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Management summary
This research is performed at the Royal Dutch Aerospace Centre (NLR) in Amsterdam, the Nether-
lands. A knowledge center for innovation in aerospace. This research is focused on the maintenance
department which is working on a project regarding continuing airworthiness. Continuing airwor-
thiness is: ”The set of processes by which an aircraft, engine, propeller or part complies with the
applicable airworthiness requirements and remains in a condition for safe operation throughout its
operating life.” (De Florio, 2016). The main question that is researched is the following:

”How to design a framework to train defect management decisions based on real experts’ decisions
and obtain guidelines on the amount of input data needed to obtain acceptable results?”

In this research, a decision tree is generated based on experts’ decisions, and is tried to learn this
decision tree back with classification algorithms. To generate the necessary data for this problem
cases have been generated which describe a defect of an aircraft and the situation in which it
occurred, such as the spare parts availability and the flight schedule. Continuing airworthiness
experts have decided for those cases when and where to rectify the defects. Those decisions are
analyzed for a pattern with the different variables. This pattern is used to construct the decision
tree which is used to generate more decisions for randomly generated scenarios. With this, four
classification models are trained in Python that can decide what to do based on the input variables.
This is done for six different sample sizes to see the relation between the amount of data needed
and the accuracy of the model regarding learning back the decision.

The two main goals are to get insight into the performance of different classification algorithms
and into the amount of data needed in order to learn back the decision tree accurately. The two
best-performing classifiers are the gradient boosting classifier (GB) and the random forest classifier
(RF). From our analysis, we conclude that the minimum number of data points needed is 500 for an
accuracy of 99.6%. This means that the pattern in the data is almost fully learned and the model
is able to decide correctly for most scenarios. Interestingly enough, the feature scores of those
classifiers are not what we expect based on the decision tree used to train the model. Somehow the
classifiers are able to obtain an accuracy score of 99.6% with different variable importance. When
the sample size is increased to 5000, the feature importance becomes close to what we expected.

The biggest recommendation to NLR is that they should retrieve a set of data with defect
management decisions to obtain reliable results. This research is fully finished, however, there is
still a lot to explore with further research in this area. What can be investigated in further research
is the application of the developed model in maintenance management and what the influence on
the model will be when it is expanded such that all the different parts and defects are considered.

Readers Guide
Chapter 1 is the introduction and describes the company and the problem. Chapter 2 gives an
introduction to defect management and how the scenarios look like in which a decision is needed.
Chapter 3 summarizes theory about defect management, data generation, and classification al-
gorithms. Chapter 4 is about the way data is retrieved, the decision tree is developed and the
framework is designed. Chapter 5 provides the framework and the output of it and compares the
performance of the classifiers. The last chapter 6 is about the results of the whole research, together
with the discussion, limitations, and further research.
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1 Introduction
In this chapter, the research is introduced. First, the company is described, followed by the project
in this company this research belongs to, and after that the project this research contributes to, the
problem identification and the research design.

1.1 Company Description
NLR is the Royal Dutch Aerospace Centre. They were founded in 1919 to improve the safety of
military aviation. Because of the growth of civil aviation, they started to focus on that as well
in 1937. They focused on improving the basics of scientific research into aviation. This focus on
innovation in aerospace is currently still the main focus of the NLR (NLR, 2023). NLR consists
of several departments. One of those departments is Avionics Systems and Maintenance (ASAM),
this department is focused on innovations in maintenance techniques (NLR, 2022).

1.2 Bot project
One of the projects ASAM is working on is a bot for continuing airworthiness management opera-
tions (CAMO). Continuing airworthiness means the processes to ensure that the aircraft complies
with airworthiness requirements and is in a condition for safe operations at all times (Brink, 2021).
The need for this bot has to do with a future ambition of the NLR. They expect that in the
upcoming future aviation will also become available for customer usage. They expect unmanned
aircraft will be used as cabs (Brink, 2021). The expected increase in aircraft will also increase
the total number of defects and maintenance. The current maintenance programs and decisions
about rectification are all made by CAMO experts. The project of the NLR aims to develop a
bot that can do all of this. The bot should also be able to keep track of the aircraft technical log
(ATL), which is a document with every flight, defect, and rectification that the specific aircraft
encountered during its lifetime. The bot also needs to determine the aircraft maintenance program
(AMP), which describes all the upcoming maintenance tasks. The maintenance tasks in the AMP
are preventive maintenance tasks and mandatory regular inspections. Next to those preventive
maintenance tasks, a defect may be detected and corrective maintenance needs to be scheduled as
well. When a defect is registered, the bot evaluates which maintenance is necessary and decides
whether this needs to be done immediately. If immediate maintenance is necessary, the bot has
to create a maintenance task. This decision process is called defect management (DM). If it is not
necessary the next process starts: maintenance scheduling. Maintenance scheduling considers the
AMP and schedules the maintenance task such that costs, risk, and downtime are minimal while
obeying the regulations. This scheduling process is called maintenance management (MM) (Brink,
2021).

1.3 Problem Description
The tool does not exist yet and therefore the NLR is working on the development of this. The
only part that already exists is a model that can create an AMP. All the other processes are not
yet part of the CAMO-bot. For the bot to be able to decide in DM problems, it needs a decision
framework that can decide based on the input variables what option for rectification is the best.
To develop such a framework data about the defects and the corresponding decisions is needed to
train the framework. In Figure 1, the problem cluster is mapped out. The blue rectangle is the
problem experienced by the CAMO-organizations and the red rectangles are the problems the NLR
currently runs into. To solve those problems this research investigates framework designs that can

1
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learn decisions based on comparable input data and investigate the amount of input data needed
to obtain acceptable results. Because the NLR does not have access to a data set, first a data set
needs to be generated. Therefore this research also looks into how to generate a data set.

Figure 1: Problem cluster

1.3.1 Research design

The goal of this research is to gain insight into defect management (DM). The specific part this
research is focused on is the decision of whether or not to continue operations. For this, a data
set with possible defects is necessary, as well as the decisions that are made in those situations.
Since this data is not available, this needs to be obtained. The defects are a small sample size for a
specific type of aircraft and DM experts are asked to decide what to do with those defects. The list
of defects and the experts’ decisions together are the data set for the remainder of the research. This
is necessary for this research since we want to implement supervised classification algorithms. These
classifiers need a decision, which they will learn back. The expert’s decisions are reviewed such that
the logic behind the decisions is copied into a decision tree. This decision tree is then able to make
comparable decisions as the experts did. The decision tree is used to decide on new, randomly
generated, scenarios. The decision it made, is assumed to be the same as the experts should have
made. This assumption can be made, since this research does not investigate the accuracy scores
and feature importance of the classifiers for this specific case, but aims to prove the concept of
learning back a decision tree with classification algorithms. These random scenarios with decisions
are analyzed for correlation between the different variables and the final decision that is made. With
those correlations known, a model is developed that can use those to make the most likely decision
based on the variables. This model has an uncertainty. This uncertainty mostly depends on the
number of scenarios used to determine the correlation. To get insight into this relation different
number of scenarios were tested and the corresponding uncertainty is documented. Based on this a
recommendation is delivered on the size of the data set that is necessary to come up with a reliable
model. The final decision method needs to be able to perfectly learn the decision back and therefore
an accuracy of 99% is aimed for. This means that the model is not allowed to decide wrongly in
many scenarios. To achieve this, we also want to train on as many data points as possible, which is
possible by using cross-validation, which is explained in Chapter 3.

1.4 Research Questions
The main research question that is answered in this thesis is the following:

”How to design a framework to train defect management decisions based on real experts’ decisions
and obtain guidelines on the amount of input data needed to obtain acceptable results?”

2
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This question is answered in the following research. For that, we split it up into different
underlying questions that also are answered in this research.

