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Abstract 
Faculty of Behavioural, Management and Social Sciences 

Industrial Engineering & Management 

This thesis explores the relationship between claim frequency and claim severity in 

home-content insurance. It investigates whether a model that doesn't assume 

independence can be preferred. The aim of this thesis is to compare the prediction ability 

of a frequency-severity model in both the dependent and independent setting. The model 

where the assumption of dependence between the claim frequency and severity is 

relaxed can be modelled by including the claim frequency as a covariate in the 

frequency-severity model. This study will create a framework for insurers in the same 

or a similar sector to research the relation between the claim frequency and severity. 

The framework is supported by a literature review that indicated what literature is 

present and how this study can complement the existing literature in this field. After the 

literature review, a preliminary analysis regarding the dependency is performed to create 

first insights into the correlation. In this analysis a negative correlation between the 

claim frequency and claim severity is discovered. After the literature review and the 

preliminary analysis, the marginal Generalized Linear Models (GLM) are modelled. 

With the marginal GLMs for the claim frequency, the claim severity in the independent 

setting (benchmark) and the claim severity in the dependent setting (adjusted), the total 

aggregate loss models can be made. These models predict the total aggregate loss on 

individual policyholder level. The model in the independent setting is a multiplication 

of the claim frequency GLM and the claim severity GLM. The total aggregate loss 

model in the dependent setting is similar, but the multiplication is with the adjusted 

claim severity GLM. Also, a dependency correction term is included. The results of the 

comparison between these two models regarding the prediction ability indicate a slight 

preference for the model in the dependent setting. This preference can be explained by 

the error measures and the distribution of the predicted values compared to the actual 

values. The model where dependence is allowed has more overlap with the actual values 

compared to the model where the independence is assumed. Both in-sample and out-of-

sample modelling is performed. The validity of the results is therefore increased as the 

error measures of the in-sample modelling do not indicate a preference over out-of-

sample modelling, indicating no overfitting is present. The adjustments in the total 

aggregate loss model could result in a small economic benefit for Univé Stad en Land 

as they have the possibility to better predict the total aggregate loss for all policyholders, 

and thus could be able to determine a more competitive premium.  
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Chapter 1 Project Plan 

The introduction chapter will provide the reader with the necessary information about 

the company, and how the research of this paper is structured. The Problem context and 

the core problem will be explained, the chapter ends with the research questions. 

1.1. Univé Stad en Land 

Univé Stad en Land (later on USL) is a Dutch insurance company that provides various 

insurance products to individuals, businesses, and organizations. The company has been 

in operation for over 200 years and has a strong presence in the Netherlands, with offices 

and agents from USL located in ‘their’ region of the Netherlands. 

The Risk and Compliance and Business Control departments are crucial parts of USL's 

operations. The departments work closely with other departments within the company 

to develop risk management strategies and control strategies that are tailored to the 

specific needs of the company. 

The main responsibility of Risk and Compliance is to monitor the financial performance 

and to ensure compliance with relevant regulations and standards. This includes 

managing the company's financial reporting, budgeting, and forecasting processes, as 

well as developing and implementing financial controls to mitigate the risks associated 

with financial transactions. The department of Business Control works closely with the 

risk and compliance department, as its main responsibility is to maintain and improve 

the strategic goals of USL. Tasks like financial planning, performance measurement and 

reporting are all included in this task description.  

1.2. Problem context 

The environment of the insurance companies is evolving quickly, from a ‘small’ 

industry trying to provide services to the peoples/businesses in need, to a vital sector 

supporting almost everyone in all sorts of services. To remain efficient, the insurance 

companies need to be flexible and eager to make changes over time. Important changes 

within an insurance company can be the type of products the company sells, the level of 

protection or the amount of premium that needs to be collected for each product. The 

latter is a vital aspect of an insurance company as pricing their product is one of the 

main drivers for maintaining a strong competitive position within the insurance market.  

It is important to set a competitive premium for each individual policy, without being 

too cheap in the market. This relates to the basic principle in the economic market, where 

customers tend to shift direction when cheaper options are available that provide 

comparable services. In the insurance sector this principle is also present. For instance, 

Vanasse, Dionne & Gouriéroux (2001) show that in the auto insurance environment, if 

an insurance charges too little for young drivers and too much for old drivers, young 

drivers will be attracted while the old drivers will switch to competitors. This leaves the 

company with an unbalanced portfolio, which does not enhance the future perspectives 

and will ultimately result in economic losses. 
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This process of determining a premium for a policyholder is called ratemaking. A fair 

premium is a premium that objectively reflects the risks that the specific policyholder 

carries. Ratemaking is a critical process for insurance companies as it directly impacts 

their profitability and ability to remain financially stable and viable in the long term. 

The ratemaking process is based on frequency-severity modelling, which is often 

referred to as aggregate claim modelling. Frequency-severity modelling considers both 

the frequency and severity of the claims and is used to estimate the total (aggregate) 

losses that the insurer will need to pay out during a period. The Claim Frequency (CF) 

and the Claim Severity (CS) are modelled separately at USL and then combined to 

estimate the total losses the insurer is likely to experience. 

Univé has a range of different coverages in the home insurance sector. In the case of 

home insurance, frequency-severity modelling involves developing models that can 

accurately assess and quantify the risks associated with insuring a property. These 

models are made with the variables that are present in the ‘risk profile’ of the 

policyholder. This risk profile includes personal factors such as their age and 

relationship status, but mainly property risk factors such as its location, the type of house 

or the type of roof have an impact on the rate-making process. By using data analysis 

and statistical modelling techniques, insurance companies can estimate the likelihood 

of a claim being made and the potential cost of that claim. This information can be used 

to set appropriate premiums. 

The most common approach to model the CF and CS in home insurance is to use a 

multivariate analysis (Su & Bai, 2020), which allows insurers to consider multiple 

factors simultaneously and identify their individual contributions to risk. For example, 

an insurer might use a statistical model that considers the age of the home, the type of 

roof, and location of the property to estimate the likelihood of a claim occurring. This 

information, together with the prediction of the claim size, can then be used to set a 

premium that reflects the level of risk involved in insuring that property. 

At Univé Stad en Land an important change is happening, the underlying model of the 

rate-making process is being re-evaluated and a new model is going to be implemented. 

This change is not something that happens yearly, so while in this transition period, it is 

of great importance that the new model is validated and well-implemented. Currently, 

one of the most traditional approaches for frequency-severity modelling is a two-step 

approach. Claim frequency & claim severity are modelled separately, instead of creating 

a joint model (Oeben, 2015). This happens with the use of generalized linear models 

(GLMs), these models are a generalisation of the ordinary linear regression models. 

Because GLMs are easy to interpret and flexile to use for the data of insurance 

companies, some insurance companies prefer this option over others, including USL.   

At USL the validation of the frequency-severity models could benefit from further 

improvement, as one of the arguments used to defend the question about the model 

choice (GLM) is stated as “Almost all insurance companies use GLMs, so it should be 

effective”.  The frequency-severity modelling component at USL is fully align with the 

most traditional approach stated earlier: a two-step approach where the claim frequency 

and the claim severity are modelled separately using GLM techniques. This way of 

modelling makes assumptions that could be relaxed. An example of such an assumption 
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is the independence assumption between claim frequency and claim severity. To be able 

to state that USL implemented a new model which is validated, these assumptions 

should be researched and possibly relaxed.  

1.3. Core problem 

Refining the statistical risk model that functions as the basis of the ratemaking process 

can lead to financial benefits and a greater market share when implemented efficiently. 

A new model cannot be effectively implemented without validating the assumptions 

made. A lot of literature exists about the relation between the claim frequency and the 

claim severity not being independent, for example the studies of Frees (2016), 

Henckaerts (2019) and Yang (2022). However, the current model, which is making its 

way into the insurance market at USL, still makes the independence assumption between 

the CF and the CS. This assumption is made without studying the possible outcomes 

when the dependence is included in the frequency-severity model. 

To be able to know whether the model that will be implemented at USL is as effective 

as it could be, the possible dependence deserves to be further researched. Also, failure 

to validate the model's assumptions could lead to biases and errors when interpreting 

the results. This will ultimately undermine the usefulness of the model.  

The current model uses the two-step method and analyses the CF and CS separately 

using a Poisson distribution and a Gamma distribution respectively. Even though the 

independence is controversial to say the least, it is convenient in various statistical 

computations such as the maximum likelihood estimations (W. Lee et al., 2019).  The 

dependency between the claim frequency and claim severity could be positive, negative 

or zero. A positive dependency implies that the condition that leads to a higher 

frequency would also lead to a higher severity, whereas a negative dependency implies 

that there are many relatively small claims, or a few big claims (Becker et al., 2022). 

USL requires a frequency-severity model that predicts the total aggregate loss as 

accurate as possible. The total aggregate loss refers to the total amount of losses that 

have been incurred during a specified period because of the claims. The total aggregate 

loss is derived from the frequency-severity model. The independence assumption can 

limit the accuracy of the expected total aggregate loss. To address this limitation, USL 

wants to develop models that relax the independence assumption between CF and CS. 

This could allow them to better capture and understand the underlying dynamics of the 

claims process, which could lead to more accurate predictions of the aggregate claim 

loss. 

Being able to obtain more accurate predictions will support USL with making more 

informed decisions about pricing their policies. If they can accurately predict the total 

aggregate loss, they can set premiums that are more in line with the risk they are taking 

on. This could help them attract more customers while also staying profitable. 

Ultimately, when the risks of the policyholders are predicted more accurately, the 

premium proposed can be determined more competitively, which can result in an 

economical benefit. 
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So, USL is currently in the transition period to switch to a newer frequency-severity 

model, this model is based on the two-step GLM method. This frequency-severity model 

is the underlying for determining the premium set for all policyholders. Without 

knowing whether there exists a dependency between the CF and the CS, USL has 

assumed them to be independent for the convenience of the model. For further 

readability of the report, we recall the current frequency-severity model where the 

independency is assumed the benchmark model. The proposed frequency-severity 

model, where the dependency is included, will be recalled as the adjusted model.  

Thus, the importance of this study can be summarised that the adjusted model could 

predict the total aggregate loss better than the benchmark model. Then it could very well 

be the case that the premiums of the policyholders can differ from what they pay now 

following the frequency-severity model with the independency assumption. 

1.4. The research problem 

The adjusted model will remove uncertainty regarding the current model's performance 

without the assumption of independence. This research will study the relationship 

between the CF and the CS and propose a framework for modelling the dependence, 

and thus broaden the literature about the use of GLM models as a tool for frequency-

severity modelling in the home insurance sector. The research question of this research 

can be formulated as   

“How can a dependent frequency-severity model be used to predict the total aggregate 

loss and how does this adjusted model compare to the benchmark frequency-severity 

model?” 

To be able to answer this question, this paper is divided into several chapters each 

containing their own specific sub-research questions. These questions form a framework 

for the research whereby each chapter contributes to answer the main research question. 

The sub-research questions are formulated as 

Chapter 2 Literature review & hypotheses: 

2.1 Which types of models does the literature describe, that are used as the underlying 

of the rate-making process? 

2.2 How is the dependency between the claim frequency and the claim severity 

described in the literature? 

2.3 How does the literature model the total aggregate loss with and without dependency 

between claim severity and claim frequency? 

Chapter 3 Method: 

3.1 How is the benchmark model used to model the total aggregate loss? 

3.2 How does the benchmark model need to be adjusted to relax the independence 

assumption in the frequency-severity model? 

3.3 Which goodness-of-fit measures can be used to compare the performance of the 

benchmark and the adjusted model? 

Chapter 4 Data: 
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4.1 Is there a significant correlation between the CF and CS based on a correlation test? 

4.2 Which risk factors are available, and which risk factors can be included in the 

benchmark and the adjusted frequency-severity model? 

Chapter 5 Results: 

5.1 How can the total aggregate loss with and without dependence be modelled? 

5.2 How does the adjusted model perform in comparison to the benchmark model, with 

regards to the prediction quality and in terms of goodness of fit? 

1.5. The problem Approach & Research Design 

The main strategy for this research will be a quantitative approach, using several 

statistical methods to analyse the relationship between claim severity and claim 

frequency. The study will be based on a cross-sectional design, collecting data at a single 

point in time from a database of insurance claims over a period starting in 2015 and 

ending in 2023. This design is suitable for testing the research question and hypotheses, 

as it allows for the collection of data on both claim severity and claim frequency from 

the same set of claims. 

Motivated by the problem context and the core problem, this work aims to fit the 

framework used for modelling the dependence in a frequency-severity model to data of 

the home-contents insurance of USL. The validation part of the model involves 

comparing the output of the model to historical data to confirm whether the model 

improves without the assumption. The adjusted model gets ‘trained’ with the data 

starting from 2015, and then this adjusted model will be compared to the most recent 

data available to determine the effectiveness of predicting the total aggregate loss and 

compare it to the benchmark frequency-severity model that did not take the dependency 

into account.  

This study aims to answer the main research question, by answering each sub research 

question individually per chapter. In Chapter 2 Literature review, the existing methods 

as underlying of the rate-making process are described, this could include Machine 

learning or GLM. The research questions for chapter 2 will be answered with the use of 

a literature study, in this study the existing literature about the past, present and future 

research of both the dependency between CF and CS and the way of modelling the total 

aggregate loss will be explained.  

The statistics and the theoretical background need to be evaluated in order to create a 

solid understanding of the framework this study will propose. So, in Chapter 3 the theory 

that is needed will be provided. The ending of the chapter will explain the models that 

will be both trained and tested. The research questions of chapter 3 will be answered 

supported by the literature review of chapter 2 and the framework proposed by Schulz 

(2013). The goodness-of-fit measures will be carefully chosen to best represent the 

accuracy of the models. 

The next chapter of the paper will focus on the research data. An explanatory analysis 

of the data will be performed to provide the reader with a clear understanding of the data 

that forms the basis of this study. Research question 4.1 will be answered after 

conducting a correlation test. The data for the claim counts and their average claim 
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severity will be obtained to be able to perform the correlation test. This correlation test 

will create first insights in the relationship between CF and CS. The test will return a P-

value, with this P-value it is possible to conclude at which significance level it is possible 

to state whether the correlation between the CF and CS is different from zero. Question 

4.2 will be answered after the explanatory analysis, this analysis will highlight risk 

factors that could have a significant impact on the total aggregate loss.  

The research question of chapter 5 will be answered after the GLM analysis is performed 

and the results can be quantified. The questions can be answered after the prediction of 

the total aggregate loss of both the benchmark and the adjusted models are compared, 

and the goodness-of-fit measures are done. 

The discrepancy in knowledge in the literature is clear, how does the adjusted frequency-

severity model compare to the benchmark frequency-severity model when predicting 

the total aggregate loss in the home insurance sector. Specifically, the home contents 

insurance (All-risk) is the insurance coverage type chosen to test this research on.  

1.6. Data collection techniques and methods 

Obtaining, analysing, and processing data about claim severity and claim frequency 

involves several steps. The first step is to collect all the necessary data. At USL all the 

claims that are made are tracked in a database, this is good starting point of the research. 

The data collected includes information on the number of claims, the severity of each 

claim, the types of claims, and many more relevant variables. A complementary 

database with the information of the policyholders is available, this is important to test 

for significant risk factors. Also data, in the form of knowledge, will be obtained from 

the literature. The literature will provide insights and will help to form a framework and 

create boundaries for this research. 

The research will be performed with GLM analysis. GLM analysis will be used to 

determine whether claim frequency is dependent on claim severity or vice versa, and to 

control for potential significant variables such as the region or the age of the 

policyholder. The claim frequency will be added as a covariate in the regression of the 

claim severity to describe the possible dependency between the CF and the CS. Whether 

the adjusted model will improve the goodness-of-fit is determined with measures as the 

(scaled) deviance, Akaike Information Criterion and Bayesian Information Criterion.  

