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Preface

Saying goodbye is never easy. I suppose this also holds for the end of my time
as a student at the university. Actually, the saying manifests itself in multiple ways.
First, my time as a student is something I am very grateful for and I will probably
look back a little bit nostalgically. The countless enjoyable moments during activi-
ties/training/events/board year I had during my time at the Student Rowing Associ-
ation Phocas, is something I will remember. It brought me friendships that still last,
and I will continue to last for a long time. The student time is something I thoroughly
enjoyed, but all good things must come to an end. As I started to do my masters,
the late nights came less often, study had more priority, and thoughts about a future
career came to mind more often.

Which brings me to the second reason for the opening sentence. When the
master thesis finally came into sight, I was very excited, but also a bit nervous. I
wasn’t sure if I would find the focus and motivation in such a long project. Would I
find a subject that matched the long-anticipated expectations of a master’s thesis?
These worries quickly disappeared after my first weeks at TNO. As I was surrounded
by people who had the same passion for Deep Learning and computer vision, I was
inspired and encouraged to work and dig a little deeper into the subject of my thesis.
The help and advice of colleagues in the department definitely made a difference in
both the experience and the end result. Also, the weekly meetings with David, who
provided me with ideas and theoretical feedback in the field of Diffusion Models,
have brought my understanding of Diffusion models and this thesis to a higher level.

However, I would like to express my greatest gratitude to my supervisors Gertjan
and Sabina. Their regular advice, ideas and constructive feedback was the defin-
ing help that really encouraged and inspired me throughout the project. Under their
supervision, I received many opportunities to learn, experience and improve my the-
sis. One of the opportunities was a submission (an adapted version and improved
method) of this thesis at the Workshop on Diffusion Models at NeurIPS, which was
eventually accepted! I am very grateful for the nice collaboration we had (and hap-
pily, it didn’t end there as I started working as an employee at TNO!). I will definitely
cherish the nice memories and my time as an intern at TNO.
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Summary

0.1 Introduction

In the field of computer vision, accurate and efficient object detection is crucial for a
multitude of applications ranging from autonomous vehicles to surveillance systems.
Most object detection models are trained in a supervised fashion, requiring a large
corpus of images with objects of interest annotated. Labelling objects in images
typically requires a human annotator that annotates every object of interest in an
image. Therefore, creating large datasets for object detection models is often cum-
bersome and requires a lot of human effort. To reduce human effort, new strategies
for training object detection models are required.

This work iterates on the domain adaptation concept, this field leverages an exist-
ing dataset(source domain) and uses a different but similar dataset (target domain)
to detect objects in the images of interest. Current domain adaptation approaches
are still outperformed by fully supervised approaches, where the target domain con-
tains a sufficient amount of labelled images to train the model without any source
domain. To improve the performance in the target domain with as few as labelled
samples possible, this work proposes to finetune an object detection model using
pseudo-labels from the target domain. However, this requires useful pseudolabels
that do not have too many errors, which is challenging since the model is not trained
on the target domain. This leads to the following two questions: can we enhance
the recall of an object detection model without any fine-tuning in a target domain (1)
and can we leverage the enhanced recall for more efficient domain adaptation with
lower human annotation effort using human-verified pseudo-labels(2)?

To improve the detections without any labelled data, an ideal model would scale
in performance in trade for compute time. Since the pseudo-labels only need to
be generated once, computation time is less costly. Most object detection models
have a deterministic output, this means that for an image x, output y will always be
the same. This deterministic property makes performance scaling hard since the
output cannot be changed. Instead, this work uses DiffusionDet, an object detec-
tion model that takes the image and a set of random bounding boxes and iteratively
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VI SUMMARY

aligns the location, aspect ratio and size with the objects in the image. Due to the
random input, the output can vary between predictions. This work aims to leverage
this stochastic property to improve the detections. Two methods are proposed: (1)
Add more random bounding boxes as input, to increase the likeliness of detection of
an object and (2) aggregate the output over multiple runs to increase the recall. To
answer the second research question, a human-in-the-loop is proposed to verify the
improved pseudolabels and these labels are used to fine-tune the object detection
model. The assumption is that training with human-verified pseudo-labels requires
relatively less human effort compared to training labels with human-generated la-
bels.

To verify the experimental settings without any fine-tuning, the following domain
adaptation task was proposed: a trained model on the source domain MS-COCO
and evaluated on the VisDrone dataset. The shift between the domains involved a
different viewing angle of the objects of interest. Generally, images from MS-COCO
have a frontal view, whereas the images from VisDrone have an aerial perspective
and were taken from a drone. In practice, images in VisDrone contained smaller ob-
jects with a different viewing angle compared to MS-COCO. In the first experiment,
the detection performance of detections with more runs and more random bound-
ing boxes was evaluated on VisDrone. The results revealed that adding more runs
increased the recall and precision, a similar effect was also found for adding more
random bounding boxes.

To reveal whether the improved detections could be utilised as pseudo-labels
with a human in the loop, another experiment was conducted. Pseudo-labels were
generated using the more runs setting with a human in the loop that would verify
the labels by creating crops in the images containing correct predictions. Finally,
the model was fine-tuned using the human-verified crops combined with either 10 or
50 ground-truth (GT) labelled images. This fine-tune setting was compared against
a baseline model that was trained on ground-truth images only (either 10 or 50 GT
samples). To reveal the effect of the improved detections, another model was trained
on the same human-verified image crops containing pseudo-labels generated from
a single run. Finally, an upper bound model was created that used the same human-
verified crops containing the ground truth labels. Evaluation on VisDrone revealed
that our proposed method outperformed the baseline model and also the model
trained on the human-verified crops from a single run in both 10 and 50 GT sam-
ples. By calculating the human effort in hours per experimental method, this work
revealed that the proposed method requires the least human effort to improve de-
tection performance.
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Chapter 1

Introduction

1.1 Motivation

In the realm of computer vision, the accurate and efficient detection of objects within
images and videos serves as the pillar upon which a multitude of applications, from
autonomous vehicles to surveillance systems, rely for their success and impact.
The field of object detection is concerned with locating and identifying instances of
interest in an image, a task that is often trivial for humans but can be challenging
for a machine. Throughout the years, object detection models have received more
applications [1]. For example, some applications are autonomous driving, robot
vision, and video surveillance [1], [2]. The ability to automatically identify and locate
objects makes these models useful for real-world applications.

Object detection in deep learning is generally considered a supervised learn-
ing problem [2]. Supervised learning for object detection typially involves a deep
learning model that is exposed to pairs of data samples and corresponding labels.
Using the datasamples, the model creates predictions that are corrected by the cor-
responding labels from the data samples. The labels serve as corrections to refine
the model’s predictions by updating the model’s parameters. In this way, the model
is tuned to produce object labels for a designated object detection task [3]. Con-
sequently, the development of an effective object detection model requires a com-
prehensive dataset, comprising data samples along with their associated labels,
customised for a specific application.

Current state-of-the-art deep learning object detection algorithms rely on a large
corpus of labelled data for training, such as YOLO [4], EfficientNet [5] or Faster R-
CNN [6]. These models are trained on large datasets that have a high number of
labelled objects, ranging from 860k to 1.4 million labelled objects [7], [8]. The high
number of data samples is required because the models need to learn to recog-
nise objects in various settings such as different lighting conditions, varying viewing
angles, and many backgrounds.

1



2 CHAPTER 1. INTRODUCTION

However, annotating large datasets is time-consuming, and since most work an-
notation is done by human labellers, it requires a lot of human effort. In object
detection, human labellers are required to put bounding boxes with labels around
each object in an image. This repetitive process takes a human annotator on aver-
age 50 seconds per object in an image that likely contains multiple objects. For the
large datasets of up to 1.4 million objects currently used for training object detection
models, the required human effort for creating the labels is enormous.

