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Abstract 
Problem statement: 

According to Global Cancer Statistics, breast cancer was the most diagnosed cancer worldwide in 2020, 

which caused 6.9% of the total cancer deaths, leading to a substantial societal and economic impact.  

Neoadjuvant chemotherapy (NAC) is a systemic treatment before tumor surgery and it has made significant 

progress in the overall survival rate and is becoming standard care in breast cancer. However, not every 

patient responds to NAC. In such cases, a whole course of NAC can lead to a delayed start of another 

treatment and unnecessary exposure of the patients to the toxic effects of the drugs. Therefore, a 

longitudinal imaging protocol is needed to acquire multiple images over time to monitor the effects of NAC 

and prevent further disease progression due to delays in treatment. Ultrasound and magnetic resonance 

imaging are common clinical imaging modalities primarily employed for structural imaging., However, these 

modalities have several drawbacks. Their main limitation is that these modalities detect structural changes, 

such as a change in tumor size, which occur with a delay to changes in the tumor microstructure and do not 

correlate with patient outcomes.  

Photoacoustic (PA) imaging is one of the most emerging modalities for capturing and quantifying tumor 

angiogenesis and hypoxia. It can visualize blood vessels in the breast with sub-millimeter resolution at 

depths of more than 5 cm. However, a valid image registration method is needed to align PA images over 

time to monitor NAC's effect. Repositioning the breast leads to complex and non-linear deformations of the 

vasculature and the breast, making quantitative analysis impossible. Current image registration frameworks 

are not suitable for image registration of PA images due to limitations like requiring a large training data set 

or not having functionalities to align sparse data, like PA images.  

Aim and approach: 

This thesis proposes a new robust machine learning framework, MUVINN, which uses a coordinate-based 

neural network to represent the displacement field of the PA image pair. By using a loss function based on 

normalized cross-correlation and Frangi vesselness filter at multiple scales, it can align vascular images 

effectively.  

The algorithm is tested on an in vivo data set of breast PA images of a healthy volunteer acquired with the 

Twente Photoacoustic Mammoscope 3 to validate the framework. First by synthetically deforming the 

existent images and then by repeating measurements after repositioning the breast under normal conditions 

and unfavorable conditions, such as using different illumination wavelengths, purposefully mispositioning 

the volunteer, using a different breast-supporting cup size, and without the use of a cup. 

Results: 

MUVINN has shown excellent performance in registering synthetically deformed images and repeated 

images in normal conditions and challenging conditions. It has been shown to be robust to shifts in image 

intensity and field-of-view inconsistencies. 

Conclusions: 

MUVINN is a promising tool for quantitatively monitoring disease progression and treatment response in 

breast cancer using photoacoustic. It has been proven to work for unimodal image registration of PA images 

with a Twente Photoacoustic Mammoscope 3 imager. However, more research is needed for multimodal 

image registration for broader applications. 
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2 Introduction 

2.1 Clinical context 
According to Global Cancer Statistics, female breast cancer is the most commonly diagnosed cancer 

worldwide in 2020, with 2.3 million new cases (11.7%) of all diagnosed cancer cases. It caused 6.9% of the 

total cancer deaths [1], leading to a substantial societal and economic impact. One significant progress in the 

overall survival rate is using systemic therapy based on breast cancer subtypes. Especially neoadjuvant 

chemotherapy (NAC), a systemic treatment before tumor surgery, has improved cancer outcomes in breast 

cancer patients and is progressively becoming the standard care [2]. 

However, patients' response to NAC varies depending on their breast cancer subtypes. Completing the full 

course of NAC can last around four months. For non-responders, this can lead to a delayed start of another 

treatment and unnecessary exposure of the patient to the toxic effects of the drugs used [3]. Therefore, 

accurate evaluation of the efficacy of NAC is crucial to distinguish responders from non-responders. This will 

prevent unnecessary exposure of non-responders to the toxicity and costs of ineffective treatment and 

prevent further disease progression due to postponed surgery. Identifying patients with tumors with a high 

likelihood of achieving a pathological complete response (pCR) at the first cycles of NAC can significantly 

impact individualized treatment. 

In current clinical practice, structural imaging techniques like magnetic resonance imaging (MRI), ultrasound 

(US), and mammography are performed to monitor tumor response during NAC. However, structural 

changes, such as a change in tumor size, occur with a delay to changes in the tumor microstructure and do 

not correlate with patient outcomes [3–5]. 

Functional imaging techniques could be a good alternative to structural imaging techniques, as they provide 

valuable insights into tumor characteristics during chemotherapy. However, some of these methods have 

limitations for longitudinal studies as they are cost-intensive and time-consuming or require an intravenous 

injection of contrast agents after each course of NAC [3]. 

A promising functional imaging technique that can visualize blood vessels is photoacoustic (PA) imaging. 

