersection of two results.
The green region marked with�� indicate the criteria for which a pattern was
configured. On the left, the results for AiC are shown, where we were able to
configure patterns for 10 out of 27 criteria.

The blue region marked with� in both diagrams are the criteria for which
we think it would be possible to define a pattern using a PDG rather than the
TypeGraph. There are 11 of these in SS and 8 in AiC. An example from SS is
“When the client is started, it should ask the user for the IP-address and port
number of the server to connect to.” The TypeGraph does not have sufficient
information to find this, but with a PDG we could look for data flowing from
console input to the method that is called to build a socket connection.

For 40 criteria in SS and 10 in AiC, we were unable to define a pattern based on
the TypeGraph, but it may be possible to find patterns using other program
representations and still configure a pattern within the system. This is the purple
area in the diagram, marked with�. An example is criterion 24 from AiC “Have
comments and a header.” This is not assessable through the TypeGraph (which
does not include comments), but it is totally feasible using a different program
representation. For others in this category, it is less clear that a different program
representation would be sufficient, like many of the functional requirements for
SS.

Finally, 26 criteria from SS and 6 from AiC were marked as incompatible with our
framework, with static analysis in general or just difficult to assess automatically,
because they rely on a deeper level of understanding. This is the red region,
marked with�. In AiC these are criteria like “Functional correctness” (25)
and “Attention for details” (27), which are quite broad and thus difficult to
assess automatically. In SS there are some large functional requirements which
would be unfeasible to assess with static analysis or criteria like “There are no
compilation errors or failed tests” (44) or “No Checkstyle violations” (49) which
rely on running tests or an external tool, which is not clearly viable in our design.

The last type of criteria in this category, are those which relate to “clearly
defined components” (67) and separation between those components like “The
UI is separated through interfaces such that other components do not know the
concrete UI classes” (74) or “The game logic is not aware of any concrete classes
of the rest of the program.” (75) With the current pattern-based assessment

70

pipeline, there is no clear way in which those components could be identified
and used in patterns.

Figure 10.1: Overview of the configuration results, showing the number of criteria
that could be configured (��), that could be configured with a PDG (�), that
can not be configured using the TypeGraph (�) and that is not configurable
in our design or not at all (�). The bubbles on the left show the results for
AiC, those on the right for SS.

Overall, we see that we were able to configure patterns for a larger portion of the
criteria for AiC than for SS. This is the case because the criteria for the former
are more focussed on the design of class relations and the common functionality
has a clear class structure, for which the TypeGraph is particularly well suited.
For the more detailed functional requirements in the SS project, a different type
of program representation is needed, which could make them work within our
design. Some criteria do not fit within the proposed structure, while others are
simply difficult to assess automatically in any way.

10.3.2.2 Supporting the configuration process

The fourth evaluation question asked whether the tool is able to give adequate
support during the configuration phase. We implemented two configuration
functions in the prototype to investigate this: suggestions for patterns based on
the criterion text, using an LLM; and suggestions to extend a pattern discovered
from a set of previously submitted projects.

Starting with the LLM-provided suggestions: these were almost always useless.
As described in section 9.3, we allowed the LLM to respond with an error if a
criterion was not automatically assessable or not assessable using the TypeGraph,

71

but this response was not used for any of the criteria. Given the results in the
previous section, that is not what would be expected. Instead, it returned
patterns that used nontrivial as a modifier on a class to detect “at least two
(nontrivial) classes written by yourself” (AiC 6), even though we specified a list
of supported modifiers.

All nonsensical responses aside, even for the criteria that are assessable using the
TypeGraph, the responses were not really helpful. For the (simple) criterion “All
fields except constants are private,” (SS 62) the result contained two suggested
patterns: one negative for fields with a public modifier and one positive for
fields with a private modifier, thus totally ignoring the “except constants” part
of the criterion.

Suggested extensions to patterns were more helpful, because they are actually
found in real programs, so at least they have a basis in reality. However, there
are many possible ways in which to extend a pattern such that one or more
previous occurrences would match, and only a few might actually be relevant.
In our prototype we highlighted those suggestions for which about half of the
original occurrences would match the extended pattern and half would not, but
that still results in many unhelpful suggestions. Because the suggestions are
restricted to only a single neighbouring node, more complex extensions that
would be helpful can not be found.

Overall, our prototype was unable to provide good support in the configuration
phase.

10.3.2.3 Making reasonable assessments

Finally, we asked how the results returned by our tool compare to the assessments
made by humans. We compared the results reported by the prototype for 10
projects of each course, the results of which are listed in appendix B. Here, we
will briefly discuss the results for each of the criteria, starting with those from
AiC, followed by SS.

Starting with 2 “Includes meaningful randomness (normal distribution and
Perlin noise),” we find that the tool and the assessment agree on 8 out of 10
submissions and disagree on the other 2. In one disagreement, the tool did not
find a usage of Perlin noise which was mentioned in the rubrics, while in the
other the tool did find one use of randomness, but it was not mentioned as one
of the implemented topics in the rubric. The latter may still be correct is that
usage was not “meaningful”.

For 4 “Includes particles,” we find clear agreement in 4 cases, clear disagreement
in another 4 and in 2 cases the criterion was not mentioned in the rubric. In all
cases with disagreement, our tool did not find the particle system that was present
according to the rubric. Upon further investigation, in those cases the students
used an array rather than an ArrayList, which is not easily representable in the
TypeGraph, which is likely why that was missed in the configuration phase. For
5 “Includes flocking,” which is similar to the particle system, we find agreement
in 7 cases, disagreement in 1 case and 2 cases where there is no mention in the
rubric either way.

For 11 “How much interaction is between classes,” and 12 “How many classes are

72

there,” we recorded the numbers reported by the tool and either Agree/Disagree
for those cases where especially high or low numbers were called out in the
rubric or Rubric-positive/negative/not-mentioned for all other cases. For the
interaction criterion we find 4 outliers where the tool reports a high number, but
the rubric is negative. These are programs where students created a God-class
as a replacement for the main tab, so now every interaction in the program is
seen as interaction between classes. In the other cases we see that the highest
number is marked positively in the rubric and the lowest negatively, so there
seems to be some agreement here. The number of classes is only mentioned in
the rubric in one case, which is a program with 17 classes (on an average of 12).

“Do not use unnecessary global variables, especially not for value passing” (14)
is mentioned twice in the rubrics, both cases where the tool also reports the
usage of a global variable in multiple classes. For one of these, with 23 reports,
20 are about the same variable, because that variable was used in many classes
and thus the pattern matched many times. In 3 cases, no global variables were
reported, because the program used a God class and the main tab (where global
variables are defined) was basically empty. All other 5 cases where the rubric
does not mention the global variables, the tool did find some. The pattern does
not distinguish between only accessing a global variable and treating it as a
constant or changing a global variable, so these might indeed not be problematic
global variables.

For 17 “Do not hide user interaction in classes,” we find 5 agreements and 2
cases where the rubric does not mention this criterion. In the 3 cases with
disagreement, we found that the students did use the event variables outside
the event handling methods, but only within methods that were called by those
event handling methods, which is considered fine by the assessor, but was not
expressed in the pattern. While we could add neutral patterns for methods that
are called by event handling methods directly, there is no way to express that
it should appear somewhere in the callstack from such a method if there are
“intermediate” methods.

Finally, for AiC, the criteria 21 “Use functions when you have similar code,”
and 23 “Do not have unused code” were not mentioned in any rubric, so there is
nothing more we can report on those.

For SS, criterion 50 “Constants are used where appropriate,” is mentioned in 5
cases, all of which are in agreement with the tool, which reported a large number
of constants. In the other 5 cases, the rubric makes no mention of this criterion.
For 59 “The server is tested with unit tests that check whether the protocol is
handled correctly,” we find agreement in 9 cases. For 1 case there is no mention
of this criterion in the rubric.

With 61 “Classes do not access the state of other classes directly,” we find
agreement in 8 cases and disagreement in the other 2. One of these included
many “false positives”, because their test cases accessed the state of some classes,
which is considered fine for the overall structure of the system. Relatedly, for
62 “All fields except constants are private,” we find agreement in 6 cases and
disagreement in 4. For at least 2, it seems the assessor overlooked a few fields or
decided not to judge too harshly on one or two fields that were not private.

Criterion 63 “Methods are public only if they are intended to be used by other

73

classes” fared less well, with disagreement in 6 cases, agreement in just 1 and 3
cases where this was not mentioned in the rubric. Here the issue of intention
came up, because the tool flagged various methods that were not called by other
classes, like a few implementations of toString which were not marked with
@Override and thus not detected as an override. These are clearly intended to
be used by other classes, and may have been in some debugging code, but were
not in the final project.

We found agreement in all 10 cases for 66 “There is more than one component
(package).” Also, all projects did have more than one package.

“Interfaces are applied where appropriate to ensure low coupling between com-
ponents” (69) is not mentioned in 4 cases. For the other 6, we found agreement
for 1 and disagreement for the other 5. In one of these cases, where the tool
reported not finding any interfaces, the rubric still gave full marks for structure
(of which this is one of the criteria). Upon closer inspection, this project did
indeed have a nice and clear structure with clearly identifiable components and
classes, so this may have been a conscious decision to deviate slightly from the
literal criteria.

For 77 “A creational pattern such as the Factory pattern or dependency injection
is used appropriately,” we only implemented a pattern for the dependency
injection part with the caveat that this would be more precise when expressed
using a PDG rather than the TypeGraph. Except for 1 case where the criterion
is not mentioned, we indeed found disagreement for the other 9 cases. For 7 of
these, our pattern resulted in many false positives, reporting simple property
initialization, rather than dependency injection.

Finally, for 78 “Custom exceptions are defined where appropriate and no equival-
ent predefined exceptions exist”, we found agreement for 9 cases where custom
exceptions were or were not created and the rubrics made the same assessment.
In 1 case, the rubric made no mention of this requirement.

Figure 10.2 shows a summary of these results, with the number of projects where
we find agreement, disagreement, or no mention in the manual assessment per
criterion. In the AiC criteria, we clearly see that the results always come with
a caveat, whether a correct implementation is missed or the criterion is more
nuanced than what can be detected using patterns. On the SS side, we see the
patterns performing either quite well or quite badly. The latter is especially the
case where terms like “appropriate” are used and the best our tool can do is flag
parts of the code that may be of interest when making a decision.