However, in some scenarios where the source and target domain do resemble,
labelling a novel large dataset is not required for training an object detection model.
For example, a source domain containing drawn objects such as cars and pedestri-
ans can be used to pre-train a model for detecting real-world similar objects such as
bicycles or different types of cars. After training with a larger dataset, the model is
fine-tuned with the target dataset containing a few samples of the target domain to
leverage the trained features for the target task. This process of adapting a model
from one domain to another while having the same task is called domain adapta-
tion. Domain adaptation allows one to train a model with few data samples of the
target domain. During the fine-tuning process, the model adapts to the shift in the
underlying distribution of the data samples.

Although domain adaptation enables improvements in the target domain with
fewer labelled samples, performance often does not come close to fully supervised
approaches [9] and offers room for improvement. One approach to improve domain
adaptation is to combine existing strategies from other fields that aim to train with
fewer labelled samples with domain adaptation. One interesting field that enables
training on both unlabelled and labelled data is semi-supervised training. Within
this field, a promising approach uses generated labels from the object detection
model as training data to fine-tune the model. In [10], pseudo-labels are used to
enhance the performance of the model. The authors introduce a teacher model,
that generates pseudo-labels and a student-model that learns from the pseudo-
labels. Using an exponential moving average, the fine-tuned weights of the student
model are transferred to the teacher model. By combining the ground-truth (GT)
labels and pseudo-labels, the teacher and student model converge together and the
authors report that their method outperforms the baseline with GT labels only. By
substituting GT labels with pseudo-labels, the field of semi-supervised learning aims
at training with less labelled data.

1.2 Problem statement

This raises the question of whether domain adaptation can be improved with fewer
labelled data samples using pseudo-labels from the target domain. Domain adap-
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tation poses a strategy for training with fewer labelled samples for a target domain.
However, for a sufficiently large domain gap, the model may still require a significant
amount of labelled data to fine-tune the outputs for the target domain. Consider
the difference between detecting objects from a frontal view compared to detect-
ing objects from the air (aerial view). In this gap, similar objects can have different
visual features since the different angles of view can expose new visual object prop-
erties. Another gap from the source to the target domain is that the object size will
be smaller on average, since the distance from the capturing device to the object is
larger. The illustrated domain gap will likely pose a problem for an object detector
that has been trained with only objects from a frontal view. Therefore, an efficient
training strategy is required to effectively adapt the model from one domain to an-
other. More precisely, we consider the following domain adaptation problem:

• We have a model that is trained on the source domain, that involves detect-
ing images from a frontal view. This domain has a sufficient number of data
samples for training.

• We want to fine-tune the model for the target domain which has different prop-
erties. Objects in images are observed from an aerial view. Consequently,
this results in detecting objects that are, in general, smaller and have different
viewing angles. In this domain, labelled data samples are sparse, so effective
fine-tuning is desirable.

1.3 Research questions

Having a large domain gap reduces the quality of the detections in the target do-
main. Initially, this makes fine-tuning for the target domain with pseudo-labels less
attractive. Training with pseudo-labels works under the condition that the labels pro-
vide the model with sufficient qualitative information [11]. With a large domain gap,
the quality of the pseudo-labels might not be sufficient for pseudo-labelling, which
can result in a drop in accuracy after fine-tuning with pseudo-labels. However, if the
recall and precision of the predictions can be improved, training with pseudo-labels
might be beneficial. In this scenario, domain adaptation with fewer labelled sam-
ples would require two steps. First, improve the labels generated without any data
from the target domain. Second, fine-tune the model with the enhanced detections
to fine-tune with the pseudo-labels. Following these steps, we aim to answer the
following research questions for a large domain gap:

• Can we enhance the recall of an object detection model without any fine-tuning
in a target domain?
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• Can we leverage the enhanced recall for more efficient domain adaptation with
lower human annotation effort using human-verified pseudo-labels?



Chapter 2

Related work

This section covers the related work that aims to reduce the human labelling effort by
training with fewer labelled data samples. To obtain qualitative pseudo-labels, sev-
eral methods for detecting objects are discussed. By analysing work in the field of
object detection, we explore methods that might enable us to find qualitative pseudo-
labels and also explore methods that enable us to improve recall and precision with-
out any fine-tuning in the target domain. Training with fewer labelled samples can
occur in various scenarios, for example in Active Learning, Semi-supervised Learn-
ing and Domain Adaptation. In the second part of this section, several fields that
are concerned with training with fewer labelled samples are discussed that can be
leveraged to reduce the human labelling effort.

2.1 Object detection

The domain of object detection pertains to the tasks of both localizing and cate-
gorizing objects within an image. These objects belong to predefined classes and
necessitate localization through axis-aligned bounding boxes. As mentioned in the
research questions, the aim is to find pseudo-labels in the target domain that im-
prove the performance in fine-tuning. Therefore the goal of this section is to identify
a method that detects correct labels in the target domain as much as possible with-
out any fine-tuning yet. Since these labels only need to be generated once for fine-
tuning, inference speed is less important and can be traded for accuracy. Ideally, a
model that improves accuracy while trading off inference speed would benefit this
scenario.

An exciting field that concerns scaling detection performance across devices
is once-for-all (OFA). Once-for-all refers to training the model once and using the
trained parameters for all levels of computing. In [12] an OFA network is proposed
that can scale with different compute requirements. This model has to be trained
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6 CHAPTER 2. RELATED WORK

once, and the same network parameters can be used to scale the performance for
all different levels of compute power. The authors report that their OFA model in
terms of latency outperformed EfficientNet [13] while maintaining the same accu-
racy. Unfortunately, the trained model in the author’s work only scales downwards
for different levels of computing. Specifically, subnetworks can be derived from the
original model, indicating that its accuracy can only decrease and not improve. For
leveraging the source domain as effectively as possible, a method that can scale
upwards is required.

More recent work from [14] introduces DiffusionDet that has a similar once-for-all
property but might also scale upward in accuracy after training. This model takes
as input a set of proposal bounding boxes with random aspect ratio and scale and
gradually adjusts the size, aspect ratio and location of the boxes to match the align-
ments of the objects. The boxes are iteratively adjusted in steps that can be set as a
hyperparameter. Low-confidence boxes are removed, and Non-Maximum Suppres-
sion (NMS) is applied afterwards to remove class-specific duplicate predictions. The
authors report that they can adjust the output by using more proposal boxes and/or
using more sample steps. They report that their method can achieve higher perfor-
mance at the cost of requiring more computing power. The characteristics of this
model can be leveraged to bridge the domain gap with improved samples without
fine-tuning which addresses the first research question. The network parameters
obtained by training in the source domain can be leveraged to change the output at
inference time. This could lead to improved detection in the target domain. There-
fore, DiffusionDet will be used to investigate whether it is possible to improve the
detections.

To validate possible performance improvements with DiffusionDet, a baseline
comparison method is required. Currently, there are roughly two types of object de-
tectors, single-stage and two-stage detectors. Single-stage detectors localise and
classify objects in a single shot using dense sampling. These models detect ob-
jects in a single stage by using predefined boxes/keypoints of various scales and
locations. Two-stage detectors have a separate module to generate region-based
proposals. In the second stage, the region-based proposals are classified, low-
confidence boxes are removed, and the coordinates of the proposals are refined.
Since two-staged detectors use two separate stages to detect objects, they are gen-
erally slower than single-stage detectors.

Starting with single-stage detectors, Single Shot MultiBox Detector (SSD) by [15]
extends VGG-16 [16], using additional auxiliary feature layers. This extension en-
abled the model to predict boxes of different scales and aspect ratios and their cor-
responding sizes. The first version of SSD struggled to predict small objects that are
clustered together with substantial mutual occlusion. These were largely resolved in
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later versions of SSD with more effective Backbones, such as ResNet [17].