Hemoglobin and oxyhemoglobin are widely used absorbers in photoacoustics, which visualize blood vessels 

in the breast with sub-millimeter resolution at depths of more than 5 cm [6]. Due to its ability to visualize 

deep blood vessels in high resolution and its non-invasive nature, PA imaging could be a viable option to 

replace the current standard of care imaging modalities in monitoring NAC in breast cancer. However, for 

longitudinal imaging with PA imaging, image registration is needed as repositioning of the breast lead to 

deformations in the vasculature and the breast leading to difficulties in quantitative analysis of the changes 

that occur in the breast during the treatment. 

 

2.2 Research problem statement  
An image registration framework is needed to follow the treatment progress and do a quantitative analysis. 

Twente Photoacoustic Mammoscope 3 is used as a PA imager for this research, which uses a breast-

supporting cup to improve the light distribution and stabilize the breast to prevent motion artifacts. 

However, that is not enough to make the images reproducible. Due to the ability of breast tissue to change 

shape, repositioning the breast will introduce repositioning errors and may change the field-of-view. Images 

should be aligned through image registration to find the potential imaging biomarkers to evaluate the 

treatment response so that local variations of PA signal intensities can be tracked over time. There is a need 

for an automatic and accurate image registration framework for tomographic PA images.  
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2.3 Research objectives and research questions 
The objective of the research is to: 

- Develop a machine learning-based framework for the registration of PA images. 

- Validate whether the framework is suitable for longitudinal imaging to monitor neoadjuvant 

chemotherapy. 

These objectives lead to the overarching research question of this thesis: How can we develop and validate 

an accurate and robust image registration framework to monitor the effects of neoadjuvant chemotherapy 

in breast cancer using photoacoustic images? 

In the upcoming chapters, these research questions will be addressed to guide the thesis to answer the 

overarching research question:  

Standard care of NAC and the role of PA 

1. Which imaging modalities are currently employed in standard NAC monitoring, and do these 

modalities meet the required criteria for effective monitoring 

2. Is PA imaging a viable alternative to existing standard imaging modalities for monitoring 

neoadjuvant chemotherapy (NAC), and if so, what are its advantages and limitations? 

The image registration problem 

3. What are the challenges of conducting vascular image registration? 

4. What are the existing image registration frameworks, and are they suitable for aligning vascular 

images? 

5. How can the performance of image registration methods be accurately assessed and evaluated? 

6. What are the requirements of a robust image registration framework for longitudinal PA imaging? 

MUVINN registration framework 

7. What is MUVINN, and how does it differ from other existing image registration frameworks? 

8. What is the performance of MUVINN, and how is it compared to other image registration 

frameworks?  

Performance analysis of MUVINN 

9. What are the appropriate validation methodologies to assess its accuracy? 

10. How does MUVINN perform in a realistic scenario and a challenging scenario? 

 

2.4 Significance of the research 
Monitoring the treatment progress of NAC is crucial because the response to NAC varies among patients, 

and delayed start of effective treatment can lead to disease progression and unnecessary exposure to drug 

toxicity. However, the current standard of care imaging modalities for monitoring NAC have limitations, and 

functional imaging techniques, such as PA imaging, can be a good alternative.  

To find potential imaging biomarkers to evaluate the treatment response, images should be aligned through 

image registration, and local variations of PA signal intensities should be tracked over time. For this purpose, 

an automatic image registration for vascular images is needed. 



Standard of care in monitoring neo-adjuvant chemotherapy 
 

7 
 

3 Standard of care in monitoring neo-adjuvant chemotherapy 
This chapter provides some background information about NAC and standard-of-care imaging modalities for 

monitoring NAC. First, it explores the necessity of monitoring during NAC and the effectiveness of the 

currently used imaging modalities. Lastly, it considers the potential role of PA imaging as an alternative to 

these imaging modalities and evaluates its characteristics for NAC monitoring. 

 

3.1 NAC 
The main aim of NAC is to achieve a pathological complete response (pCR), defined as the disappearance of 

all invasive cancer in the breast after the completion of NAC. When pCR is reached, the risk of metastases 

and micro-metastases in distant organs, the frequency of the recurrences, and the mortality of patients are 

decreased [3]. 

However, patients' response to NAC varies depending on their breast cancer subtypes. Pathologic complete 

response (pCR) rate ranges from 6% to 33% across different breast cancer subtypes. It has been reported 

that pCR obtained after NAC is a suitable surrogate endpoint for disease-free survival in patients with 

luminal B/Human Epidermal growth factor Receptor 2 (HER2) -negative, HER2-positive (non-luminal) and 

triple-negative(TN) tumors but not for those with luminal B/HER2-positive or luminal A tumors [7].  

However, prediction models based on these tumor histopathological characteristics are insufficient. Within 

these subgroups, responses to chemotherapy also show considerable variation. For instance, HER2-positive 

patients often receive dual HER2 blockade with trastuzumab and pertuzumab in combination with cytotoxic 

chemotherapy, which yields a high pCR rate. However, a significant percentage of HER2-positive patients still 

do not achieve a pCR or near pCR [8].  