This concludes the results that answer our evaluation questions on feasibility
and appropriateness. In the next chapter, we will discuss the results and the
strengths and weaknesses they reveal in the design and suggest some ways in
which the design may be improved.

74

A
iC

2
A

iC
4

A
iC

5
A

iC
11

A
iC

12
A

iC
14

A
iC

17
A

iC
21

A
iC

23
SS

50
SS

59
SS

61
SS

62
SS

63
SS

66
SS

69
SS

77
SS

78

0

2

4

6

8

10

2 2 2

9
8

2

10 10

5

1

3
4

1 1
2

4

1

4
3

2

4

6
5

9
8

4

7

4

1
2

5 5

9
8

6

1

10

1

9Pr
oj

ec
ts

Agree Disagree Not mentioned

Figure 10.2: Agreement between tool results and manual assessment, for each of
the configured criteria.

75

Chapter 11

Discussion

In this chapter, we discuss the strengths and weaknesses of the proposed design
for Apollo++ based on the results from the previous chapter. We also suggest
ways in which those weaknesses may be addressed.

11.1 What works well
To start positively: the feasibility of the design seems good. We were able to
implement a prototype without too many issues and in terms of performance and
resource requirements, subgraph matching is fast enough to provide feedback
in live situations. For the actual assessment process, abstracting the code into
different graph representations and working with these graphs looks like a good
approach to the problem.

As foreseen in the design and confirmed through the experiments, implementing
different criteria requires more expressiveness than is available in a single program
representation (the TypeGraph, in our experiments). The design foresees the
use of multiple types of graphs, so this fits with the design. The different
program representations could also be used to do more complex pre-processing,
like identifying the components in a project, even though this feature was not
initially intended for that use case.

11.2 Patterns need more expressiveness
A weakness to this point is that simple patterns are quite restrictive: in the
prototype we added the functionality to generate patterns using JavaScript code,
rather than just writing out the patterns, because we wanted to express a few
alternatives for one node in patterns that are otherwise the same. An example is
the AiC criterion that checks for usage of one of the random number generators
available in Processing. All patterns for this criterion are the same, only varied
by the actual method called. This suggests that a UI that only allows the user to
define patterns as graphs would not be sufficiently powerful, especially to users
who are familiar with programming and the abstractions it can provide. This
can be improved in two ways: by extending the pattern language to support such

76

abstractions (extending the DSL with general-purpose language (GPL) features),
or by defining patterns in a GPL that already supports abstractions. In our
prototype we chose the latter option, because the implementation took only
three lines of code. Generating the pattern in a GPL does mean that information
about the structure is lost to the tool itself, which makes suggestions to extend
the pattern (or do so from other parts of the UI) more difficult.

Another issue that we foresaw in the design is that fully automated assessment is
not feasible: automation can only do so much and humans are better able to make
a nuanced assessments and judge notions like “meaningful” and “appropriate”.
This is why we explicitly allow tutors to extend and change the feedback, before
showing it to students. One thing missing from the design, however, is a way
to make this distinction between automatable and partly automatable when
configuring rules. Some criteria are objective and allow little variation, so rules
for those can be seen as providing a real assessment. On the other hand, for a
criterion that checks if “custom exceptions are defined where appropriate” (SS
78), we can find those custom exceptions, but checking appropriateness is much
more difficult to automate. In the current design, there is no way to distinguish
such rules.

Related to the properties of criteria and patterns, for some patterns we found
that a pattern matches many times, while we are really only interested in one
node that all matches have in common. An extreme example is the criterion
that “there is more than one component (package)” (SS 66). The pattern we
configured matched every pair of packages, but a more reasonable and useful
result would be a single match on the set of all packages. Similarly, the pattern
that matches tests that test the server code (SS 59) matches a test for each
method of the server called by this test, while we would rather only have the test
method returned once if there are one or more calls to server methods. Lastly,
for global variables, while it would still be interesting to also see where they are
used, it would make sense to group those matches by variable. Overall, patterns
would need a way to select “nodes of interest” to support these criteria better.

11.3 The pipeline could be more flexible
Some other criteria were difficult to configure in the tool because they did not
quite fit within the assessment pipeline. For some, the pipeline itself is a problem:
one of the criteria for AiC is that a project “combines at least 3 from the 4
topics” (1), where each of the topics is covered by its own criterion. Assessing
this criterion thus depends on the results of other criteria, which is not possible
within the pipeline model.

Another issue with the pipeline as proposed, is that there is no way to incorporate
other tools. In SS, several criteria are about the project compiling without errors,
all tests passing and there being no Checkstyle violations. To assess those
criteria, external tools like a compiler, test runner and Checkstyle are required.
This could be solved by allowing “assessors” to work at any level of abstraction:
running directly on the files on disk, on the text of the code, on the AST or
one some other graph representation. The pattern matcher would just be one
assessor in this system, with others being able to run a compiler or Checkstyle.

77

In the current design we accounted for patterns and metrics as the two “built-in
assessors”, but these criteria show that this principle should be generalized.

While we considered the need for humans to be part of the assessment process,
the design only allows information to flow from tool to human and not the other
way around. In SS, many requirements reference the components of a project,
which can be tricky to identify because students rarely create perfectly separated
components (or they all would score perfectly on structure). In this case, it may
be helpful to have a tutor identify the main components and use this information
to assess some of the criteria that depend on it. One way to do this is to split
assessment into “identification” and “quality assessment”, where the first stage
identifies parts of the program to be assessed. Then those parts are assessed
on their quality. In some cases the first stage is automatable (e.g. finding
all custom exceptions) and judging the quality is difficult to automate (are
those exceptions appropriate?). In other cases, like the dependencies between
components, identifying the components is more difficult to automate, but once
they are known, it is simple to find the dependencies. Whether this structure
could apply generally, or whether this approach should be generalized to support
more situations, is not clear at this point.

These last three issues we mentioned require significant changes to the assessment
pipeline. Clearly, the current design is too simple to support these scenarios,
so a more complex solution is needed. The main challenge here is to keep
this component just simple enough to support these criteria, but still remain
understandable (because the assessment process should be transparent, in the
sense that students should be able to understand how an assessment is formed).

11.4 Configuration needs better support
Finally, the configuration support in our prototype is not great. The LLM
suggestions are practically useless. While the performance could likely be
improved by including some examples of criteria and patterns in the prompt,
we suspect that the level of abstraction of a graph representation of code is too
high for an LLM to generate useful results, because its training data most likely
did not include many graph representations of code. We note that this may not
only be a problem for artificial intelligence, but also for human intelligence. For
both, it may be helpful to write patterns in a way that is more closely related to
the code they try to represent, rather than as a list of labelled nodes and edges.

The other supporting feature we added, the suggestions for extensions of a
pattern with nodes and edges found in other projects, did not perform well
either. There are many suggestions for each pattern, of which only a small
number are actually useful. Given our previous observation about the level of
abstraction of these patterns, it may be more helpful to let the configurator select
concrete examples from example projects and past submissions and distilling
patterns from those limited examples. This could be combined with the “Refine
graph patterns based on encountered examples” functionality in the Assessment
Configuration, to turn the configuration into a more continuous process as more
information (it the form of new projects) comes in.

Overall, we see that the basic approach of our design works: it is certainly

78

feasible and appropriate for at least some criteria. There are three major areas
of improvement, however: the way patterns are described needs to be more
expressive, to better support complex patterns and the nuances of human-machine
collaboration in the assessment process; the pipeline can be more flexible, to
support more types of criteria than can be done with simple patterns and metrics;
and the configuration phase needs better support, with a more intuitive way to
write patterns and a better way to make use of examples and past submissions.

79

Part IV

Conclusion and backmatter

80

Chapter 12

Conclusion

In the introduction we asked how, and to what extent, can an automated
assessment tool assess larger programming projects? To answer this question,
we asked four more questions to cover the different aspects in our main question.
In this chapter we review the answers we found to those four questions and then
formulate an answer to the main question.

What does assessment of projects look like, both manual and automated? In
chapter 2 we introduced intended learning outcomes (ILOs), which describe
what a student is expected to learn, and assessment criteria, which describe
the expectations for the artefact that is to be assessed in more detail. We also
discussed the ill-definedness of projects, which means that there is no definite
solution against which a student’s solution for a project can be checked. Finally,
we reviewed the state of the art for automated assessment tools and found that
they are mostly built for small, well-defined exercises. Tools that do aim to work
on more ill-defined exercises typically rely more on student data and focus on
the criteria that are well-defined.

What are the requirements for an automated assessment tool that assesses
projects? As described in chapter 3, our tool aims to automate part of the
assessment process for large programming projects where students have a lot
of freedom to choose how they implement their solution. From interviews with
stakeholders, we determined that this tool should be flexible and supporting,
meaning that it supports as many assessment criteria as could be automatically
assessed, while also integrating in different environments and platforms. It needs
to support teachers in the assessment process, rather than performing fully
automated assessment, and also support them during the configuration process
to get the tool up and running.

How to build this tool? In part II we introduced a design for Apollo++ that
fits those requirements. The core of this design is an assessment pipeline that
turns code into different graph representations, against which graph patterns
are matched to build an assessment. These graph patterns are defined based on
the assessment criteria, which are already in use by the tutors who assess these
projects manually. The design explicitly includes teachers in the feedback loop,
which addresses one of the major concerns voiced by our stakeholders.

81

Is the design feasible and appropriate? In other words, does it run and does it
give reasonable results? We implemented some parts of our architecture in a
prototype, to see how it works and performs in practice. This showed that the
design is feasible to implement and is able to perform assessments fast enough to
be usable in an environment where direct feedback is desired, like in a tutorial.
We were able to configure patterns for some criteria in our prototype and expect
many more would be feasible with more graph representations. The results of
running those patterns on real projects shows that we find reasonable results for
most patterns, but, as expected, human review is still necessary for many.