The model from [4] named You Only Look Once (YOLO), is one of the most well-
known object detectors. After the introduction of the original work, many iterations
have been made to improve the model in terms of inference speed and accuracy
[18], [19], [20]. This approach has been characterised by the division of the input
image by a S×S grid. Each grid cell is responsible for predicting the bounding box in
which the centre is located in the grid cell. The localization of the object is treated as
a regression problem by using the grid cell’s pixel information to predict the centre,
size and confidence of the box. At the same time, the class probability of each
grid cell is calculated and combined in a single tensor with the box coordinates and
confidence. Finally, low-confidence predictions are removed and NMS is applied.
The first YOLO model had similar issues as SSD with predicting small clustered
objects, and the number of objects per grid cell was limited. Most of these drawbacks
were resolved in later iterations. Although SSD and YOLO received architectural
improvements and optimised training strategies, eventually YOLO outperforms SSD
in most scenarios [21], [22], [23].

Continuing with two-stage detectors, the Region-Based Convolutional Neural
Network (R-CNN) [24] was the first architecture proposed for the R-CNN family.
This network has a region proposal module that produces 2000 object candidates.
Using Selective Search [25], candidates with the highest probability of having an
object are identified. These candidates are propagated through a CNN network that
calculates a feature vector. The feature vector is passed through a class-specific
Support Vector Machine (SVM) to obtain the confidence scores of the candidates.
NMS is applied afterwards to remove class duplicates.

Several improvements after the introduction of the original R-CNN model have
been proposed, part of which is described here. The Fast R-CNN model [26], en-
abled end-to-end training and shorter inference times. Faster R-CNN [6] further
improved inference speed and detection performance. Another proposed improve-
ment, Mask R-CNN [27] further enhanced the detection performance by adding
a segmentation branch along with the detection and classifying heads. Although
YOLO is a single-stage detector, most comparisons between Mask R-CNN and
YOLO reported that YOLO outperformed Mask R-CNN in several computer vision
tasks [28], [29], [30], [31], [32]. Therefore, YOLO seems the best option to com-
pare DiffusionDet’s performance against. A comparison in [33] revealed that from
YOLOv5 onwards, newer YOLO models trade between speed and accuracy and
make fundamental gains in both metrics. Since YOLOv5 [34] has an implementation
in PyTorch [35] this work uses YOLOv5 as a baseline.
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2.2 Domain adaptation for object detection

Often object detectors are pre-trained on a large-scale dataset. When utilizing it for a
target domain, it needs to be fine-tuned with labelled data from the target domain. As
mentioned before, in some scenarios, there are few available labelled data samples.
Domain adaptation leverages the labelled data from the source domain to reduce the
required labelled samples in the target domain. Some publications make different
assumptions about the properties of the source and target domains, therefore, there
are different methods to apply domain adaptation. One distinction within the field
is the unsupervised [36], [9] and the supervised training procedures [37], [38], both
are used in domain adaptation. Most of the work in domain adaptation is in the field
of image classification and uses unsupervised training for Domain adaptation [38].
The field of image classification is concerned with assigning a label or category to
an entire image. Image classification models take an image as input and output a
class label that corresponds to the image. In contrast to supervised learning, unsu-
pervised learning does not require labelled data, the model can identify patterns in
the data without any labels. The most widespread objective of unsupervised learn-
ing in domain adaptation is to maximise domain invariance [36]. This means that a
model needs to find domain-invariant representations throughout training [36], [39].
Theoretically, finding domain-invariant representations would lead to improved clas-
sification performance in both domains.

In the work from [40] an unsupervised method is shown using an adversarial
model to train the image classification model. The adversarial model aims to identify
whether an image is from the source or target domain using the latent space feature
vector from the image classification model. Joint training of these networks enables
the generator network to create domain-invariant latent feature vectors. The au-
thors report that their work outperforms state-of-the-art results from [41] which uses
subspace alignment for domain adaptation. Another approach of maximisation of
domain invariance is from [42]. The authors introduce a novel CNN architecture
that uses an additional domain adaptation layer. The output of this layer is used
to calculate the Maximum Mean Discrepancy (MMD) between the source and tar-
get data. Using the loss of the classification error and MMD, the authors claim to
obtain discriminative but domain-invariant features in their model. They report that
their work outperforms previous state-of-the-art work on several domain adapta-
tion benchmarks for image classification. Although both publications show notable
target-domain performance improvements, their work is limited to image classifica-
tion.

Although there is empirical evidence that domain adaptation benefits from max-
imising domain invariance, in [43] the objective for domain-invariant features in Deep
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Learning models has been criticised. The authors show that there is a fundamental
trade-off between learning invariant representations and achieving a small joint er-
ror among the source and target domains. They argue that successful deep domain
adaptation methods require better alignment of domain conditional distributions. An-
other downside of these approaches is that they do not translate to object detection
tasks. Object detection poses an additional challenge of locating the objects, there-
fore there are multiple objects which makes domain invariance maximization more
challenging. This makes exploring maximizing domain invariance for domain adap-
tation in object detection not fit in the scope of this work.

Although less work has been done in domain adaptation for object detection,
in [44] an intermediate dataset is proposed to bridge the domain gap in an Object
Detection task. The model is fine-tuned using an intermediate synthetic dataset to
bridge the domain shift. Using a CycleGAN [45], the authors create a synthetic train-
ing set to ease the domain gap from source to target. The authors report that their
methods outperform other methods in most of their metrics. However, the creation
of an intermediate dataset using an additional model introduces more complexity to
the domain adaptation task. The CycleGAN as reported in the original work should
be tuned well enough to create representative samples that bridge the source and
target domain. This makes domain adaptation using this method unsuitable for the
time available in this work.

Overall, leveraging the source domain for training with fewer labelled samples
from the target domain seems like a good starting approach. However, the provided
methods for domain adaptation provide additional challenges for object detection
that do not fit in the scope of this work. Moreover, domain adaptation methods do
not provide the same performance as supervised methods [9] trained in the target
domain. This performance deficit leaves space for improvement for more effective
fine-tuning in the target domain. Therefore, we want to explore whether the adapta-
tion process can be further improved using other methods that enable training with
fewer labels.

2.3 Active Learning

Another method that enables training with fewer labelled samples is Active Learning.
This field aims to find a method that selects a subset of the training data that is
most effective for learning [46], [47]. The field assumes that a set of samples in
the target domain has yet to be labelled by an oracle. Therefore, Active Learning
requires a strategy that selects the best images for training without any knowledge
of the labels. The human labelling effort is reduced by finding an optimal subset of
unlabelled training data. This field aims to find representative samples that allow the
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model to account for the shift in the data sample distribution between the domains.
Most of the work in the visual field of Active Learning concerns image classifi-

cation [46]. However, [48] proposes a margin sampling approach from [49] to use
Active Learning for object detection. This approach calculates the class confusion
of an object between the two classes with the highest confidence. Conceptually, this
measure indicates the uncertainty of a detection in an image. The authors explore
several methods for translating individual object uncertainties to image uncertainty.
They report that on average the summation of the object uncertainties provides the
best proxy for sampling images. The authors report that their sampling strategy
outperforms the random sampling baseline. Although these results show that the
class-confusion can pose a sampling strategy for Active Learning, the benefit com-
pared to a random baseline is relatively small. Moreover, this method solely focuses
on uncertainty during selection without taking the notion of the informativeness of
the sample in the target domain. For domain adaptation, Active Learning does not
seem to provide methods that fits to the scope of this work to reduce the human la-
belling effort for object detection. Therefore, this work does not utilize Active Learn-
ing methods and further exploration of fields that are concerned with training with
fewer labels is required.

2.4 Semi-supervised training

Another field that is concerned with training with fewer labels is semi-supervised
learning. Instead of training solely on labelled data, semi-supervised training uses
both labelled and unlabelled data [50]. One possible approach within semi-supervised
training is the use of pseudo-labels that are used for training with unlabelled data.
In [51] an approach named Self-Training and the Augmentation driven Consistency
regularization (STAC) is proposed. The authors train a teacher model with labelled
data until convergence is reached. This object detection model is used to gener-
ate pseudo-labels from the unlabelled dataset. In the second step, another object
detection model is fine-tuned together with GT labels and pseudo-labels to further
enhance the performance. In addition to the pseudo-labelling strategy, data aug-
mentations are used to further improve the performance of the model. The authors
report that their training method outperforms the baseline training model that has
only been trained on a random subset of labelled samples.