In such cases, a whole course of NAC, which can last about four months, leads to a delayed start of another 

treatment and unnecessary exposure of the patient to the toxic effects of the drugs used [3]. Therefore, 

accurate evaluation of the efficacy of NAC is crucial to distinguish responders from non-responders, to avoid 

unnecessary exposure of non-responders to the toxicity and costs of ineffective treatment, and to prevent 

further disease progression due to postponed surgery. The ability to identify patients with tumors that have 

a high likelihood of achieving a pCR before starting NAC or at the first cycles of NAC can have a major impact 

on individualized treatment. 

 

3.2 Imaging modalities  
In current clinical practice, structural imaging techniques like magnetic resonance imaging (MRI), ultrasound 

(US), and mammography is performed to monitor tumor response during NAC. These techniques use lesion 

size and volume changes to predict the NAC response. However, changes in tumor size occur with a delay to 

changes in the tumor microstructure, and the changes in tumor size often do not correlate with patient 

outcome [3–5]. 

Functional imaging techniques provide valuable insights into tumor characteristics during chemotherapy, 

specifically capturing changes in microstructure, vascularization, and metabolic activity after the initial 

treatment cycle [3]. These techniques include positron emission tomography (PET), dynamic contrast-

enhanced (DCE)-MRI, diffusion-weighted imaging (DWI), color Doppler imaging, elastography, and 

photoacoustic (PA) imaging, from which color Doppler imaging, elastography, and photoacoustic (PA) 

imaging are only used in research. However, some of these methods are cost-intensive, time-consuming, or 

require an intravenous injection of contrast agents after each course of chemotherapy [3]. 
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The following sections will discuss some imaging modalities used for monitoring NAC, highlighting their 

characteristics, benefits, and limitations. 

 

3.2.1 Mammography 
In mammography, signs of tumor lesion calcification disappearance and changes in tumor size and density 

can be used to predict breast tumor response to NAC. Mammography can show the malignant calcification 

well, but it is demonstrated that the presence of residual microcalcification after NAC is not always an 

indication of a residual tumor burden. Instead, residual microcalcification can result from residual tumors 

and byproducts of necrotic tumor cells post-treatment [9].  

In addition, Skarping et al. compared the size of tumors evaluated by mammography and ultrasound after 

NAC and reported the sensitivity and specificity of mammography as 65% and 81%, respectively. This study 

also showed that the agreement rate between mammography and pathological assessment in pCR was only 

43% [10]. Thus, although mammography is highly specific in detecting tumors, it overestimates the tumor 

size in about half of the patients. It shows a poor consistency between mammography and pathological 

results after NAC. 

Next to the challenges regarding prediction accuracy, the patient is also exposed to X-ray radiation using 

mammography, which can be harmful for repetitive measurements. Due to this, most experts consider 

mammography unsuitable for monitoring NAC in breast cancer [11]. 

In conclusion, mammography cannot be a gold standard for assessing the efficacy of NAC in breast cancer 

due to several limitations:  

- Residual microcalcification after NAC is often unrelated to the residual tumor. 

- It is unable to determine the changes in tumor size accurately. 

- It has X-ray radiation, so it cannot be used to examine frequently. 

 

3.2.2 Magnetic resonance imaging 
MRI can accurately assess primary lesion dimension, multifocality, multicentricity, and lymph node 

involvement for tumor response to NAC [12]. The therapeutic effect can be judged mainly by morphology 

and by measuring the change in the maximum diameter of the lesion in conventional MRI. Lesion size 

measured by MRI shows a higher correlation with pathological examination than mammography, 

ultrasound, or clinical palpation [11]. However, MRI tends to overestimate the size of residual cancer due to 

chemotherapy-induced fibrosis and inflammation [13]. 

DCE-MRI and DWI-MRI can improve the monitoring of breast tumors by evaluating functional parameter 

changes during NAC. DCE-MRI can reflect tumor tissue changes based on contrast distribution. DWI-MRI can 

reflect changes based on apparent diffusion coefficients (ADC), a quantitative measure of the diffusivity of 

water. ADC provides information related to tumor cellularity and the integrity of cell membranes, which are 

affected by the intra-tumoral changes induced by chemotherapy [12]. 

3.2.2.1 Dynamic Contrast Enhanced-MRI 

DCE-MRI is a functional MRI technique that requires an intravenous contrast injection of a low molecular 

weight T1-shortening paramagnetic compound like gadolinium. It can quantify changes in tumor 

microvasculature, cell density, hypoxia, metabolism, and stiffness to monitor NAC efficacy [14]. Parameters 

that DCE-MRI can measure to monitor NAC are Ktrans (contrast agent plasma/interstitial transfer rate 
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constant), Kep (intravasation rate constant), Ve (extravascular and extracellular volume fraction), and longest 

tumor diameter [15]. Despite its high sensitivity, DCE-MRI exhibits lower specificity [14]. While it has proven 

effective in predicting TN or HER2-positive cancers, its accuracy is reduced for ER-positive/HER2-negative 

breast cancers [8]. Furthermore, DCE-MRI has several limitations which make it unsuitable for repeated use, 

including its high cost, long duration, and requirement of intravenous contrast agents [16] 

3.2.2.2 Diffusion-weighted imaging 

DWI-MRI can assess the efficacy of NAC in patients with highly cellular breast cancers. DWI can 

quantitatively measure the impedance and motion of water in tissue. In the case of tumor, it shows 

restricted free water molecule movement and lower ADC values. During NAC, tumor density and cellularity 

decrease, and the ADC values rise, even before the tumor's size change can be detected. However, DWI has 

some limitations, such as poor spatial resolution, prone to motion artifacts, and difficulty characterizing 

specific subtypes of breast cancer [4]. 