The data analysis & preparation will be explained in chapter 4, this chapter is supported 

by the software of R. The correlation between the CF and CS will be analysed with a 

Pearson correlation test. Also, the Spearman correlation test will be used to capture non-

linear effects. The results of these coefficients will enlighten the reader with a first 

impression of how the dependency between the CF and the CS holds.   

The research will draw conclusions based on the results of the GLM analysis, 

considering the implications for insurance companies and their policyholders. The study 

may suggest that insurance companies need to adjust/finetune their models that function 

as an underlying in the process of calculating the risk premium, to account for the 

dependency between claim severity and claim frequency. As a result, premiums can 

differ from the current value.  Policyholders may also benefit from the findings, as they 
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may be able to make more informed decisions about their insurance coverage based on 

their risk profile, but this is up to USL to decide whether to share the results of this 

research. 

This study is based on the framework proposed by Schulz (2013). This framework uses 

the CF as a covariate in the model of the CS in order to account for the dependency. The 

study of Schulz is applied on data of a car insurance company, whereas this research 

will be focussing on a home content insurance. So, this research will complement the 

existing literature with new insights of using the framework proposed by Schulz (2013) 

and fitting it to the home content insurance sector. The framework will be validated by 

using it on new data.  
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Chapter 2 Literature review & hypotheses 

The literature chapter will provide all the necessary knowledge and theory found in and 

supported by literature. This chapter is divided in several sections compromising this 

research. The ending of the chapter will state the hypotheses of this study. 

2.1. Models used in the ratemaking process 

Several methods have been either used or proposed by the literature to function as the 

underlying model for the ratemaking process. This section will provide the literature 

about the popular choice amongst insurance companies, GLMs. Also, the introduction 

and the use of Machine Learning models will be discussed. 

Generalized Linear Models are a popular choice for ratemaking in non-life insurance. 

GLMs are statistical models that can be used to model a wide range of distributions, 

including those commonly used in insurance, namely Poisson and Gamma distributions. 

GLMs can incorporate multiple factors, such as age, gender, and location to predict 

future claims costs. They are particularly useful when modelling count or frequency 

data, such as the number of claims made by policyholders. 

One of the first studies to fit GLMs to insurance data was by Green & Higgs, (1989), 

who used Poisson regression to model automobile/motor insurance claims. Since then, 

numerous studies have claimed the effectiveness of GLMs for ratemaking in non-life 

insurance. For example, Wüthrich & Merz (2008) compared the GLMs to traditional 

actuarial methods and found that GLMs were more accurate in predicting automobile 

insurance claim frequencies. This research also indicated that GLMs were capable in 

dealing with overdispersion, which is a common theme in insurance data. 

Another study by England and Verrall (2002) used GLMs to model the frequency and 

severity of claims in commercial property insurance. They concluded that GLMs were 

able to capture the complex relationships between various risk factors and claims costs. 

In a similar study Karlis & Ntzoufras (2003) used GLMs to model the frequency and 

severity of claims in the liability insurance. They concluded that GLMs could 

handle/process the excess zeros often found in liability insurance data. 

Whereas the user-friendly and interpretation are pros of GLMs, it also has cons. The 

predictability is better received when using ML models, stated in the presentation of 

Zhou & CPCU Debbie Deng (2019). Machine learning (ML) techniques such as neural 

networks and decision trees have become popular for ratemaking in non-life insurance. 

The literature is showing more and more studies about the comparison of GLMs with 

other methods such as ML. Also Generalized Additive models (GAM) or General Linear 

Mixed models are used in studies to compare the output of the different models. Studies 

such as (Eriksson, 2021; Oeben, 2015; Su & Bai, 2020) compare the GLM models to 

the GAM or ML models. The results of these studies all conclude that there is not much 

difference in results between the models, however, these studies have not been 

performed on house-content data. A study of Hu & Kuo (2019) used both GLMs as well 

as ML models to model the frequency and severity of claims in medical malpractice 
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insurance. They found that GLMs performed slightly better than other machine learning 

methods in terms of predictive accuracy and interpretability.  

In summary, GLMs are perceived as the most traditional method of frequency-severity 

modelling, however, other methods such as GAM or ML are upcoming and there is no 

proof to state they are underperforming. Even though the more recent studies indicate 

the effectiveness of ML, Univé Stad en Land chooses to pursue GLMs as the foundation 

of the frequency-severity models.  

2.2. Frequency-severity modelling 

The process of using the ‘best’ models is based on the most efficient way to predict the 

expected aggregate claim loss, which is the result of the frequency-severity model. 

Frequency-severity modelling is a crucial aspect of non-life insurance as it helps 

insurers to estimate the expected losses and it helps to determine the premium rates for 

policies. This way of modelling is currently based on the assumption that the number of 

claims filed, and the amount paid per claim are independent of each other. This section 

of this chapter will examine the current research on frequency-severity modelling in 

non-life insurance and discuss its implications for the industry. 

One of the most commonly used frequency severity models in non-life insurance is the 

Poisson model. This model assumes that the number of claims filed follows a Poisson 

distribution, and the amount paid per claim follows a separate distribution, often a 

Gamma distribution. The Poisson model has been widely studied and is well-understood 

by insurers, making it a popular choice for modelling claims in non-life insurance 

(Guillén et al., 2016). 

However, more recent research has suggested that a Poisson model may not be the best 

fit for all types of claims. For example, claims incurred for catastrophic events such as 

hurricanes or earthquakes may follow a different distribution than the Poisson model, 

leading to bias, and thus inaccurate predictions of the number and severity of claims 

(Shiu et al., 2020). Other researchers have proposed alternative models such as the 

negative binomial or zero-inflated Poisson models, which may be more suitable for 

certain types of claims (Guillén et al., 2016). 

The claim severity is often modelled using a Gamma distribution, this distribution will 

enable positive results only, which in the case of the severity of the claim is logical, as 

there is no such thing as a negative claim (Ghaddab et al., 2023). In addition to the 

choice of model, other factors such as data quality and selection bias also affect the 

accuracy of frequency severity modelling. For example, if the data used to fit the model 

is not representative of the claim’s population, the resulting model may not accurately 

reflect the true distribution of claims (M. V. Wüthrich, 2015). 

2.3. Dependency between claim frequency and claim severity 

Understanding the relationship between claim frequency and claim severity is important 

for insurers to effectively price their products and manage their risk exposure. Several 

studies have explored the relationship between frequency and severity in non-life 

insurance. One of such a study is by Denuit & Boucher (2006), this study examined the 
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relationship between frequency and severity in the automobile insurance. They found 

that there was a negative correlation between frequency and severity, which means that 

as the frequency of claims increases, the severity of each claim tends to decrease. 

Similarly, another study by Wüthrich (2014) also found a negative correlation between 

frequency and severity in property insurance. 

However, not all studies have found a negative correlation between frequency and 

severity. For instance, a study by Chen & Tzeng (2007) found a positive correlation 

between frequency and severity in the liability insurance. This means that as the 

frequency of claims increases, the severity of each claim also tends to increase. A similar 

positive correlation was also concluded in a study by Gagné & Dionne (2002) in the 

context of workers' compensation insurance. 

Several other studies have also explored the relationship between frequency and severity 

in various types of non-life insurance, including fire insurance (Bühlmann, 1997), 

marine insurance (Merz & Wüthrich, 2008) and health insurance (M. V. Wüthrich, 

2016). In general, these studies suggest that the relationship between frequency and 

severity depends on the specific type of insurance and the characteristics of the insured 

risks. This implies that a negative correlation in the automobile insurance does not 

correlate with the direction of the correlation in other insurance sectors. 

In the case of home content insurance, several studies have found evidence/proof of a 

negative correlation between the frequency and severity of claims in the home content 

insurance. For example, a study by Jia & Eling (2016) analysed a dataset of Swiss 

household insurance claims and concluded that there exists a negative relationship 

between the frequency and severity of claims, with higher frequency of claims being 

associated with lower average claim amounts. Similarly, a study by Smit & Schmit 

(2012) using data from the Dutch insurance market found that there was a negative 

correlation between the number of claims and the average claim size. 

2.4. Hypotheses 

Based on the literature review in the previous sections, it can be stated that there is 

indeed a background found in the literature stating the dependence between the CF and 

CS. Therefore, the expectation of this research is that there exists a dependency between 

the CF and the CS in the data of USL. The prediction in which direction this dependency 

holds is complicated, but the most relatable studies by Jia & Eling (2016) and Smit & 

Schmit (2012) indicate that a negative dependency seems more likely. Thus, this implies 

that when a policyholder claims more frequently, the expectation is that the average 

amount incurred per claim is lower. 

In the study of Schulz (2013), the model where the independence assumption is relaxed, 

performed slightly better than the model where the independence assumption holds. In 

that study the performance of the models are tested with the deviance of the models. 

And the difference between the two models is relatively small. The research of Schulz 

(2013) is conducted on data of automobile insurance policies in Canada. The research 

of this paper will be conducted on home content insurance policies from USL, thus the 

expectation is that the results of this research and that of Schulz (2013) are different. 
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Because the (negative) dependency is expected, the adjusted model should be able to 

score better in regard to the goodness-of-fit measures. Therefore, when using the 

adjusted model instead of the benchmark model could lead to differences in the process 

of pricing the policyholders. These conclusions form the following two hypotheses that 

will be either supported or rejected in this research 

H1: There exists a negative dependency between the claim severity and the claim 

frequency in the home-content insurance at USL. 

H2: The adjusted model will perform better in predicting the total aggregate loss, and it 

will propose a better fit with regards to the goodness-of-fit measures, than the 

benchmark model. 
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Chapter 3 Methods 

The methods chapter will provide the reader with the derivation of the GLM models 

used to predict the total aggregate loss. The chapter will also provide all methods used 

in the latter stages of this research.  

3.1. Preliminary correlation test 

To state whether there exists a correlation between the claim frequency and the claim 

severity, two correlation tests will be performed. These tests will be included as a form 

of a preliminary analysis into the possible correlation between the CF and the CS. After 

this preliminary test, insights into the relationship are created which will help 

understanding the dependency between the CF and the CS better. The two correlation 

tests that will be used are the Pearson correlation test (rp) and the Spearman correlation 

test (rs). The results of the Spearman correlation test will be more valuable as it is able 

to capture the non-linear effects. However, for the completeness the Pearson correlation 

test will also be included. 

3.1.1. Pearson correlation test 

This method has less assumptions of the data in comparison with the Spearman method, 

the sample Pearson correlation coefficient rp is defined so that the mean centering 

procedure on the x and y vectors is done first, where mx and my represent the mean of 

the variables. Then the correlation is defined as 

𝑟𝑝 =  
∑(𝑥−𝑚𝑥)(𝑦−𝑚𝑦)

√∑(𝑥−𝑚𝑥)2(𝑦−𝑚𝑦)2
  

 

 ( 1) 

 

For the test to conclude at with significance level the correlation is tested, the p-value 

needs to be determined. The p-value can be determined by first obtaining the degrees of 

freedom ( df = n-2), where n is the number of observations in the dataset for variables x 

and y. Then, with the t value the corresponding p-value can be found in the t-distribution 

table (see appendix A1). The t-value can be calculated as follows: 

𝑡 =  
𝑟

√1−𝑟2 √𝑛 − 2   

3.1.2. Spearman correlation test 

The Spearman correlation test will capture non-linear effects which can result in better 

estimations of the real correlation than the Pearson correlation test. The Spearman 

correlation coefficient rs is calculated in a comparable manner as rp, except the rs is 

calculated after both variables have been transformed to rank values (x’ and y’). Again, 

a mean centering is performed first, where mx and my represent means of the variables. 

The Spearman correlation coefficient can be calculated as 
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𝑟𝑠 =  
∑(𝑥′−𝑚𝑥′)(𝑦′−𝑚𝑦′)

√∑(𝑥′−𝑚𝑥′)2(𝑦′−𝑚𝑦′)2
  

 

  ( 2) 

 

The test with the p-value (significance level) is similar to the approach with the Pearson 

correlation test. 

3.2. GLM models 

Generalized linear models are widely used in non-life insurance as a tool to determine 

the risk classification (W. Lee et al., 2019). GLM is an advanced statistical modelling 

technique formulated by John Nelder and Rober Wedderburn in 1972. It is an ‘umbrella’ 

term that encompasses many other models. Classic linear models attempt to fit a model 

to the mean response of some observed variable Y in the form of a linear predictor, 

whereas GLMs are an extension to this approach. This extension allows for greater 

flexibility in modelling observations in several ways (Schulz, 2013). First of all, GLMs 

allow for a non-linear function of the mean to be modelled in terms of a linear predictor. 

Secondly, in classical linear regression, the error term is normally distributed with mean 

zero and a constant variance. GLMs allow the error distribution to be a member of the 

exponential dispersion family other than a normal distribution. Moreover, the GLMs 

allow for a mean-variance relation which is inherent in the exponential dispersion 

models density structure. Thus, when modelling the mean through a GLM, we indirectly 

model the variance as well. 

The GLMs can all be described with the following three components: 

1. Random component – defines the probability distribution of the response 

variable, such as the normal distribution used in the classical regression model, 

or the binomial distribution used in the binary logistic regression model. The 

model only includes this random component and does not have a separate error 

term. 

2. Systematic component – defines the explanatory variables (𝑥1, 𝑥2, … , 𝑥𝑛) in the 

model and their linear combination, e.g. 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2. 

3. Link function, ŋ or g(µ) – defines the link between the random and the 

systematic component. In simple terms, it maps a non-linear relation to a linear 

relationship. This needs to be done in order to fit a linear model. Classical linear 

regression is also a form of a GLM, where the link function is simply ‘one’:  ŋ =

𝑔(𝐸(𝑌𝑖)) = 𝐸(𝑌𝑖 ). The link function will be described in more detail in section 

3.2.1.  

3.2.1. Link function 

In the classical linear regression, the link function is not visible if we solely look at the 

distribution. This is because the link function is there to define how the expected 

response will be mapped from the linear predictor scale to the mean scale through its 

inverse. The link function can be chosen to be able to map the mean so that it reflects 

the distribution. The ‘mapped range’ is chosen because of the (assumed) distribution of 

the response variable. So, in the case where the response variable is assumed to be 

Gamma distributed, Y has to be in the mapped range of (0, ∞). 
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Obviously, the link function chosen for a Gamma distributed response variable must 

ensure that the 𝑔−1: (∞, ∞) → (0, ∞). This can be done with the use of the Log link 

function, this function would satisfy the mapped mean range of a Gamma distribution. 

The idea of a link is thus that it makes sure that μ > 0. In Table 1 some link functions 

are shown, where identity is used with classical linear regression and the log is used in 

the Gamma example described earlier. 

Table 1 Link functions 

Name Link Function Mean Range of Mean 

Identity 𝑧 =  𝜇  𝜇 = 𝑧  (-∞, ∞) 

Log 𝑧 =  𝐿𝑜𝑔(𝜇)   𝜇 = 𝑒𝑧  (0, ∞) 

Inverse 𝑧 =  1/𝜇   𝜇 = 1/𝑧  (-∞,∞) 

Inverse Squared 𝑧 =  1/𝜇2  𝜇 = 1/√𝑧  (0, ∞) 

Square root 𝑧 =  √𝜇  𝜇 = 𝑧2  (0, ∞) 

 

In this study, the only relevant link function is the log link. Therefore, Table 1 is 

included to provide possible link functions when other GLMs are used, but a deep 

understanding of the other link functions is not necessary. 

3.3. Derivation of the total aggregate loss model under independence 

The currently used frequency-severity model (benchmark model) to calculate the total 

aggregate loss at USL assumes the independency between the CF and CS. In this section 

the framework for using GLMs to predict the total aggregate loss will be described. This 

framework is based on relatively simple statistics which results in an accessible way of 

determining the total aggregate loss.  