Although STAC outperforms the baseline, the authors do note that class imbal-
ance of the labelled data could lead to reduced pseudo-label quality. To address this
issue, Unbiased Teacher is introduced by [10]. The authors propose a teacher and
student model that jointly learn from the pseudo-labels. The teacher model provides
the student with pseudo-labels for fine-tuning and the teacher model is updated by
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the student model via an exponential moving average (EMA). This allows the model
to gradually improve the pseudo-labels. To address the potential class imbalance,
Focal loss [52] is used to down-weigh overly confident pseudo-labels. The authors
report that their method outperforms STAC on all their metrics. STAC and Unbiased
Teacher show impressive results for training with fewer labels. However, both pa-
pers focus on in-domain performance improvements where the pseudo-labels from
unlabelled data from the source domain. The proposed methods are not used for
domain adaptation, where the quality of pseudo-labels might deteriorate because of
the domain gap. This raises the question of whether pseudo-labelling can be used
for domain adaptation.

The work of [53] provides insight into whether pseudo-labels can be used for
domain adaptation of object detection. The authors propose an unsupervised ap-
proach by only fine-tuning with pseudo-labels in the target domain. The work intro-
duces a confidence metric, which is a combination of classifier confidence and the
variance between bounding box locations. Using the confidence of the predictions
in the target domain, the authors identify crops containing pseudo-labels suitable
for fine-tuning. During training, the confident regions with pseudo-labels are mixed
with images and labels from the source domain. The loss of the pseudo-labels is
weighted by the ratio of pseudo-labels in the crop that have confidence higher than
a predefined threshold. Image crops with low-confidence pseudo-labels are penal-
ized with lower losses. The authors report that their work achieves state-of-the-art
performance and approaches supervised performance. They also show that their
dynamic weighting of the pseudo-label loss outperforms other approaches, such
as applying constants for weighting the pseudo-label loss. Their confidence metric
is sufficiently able to assess the quality of the pseudo-labels such that the loss of
incorrect pseudo-labels get downweighted.

Although their work shows that domain adaptation using pseudo-labelling is pos-
sible, it is limited to a domain gap with objects having the same object size and
viewing angle. The authors demonstrate a method that can filter low-quality pseudo-
labels, but they do not show how to improve the pseudo-labels for a domain gap
where the objects in the target domain have different sizes and different visual fea-
tures. It remains uncertain if their method is still able to provide suitable pseudo-
labels for fine-tuning in a more substantial domain gap as shown in this work. There-
fore, we chose to use a method with a human in the loop and want to investigate how
we can effectively and efficiently leverage the human effort for domain adaptation.
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Chapter 3

Methods

The first step in reducing the human effort for object detection is obtaining as many
correct labels as possible in the target domain using an object detector. The rel-
ative number of correct labels generated by a model reduces the need for human
intervention in the labelling process, therefore obtaining as much correct labels as
possible is important for reducing the human effort. The once-for-all property of Dif-
fusionDet might enable us to improve the accuracy and find qualitative labels in the
target domain.

Conventional object detection systems, as mentioned earlier, use object candi-
dates to generate bounding boxes around objects. Object candidates are commonly
generated from empirical object priors [4] [26], [15], [54] or learned queries [6], [55],
[56], [57]. These candidates are generated deterministically from the model’s input.
Therefore, for an input x, the model’s output y is fixed. Instead, the model used
in this work has a stochastic output. Hence, variations among predictions are ob-
servable. DiffusionDet [14] uses random bounding boxes as candidates for object
detection. These boxes are randomly assigned across an image with varying sizes.
This concept is inspired by classical diffusion models [58] that use Gaussian noise
to generate images.

3.1 Stochastic Object Detection using DiffusionDet

In DiffusionDet, removing noise from object boxes in images involves a step-by-step
approach. This paradigm is analogous to conventional diffusion models that adhere
to a noise-to-image pattern. For DiffusionDet, this translates to a noise-to-detected-
objects pattern, where the model denoises random bounding boxes instead of pixel
noise [14]. In Figure 3.1 an overview of these patterns is visualized. In the middle
section of Figure 3.1, a noise-to-image pattern is shown as used in most conven-
tional diffusion models. In the lower part of Figure 3.1 the noise-to-object pattern is
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shown, where the noise is represented by bounding boxes of random locations, as-
pects ratios and sizes. This stochastic approach has an appealing advantage: the
outcome of DiffusionDet can be changed at inference time by adjusting the noise
and denoising process. The hypothesis is that this feature can be leveraged to en-
hance the model’s performance without fine-tuning.

Figure 3.1: In the figure used from [14] the Diffusion process is visualized and com-
pared against a conventional diffusion model for image generation. In
the middle section, image noise is gradually removed, while at the bot-
tom bounding boxes are stepwise adjusted and/or removed.

3.1.1 Changing the output at inference time

The authors report two major hyperparameters that affect the outcome at inference
time [14]. First is the number of sampling steps for box denoising that adjusts the
denoising process. As with conventional diffusion models, denoising takes place
in multiple timesteps. Bounding boxes are stepwise adjusted in size and location
during the diffusion process. The number of denoising steps can be set as a hyper-
parameter to adjust performance. The authors reported that more denoising steps
improve performance, but increase inference time [14].

The second hyperparameter is the number of random bounding boxes to change
the stochastic input of the model. An experiment by the authors revealed that us-
ing more random bounding boxes improves accuracy [14]. Models with fewer ran-
dom bounding boxes seem to benefit more from adding more sampling steps com-
pared to models with a relatively high number of random bounding boxes. This
indicates that more random bounding boxes diminish the effect of more sampling
steps and vice versa. The runtime analysis revealed that more sampling steps add
relatively more latency compared to using more random bounding boxes. Therefore,
we choose to experiment with adding more proposal boxes for domain adaptation.
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An additional parameter is adjusting the input noise of the Diffusion model for
the properties of the target domain. This could (partially) bridge the gap from the
source to the target domain without fine-tuning. For DiffusionDet the noise is a set
of bounding boxes with various sizes, aspect ratios and locations. In a domain gap
where the objects in the target domain have a different size, the size of the random
bounding boxes can be reduced.

3.2 More random proposal boxes

In the original work of DifussionDet [14], adding more bounding boxes seems to im-
prove the in-domain performance. In this experiment, we want to validate whether
the same effect applies out-domain. More specifically, we want to investigate whether
this effect is also observable for a substantial domain gap. By adding more random
proposal boxes for denoising, the hypothesis is that the probability of denoising a
box to an object increases in the out-domain. Figure 3.2 visualizes the differences
between using more random proposal boxes and the standard configuration. The
aim is to detect the false negatives (FN) from the baseline model after using more
random proposal boxes. The hypothesis is that the probability of detecting an ob-
ject increases when using more boxes as shown in the example in the figure where
the small person is detected with more random boxes as input. As a result, the
expectation is that the recall should rise in proportion to the number of boxes being
increased in the target domain.
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Figure 3.2: In this figure a comparison between the standard configuration and the
experimental setting with more random proposal boxes is shown. In the
lower configuration, more random proposal boxes are projected on top
of the images to illustrate the effect of using more random box propos-
als.

3.3 Multiple runs

The goal of this section is to further explore the properties of the denoising process
with respect to the number of bounding boxes. Instead of denoising all the boxes at
once, this section proposes an iterative approach. By repeatedly predicting objects
of the same image, the varying output across runs can be aggregated to supplement
the final set of bounding boxes. By comparing this approach with more random
bounding boxes, one can observe whether there is a dependence between boxes
during the denoising process. If bounding boxes would compete during denoising,
an iterative approach would be less affected by the competition. Since individual
runs are independent of each other, boxes from one run do not affect the denoising
process of another run. Therefore, if there exists a dependence between boxes in
the diffusion process, a difference in performance should be observable between
more runs vs. more boxes.