To summarize, the main limitations of MRI to assess the efficiency of NAC are: 

- Conventional MRI tends to overestimate the size of residual cancer. 

- DCE-MRI requires intravenous contrast injection, making it unsuitable for repeated use during 

treatment due to its high cost and long duration. 

- DWI has limitations like poor spatial resolution, susceptibility to motion artifacts, and difficulty 

characterizing specific breast cancer subtypes. 

 

3.2.3 Ultrasound  
Ultrasound (US) can monitor the changes in size, shape, vascularity, and elasticity during NAC safely and 

inexpensively. The conventional US can describe tumors' size, morphology, and boundary. Color Doppler can 

describe vascularity, and elastography can describe the elasticity of the tumor [11]. 

Although the US can be used for both structural and functional imaging, there are several reasons the US 

could not be the first choice for NAC monitoring. US diagnosis depends on the operator's skills, the scanning 

time is relatively long, and it cannot accurately distinguish tumor tissue from normal gland tissue [11] and 

fibrotic scar tissue [17]. Moreover, due to its hand-held nature, imaging and registering the whole breast is 

challenging, and the reproducibility is low [18]. 

Baumgartner et al. concluded that conventional US imaging is insufficient to predict pCR due to its low 

accuracy, with a sensitivity of 60.8% and specificity of 78.0% for the US-predicted residual tumor burden 

[19]. The lower prediction efficiency might be caused due to the potential limitation of the ability of the US 

to distinguish viable tumor tissue from fibrotic scar tissue [17] or gland tissue [11]. 

3.2.3.1 Color Doppler Imaging 

Color Doppler imaging can evaluate functional parameters, such as tumor vascular distribution, to assess the 

response to NAC. Kumar et al. found that Doppler ultrasound has a high sensitivity but low specificity, with a 

sensitivity and specificity of 91.7% and 38.5%. A biomarker that may reflect the efficiency of NAC is an early 

decrease or disappearance of tumor vascularity, which can be evaluated with intratumoral flow signals (e.g., 

RI, PI, and Vmax).  

However, Doppler has several limitations. Doppler cannot assess microvascular circulation, while tumor 

growth depends on microvascular density. Flow velocity below 1 cm/s is challenging to detect. Contrast 

agents, such as microbubbles, are needed to overcome this limitation. Like conventional ultrasound, Doppler 
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has a low reproducibility and depends highly on the operator’s skills. Small low-pressure vessels can be 

influenced by probe pressure [20]. 

3.2.3.2 Elastography 

Strain elastography (SE) and shear wave elastography (SWE) are commonly used for breast cancer 

evaluation. The decrease in tumor stiffness is a good predictor of a pathological response during NAC. SE can 

measure the tissue softness and hardness to evaluate NAC efficacy. The evaluation compares the elastic 

score and strain rate ratio before and after NAC. SWE can measure the value of tissue elasticity, which is the 

absolute value of Young's modulus [11]. 

According to a review by Kong et al., the sensitivity and specificity of assessing tumor changes by SE after 

two treatment cycles were 83.3% to 84% and 80% to 85%, while the sensitivity and specificity of determining 

tumor changes by SWE after two NAC cycles were 72.9% and 85.7% [11]. 

However, certain factors can affect the results of SE and SWE for monitoring tumor response to NAC. Barr et 

al. showed that breast thickness and lesion depth are essential factors affecting the quality of elastography 

images [21]. SE is more affected by the thickness and lesion depth than SWE [22]. Higher hardness caused by 

fibrosis or hyaline degeneration and uneven internal hardness of the tumor lesions after NAC can affect the 

measurement results [11]. Additionally, SWE can be influenced by a patient’s breathing [17]. The operator's 

experience and knowledge also significantly impact the measurement results, like the conventional US [11]. 

To summarize, the US has some limitations for determining the efficiency of NAC: 

- Conventional US, color Doppler imaging, and elastography highly depend on the operator’s 

skills. 

- It is difficult to distinguish tumor tissue from fibrotic scar tissue or gland tissue with conventional 

US. 

- Color Doppler has a low specificity.  

- Elastography can be affected by the thickness and lesion depth. 

 

3.2.4 Positron emission tomography  
PET/CT imaging measures NAC-induced changes in 18F-FDG uptake by calculating the change in standardized 

uptake values (SUV). A study showed that PET/CT has a high sensitivity of 100% but a lower specificity of 

63%, leading to delays in definitive treatment and unnecessary biopsies [23]. In addition, there are several 

other reasons why PET/CT cannot be standardized in assessing NAC efficacy [24]: 

- It has low spatial resolution. 

- The uptake of radioisotope varies on tumor subtype. 

- It cannot reliably detect lesions measuring <1cm to differentiate benign from malignant lesions, 

which leads to a high false positive rate. 