1. How are defect management decisions currently made?

• What does defect management consist of?
To develop a bot for defect management, insight into those processes is needed. This
knowledge question helps to gain insight into those processes and is answered in chapter
2.1.

• Which variables are considered by the NLR with defect maintenance?
The bot has to decide whether maintenance should be deferred or not. To make this
decision a lot of variables are considered. In chapter 2.2 the relevant variables, according
to the NLR, are discussed.

2. How to develop a tool for decision-making in defect management?

• What are defect management decisions about?
To develop a tool to make DM decisions, understanding where those decisions are about
is crucial and this is found in Chapter 3.1.

• Which variables to consider for defect management decisions?
The variables found with literature research to consider for making DM decisions are
found in Chapter 3.2.

• What is cross-validation and how to apply it?
The application of cross-validation improves the performance of classification algorithms.
This is discussed in Chapter 3.4.

• Which classification algorithms exist for determining the importance of different vari-
ables?
The classifiers determine based on known data with variables what the best decision is
for unknown cases. There are multiple classifiers and this question is to determine which
methods are suitable for this research and those are discussed in Chapter 3.5.

• How to visualize the accuracy of a classifier? ROC-curves display the accuracy of classi-
fiers and how to interpret and construct those curves is explained in Chapter 3.6.

• When are multiple means statistically different? To determine the difference of multiple
means, statistical tests can be applied. Chapter 3.7 discusses which test is best suited
for the accuracy scores of different classifiers, which are tested on the same data.

3. How to develop a framework that provides insight into the importance of the variables and
the accuracy of a classification algorithm?

• How is the decision tree constructed?
Chapter 4.1 describes how the decision tree is constructed based on the experts’ decisions
and how it is adapted to generate data for the framework.

• What does the framework look like that determines the accuracy and feature importance
of the different classification algorithms?
How the model loads and prepares the data, implements the classification algorithms,
and compares the classifiers’ performances is described in Chapter 4.2.

4. What are the results and findings of the results?

3
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• What is the average accuracy score of the classifiers?
In Chapter 5.1 the accuracy scores are provided per sample size and per classifier.

• How does the accuracy score of a classifier behave?
The different classifiers all behave differently and all provide useful insights for this
research. What we learn from each classifier can be found in Chapter 5.2.

• Do the accuracy scores of the classifiers significantly differ?
To draw conclusions on the differences, statistical tests are applied in Chapter 5.3 to
investigate the significance of the differences in the classifier accuracy scores.

• Do the classifiers have a similar feature importance?
All the classifiers rank the features by importance, but is this ranking similar and how
does it change with different sample sizes? This is analyzed in Chapter 5.4

1.5 Scope
The scope of this research is about generating data based on a decision tree built from ten fictive
situations and the focus is on the theoretical properties of the decision framework. To narrow down
this research, only six components are considered and other variables are simplified by binarization
of the values. More about the variables is described in chapter 2.2. Data generation was time-
consuming and therefore only ten experts were asked and other data scenarios were constructed
using a decision tree. Different types of aircraft have different functionalities and therefore other
variables as important key factors. This research is narrowed down to airlines that focus on passenger
transportation.

1.5.1 Deliverables

• The decision tree, based on the expert’s decisions, which can decide in every scenario.

• Insight into and the performance of the different classification algorithms.

• Insight into the relation between the model accuracy and the amount of input data.

• Insight into the ability of classification models to learn back a decision tree.

• The thesis itself.

1.6 Next step
Before we start with the research, we first dive into the current situation of the development of the
CAMO-bot and into what Defect Management is.

4
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2 Current situation
Based on the research question we investigate in this chapter what the current situation is. More
specifically we look into how defect management decisions are made and which variables might
influence those decisions. Also, the different scenarios are constructed that are presented to experts
to get insight into the decision process. Those experts decide on the scenarios and provide the
influence the different variables had on their decision.

2.1 Defect management
Defect management is about making the decision whether or not to defer corrective maintenance.
For this, a lot of variables can have an influence. First of all the regulations. The regulations
can require immediate rectification or give constraints for deferral. Secondly, the flight schedule is
important to consider. An aircraft is assigned to a number of flights to perform in the upcoming
hours and days. Canceling those flights brings high costs with it. In the DM decision, it is therefore
desired to consider this as well. Next to this, the availability of a maintenance crew, dock, and
the needed spare parts can influence the decision as well. This does influence the time the aircraft
has to be on the ground before taking off again. The airport where the defect is noticed is also of
importance since an airline does not have a service contract with a maintenance provider at every
single airport. When there is no service contract it takes more time, effort, and money to execute
maintenance tasks on that airport. Then there are the upcoming maintenance tasks. Every aircraft
has a lot of regular checks scheduled for which the aircraft has to be on the ground anyway. When
any of those tasks are coming up, deferral might be more desired(Brink, 2021).

2.1.1 Immediate rectification because of regulations

The MEL states which parts must be working to be allowed to fly. If a part, or combination of
parts, is a defect that is considered critical, so it is not allowed to be a defect when in operation,
then immediate rectification is always the answer to the problem. Even if rectification is not yet
possible because of a lack of crew, parts, time, or anything else. The aircraft has to be rectified
before operating again.

2.1.2 Deferral because of no impact of the defect on operations

For some parts and defects, the MEL gives space to execute flights even without extra constraints.
In those situations, it is almost always preferred to defer maintenance till later. Sometimes the best
moment might be to go for immediate rectification but those circumstances are rare. That only
happens if time, a maintenance crew, a maintenance dock, and the fitting spare parts are available.
But even then deferral could be preferred.

2.1.3 Noncritical defects with impact on operations

For a lot of defects or combinations of defects, the decision is not clear beforehand. The regulations
give some space to execute flights, but often there are operational constraints that can cause trouble
in executing flights. For those situations, a choice has to be made between the disadvantages of im-
mediate rectification and the disadvantages of executing flights with constraints. The disadvantages
of immediate rectification can be last-minute cancellation, expensive replacement, and looking for
ways to make the immediate rectification possible. The operational constraints on flights can be for
example a capacity constraint, maximum flight height, and unpressurized flights.

5
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2.2 Defect management variables
In the paragraph before, a lot of variables are called and is stated that those all have influence on the
decision to defer maintenance. In the next parts, all those variables are described and explained.
The decision is binary. Maintenance is done immediately or deferred. This decision is made by
experts and they take different variables into account for their decision process. Of course, some
variables have a bigger influence on the decision than others. The variables taken into account for
this research are listed and explained below.

• Component: which defect occurred on which component?

• Location: on which airport is the aircraft and are needed resources available?

• Flight Schedule: when are the next scheduled flights for this aircraft?

• Maintenance tasks: when is the next scheduled maintenance?

• Circumstances: Are there weather or terrain difficulties that might impact the decision?

2.2.1 Component

The defect and which component is defective are relevant since the regulations are different for every
single defect and component. In order to decide what to do in certain situations is this information
crucial.

2.2.2 Location

Aircraft are in different airports throughout their lifespan. Not in all the airports their airline has a
service contract. Rectification in an airport without a service contract is much more expensive and
difficult to arrange. Also in airports with a service contract rectification is difficult, if the needed
resources are not available like a maintenance docking station, personnel, and parts.

2.2.3 Flight schedule

Rectification of an occurred defect takes time, during which the aircraft is out of use. It is assumed
that at night the gap till the next flight is big enough in order to rectify the defect, but during the
day this is not the case as can be interpreted from the flight schedule displayed in table 1. Given
this information, the flight schedule might be relevant and therefore is taken into account with the
scenarios.

2.2.4 Maintenance tasks

Aircraft have mandatory maintenance tasks that have to be performed once in a while. Different
tasks exist: some occur more regularly and others take more time. In those maintenance sessions,
there is space to rectify defects. If a maintenance task is scheduled in the near future, the rectification
of the defect might be deferred more likely.