As with the previous method using more random proposal boxes, the expectation
is that more runs can improve the recall since the variations among predictions are
leveraged to improve the final prediction. In Figure 3.3 a schematic overview of this
approach is visualized. After gathering all boxes, NMS is applied to remove duplicate
detections. Algorithm 1 shows a high-level overview of the inference approach as
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discussed in this section.

Figure 3.3: A visualization of combining multiple runs using DiffusionDet is shown
in this figure. By leveraging the stochastic output of the model, the aim
is to collect more objects by aggregating the boxes over multiple runs.

Algorithm 1 Multiple runs with DiffusionDet
1: procedure MULTIPLE RUNS DIFFUSIONDET(num runs) ▷ Aggregation of more

detections
2: img ← load img(path)

3: predictions← list

4: for i in range(num runs) do
5: predictions.append(DiffusionDet(img))

6: end for
7: predictions final← nms boxes(predictions, 0.5) ▷ Filter duplicate boxes
8: return predictions final ▷ Final set of predicted bounding boxes
9: end procedure

3.4 Smaller random proposal boxes

It is possible that there is a difference in the average box size between the source
and the target domains. Given this knowledge of the target domain, we might exploit
this knowledge to optimise the model for the properties of the objects in the target
domain. Given that the model is trained with random proposal boxes on the source
domain with an average area size of µ. Variable µ can be adjusted to align with
the domain gap. For target domains where the average object sizes are relatively
smaller, µ can be set smaller accordingly. In Figure 3.4 a visualization of this exam-
ple is shown. The opposite adjustment can be made for target domains with larger
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box sizes. By optimizing the stochastic input with the output of the target domain,
the expectation is that this method can increase the probability of detecting an object
in the target domain.

Figure 3.4: The upper configuration depicts the standard configuration whereas the
lower configuration shows the experimental setting with smaller random
proposal boxes.

3.5 Semi-supervised training using pseudo-labels

By leveraging DiffusionDet’s ability to change the output at inference time, the sug-
gested changes described in the previous sections can lead to improved detections.
These detections can be utilized for pseudo-labelling to enhance the model’s perfor-
mance in the target domain using semi-supervised training. It is important to have
improved detections because the pseudo-labels need to be of good quality [59].
Common mistakes such as FNs, where objects are not detected, and false posi-
tives (FP), where objects are mistakenly detected or misclassified objects in object
detection should be minimised to prevent the model from learning from incorrect
labels. Iterating from the improved recall, a human in the loop is used as an addi-
tional measure to guarantee the pseudo-label quality. Using a human in the loop
for pseudo-label verification, we want to filter out low-quality pseudo-labels and only
use better pseudo-labels for fine-tuning.

3.5.1 Obtaining pseudo-labels

Due to the domain gap, the expectation is that the pseudo-labels generated by Dif-
fusionDet will not be good enough. Too many FNs or FPs in the pseudo-labels
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can decrease the model’s performance after fine-tuning. Therefore, the generated
pseudo-labels should be verified whether the detections are correct. This task will
involve a human in the loop that will be only concerned with verifying pseudo-labels.
In practice, a human labeller should be able to identify regions containing correct
pseudo-labels and locate them. After all labels in the fine-tuned dataset have been
verified, the model is fine-tuned on the crops of the areas containing the correct
pseudo-labels. More precisely, the proposed pseudo-label generation from this work
involves three stages:

1. Generate pseudo-labels with DiffusionDet using the proposed enhancement
from Sections 3.2, 3.3 and/or 3.4.

2. Annotate the regions with mostly correct labels by a human.

3. Crop and adjust the image and box coordinates to keep only the correct labels.

We assume that after human verification, there are still a sufficient amount of pseudo-
labels left for fine-tuning. In Figure 3.5 an overview of the pseudo-label generation
with a human-in-the-loop process is shown. To keep pseudo-labels consistent, the
following guidelines were set up for the human-in-the-loop task:

• Identify and annotate all regions in the image containing correctly labelled ob-
jects.

• Include as much surrounding region of the object as possible to provide the
model with as much image information as possible.

• Limit the task to verification, it is not allowed to add new labels.

Since the focus is on reducing the human labelling effort, the annotated areas are
not checked by a second human annotator. Therefore it could be possible that the
crop still includes incorrect labels. Hence, in the next section, we propose a method
to combat potential issues with fine-tuning using incorrect labels.

3.5.2 Fine-tuning with crops containing pseudo-labels

Assuming that there are existing GT labels of the target domain, pseudo-labels are
used to further improve the performance during fine-tuning. The expectation is that
the human-verified pseudo-label process requires significantly less human effort.
Therefore, the dataset size of pseudo-labels can be much larger compared to the
size of the GT dataset.

The pseudo-labels and GT labels are sampled independently from each other
and put together in one batch. Using a batch size of 2, each batch contains one
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Figure 3.5: The process of generating pseudo-labels involves three stages. First,
DifussionDet creates predictions over a set of images in the target do-
main. After labelling the images, a human identifies regions containing
the correct labels. Lastly, the marked regions with the corresponding
labels are cropped out of the images.

pseudo-labelled sample and one GT sample. Figure 3.6 provides an overview of
the sampling procedure. When there are more pseudo-labels than GT labels, GT
labels are again concurrently trained with different pseudo-labels in a new epoch.
The proposed semi-supervised training procedure is shown in Algorithm 2. With the
use of these experimental methods, the expectation is that the human labelling effort
can be significantly reduced for fine-tuning DiffusionDet in the target domain.

Algorithm 2 The following pseudo-code depicts the training process utilized in this
work, which involves the use of pseudo-labels.

1: procedure PSEUDO TRAIN(epochs) ▷ train with pseudo-labels
2: data gt← dataloader gt() ▷ Dataloader of GT-labels
3: data pseudo← dataloader pseudo() ▷ Dataloader of Pseudo-labels
4: model← DiffusionDet()

5: for i in range(epochs) do
6: batch← [data gt.get sample(), data pseudo.get sample()]

7: loss← model(batch)

8: loss.backward() ▷ Backpropagate loss
9: end for

10: return model ▷ Trained model
11: end procedure
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Figure 3.6: Images from the pseudo-label dataset and GT label dataset are drawn
independently, using two dataloaders and put together in one batch for
training.
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Chapter 4

Experiments

This section evaluates the proposed experimental methods introduced in Section 3.
This includes the used data, evaluation metrics and results.

4.1 Domain adaptation task

As mentioned in the problem statement in Section 1.2, the aim is to bridge substan-
tial domain gap between the source and target domain. Therefore, the categories of
interest between the two domains require sufficient visual differences to substantiate
the gap. This section will describe and to some extent, quantify the domain gap.

4.1.1 Source domain: MS-COCO

Starting with the source domain, the MS-COCO (Microsoft Common Objects in Con-
text) dataset [7] is used to pre-train the models. DiffusionDet and YOLO (baseline)
are trained on the MS-COCO training set. The MS-COCO data set is a large-
scale data set for object detection, keypoint estimation, and image segmentation.
Throughout the years, the authors have made adaptations to the dataset, such as
additional annotated images and adaptations in the test/train split sizes. In this work,
the latest version from 2017 is used. The dataset consists of 118k static images for
training and 5k images for validation. The data set has 80 object categories for ob-
ject detection. As the name of the dataset suggests, the object categories include
all types of common objects such as pets, food and care products.

4.1.2 Target domain: VisDrone

Continuing with the target domain, The VisDrone dataset [60] contains objects from
an unmanned aerial vehicle’s (UAV) perspective in urban areas. Images are taken
from an aerial perspective. This results in some additional challenges with respect to
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object detection. First, images were captured from a greater distance, which could
lead to smaller objects, although the object size also depends on the camera lens
that has been used. Also, some images contain motion blur, which is attributed to
the drone’s moving point of view. The dataset consists of 10k images containing
on average 54k labels per category. There are 10 categories of objects, which
are various types of road users such as cars, vans, or pedestrians. From the 10
categories, only a subset of the GT labels is used during evaluation; car, person,
pedestrian, bus and truck. The dataset is divided in a train, test and validation set,
containing 6471, 1610 and 548 images respectively.