- It uses ionizing radiation. 

A summary of the literature research about NAC efficacy studies can be found in Table 12 in Appendix A. 

 

3.3 Photoacoustic Imaging  
PA imaging is a promising functional imaging technique that can visualize blood vessels [25]. 
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PA imaging is a hybrid modality that combines optical spectroscopic contrast with ultrasonic resolution, and 

imaging depth [26]. In PA imaging, certain tissue constituents absorb short pulses of near-infrared (NIR) light 

and get thermalized. As a reaction, the tissue will expand, creating an initial pressure distribution in the 

tissue. When the pressure relaxes, acoustic waves will be emitted that propagate to the surface of the tissue 

[26]. US transducers can then detect acoustic waves to reconstruct an image that shows the map of initial 

pressure distribution in tissue [27]. 

Optical imaging provides benefits of light, like high and spectrally selective optical contrast. Acoustic imaging 

provides the benefits of sound, like high spatial and temporal resolution in deep tissue, due to ultrasound 

waves propagating in tissues with lower attenuation than optical signals [18]. It also results in fewer tissue 

scattering artifacts because US scattering in tissue is 2 to 3 orders of magnitude less than optical scattering 

[17]. 

Five chromophores in human tissue can absorb deeply penetrating NIR light: hemoglobin, oxyhemoglobin, 

lipids, melanin, and water [28]. Hemoglobin and oxyhemoglobin are widely used absorbers in 

photoacoustics. It can visualize blood vessels in the breast with sub-millimeter resolution at depths of more 

than 5 cm [6]. Figure 1 shows an example of a photoacoustic image as maximum intensity projections 

(MIPs). 

 

 

Figure 1: Photoacoustic breast image 

 

3.3.1 Role of PA in NAC monitoring 
PA imaging technology is not widely available in clinical settings like other imaging modalities such as 

mammography, US, and MRI. PA imaging for monitoring NAC is a relatively new field, and its clinical 

validation is ongoing. However, it could be a valuable alternative due to its ability to image deep breast 

vessels and provide hemoglobin concentration, which is valuable for detecting changes in vascularization 

associated with disease progression. . It has favorable characteristics for longitudinal imaging, such as no 

carcinogenic potential, no necessity for a contrast agent, and non-invasive and painless nature for patients.  

PA imaging can help monitor tumor’s response to NAC by visualizing changes in tumor vasculature. PA 

imaging can detect these changes, allowing for early assessment of treatment effectiveness.  

A limited amount of research has been conducted on this topic. There are few vascular features that have 

shown differences between responder and a non-responder. These features could be used to predict the 

response on NAC, as these features can be visualized with a photoacoustic imager. The reported 

characteristics are:  

- Regions with the highest vessel density often correspond with the tumor region [29]. 
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- Higher baseline vessel density is observed before NAC in responders [30, 31]. 

- Reduction in vascular volume of the lesion side and vascular discrepancy between the normal side 

and lesion side is observed in responders [31]. 

- Increase in tortuosity of vasculature surrounding the tumor was detected before the NAC and 

decreased perfusion at the tumor core, increased hypoxia, strong contrast at the tumor rim due to 

increase in hemoglobin concentration caused by the reperfusion of blood vessels that had become 

blocked due to the treatment [32].  

- Decrease in mean tumor sO2, especially at the periphery compared to the core tumor regions [33]. 

However, it is not clear if these changes are associated with pCR. More research is needed to find the 

biomarker related to NAC effectiveness in PA imaging. For a better understanding of changes over time 

during NAC, the structures will need to be aligned with each other. Although the breast-supporting cup 

improves the light distribution and stabilizes the breast to prevent motion artifacts, it is not enough to make 

the images reproducible. Due to the flexibility of the breast tissue, repositioning the breast will introduce 

repositioning errors and may change the field-of-view. An image registration framework would enable a 

more comprehensive analysis of the vasculature changes over time. 

 

3.4 Chapter discussion & conclusion 
The main aim of this chapter was to (i) give the clinical context of this research, (ii) investigate which 

methods are currently used to monitor the tumor response to NAC and if these methods meet the 

requirements for effective monitoring, and (iii) to look into the characteristics of PA imaging to see if it could 

be a viable alternative for these methods. 

The literature examined in this chapter outlines why the mentioned methods are not sufficient for early 

monitoring of the tumor response to NAC. Specific criteria need to be met to achieve effective monitoring of 

tumor response to NAC. These criteria have been formulated based on insights from the literature, which 

revealed that existing methods struggled to meet the following essential requirements for effective early 

monitoring of tumor response to NAC: 

- The imaging modality should be able to demonstrate the changes after the first cycle. 

- The imaging modality should be suitable for repetitive use after each cycle. 

- The imaging modality should exhibit reproducibility for fair comparison of images over time. 

The current standard of care monitoring techniques for NAC in breast cancer present some limitations. 

These limitations primarily relate to challenges in tracking biomarkers related to NAC efficacy, lack of 

reproducibility, and the invasive nature of certain imaging technologies for patients. 