2.2.5 Circumstances

For some components, the regulations described in the MEL do not allow deferring the rectification
when the vision is not enough or the flight is above a certain height. In order to decide in those
situations additional information about those circumstances is needed. Note that this data is only
displayed for the components where the MEL says the circumstance should be considered.
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2.3 Development of scenarios
Those variables that play a role in Defect Management (DM) are known, but to what extent those
variables influence the decision is unknown. To get an overview of the influence of each variable
on the decision a questionnaire is developed. The questionnaire consists of different scenarios. In
each scenario, a defect is described where a DM decision is needed. The description contains all the
variables above, such that the expert is able to decide. Next to the decision, the experts are asked to
fill in the influence each variable had on the decision. For this, the options are big influence, small
influence, or no influence. The developed scenarios can be seen in appendix A. Those scenarios
are developed such that each of them contains an interesting trade-off that provides insight into
the decision-making process. The scenarios are provided to multiple experts and therefore different
decisions occur. Especially for those scenarios, it is interesting to look into the differences in the
focus of the experts to see where the different outcomes came from.

2.3.1 Scenario description

We assume that all the scenarios take place for the same fictional airline on the same routes.
This airline is stationed at Rotterdam The Hague Airport (RTM) and serves three other cities:
London City Airport (LCY), Istanbul Airport (IST), and Adolfo Suárez Madrid–Barajas Airport
(MAD). Istanbul Airport has a service contract, but the other two do not. Between those cities is
a flight network such that every possible connection is flown every day both in the morning and
the afternoon. For this schedule five aircraft are in use. The full schedule can be found in table 1.
Note that all the times displayed are in UTC+1. There are six different components considered:
the cabin pressurization system (CPS), cabin window shade (CWS), the air data computer (ADC),
the passenger oxygen system (POS), the cabin door seal (CDS) and the fuel flow indicating system
(FFIS).

Flights Flight time Morning schedule Afternoon schedule
(in minutes) Aircraft Start End Aircraft Start End

RTM-MAD-IST 395 1 07:00 13:35 3 15:30 22:05
RTM-IST-MAD 450 2 07:00 14:30 5 15:30 23:00

IST-RTM-LCY-RTM 376 3 07:00 13:16 1 15:30 21:46
LCY-IST-LCY 451 4 07:00 14:31 4 15:30 23:01

MAD-LCY-MAD-RTM 455 5 07:00 14:35 2 15:30 23:05

Table 1: Flight schedule Airline

2.3.2 Scenarios

The scenarios that are delivered to the experts for them to make a decision can be found in appendix
A. Those scenarios include all variables described in Chapter 2.2 and are chosen such that all of them
provide valuable information for the development of the tools. The resources were only provided
for the scenarios where the aircraft was at an airport that had a service contract. For the other
scenarios, the resources were by definition unavailable because of the lack of a service contract. The
resources play a significant role Since all the experts received the same set of scenarios, it might
occur that some of them decide differently in the same scenario.
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2.3.3 Trade-offs

What insight does each scenario provide? The scenarios in the questionnaire are developed carefully
such that the number of scenarios and the length of the questionnaire are still reasonable. In a lot
of possible situations, the regulations prohibit deferring rectification, and in others, it is completely
unnecessary to do maintenance. For the scenarios, situations are chosen in which the decision is not
clear beforehand, such that a maximum of valuable information can be retrieved from them. The
interesting trade-off per scenario can be seen in table 2.

Scenario Trade-off
1 Likely to defer, but everything for rectification available
2 Rectification preferred and convenient to rectify
3 Rectification preferred on a suitable location, but all else inconvenient
4 Rectification preferred with enough time, but all else inconvenient
5 Likely to defer, but enough time for rectification and upcoming maintenance tasks
6 Likely to defer, for rectification only not enough time
7 Likely to defer, but enough time and best location for rectification

8 Rectification is mandatory for at least one of the defect components. Which defect
to rectify, or both? No time for rectification but all else is available.

9
Two failed components, but deferring is possible with constraints. When to rectify
the components? Currently, enough time, but no service station, and resources are
available.

10
Rectification mandatory for at least one of the defect components. Which defect
to rectify, or both? Currently enough time, but no service station and available
components.

Table 2: Tradeoffs

2.4 Questionnaire responses
The responses of the five experts can be found in appendix B. The data in this appendix is also
summarized per scenario. Per scenario, the decision can be seen, just as the importance score of the
different variables per scenario. The importance is a score from 0 to 10. This score is determined
by the following formula: Score = 2∗#Big+1∗#Small+0∗#No, where #Big means the number
of experts that indicated that it has a big influence, #Small the number of experts that indicated
a small influence, and #No the number of experts that indicated that it has no influence. Since we
have five experts, the maximum score is 5*2=10 and the minimum score is 0. A score of 0, 1, or 2
is seen as no influence, 3 to 6 as a small influence, and 7 to 10 as a big influence. The summary of
the response and the scores are in table 3:

8



Bachelor Thesis G.H. van de Water

Scenario Decision MEL Tasks Flights Location Resources
1 Immediate Rectification 7 0 6 6 7
2 Immediate Rectification 9 4 3 4 2
3 Immediate Rectification 10 0 8 7 6
4 Defer Maintenance 10 0 7 8
5 Defer Maintenance 10 2 6 4
6 Defer Maintenance 10 4 8 5 5
7 Defer Maintenance 10 0 6 2 4
8 Immediate Rectification 9 2 6 8 9
9 Defer Maintenance 10 2 8 6
10 Immediate Rectification 10 1 7 5

Average 9.5 1.5 6.5 5.5 5.5

Table 3: Summary of experts responses

The experts noted that in principle deferring is the desired option. However, the rules must be
obeyed. If it is not possible to depart without breaking the rules, rectification must be done first. In
some specific scenarios, it is possible to rectify the defect already before the next scheduled flight,
but those situations will not occur that often. When that is the case, though, rectification might
as well be done.

The first thing that we can notice is that the experts value the MEL as very important with
a score of 9.5 out of 10. This makes a lot of sense because this is the regulation that tells under
which conditions the aircraft is allowed to depart and when it needs to stay grounded. The same
is true for the upcoming flights. The biggest problem with immediate rectification is that it takes
time. But when there is time, because the aircraft has to wait till the next morning for departure,
it can be the best solution to use the night to repair the defect, if possible. This is probably the
reason why the experts value this variable so highly. However, it is not always valued with a 10. We
assume that this is due to the fact that for some scenarios other variables are also very important
and therefore the MEL is valued as relatively less important than in the scenarios where it scores a
10.

Next to that, it can also be noticed that the upcoming maintenance tasks are not taken into
account that much for the decision with a score of only 1.5. This has to do with the fact that the
maintenance tasks have to do with the whole plain and not only with the defect. Next to that, if
you have to repair before you are allowed to depart, it does not matter when the next service is
scheduled.

The flights, locations, and resources are more varied between the different scenarios. This is
probably depending on the specific scenario and the value of the variable in that scenario.

A scenario that stands out is scenario 2. This has to do with the fact that the MEL demands to
rectify immediately and therefore the other variables are ignored since they do not influence that
decision anymore.

2.5 Starting point
These are the basics of defect management and we have data about the decisions. Now we need to
develop a generator that is able to generate scenarios comparable to decisions as the experts did.
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We need this generator to create a big data set and to test the model we have developed. This
model exists of different classification algorithms and provides an accuracy score for how well it
learned the decision back and what the importance of the different variables was. Before we can
develop this generator, we need literature that confirms that it is possible to extrapolate your data
set, based on patterns found inside the data set. We also need literature that backs up the model
we developed and the method and the classification algorithms we used inside the model.
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3 Literature Review
In this part, the literature research will be described. This will be the base for the rest of the
research.