VisDrone MS-COCO This work
Car Car Car
Person Person Person
Pedestrian
Bus Bus Bus
Truck Truck Truck

Table 4.1: An overview of the used labels is shown in this table. Note that the cat-
egories ”Person” and ”Pedestrian” are merged in this work. Since the
model is pre-trained on MS-COCO, there is no distinction made between
pedestrians and persons. For convenience, both categories have been
merged.

These categories were used since they overlap with the labels from MS-COCO
and can be used for the domain adaptation task. Also, person and pedestrian are
merged since the labels in MS-COCO do not make a distinction between the two cat-
egories from VisDrone. Therefore, the models in this work will classify both person
and pedestrian as person in VisDrone. In Table 4.1 an overview of the categories is
shown.

4.1.3 Characterizing the domain gap

Although both datasets have a small intersection in their types of categories, there
is still a domain gap in terms of visual features. As mentioned before, the main dif-
ference between the source and target dataset in this work is caused by the different
viewpoints. This results in smaller objects and different object features in VisDrone
compared to MS-COCO. Figure 4.1 shows the differences between the two domains.
The figure illustrates the differences in the viewing angle and distance. These have
a considerable effect on the visual appearance of the objects. Consequently, a dif-
ferent viewing angle requires the object model to detect different visual features. For
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example, in a frontal view of a person, the legs, torso and head are clearly visually
distinguishable. However, from an aerial view, these elements can be represented
by only a few pixels and the person’s head and torso are possibly the main contribut-
ing factors for obtaining a detection. In a frontal view of cars, the bumper, bonnet
and front window are the main visual features. In an aerial view, the roof and bonnet
of the car are the main features. Unfortunately, without any metadata, it is hard to
quantify the differences in viewing angles and distance to objects.

Figure 4.1: In column a), pictures from MS-COCO are shown. Both images contain
frontal captures of humans and cars. In b), two images from VisDrone
are shown. The UAV’s aerial view results in smaller objects on average.
The aerial view also enables to capture of more objects of interest.

Quantification of the domain gap

Although the visual features cannot be quantified, the object sizes can be measured
to illustrate the domain gap. Visual inspection in Section 4.1.3 shows that the dif-
ference in object size is likely a result of the extended viewing distance from the
capturing device towards the object. Although this does not fully comprehend the
gap in terms of different object features between the domains, this measure relates
to the difference in view distance and viewpoint and consequently the viewpoint af-
fects the difference between object features. Hence, an analysis of the object sizes
in MS-COCO and VisDrone is performed to quantify the domain gap. The aim of the
analysis is to reveal two insights. First, reveal the size of the domain gap in terms
of object size. Second, how DiffusionDet in the standard configuration performs un-
der the domain gap. A pre-trained DiffusionDet model trained on MS-COCO with
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300 random box proposals from [14] was used and only the labels car,person, bus,
truck as mentioned in Section 4.1.2 were used for the analysis. These insights were
respectively obtained using a frequency analysis of GT labels and predicted labels
in both source and target domains. Figure 4.2 shows two histograms that depict
the frequency of object sizes of the GT labels and predictions for MS-COCO and
VisDrone. For convenience, the x-axis of the histogram of MS-COCO is cut off at
5000 pixels to make it comparable to the frequencies of VisDrone. First, compar-
ing the frequencies of the GT labels shown in blue, VisDrone has significantly more
smaller-sized objects. This is attributed to the increased viewing distance of the
UAV. Second, the in-domain graph shows a correspondence between the frequency
of GT labels and predictions. However, the out-domain predictions do not align with
the GT object sizes. For the GT labels, the frequencies for small objects are much
higher compared to the predicted labels’ frequencies of small objects. It appears
that DiffusionDet has difficulty detecting small objects within the target domain.

To further quantify the detection performance w.r.t. the object size, three cat-
egories of object size were introduced: small, medium and large. The ranges of
the object sizes are created by dividing all objects from the GT labels of VisDrone
into three equally sized groups. The resulting ranges of the categories are [0, 104),
[104, 528) and [528,∞) respectively. The same ranges of box sizes were applied to
the labels of MS-COCO for equal comparison. As a result of the domain gap, MS-
COCO will likely have fewer objects of the category small, but the object category
large will likely contain more objects. These categories provide additional insight
during evaluation into the domain gap in terms of the object size in the target do-
main. It enables to visualisation of the effect of possible enhancements to the model
with respect to the domain gap.

The expectation is that the analysis of the object sizes will reveal the domain
gap. The model will likely perform worse on smaller objects compared to medium-
sized and large objects. The reason is twofold: generally detecting smaller objects
is considered more challenging since there is less pixel information and the model
is not tuned to detect small objects since it was trained on the source domain, MS-
COCO. As shown in Figure 4.2, the target domain contains significantly smaller
objects. During the evaluation of the experimental methods, these categories will be
used to provide additional insight into the object detection performance.
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Figure 4.2: The histograms show the discrepancy between the source and target
domain in terms of object size. Generally, the target domain contains
smaller objects. Also, the model struggles with smaller objects since
the number of smaller objects does not align with the number of ground
truth small objects in the target domain.

Impact of the domain gap

After determining three categories of box sizes (small, medium and large), the base-
line model is used to determine the impact of the domain gap. The baseline model
is evaluated on the validation set of MS-COCO and the test set of VisDrone. The
model is trained on MS-COCO and not fine-tuned on the target domain. The model’s
performance is evaluated with the mean average precision (mAP) and mean aver-
age recall (mAR) [61]. The mAP is the ratio of correctly detected objects to the total
number of detected objects. Objects are considered detected when the intersection
over union (IoU) of a bounding box is equal or larger than 0.5 with the ground truth.
The mAR is the ratio of correctly detected objects to the total correct number of
objects in the dataset.

This evaluation provides insight into the domain gap in practice. In Figure 4.3
a comparison between in-domain and out-domain performance is shown. When
comparing the overall in-domain performance with the out-domain performance, the
figure reveals a significant decrease in performance for all three categories. The per-
formance per object category reveals that for both domains, the object size seems
to correlate with the mAR and mAP values. Smaller boxes result in lower mAP and
mAR values compared to medium and large boxes. In addition, the steeper line
between object sizes in VisDrone compared to MS-COCO seems to indicate that
smaller objects are more challenging in VisDrone. One possible explanation is that
the combination of fewer pixel information and a different viewing angle leads to a
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relatively higher drop in performance.

Figure 4.3: The solid blue line shows the in-domain performance on MS-COCO per
box size. The dotted green line shows the box-size performance on Vis-
Drone. In general, the model performs worse on smaller boxes. On av-
erage the performance on VisDrone is significantly worse on VisDrone
compared to MS-COCO.

4.1.4 Baseline comparison with DiffusionDet

To verify whether DiffusionDet performs on par with the baseline model, YOLO on
VisDrone, an additional comparison was made. In Figure 4.4 the performance of
both models is shown. DiffusionDet’s backbone for feature extraction is a ResNet-
101 [17], this backbone is used across all experiments. To improve visibility, the
graph is zoomed in on the right side of the figure. One can observe that Diffu-
sionDet performs slightly worse for large objects. In this experiment, DiffusionDet’s
inference hyperparameters were set to the default setting for this work. The number
of sampling steps was set to 10 and 300 random proposal boxes for denoising were
used. Overall, the graph shows that DiffusionDet performs on par with YOLO using
the default settings.
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Figure 4.4: The evaluation shown above is an out-domain evaluation. The solid
black line depicts the YOLO performance across the three object size
categories. The red dashed line shows DiffusionDet’s performance.
Both models perform on par, except for the large object size category.
In this category, YOLO performs slightly better.