Functional imaging techniques can detect NAC efficacy in early cycles as changes in tumor microstructures 

occur earlier than a change in tumor size. Studies have shown that vasculature changes during the course of 

NAC. In this context, PA imaging emerges as a promising alternative for NAC monitoring. PA imaging has a 

unique ability to provide high-resolution images of the vasculatures without ionizing radiation or contrast 

agents. 

However, despite its potential, PA imaging is not widely available at clinics. Further research is needed for a 

deeper understanding of the biomarkers that can accurately assess treatment response to NAC. An image 

registration framework would be required for reproducibility of the images and comprehensive analysis of 

changes over time.   
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4 The image registration problem 
Longitudinal imaging requires that the acquired images are comparable to each other over time. Image 

registration makes the images comparable by matching the same anatomical structures geometrically, which 

enables a more in-depth analysis of medical images. During NAC, minor changes may occur in the 

vasculature, which might be missed, and false vasculature changes might be detected because of 

misalignment. Also, aligning the vasculature makes it easier to detect potential biomarkers for monitoring 

the tumor response. Therefore, accurate registration of PA images is desired for monitoring the tumor 

response to NAC. 

This chapter will explain the definition of image registration, explore different image registration 

frameworks and formulate the requirements of a robust image registration framework. Finally, the role and 

examples of evaluation metrics will be described. 

 

4.1 Image registration 
Image registration is the process of aligning two or more images based on image appearances. Generally, 

there are two inputs for this process: a reference image, also known as a fixed image 𝐹 (x), and 

a moving image 𝑀(x). The moving image will be deformed to correspond to the fixed image geometrically. In 

other words, the goal is to find a displacement u(x) that makes 𝑀(x + u(x)) spatially aligned to 𝐹(x).  

Registration of two images can be posed as a minimization problem in which the loss function is minimized 

with regard to desired spatial transformation 𝑇, that maps the voxels of 𝑀 to those of 𝐹.  The loss function 

measures the dissimilarity between the fixed and the transformed moving images. By iteratively improving 

estimates for the desired T, the images are registered such that the defined loss is minimized [34]. The 

minimization problem is expressed as:  

𝑇̂ = argmin
𝑇

 𝐿𝑑𝑎𝑡𝑎 (𝐹, 𝑇(𝑀)) +  𝛼𝐿𝑟𝑒𝑔 (𝑇) 

Ldata is the loss function to measure the similarity or dissimilarity between the moving and fixed images. 

Adding a regularization term Lreg, to the loss function penalize convergence to unrealistic transformations. It 

prevents unrealistic deformations and smoothens deformation fields. The α is a tunable parameter that 

determines the proportionality between the data and regularization terms. The higher the α, the smoother 

the solution [35]. As finding an optimal transformation is a minimization problem, there is no unique 

solution to this problem in general. 

 

4.2 Challenges of vascular image registration 
There are several reasons why image registration is needed for longitudinal PA imaging. In PA images, 

repositioning the breast can cause changes in light fluence, field-of-view, and the geometrical positions of 

the blood vessels. A breast-supporting cup can be used to improve the reproducibility of images [29]. 

However, the position of the vessels can still change significantly inside the cup due to factors like patient 

positioning, breast compression during imaging, and respiration due to the deformability of the breast and 

the operator’s experience. These changes can challenge the quantitative evaluation of the temporal vascular 

changes [29], so image registration is needed to overcome this issue.  

Vascular image registration is challenging compared to image registration of other medical images [36]. 

Firstly, large image regions in vascular images are non-vascular and relatively textureless. The blood vessels 

are the only predominant feature. Secondly, the widths of blood vessels can be variable. Larger blood vessels 

require different transformations than smaller structures. Also, a precise registration is necessary as the 
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vascular structures are relatively small. Thirdly, specific to breast imaging, the breast is quite deformable and 

repositioning the breast can lead to complex and unknown deformations of the vessels. An additional 

challenge for PA imaging is that the PA imaging technique is not widely used in clinics. Therefore, a large 

data set is unavailable, limiting the use of supervised or learned image registration approaches. 

 

4.3 Examples of image registration frameworks 
Traditionally, image registration was performed using computer vision and image processing techniques, 

which relied on manual feature extraction and optimization tasks. However, over the past years, significant 

growth in the development and use of deep learning-based registration methods has been observed due to 

the rapid improvements in computational speed with GPUs. Deep learning-based image registration 

methods use neural networks for image registration tasks. Particularly, convolutional neural networks (CNN) 

are often used in this field. The benefit of deep learning-based image registration techniques is that the 

network automatically extracts and learns complex image features and offers end-to-end learning [34].  

 

4.3.1 Elastix 
Elastix is an open-source software toolkit developed at the Image Sciences Institute (ISI) in University 

Medical Center Utrecht, Netherlands. The primary purpose of Elastix is to automate the process of aligning 

medical images, and it does not rely on a deep learning network.  