3.1 Defect management decisions
Defect management is everything that happens after a defect occurs, beginning with what is wrong,
followed by the decision to continue operating and when and how to fix the defect. When an
unexpected issue occurs with an aircraft a technician determines between arrival and departure of
the aircraft whether or not the defect needs to be rectified before the next flights can be performed.
The decision is made by the technician by looking into extensive maintenance manuals. There is no
decision support, there is a gap between the theoretical knowledge and practical application, and
the field lacks decision-making models (Koornneef, Verhagen, & Curran, 2020).

3.2 Defect management variables
Important variables in aircraft maintenance are cost, time, quality, reliability, maintainability,
availability, and flexibility or replaceability (Pleumpirom, Amornsawadwatana, et al., 2012). This
is mainly about maintenance scheduling. For the defect management decision, we do not take into
account the quality of the maintenance and the reliability of the aircraft after the rectification.
Costs are seen as an indirect consequence of other unwanted disturbances, such as maintenance on
an outstation, cancellation, or delay of the flight. Part availability, whether there is enough time for
rectification without disturbing the flight schedule, the upcoming other maintenance tasks, which
is the maintainability and the current location of the aircraft are also considered in this research
(Pleumpirom et al., 2012).

3.3 Behavioral Artificial Intelligence Technology
Based on the decisions that the experts made in the carefully created cases, the influence of each
variable on the final decision will be analyzed by using the Behavioral Artificial Intelligence Tech-
nology (BAIT) method (Ten Broeke, Hulscher, Heyning, Kooi, & Chorus, 2021). The BAIT method
generates cases where a decision needs to be made and a list of variables that might influence this
decision. For each case, the variables are measured and decisions, made by experts, will be docu-
mented as well. When there are enough decisions for different cases, the correlation between the
variables and the final decision is analyzed. How much impact does each of those variables have on
the final decision? When the relation between the variables and the decision is known, a bot can
be developed that uses this relation to decide on a case based on the variables that are measured.
When the bot is developed it will decide on some new cases (that are not used for the development
of the bot). Those cases are then submitted to experts for their decision. Is the bot decision the
same as the expert decision or are there differences? Does the bot make decisions that should not
be allowed? When the bot performance is good enough, a proof of concept can be provided as well
(Ten Broeke et al., 2021).

3.4 Stratified k-fold cross validation
Classifiers work with training and test data. Training data is the data that the model uses to learn
the decision and test data is the data used to test the performance of the classifier. The model’s
accuracy is the rate of correct decisions made for this test data. To improve the performance of
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classification algorithms cross-validation can be applied. K-fold cross-validation splits the data set
into multiple (k) parts (folds) that are all once used as test data and other times as training data.
This means that the classifier is tested k times and therefore provides k accuracy scores. The total
accuracy of the classifier is the average of those k accuracy scores. Since every part of the data set
is used to test the model and the accuracy is an average of ten repetitions, this method provides a
more reliable accuracy(Wong & Yeh, 2019). The classifier is also less likely to overfit the data set.
Overfitting is memorizing the data set instead of learning the patterns in the data set. Overfitting
occurs when the model learns the data set too well, but this is not likely with cross-validation since
it combines the results of k different training sessions(Ghojogh & Crowley, 2023). Standard values
for the number of folds k are 2, 5, and 10. 10 is the most used one in literature(Ghojogh & Crowley,
2023) and the most preferred, but the test sample needs to include at least five times both decision
options. This means that a model with a binary decision variable needs at least 2 (both decision
options) * 5 (required number of the decision) * 10 (preferred number of folds) = 100 data entries.
To make sure that every fold contains the same amount of both decision options, a stratified k-fold
could be applied. Stratified means that the data is sorted based on the decision variable and then
split such that each fold does contain the same number for each decision alternative(Prusty, Patnaik,
& Dash, 2022).

3.5 Classification algorithms
In this research, we want to use different classification algorithms and compare them to each other.
To decide which classifiers to use, literature research is conducted to investigate which classifiers
are suited in the case of this research (Gama & Brazdil, 1995).

3.5.1 Logistic regression

Logistic regression (LR) can be used when a classification problem is binary. It uses a Sigmoid
function to generate a probability. This probability will be compared to a predetermined threshold
to assign a label to the given problem (Gong, 2022). The function itself uses all the input variables
as predictors and multiplies them with the regression coefficients. The regression coefficients are first
approximated and then improved until stability is reached. With the final regression coefficients,
the Sigmoid function is finished. The threshold for the function is based on the ratio of the outcomes
(LaValley, 2008).

3.5.2 Random forest classifier

The random forest classifier (RF) is a collection of decision trees. Each decision tree will provide an
outcome for a specific case, but the final decision will be the majority vote of all the decision trees.
The different decision trees are all generated on a sample of the training data (Breiman, 2001). This
classifier is applied by Kim(Kim, Ji, Kim, & Park, 2022) and Kumar(Kumar, Sharma, Muttoo, &
Singh, 2022) to determine repair tasks based on the defect description.

3.5.3 Gaussian naive Bayes classifier

Naive Bayes is based on Bayes’ Theorem, which is an approach that calculates the conditional
probability for every single feature. This classifier assumes independence between all the different
features. The final classification is done by determining for each outcome class the probability
that the specific case belongs to that class. The class with the highest probability is the predicted
outcome. Naive Bayes also performs well on small data sets, but the assumption of independence
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between the different features is most of the time unrealistic(N. Friedman, Geiger, & Goldszmidt,
1997). Because of this assumption, this classifier does not apply to this research and is therefore
not applied in the model.

3.5.4 K-nearest neighbor algorithm

The K-nearest neighbor algorithm looks for each input, which known situation is most similar, and
what the decision class of that neighbor is. This algorithm works especially for data sets with a
lot of continuous variables. A disadvantage of this procedure is that it assumes all variables are
equally important. Another disadvantage is that the model does not provide the confidence of the
decision. On the other hand, it has obtained good results for small sample sizes (Keller, Gray, &
Givens, 1985). We want to have the confidence of the decision in our case and we also have a lot
of binary variables. Therefore this method is not best suited to our case and will be left out of the
scope of this research.

3.5.5 Support Vector Classifier

The support vector classifier (SVC) determines a border between the two different classes. This is
done based on maximizing the distance from this border to all the different vectors. (Noble, 2006)
This classification method is especially applicable when there are a lot of continuous variables, but
does also works for binary variables (Ben-Hur & Weston, 2010). This classifier is used for repair
task allocation by Kim(Kim et al., 2022) and Kumar(Kumar et al., 2022).

3.5.6 Gradient boosting classifier

Gradient boosting (GB) creates regression trees in the direction of the gradient to be more accurate.
Just like with random forest, this classifier uses different regression trees, and the decision is made
by voting (Lin, Yue, & Mao, 2014), (J. H. Friedman, 2002).

3.5.7 Decision tree

The solutions found by decision trees are local optima and not often also the global optimum.
Inaccuracies in the training data can have a great impact on the decision method (Lin et al., 2014).
A big advantage of decision tree algorithms is that the classification method (the decision tree) can
be extracted and investigated (Ochodek, Hebig, Meding, Frost, & Staron, 2022). Since Gradient
boosting and random forest also use decision trees, this advantage applies to those classifiers as well
(Lin et al., 2014).

3.6 Visualization of classifier performance
Classifiers determine for the test data in which class it belongs. If a positive is correctly predicted it
is called a true positive (TP), but if this prediction is wrong it is a false positive (FP). If a negative
is correctly predicted it is called a true negative (TN), but if it is positive then it is called a false
negative (FN)(Hoo, Candlish, & Teare, 2017). This is visualized in Figure 2.
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Figure 2: Confusion matrix (Demir, 2022)

The sensitivity, or true positive rate, is the percentage of correct positive predictions:
Sensitivity = TP

TP+FN . The specificity, or false positive rate, is the percentage of false positive
predictions to all negative values: Specificity = FP

FP+TN . The accuracy is the percentage of correct
predictions: Accuracy = TP+TN

TP+FN+FP+TN (Demir, 2022).