3.3.1. Benchmark frequency-severity model 

As stated in section 3.2, the GLM technique is a frequently used method for modelling 

the process of prediction the total aggregate loss in an insurance company. This method 

is based on the multiplication of the expected CF and the expected CS (Garrido et al., 

2016). Both the CF and the CS are separately modelled using the Poisson distribution 

and the Gamma distribution respectively at USL. Then, to predict the total aggregate 

loss, these marginal GLMs can be multiplied. Different distributions can be used to 

model the CF and CS, but the most generic distributions are the Poisson and the Gamma 

distribution. 

The total aggerate loss per policyholder (individual level) can be determined by adding 

all of the claim severities of that specific policyholder, this can be formulated as 

𝑆𝑖 =  ∑ 𝑌𝑖𝑗,

𝑁𝑖
𝑗=1   

Where  

(1) 𝑆𝑖 = the amount that is claimed throughout the chosen period for policyholder i. 

(2) N is the number of claims, where 𝑁𝑖 is the number of claims (CF) of policyholder 

i 



University of Twente Univé Stad en Land L.R. Kingma 

23 

 

(3) Y is the severity of the claim, where 𝑌𝑖𝑗 is the severity of the claim for claims j 

∈ (1, 2, …, Ni) of policyholder i.  

(4) 𝑌𝑖𝑗, 𝑗 = 1, … , 𝑁𝑖 are conditionally i.i.d., given 𝑁𝑖 

Specifically, the observed (individual) severity for policyholder i is 

𝑆𝑖 = {
(𝑦1 + 𝑦2 + ⋯ 𝑦𝑁𝑖

)   𝑁𝑖 > 0

∅                                  𝑁𝑖 = 0
  

With this formula it is easy to see that Si = 0, when Ni = 0 (Schulz, 2013). Furthermore, 

it can then be determined that for the independent claim severities 𝑌𝑖𝑗 we obtain 

𝐸(𝑌�̅�) = 𝐸 [
1

𝑁𝑖
∑ 𝑌𝑖𝑗

𝑁𝑖

𝑗=1

] = 𝜇𝑖 

 

 ( 3) 

 

The total aggregate loss per policyholder can then be written as 

𝑆𝑖 = ∑ 𝑌𝑖𝑗 = 𝑁𝑖�̅�𝑖
𝑁𝑖
𝑗=1   

As stated in the previous chapters, the insurers act as if the CF and the CS are mutually 

independent. The expected total aggregate loss can then be formulated as 

𝐸[𝑆]    = 𝐸[𝐸(𝑆|𝑁)] = 𝐸[𝐸(∑ 𝑌𝑗|𝑁)]𝑁
𝑗=1   

= 𝐸[∑ 𝐸(𝑌𝑗|𝑁)] =  [𝐸 ∑ 𝐸(𝑌𝑗)]𝑁
𝑗=1

𝑁
𝑗=1   

= 𝐸[𝑁 𝐸(𝑌)] = 𝐸(𝑌)𝐸(𝑁)  

This formula is not on the individual policyholder (i) level, but on the total level for the 

complete portfolio. The derivation of the expected aggregate losses holds, when E(Y|N) 

= E(Y) and the same thing can be stated for the expected frequency E(N|Y) = E(N). The 

research of Schulz (2013) indicates that with the moment generating function, the first 

two moments of S are determined by the first two moments of the frequency and the 

severity, the Var(S) can then be rewritten as 

𝑉𝑎𝑟(𝑆) = 𝐸(𝑆2) − [𝐸(𝑆)]2  

               = [𝐸(𝑌)]2𝑉𝑎𝑟(𝑁) − 𝐸(𝑁)𝑉𝑎𝑟(𝑌)  

The CF and CS are modelled separately using a GLM, so when a vector of covariates is 

available at the individual level, this data will be used to determine the GLM functions. 

For both models the canonical log link function (see Section 3.2.1) is chosen (g1 and g2) 

so that the conditional means can be written as 

(a) 𝐸(𝑁|𝑥) = 𝑔1
−1(𝑥𝑇𝛼) = 𝑒𝑥𝑇𝛼 = 𝑣   

(b) 𝐸(𝑌|𝑥) = 𝑔2
−1(𝑥𝑇𝛽) = 𝑒𝑥𝑇𝛽 = 𝜇 

α and β represent the coefficient vectors. The vector of covariates (x) will not be the 

same for the CF and the CS, but it is formulated for simplicity. The covariate vector xT 

is the transpose of the covariate vector x, this enables the multiplication of the 

coefficient and the covariate vector. 
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The assumption of independence between the CF and CS is present, the benchmark 

frequency-severity model for the aggregate loss, given the covariate vector x, can be 

written down as 

𝐸(𝑆|𝑥) = 𝑣𝜇 = 𝑔1
−1(𝑥𝑇𝛼) ∗ 𝑔2

−1(𝑥𝑇𝛽)  
 

 ( 4) 

Because USL models the CF and CS with a Poisson and Gamma distribution 

respectively, the canonical link functions are Log-links (see Section 3.2.1). A canonical 

link function is a specific type of link function that is derived from the exponential 

family of distributions. The canonical link function is the link function that provides the 

best fit between the predictors and the response variable. Equation ( 4) reduces to 

𝐸(𝑆|x) = 𝑣𝜇 =  𝑒𝑥𝑇𝛼 + 𝑥𝑇𝛽  

 

 ( 5) 

 

The advantages of this way of modelling are that it ensures that each covariate alters the 

baseline rate by a multiplicative factor (Garrido et al., 2016). Also, it simplifies the 

variable selection process (Shi et al., 2015). The use of the Log-link also supports the 

ease of modelling, as the log-link ensures a positive mean for the frequency and severity. 

3.4. Derivation of the total aggregate loss model under dependence 

Because the dependence between CF and CS is expected to be present (G. Y. Lee & Shi, 

2019), the adjusted frequency-severity model where the dependency is included must 

be described. Existing literature about the topic of dependent frequency-severity 

modelling includes using the CF as a covariate (Renshaw, 1994), Copula-based models 

(Frees et al., 2016), and bivariate random effect-based models (Lu, 2019).  

The covariate method includes the dependence because the variable Claim Count, which 

reflects the CF, is included in the marginal GLM of the CS. This method states that if 

the variable Claim Count is significant, then the CF does have an effect on the CS, 

meaning the dependence should be included. With the bivariate random effect-model, 

the dependency between the CF and CS can explicitly be modelled. This is achieved by 

including random effects for both variables and allowing them to be correlated at the 

individual or group level. 

In this research the covariate method will be tested on data in the home insurance 

industry, this method is chosen because it is relatively simple to implement in 

comparison with the Copula or the bivariate random effect-based model. Also, this 

method is able to capture the full effects of the dependency as the CF will be included 

in the GLM of the CS. 

3.4.1. Adjusted frequency-severity model 

The decomposition of using the CF as a covariate is relatively straightforward, with the 

use of conditional probability. In the derivation of the adjusted total aggregate loss 

model, a covariate vector X is used. This covariate vector does not necessarily have to 

be the same as the covariate vector X used in the benchmark model, but for simplicity 

and readability, the X is reused. Based on the research conducted by (Frees et al., 

2016b), the decomposition can be formulated as follows  
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For N > 0, let �̅� =  
(𝑌1+𝑌2+…+𝑌𝑁)

𝑁
  be the average claim severity for the claim frequency 

N. then the total aggregate loss can simply be written as S=𝑁�̅�. 

𝑃(𝑁 = 𝑛, 𝑆 = 𝑠|𝑥) = 𝑃(𝑁 = 𝑛|𝑥) ∗ 𝑃(𝑆 = 𝑠|𝑁 = 𝑛, 𝑥)  

This implies that the expected value of the total aggregate loss is no longer simply the 

product of the marginal means of the frequency and severity components, but it can be 

described as 

𝐸(𝑆|𝑥) 
       = 𝐸(𝑁�̅�| 𝑥) 
       = 𝐸(𝐸[𝑁�̅�|𝑥, 𝑁]|𝑥) 

                   = 𝐸(𝑁𝐸[�̅�|𝑥, 𝑁]|𝑥)  

 ( 6) 

 

Equation ( 6) is not the same as writing it down how the model is composed in the 

independent frequency-severity model 

𝐸(𝑆|𝑥) = 𝐸(𝑁𝐸(�̅�|𝑁, 𝑥) |𝑥) ≠ 𝐸(𝑁|𝑥)𝐸(𝑌|𝑥)  

This leads to different estimators for 𝑣 & 𝜇 

(a) 𝐸(𝑁|𝑥) =  𝑔1
−1(𝑥𝛼) = 𝑒𝑥𝛼 = 𝑣 

(b) 𝐸(𝑌|𝑥, 𝑁) =  𝑔2
−1(𝑥𝛽 + 𝜃𝑁) = 𝑒𝑥�̃�+𝜃𝑁 = 𝜇𝐴  

Where the link functions are again described as g1 and g2 and chosen to be the canonical 

log link function. 𝛼 𝑎𝑛𝑑 𝛽 are vectors of the regression coefficients. 𝜇𝐴 represents the 

modified marginal GLM for the CS so that the dependence is included. Note that the 

regression parameters 𝛽 are different from the regression parameters in the independent 

setting 𝛽. This is because the inclusion of the CF as a covariate will affect the regression 

parameters and their estimates. The interesting part of formula (b) is the 𝜃 which 

indicates the degree of dependence between the CF and CS. The interpretation of this 

dependence variable is such that when 𝜃 = 0, then 𝜇𝐴 =  𝜇 which thus reflects the same 

estimator as in the benchmark model. This is true because the regression parameters of 

the marginal GLM for CS in the adjusted setting will be identical to the benchmark 

GLM(𝛽 = 𝛽). The regression parameters are equal because both means will be 

modelled using the same covariates and the CF is not included in the adjusted setting 

(when the degree of dependence is 0, then both GLMs are identical). When the 

estimators for the CF and CS are equal, the total aggregate loss model is also equal. 

When the dependence parameter 𝜃 is greater than zero, the total aggregate loss model is 

defined differently. With the information known that the log-link is chosen, the 

conditional mean severity 𝜇𝐴 follows 

𝑒𝑥�̃�+𝜃𝑁 = 𝜇𝑒𝜃𝑁  

𝜇 is the marginal GLM model of the CS where the CF is included as a covariate. The 

total aggregate loss model then becomes 
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𝐸[𝑆|x]  = [NE(�̅�|X, N)|x]     
      = 𝐸[𝑁𝜇𝑒𝜃𝑁|x] 

                          = 𝜇𝐸[𝑁𝑒𝜃𝑁|x]  
 

( 7) 

Further derivation of equation ( 7), with the use of the moment generating function, is 

described in the paper of Schulz (2013, p50-51). Based on the research of Garrido (2016) 

and Schulz (2013, p50-51) the expected total aggregate loss is formulated as 

𝐸(𝑆|𝑥) = 𝑣𝜇 exp{𝑣(𝑒𝜃 − 1) + 𝜃}  

 

 ( 8) 

 

This model differs from equation ( 5) with the addition of the dependence correction 

formulated as exp {𝑣(𝑒𝜃 − 1) + 𝜃}. The model assumes that the CF follows a Poisson 

distribution, this assumption is valid for this research as the marginal GLM for the CF 

is indifferent between the benchmark and the adjusted model. The final formulation of 

the adjusted model makes no (distributional) assumptions for the severity if it belongs 

to the exponential dispersion family. The mean can then be modelled via a GLM, this is 

the case as the severity is modelled using the Gamma distribution as ‘family’. 

3.5. MLE for determining the coefficients  

To use the benchmark and adjusted models to predict the total aggregate loss, the values 

of the coefficients need to be determined. The method used to estimate these values is 

the Maximum Likelihood Estimation (MLE). The MLE is used to estimate the 

parameters of a probability distribution.  

The process of estimating the coefficients involves iteratively optimising the likelihood 

function that states the probability of observing the data given the values of the 

coefficients. The specific method used for optimisation depends on the distributional 

assumption of the response variable and the link function chosen in the GLM model. 

This study provides a method to model the total aggregate loss function with the use of 

the likelihood functions for the claim frequency and claim severity. Therefore, in this 

section the Poisson likelihood function will be derived, as the Poisson distribution is 

assumed for the claim frequency. The derivation for the likelihood function for a 

Gamma distribution can be found in the supported literature of Dobsen Anette J. (2002, 

p68-p73). 

In a Poisson GLM with a log link function, the likelihood function is the Poisson 

likelihood, and the optimisation can be done using an iterative algorithm such as Fisher 

scoring. The process of determining the Poisson likelihood function can be seen as 

𝑃(𝑋 = 𝑥) =  
λ𝑥𝑒−λ

𝑥!
                     Write the PDF 

𝐿(λ; 𝑥1; … ; 𝑥𝑛) = ∏
λ

𝑥𝑗𝑒−λ

𝑥𝑗!
𝑛
𝑗=1               Likelihood function 

𝐿(λ; 𝑥1; … ; 𝑥𝑛) = −𝑛λ + ln (λ) ∑ 𝑥𝑗 − ∑ ln (𝑥𝑗!)
𝑛
𝑗=1

𝑛
𝑗=1        Natural log likelihood function 

𝑑

𝑑λ
𝑙(λ; 𝑥1; … ; 𝑥𝑛) = −𝑛 +

1

λ
∑ 𝑥𝑗

𝑛
𝑗=1                  Derivative natural log likelihood function 

λ =  
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1            Derivative equal to zero and solve for 𝜆 
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The steps to determine the MLE of a Poisson likelihood function are written down next 

to the formulas. The coefficients that maximize the log-likelihood function are the 

MLEs. However, the log-likelihood function does not have a closed-form solution, so 

we need to use an iterative algorithm such as Fisher scoring or Newton-Raphson to 

maximize it. For understanding this research, it is not of importance that the concepts of 

algorithms such as Fisher scoring is fully clear. R has built-in functions for fitting GLM 

models, which uses MLE to estimate the regression coefficients. The function takes the 

form glm(formula, data, family, ...), where the formula specifies the model equation, 

data is the input data, and family specifies the distributional and link function for the 

response variable. Once the model is fit, the estimated coefficients and their standard 

errors can be obtained.  

For a more in-depth explanation of how the Log-likelihood functions looks like and how 

the MLEs can be computed, see the GLM book of Dobsen Anette J. (2002, p68-p73). 

3.6. Goodness of Fit 

To be able to make a comparison between the benchmark model and the adjusted model, 

several goodness-of-fit measures are used. The different goodness-of-fit measures are 

explained in this section.  

3.6.1. Deviance function 

The goal of modelling data is to obtain fitted values �̂�, for the mean of the response 

values Y (Schulz, 2013). The fitted values will not exactly coincide with the real data 

values. The significance of the discrepancy between the real values Y and the estimated 

values �̂� can be measured and analysed with the use of the deviance. 

The deviance function is a statistical measure, used in this study to assess the goodness-

of-fit of a GLM. The deviance function is a generalisation of the idea of using the sum 

of squares of residuals, it functions as a measure of goodness-of-fit (Al-Mosawi, 2017). 

In the context of GLMs, residuals represent the deviation between the observed data and 

the expected values based on the fitted GLM. The deviance function can be observed as 

the distance between two probability distributions, and it can be used to perform model 

comparisons. 

In the case of determining the performance of a GLM model compared to the reality, 

the deviance function can define the difference between the maximum log-likelihood of 

the fitted model and the maximum log-likelihood of a ‘saturated’ model. A so-called 

saturated model is a model that perfectly reflects the real data, this happens when the 

number of parameters (r) is equal to the number of observations (n). Therefore, the 

saturated model is only used as a benchmark, and the deviance represents the degree of 

lack of fit of the GLM compared to the real data. 