Elastix uses a parametric approach for image registration, in which the number of possible transformations is 

limited by introducing a parametrization of the transformation. It requires the specification of a 

transformation model to align the images. Elastix supports a variety of transformation models, allowing the 

user to choose the one that best fits a specific registration problem. Some standard transformation models 

supported by Elastix include rigid, affine, B-spline transformations, etc. [37]. The advantage of using a pre-

determined transformation model is that it is computationally efficient, so it is faster and could be more 

suitable for real-time applications. However, it may be less flexible and prone to errors as the user must 

know how to define the model. 

Elastix does intensity-based registration by optimizing similarity metrics that measure similarity or 

correspondence between pixel intensities in the image pair, such as mean squared differences, mutual 

information and normalized correlation coefficient.  

Elastix uses a multi-resolution approach to register images. It starts with downsampled, low-resolution 

images and progressively refines the transformation at higher resolutions [37]. 

The benefit of Elastix is that it can perform various types of image registration tasks, such as 2D or 3D, from 

rigid to non-rigid, depending on the customization. Users can select transformation models and adjust 

similarity metrics to their specific image registration task. However, this requires knowledge to finetune the 

parameters. Just like deep learning-based image registration framework, it can be challenging to understand 

why specific registration results were produced. 

 

4.3.2 Implicit neural representation 
In recent years, CNNs have been widely used for image registration purposes. Generally, a trained CNN can 

predict the deformation faster than conventional iterative approaches. However, it comes at the cost of 

reduced accuracy, and training a CNN network requires large training sets, which may not always be 

available, especially for medical imaging applications that are not widely used.  



The image registration problem 
 

15 
 

To overcome the last mentioned limitation, implicit neural representations (INR) introduced by Wolterink et 

al. can be used. INR uses a fully connected feedforward neural network, often called a multilayer perceptron 

(MLP). The network is optimized for each new image pair, so it does not need a training set [38].  

INR takes fixed image coordinates as inputs and gives the displacement field as an output. The objective is to 

find a transformation: 𝜙(𝑥) = 𝑢(𝑥) + 𝑥, where 𝑢(𝑥) is the displacement field and 𝑥 is the coordinates of the 

fixed image, so the coordinate 𝑥 in the fixed image would correspond to the coordinate 𝜙(𝑥) in the moving 

image [38].  

Unlike CNN, INR operates on continuous coordinates within the spatial domain, so it considers every point in 

the spatial domain to be a continuous variable. INR implicitly represents deformation vector field (DVF) 

within the weights of a neural network instead of explicitly representing it as a grid-based representation 

[39]. Due to INR’s ability to represent a function continuously, it is not restricted to any particular grid 

resolution or image size [38]. By using MLP, INR can numerically compute gradients of the transformation 

with respect to coordinates so that the derivatives can be easily computed. Thus, techniques such as 

interpolation, which can introduce errors, are not needed [40].  

As mentioned before, another benefit of using INR is that there is no need for a training set. The network is 

trained for one specific image pair, so training is required for every new image pair. Not requiring a training 

set is particularly valuable for image registration tasks where large datasets are unavailable [38]. However, 

the image registration task will take longer as new training is required for every image pair. Additionally, just 

like other deep learning-based approaches, it is hard to interpret how a network works, making it difficult to 

fully understand an image registration outcome. 

 

4.4 Requirements of a robust image registration framework 
Certain requirements need to be fulfilled to create a robust image registration framework for longitudinal PA 

imaging. Specific criteria have been defined for this thesis to evaluate if the framework is suitable for 

facilitating longitudinal PA imaging. These criteria serve as benchmarks to assess the framework's 

performance, reliability, and suitability for monitoring NAC treatment efficacy over time: 

- High accuracy: The primary goal is to minimize misalignment between structures or landmarks in the 

images. This can be measured using evaluation metrics such as the Dice similarity coefficient (DSC) 

and target registration error (TRE). 

- Efficiency: Although it is not for real-time use, efficiency is still needed. The framework should offer 

accurate registration results in an acceptable timeframe without sacrificing too much accuracy. 

- Ability to correct non-rigid deformations: The deformation of the vasculature of the breast can be 

complex as the breast is highly deformable due to its flexibility. Therefore, the framework should be 

able to support non-rigid local registration [41]. 

- Robustness to noise: The PA image is sparse and contains a limited amount of structures to be 

aligned, while it contains a large non-vascular background area with potential noise. A robust 

registration framework should be insensitive to such noise. 

- Robustness to intensity variations: PA images can show varying intensities due to illumination 

inhomogeneity. A robust registration framework should be invariant to such variations [42].  

- Using a multiscale approach: The sizes of the vessels can be variable, so a multiscale approach will 

be beneficial for aligning structures of different sizes. Many frameworks have shown that adopting a 
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multiscale approach is effective as the framework can handle both global and local misalignments by 

working at multiple image resolutions [37, 43]. 

- Robustness to topological changes: During the treatment, topological changes in the vasculature can 

alter the structure of the blood vessel due to physiological or pathological processes. Some vessels 

might appear or disappear due to the effect of treatment or disease progression [29, 32, 44, 45]. The 

diameter of vessels might also vary due to physiological changes [32]. The registration algorithm 

should be robust to such changes. 