The receiver operating characteristic (ROC) curve is a way to visualize the classifier performance.
This is done by plotting the sensitivity on the y-axis and 1-the specificity on the x-axis. The accuracy
is visible in this graph as the area on the ROC curve (AUC). When the performance of the classifier
is random, the diagonal line is expected to be the result. This also mean that the accuracy of
a random performance (not trained classifier) is expected to be around 50%(Fawcett, 2006). An
example of a ROC-curve can be seen in Figure 3, where the straight diagonal is a random classifier
with an accuracy of 50%.
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Figure 3: ROC-curve visualization (Fawcett, 2006)

3.7 One-Way Repeated Measures ANOVA
How to compare different samples with each other? What is the test that fits this comparison?
How to interpret the results? The One-way repeated measures analysis of variance (ANOVA) tests
whether three or more related samples significantly differ from one another on a chosen variable
of interest. Related samples mean that the same unit of observation (the variable of interest) is
measured on the same data points multiple times under slightly different occasions. The variable of
interest should be continuous, normally distributed, and have a similar spread across the different
samples. The samples should all measure this variable, have the same predictors, and exist at least
five values per sample(Smaga, 2021).

ANOVA has the null hypothesis that the samples do not differ from each other. It tries to
determine if one of the samples scores significantly different from the other samples on the variable
of interest. For this ANOVA provides a F-statistic and a p-value. The F-statistic is the measure of
difference and the p-value is the chance of scoring this F-statistic when there is no difference. If the
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p-value is below alpha, which is chosen to be 0.05, the difference is statistically significant and can
be trusted to not be due to chance. When this is the case, it means that at least two samples are
significantly different, but further investigation is needed to determine which(Smaga, 2021). For
this further investigation a paired sample T-test can be applied. With the paired sample T-test,
a confidence interval for the mean difference is constructed. If this confidence interval does not
contain 0, the null hypothesis of no difference is rejected(Miao & Chiou, 2008).

3.8 Conclusion
Out of this research, we take the following into account for the methodology. First of all, the
variables described by Pleumpirom are comparable with the variables considered in this research.
Secondly, we use a small data set, evaluate the decisions, and extrapolate the learned decision to
new scenarios to create a bigger data set, like is done with BAIT. This more extensive data set will
be used to train four classification algorithms: logistic regression, random forest classifier, support
vector classifier, and gradient booster classifier. Gaussian naive Bayes and k-nearest neighbor
algorithm are not applied in this research, since those are not suitable. Before we implement those
classifiers, we apply stratified k-fold cross-validation to our data set to improve the performance
of the classifiers. We use k=10 since ten folds perform the best according to the literature. The
performance of the classifiers is visualized in ROC curves and compared to each other using the
ANOVA statistical test on differences to investigate if the classifiers’ differences are statistically
significant. If that is the case, confidence intervals for mean differences are determined.
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4 Methodology
To develop a model that can decide what decision is the best to make in the different scenarios,
the classification algorithms need to be implemented. For this algorithm, the decisions of known
scenarios and the variables of the scenarios are needed as input. This is what the model has to
learn. This input is the scenarios with the decisions of the experts. Since this is not enough data
for the model to train with, we first develop a decision tree that can make comparable decisions.
This decision tree we use to generate a lot of decisions for randomly generated scenarios. Those
scenarios are the training data and test data for the model. We use k-fold cross-validation to retrieve
more reliable output data. The output data is the accuracy of the model and the importance of
the different input variables. To choose which of those algorithms performs the best, those output
variables are compared, and based on those the best-suited algorithm is determined.

4.1 Decision tree
With the answers to the questionnaire, a decision tree is developed that can decide for every single
possible scenario. This tree a variable and based on the value checks the next variable until it is
able to make the decision. For this decision tree, it is necessary to know the patterns in the answers
to the questionnaire. The most important variables should be checked first and so all the variables
should be checked until the whole decision tree is developed. The decision tree should provide for
every scenario the correct decision for it to work.

This decision tree is developed such that it can decide for all the ten known scenarios what the
right decision is. This is done only based on the variables such that it can also decide for every other
scenario with the same variables but different values. The base decision is to defer maintenance
unless it is mandatory or preferred to rectify immediately. This logic is also applied and visible in
the decision tree.

4.1.1 Design of decision logic

When looking at the DM decision process, the first thing that is checked is the MEL. Those regu-
lations decide for many defects that maintenance is mandatory or can be deferred, in those cases
that will almost always be the decision to make. When one of those scenarios is not the case, but
the MEL provides some extra conditions or restrictions that need to be maintained the situation
changes. Then the situation is evaluated more specifically. In those scenarios, the defect can be
deferred if the additional restrictions are met and the conditions can be fulfilled. This does mean
that maintenance will only be chosen if it is mandatory or the circumstances are such that mainte-
nance does not cause any trouble for the flight schedule, the aircraft is located in an airport with a
service contract and all the resources needed for the rectification are available.

Taking all the expert opinions into account, we develop the decision tree. For this decision tree,
all the variables of the questionnaire are used, except the maintenance tasks, since the experts did
not value the influence of this variable as significant on the decision. With the other variables, the
following logic is found: first, the MEL and conditions in it are looked up and when that requests
maintenance or only flights with specific constraints that are hard to meet, the decision is to rectify
first. When that is not the case, the other variables are checked and if all of them are positive for
rectification the decision is also to repair. Otherwise, the decision is to defer the rectification to a
later moment, so that we can schedule the maintenance. The whole decision tree can be seen in
Figure 4.
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Figure 4: Developed decision tree

When this logic is applied to the cases provided to the experts, it matches all ten scenarios.
This was the aim of the development of this decision tree as well, which is positive.

4.1.2 Data generation

This decision tree is used to generate a data set. The previous data set consists only of binary
input variables. For the classification model, continuous input variables are desired as well to show
that the model is able to handle those as well. The random generated scenarios do therefore have a
slightly different form compared with the scenarios provided to the experts. The randomly generated
scenarios consist of the variables in table 4.

Variable Format Description
Component text the six different components
Constraint text dark or mountains
Maintenance tasks number between 0 and 100 hours until the first maintenance task
Flight schedule time between 0 and 10 hours time until the first scheduled flight
Current location text the four different locations
Resources text available or unavailable

Table 4: The variables in the data set

Those different variables also have an impact on the decision tree. The decision tree stays
roughly the same, but some small things are added or changed. For the components, the locations,
and the resources nothing has changed, and for the other variables the changes are the following:

• The specific constraints mentioned earlier in this paragraph are the following: for the air data
computer: darkness and for the cabin pressurization system and the passenger oxygen system
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a flying height constraint. For the other components, the constraints do not matter. The
decision tree does now check those constraints for those components.

• The maintenance tasks are added to the data set, but still not considered by the decision tree.

• The decision tree still checks whether there is enough time to perform the maintenance. For
each component a different amount of time is needed, varying from 1 hour and 45 minutes to
8 hours. Note that this is a fictional value, that for the remainder of this research is assumed
to be true.