The deviance will also be used for model selection, where several GLMs with different 

sets of explanatory variables are fitted to the data. The deviance is useful when 

determining whether a simplification of the model leads to more biased estimates. The 

deviance of these models can be calculated and compared, the model with the smallest 

deviance is used. This method can be used when the simplification is still a nested model 

of the more extensive model. 
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The deviance of the fitted model can be calculated as twice the difference of the log-

likelihood with the saturated and the fitted model. If we denote the log-likelihood of the 

fitted model as 𝐿(𝛾) where 𝛾 represents the model parameters. The log-likelihood of the 

saturated model is denoted as 𝐿(𝛾). The deviance function can be written as (Glmbook, 

n.d.) 

𝐷∗ = −2(𝐿(𝛾) - 𝐿(�̂�))    ( 9) 

 

The scaled deviance function can be determined by dividing the deviance with the 

dispersion parameter. The dispersion parameter in simple terms represents how much 

the observed data points spread or vary around the predicted values in a statistical model. 

It quantifies the relationship between the mean and the variability of the response 

variable. In Table 2 the deviance functions for the Poisson and Gamma distributions are 

shown. 

Table 2 Deviance functions for the Poisson and the Gamma distribution 

Distribution 𝑫(𝒚, �̂�)  

Poisson 2 ∑{𝑦𝑙𝑜𝑔 (
𝑦

�̂�
) − (𝑦 −  �̂�)}      

Gamma 2 ∑{−𝑙𝑜𝑔 (
𝑦

�̂�
) +

𝑦− �̂�

�̂�
}      

 

3.6.2. AIC 

The Akaike Information Criterion (AIC) is a measure of the relative quality of the GLM 

model for a given dataset. AIC is a goodness-of-fit measure which also takes the 

complexity of the model into account. The complexity of the model is based on the 

number of variables included. The less variables used, the simpler the model. A simpler 

model is preferred over a more complex model, provided that the models fit the data 

similarly well. This explains the concept of a parsimonious model. The model with the 

smallest AIC is preferred (Mcleod & Xu, n.d.). 

Again, the same as for the deviance holds, that the AIC is working with the log-

likelihood of the fitted model. H. Akaike (1974) formulated the AIC as 

𝐴𝐼𝐶 = −2 ∗ 𝑙(𝛾) + 2𝑘   ( 10) 

 

Where the k is the number of parameters used in the model. The AIC will be used to 

compare the GLMs. This is possible because all models are fitted to the same data. The 

AIC is not an absolute measure of the quality of the model, therefore, it should be used 

in combination with other (statistical) measures, in this research it will be combined 

with the (scaled) deviance and the BIC. 

3.6.3. BIC 

The Bayesian Information Criterion (BIC) is comparable to AIC and thus also used as 

a measure to assess the goodness-of-fit. The BIC can be derived using Bayesian methods 

(Schwarz G, 1978). Again, the smallest BIC is referred as the most compatible model. 

The BIC is defined as 
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𝐵𝐼𝐶 = −2 ∗ 𝑙(𝛾) + 𝑘 𝑙𝑜𝑔(𝑛)   
 

 ( 11) 

 

Where k is the number of parameters in the model and n is the sample size. The 

difference with the AIC formula can be seen as that the logarithm of the sample size is 

used, instead of the coefficient two used in the AIC formula. The BIC ‘penalises’ models 

with a larger number of parameters as the  ‘penalty term’ ( k log(n)) increases when the 

number of parameters increases. Also, when the sample size increases significantly, the 

penalty term will increase. 

So in summary, all three of the goodness of fit measures used in this research are based 

on the likelihood function of the model and the total number of parameters used. 

Especially AIC and BIC propose a measure that indicates the goodness-of-fit with 

taking the trade-off between model fit and model complexity into account. 
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Chapter 4 Data  

This chapter will provide the information and context needed to understand the data 

that this study is performed on. The chapter will describe the process of obtaining and 

preparing the data for this research. The chapter is divided into several sections, the 

first will enlighten the reader with information about the data. The second section 

focusses on the relation/correlation between the CF and CS. Additionally, the risk 

factors used in the GLMs are described with a correlation matrix between the numerical 

risk factors. 

4.1.1. Policyholder datasets 

All the data used in this research is provided by USL, with observations ranging from 

2015 to 2023. The information about all the policies and their policyholders are given 

with sheets of the portfolio of USL. With the most recent portfolio (2023) obtaining 

over 90.000 observations for the private home insurance. Every observation is described 

in detail with 297 variables.  In Table 3 a visual (example) representation of the data set 

is shown, with only 6 out of the possible 297 variables shown. 

Table 3 Example of the Policyholder information 

Age Ownership 

status 

Gender Urbanisation Home type WOZ 

value 

… 

34 No M 20.000 – 50.000 Apartment 125.000 … 

45 Yes M 5.000 – 10.000 Duplex homes 287.000 … 

68 Yes F  < 5.000 Apartment 312.000 … 

… … … … … … … 

 

Besides the dataset with the information on all policies, there is a dataset with all claims 

that have been incurred. This dataset also ranges from 2015 to 2023. For the analysis 

later on in the study, these datasets need to be combined in order to find trends and 

patterns between the policyholder’s profile/characteristics and their claim behaviour. 

The dataset containing policyholder information incorporates various noteworthy 

variables that would enable a quick overview of the dataset. Later on, in this chapter the 

dataset of the claims will be touched upon, however, to create the best understanding of 

the data this researched is performed on, some risk factors are highlighted to create 

insights in the data. 

First of all, the age of the policyholders in the portfolio is an interesting variable to look 

into. In  Figure 1, two histograms are shown, the left histogram shows the count for the 

age of the policyholder in the portfolio dataset. The histogram on the right side indicates 

the count for the age of the dataset of the claims. The histogram of the Policyholder age 

is more skewed on the right side, which indicates a higher average age of policyholders 

in the portfolio dataset compared to the Claim dataset.  

In the histograms of the claims, the histogram is more left skewed. This can be explained 

due to the fact that younger people tend to file a claim more often than older people. 
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This is a common phenomenon in the insurance industry supported by the study of 

Joksch (1980). 

 

Figure 1 Histograms of the (claim) policyholder age 

In the beginnining of the report USL is described as a regional insurer, the choropleth 

map in Figure 2 shows the density of the living and claim location of the policyholders. 

Noticably, there are policholders trhoughout the whole country, this is due to the fact 

that policyholders move to a  house outside of the region of USL. Whereas these 

policyholders are currently living outside of the region, they could remain insured by 

USL. The choropleth map on the right side indicates where the most claims are incurred. 

The municipalities with the most policyholders, seem to be filing in the most claims as 

well. These darker organge/red municipalities are the places where the urbanisation 

variable is also highest (>100.000 residents). 

 

Figure 2 Policyholder density in the Netherlands 
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Over the past few years, the Netherlands has seen a steady increase in the WOZ (Wet 

Waardering Onroerende Zaken) values of houses. The WOZ value is the value that is 

assigned to a property by the municipality for tax purposes. This value is determined 

based on several indicators, so that it reflects the market value of the property. The WOZ 

value can be calculated by analysing the sales prices of similar properties in the area. 

From 2019 to 2023, the WOZ values of houses in the Netherlands have increased 

steadily. This increase can be attributed to a number of factors, including a strong 

housing market and low interest rates. The demand for housing in the Netherlands has 

been steadily increasing, leading to an increase in housing prices. This, in turn, has led 

to an increase in the WOZ values of houses. Because the WOZ values are determined 

over the past year, the WOZ of January 2023 reflects the previous years which could 

lead to biases when interpreting the results. For example, recent studies show that the 

average house prices have dropped in 2023, but the WOZ values have failed to represent 

this behaviour as the measurement needs to be finished (Waarderingskamer, 2023). 

This increase in WOZ values of houses can also be seen in the dataset of the 

policyholders, this trend can be found in Figure 3. 

 

Figure 3 Average WOZ values for the houses of the policyholders 

Overall, the increasing WOZ values of houses in the Netherlands from 2019 to 2023 can 

be attributed to a combination of factors, including a strong housing market, low interest 

rates, and the impact of the COVID-19 pandemic. It remains to be seen whether this 

trend will continue in the years to come. 

For this research, it is important to take this trend into account, as working with the 

WOZ value can be misleading because of the increasing prices. New policyholders with 

similar houses as others in the portfolio, can still experience a higher WOZ value as for 

policyholders that have been insured for a few years, due to the fact that the WOZ value 

has not been re-evaluated recently. The WOZ value is updated every few years at USL, 

which could thus result in bias as the average WOZ value of houses has increased over 

the years. 
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Figure 4 consists of three graphs that provide insights into the characteristics of 

policyholders. The first graph shows the count of the type of houses that the 

policyholders have. The graph indicates that the majority of policyholders own a single-

family home, followed by a townhouse and a condo.  

 

Figure 4 Grid consisting of three figures about the type of house, the policy duration and the gender distribution. 

 

The second graph in the Figure 4 shows the count for how long policyholders have their 

policy, measured in years. The graph reveals that a large group of policyholders have 

been with USL for less than five/ten years, with a smaller number of policyholders being 

with the company for longer periods. This information can be used by USL to evaluate 

customer retention rates and to identify potential target groups for improvement in 

customer service. The last graph in the figure is a bar chart that shows the number of 

female and male policyholders in the dataset. The chart indicates that the dataset has 

more male policyholders than female policyholders.  

4.1.2. Claim datasets 

Now that the datasets have been described regarding the general information of 

policyholders, this section will cover the frequency and severity of the claims incurred. 

A total of 28.889 claims are incurred over a period starting in 2015 and ending in 2023. 

In the dataset of the home-content (all risk) insurance since 2015. Just over 8.000 of 

those claims are incurred with a severity of 0. The count histogram of the severity of all 

claims with a positive value can be seen in Figure 5. 
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Figure 5 Count histogram for the Claim severity. 

As described previously in this report, USL models the CS assuming a Gamma 

distribution for the claims, in Figure 5 the real distribution can be seen. The distribution 

of the claim frequency can be seen in Figure 6, the CF is assumed to be a Poisson 

distributed, which does not allow for negative observations.  

 

 

Figure 6 Count histogram for the Claim frequency 

When combined, the Gamma distributed claim severity and the Poisson distributed 

claim frequency can provide a model for the total aggregate loss model in the home 

content insurance. It can also help to make predictions about the frequency and severity 

of future claims, which in turn can help set appropriate premiums and possible reserves.  
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In Figure 7, more explanatory visualisations of several risk indicators that have not been 

touched upon much in this chapter can be found. In this grid the relationship between 

the risk indicator and the claim frequency is shown with the use of a scatter plot (Left 

column of the grid). Also, the relationship with the claim severity is shown with a scatter 

plot (right column of the grid).  

 

Figure 7 Grid of scatter plots and density plots of some risk indicators, the scatter plots are visualised against the 

claim frequency and claim severity. 
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4.2. Correlation claim frequency and claim severity 

This section will provide insights in the observations of the  average claim severity 

conditioning on the claim frequency. The dataset contains over 28.000 observations and 

the total severity average is 189,53 euros. Figure 8 provides a first impression on the 

relationship between the CF and the CS, the claim counts are divided in groups to 

improve the visibility of the figure. Because of the outliers, the figure would have been 

difficult to interpret. Therefore, observations with a severity higher than 500 are 

excluded. It is hard to draw conclusions from this graph, as some observations are not 

included (CS > 500) and the lines overlap on many occasions. However, the claim 

counts 7 and 8 (Group 7-8) do have their ‘peak’ more to the right than the other groups, 

indicating a possible higher claim severity. 

 

Figure 8 Density for the claim severity per claim count (in groups) 

To get a better understanding of the data, Table 4 is included. No noticeable evidence 

for a correlation between the CF and CS can be seen in Table 4. The average CS is 

lowest for a claim frequency of 8/9, however, for the greater claim counts, the amount 

of observations is substantially reduced. The sample group is not big enough to draw 

conclusions from this table. For the remaining values of the claim counts, the average 

CS seems to be randomly distributed. 

Table 4 Average CS conditioning on CF 

Claim Frequency Count Average CS 

1 12939 178.14 

2 3718 195.60 

3 1438 196.47 

4 571 192.55 

5 216 179.95 

6 78 181.54 

7 28 148.86 

8 18 164.29 



University of Twente Univé Stad en Land L.R. Kingma 

37 

 

9 2 162.52 

10 1 295.36 

 

As a form of a preliminary analysis and to be able to tell whether a correlation between 

the CF and the CS is present, this study will perform a Pearson correlation test and a 

Spearman correlation test. The Pearson correlation coefficient explains the linear 

relationship between the variables, whereas the Spearman correlation coefficient is able 

to capture non-linear relationships. The Pearson test is not fully suited for this type of 

data, but for the sake of completeness the Pearson test is still included. The Spearman 

correlation test is preferred, as it is able to describe the possible non-linear relationship 

between the CF and CS. When using a correlation test between the variables CF and CS 

as seen in Table 4, the following results are obtained 

Pearson’s 𝑝𝑁,�̅�     =  0.243 

Spearman’s 𝑝𝑁,�̅�  = -0.212 

These values both tell us a different story as to which the direction of the correlation 

holds. A t-test is performed with the H0 (null hypothesis) stated that the correlation 

between the CF and the CS is not different from 0, and the H1 (alternative hypothesis) 

stated that the correlation is not equal to zero. For both t-tests, Pearson and Spearman, 

the P-values are 0.499 and 0.560 respectively, meaning that the H0 cannot be rejected. 

This implies that because of the tests, the correlation between the CF and CS is not 

different from zero. 

In Table 4  all observations are included, also the claims with an incurred amount of 

zero. Earlier in this report the idea of IBNR is already highlighted, in short, this happens 

at insurance companies when a claim is incurred, but not reported, so no value of the 

CS is saved. Also, a lot of claims have been reported with a CS of zero. This is due to 

the fact that a policyholder files a claim but fails to fill in all additional data that is 

required handle the claim. These claims will not be pursued and thus end up with a claim 

severity of zero. These observations do not enhance the study proposed in this report. 

So, in Table 5, only observations with a CS greater than zero are included. 

Table 5 Average CS (>0) conditioning on CF 

Claim Frequency Count Average CS 

1 9654 278.27 

2 2776 260.52 

3 1013 246.02 

4 363 241.82 

5 92 229.24 

6 25 240.73 

7 7 236.07 

8 1 126.26 

 

There is a big difference compared to the table where claims that equal zero are also 

included. Logically, the count per CF reduced, but also the maximum of the claim 

frequency decreased. The maximum claim frequency of a policyholders with claims 
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greater than zero is eight, this means that the policyholders that claimed 9,10 or 11 times 

must have filed claims and not pursued with them. Also, the average severity seems to 

be decreasing when the claim frequency increases. Again, the Pearson and Spearman 

correlation t-tests are performed with the correlation coefficients stated as 

Pearson’s 𝑝𝑁,�̅�     =  -0.778  

Spearman’s 𝑝𝑁,�̅�  =  -0.929 

The correlation coefficients seem to be indicating a negative relationship, the results of 

the t-test support this observation. The p-values for the Pearson correlation test and the 

Spearman correlation test are 0.023 and 0.002 respectively. The Pearson correlation 

test indicates that the H0 can be rejected at a 5% significance level, whereas the 

Spearman correlation test rejects the H0 at a 1% significance level. The conclusion is 

thus that correlation between the claim frequency and the claim severity is not equal to 

zero.  

The dependency between the CF and CS cannot be described solely with these values 

for the correlation, however, they provide an insight in the data. The dependency has 

many reasons and indicators as to why it behaves a certain way, whereas these 

correlation tests only determine the correlation of one variable with another, regardless 

of all covariates. That is why this is not a conclusion about whether there exists a 

dependency between the claim frequency and the claim severity. 