4.2 Improving detections without finetuning

After establishing that DiffusionDet’s default configuration performs on par with the
baseline model YOLO on the target domain data, this section investigates whether
DiffusionDet’s performance can be further enhanced without any fine-tuning. This
improves the accuracy of the detections compared to generated labels with Diffu-
sionDet’s standard configuration. Using more bounding boxes will probably affect
the performance across the experimental methods. More boxes can be utilized by
performing multiple inference runs, or use more random bounding box proposals
at once. In order to ensure a fair comparison between each experimental method,
the same number of random boxes were used in each configuration. Also, for the
evaluation of the experiments in this section, the VisDrone validation set is used.
For predictions with more runs, the total number of used random bounding boxes is
calculated by multiplying the number of runs times the number of random bounding
boxes per run. Also, the number of sampling steps to denoise the bounding boxes
was set to 10 in all experiments. In Table 4.2 an overview is shown of all three
different hyperparameters that have been used.
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More boxes More runs Smaller boxes
Boxes Runs Boxes Runs Boxes Runs fbox size

300 1 300 1 300 1 1 (default)
2700 1 300 9 300 1 0.75
5400 1 300 18 300 1 0.5

Table 4.2: An overview of the model configurations for the experiments during infer-
ence time. As mentioned before, experiments with more runs and more
random proposal boxes use an equal number of boxes in total. fbox size is
only mentioned in the column of Smaller boxes, since in all other experi-
ments the default random box size of 1 is used.

In addition to using more boxes, an experiment with smaller random box pro-
posals is introduced as well. Since the target domain contains smaller objects as
shown in Figure 4.2, smaller random box proposals may ease the diffusion process
and increase the likelihood of detecting an object. For each experiment shown in
Table 4.2, 10 sample steps were used for the denoising process.

4.2.1 More random proposal boxes

Using the hyperparameters from Table 4.2, the model is evaluated for different num-
bers of random proposal boxes. As can be seen in Figure 4.5, using more boxes
increases the mAR and mAP values across all categories of box size. Adding more
boxes improves mAP and mAR mainly for medium and large boxes. Especially, the
mAR improves for large boxes when using more random box proposals. Overall,
the greatest gain can be observed when moving from 300 to 2700 boxes. For the
category large the mAP increases from 0.18 to 0.34. Adding more random proposal
boxes after 2700 random proposal boxes still improves the mAR and mAP values
but only poses a small improvement in mAP from 0.34 to 0.36.
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Figure 4.5: The results of using 300, 2700 and 5400 boxes are shown in blue, green
and red respectively. More random box proposals improve the perfor-
mance across all box categories. However, the largest improvements
can be observed for the box category large.

4.2.2 More runs

To evaluate the effect of more runs of DiffusionDet on the performance of VisDrone,
the mAR and mAP were calculated for each box size category as mentioned in
Section 4.1.3. This identifies whether there is a dependence between boxes during
the diffusion process. As can be shown in Figure 4.6 more runs have an equal
effect on the performance of VisDrone as more random proposal boxes. Again, the
largest gain is made from 1 to 9 runs in both mAR and mAP values across all box
categories, but the most significant gain is visible for the large category.
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Figure 4.6: This figure shows the mAP and mAR performance per box size cate-
gory across multiple run configurations. A similar colour coding is used
as in the previous experiment: the blue, green and red line show the
performance for 1, 9 and 18 runs respectively.

Although there are some minor performance differences observable between
using more runs and more random proposal boxes, these can be likely attributed
to the stochastic output of DiffusionDet. These results seem to show that there is no
dependence between boxes in the Diffusion process and more runs or more random
proposal boxes can be used to scale the performance of DiffusionDet. Therefore,
more runs or more random box proposals can be used to scale the performance of
DiffusionDet. Depending on the hardware configuration, the user can choose faster
inference in trade for more memory using more random proposal boxes instead of
more runs. In Table 4.3 an overview of GPU memory cost and runtime performance
is shown. The GPU memory measurements were performed using nvidia-smi tool.
Overall, the runtime speed is higher for using more boxes compared to more using
equally more boxes. However, using more boxes requires more GPU memory. When
there are memory constraints, using more runs can equally improve performance
with less memory but greater inference time.

In Figure 4.7, the improvements of aggregating detections over multiple runs are
visualised. Initially, only one car and one person in the zoomed image fragment
are detected. This number gradually increases when detections from other runs are
added. Even the occluded car at the top left is detected after the 18th run.
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Boxes Runs GPU Memory Inference time
300 1 3.429GB 0.481s/image
300 9 3.109GB 2.495s/image
300 18 3.109GB 4.667s/image
2700 1 3.617GB 1.775s/image
5400 1 5.541GB 3.633s/image

Table 4.3: This table conveys the runtime performance and GPU memory costs of
DiffusionDet across different configurations.

Figure 4.7: In this figure the improved detections using more runs are visualized in
an image of VisDrone.

4.2.3 Smaller random proposal boxes

The final experiment of this section evaluates the performance when using smaller
random proposal boxes. The results per box category are shown in Figure 4.8. The
figure reveals that smaller random box proposals result in a decrease in performance
across all box size categories. The hypothesis of the experiments was that smaller
random proposal boxes would ease the diffusion process since the random proposal
boxes would better align with the objects in the target domain. In this case, the target
domain contained smaller objects and smaller random proposal boxes would likely
reduce the required denoising to the boxes.

However, smaller random box proposals seem to disturb the diffusion process
and result in a decrease in performance. For the box category small, the mAP
dropped from 0.02 to 0.0041 when changing fbox size = 1 to fbox size = 0.75. The
mAP for the box category also dropped for fbox size = 0.5 from 0.02 to 0.0085. Also,
the mAR and mAP levels dropped when using smaller box proposals in the box
size category medium compared to the standard random box proposal size. One
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explanation for this observation is that the diffusion process is fitted for the default
box size. Adjusting the average random box proposal size can affect the regression
task of the detection decoder which was fitted during training on the default random
box size. As a result, the smaller random box proposals change the outcome of the
regression and the boxes are not properly aligned with the object anymore. Hence,
the random box proposal size will not be adjusted when generating pseudo-labels.

Figure 4.8: The blue line depicts the standard configuration where the random box
size is multiplied by 1. The green and red line shows random proposal
boxes that are multiplied by 0.75 and 0.5. Smaller random proposal
boxes do not seem to provide any improvement across the box cate-
gories.

4.3 Reducing the human labelling effort

In the previous sections, several methods were analyzed to improve the perfor-
mance without fine-tuning. More random proposal boxes or more runs can be
used to improve recall and precision. To verify whether the improved detections
can be leveraged for pseudo-labelling, two baseline models are introduced. First is
a lower-bound model that only uses GT labels for fine-tuning in the target domain.
The second baseline model is an upper-bound model that uses the same image
crops from the human in the loop as mentioned in Section 3.5.1 that selects the cor-
rect pseudo-labels but uses the GT labels within the crop. Theoretically, this model
should perform best but requires much more human labelling effort. In addition, to
quantify the benefit of the improved recall and precision for pseudo-labelling, two
experimental models are used. One model uses image crops containing pseudo-
labels generated from 1 run and another model uses the same crops, containing
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labels generated from 18 runs. The crops were made with labels generated from
18 runs. In Table 4.4 an overview of the performance and the respective required
human labelling effort is shown.

For the pseudo-label generation, a random subset of 334 images of the validation
training set was selected. The selected images with the corresponding pseudo-
labels were uploaded to CVAT [62]. A human in the loop verified the labels and
selected the areas that contained correctly labelled objects by DiffusionDet with 18
runs (better quality). Only predictions with a confidence level higher than 0.5 were
considered for pseudo-labelling. The image parts that contained correctly labelled
objects were cropped. This resulted in 706 crops that contained valuable labels.
During pseudo-label verification, the annotation time was measured. On average, it
took a human annotator 12.92 seconds per image to identify the areas containing
the correct labels. In the literature, it was shown that the average annotation time
of a bounding box is 50.8 seconds [63]. Using this measurement an estimation of
the total human effort per training configuration was made, shown in Table 4.4. The
training sets of 10 and 50 GT samples contained 488 and 2195 objects respectively.