The decision tree adapted to those changes is visible in Figure 5:

Figure 5: Decision tree used for the data generation

This decision tree is used to generate the data set. This consists of all the variables with a
randomly assigned value and based on those values the decision tree makes a decision.
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4.2 Classification model
To fit the classifiers to this data-set and compare their performance a Python model is developed.
This model uses the following libraries: Pandas for data analysis1, Matplotlib for plotting Figures2,
NumPy for mathematical calculations3, and SciPy for statistical formulas4. This model can roughly
be divided into three different parts, which are all explained in detail:

1. Preparation of the data

2. Implementation of the classification algorithms

3. Comparison of the classifiers

4.2.1 Preparation of the data

The generated data set from the decision tree is loaded. Of this data set the rows with missing values
are deleted. The column with the decision is taken apart since this is the variable the classifiers
have to learn. The other variables are used as the predictors. Before the classification algorithms
are implemented, dichotomization is applied to the categorical predictors such that these predictors
are split into binary predictors for all the possible values the categorical predictor could take.

Stratified k-fold cross-validation is applied, by using the python scikit-learn library5 and with
this, the data set is split into ten equal-sized folds that all contain a similar amount of both decision
options. All those folds are once used to test the classifiers when the classifiers are trained on the
other nine folds combined.

4.2.2 Implementation of the classification algorithms

The model fits and evaluates all the classifiers separately. The classifier is fit to the training set
and tested on the test set. The accuracy of this test and the importance of all the features are
stored. This is done ten times, such that all the folds are used as test sets and have provided their
accuracy score and feature importance. From this the average accuracy of the classifier is calculated
and a ROC curve is plotted, in which the accuracy is visualized together with the sensitivity and
specificity. The average feature importance is plotted in a bar chart, with the range from the lowest
to highest importance.

To implement the classification models in Python the scikit-learn library6 is used. From this
library, the LogisticRegression, RandomForestClassifier, SVC, and GradientBoostingClassifier mod-
ules are used to implement the classifiers. The input needed is the randomly generated data, divided
into ten folds by applying stratified k-fold cross-validation, and the corresponding decision for each
data input. This data is used to train all the different classification models. The output of this
model is for each classification model: the accuracy of the decision per fold and the importance of
the different predictors, which from now on is called the feature importance, per fold as well.

The model works as follows: the input data is split into ten samples, each exactly ten percent
of the data set. Every sample will be used as test data when the model is trained on all the other

1Retrieved from: https://pandas.pydata.org/
2Retrieved from: https://matplotlib.org/
3Retrieved from: https://numpy.org/
4Retrieved from: https://scipy.org
5Retrieved from https://scikit -learn .org/stable/modules/generated/sklearn .model _selection

.StratifiedKFold.html
6Retrieved from https://scikit-learn.org/stable/index.html
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samples. Each classification algorithm looks into the training data and learns the decision back by
determining the feature importance for every single predictor. Using this feature importance it can
decide what to do in the remaining scenarios. So for all the test data, the classification algorithms
decide what to do in those scenarios. Those decisions are then compared with the decision made
with the decision tree. When all the scenarios are done, a confusion matrix is composed. This
matrix provides an overview of the number of scenarios in which the right decision is made and the
number of scenarios with wrong decisions. The average percentage of scenarios in which the model
decided correctly over the five different cross-validations is the model’s accuracy.

4.2.3 Comparison of the classifiers

The classifiers’ accuracy exists of ten values since every fold provides an accuracy score. Those
scores are tested to see whether a significant difference exists between the classifiers. For this, an
ANOVA test is applied. The accuracy score of four different classifiers (LR, RF, SVC, GB) is the
variable of interest. ANOVA can be applied, since the accuracy is a continuous variable, since it
can take any value. The different values of the accuracy follow roughly the normal distribution
since most values are around the average accuracy and the positive outlier is as likely as a negative
outlier. The stratified k-fold selected the data points randomly. There is enough data because the
accuracy exists of ten repetitions (the folds) per classifier. The accuracy scores are expected to vary
similar for all the classifiers. The four samples are related since the accuracy score is measured on
the same data points (folds) with different classifiers.

To test which classifiers differ, confidence intervals are constructed on the accuracy of all the
possible combinations of classifiers. Based on the type of data set we have the test is a T-test.
For this, the difference between the accuracy per fold should first be calculated. This is done
by subtracting the accuracy of one of the classifiers from another classifier for each of the ten
folds. This gives ten values and from those values, the mean (p̂) and standard error (SE) are
calculated. The mean is calculated with this formula: p̂ = 1

10 ∗
∑10

n=1 pn and the standard error

with this formula: SE =

√∑10
n=1(pn−p̂)
10−1 where pn is the difference for fold n, with a maximum of n

= 10. Based on this mean and standard error the 95% confidence intervals (CI) are constructed.
CI = (p̂− t∗SE√

n
, p̂+ t∗SE√

n
), where p̂ is the mean, SE is the standard error, n is the number of splits

which is 10 and t is 2.262, which is the value from the t-table with degreesoffreedom = 10− 1 = 9
and α = 0.05. The two classifiers have a significant different accuracy when this confidence interval
does not contain 0(Miao & Chiou, 2008).

Since all the classifiers are tested on the same data set with the same predictors and all of
them provide the accuracy of the prediction and the importance of the features, comparing those
provides a lot of insight into the differences between the classifiers’ performances. Therefore a graph
with the feature importance of the classifiers is constructed. To compare the importance with each
other, they must have the same representation. Both the random forest classifier and gradient
boosting classifier provide importance as a percentage, such that the sum is equal to 1 (Breiman,
2001)(J. H. Friedman, 2002). However, logistic regression and the support vector classifier normalize
the feature scores (LaValley, 2008)(Noble, 2006). Therefore the scores of logistic regression and the
support vector classifier are converted into percentages as well. The current score of the features
is a z-score. This means that the area to the left of this z-score is the probability and also the
importance. The bigger this area, the more important the feature. Calculating a percentage score
from this z-value is done by taking this probability as a percentage of the probabilities of all the
features combined.
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4.2.4 Experiments

The model runs several times for all the classification algorithms. Each time with a different size
for the input data. For each run, the k-fold cross-validation is used with k = 10. It starts with
100 scenarios, split into ten equal parts of 10 scenarios that are all once used as test data and nine
times as training data. After that, the model runs with 200, 500, 1000, 2000, and 5000 scenarios.
Each time the data set is split into 10 folds. When the model has more test data it is expected to
better learn the pattern and relation between the predictors. Therefore the accuracy is expected to
increase when more data is used. Since the test sets become bigger as well it is also expected that
the variance of the accuracy per fold will decrease.

4.2.5 Output

The output of those experiments is gathered and combined. This resulted in graphs with the average
accuracy plotted out against the sample size, in which the classifiers can be compared. Next to
that is for all the classifiers plotted how the accuracy and uncertainty change when the sample size
increases. This output is displayed in the next chapter with the results.
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5 Results
In this chapter, the results of the model are described. First of all, the average accuracy scores
are provided and plotted. Secondly, those accuracy scores are analyzed and described per classifier.
Based on that conclusions are drawn about the best-suited classifier and the desired sample size of
the data for reliable results. Next to this, the feature importance is compared between the classifiers
and other outstanding results are highlighted and discussed.

5.1 Comparison of the classifiers
The average accuracy is plotted in Figure 6 and written down in table 5. Out of those results, the
logistic regression and the support vector classifier do not achieve the desired accuracy level of 95%
as the random forest classifier and the gradient boosting classifier. Those two classifiers do already
achieve this level with most of the folds when n=200, and with all the folds when n=500, where the
logistic regression and support vector classifier only achieve a score of 83% for n=5000.