When it comes to flexibility and support, however, the tool is not yet at the level
where we want it to be. There are still some criteria that do not fit in the model
that our design proposes, even though they are (partly) automatically assessable
in principle, so the model is not quite flexible enough. The features that should
support teachers in the configuration phase were not helpful in practice. While
the LLM-suggested patterns were good for a laugh, they did not help to actually
configure any real patterns. The configuration process is still a major area where
improvements can be made, to actually support teachers in using the tool.

So, to come back to our main question: how, and to what extent, can an
automated assessment tool assess larger projects? We have shown that our
design works for some criteria and can likely support more within the same
structure. Thus, starting from criteria, using multiple program representations
and defining patterns for subgraph matching certainly is a way how an automated
assessment tool can assess larger projects.

To what extent depends on the criteria, the available program representations
and the pattern configuration. With our prototype, the extent is rather small:
only 11% (in SS) to 37% (in AiC) of the criteria could be (partially) configured
and for some of these the disagreement with manual assessments was quite large.
This is partially due to the loss of some nuance in the criteria, where the reported
results would still be useful for an assessor to inform their judgement. With more
program representations and better pattern configurations, however, we believe
that these results can be significantly improved. Still, given the ill-definedness
of some criteria, it is unlikely that assessment of these projects can be fully
automated.

82

Acronyms

AGS Assignment and Grade Services

AiC Algorithms in Creative Technology

AST Abstract syntax tree

CreaTe Creative Technology

DSL Domain specific language

GPL General-purpose language

ILO Intended learning outcome

ITS Intelligent tutoring system

LLM Large language model

LMS Learning management system

LTI Learning Tools Interoperability

PDG Program dependence graph

SS Software Systems

TCS Technical Computer Science

83

Glossary

Abstract syntax tree (AST) Abstract representation of code as a (tree-
shaped) graph. An AST is produced by parsing the textual representation
of code and typically does not contain irrelevant details such as the
amount of whitespace (for languages where that is irrelevant).

Actual learning outcome What the student has actually learned at the end
of a study unit. This can be compared to the intended learning outcome.

Algorithms in Creative Technology (AiC) A course about programming
in Processing for the fourth module of CreaTe. This course assumes some
prior programming experience and has a focus on programming style and
good structure.

Assignment and Grade Services (AGS) An LTI specification around as-
signments and grades, which can give tools access to the results for an
assignment and allow them to publish scores back to the platform.

Atelier Platform for feedback during programming tutorials, with support for
automated feedback tools. See (Fehnker et al., 2021) for more details.

Automated assessment Automated assessment tools automatically assess,
score or grade artefacts produced by students.

Creative Technology (CreaTe) Multidisciplenary programme at the Univer-
sity of Twente with a base in computer science and electrical engineering
and a focus on design.

Domain specific language (DSL) A programming language specialised to
a certain domain. These languages are often less powerful than general
purpose programming languages, but they typically are also simpler to use
for non-programmer domain experts.

General-purpose language (GPL) A general-purpose programming lan-
guage can be used to build applications across many domains, as opposed
to a DSL.

Intelligent tutoring system (ITS) Intelligent tutoring systems provide feed-
back to students, often interactively while a student is working on an
exercise.

Intended learning outcome (ILO) Statement of what a student is expected
to have learned at the end of a study unit. This describes the intention

84

of what a student will learn, which is not necessarily their actual learning
outcome.

Large language model (LLM) A neural network trained on a large reposit-
ory of texts to generate texts based on a starting prompt.

Learning management system (LMS) A system on which course materials
are shared and where students can hand in assignments. Popular LMSs
include Blackboard, Canvas and Moodle.

Learning Tools Interoperability (LTI) A set of specifications that enable
integration between learning tools implemented by many LMSs.

Program dependence graph (PDG) A graph representation of code which
combines control dependencies and data dependencies in a single graph.

Software Systems (SS) Second module of TCS. This module has a focus on
programming and software design.

Technical Computer Science (TCS) Bachelor programme in Computer Sci-
ence at the University of Twente.

85

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for
programming assignments. Computer Science Education, 15(2), 83–102.
https://doi.org/10.1080/08993400500150747

Balse, R., Valaboju, B., Singhal, S., Warriem, J. M., & Prasad, P. (2023,
June). Investigating the potential of GPT-3 in providing feedback for
programming assessments. Proceedings of the 2023 Conference on In-
novation and Technology in Computer Science Education v. 1. https:
//doi.org/10.1145/3587102.3588852

Basten, B., Hills, M., Klint, P., Landman, D., Shahi, A., Steindorfer, M., &
Vinju, J. (2015, March). M3: A general model for code analytics in rascal.
2015 IEEE 1st International Workshop on Software Analytics (SWAN).
https://doi.org/10.1109/swan.2015.7070485

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., &
Santos, E. A. (2023, March). Programming is hard - or at least it used to be.
Proceedings of the 54th ACM Technical Symposium on Computer Science
Education v. 1. https://doi.org/10.1145/3545945.3569759

Biggs, J., & Collis, K. (1982). Evaluating the quality of learning: The SOLO
taxonomy. Academic Press, Inc.

Biggs, J., & Tang, C. (2011). Teaching for quality learning at university (4th ed.).
McGraw-Hill/Society for Research into Higher Education/Open University
Press.

Bloxham, S., den-Outer, B., Hudson, J., & Price, M. (2015). Let’s stop the
pretence of consistent marking: Exploring the multiple limitations of assess-
ment criteria. Assessment & Evaluation in Higher Education, 41(3), 466–481.
https://doi.org/10.1080/02602938.2015.1024607

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., &
Palincsar, A. (1991). Motivating project-based learning: Sustaining the
doing, supporting the learning. Educational Psychologist, 26(3-4), 369–398.
https://doi.org/10.1080/00461520.1991.9653139

Choudhury, R. R., Yin, H., & Fox, A. (2016). Scale-driven automatic hint
generation for coding style. In Intelligent tutoring systems (pp. 122–132).
Springer International Publishing. https://doi.org/10.1007/978-3-319-39583-
8_12

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7), 638–653.
https://doi.org/10.1109/tse.2002.1019479

Fehnker, A., Mader, A., & Rump, A. (2021). Atelier – tutor moderated comments
in programming education. In Technology-enhanced learning for a free, safe,

86

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3587102.3588852
https://doi.org/10.1145/3587102.3588852
https://doi.org/10.1109/swan.2015.7070485
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1080/02602938.2015.1024607
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1109/tse.2002.1019479

and sustainable world (pp. 379–383). Springer International Publishing.
https://doi.org/10.1007/978-3-030-86436-1_39

Fournier-Viger, P., Nkambou, R., & Nguifo, E. M. (2010). Building intelligent
tutoring systems for ill-defined domains. In Studies in computational intelli-
gence (pp. 81–101). Springer Berlin Heidelberg. https://doi.org/10.1007/978-
3-642-14363-2_5

Gallagher, S. E., & Savage, T. (2020). Challenge-based learning in higher
education: An exploratory literature review. Teaching in Higher Education,
1–23. https://doi.org/10.1080/13562517.2020.1863354

Glassman, E. L., Scott, J., Singh, R., Guo, P. J., & Miller, R. C. (2015).
OverCode. ACM Transactions on Computer-Human Interaction, 22(2), 1–35.
https://doi.org/10.1145/2699751

Gross, S., Zhu, X., Hammer, B., & Pinkwart, N. (2012). Cluster based feedback
provision strategies in intelligent tutoring systems. In Intelligent tutoring
systems (pp. 699–700). Springer Berlin Heidelberg. https://doi.org/10.1007/
978-3-642-30950-2_127

Heckel, R. (2006). Graph transformation in a nutshell. Electronic Notes in
Theoretical Computer Science, 148(1), 187–198. https://doi.org/10.1016/j.
entcs.2005.12.018

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent
systems for automatic assessment of programming assignments. Proceedings
of the 10th Koli Calling International Conference on Computing Education
Research - Koli Calling '10. https://doi.org/10.1145/1930464.1930480

Ingalalli, V., Ienco, D., & Poncelet, P. (2016). SuMGra: Querying multigraphs
via efficient indexing. In Lecture notes in computer science (pp. 387–401).
Springer International Publishing. https://doi.org/10.1007/978-3-319-44403-
1_24

Jonsson, A., & Svingby, G. (2007). The use of scoring rubrics: Reliability,
validity and educational consequences. Educational Research Review, 2(2),
130–144. https://doi.org/10.1016/j.edurev.2007.05.002

Keuning, H., Jeuring, J., & Heeren, B. (2019). A systematic literature review of
automated feedback generation for programming exercises. ACM Transac-
tions on Computing Education, 19(1), 1–43. https://doi.org/10.1145/3231711

Klint, P., Storm, T. van der, & Vinju, J. (2011). EASY meta-programming with
rascal. In Lecture notes in computer science (pp. 222–289). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-18023-1_6

Krajcik, J. S., & Shin, N. (2014). Project-based learning. In R. K. Sawyer (Ed.),
The cambridge handbook of the learning sciences (pp. 275–297). Cambridge
University Press. https://doi.org/10.1017/cbo9781139519526.018

Krathwohl, D. R. (2002). A revision of bloom’s taxonomy: An overview. Theory
Into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2

Lazar, T., Možina, M., & Bratko, I. (2017). Automatic extraction of AST
patterns for debugging student programs. In Lecture notes in computer
science (pp. 162–174). Springer International Publishing. https://doi.org/10
.1007/978-3-319-61425-0_14

Le, N.-T., Loll, F., & Pinkwart, N. (2013). Operationalizing the continuum
between well-defined and ill-defined problems for educational technology.
IEEE Transactions on Learning Technologies, 6(3), 258–270. https://doi.or
g/10.1109/tlt.2013.16