Another notable ‘bias’ in these calculations is the fact that the exposure of all 

policyholders during the period of 2015 till 2023 can be different. A policyholder that 

claims four time during a year is filing claims more frequently than someone filing four 

claims over a period of five years, which is why in the modelling part of this study an 

exposure variable needs to be included. This variable will correct for errors regarding 

policyholders having different policy duration in the dataset. This variable should be 

included in the model for the claim frequency. 

4.3. Descriptive statistics and risk factors 

The variables/ risk factors that will be used as covariates in the regression analysis can 

be numerical (e.g. age or the WOZ-value) or categorical (e.g. gender house type). This 

section will highlight the key risk factors that could be significant when modelling the 

frequency-severity component. The categorical variables must be clustered so that the 

model can be both parsimonious and efficient.  

In order to accurately predict the risk factors, it is important to consider a range of 

variables that may impact insurance claims. Through careful consideration and 

consultation with USL, and the support of papers from the literature such as Becker et 

al., 2022; Lee et al., 2019a, the following risk factors have been predicted to be included 

in the regression part of Chapter 5: Own Risk, gender, age, policy duration, payment 

term, house type, urbanisation, living space, property value assessment (WOZ), location 

in a major city, year of construction, ownership status, and postcode risk class. 

Additionally, the presence of  ‘Thatched roof’ has been identified as an important factor 

in assessing the risk of property damage and will also be included in the analysis.  
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The categorical risk factors are clustered individually, each having different  number of 

levels. Table 6 indicates the variables and the type of variable, whether the variable is 

numerical or categorical/binary. Also, the abbreviation (e.g. x1) is included in Table 6 

to enhance the readability for later use. The last two columns show the minimum and 

maximum observation of the variable when possible. 

Table 6 Risk factors for the GLM regression 

Variable Risk factor Type of variable Min. Max. 

X1 Own Risk Numerical 0 300 

X2 Gender Binary - - 

X3 City Categorical (516) - - 

X4 Payment term Categorical (4) - - 

X5 House type Categorical (10) - - 

X6 Urbanisation Categorical (10) <5.000 >500.000 

X7 Living space Numerical 15 2073 

X8 Property Value Assessment (WOZ) Numerical 25000 2000000 

X9 Insured amount precious Categorical (14) 0 >50000 

X10 Insured amount jewellery Categorical (11) 0 >50000 

X11 Ownership status Binary - - 

X12 Postcode risk class Categorical (9) - - 

X13 Thatched roof Binary - - 

X14 Extra living space Categorical (14) 0 <500 

X15 Claim count Numerical 0 8 

X16 Age Numerical 21 104 

X17 Policy duration Numerical 0.5 47 

X18 Construction year Categorical (16) Before 1900 2020-2024 

X19 Firewood heater Binary  - - 

 

The dashes in Table 6 represent that there is no minimum/maximum for the variable. 

The values between the brackets in the column of ‘type of variable’ indicate how many 

categories are used to describe the categorical variables. 

Several risk indicators seem to be numerical, but are reported as categorical. Examples 

of these risk indicators are Urbanisation and Own Risk. These indicators are measured 

numerical but for the ease of use they are reported as a categorical variable, for example, 

the urbanisation is divided in groups as  <5.000 residents, 5.000 up to 10.000 residents, 

etc.   

Several drawbacks arise when using the above mentioned risk factors. The Property 

Value Assessment (WOZ) is not up to date for every policyholder, this means that a 

policyholder can be held back in the wrong group for their WOZ-value. As discussed in 

section 4.1.1, the WOZ-values is averaging a yearly increase, so if the data is not 

updated regularly these values are not representative for their current WOZ-value 

anymore, meaning that the premium that they should pay on their correct risk profile 

could differ from the premium that they pay currently. 
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Another drawback arises with the risk factor Gender, as many households have a 

combined insurance, meaning that not only the male or female is responsible for a claim, 

but the claim could be incurred because of anyone that lives in the household. So, the 

kids, the partner or the policyholders could be responsible for the damage, which leaves 

the risk factor gender with a lot of uncertainties. It is not fair to charge policyholders 

more premium when the policyholder is male/female, but he/she lives in a household 

with both males and females. The only situation which is interesting to study is when 

policyholders live by themselves, how the claim behaviour of males and females differ. 

Although this is interesting information for USL to study, for this research we stick to 

the sample group of all (claim) policyholders of the home-content insurance.  
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4.4. Correlation matrix 

In this study, a correlation matrix is employed as an addition to the preliminary analysis 

to explore the interrelationships among variables in the dataset. The correlation matrix 

allowed to identify and quantify the strength and direction of linear associations between 

different pairs of variables. By examining the matrix, it is possible to gain insights into 

the data structure, potential multicollinearity, and possible patterns within the dataset.  

The numerical risk factors and the categorical risk factors that could be transformed to 

numerical are used in this correlation matrix. This correlation matrix indicates the 

Spearman correlation between the risk indicators x1 = Own risk, x7 = Living space, x8 = 

Property value assessment (WOZ), x9 = Insured amount precious, x10 = Insured amount 

jewellery, x15 = Claim count, x16= Age and x17 = Policy duration. When risk factors are 

highly correlated, this could lead to biases such as unstable coefficients or inflated 

standard errors. What should be noted is that a measure of linear correlation as shown 

in this correlation matrix does not capture complex interactions or causal relationships.  

Table 7 Correlation matrix 

VARIABLES X1 X7 X8 X9 X10 X15 X16 X17 

X1 1        

X7 -0.005 1       

X8 0.007 0.734 1      

X9 0.080 0.088 0.093 1     

X10 0.035 0.038 0.049 0.151 1    

X15 -0.046 0.057 0.039 -0.0172 0.006 1   

X16 0.051 0.143 0.178 0.088 0.042 -0.148 1  

X17 0.137 0.183 0.175 0.104 0.014 0.060 0.451 1 

 

Table 7 presents a correlation matrix of several indicators in the dataset. The correlations 

are indicated by numerical values ranging from -1 to 1, where -1 indicates a perfect 

negative correlation, 1 indicates a perfect positive correlation, and 0 indicates no 

correlation. 

Firstly, examining the diagonal elements, we observe that each risk indicators 

correlation with itself is denoted as 1, this is because this observation indicates the 

correlation with itself.  

Analysing the off-diagonal elements, we find various interesting patterns. For instance, 

the variable "Own risk" (x1) indicate relatively weak correlations with the other risk 

indicators. Conversely, "Living space" (x7) and "Property value assessment" (x8) 

display a relatively strong positive correlation (0.734), indicating that these two 

variables tend to increase together. This is easy explainable as houses with larger living 

spaces and all remaining indicators constant will have a higher property value 

assessment.   
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Moreover, the risk indicators "Claim count" (x15), "Age" (x16), and "Policy duration" 

(x17), seem to have relatively weak correlations with other indicators, except for a 

moderate positive correlation (0.451) between "Policy duration" (x17) and "Age" (x16). 

This correlation is also explainable as people that are older will have a larger span of a 

possible home-content insurance meaning a larger probability of the policy duration 

being longer. 

Overall, this correlation matrix provides insights into the relationships between various 

indicators, helping to understand potential interdependencies and supporting further 

analyses and modelling decisions in the next part of this study. 
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Chapter 5 Results 

This section will comprise the results from the modelling part of this study. Both the 

benchmark model and the adjusted model are fitted to predict the total aggregate loss. 

Both models will be derived by joining the marginal GLMs for the claim frequency and 

claim severity. The dependency analysis is performed so that the prediction accuracy 

and the goodness-of-fit of both models are compared. 

5.1. GLM modelling in R 

The process of selecting the risk factors to include in the GLM models already started 

in the previous chapter. In the previous chapter some, on first glance, interesting risk 

factors were shown to be an ineffective predictor of the total aggregate loss, for example 

gender.  

The data that is used for both the claim frequency and claim severity analysis is a subset 

of all policyholders’ information with a claim frequency greater than zero. This subset 

is chosen for several reasons. Firstly, it allows to focus specifically on policyholders 

who have experienced at least one claim, which can provide valuable insights into the 

factors influencing claim occurrence and severity. By excluding policyholders with no 

claims, the noise and potential bias introduced by those individuals who have not 

experienced any claims will be eliminated, which aligns with the focus of this study. 

This targeted approach helps to ensure that the analysis captures the patterns and 

relationships that are relevant to the occurrence and severity of claims.  

Different GLMs will be used to seek significant risk factors. With the use of deviance, 

AIC, BIC, the standard errors and the significance level of the risk factors, nestled 

models can be compared to be able to state the most parsimonious model. Even though 

significance is a useful criterion to choose the best predicting risk factors, also 

theoretical and practical considerations should be taken into account. Sometimes the 

data fails to reflect a common phenomenon meaning that a possible predictor is excluded 

from the model which could have been good to include. The considerations have been 

made with USL, as they are the most familiar with the data and the claim behaviour of 

their policyholders. 

The modelling is performed with the software of R, where an existing function for glm 

models is incorporated. When using this function, the risk factors, the dataset and the 

‘family’ need to be chosen. The family is, as stated earlier, assumed to be Poisson 

distributed for the claim frequency and Gamma distributed for the claim severity. The 

GLM models are trained on a dataset that contains 70% of the total observations, the 

remaining 30% will be used as a ‘hold-out’ dataset where both the benchmark and the 

adjusted model can be compared on their prediction accuracy. 

To be able to capture the behaviour of policyholders which reflects the exposure to risk 

per policyholder, an exposure offset needs to be included. This will reflect the amount 

of time that the policy was in force during the year (W. Lee et al., 2019).This is of 

importance because it could be the case that policyholders have not been insured for the 
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full year. Therefore, in the claim frequency analysis, an explanation for this exposure 

term is elaborated. 

The last modification to the dataset is done by removing duplicates in the data. The data 

of the claims include an observation for every claim, while all variables (except for the 

severity) are the same for a policyholder that filed in multiple claims. For the Claim 

frequency analysis, these duplicates do not add value and will result in bias in the results. 

The severity variable of the claims is not of interest for the claim frequency GLM. 

Therefore, for the claim frequency GLM analysis, these duplicates have been dropped. 

To improve the readability of the report, there are no formulas of all GLMs included in 

the sections that explain the GLM models. In these sections, the covariates that are 

included are described, and the formulas can be found in the Appendix. 

5.2. Claim frequency analysis 

5.2.1. Exposure offset term 

An offset term is simply an additional model variable, whose coefficient is constrained 

to be one (Yan et al., 2009). The offset term corrects the claim frequency GLM so that 

it reflects what portion of the year the individual was insured for. When the exposure 

term equals one, then the policyholder has been insured during the full year. Because of 

the already assumed Poisson distribution for the claim frequency, as the exposure 

increases, the expected claim count will increase proportionally (Schulz, 2013). By 

including an offset term for insurance duration, it can explicitly be accounted for the 

varying exposure times of the policyholders. This adjustment allows to estimate the 

claim frequency rate, which is the number of claims per unit of exposure. 

Including the offset term with a coefficient of one effectively scales the claim frequency 

rate by the insurance duration (Yan et al., 2009).  The estimated coefficients for the 

other predictors in the claim frequency model can be interpreted as the change in the 

claim frequency rate for a unit change in the predictor, holding the exposure time 

constant. 

The first step to creating the offset term is to create a new variable in the R data frame 

which reflects the amount of years that the policyholder has been insured during the 

claim data period (Claim exposure). This is different from the policy duration variable 

that is explained in chapter 4, because the claim exposure variable starts in 2015. The 

data for all the claims begins in 2015, so the claim exposure variable returns 

approximately 8.5 for all policyholders that are insured on or before January the first of 

2015. For all policyholders that have been insured since after January 2015, the exposure 

variable is the same as the policy duration variable. 

Finally, the offset term for the claim exposure variable is chosen to be the logarithm of 

the exposure variable. This is chosen because of several reasons. Firstly, it captures the 

assumed proportional relationship between the expected claim frequency and the 

exposure, as the logarithm of the exposure helps to represent this proportionality. 

Secondly, for count data with a Poisson distribution, the logarithm of the exposure aligns 

with the canonical link function described in the previous chapter (log link). This will 
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ensure a linear relationship between the linear predictor and the logarithm of the 

(expected) claim frequency.  

5.2.2. Claim frequency GLMs 

In this section several (nestled) GLMs are formulated, in the beginning of the section 

the formulation and the results of the models are stated. The last part of this section will 

provide a comparison between the models and will ultimately choose one GLM to be 

the final marginal GLM for the claim frequency. Table 8 shows all the covariates that 

are used in the GLMs for the claim frequency. The covariates used in the first model 

can be seen in Table 8. The other GLMs for the claim frequency are nestled within the 

first (full) model, therefore only the excluded covariates in comparison with the first 

model are mentioned.  

Table 8 List of covariates for the CF GLM 

Covariate Included ( X = yes) 

Claim Exposure X 

Own Risk X 

Gender  

City X 

Payment term X 

House type X 

Urbanisation X 

Living space X 

Property Value Assessment (WOZ) X 

Insured amount precious X 

Insured amount jewellery  

Ownership status X 

Postcode risk class X 

Thatched roof X 

Extra living space X 

Claim count  

Age X 

Policy duration X 

Construction year X 

Firewood heater  

 

In this model almost all risk factors are included to capture the effects of the model 

under circumstances where most risk factors are included. The risk factors not used as 

a covariate are neglected because of the relevance for this type of modelling. Gender for 

example, can be an interesting covariate. However, as stated earlier, there is a lot of bias 

included with the covariate gender. Policies often represent the complete household, 

therefore it cannot be used to reflect one gender. The residual deviance with the 

covariates as stated in Table 8 is found to be 3192.6, with an AIC of 25614 and a BIC 

of 29332. As some risk factors are categorical, the overall significance of the risk factors 

is determined with the use of the ANOVA function in R, which allows to perform a 

hypothesis test using the chi-square test. This test compares the model with the 

categorical variable to a reduced model without the variable. ANOVA uses scaled 
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deviance to compare models. The p-value associated with the test will indicate the 

overall significance of the variable. The significance of the other variables is computed 

by evaluating the summary of the models. Therefore, when stating about a ‘significance 

test’ this is the combination of interpreting the summary results and performing an 

ANOVA test. 

The significance test indicated that some variables are not significant, together with USL 

is chosen to exclude the variable Urbanisation from the next models to compare whether 

these models are in fact an effective simplification and make the model parsimonious. 

The second GLM excluded the variable Urbanisation. The residual deviance is found 

to be 3196.2 with an AIC of 25606 and a BIC of 29280. After performing a significance 

test again, the risk factors Living space and Extra living space is found to be 

insignificant.  

The third GLM excluded the variables Living Space and Extra living space. The residual 

deviance is found to be 3200.5 with an AIC of 25586 and a BIC of 29175. The variable 

City is said to be insignificant, also the possibility of correlation with the variable 

Postalcode Risk Class supported the reasoning to exclude the variable City. As this 

variable has 453 degrees of freedom, the residual deviance is expected to increase, 

therefore the focus will be on the AIC and the BIC which also take the simplification 

into account. 

The following GLM is performed without the variable City. The residual deviance is 

found to be 3392.1 with an AIC of 24878 and a BIC of 25243. The last variables to be 

excluded from the model are Insurance amount home-content and Thatched roof. The 

residual deviance is found to be 3410.6 with an AIC of 25015 and a BIC of 25294.  

5.2.3. Final claim frequency model 

When comparing the models, it's important to consider the goodness-of-fit measures 

and the principle of parsimony. In Table 9- it can be seen that model 1 has the lowest 

deviance value, indicating a better fit to the data. However, it also has the highest AIC 

and BIC, suggesting a potential penalty for including more variables. 

Model 3, on the other hand, exhibits similar deviance and AIC values to model 2 but 

achieves a lower BIC value. This suggests that model 3 is a more parsimonious choice 

compared to model 2, as it achieves comparable goodness of fit while using fewer 

variables. Model 4 excludes the variable City with reduces the degrees of freedom a lot. 