When analyzing the values from Table 4.4, the labelling times reveal that using
pseudo-labels adds relatively little extra annotation time compared to using GT la-
bels. This is visible when comparing the labelling times between crops with pseudo-
labels and crops with GT-labels. In both scenarios, the same image crops were used
but either contained pseudo-labels or GT labels. The human-verified pseudo-labels
do require significantly less human effort compared to the GT labels. Interestingly,
the upper bound model with 10 GT samples performs has a lower mAP compared
to the pseudo-labels from 18 runs. This is unexpected since the upperbound model
uses GT labels in the image crops, therefore the labels in the crops should not
contain any errors or missing labels. For 50 GT-samples the upperbound model
outperforms the other semi-supervised settings as expected.

Semi-supervised overview mAP50 Labelling time mAP50 Labelling time

#samples 10 50
GT-labels 0.1661 6.89 h 0.1818 30.97 h
GT-labels + crops 1 run 0.1725 8.05 h 0.1925 32.17 h
GT-labels + crops 18 runs 0.1792 8.05 h 0.2017 32.17 h
GT-labels + crops GT-labels 0.1766 62.21 h 0.2035 86.30 h

Table 4.4: An overview of the performance and the human effort per fine-tune set-
ting. The highest mAP values are highlighted in bold font. Interestingly,
the upper bound model did not outperform our experimental method with
GT labels and crops 18 runs.
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In addition to Table 4.4, Figure 4.9 provides a visual comparison between the
performances across different semi-supervised settings. Compared to the base-
line model that has been trained only on GT labels, training the model with ad-
ditional pseudo-labels improves the performance. As expected, generally training
with crops containing pseudo-labels from DiffusionDet with 1 run has a lower per-
formance than using pseudo-labels generated with 18 runs. This shows that the
improved recall and precision benefit the pseudo-label generation process. For 50
samples, there is a gradual increase in performance when using more qualitative
labels for fine-tuning. The upper bound model is almost equal in performance to the
method proposed in this work: pseudo-labels from 18 runs. This graph shows that
fine-tuning using pseudo-labels improves performance compared to using only GT
labels. Using pseudo-labels with 18 runs and 10 GT samples almost equals fine-
tuning on only 50 GT samples. This shows that pseudo-labelling can reduce the
required number of GT labels for fine-tuning.

Figure 4.9: Using pseudo-labels improves the performance compared to models
trained on GT labels only. Using pseudo-labels generated with 18 runs
almost equals the performance of using 50 GT data samples as shown
by the horizontal dotted line.

When adding human-verified pseudo-labels to 10 GT samples in the training set,
the mAP increases from 0.1661 to 0.1792. When replacing the pseudo-labels in
the image crops with GT samples, the performance slightly decreases for 10 GT
samples. Adding more GT labels to the training set improves the performance. A
model trained with 50 GT samples outperforms a model trained with 10 GT sam-
ples by 0.0158 in mAP. Using pseudo-labels generated from 18 runs with 50 GT
samples improves the mAP with 0.020 with respect to the model trained on 50 GT
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samples. Finally, as expected the model trained on 50 GT samples and crops con-
taining pseudo-labels outperforms the model trained on 50 GT samples and crops
containing pseudo-labels generated from 18 runs. With only a slight margin of 0.002
in mAP, the upperbound model outperforms our suggested approach with pseudo-
labels.

After establishing performance improvements in the target domain using several
fine-tuning strategies, the human effort for the relative improvement is analyzed. In
a conventional fine-tuning setting only GT labels are used for training. Therefore,
the relative improvement is measured with respect to the model trained on 10 GT
samples. This model is considered a baseline to measure the relative improvement.
From 10 GT samples onwards, the improvement and respective human effort are
used to indicate how much human effort is required to improve the mAP from a
model trained on 10 GT samples.

Without considering any pseudo-labels, improving the mAP using 40 additional
GT samples requires 24.08 hours of labelling time and improves the performance
with 0.016 in mAP. Therefore, increasing the performance 0.6520e−3 in mAP per hour
of human effort. Improving the baseline by adding pseudo-labels generated with
only 1 run using an additional 1.16 hours of human verification time effort improves
the model’s performance with 0.0064 in mAP, resulting in a relative improvement
of 5.5172e−3 in mAP per hour of human effort. This value increases when using
pseudo-labels generated with 18 runs to 11.2931e−3. Using human-verified pseudo-
labels improves the efficiency and effectiveness of the human labelling effort in terms
of performance using fine-tuning.

When repeating the same analysis for a model trained on 50 GT samples as
a baseline, a similar pattern in the relative human effort efficiency is visible. The
performance can be improved using pseudo-labels by adding 1.16 hours of human
effort for pseudo-label verification. For pseudo-labels generated from 1 run, this re-
sults in a relative improvement of 9.2241e−3 in mAP per hour of human effort. The
efficiency increases when pseudo-labels from 18 runs are used, and the resulting
relative effort efficiency becomes 17.1552e−3. The upperbound model had unsur-
prisingly the best performance but comes at a high human effort cost. Therefore the
effectiveness and efficiency of the human effort are relatively low with only 0.3922e−3
in mAP improvement per hour of human effort.

This analysis shows that fine-tuning with human-verified pseudo-labels as pro-
posed in this work is the most effective and efficient method to reduce the human
labelling effort to improve the model’s performance. Using more GT samples to
improve performance is the least effective method in terms of human effort. The
effectiveness of the human verification process increases when using improved de-
tections using more runs. For both 10 and 50 GT samples, adding pseudo-labels
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is the relatively most effective and efficient training strategy in terms of human ef-
fort. The effectiveness of the pseudo-labelling method increases when the model is
trained with more GT samples concurrently.



Chapter 5

Conclusions

This research aimed to reduce the human labelling effort for training an object de-
tection model. The first step towards reducing the human effort was to improve the
generated labels in the target domain. Quantitative analysis showed that using Dif-
fusionDet the recall and precision in the target domain could be improved without
fine-tuning. Using more random proposal boxes or more runs the recall and preci-
sion can be improved in the target domain. Using more runs to improve performance
can be beneficial when one has to work with memory constraints and run the model
with fewer boxes multiple times. By utilizing the stochastic input of DiffusionDet, it
is possible to enhance the performance out domain. Surprisingly, smaller random
proposal boxes did not improve the performance. Probably because the regression
process is affected by the smaller box sizes. DiffusionDet can outperform the base-
line model in the target domain by adjusting the hyperparameters for inference.

After improving recall and precision, this research aimed to reduce the human an-
notation effort using human-verified pseudo-labels. Using human-verified pseudo-
labels the performance across different numbers of GT labels could be improved
compared to the baseline that was trained with only GT samples. An analysis of
the mAP improvement per hour of human effort showed that the proposed pseudo-
labelling strategy is the most effective and efficient strategy for improving the model’s
performance in terms of human effort. The effectiveness of the method increased
when the pseudo-labels were trained with 50 GT samples. This work shows that the
human labelling effort can be reduced with labels generated from DiffusionDet for a
substantial domain gap.

5.1 Recommendations for future work

This work does not address any possible class imbalance issues of the target do-
main. This could lead to model bias towards frequently occurring objects. Therefore

39
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the pseudo-label quality will be reduced and fine-tuning will be less effective. Fu-
ture work could improve the performance when the class imbalance issues in the
pseudo-labels are addressed.

Another possible improvement might be to weigh the loss of individual bounding
boxes based on the certainty of the box. This feature would reduce the loss of
incorrect boxes and might enable lowering the threshold of the pseudo-labels. As
a result, lowering the threshold of the pseudo-labels can improve the recall in the
pseudo-labels, which is beneficial for training. This would require a metric that can
approximate the possibility of the box being a correct prediction. The confidence
level and/or another proxy for approximating box correctness could be used to weigh
the loss of individual bounding boxes.

Finally, in the current approach, there is a teacher model that generates the
pseudo-labels and a student model that learns from the pseudo-labels. This work
implementation provides a one-directional training strategy; from teacher to student.
A possible improvement would be the implementation of a strategy to train the stu-
dent and teacher model gradually and in a beneficial manner. This could extend the
ceiling of performance improvements using pseudo-labels since the trained weights
can be used to further enhance the performance.
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