Le, N.-T., & Pinkwart, N. (2014, January). Towards a classification for program-

87

https://doi.org/10.1007/978-3-030-86436-1_39
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1007/978-3-642-14363-2_5
https://doi.org/10.1080/13562517.2020.1863354
https://doi.org/10.1145/2699751
https://doi.org/10.1007/978-3-642-30950-2_127
https://doi.org/10.1007/978-3-642-30950-2_127
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1007/978-3-319-44403-1_24
https://doi.org/10.1007/978-3-319-44403-1_24
https://doi.org/10.1016/j.edurev.2007.05.002
https://doi.org/10.1145/3231711
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1017/cbo9781139519526.018
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1007/978-3-319-61425-0_14
https://doi.org/10.1007/978-3-319-61425-0_14
https://doi.org/10.1109/tlt.2013.16
https://doi.org/10.1109/tlt.2013.16

ming exercises. Proceedings of the 2nd Workshop on AI-Supported Education
for Computer Science. https://publications.informatik.hu-berlin.de/archive/
cses/publications/Towards-a-Classification-for-Programming-Exercises.pdf

Learning tools interoperability (LTI) assignment and grade services specification.
(2019). [Standard]. IMS Global Learning Consortium, Inc. https://www.im
sglobal.org/spec/lti-ags/v2p0/

Lönngren, J. (2017). Wicked problems in engineering education: Preparing
future engineers to work for sustainability [PhD thesis, Chalmers University
of Technology]. https://publications.lib.chalmers.se/records/fulltext/250857
/250857.pdf

Mader, A., Fehnker, A., & Dertien, E. (2020). Tinkering in informatics as
teaching method. Proceedings of the 12th International Conference on
Computer Supported Education. https://doi.org/10.5220/0009467304500457

McBroom, J., Koprinska, I., & Yacef, K. (2022). A survey of automated
programming hint generation: The HINTS framework. ACM Computing
Surveys, 54(8), 1–27. https://doi.org/10.1145/3469885

Mens, K., Nijssen, S., & Pham, H.-S. (2021, August). The good, the bad,
and the ugly: Mining for patterns in student source code. Proceedings of
the 3rd International Workshop on Education Through Advanced Software
Engineering and Artificial Intelligence. https://doi.org/10.1145/3472673.34
73958

Messer, M., Brown, N. C. C., Kölling, M., & Shi, M. (2023a). Automated grading
and feedback tools for programming education: A systematic review. arXiv.
https://doi.org/10.48550/ARXIV.2306.11722

Messer, M., Brown, N. C. C., Kölling, M., & Shi, M. (2023b, June). Machine
learning-based automated grading and feedback tools for programming: A
meta-analysis. Proceedings of the 2023 Conference on Innovation and Tech-
nology in Computer Science Education v. 1. https://doi.org/10.1145/358710
2.3588822

Mitrovic, A. (2011). Fifteen years of constraint-based tutors: What we have
achieved and where we are going. User Modeling and User-Adapted Interac-
tion, 22(1-2), 39–72. https://doi.org/10.1007/s11257-011-9105-9

Moghadam, J. B., Choudhury, R. R., Yin, H., & Fox, A. (2015, March). Auto-
Style. Proceedings of the Second (2015) ACM Conference on Learning @
Scale. https://doi.org/10.1145/2724660.2728672

Možina, M., & Lazar, T. (2018). Syntax-based analysis of programming concepts
in python. In Lecture notes in computer science (pp. 236–240). Springer
International Publishing. https://doi.org/10.1007/978-3-319-93846-2_43

Možina, M., Lazar, T., & Bratko, I. (2018). Identifying typical approaches and
errors in prolog programming with argument-based machine learning. Expert
Systems with Applications, 112, 110–124. https://doi.org/10.1016/j.eswa.201
8.06.029

Nguyen, A., Piech, C., Huang, J., & Guibas, L. (2014). Codewebs: Scalable
homework search for massive open online programming courses. Proceedings
of the 23rd International Conference on World Wide Web - WWW '14.
https://doi.org/10.1145/2566486.2568023

Nye, B. D., Boyce, M. W., & Sottilare, R. A. (2016). Defining the ill-defined:
From abstract principles to applied pedagogy. In R. A. Sottilare, A. C.
Graesser, X. Hu, A. Olney, B. Nye, & A. M. Sinatra (Eds.), Design recom-
mendations for intelligent tutoring systems: Volume 4 - domain modeling

88

https://publications.informatik.hu-berlin.de/archive/cses/publications/Towards-a-Classification-for-Programming-Exercises.pdf
https://publications.informatik.hu-berlin.de/archive/cses/publications/Towards-a-Classification-for-Programming-Exercises.pdf
https://www.imsglobal.org/spec/lti-ags/v2p0/
https://www.imsglobal.org/spec/lti-ags/v2p0/
https://publications.lib.chalmers.se/records/fulltext/250857/250857.pdf
https://publications.lib.chalmers.se/records/fulltext/250857/250857.pdf
https://doi.org/10.5220/0009467304500457
https://doi.org/10.1145/3469885
https://doi.org/10.1145/3472673.3473958
https://doi.org/10.1145/3472673.3473958
https://doi.org/10.48550/ARXIV.2306.11722
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1007/s11257-011-9105-9
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1007/978-3-319-93846-2_43
https://doi.org/10.1016/j.eswa.2018.06.029
https://doi.org/10.1016/j.eswa.2018.06.029
https://doi.org/10.1145/2566486.2568023

(pp. 19–37). Army Research Laboratory.
Paiva, J. C., Leal, J. P., & Figueira, Á. (2022). Automated assessment in

computer science education: A state-of-the-art review. ACM Transactions
on Computing Education. https://doi.org/10.1145/3513140

Patidar, A., & Suman, U. (2015). A survey on software architecture evaluation
methods. 2015 2nd International Conference on Computing for Sustainable
Global Development (INDIACom), 967–972. https://ieeexplore.ieee.org/docu
ment/7100391

Rump, A., Fehnker, A., & Mader, A. (2021). Automated assessment of learning
objectives in programming assignments. In C. Cristea Alexandra I.and Trous-
sas (Ed.), Intelligent tutoring systems (pp. 299–309). Springer International
Publishing. https://doi.org/10.1007/978-3-030-80421-3_33

Rump, A., & Zaytsev, V. (2022, October). A refined model of ill-definedness in
project-based learning. Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings.
https://doi.org/10.1145/3550356.3556505

Simon, H. A. (1978). Information-processing theory of human problem solving.
In W. Estes (Ed.), Handbook of learning and cognitive processes (volume 5).
Psychology Press. https://doi.org/10.4324/9781315770314-14

Suraweera, P., Mitrovic, A., & Martin, B. (2005). A knowledge acquisition
system for constraint-based intelligent tutoring systems. In C.-K. Looi, G. I.
McCalla, B. Bredeweg, & J. Breuker (Eds.), Artificial intelligence in education
- supporting learning through intelligent and socially informed technology,
proceedings of the 12th international conference on artificial intelligence in
education, AIED 2005, july 18-22, 2005, amsterdam, the netherlands (Vol.
125, pp. 638–645). IOS Press.

Xu, S., & Chee, Y. S. (2003). Transformation-based diagnosis of student
programs for programming tutoring systems. IEEE Transactions on Software
Engineering, 29(4), 360–384. https://doi.org/10.1109/tse.2003.1191799

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining.
2002 IEEE International Conference on Data Mining, 2002. Proceedings.
https://doi.org/10.1109/icdm.2002.1184038

Zhang, A. G., Chen, Y., & Oney, S. (2023, April). VizProg: Identifying
misunderstandings by visualizing students’ coding progress. Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3544548.3581516

89

https://doi.org/10.1145/3513140
https://ieeexplore.ieee.org/document/7100391
https://ieeexplore.ieee.org/document/7100391
https://doi.org/10.1007/978-3-030-80421-3_33
https://doi.org/10.1145/3550356.3556505
https://doi.org/10.4324/9781315770314-14
https://doi.org/10.1109/tse.2003.1191799
https://doi.org/10.1109/icdm.2002.1184038
https://doi.org/10.1145/3544548.3581516

Appendices

90

Appendix A

Criteria

This appendix contains a flat list of criteria for the Algorithms in Creative
Technology (AiC) and Software Systems (SS) courses. For each criterion we also
list the source of that criterion (project description or rubric, which section or
category) and the result of trying to configure that criterion in our prototype.
These results are indicated with four icons, followed by a short explanation
and the pattern if the criterion is configurable in the tool. The icons have the
following meaning:

• �� This criterion is implemented

• � This criterion could not be implemented with the TypeGraph, but is
likely doable with a PDG

• � This criterion could not be implemented with the TypeGraph, and it
remains to be seen if it is possible with another program representation

• � This criterion is not assessable from the code, using static analysis,
within this framework or is hard for other reasons

A.1 Algorithms in Creative Technology
1. Combines at least 3 from the 4 topics in one application.

Source: Description/Scope

� Not in this framework, combines results from multiple criteria

2. Includes meaningful randomness (normal distribution and Perlin noise).

Source: Description/Scope

�� Detect usage of randomness

var randomMethods = [
"java+method:///processing/core/PApplet/random(

float,float)",
"java+method:///processing/core/PApplet/random(

float)",

91

"java+method:///processing/core/PApplet/
randomGaussian()",

"java+method:///processing/core/PApplet/noise(float
)",

"java+method:///processing/core/PApplet/noise(float
,float)",

"java+method:///processing/core/PApplet/noise(float
,float,float)"

]

var criterion = {
"criterion": "Includes meaningful randomness (

normal distribution and Perlin noise).",
"patterns": randomMethods.map(randomMethod => ({

"verdict": "positive",
"pattern": [

["method", { "annotation": { "scheme": "java+
method" } }, "method"],

["method", "invokes", "randomMethod"],
["randomMethod", { "annotation": { "location":

randomMethod } }, "randomMethod"]
]

}))
}

� Determine if its meaningful

3. Includes use of forces, with difficulty at least equivalent to catapult, billiard
or mass-spring-damper systems.

Source: Description/Scope

� Not with the TypeGraph, but a PDG could be used to match calcula-
tions with force vectors

4. Includes particles.

Source: Description/Scope

�� Particle systems have a rather well-defined class structure

{
"criterion": "Includes particles.",
"patterns": [

{
"verdict": "positive",
"pattern": [

["Particle", { "annotation": { "scheme": "
java+class" } }, "Particle"],

["Particle", "contains", "lifespan"],
["lifespan", { "annotation": { "scheme": "

java+field" } }, "lifespan"],
["Particle", "contains", "update"],

92

["update", { "annotation": { "scheme": "java
+method" } }, "update"],

["update", "accessesField", "lifespan"],
["Particle", "contains", "isDead"],
["isDead", { "annotation": { "scheme": "java