Figure 6: Average accuracy of the classifiers

Accuracy per classifier per sample size
Classifier 100 200 500 1000 2000 5000
Logistic regression 0.842 0.779 0.822 0.830 0.820 0.830
Random forest classifier 0.907 0.967 0.996 0.999 1.000 1.000
Support vector classifier 0.807 0.733 0.811 0.829 0.815 0.829
Gradient boosting 0.886 0.967 0.996 0.994 0.999 0.999

Table 5: Average accuracy per sample size and classifier

5.2 Analysis of accuracy per classifier
With all experiments done, the relation between the sample size and the accuracy of the classifier
is analyzed. This is done by plotting the average accuracy score and the range from the lowest to
the highest accuracy score per sample size. This way the improvement regarding the sample size
is visualized per classifier. Next to that is for all the sample sizes the ROC-curve plotted with the
accuracy per fold visualized.
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5.2.1 Accuracy of logistic regression

Logistic regression achieves an accuracy of around 83% for all the sample sizes. The folds provide
more similar results when they increase in size, which means that the variance decreases and the
reliability of the accuracy increases. However, the accuracy itself does not seem to increase.

Figure 7: Accuracy of logistic regression with variance

With a sample size of 100, at least one fold achieves an accuracy of 100%, which is not unlikely
since the test size per fold is only 10. This big variety between the folds is also visible in Figure
8a. What is interesting about the logistic regression is that the performance with 1000 observations
has a bigger variance than with 500 and the variance with 2000 is much smaller. The difference
between sample sizes 100 and 5000, visualized in Figure 8, is mostly the decrease of the standard
deviation, but not an increase of the accuracy.
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(a) ROC-curve with sample size 100 (b) ROC-curve with sample size 5000

Figure 8: ROC-curves of logistic regression

5.2.2 Accuracy of the random forest classifier

The random forest classifier already scores an accuracy of 90% on average for n=100 and this
approaches 100% when more data is added. For n=500, the worst score already is 98.5%, which
means that the random forest does learn the pattern almost perfectly with n ≥ 500. Adding more
data does not improve the accuracy score of the model.

Figure 9: Accuracy of the random forest classifier with variance

The ROC-curve for n=500 can be seen in Figure 10 and there the curve is indeed in the top left
corner. The fact that this classifier performs well is not surprising since this classifier uses decision
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trees to search for patterns in a data set and this data set was generated with a decision tree as
well.

Figure 10: ROC-curve of logistic regression with sample size 500

5.2.3 Accuracy of the support vector classifier

The support vector classifier approaches an accuracy score of 83%, while the variance decreases for
every increase in sample size.

Figure 11: Accuracy of the support vector classifier with variance

The variance decreases a lot between n=200 and n=500, which means that the different folds
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all approximate a similar accuracy score. When comparing the ROC curves of n=500 and n=5000,
the biggest difference is the decrease in the deviation from 0.04 to 0.02. However, the accuracy does
improve slightly as well from 0.81 to 0.83.

(a) ROC-curve with sample size 500 (b) ROC-curve with sample size 5000

Figure 12: ROC-curves of the support vector classifier

5.2.4 Accuracy of the gradient boosting classifier

The gradient boosting classifier has an accuracy score of 99.6% over the data set with size 500,
which means that only two scenarios were evaluated wrong. This accuracy score means that this
model is already able to learn the pattern in the data set with 500 entries. That this classifier
performs well, is not surprising since this classifier uses decision trees to search for patterns in a
data set and this data set was generated with a decision tree as well.
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Figure 13: Accuracy of the gradient boosting classifier with variance

With 200 data points the variance is still significant and are not all the accuracy scores optimal
as can be seen in Figure 14a, especially compared with Figure 14b.

(a) ROC-curve with sample size 200 (b) ROC-curve with sample size 500

Figure 14: ROC-curves of the gradient boosting classifier

5.3 Confidence intervals on the accuracy differences
In the Figures with the accuracy and their range is visible that the variance of the classifiers is
big for sample sizes 100 and 200. Therefore it is hard to tell whether the differences between the
classifiers are already significant. To investigate the differences an ANOVA test is performed for all
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the sample sizes to test whether there are at least two samples that statistically significantly differ.
The results of those ANOVA tests can be found in table 6.

Results of One-Way Repeated Measures ANOVA
Sample size 100 200 500 1000 2000 5000
F-statistic 5.18 24.47 163.03 152.47 351.88 661.92
p-value 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6: ANOVA test statistics per sample size on a different accuracy between the classifiers

Since all the p-values are below 0.05, on a 95% confidence level all the null hypotheses of no
differences are rejected. So, it can statistically be trusted that for all sample sizes, at least two
classifiers have different accuracy. To investigate which classifiers differ, two-sample paired T-tests
are conducted on all the possible combinations of classifiers for n=100 and n=500. Based on those
T-tests, 95% confidence intervals on mean differences are constructed. Those can be found in Figure
15 and 16 for n=100 and n=500 respectively.

Figure 15: Confidence interval on accuracy difference for sample size 100

For n=100 only two confidence intervals do not contain 0. This means that with a significance
level of 95%, the accuracy of the random forest classifier statistically differs from the accuracy of
the support vector classifier and that of logistic regression. For all the other differences, on a 95%
level of significance, the null hypothesis of no difference can not be rejected.
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Figure 16: Confidence interval on accuracy difference for sample size 500

The confidence intervals do decrease when the sample size increases. This relation makes sense
since the width of the interval is calculated by dividing by the square root of the sample size.
Most of the differences are statistically significant on a 95% level of confidence. However, there are
two exceptions which are both interesting. First of all, logistic regression and the support vector
classifier do not statistically differ on a 95% level of confidence. In Figure 6 it can be seen that
those classifiers indeed score similarly. The same is true for the random forest classifier and the
gradient-boosting classifier. That those are not statistically different is expected for n=500 since
both score almost the perfect accuracy score of 100%.

5.4 Feature importance comparison
Not only the accuracy is evaluated and considered, but also the features. Those results are compared
between the classifiers as well. Since the random forest classifier and the gradient boosting classifier
perform significantly better on the accuracy, they are evaluated in more detail. Since the sample
size of 500 is recommended, we take the feature importance that is obtained with this sample size
as well.
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Figure 17: Feature importance of the random forest classifier with 500 scenarios

Figure 18: Feature importance of the gradient boosting classifier with 500 scenarios

All the features are also compared in one figure: Figure 19.
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Figure 19: Feature importance of the classifiers with 500 scenarios

In Figure 17 and Figure 18 the feature importance can be seen that is determined by the random
forest classifier and the gradient boosting classifier respectively. Since both classifiers achieve high
accuracy, it was expected that the feature importance would be similar, but in Figure 19 can be
seen that this is not the case. Some interesting observations that are made when observing the
feature importance:

• ’Maintenance tasks’ is the second most important feature for the RFC, but the least important
for the GB. The original decision tree did not take this variable into account with deciding,
which makes the result of the RFC very interesting.

• The locations are valued differently by the classifiers. RTM and IST should be similar, just
as LCY and MAD. However, both classifiers did not value anything different here.

• The components are exactly ranked the same by both classifiers with the air data computer
as the most important.

• Both classifiers rank the constraints as very important, which makes sense since those require
maintenance in certain cases.

• The locations, resources, and flight schedule should all be valued similarly according to the
original decision tree.

When the sample size is increased to 5000, those differences become smaller, as can be seen in
Figure 20, 21, and 22.
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Figure 20: Feature importance of the random forest classifier with 5000 scenarios

Figure 21: Feature importance of the gradient boosting classifier with 5000 scenarios

33



Bachelor Thesis G.H. van de Water

Figure 22: Feature importance of the classifiers with 5000 scenarios

• ’Maintenance tasks’ is according to the RFC now also the least important variable, but still
has some influence.

• RTM and IST are now similar and more important than the other two locations, just as LCY
and MAD. Both classifiers did find some relation here.

• The components are now ranked differently by the gradient boosting classifier. However, this
change is bad according to the decision tree that is used to generate the data set.

• Both classifiers still rank the constraints as very important, which makes sense since those
require maintenance in certain cases.

• The GB and RFC both value the locations, resources, and flight schedule more similarly,
which is according to the original decision tree.