The result of this exclusion can be seen in the increase in the deviance. However, the 

AIC and the BIC suggest that model 4 is indeed a simplification and it makes the model 

more parsimonious. 

Considering both the goodness-of-fit measures and the principle of parsimony, model 4 

appears to be a favourable choice. It retains the significant variables while excluding 

non-significant ones, resulting in a simpler and more interpretable model.  

Table 9 Comparison claim frequency models. 

Model Variables Included Residual 

Deviance 

AIC BIC 
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1 Full Model 3193 25614 29332 

2 Excluding Urbanisation 3196 25606 29280 

3 Excluding Living Space 3201 25586 29175 

4* Excluding City 3392 24878 25243 

5 Excluding Insurance amount 

& Thatched roof 

3410 25015 25294 

 

 

In a QQ plot, the expected quantiles are plotted on the x-axis, while the observed 

quantiles are plotted on the y-axis. In the case of  this GLM (a GLM with a Poisson 

distribution and a log link), the expected quantiles are generated based on the 

assumption that the residuals should follow a Poisson distribution. The context 

regarding the dispersion test in the QQ plot can be neglected as this report will not use 

this method for describing the models. 

For a well-fitted model, the points on the QQ plot should generally fall along a straight 

line, indicating that the observed quantiles align with the expected quantiles. In  it is 

clear to see that the straight line is not followed strictly, indicating that the Poisson 

distribution might not be the best fit. This is evidence of possible under dispersion in 

the model (Sáez-Castillo et al., 2022). In Figure 9, the QQ plot shows curving behaviour 

around the straight line, this could also indicate a misspecification of the model. A 

possible misspecification is that the relationship between the predictors and the response 

is not sufficiently captured by the log link function, or that additional covariates should 

be included in the model. Since there is a relatively large amount of policies with zero 

claim count, a zero-inflated Poisson distribution assumption could have potentially 

provided a better fit. 

The second plot in Figure 9 (fitted versus residual plot) is used to examine the 

relationship between the predicted values and the corresponding residuals from the 

Figure 9 QQ plot & residual vs predicted plot for the CF GLM 
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GLM. It helps to identify patterns in the residuals, this can help to create an assessment 

of the models’ assumptions and performance. 

The plot should be interpreted that when the residuals are randomly scattered around 

zero, then it suggests that the model meets the assumptions of the constant variance. In 

this case, the scatter is not around zero, but around the line y = 0.50. There could be 

several reasons for this. 

The first reason could be that the bias in the residuals may indicate that the model is not 

capturing all the underlying patterns or relationships in the data. This could again be due 

to missing predictors. The second potential reason could be heteroscedasticity, which 

means that the variance of the residuals is not constant across the range of the predicted 

values. Also, outliers in the data can cause the scatter to be offset from y = 0. If there 

are extreme values in the response variable that are not accounted for by the model, they 

can contribute to the bias observed in the residuals. 

5.3. Benchmark claim severity analysis 

The next step is to formulate the GLM for the claim severity. This section is divided 

into two subsections, one for the benchmark model and one for the adjusted model. The 

model for the claim severity is different as the claim frequency will be included as a 

covariate in the adjusted model. Both GLMs are assumed to be Gamma distributed with 

the log link as the canonical link function.  

5.3.1. Claim severity GLMs 

Same as for the claim frequency GLM, we start with almost all risk factors included to 

see the effect on the claim severity. The Claim exposure variable does not have to be 

included anymore, as the focus (response) is only on the severity when a claim is 

incurred, not the frequency of it happening. Again, Table 10 is included to indicate all 

the covariates used in the first model. The other GLMs derived are nestled models from 

the first model, therefore only the excluded covariates will be mentioned. 

Table 10 List of covariates for the independent claim severity GLM 

Covariate Included ( X = yes) 

Claim Exposure  

Own Risk X 

Gender  

City X 

Payment term X 

House type X 

Urbanisation X 

Living space X 

Property Value Assessment (WOZ) X 

Insured amount precious X 

Insured amount jewellery  

Ownership status X 

Postcode risk class X 

Thatched roof X 

Extra living space X 
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Claim count  

Age X 

Policy duration X 

Construction year X 

Firewood heater  

 

The first GLM results in a residual deviance of 9078 and an AIX of 183329, which is 

relatively high compared to the claim frequency GLM. Also, the BIC reflects these 

relatively high values with a result of 187337. Possible reasoning could be 

over/underfitting, also a correlation between the covariates could be a reason for this. 

Possible correlation could arise with the variables City and Postalcode Risk Class. 

Therefore, to reduce the amount of degrees of freedom (465), the variable City is 

excluded from the GLM similar to the GLM of the claim frequency. This simplification 

increases the residual deviance to 9469, but R states that this model provides a better fit 

as the glm algorithm had difficulties with converging for the previous model and with 

the model without City it did converge. The AIC and BIC resulted in 183057 and 183570 

respectively. In the third model for the claim frequency, the variables Payment term and 

Own risk are excluded. The residual deviance of the claim severity model 3 resulted in 

9472. The AIC and the BIC respectively are 183054 and 183537. When running a 

significance test again, most variables are significant, the variable Type of house is not 

significant and may be excluded from the GLM as USL stated. This GLM has a residual 

deviance of 9499 and an AIC and BIC of 183790 and 184228 respectively. 

5.3.2. Final claim severity model (benchmark) 

The full GLM had relatively high AIC, and BIC values, suggesting potential issues with 

overfitting. To address these concerns, we excluded the variable City from the model, 

this gave the second model. 

The second model demonstrated improved model fit compared to the first model, with 

regards to the AIC and BIC values. Although the residual deviance slightly increased, 

this trade-off was considered acceptable because of the concept of parsimonious models. 

However, further analysis revealed that several risk factors were not statistically 

significant. Ultimately, the third GLM emerged as the preferred model after excluding 

Payment term and Own risk, leading to a decrease in residual deviance compared to 

models 2 and 3, and also lower AIC and BIC values compared to the other models. This 

simplification made the model more parsimonious which is desired. The third model 

indicated a favourable balance between model fit and simplicity.  

Table 11 Comparison claim severity models in the independent setting. 

Model Variables Included Residual Deviance AIC BIC 

1 Full model 9078 183329 187337 

2 Excluding City 9469 183057 183570 

3* Excluding Payment term and Own risk 9472 183054 183537 

4 Excluding Type of house 9499 183790 184228 
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Figure 10 QQ plot & residual vs predicted plot for the CS GLM 

The QQ plot in Figure 10 aligns more closely to the straight line in comparison with the 

QQ plot for the CF GLM. The straight line suggests that the residuals of the model 

indicate a distribution similar to the Gamma distribution assumed in this study. This 

alignment indicates a decent fit between the model's assumptions and the observed data. 

The closer the points to the line, the better that the residuals follow the expected 

quantiles, supporting the validity of the underlying assumptions. This alignment 

provides confidence that the model captures the patterns and variability present in the 

data. The Residuals against the predicted plot show similar behaviour as for the CF 

GLM, where the scatter is around the line y = 0.50. 

5.4. Adjusted claim severity analysis 

The method for determining the claim severity GLM for the adjusted model is 

comparable to the previous section. In the case of the dependent setting, the Claim count 

variable is included as a covariate in the GLM. This will create a GLM for the severity 

depending on the frequency of claims. The aim of this research is to compare the total 

aggregate models, in the dependent and independent setting. The total aggregate loss 

models are described later on in this chapter. Again, the variable City is excluded to 

account for the possible intercorrelation. The risk factors used as covariates in the first 

GLM can be seen in Table 12. The simplifications of these models are described by 

mentioning the excluded covariates. 

Table 12 List of covariates for the dependent claim severity GLM 

Covariate Included ( X = yes) 

Claim Exposure  

Own Risk X 

Gender  

City X 

Payment term X 

House type X 
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Urbanisation X 

Living space X 

Property Value Assessment (WOZ) X 

Insured amount precious X 

Insured amount jewellery  

Ownership status X 

Postcode risk class X 

Thatched roof X 

Extra living space X 

Claim count  

Age X 

Policy duration X 

Construction year X 

Firewood heater  

 

This GLM ended with a residual deviance of 9431, which is lower than the previous 

claim severity GLM with the exclusion of City. The AIC and the BIC resulted in 183680 

and 184217. After the significance test the variables Payment term, Own risk and Type 

of house are not significant and thus are not expected to have significant effect on the 

claim severity.  

In the second model the same simplification as in the previous section is made, by 

excluding the variables Payment term and Own risk. This residual deviance of this GLM 

is 9436, and the AIC and the BIC resulted in 183682 and 184188. After the significance 

test the variable Type of house is still not significant and thus not expected to have 

significant effect on the claim severity. The third model has a residual deviance of 9456 

and AIC and BIC of 183721and 184167 respectively. 

5.4.1. Final claim severity model (adjusted) 

While model 1 achieves the lowest residual deviance of 9306, indicating a better fit to 

the data, the differences in residual deviances between the models are relatively small. 

When considering the information criteria, model 2 stands out as the preferred option. 

It has a slightly higher residual deviance of 9313 compared to model 1 and a comparable 

AIC, but its BIC value is lower at 182788. model 3 on the other hand, has the highest 

deviance and AIC values among the three models. 

Considering the comparable deviance and AIC values and the lower BIC value of model 

2, it emerges as the preferred option. This model strikes the balance between simplicity 

and performance, as it excludes non-significant variables while maintaining a 

reasonable fit to the data.  

Table 13 Comparison claim severity models in the dependent setting. 

Model Variables Included Residual Deviance AIC BIC 

1 Full model (excluding City) 9306 182270 182813 

2* Excluding Payment term & Own risk 9313 182275 182788 
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3 Excluding Type of house 9330 182325 182777 

 

 

Figure 11 QQ plot & residual vs predicted plot for the modified CS GLM 

Figure 11 shows that for both the QQ plot and the residuals against the predicted plot, 

the behaviour is similar in the dependent and independent setting for the claim severity 

GLM. So, no conclusions can be drawn based on Figure 11. 

5.5. Total aggregate loss models  

This section will show the derivations of the total aggregate loss models. The total 

aggregate loss models are derived with the multiplication of the marginal GLMs. The 

first section will describe the benchmark total aggregate loss model, this is the model 

that is currently used by USL. The second section will describe the derivation of the 

adjusted total aggregate loss model, this is the model that is able to capture the effects 

of the possible dependency between the CF and the CS. 

5.5.1. Benchmark model 

The benchmark model is the ‘simple’ multiplication of the claim frequency GLM and 

the claim severity GLM. The marginal frequency and severity GLMs are described in 

the previous sections and can be written as  

𝑬(𝑵|𝒙) = 𝒈𝟏
−𝟏(𝒙𝑻𝜶) = 𝒗 = exp (𝛼0 + 𝛼1 ∗ 𝑂𝑤𝑛 𝑟𝑖𝑠𝑘 +  𝛼2𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑡𝑒𝑟𝑚 + 𝛼3𝑇𝑦𝑝𝑒 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒 +  𝛼4𝑊𝑂𝑍 +

  𝛼5𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑎𝑟 + 𝛼6𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝛼7𝑃𝑜𝑠𝑡𝑎𝑙𝑐𝑜𝑑𝑒 𝑟𝑖𝑠𝑘 𝑐𝑙𝑎𝑠𝑠 + 𝛼8𝑇ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑜𝑜𝑓 +

 𝛼9𝐸𝑥𝑡𝑟𝑎 𝑙𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 + 𝛼10𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 ℎ𝑜𝑚𝑒𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛼11𝐴𝑔𝑒 +  𝛼12𝑃𝑜𝑙𝑖𝑐𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

( 12) 

𝑬(𝒀|𝒙) = 𝒈𝟐
−𝟏(𝒙𝑻𝜷) = 𝝁 = exp (𝛽0 +  𝛽1𝑇𝑦𝑝𝑒 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒 + 𝛽2𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 + 𝛽3𝐿𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 +  𝛽4𝑊𝑂𝑍 +

  𝛽5𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑎𝑟 + 𝛽6𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝑠𝑡𝑎𝑡𝑢𝑠 +  𝛽7𝑃𝑜𝑠𝑡𝑎𝑙𝑐𝑜𝑑𝑒 𝑟𝑖𝑠𝑘 𝑐𝑙𝑎𝑠𝑠 + 𝛽8𝑇ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑜𝑜𝑓 +

 𝛽9𝐸𝑥𝑡𝑟𝑎 𝑙𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 +  𝛽10𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 ℎ𝑜𝑚𝑒𝑐𝑜𝑛𝑡𝑒𝑛𝑡 +  𝛽11𝐴𝑔𝑒 +  𝛽12𝑃𝑜𝑙𝑖𝑐𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

( 13) 

The total aggregate model in the independent setting can then be formulated as 

𝐸[𝑆|𝑥] = 𝐸(𝑌|𝑥) ∗ 𝐸(𝑁|𝑥) = 𝑣𝜇  
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5.5.2. Adjusted model 

The adjusted model is comparable to the benchmark model, however, in the dependent 

setting, the marginal GLM for the CS is be adjusted. Also, the dependency correction 

term as described in 3.4.1 will be included for the total aggregate loss model. The same 

marginal GLM for the CF is used in both the dependent as the independent setting as 

there is no difference between these settings when predicting the claim frequency. The 

marginal CS GLM is different and can be written as 

𝑬(�̅�|𝒙, 𝑵) = 𝒈𝟐
−𝟏(𝒙𝑻𝜷 + 𝜽𝑵) = 𝜇𝐴 = exp (𝛽0 +  𝛽1𝑇𝑦𝑝𝑒 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒 + 𝛽2𝑈𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 + 𝛽3𝐿𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 +

 𝛽4𝑊𝑂𝑍 +   𝛽5𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑎𝑟 + 𝛽6𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝛽7𝑃𝑜𝑠𝑡𝑎𝑙𝑐𝑜𝑑𝑒 𝑟𝑖𝑠𝑘 𝑐𝑙𝑎𝑠𝑠 +  𝛽8𝑇ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑜𝑜𝑓 +

 𝛽9𝐸𝑥𝑡𝑟𝑎 𝑙𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 +  𝛽10𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 ℎ𝑜𝑚𝑒𝑐𝑜𝑛𝑡𝑒𝑛𝑡 +  𝛽11𝐴𝑔𝑒 +  𝛽12𝑃𝑜𝑙𝑖𝑐𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

( 14) 

The total aggregate model in the dependent setting is formulated with the addition of 

the correction term as  

𝐸(𝑆|𝑥) = 𝑣𝜇𝐴 exp{𝑣(𝑒𝜃 − 1) + 𝜃}  

5.6. Comparison and dependence analysis  

For the train dataset, which is a proportion of all the data (70%)  the benchmark and the 

adjusted models have been trained. Now that the models are trained, the test dataset 

comes into play. The test dataset is the remaining 30% of the data that has not been 

included into determining the models. This will enable to test the prediction ability of 

both models and compare it to real life observations. In R this is done by obtaining the 

predictions for the CF GLM and the predictions of the (adjusted) CS GLM. Then, with 

the total aggregate loss models shown in the previous section, predictions for the total 

aggregate loss can be made. Both result in a vector of predictions, the vectors of the 

benchmark model and the adjusted model can be compared to the real total aggregate 

loss. This section will first highlight the comparison between the marginal GLM of the 

claim severity in the independent and the dependent setting. After the comparison of the 

marginal GLMs, the total aggregate loss models will be compared. 

5.6.1. Comparison of the marginal GLMs 

To compare the marginal GLMs of the claim severity Table 14 is included. This table 

provides the values of different error measures of the GLMs indicating a better fit when 

the GLM is in the dependent setting. 