+method" } }, "isDead"],
["isDead", "accessesField", "lifespan"],
["isDead", "dependsOn", "boolean"],
["boolean", { "annotation": { "location": "

java+primitiveType:///boolean" } }, "
boolean"],

["ParticleSystem", { "annotation": { "scheme
": "java+class" } }, "ParticleSystem"],

["ParticleSystem", "contains", "particles"
],

["particles", { "annotation": { "scheme": "
java+field" } }, "particles"],

["particles", "dependsOn", "Particle"],
["particles", "dependsOn", "ArrayList"],
["ArrayList", { "annotation": { "location":

"java+class:///java/util/ArrayList" } },
"ArrayList"],

["ParticleSystem", "contains", "run"],
["run", "accessesField", "particles"],
["run", "invokes", "isDead"]

],
"children": [

{
"verdict": "neutral",
"pattern": [

["isDead", "contains", "someParam"],
["someParam", { "annotation": { "scheme

": "java+parameter" } }, "someParam"
]

]
}

]
}

]
}

5. Includes flocking.

Source: Description/Scope

�� Similar to a particle system, flocking uses a common class structure

{
"criterion": "Includes flocking.",
"patterns": [

{

93

"verdict": "positive",
"pattern": [

["Flock", { "annotation": { "scheme": "java+
class" } }, "Flock"],

["Flock", "dependsOn", "Boid"],
["Flock", "contains", "run"],
["run", { "annotation": { "scheme": "java+

method" } }, "run"],
["run", "invokes", "flockingMethod"],
["Boid", { "annotation": { "scheme": "java+

class" } }, "Boid"],
["Boid", "contains", "flockingMethod"],
["flockingMethod", { "annotation": { "scheme

": "java+method" } }, "flockingMethod"],
["flockingMethod", "contains", "boidsParam"

],
["boidsParam", { "annotation": { "scheme": "

java+parameter" } }, "boidsParam"],
["boidsParam", "dependsOn", "ArrayList"],
["ArrayList", { "annotation": { "location":

"java+class:///java/util/ArrayList" } },
"ArrayList"],

["boidsParam", "dependsOn", "Boid"]
]

}
]

}

6. At least two (nontrivial) classes have to be written by yourself.

Source: Description/Understanding

� Not with the TypeGraph, but on more detailed graphs, patterns of a
few common sources could go a long way

7. Flocking and particles should not both be from Shiffman (or other sources
on the web).

Source: Description/Understanding

� Similar to 6

8. A major part of significant complexity has to be written by yourself.

Source: Description/Understanding

� Similar to 6

9. Quote the sources that you use.

Source: Description/Understanding

� Comments are not in the TypeGraph, but detecting links or mentions
of common sources should be doable

94

10. How much interaction is there with the user.

Source: Description/Complexity

�� See 17 for patterns that can be used with this metric

� Metrics are not implemented in the prototype

11. How much interaction is between the classes. Does an event in one class
have an effect on objects of other class?

Source: Description/Complexity

�� Finds method calls between classes, but ignoring method calls from
the main tab

{
"criterion": "How much interaction is between the

classes.",
"patterns": [

{
"verdict": "positive",
"pattern": [

["class1", { "annotation": { "scheme": "java
+class" } }, "class1"],

["class2", { "annotation": { "scheme": "java
+class" } }, "class2"],

["method2", { "annotation": { "scheme": "
java+method" } }, "method2"],

["class1", "invokes", "method2"]
],
"children": [

{
"verdict": "neutral",
"pattern": [

["PApplet", { "annotation": { "location
": "java+class:///processing/core/
PApplet" } }, "PApplet"],

["class1", "extends", "PApplet"]
]

}
]

}
]

}

� Metrics are not implemented in the prototype

12. How many classes are there?

Source: Description/Complexity

�� Counting classes is simple

{

95

"criterion": "How many classes are there?",
"patterns": [

{
"verdict": "positive",
"pattern": [

["class", { "annotation": { "scheme": "java+
class" } }, "class"]

]
}

]
}

� Metrics are not implemented in the prototype

13. Keep the main draw function as small as possible.

Source: Description/Style

� Not with the TypeGraph, but might be doable with a PDG

14. Do not use unnecessary global variables, especially not for value passing.

Source: Description/Style + Rubric/Structure

�� Find global variables which are accessed from other classes. Constants
are fine.

{
"criterion": "Do not use unnecessary global

variables , especially not for value passing.",
"patterns": [

{
"verdict": "negative",
"pattern": [

["PApplet", { "annotation": { "location": "
java+class:///processing/core/PApplet" }
}, "PApplet"],

["mainTab", { "annotation": { "scheme": "
java+class" } }, "mainTab"],

["mainTab", "extends", "PApplet"],
["globalVar", { "annotation": { "scheme": "

java+field" } }, "globalVar"],
["mainTab", "contains", "globalVar"],
["otherClass", { "annotation": { "scheme": "

java+class" } }, "otherClass"],
["otherClass", "accessesField", "globalVar"

]
],
"children": [

{
"verdict": "neutral",
"pattern": [

96

["globalVar", { "annotation": { "
modifier": "final" } }, "globalVar"]

]
}

]
}

]
}

� Detecting value passing requires detecting modifications to global
variables from classes, which is not in the TypeGraph, but might be doable
with a PDG

15. Have constants for your program as global variables (e.g. number of players,
etc.), not hidden in classes.

Source: Description/Style + Rubric/Structure

� Not with the TypeGraph, because we can’t detect constants (see
previous criterion also), but could be doable with a PDG

16. Do not hard code parameters that may change during the program devel-
opment. Also do not hardcode graphical elements that might change.

Source: Description/Style + Rubric/Structure

� Not with the TypeGraph, because it doesn’t include literals, but could
be done with a graph that does include those

17. Do not hide user interaction in classes. Deal with user interaction in the
following way: …

Source: Description/Style + Rubric/Structure

�� Find the usage of event handling methods as positive examples and
the usage of Processing’s event variables outside those methods as negative
examples

var criterion = {
"criterion": "Do not hide user interaction in

classes.",
"patterns": [

{
"verdict": "positive",
"pattern": [

["PApplet", { "annotation": { "location": "
java+class:///processing/core/PApplet" }
}, "PApplet"],

["mainTab", { "annotation": { "scheme": "
java+class" } }, "mainTab"],

["mainTab", "extends", "PApplet"],
["mainTab", "contains", "method"],
["method", { "annotation": { "scheme": "java

+method" } }, "method"],
["method", "overrides", "PApplet.method"]

97

],
"children": [

{
"verdict": "neutral",
"pattern": [

["PApplet.method", { "annotation": { "
location": "java+method:///processing
/core/PApplet/draw()" } }, "PApplet.
method"]

]
},
{

"verdict": "neutral",
"pattern": [

["PApplet.method", { "annotation": { "
location": "java+method:///processing
/core/PApplet/setup()" } }, "PApplet.
method"]

]
},
{

"verdict": "neutral",
"pattern": [

["PApplet.method", { "annotation": { "
location": "java+method:///processing
/core/PApplet/settings()" } }, "
PApplet.method"]

]
}

]
},
{

"verdict": "neutral",
"pattern": [

["method", "accessesField", "field"],
["method", { "annotation": { "scheme": "java

+method" } }, "method"]
],
"children":

["key", "keyCode", "keyPressed", "
mouseButton", "mousePressed", "mouseX", "
mouseY", "pmouseX", "pmouseY"].map(field
=> (

{
"verdict": "negative",
"pattern": [

["field", { "annotation": { "location
": `java+field:///processing/core/
PApplet/${field}` } }, "field"]

],

98

"children":
["keyPressed()", "keyReleased()", "

keyTyped()", "mouseClicked()", "
mouseDragged()", "mouseMoved()", "
mousePressed()", "mouseReleased()",
"mouseWheel()"].map(method => (

{
"verdict": "neutral",
"pattern": [

["PApplet", { "annotation": { "
location": "java+class:///
processing/core/PApplet" } },
"PApplet"],

["mainTab", { "annotation": { "
scheme": "java+class" } }, "
mainTab"],

["mainTab", "extends", "PApplet"
],

["mainTab", "contains", "method"
],

["method", { "annotation": { "
scheme": "java+method" } }, "
method"],

["method", "overrides", "PApplet
.method"],

["PApplet.method", { "annotation
": { "location": `java+method
:///processing/core/PApplet/$
{method}` } }, "PApplet.
method"]

]
}

))
}

))
}

]
}

18. Have things that belong together logically, in one class.

Source: Description/Style + Rubric/Structure

� Not with the TypeGraph, depends on content

19. When classes or methods become too large, split them in a logical way.

Source: Description/Style + Rubric/Structure

� Not with the TypeGraph, but with a different graph large methods
and classes could be flagged

20. Use arrays (and loops) when you have similar values.

99

Source: Description/Style + Rubric/Structure

� Not with the TypeGraph, but could be doable with a PDG

21. Use functions when you have similar code.

Source: Description/Style + Rubric/Structure

�� Positive examples: functions that are reused in multiple places

{
"criterion": "Use functions when you have similar

code.",
"patterns": [

{
"verdict": "positive",
"pattern": [

["reusedMethod", { "annotation": { "scheme":
"java+method" } }, "reusedMethod"],

["caller1", "invokes", "reusedMethod"],
["caller1", { "annotation": { "scheme": "

java+method" } }, "caller1"],
["caller2", "invokes", "reusedMethod"],
["caller2", { "annotation": { "scheme": "

java+method" } }, "caller2"]
]

}
]

}

� Finding duplicate code is not supported in the framework

22. Do not have unused variables.

Source: Description/Style + Rubric/Style

� Not with the TypeGraph (it includes variables, but not variable-usage),
but could be done with PDG

23. Do not have unused code.

Source: Description/Style + Rubric/Style

�� Find unused methods

{
"criterion": "Do not have unused code",
"patterns": [

{
"verdict": "negative",
"pattern": [

["method", { "annotation": { "scheme": "java
+method" } }, "method"]

],
"children": [

{

100

"verdict": "neutral",
"pattern": [

["other", "invokes", "method"]
]

},
{

"verdict": "neutral",
"pattern": [

["method", "overrides", "other"]
]

},
{

"verdict": "neutral",
"pattern": [

[
"PApplet.main",
{ "annotation": { "location": "java+

method:///processing/core/PApplet/
main(java.lang.String%5B%5D)" } },

"PApplet.main"
],
["method", "invokes", "PApplet.main"]

]
}

]
}

]
}

� Unreachable code (due to false if-statements or loops) is not detectable
in the TypeGraph, but could be done with a PDG

24. Have comments and a header.

Source: Description/Style + Rubric/Documentation

� Comments are not in the TypeGraph, but could be done with a different
representation

25. Functional correctness.

Source: Rubric

� A free criterion, not automatically assessable in general. It might be
possible to detect some common mistakes to possibly catch some cases,
but not with the TypeGraph

26. Efficiency

Source: Rubric

� Similar to 25, too broad for general assessment, but there might be
some common mistakes that could be detected

27. Attention for details.

101

Source: Rubric/Appearance

� Too broad, and probably not assessable in code

A.2 Software Systems
1. A standard game can be played on both client and server in conjunction

with the reference server and client, respectively.