Another interesting observation is that with both n=500 and n=5000, the feature importance of
the SVC and LR are very similar, which can be seen in Figures 19 and 22. This might explain the
similar accuracy. However, further research is needed to investigate why the features are so similar
for those classifiers, without achieving high accuracy.
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6 Conclusion
The conducted research was about proofing the concept of catching a decision situation with a
decision tree and applying classification algorithms to learn back this decision tree and to investigate
the amount of data different classifiers need in order to learn this decision tree. To prove this concept
and construct this model, data was gathered for the development of this bot that can decide in defect
management what decision to make. Chapter 3 describes the research in defect management that
is done and based on that research ten different cases are developed, such that they will provide
a large amount of data despite the limited size. This small amount of cases is then provided to
experts in defect management. Their decisions are the norm for the model. This small set of data
is then analyzed in order to find a logical pattern between the variables and the decision that holds
for all those cases. The experts’ responses made clear that the variable of ’upcoming maintenance
tasks’ does not need to be considered for the DM decision and the variable ’constraints’ is most
important. With the MEL, the current location and available resources, the constraints, and the
flight schedule the experts were able to decide in each scenario what to do. It can be concluded
that with those variables known, it is possible to make defect management decisions.

This logic pattern is described in a decision tree such that this tree can decide in randomly
generated scenarios that are similar to the scenarios provided to the experts. With this decision
tree data sets of different sizes are generated. Per sample size is analyzed with four classifiers how
accurately they can predict the made decisions based on the different variables.

Using stratified k-fold cross-validation with k=10, and the random forest classifier or the gradient
boosting classifier an accuracy of 99.6% can be obtained with a data set with 500 data points. The
accuracy of those two classifiers is not statistically different from each other. With n=200 an
accuracy of around 96.7% can be achieved, but this is, with a 95% confidence level, not significantly
higher than the desired level of 95%. Therefore, a sample size of at least 500 for the random forest
classifier and gradient boosting classifier is recommended to achieve this desired accuracy level for
sure. Logistic regression and the support vector classifier do not achieve an accuracy of 95%, but
score max 84%, and are therefore not recommended to use for a data set like this one. The null
hypothesis that those classifiers are different can not be rejected on a confidence level of 95%.

Scoring an accuracy of 99.6%, interestingly enough, does not mean that the classifiers have
learned back the decision tree perfectly. The analysis of the feature importance of these models
provided the insight that some of the variables were incorrect, according to the decision tree used
to generate the data, estimated to be very important for the decision-making process. When the
sample size was increased to 5000 the features were much more in line with the decision tree. So,
in order to learn the decision tree itself back perfectly, 5000 is not even enough.

6.1 Discussion
This research has delivered insights for the NLR on how to develop the CAMO bot. First of all,
this research shows the importance of data for developing a machine-learning tool. Without data,
it is not possible to construct a decision tree or to train a classification algorithm.
It is possible to take a limited set of cases to gain a lot of data if the cases are constructed in a way
that a lot of insight is gathered into the decision-making process. In this small set of data, a logic
pattern can be found that is able to decide based on the different variables what the decision is,
but it is hard to tell how reliable this pattern is since the data set is such limited.
Based on a logic pattern, it is not complex to generate a big data set with decisions. This generated
bigger data set can be used to test different classifiers and to find the amount of data that is needed
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in order to find significant conclusions, but not to find straight facts, since some assumptions are
made in order to develop the final model.
Another insight provided by this research is that different classifiers use different methods and will
therefore not all be as accurate and therefore suited for each different scenario. Besides, if a complex
decision tree is used to construct a data set, it is hard for classifiers, even for ones that use decision
trees, to learn this decision tree back. This is visible in the fact that the feature importance of the
RF and the GB do not align with the decision tree used to generate the data, however, the bigger
the training set becomes, the better the approximation of the decision tree is.

6.2 Recommendations
First of all, it is recommended to continue with the development of the CAMO-bot that is able to
tell which maintenance tasks need to be performed and when. For the development of this bot,
more expert opinions and decisions are needed to develop a reliable model. Thus is recommended
that the NLR contact an external party like an airline or a CAMO organisation that has this data
available. For the development of the decision-making part, a decision tree is ideal. Therefore, it is
recommended to map out the decision logic of defect management. This decision tree should be able
to decide in every scenario like the developed decision tree in this research but then applied to every
possible defect on every possible component. In order to investigate the importance and influence of
different variables, machine learning provides useful insight into the importance of these factors and
their influence on the defect management decision process. This knowledge could be applied where
possible to prevent unnecessary delays, such as having spare parts for the most crucial components.
Therefore, sharing the results with parties like CAMO organizations is recommended as well.

6.3 Limitations
Experts decided about each component only twice, such that it is not possible on this data set to
tell the influence per component in detail, which limits the results about the feature importance
of the components. The variable resources are the staff, equipment, and docking station at the
airport. For this research, it is assumed that these are all available, or not. In reality, this is not
binary but more complex. The rectification times of the components, used to construct a more
complex decision tree, are fictional, these values could be adapted to the real values. Next to that,
rectification time is not a definite value, but a statistically deviating value. The only two options for
this research were to rectify the defect immediately or to defer the rectification. However, mostly
this is not the case, since the best option might be to fly with some constraints to the next airport
where the rectification should be done immediately. This is for now not an option in this simplified
case. Because of these simplifications and some assumptions, the reliability of the developed decision
tree is unknown, the only thing we know is that it can decide correctly on the ten known scenarios
provided to the experts. Because of this, nothing can be said about the coefficients of the variables
and the accuracy scores.

6.4 Further research
For now, only six components and two different kinds of locations are taken into account. This is
recommended to be expanded. The current model considers some relation between variables and
shared impact on the decision, but there might be more (complex) relations which is recommended
to investigate. This model can decide whether to defer or to rectify, but after that decision different
decisions have to be made and tasks have to be performed. The bot should be able to provide those as
well and that will be helpful since that will also be different for every scenario. These tasks should
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be researched and combined with the defects in order to improve maintenance operations. This
model might be possible to use in maintenance management as well, but this has to be researched.
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Appendix
Appendix A: Developed scenarios

Figure 23: Developed scenarios
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Appendix B: Responses questionnaire

Figure 24: Responses to questionnaire
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Figure 25: Responses to the questionnaire (part 2)

42


	List of Figures
	List of Tables
	Introduction
	Company Description
	Bot project
	Problem Description
	Research design

	Research Questions
	Scope
	Deliverables

	Next step

	Current situation
	Defect management
	Immediate rectification because of regulations
	Deferral because of no impact of the defect on operations
	Noncritical defects with impact on operations

	Defect management variables
	Component
	Location
	Flight schedule
	Maintenance tasks
	Circumstances

	Development of scenarios
	Scenario description
	Scenarios
	Trade-offs

	Questionnaire responses
	Starting point

	Literature Review
	Defect management decisions
	Defect management variables
	Behavioral Artificial Intelligence Technology
	Stratified k-fold cross validation
	Classification algorithms
	Logistic regression
	Random forest classifier
	Gaussian naive Bayes classifier
	K-nearest neighbor algorithm
	Support Vector Classifier
	Gradient boosting classifier
	Decision tree

	Visualization of classifier performance
	One-Way Repeated Measures ANOVA
	Conclusion

	Methodology
	Decision tree
	Design of decision logic
	Data generation

	Classification model
	Preparation of the data
	Implementation of the classification algorithms
	Comparison of the classifiers
	Experiments
	Output


	Results
	Comparison of the classifiers
	Analysis of accuracy per classifier
	Accuracy of logistic regression
	Accuracy of the random forest classifier
	Accuracy of the support vector classifier
	Accuracy of the gradient boosting classifier

	Confidence intervals on the accuracy differences
	Feature importance comparison

	Conclusion
	Discussion
	Recommendations
	Limitations
	Further research

	References