Table 14 Error measures of the claim severity GLMs 

Measure Independent Dependent 

Mean Squared Error 7.778880e+04 7.758447e+04 

Root Mean Squared Error 2.789064e+02 2.785399e+02 

Mean Absolute Error 1.687073e+02 1.682158e+02 

Mean Absolute Percentage Error 6.386475e-01 6.366326e-01 

Mean Absolute Scaled Error 5.148090e+00 4.858113e+00 

Mean Percentage Error 1.144274e+02 1.133235e+02 



University of Twente Univé Stad en Land L.R. Kingma 

54 

 

 

 

 

Table 14 suggests that the inclusion of Claim Count as a covariate improves the GLM, 

as all the error measures are slightly better. Overall, these findings indicate that the 

adjusted model may have a slight edge in terms of accuracy compared to the benchmark 

model. 

5.6.2. Comparison between the benchmark and the adjusted model 

To get insights in the prediction ability of the total aggregate loss  models, the same 

error measures have been determined. Table 15 shows the values of the error terms for 

both models.  

Table 15 Error measures of the Benchmark and the Adjusted model 

 

 

 

 

 

 

 

This table might indicate a slight preference for the benchmark model, but this does not 

tell the complete story. The dataset contains multiple outliers, which can result in greater 

error terms. Especially a measure like Mean Squared Error punishes a model for having 

outliers as it squares the errors. The Mean Absolute Error is better for determining the 

error term in comparison to the Mean Squared Error when the dataset contains outliers. 

So, this table is a first step in comparing the models, but it cannot be used to pick a 

decisive model. To be able to see how the models perform and behave, several 

visualisations are made. The remainder of this section will highlight these visualisations. 

Symmetrically V-shaped Root 

Mean Squared Error 

1.045152e+02 1.043779e+02 

Mean Squared Logarithmic Error 8.104678e-01 8.059220e-01 

Measure Benchmark Adjusted 

Mean Squared Error 1.479069e+05 1.540987e+05 

Root Mean Squared Error 3.845866e+02 3.925540e+02 

Mean Absolute Error 2.539984e+02 2.519499e+02 

Mean Absolute Percentage Error 6.601909e-01 7.247229e-01 

Mean Absolute Scaled Error 4.598486e+00 4.874384e+00 

Mean Percentage Error 1.260373e+02 1.097466e+02 

Symmetrically V-shaped Root 

Mean Squared Error 

9.904840e+01 1.011004e+02 

Mean Squared Logarithmic Error 9.101946e-01 8.881002e-01 
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Figure 12 Comparison of predictors between the Adjusted and the Benchmark model 

In Figure 12 the predictions of the adjusted model and the benchmark model are 

compared. The red line represents the diagonal of y = x, this helps to see the differences 

more clearly. Noticeable is that most observations are below the red line, indicating that 

the predictions of the benchmark model are higher than the predictions of the adjusted 

model. This graph does not help us determine which model is preferred, but is does 

create awareness that if the adjusted model is preferred, the predictions could return be 

lower.  

 

Figure 13 Density plots of the actual total aggregate loss values and the predicted values 

As stated earlier, the outliers make it hard to draw conclusions based on measures only. 

One way of comparing the predictions to the actual values is with a density plot. A 

density plot simplifies the distribution of data into a smooth curve, allowing to 

understand how values are spread out. It helps to visualize the shape of the distribution 

and compare multiple distributions in a clear and concise manner. In Figure 13 such a 

density plot can be seen, this density plot displays the density distributions of the 

predictions of the two models and the actual values. It is noticeable that the adjusted 
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model is able to capture the distribution of the actual values better, resulting in the most 

overlap. This density plot shows how outliers can mislead the error values as seen in 

Table 15. Even though some error measures seem more leaning towards the benchmark 

model being the better predictor, looking at Figure 13, the adjusted model manages to 

capture the ‘density’ better.  

The density plot makes some assumptions that could make the interpretation of the 

figure more complicated. The first assumption being continuity, this assumption is 

satisfied as the total aggregate loss predictions are continuous.  The second assumption 

is that the underlying distributed data is smooth, without any sudden spikes or 

irregularities. 

 

Figure 14 Residual plot of the Benchmark and the Adjusted model 

A residual plot, as shown in Figure 14, provides insights into the performance and 

accuracy of the two models attempting to predict the total aggregate loss. When 

comparing two models using a residual plot, we can examine the distribution and 

patterns of the residuals. The residuals are the differences between the predicted values 

and the actual observed values. 

In general, a well-fitted model should have residuals that scatter randomly and do not 

indicate any patterns or trends in the plot. Even though both residual plots are different, 

they do show similar characteristics, this suggests that they are capturing the underlying 

patterns and relationships of the data to a similar level.  

When examining the two residual plots , they are found to be similar. It becomes 

challenging to conclude a preference between them. It is difficult due to the absence of 

distinguishing features and characteristics within the plots. 
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Figure 15 Box plots of the actual values and the predicted values 

Figure 15 shows the comparison of three box plots, where one represents the actual 

values and the other two show the predicted values of the benchmark and adjusted 

models. While the two predicted box plots indicate similarities, it is evident that the 

median of the adjusted model is closer to the median of the actual values, which might 

indicate a higher level of accuracy in the adjusted model. 

However, it is noticeable that both predicted models fail to capture the outliers present 

in the real data. These outliers, representing extreme values or unusual observations, are 

not accounted for in the predictions. This suggests that the models may struggle to 

capture the full range of variability of the data, especially in the tails of the distribution. 

Despite this possible limitation, the two models share a similar pattern and distribution. 

While the median of the adjusted model is slightly closer to the actual values, the 

difference is relatively small. Therefore, the choice between these two models based 

solely on the box plots is not possible. 

5.7. In sample comparison 

In-sample testing is used in the process of measuring the models performance and 

comparing the benchmark and the adjusted model. In-sample testing involves the 

assessment of the benchmark and the adjusted model using the same dataset that was 

employed for the training of these models. While it may sound questionable, the 

necessity of in-sample testing in the model evaluation process remains important. 

The primary motivation behind in-sample testing lies in its ability to provide a 

foundational understanding of a model's performance within the context of the training 

data. It serves as an ‘initial model’, offering insights into how well the model aligns with 

the data it was exposed to during the training phase.  

However, it is essential to acknowledge the limitations of relying solely on in-sample 

testing for model selection. Models that excel in minimizing error measures, such as 

Mean Absolute Percentage Error (MAPE) or Root Mean Squared Error (RMSE), within 

the training data may not necessarily demonstrate similar excellence when applied to 
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new, unseen data (out of sample). This phenomenon is known as overfitting, where a 

model may become overly tailored to the training dataset, thus failing to generalize well 

to real-world scenarios. 

Table 16 Error measures of the Benchmark and the Adjusted model (in-sample) 

 

 

 

 

 

 

 

 

Table 16 shows the (in-sample) error measures of the benchmark and the adjusted 

model. To check for possible overfitting, it is necessary to compare these measures to 

Table 15, where the error measures for the models out-of-sample are determined. Both 

the RMSE and the MAPE measures are lower in the out-of-sample models indicating 

that there is no case of overfitting with the benchmark and the adjusted models. 

  

Measure Benchmark Adjusted 

Mean Squared Error 1.589477e+05 1.650682e+05 

Root Mean Squared Error 3.986825e+02 4.062859e+02 

Mean Absolute Error 2.575973e+02 2.541201e+02 

Mean Absolute Percentage 

Error 

6.636587e-01 7.264306e-01 

Mean Absolute Scaled Error 4.581965e+00 4.857243e+00 

Mean Percentage Error 3.540612e+13 3.301849e+13 

Symmetrically V-shaped Root 

Mean Squared Error 

1.034375e+02 1.054102e+02 

Mean Squared Logarithmic 

Error 

9.660888e-01 9.376537e-01 
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Chapter 6 Conclusion 

This chapter is divided into three sections, first in the discussion will draw conclusions 

based on the modelling results in Chapter 5. Then in the section named contributions, 

it will be stated how this study contributed to the literature. The last part of this chapter 

will discuss the limitations of this study and how this study can be expanded with future 

research. 

6.1. Discussion 

The main focus of this study is to compare the currently used model that predicts the 

total aggregate loss on individual level in the independent setting, to the one in the 

dependent setting. The goal was not necessarily to find the best possible model to 

describe the data but rather to compare the effects of extending the independent model 

to the dependent setting. The process of choosing the risk factors and formulating the 

models is done in the same way, which enables us to compare the models effectively. 

This study proposes a model and method for allowing the dependence between claim 

frequency and claim severity. In this method, the benchmark model is nested in the 

adjusted model, which makes the independence method a ‘special case’ or a 

simplification of the adjusted model. The adjusted model is thus an expansion of the 

benchmark model by integrating the claim frequency as a covariate. 

In Chapter 5 the results of the analysis are described and explained. Firstly, the 

comparison between the marginal claim severity models is of interest as the adjusted 

marginal GLM for the claim severity is formulated in the dependent setting. The results 

of this model indicate that the Claim count is a significant variable at the 0,1% level, 

indicating that this variable is indeed helping to explain the behaviour of the claim 

severity. Together with the preliminary analysis of the correlation tests, it is concluded 

that the first hypothesis holds. This conclusion is drawn due to the fact that the Claim 

count is a significant covariate and the Spearman test indicate a strong (negative) 

correlation between the CF and the CS. The coefficient that R provided for the covariate 

Claim count is -0.0478, all other coefficients and standard error values of the models 

can be found in Appendix 6, 7 and 8. The coefficient of the Claim count supports the 

results of the preliminary analysis of the Spearman correlation test by it being negative. 

This implies that when the claim frequency increases, the severity of these claims tends 

to decrease.  

The CS GLM in the dependent setting manages to outperform the GLM in the 

independent setting in all three measures (deviance, AIC and  BIC) used to choose the 

most parsimonious model. This could suggest that including the claim frequency in the 

form of a covariate will indeed improve the goodness of fit of the models. 

So, the goodness of fit of the marginal CS GLM is improved, when fitting the model in 

the dependent setting. The error measures shown in Table 14 also suggests that the GLM 

with Claim Count as covariate has better prediction accuracy than the model in the 

independent setting. All measures used in this thesis indicate the preference for the GLM 

that allowed for dependence.   
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The first conclusion that can be drawn from comparing the adjusted and the benchmark 

model is that following the error measures (Table 15), there is no immediate preference 

between the models. The benchmark model seems to score a bit better, however, the 

outliers could explain these results. Therefore, visualisations should better explain the 

prediction ability of the models. The residuals (Figure 14) do not indicate any preference 

between the models, same can be stated for the box plot (Figure 15). However, the 

density plot (Figure 13) of the models is indicating a preference between the models. 

The Adjusted model seems to capture the variation of the severities per policyholder 

more accurately than the benchmark model.  

To reflect on the second hypotheses, the adjusted model did not decisively outperform 

the benchmark model regarding the goodness-of-fit measures. However, the mean 

absolute error is lower than in the benchmark model, and the visualisations suggest that 

the adjusted model has a better fit. Even though the improvements are small, these 

improvements can have a significant impact on the pure premium asked to the 

policyholders. To illustrate this, Figure 12 indicates that the adjusted model is averaging 

a lower predicted severity. When these results form as the underlying of the ratemaking 

process, this can have an economical effect. This holds because the premiums asked to 

policyholders can be lowered to cover for the risk profiles of the policyholders. If it is 

possible to lower the premiums, then a more competitive position in the insurance 

market could be obtained. 

6.2. Contributions  

This study provided a way of modelling the total aggregate loss of policyholders while 

allowing for dependence between the claim frequency and claim severity in the home-

content insurance sector. This case study can be generalized for other insurers with the 

same coverage types and similar characteristics. The contribution to the literature can 

be summarised as a ‘deep-dive’ in the relationship between the CF and the CS and how 

the total aggregate loss can be predicted in a dependent setting. The framework used in 

this study is a relatively easy to follow method, which allows other insurers to try and 

use this framework for their own. Furthermore, this paper extended the framework of 

Schulz (2013) so that it is applicable to the home-content insurance sector, which makes 

the framework more valid and credible.  

The preliminary correlation analysis provides insights to the relation between the CF 

and the CS, already suggesting a (negative) correlation between them. In the modelling 

part of this study, this correlation/relation is again noticeable. It is therefore of 

importance for insurers to understand this relation before setting premiums based on 

assumptions of independence. 

6.3. Limitations & Future research 

The  study examining the relationship between claim frequency and claim severity and 

its impact on total loss modelling has provided valuable insights. However, certain 

limitations must be stated to ensure a comprehensive understanding of the research’s 

outcomes. 
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Firstly, the datasets used in this study were relatively limited in size and scope, because 

this study examined only one coverage of one insurer. Expanding the dataset to include 

a larger and more diverse sample group from different sources could enhance the 

robustness of the findings. 

Secondly, this study used the conventional frequency-severity models to create a 

situation where the results could be implemented immediately. Exploring alternative 

methodologies, such as copula models, will broaden the analysis and could have been a 

good comparison of the prediction capabilities. Copulas can capture complex 

dependence structures between claim frequency and claim severity, potentially leading 

to more accurate total aggregate loss predictions. 

Furthermore, the current research considered various risk factors, but further 

investigation into additional variables could provide deeper insights into their influence. 

For example, the risk factor Gender is excluded from the research for reasons mentioned 

earlier in Chapter 4. Creating possible interactions between risk factors could solve 

problems of not being able to include risk factors. 

Lastly, the study used the standard distributions that were assumed by USL (Poisson 

and Gamma). Exploring alternative distribution models, such as negative Binomial or 

non-zero Poisson inflated models, could potentially improve the goodness-of-fit of the 

models, leading to more precise total aggregate loss predictions. 

In conclusion, while this research has shed light on the relationship between claim 

frequency and claim severity and its implications for total aggregrate loss modelling, 

addressing these limitations in future studies will refine the accuracy and applicability 

of the models. Also, the sensitivity and the robustness of the study can then be improved.  
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Chapter 7 Appendix 

A1. t-distribution table 
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A2. Correlation term for Poisson distribution  

In this section the derivation of the correction term for the Poisson distribution is 

described. The theory presented is based on the study of (Garrido et al., 2016). 