Source: Description/Functional Requirements

� Not with static code analysis

2. The client can play as a human player, controlled by the user.

Source: Description/Functional Requirements

� Not with the TypeGraph, maybe with static code analysis

3. The client can play as a computer player, controlled by AI.

Source: Description/Functional Requirements + Rubric/Functionality/Cli-
ent

� Not with the TypeGraph, maybe with static code analysis

4. When the server is started, it will ask the user to input a port number
where it will listen to. If this number is already in use, the server will ask
again.

Source: Description/Functional Requirements + Rubric/Functional-
ity/Server

� Not with the TypeGraph, but should be doable with PDG: the method
to start listening on a port is known, so we could check if the provided
parameter is a variable and not a literal or constant.

5. When the client is started, it should ask the user for the IP-address and
port number of the server to connect to.

Source: Description/Functional Requirements + Rubric/Functionality/Cli-
ent

� Not with the TypeGraph, but should be doable with PDG: two variables
are assigned through readline methods, which are passed to the connection
method.

6. When the client is controlled by a human player, the user can request a
possible legal move as a hint via the TUI.

Source: Description/Functional Requirements + Rubric/Functionality/Cli-
ent

� Not with the TypeGraph, maybe with static code analysis

7. The client can play a full game automatically as the AI without intervention
by the user.

102

Source: Description/Functional Requirements + Rubric/Functionality/Cli-
ent

� Not with the TypeGraph, maybe with static code analysis

8. The AI difficulty can be adjusted by the user via the TUI.

Source: Description/Functional Requirements

� Not with the TypeGraph, maybe with static code analysis

9. All communication outside of playing a game, such as handshakes and
feature negotiation, works on both client and server in conjunction with
the reference server and client, respectively.

Source: Description/Functional Requirements

� Not with static code analysis

10. Whenever a client loses connection to a server, the client should gracefully
terminate.

Source: Description/Functional Requirements + Rubric/Functionality/Net-
working + Rubric/Functionality/Client

� Not with the TypeGraph, but could be doable with a PDG (to find
the place where detection loss is connected, the appropriate exception is
handled)

11. Whenever a client disconnects during a game, the server should inform the
other clients and end the game, allowing the other player to start a new
game.

Source: Description/Functional Requirements + Rubric/Functionality/Net-
working + Rubric/Functionality/Server

� Extension of 10

12. Possible extension: allow players to send short pieces of text to a global
chat or to individual players.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

13. Chatbox extension adheres to the protocol.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

14. Possible extension: maintain a player ranking.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

15. The player ranking works as designed, the chosen statistic is implemented
correctly.

Source: Description/Extensions

103

� Not with the TypeGraph, maybe with static code analysis

16. Possible extension: authenticate a player using public-/private-key al-
gorithms.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

17. Authentication extension adheres to the protocol.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

18. Possible extension: encrypt communication between client and server.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

19. Encryption extension adheres to key negotiation protocol.

Source: Description/Extensions

� Not with the TypeGraph, maybe with static code analysis

20. All game rules are implemented with reasonable quality.

Source: Description/Midway submission

� Not with the TypeGraph, maybe with static code analysis

21. All public classes and methods of the game logic have Javadoc with reas-
onable quality.

Source: Description/Midway submission

� Not with the TypeGraph (Javadoc is not present in the TypeGraph),
but the presence could be detected with a different code representation.
Judging “reasonable quality” will be more difficult.

22. Complex methods of the game logic have comments with reasonable quality.

Source: Description/Midway submission

� Comments are not in the TypeGraph

23. There are unit tests for the game logic, including at least testing whether
a move is performed correctly, testing a gameover condition, and testing
a random play of a full game from start to finish including checking the
gameover condition, with reasonable quality.

Source: Description/Midway submission

� Hard to detect, because we need to identify what classes handle the
game logic (and the separation is usually not that clear)

24. There is an initial version of the report including a section on the overall
testing strategy with incorporation of coverage metrics of the game logic
and an explanation of the test plan for the game logic, with reasonable
quality.

104

Source: Description/Midway submission

� Not in the code

25. The game rules are implemented correctly.

Source: Rubric/Functionality/Game logic

� Not with the TypeGraph, maybe with static code analysis

26. Many games can be played independently.

Source: Rubric/Functionality/Game logic

� Not with the TypeGraph, maybe with static code analysis

27. Game logic methods do not crash with unchecked exceptions from incorrect
usage by other classes (invalid moves, negative indices, etc.)

Source: Rubric/Functionality/Game logic

� Not with static code analysis (at least not with patterns, gets close to
correctness proofs)

28. Game logic is thread-safe (no race conditions even when used from multiple
threads)

Source: Rubric/Functionality/Game logic

� Not with the TypeGraph, maybe with static code analysis

29. Networking is implemented correctly, according to the protocol.

Source: Rubric/Functionality/Networking

� Not with the TypeGraph, maybe with static code analysis

30. Incorrect usage by client or server code does not result in protocol violations.

Source: Rubric/Functionality/Networking

� Not with the TypeGraph, maybe with static code analysis

31. A malicious attacker cannot make the software crash by sending bad
messages.

Source: Rubric/Functionality/Networking

� Not with static code analysis (at least not with patterns, gets close to
correctness proofs)

32. A PING message always results in an immediate PONG reply, even if the
client or server code is busy with earlier messages.

Source: Rubric/Functionality/Networking

� Not with the TypeGraph, maybe with static code analysis

33. The networking code is thread-safe.

Source: Rubric/Functionality/Networking

� Not with the TypeGraph, maybe with static code analysis

105

34. The client is user friendly.

Source: Rubric/Functionality/Client

� Not with static code analysis

35. The UI does not crash on malformed input.

Source: Rubric/Functionality/Client

� Not with static code analysis (at least not with patterns, gets close to
correctness proofs)

36. After playing a game, it is possible to play another game without recon-
necting.

Source: Rubric/Functionality/Client

� Not with the TypeGraph, maybe with static code analysis

37. The user can always request a list of allowed commands and the current
status.

Source: Rubric/Functionality/Client

� Not with the TypeGraph, maybe with static code analysis

38. The client can run in automatic mode, queueing for games and playing as
the AI at a chosen difficulty level until asked to stop.

Source: Rubric/Functionality/Client

� Not with the TypeGraph, maybe with static code analysis

39. Multiple games can be played simultaneously.

Source: Rubric/Functionality/Server

� Not with the TypeGraph, maybe with static code analysis

40. A client can play multiple games after each other.

Source: Rubric/Functionality/Server

� Not with the TypeGraph, maybe with static code analysis

41. The server is clearly thread-safe and games progress independent of each
other.

Source: Rubric/Functionality/Server

� Not with the TypeGraph, maybe with static code analysis

42. The server maintains a list of online users and active games and these are
thread-safe.

Source: Rubric/Functionality/Server

� Not with the TypeGraph, maybe with static code analysis

43. When players disconnect and games end, references to related objects are
correctly removed.

Source: Rubric/Functionality/Server

106

� Not with TypeGraph, but might be doable with a PDG

44. There are no compilation errors or failed tests.

Source: Rubric/Software/Packaging

� Not in this framework (requires compiling and running tests)

45. The project builds and can be tested without errors.

Source: Rubric/Software/Packaging

� Not in this framework (requires compiling and running tests)

46. Any required libraries other than junit5 are included.

Source: Rubric/Software/Packaging

� Not with the TypeGraph, maybe with static code analysis

47. The README file is present and contains specific instructions on building,
testing and running the software.

Source: Rubric/Software/Packaging

� Not with static code analysis

48. The Javadoc is exported as HTML pages in a directory structure separate
from the sources.

Source: Rubric/Software/Packaging

� Not in this framework (requires more than just the code)

49. No Checkstyle violations.

Source: Rubric/Software/Clean code

� Not in this framework (requires running Checkstyle)

50. Constants are used where appropriate.

Source: Rubric/Software/Clean code

�� We can find constants

{
"criterion": "Constants are used where appropriate

.",
"patterns": [

{
"verdict": "positive",
"pattern": [

["field", { "annotation": { "scheme": "java+
field" } }, "field"],

["field", { "annotation": { "modifier": "
final" } }, "field"]

]
}

]
}

107

� Literals that should’ve been constants are not in the TypeGraph, but
could be doable with a PDG

51. No duplicate or repetitive code present.

Source: Rubric/Software/Clean code

� Not with the TypeGraph, might be doable with PDG

52. Methods are simple and serve a clear goal.

Source: Rubric/Software/Clean code

� Not with the TypeGraph, but human assessors might be assisted by
flagging “long” or complex methods (which could be done using a PDG)

53. Variables and methods have descriptive names.

Source: Rubric/Software/Clean code

� Not with patterns, but might be doable by checking names against
a dictionary to find non-words or to ensure that all Game concepts are
represented

54. Game logic is extensively tested, including corner cases.

Source: Rubric/Software/Test

� Not with the TypeGraph, maybe with static code analysis

55. Obvious errors introduced in the logic make the tests fail.

Source: Rubric/Software/Test

� Not in this framework (requires mutation testing)

56. There is a test that plays a full game from beginning to end with random
legal move.

Source: Rubric/Software/Test

� Not with the TypeGraph, impossible to detect if the randomness is
used to choose a random name or to play random moves. Might be doable
with a PDG

57. All tests are documented with Javadoc.

Source: Rubric/Software/Test

� Not with the TypeGraph (Javadoc is not present in the TypeGraph),
but could be done with a different code representation

58. All tests have a clearly defined scope.

Source: Rubric/Software/Test

�� Unit tests should test one unit (class, or a few from the same package),
which could be detectable with the TypeGraph. But what about integration
tests? This could also be interpreted as the number of behaviours tested
(should be one), regardless of the size of the system under test.