If N is a Poisson(𝜆), then  for all 𝜃 ∈  𝑅, 

 𝑀𝑁(𝜃) = exp (𝜆(𝑒𝜃 − 1)) 

In this case, the expected severity can be formulated as 

 𝐸(𝑆|𝑋) = 𝑢𝜆exp (𝜆(𝑒𝜃 − 1) + 𝜃) 

This represents the correction term used in this study, as long as the Poisson distribution 

is assumed. Further insights into the derivation of the correction term, can be found in 

the study of (Garrido et al., p215, 2016) 

A3 Claim frequency GLMs 

mod1 <- glm(ClaimCount ~ log(ClaimExposure) + `Own Risk` +  

             City + `Payment Term` + `Type of house` + Urbanisation +  

             as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

             `Ownership Status` + `Postalcode Risk Class` + `Thatched Roof` +  

             `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

           data = TrainDataFREQ, 

           family = poisson(link = "log")) 

 

mod2 <- glm(ClaimCount ~ log(ClaimExposure) + `Own Risk` +  

             City + `Payment Term` + `Type of house` +  

             as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

             `Ownership Status`  + `Thatched Roof` +  

 `Extra Living Space` + `Postalcode Risk Class`+ `Insurance Amount Home-

content`+ Age + PolicyTime, 

           data = TrainDataFREQ, 

           family = poisson(link = "log")) 

 

mod3 <- glm(ClaimCount ~ log(ClaimExposure) + `Own Risk` +  

             `Payment Term` + `Type of house` + City + 

             + as.numeric(WOZ) + `Construction Year` +  

             `Ownership Status`  + `Thatched Roof` + `Postalcode Risk Class`+  

             `Insurance Amount Home-content`+ Age + PolicyTime, 

           data = TrainDataFREQ, 

           family = poisson(link = "log")) 

 

mod4 <- glm(ClaimCount ~ log(ClaimExposure) + `Own Risk` +  

             `Payment Term` + `Type of house` + 

             + as.numeric(WOZ) + `Construction Year` +  

             `Ownership Status`  + `Thatched Roof` + `Postalcode Risk Class`+  
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             `Insurance Amount Home-content`+ Age + PolicyTime, 

           data = TrainDataFREQ, 

           family = poisson(link = "log")) 

 

mod5 <- glm(ClaimCount ~ log(ClaimExposure) + `Own Risk` +  

             `Payment Term` + `Type of house` + 

             + as.numeric(WOZ) + `Construction Year` +   

             `Ownership Status`  + `Postalcode Risk Class`+  

             Age + PolicyTime, 

           data = TrainDataFREQ, 

           family = poisson(link = "log")) 

A4 Claim severity GLMs (independent) 

modS1 <- glm(SchadelastMutatie ~  `Own Risk` + City + 

             `Payment Term` + `Type of house` + Urbanisation +  

             as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

             `Ownership Status` + `Postalcode Risk Class` + `Thatched Roof` +  

             `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

           data = TrainDataSEV, 

           family = Gamma(link = "log")) 

 

modS2 <- glm(SchadelastMutatie ~  `Own Risk` +  

              `Payment Term` + `Type of house` + Urbanisation +  

              as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

              `Ownership Status` + `Postalcode Risk Class`  + `Thatched Roof` +  

  `Extra Living Space` + ̀ Insurance Amount Home-content`+ Age + PolicyTime, 

            data = TrainDataSEV, 

            family = Gamma(link = "log")) 

 

modS3 <- glm(SchadelastMutatie ~   

              `Type of house` + Urbanisation +  

              as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

              `Ownership Status`+ `Postalcode Risk Class` + `Thatched Roof` +  

 `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

            data = TrainDataSEV, 

            family = Gamma(link = "log")) 

 

modS4 <- glm(SchadelastMutatie ~   

              Urbanisation +  

              as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

              `Ownership Status`+ `Postalcode Risk Class` + `Thatched Roof` +  

 `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

            data = TrainDataSEV, 

            family = Gamma(link = "log")) 
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A5 Claim severity GLMs (dependent) 

modSD1 <- glm(SchadelastMutatie ~ ClaimCount+ `Own Risk` +  

               `Payment Term` + `Type of house` + Urbanisation +  

               as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

               `Ownership Status` + `Postalcode Risk Class` + `Thatched Roof` +  

 `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

             data = TrainDataSEV, 

             family = Gamma(link = "log")) 

 

modSD2 <- glm(SchadelastMutatie ~ ClaimCount+ `Type of house` + Urbanisation +  

               as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

               `Ownership Status` + `Postalcode Risk Class` + `Thatched Roof` +  

             `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

             data = TrainDataSEV, 

             family = Gamma(link = "log")) 

 

modSD3 <- glm(SchadelastMutatie ~ ClaimCount+ Urbanisation +  

               as.numeric(`Living Space`) + as.numeric(WOZ) + `Construction Year` +  

               `Ownership Status` + `Postalcode Risk Class` + `Thatched Roof` +  

             `Extra Living Space` + `Insurance Amount Home-content`+ Age + PolicyTime, 

             data = TrainDataSEV, 

             family = Gamma(link = "log")) 

 

A6. Results claim frequency GLM 

Variable Coefficient Standard_Error 

(Intercept) -0.1727 1.1247 

log(ClaimExposure) 0.2133 0.0256 

`Own Risk` -0.0008 0.0003 

`Payment Term`Jaar 0.0278 0.0622 

`Payment Term`Kwartaal 0.0854 0.0668 

`Payment Term`Maand 0.0533 0.0601 

`Type of house`Appartement/etagewoning -0.0107 0.5020 

`Type of house`Geschakelde woning 0.1033 0.5093 

`Type of house`Hoekwoning 0.0617 0.5015 

`Type of house`Tussenwoning 0.0715 0.5013 

`Type of house`Twee-onder-een-kap 0.0751 0.5013 

`Type of house`Vrijstaande woning 0.0595 0.5011 

`Type of house`Woning zakelijk -0.1567 0.6716 

`Type of house`Zakelijk 1, 2, 3 of 4 -0.3688 1.1191 

as.numeric(WOZ) 0.0000 0.0000 

`Construction Year`1920-1939 -0.0131 0.0567 

`Construction Year`1940-1959 0.0379 0.0571 

`Construction Year`1960-1969 0.0131 0.0546 
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`Construction Year`1970-1979 0.0468 0.0533 

`Construction Year`1980-1989 -0.0079 0.0548 

`Construction Year`1990-1994 0.0247 0.0603 

`Construction Year`1995-1999 0.0677 0.0590 

`Construction Year`2000-2004 0.0589 0.0611 

`Construction Year`2005-2009 0.0117 0.0612 

`Construction Year`2010-2014 -0.0166 0.0648 

`Construction Year`2015-2019 0.0086 0.0626 

`Construction Year`2020-2024 -0.0622 0.1091 

`Construction Year`voor 1900 0.0136 0.0821 

`Ownership Status`Nee 0.0601 0.0260 

`Ownership Status`Onbekend -0.0125 0.0322 

`Thatched Roof`true 0.0322 0.0599 

`Postalcode Risk Class`Risicoklasse 2 -0.0090 0.0363 

`Postalcode Risk Class`Risicoklasse 3 -0.0006 0.1832 

`Postalcode Risk Class`Risicoklasse 4 -0.0827 0.1972 

`Postalcode Risk Class`Risicoklasse 5 -0.3694 0.5005 

`Postalcode Risk Class`Risicoklasse 7 -0.2771 1.0010 

`Postalcode Risk Class`Risicoklasse 8 -0.4525 0.7083 

`Insurance Amount Home-content`€ 10.000 0.3348 1.0011 

`Insurance Amount Home-content`€ 15.000 0.3375 1.0021 

`Insurance Amount Home-content`€ 20.000 0.3043 1.0031 

`Insurance Amount Home-content`€ 25.000 0.2106 1.0153 

`Insurance Amount Home-content`€ 30.000 0.1832 1.0122 

`Insurance Amount Home-content`€ 35.000 0.2148 1.0620 

`Insurance Amount Home-content`€ 40.000 0.4052 1.0420 

`Insurance Amount Home-content`€ 45.000 0.2014 1.0814 

`Insurance Amount Home-content`€ 5.000 -0.0045 1.4292 

`Insurance Amount Home-content`€ 50.000 0.7267 1.0390 

`Insurance Amount Home-content`> € 50.000 0.2383 1.0619 

Age -0.0068 0.0007 

PolicyTime -0.0005 0.0012 

 

A7. Results independent claim severity GLM 

Variable Coefficient Standard_Error 

(Intercept) 5.1552 0.7160 

`Type of house`Appartement/etagewoning 0.1101 0.7071 

`Type of house`Geschakelde woning 0.1846 0.7132 

`Type of house`Hoekwoning -0.0033 0.7067 

`Type of house`Tussenwoning 0.0539 0.7066 

`Type of house`Twee-onder-een-kap 0.0435 0.7063 

`Type of house`Vrijstaande woning 0.0669 0.7062 

`Type of house`Woning zakelijk 0.2054 0.8650 

`Type of house`Zakelijk 1, 2, 3 of 4 0.4647 1.2354 
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Urbanisation100.000 tot 250.000 inwoners 0.0750 0.0315 

Urbanisation20.000 tot 50.000 inwoners 0.0286 0.0257 

Urbanisation250.000 tot 500.000 inwoners 2.1220 1.4115 

Urbanisation5.000 tot 10.000 inwoners 0.0120 0.0291 

Urbanisation50.000 tot 100.000 inwoners 0.0533 0.0458 

UrbanisationMeer dan 500.000 inwoners -0.4721 0.3619 

UrbanisationMinder dan 5.000 inwoners -0.0002 0.0262 

as.numeric(`Living Space`) 0.0002 0.0002 

as.numeric(WOZ) 0.0000 0.0000 

`Construction Year`1920-1939 -0.0177 0.0572 

`Construction Year`1940-1959 -0.0624 0.0577 

`Construction Year`1960-1969 -0.0561 0.0553 

`Construction Year`1970-1979 -0.0946 0.0540 

`Construction Year`1980-1989 -0.0827 0.0553 

`Construction Year`1990-1994 -0.0425 0.0610 

`Construction Year`1995-1999 -0.0969 0.0598 

`Construction Year`2000-2004 -0.1260 0.0625 

`Construction Year`2005-2009 -0.0868 0.0612 

`Construction Year`2010-2014 -0.0837 0.0660 

`Construction Year`2015-2019 0.0181 0.0626 

`Construction Year`2020-2024 -0.0613 0.1036 

`Construction Year`voor 1900 -0.1639 0.0837 

`Ownership Status`Nee 0.0977 0.0258 

`Ownership Status`Onbekend 0.0133 0.0321 

`Postalcode Risk Class`Risicoklasse 2 0.0925 0.0426 

`Postalcode Risk Class`Risicoklasse 3 -0.0218 0.1766 

`Postalcode Risk Class`Risicoklasse 4 0.0025 0.1978 

`Postalcode Risk Class`Risicoklasse 5 -0.1249 0.5761 

`Postalcode Risk Class`Risicoklasse 6 -0.2044 0.9983 

`Postalcode Risk Class`Risicoklasse 7 0.7397 0.4997 

`Postalcode Risk Class`Risicoklasse 8 -0.8925 0.9989 

`Thatched Roof`true 0.0155 0.0614 

`Extra Living Space`< 120m2 0.3022 0.1533 

`Extra Living Space`< 140m2 0.3465 0.1867 

`Extra Living Space`< 160m2 0.3053 0.1936 

`Extra Living Space`< 180m2 0.2014 0.1980 

`Extra Living Space`< 200m2 0.2491 0.1870 

`Extra Living Space`< 250m2 -0.0418 0.2341 

`Extra Living Space`< 300m2 0.7436 0.3882 

`Extra Living Space`< 350m2 0.7007 0.5069 

`Extra Living Space`< 450m2 -0.2551 1.0036 

`Extra Living Space`< 60m2 0.2228 0.0906 

`Extra Living Space`< 80m2 0.0884 0.1192 

`Extra Living Space`0m2 0.2848 0.1522 

`Insurance Amount Home-content`€ 15.000 0.1893 0.0454 

`Insurance Amount Home-content`€ 20.000 0.3625 0.0632 
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`Insurance Amount Home-content`€ 25.000 0.4651 0.1565 

`Insurance Amount Home-content`€ 30.000 0.0254 0.1403 

`Insurance Amount Home-content`€ 35.000 0.2813 0.3330 

`Insurance Amount Home-content`€ 40.000 0.2194 0.2772 

`Insurance Amount Home-content`€ 45.000 0.3385 0.4086 

`Insurance Amount Home-content`€ 5.000 -0.1910 1.0540 

`Insurance Amount Home-content`€ 50.000 0.0093 0.3020 

`Insurance Amount Home-content`> € 50.000 1.9164 0.4139 

Age 0.0028 0.0007 

PolicyTime -0.0044 0.0010 

 

A8. Results dependent claim severity GLM 

Variable Coefficient Standard_Error 

(Intercept) 3.2265 1.0061 

ClaimCount -0.0478 0.0074 

`Type of house`Appartement/etagewoning 1.0411 0.7082 

`Type of house`Geschakelde woning 1.1070 0.7139 

`Type of house`Hoekwoning 0.9925 0.7078 

`Type of house`Tussenwoning 1.0277 0.7077 

`Type of house`Twee-onder-een-kap 0.9756 0.7076 

`Type of house`Vrijstaande woning 1.0242 0.7074 

`Type of house`Woning zakelijk 1.0973 0.8664 

`Type of house`Zakelijk 1, 2, 3 of 4 1.4601 1.0134 

Urbanisation100.000 tot 250.000 inwoners 0.0819 0.0310 

Urbanisation20.000 tot 50.000 inwoners 0.0331 0.0254 

Urbanisation250.000 tot 500.000 inwoners 2.1214 1.4106 

Urbanisation5.000 tot 10.000 inwoners 0.0179 0.0289 

Urbanisation50.000 tot 100.000 inwoners 0.0751 0.0465 

UrbanisationMeer dan 500.000 inwoners -0.4493 0.3582 

UrbanisationMinder dan 5.000 inwoners 0.0116 0.0259 

as.numeric(`Living Space`) 0.0001 0.0002 

as.numeric(WOZ) 0.0000 0.0000 

`Construction Year`1920-1939 -0.0279 0.0573 

`Construction Year`1940-1959 -0.0725 0.0579 

`Construction Year`1960-1969 -0.0449 0.0556 

`Construction Year`1970-1979 -0.0722 0.0543 

`Construction Year`1980-1989 -0.0473 0.0554 

`Construction Year`1990-1994 -0.0237 0.0611 

`Construction Year`1995-1999 -0.0490 0.0598 

`Construction Year`2000-2004 -0.1304 0.0621 

`Construction Year`2005-2009 -0.0620 0.0617 

`Construction Year`2010-2014 -0.0802 0.0656 

`Construction Year`2015-2019 0.0294 0.0630 

`Construction Year`2020-2024 -0.0603 0.1063 
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`Construction Year`voor 1900 -0.1349 0.0825 

`Ownership Status`Nee 0.0879 0.0255 

`Ownership Status`Onbekend 0.0073 0.0317 

`Postalcode Risk Class`Risicoklasse 2 0.1058 0.0414 

`Postalcode Risk Class`Risicoklasse 3 -0.0585 0.1713 

`Postalcode Risk Class`Risicoklasse 4 0.1163 0.2046 

`Postalcode Risk Class`Risicoklasse 5 -0.4420 0.4462 

`Postalcode Risk Class`Risicoklasse 6 0.2243 0.9977 

`Postalcode Risk Class`Risicoklasse 7 0.9592 0.4998 

`Postalcode Risk Class`Risicoklasse 8 -0.9490 0.9983 

`Thatched Roof`true 0.1358 0.0588 

`Extra Living Space`< 120m2 0.2292 0.1432 

`Extra Living Space`< 140m2 0.5233 0.1742 

`Extra Living Space`< 160m2 0.2067 0.1812 

`Extra Living Space`< 180m2 0.1516 0.2055 

`Extra Living Space`< 200m2 0.2352 0.1972 

`Extra Living Space`< 250m2 0.0107 0.2132 

`Extra Living Space`< 300m2 0.8542 0.3072 

`Extra Living Space`< 350m2 0.3067 0.4546 

`Extra Living Space`< 450m2 -0.1822 1.0028 

`Extra Living Space`< 60m2 0.2771 0.0892 

`Extra Living Space`< 80m2 0.1609 0.1180 

`Extra Living Space`0m2 0.4934 0.1466 

`Insurance Amount Home-content`€ 10.000 1.0523 0.7054 

`Insurance Amount Home-content`€ 15.000 1.2683 0.7068 

`Insurance Amount Home-content`€ 20.000 1.3942 0.7080 

`Insurance Amount Home-content`€ 25.000 1.5201 0.7227 

`Insurance Amount Home-content`€ 30.000 1.2010 0.7190 

`Insurance Amount Home-content`€ 35.000 0.9027 0.7796 

`Insurance Amount Home-content`€ 40.000 1.2309 0.7667 

`Insurance Amount Home-content`€ 45.000 1.5678 0.8650 

`Insurance Amount Home-content`€ 5.000 1.6439 1.2706 

`Insurance Amount Home-content`€ 50.000 1.3803 0.7803 

`Insurance Amount Home-content`> € 50.000 2.7653 0.8018 

Age 0.0014 0.0007 

PolicyTime -0.0037 0.0010 
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