108

59. The server is tested with unit tests that check whether the protocol is
handled correctly.

Source: Rubric/Software/Test

�� Simplified: the server is tested with unit tests

var criterion = {
"criterion": "The server is tested with unit tests

that check whether the protocol is handled
correctly.",

"patterns": ["java+class:///Test", "java+interface
:///org/junit/jupiter/api/Test"].map(test => (

{
"verdict": "positive",
"pattern": [

["server", { "annotation": { "scheme": "java
+class" } }, "server"],

["ServerSocket", { "annotation": { "location
": "java+class:///java/net/ServerSocket"
} }, "ServerSocket"],

["server", "dependsOn", "ServerSocket"],
["serverMethod", { "annotation": { "scheme":

"java+method" } }, "serverMethod"],
["server", "contains", "serverMethod"],
["testMethod", { "annotation": { "scheme": "

java+method" } }, "testMethod"],
["testMethod", "dependsOn", "@Test"],
["@Test", { "annotation": { "location": test

} }, "@Test"],
["testMethod", "invokes", "serverMethod"]

]
})

)
}

� Protocol handling not with the TypeGraph, maybe with static code
analysis

60. The server is tested with an automated test to play several simultaneous
games on the server.

Source: Rubric/Software/Test

� Not with the TypeGraph, maybe with static code analysis

61. Classes do not access the state of other classes directly.

Source: Rubric/Software/Encapsulation

�� Check if a class accesses a (non-final) field

{
"criterion": "Classes do not access the state of

other classes directly.",

109

"patterns": [
{

"verdict": "negative",
"pattern": [

["otherClass", { "annotation": { "scheme": "
java+class" } }, "otherClass"],

["otherClass", "contains", "otherClassField"
],

["otherClassField", { "annotation": { "
scheme": "java+field" } }, "
otherClassField"],

["class", { "annotation": { "scheme": "java+
class" } }, "class"],

["class", "accessesField", "otherClassField"
]

],
"children": [

{
"verdict": "neutral",
"pattern": [

["otherClassField", { "annotation": { "
modifier": "final" } }, "
otherClassField"]

]
}

]
}

]
}

62. All fields except constants are private.

Source: Rubric/Software/Encapsulation

�� Check for private and final modifiers

{
"criterion": "All fields except constants are

private.",
"patterns": [

{
"verdict": "negative",
"pattern": [

["field", { "annotation": { "scheme": "java+
field" } }, "field"]

],
"children": [

{
"verdict": "positive",
"pattern": [

["field", { "annotation": { "modifier":

110

"private" } }, "field"]
],
"children": [

{
"verdict": "neutral",
"pattern": [

["field", { "annotation": { "
modifier": "final" } }, "field"]

]
}

]
},
{

"verdict": "neutral",
"pattern": [

["field", { "annotation": { "modifier":
"final" } }, "field"]

]
}

]
}

]
}

63. Methods are only public if they are intended to be used by other classes.

Source: Rubric/Software/Encapsulation

�� Doable, but detecting main could use the actual name (which is not in
the TypeGraph). Class hierarchies make this a bit difficult, so we ignore all
override methods, since they may actually be called through the abstract
interface.

var criterion = {
"criterion": "Methods are only public if they are

intended to be used by other classes.",
"patterns": [

{
"verdict": "negative",
"pattern": [

["method", { "annotation": { "scheme": "java
+method" } }, "method"],

["method", { "annotation": { "modifier": "
public" } }, "method"],

["class", { "annotation": { "scheme": "java+
class" } }, "class"],

["class", "contains", "method"]
],
"children": [

{
"verdict": "neutral",

111

"pattern": [
["other", "invokes", "method"]

]
},
{

"verdict": "neutral",
"pattern": [

["method", { "annotation": { "modifier":
"static" } }, "method"],

["method", "dependsOn", "void"],
["void", { "annotation": { "location": "

java+primitiveType:///void" } }, "
void"],

["method", "contains", "param"],
["param", { "annotation": { "scheme": "

java+parameter" } }, "param"],
["param", "dependsOn", "stringArray"],
["stringArray", { "annotation": { "

location": "java+array:///java/lang/
String%5B%5D" } }, "stringArray"]

]
},
{

"verdict": "neutral",
"pattern": [

["method", "dependsOn", "@Override"],
["@Override", { "annotation": { "

location": "java+interface:///java/
lang/Override" } }, "@Override"]

]
}

].concat(
["java+class:///Test",

"java+class:///BeforeEach",
"java+interface:///org/junit/jupiter/api/Test

",
"java+interface:///org/junit/jupiter/api/

BeforeEach"].map(testAttr => (
{

"verdict": "neutral",
"pattern": [

["method", "dependsOn", "@Test"],
["@Test", { "annotation": { "location":

testAttr } }, "@Test"]
]

}
)))

}
]

}

112

64. Other classes cannot directly manipulate fields managed by an object via
getters/setters.

Source: Rubric/Software/Encapsulation

� Not with the TypeGraph. Detecting getters and setters would be more
appropriate with a PDG, which can really check if a method does nothing
more than returning a field or assigning to a field.

65. There is a clear separation of concerns between classes.

Source: Rubric/Software/Structure

� Hard to identify the concerns that are addressed in classes automatically

66. There is more than one component (package).

Source: Rubric/Software/Structure

��We only mark the negatives here, if there is only one package. Marking
two packages as positive, would result in a spamming of results for every
pair of packages in a project.

{
"criterion": "There is more than one component (

package).",
"patterns": [

{
"verdict": "negative",
"pattern": [

["package", { "annotation": { "scheme": "
java+package" } }, "package"]

],
"children": [

{
"verdict": "neutral",
"pattern": [

["otherPackage", { "annotation": { "
scheme": "java+package" } }, "
otherPackage"]

]
}

]
}

]
}

67. There are clearly defined components, reflected in the package structure.

Source: Rubric/Software/Structure

� This may be doable through connectivity within packages, but that is
not possible in this framework

68. Clear and logical dependencies between classes and between components.

113

Source: Rubric/Software/Structure

� Too subjective (though is specified more in the next few criteria)

69. Interfaces are applied where appropriate to ensure low coupling between
components.

Source: Rubric/Software/Structure

�� Translated to: if a class implements an interface, then there should be
no fields or parameters that depend directly on that class

{
"criterion": "Interfaces are applied where

appropriate to ensure low coupling between
components.",

"patterns": [
{

"verdict": "positive",
"pattern": [

["interface", { "annotation": { "scheme": "
java+interface" } }, "interface"],

["class", { "annotation": { "scheme": "java+
class" } }, "class"],

["class", "implements", "interface"]
],
"children": [

{
"verdict": "negative",
"pattern": [

["field", { "annotation": { "scheme": "
java+field" } }, "field"],

["field", "dependsOn", "class"]
]

},
{

"verdict": "negative",
"pattern": [

["param", { "annotation": { "scheme": "
java+parameter" } }, "param"],

["param", "dependsOn", "class"]
]

}
]

}
]

}

� Detecting class usage across package boundaries results in many false
negatives, because packages do not always fully reflect components (see
67)

114

70. The product is easily extendable by hiding implementations behind inter-
faces at appropriate abstraction levels, such that new implementations can
easily be added without requiring extensive changes in the rest of the code.

Source: Rubric/Software/Structure

��� Similar to 69

71. In particular, the network protocol can be replaced without affecting the
rest of the code.

Source: Rubric/Software/Structure

� Hard to detect, because it requires understanding of components and
which component handles the network

72. The MVC pattern is applied such that the UI code is separated from the
rest of the code.

Source: Rubric/Software/Design Patterns

� Hard to detect, because the implementations rarely provide perfect
separation. It is hard to detect which class is a view class, which is a
controller etc.

73. A Listener pattern is used appropriately.

Source: Rubric/Software/Design Patterns

�� Unclear what does and does not qualify as a Listener in this project

74. The UI is separated through interfaces such that other components do not
know the concrete UI classes.

Source: Rubric/Software/Design Patterns

� Hard to detect, because we need to identify which are the UI components
(and the separation is usually not that clear)

75. The game logic is not aware of any concrete classes of the rest of the
program.

Source: Rubric/Software/Design Patterns

� Hard to detect, because we need to identify the game logic components

76. The UI is separated such that most components are not even aware of the
existence of a UI.

Source: Rubric/Software/Design Patterns

� Hard to detect, because it depends on identifying components

77. A creational pattern such as the Factory pattern or dependency injection
is used appropriately.

Source: Rubric/Software/Design Patterns

� [Factory] Not with the TypeGraph, because it does not explicitly
include the return type of methods. If it did, this might be a reasonable
pattern:

115

[
["factory", { "annotation": { "scheme": "java+

class" } }, "factory"],
["factoryMethod", { "annotation": { "scheme": "

java+method" } }, "factoryMethod"],
["factoryMethod", { "annotation": { "modifier": "

public" } }, "factoryMethod"],
["factory", "contains", "factoryMethod"],
["product", { "annotation": { "scheme": "java+

class" } }, "product"],
["productConstructor", { "annotation": { "scheme":

"java+constructor" } }, "productConstructor"
],

["product", "contains", "productConstructor"],
["factoryMethod", "returns", "product"],
["factoryMethod", "invokes", "productConstructor"

]
]

Still, a PDG would be better suited to check that the returned value is
actually the constructed value.

� [Dependency Injection] Doable with the TypeGraph with reasonable
results, but with a PDG you could make sure the parameter is actually
assigned to that field with the same type (also takes out the duplicates
when multiple instances of the same type are injected)

{
"criterion": "A creational pattern such as the

Factory pattern or dependency injection is used
appropriately.",

"patterns": [
{

"verdict": "positive",
"pattern": [

["injectee", { "annotation": { "scheme": "
java+class" } }, "injectee"],

["injecteeConstructor", { "annotation": { "
scheme": "java+constructor" } }, "
injecteeConstructor"],

["injectee", "contains", "
injecteeConstructor"],

["injecteeParam", { "annotation": { "scheme
": "java+parameter" } }, "injecteeParam"
],

["injecteeConstructor", "contains", "
injecteeParam"],

["injecteeField", { "annotation": { "scheme
": "java+field" } }, "injecteeField"],

["injectee", "contains", "injecteeField"],

116

["injecteeParam", "dependsOn", "injectedType
"],

["injecteeField", "dependsOn", "injectedType
"]

]
}

]
}

78. Custom exceptions are defined where appropriate and no equivalent pre-
defined exceptions exist.

Source: Rubric/Software/Exceptions

�� Find custom exceptions

{
"criterion": "Custom exceptions are defined where

appropriate and no equivalent predefined
exceptions exist.",

"patterns": [
{

"verdict": "positive",
"pattern": [

["Exception", { "annotation": { "location":
"java+class:///java/lang/Exception" } },
"Exception"],

["customException", { "annotation": { "
scheme": "java+class" } }, "
customException"],

["customException", "extends", "Exception"]
]

},
{

"verdict": "positive",
"pattern": [

["Exception", { "annotation": { "location":
"java+class:///java/lang/Exception" } },
"Exception"],

["Exception '", "extends", "Exception"],
["customException", { "annotation": { "

scheme": "java+class" } }, "
customException"],

["customException", "extends", "Exception '"
]

]
}

]
}

� Appropriateness of custom exceptions depends too much on under-

117

standing of the concepts

79. Exceptions are caught and handled appropriately.

Source: Rubric/Software/Exceptions

� Not with the TypeGraph, but might be doable with a PDG

80. Predefined exceptions are used where appropriate and no predefined ex-
ceptions are used where custom exceptions are desired.

Source: Rubric/Software/Exceptions

� Similar to 78, exception handling not in the TypeGraph and appropri-
ateness is hard to judge automatically

81. Classes and methods have Javadoc of respectable quality, that is, a concise
and complete description for other programmers what a class is for or what
a method does, and the possible return values/exceptions.

Source: Rubric/Software/Javadoc

� Not with the TypeGraph (Javadoc is not present in the TypeGraph),
but the presence could be detected with a different code representation, as
well as completeness regarding return values and exceptions. Nevertheless,
checking if a description is concise and complete remains hard.

82. Methods of game logic have reasonable nontrivial pre- and postconditions.
(sensible ensures/requires statements; full modeling of the game logic is
not required)

Source: Rubric/Software/Pre-postconditions

� Not in the TypeGraph, requires special JML support (which could be
done using a custom graph)

83. Comments are used to aid other programmers in the understanding of
the code, and document all non-trivial or implicit implementation details,
without adding too much verbosity.

Source: Rubric/Software/Comments

� Comments are not in the TypeGraph, but presence could be detected
with other graphs. Whether or not they are helpful or too verbose, remains
hard to jude.

118

Appendix B

Analysis results

Tables B.1 and B.2 show the results for the comparison between the assessment
results reported from our prototype and the assessment made by a human
assessor. Agree or Disagree means agreement or disagreement between the tool
results and the filled in rubric, respectively. Rubric-not-mentioned means that a
criterion was not mentioned in the filled in rubric, neither could its assessment
be derived from the score for that category in the rubric.

In AiC, table B.1, we include the number of occurrences for certain criteria that
refer to an amount as to which something happens. We also record Rubric-
positive or Rubric-negative to find if there is a connection between the numbers
reported by our prototype and the verdict in the filled in rubric. For some
patterns we record Apollo-not-found is the pattern was not matched by our
prototype, but the structure is in fact present; God-class if the project contains
a God class that replaces the main tab, which is relevant for those criteria; and
In-callstack if event handling variables were used outside the event handling
methods, but within methods that were called by those event handlers.

For SS, table B.2, we additionally record Many-false-positive if the matches
returned by the prototype include a lot of false positives for this criterion.

119

Table B.1: Agreement between automated and manual assessment of AiC projects

Program
2: Ran-
domness 4: Particles 5: Flocking

11: Class
interaction 12: Classes

14: Global
variables

17: User
interaction

21: Similar
code

23: Unused
code

2020/071 Agree Disagree,
Apollo-not-
found

Agree 12,
Rubric-not-
mentioned

12,
Rubric-not-
mentioned

7,
Rubric-not-
mentioned

Agree 2,
Rubric-not-
mentioned

3,
Rubric-not-
mentioned

2020/072 Agree Rubric-not-
mentioned

Rubric-not-
mentioned

24, Rubric-
negative,
God-class

12,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned,
God-class

Agree 2,
Rubric-not-
mentioned

1,
Rubric-not-
mentioned

2020/076 Agree Rubric-not-
mentioned

Rubric-not-
mentioned

25, Rubric-
positive

13,
Rubric-not-
mentioned

2,
Rubric-not-
mentioned

Disagree,
In-callstack

2,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned

2020/078 Agree Agree Agree 3, Rubric-
negative

9,
Rubric-not-
mentioned

23,
20-same,
Agree

Rubric-not-
mentioned

0,
Rubric-not-
mentioned

1,
Rubric-not-
mentioned

2020/081 Agree Agree Agree 40, Rubric-
negative,
God-class

17, Agree 0,
Rubric-not-
mentioned,
God-class

Disagree,
In-callstack

28,
Rubric-not-
mentioned

4,
Rubric-not-
mentioned

2020/085 Disagree Agree Agree 11, Rubric-
negative

12,
Rubric-not-
mentioned

3,
Rubric-not-
mentioned

Agree 0,
Rubric-not-
mentioned

1,
Rubric-not-
mentioned

2020/086 Agree Disagree,
Apollo-not-
found

Disagree 5,
Rubric-not-
mentioned

14,
Rubric-not-
mentioned

5,
Rubric-not-
mentioned

Agree 0,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned

120

Program
2: Ran-
domness 4: Particles 5: Flocking

11: Class
interaction 12: Classes

14: Global
variables

17: User
interaction

21: Similar
code

23: Unused
code

2020/088 Agree Disagree,
Apollo-not-
found

Agree 25, Rubric-
negative,
God-class

12,
Rubric-not-
mentioned

1,
Rubric-not-
mentioned

Disagree,
In-callstack

0,
Rubric-not-
mentioned

1,
Rubric-not-
mentioned

2020/089 Disagree Agree Agree 25, Rubric-
negative,
God-class

12,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned,
God-class

Rubric-not-
mentioned

0,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned

2020/090 Agree Disagree,
Apollo-not-
found

Agree 14, Rubric-
negative

12,
Rubric-not-
mentioned

6, Agree Agree 0,
Rubric-not-
mentioned

0,
Rubric-not-
mentioned

Table B.2: Agreement between automated and manual assessment of SS projects

Program
50:
Constants

59: Server
tests

61: Access
state

62: Private
fields

63: Public
methods

66: One
package

69:
Interfaces

77:
Creational
pattern

78:
Custom
exceptions

020 Rubric-not-
mentioned

Agree Agree Agree Disagree Agree Rubric-not-
mentioned

Disagree,
Many-false-
positive

Agree

021 Rubric-not-
mentioned

Agree Disagree,
Many-false-
positive

Disagree Disagree Agree Rubric-not-
mentioned

Disagree,
Many-false-
positive

Agree

121

Program
50:
Constants

59: Server
tests

61: Access
state

62: Private
fields

63: Public
methods

66: One
package

69:
Interfaces

77:
Creational
pattern

78:
Custom
exceptions

022 Agree Agree Agree Agree Disagree Agree Disagree Disagree,
Many-false-
positive

Rubric-not-
mentioned

023 Agree Agree Agree Disagree Disagree Agree Disagree Disagree Agree
024 Rubric-not-

mentioned
Agree Agree Agree Disagree Agree Rubric-not-

mentioned
Rubric-not-
mentioned

Agree

025 Agree Agree Agree Agree Rubric-not-
mentioned

Agree Disagree Disagree,
Many-false-
positive

Agree

026 Rubric-not-
mentioned

Rubric-not-
mentioned

Agree Agree Rubric-not-
mentioned

Agree Disagree Disagree,
Many-false-
positive

Agree

027 Agree Agree Agree Agree Rubric-not-
mentioned

Agree Rubric-not-
mentioned

Disagree Agree

028 Agree Agree Agree Disagree Agree Agree Agree Disagree,
Many-false-
positive

Agree

029 Rubric-not-
mentioned

Agree Disagree Disagree Disagree Agree Disagree Disagree,
Many-false-
positive

Agree

122

	Introduction
	I Background and requirements
	Background
	Assessment starts with ILOs
	Assessment criteria are sometimes ill-defined
	Automated assessment tools are built for small, well-defined exercises

	Stakeholders, concerns and requirements
	Scope and environment
	Stakeholders
	Stakeholder interviews
	Participants
	Procedure
	Analysis

	Use cases
	Requirements
	Mission

	II Architecture
	Components
	Datamodel
	Assessment pipeline
	Type graph
	Pattern rules

	Assessment configuration
	User interface

	III Prototype and evaluation
	Prototype
	Extractors
	Graph matcher
	Subgraph matching algorithm

	LLM suggestions

	Evaluation
	Methods
	Addressing requirements
	Prototype experiments
	Feasibility of the design
	Appropriateness of the assessment method

	Discussion
	What works well
	Patterns need more expressiveness
	The pipeline could be more flexible
	Configuration needs better support

	IV Conclusion and backmatter
	Conclusion
	Acronyms
	Glossary
	References

	Appendices
	Criteria
	Algorithms in Creative Technology
	Software Systems

	Analysis results