If the image registration framework fulfils these criteria, it will indicate that the chosen framework is robust, 

accurate, and capable of delivering reliable results for longitudinal PA imaging for NAC monitoring. 

 

4.5 Evaluation metrics 
Image evaluation metrics provide a systematic and objective way to evaluate the images instead of 

subjective judgements. They enable comparisons between the image registration qualities.  

Each image evaluation metric has its objectives, so it is crucial to select metrics that fit specific research 

goals. After literature research, the metrics were categorized based on their functions in five different 

categories. From each category, one metric was picked to assess various aspects of image registration 

quality: 

- Intensity-based metrics: These metrics measure the similarity between the voxel intensities in the 

images. Peak signal-to-noise ratio (PSNR) and Normalized Cross-Correlation (NCC) are chosen for this 

category. PSNR measures the similarity between the images based on the voxel intensity.  NCC 

measures the similarity by comparing the voxel intensities of between corresponding patches of the 

images. Due to normalization, it is less sensitive to intensity variations. 

- Perception-based metrics: These metrics measure similarity based on characteristics that align with 

human visual perception. Structural Similarity Index Measure (SSIM) is chosen for this category. 

SSIM measures the similarity between the images by assessing changes in luminance, contrast, and 

structure, which is comparable with the human visual perception.  

- Distance-based Metrics: These metrics measure how far apart specific points in two images are. 

Target Registration Error (TRE) is chosen for this category. It measures the misalignment by 

quantifying the Euclidean distance between landmark points in the registered image and reference 

image. 

- Overlap-based metrics: These metrics measure the spatial overlap between the images. Dice 

Similarity Coefficient (DSC) is an often used method in medical imaging and is chosen for this 

category. DSC analyzes the alignment of segmented structures by comparing the overlap of regions 

against the average size of these regions. 

These metrics offer not only mathematical insights but also perceptual information, ensuring a rounded 

evaluation. Combining all five mentioned image evaluation metrics can provide a comprehensive view of 

image registration quality. However, the absolute values of each metric can be difficult to interpret as their 

values depend from image modality and image registration problem, so to analyze the image registration 

quality, relative change between before and after image registration is calculated in percentage to show the 

impact of image registration. This relative is calculated in percentage with this formula: 

𝛥𝑚𝑒𝑡𝑟𝑖𝑐 = ((𝑎𝑓𝑡𝑒𝑟 − 𝑏𝑒𝑓𝑜𝑟𝑒) ∕ 𝑏𝑒𝑓𝑜𝑟𝑒) ⋅ 100 
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The definition and objective of each metric will be described to explain why these metrics were chosen for 
this research. 
 
 

4.5.1 Peak-signal-to-noise ratio 
The simplest and most widely used quality metric is the mean squared error (MSE), computed by averaging 

the squared intensity differences of transformed and fixed image voxels.  

MSE is defined as: 

 
MSE =

1

|Ω𝐹|
∑[𝐹(𝑥, 𝑦, 𝑧) − 𝑀(𝑇(𝑥, 𝑦, 𝑧))]

2
 

(1) 

with ΩF the domain of the fixed image 𝐹 , and |ΩF | the number of voxels.  

Peak signal-to-noise ratio (PSNR) is a metric which is defined via the MSE from Equation (1): 

 
𝑃𝑆𝑁𝑅 = 20 ⋅ log10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) 

(2) 

where 𝑀𝐴𝑋𝐼 means the maximum intensity value of the image. It considers differences between the two 

images as noise or error. 

PSNR focuses on the differences in pixel intensity values between the two images. A higher PSNR value 

indicates a higher similarity between registered images, while the smaller PSNR value indicates poor 

similarity between images. PSNR is appealing because it is simple to calculate and has a clear physical 

meaning [46].  

 

4.5.2 Normalized cross-correlation 
The NCC is a commonly used intensity-based metric that quantifies how much the pixel intensities or values 

in two images correlate within the corresponding regions of two images. Instead of focusing on absolute 

values, the NCC considers the statistical distribution of intensity values, making the NCC more robust to 

variations in illumination and contrast [42, 47]. NCC is also often used as a similarity metric for the loss term 

for image registration studies [48].  

NCC is defined as: 

 
NCC =

∑[𝐹(𝑥, 𝑦, 𝑧) − 𝐹̅] ⋅ [𝑀(𝑇(𝑥, 𝑦, 𝑧)) − 𝑀̅]

√∑[𝐹(𝑥, 𝑦, 𝑧) − 𝐹̅]2∑[𝑀(𝑇(𝑥, 𝑦, 𝑧)) − 𝑀̅]2
 

(3) 

Here 𝐹(𝑥, 𝑦, 𝑧) and 𝑀(𝑇(𝑥, 𝑦, 𝑧) are the image intensity at the same position in the fixed image and the 

transformed moving image. 𝐹̅ and 𝑀̅ are the mean pixel values of the fixed image and the transformed 

moving image. So, the mean intensity values are subtracted, and then the image intensities of the 

transformed moving image and the fixed image are directly multiplied. The value will always be between +1 

and -1 due to normalization. The higher the number, the better the correlation.  

• A value of 1 indicates a perfect positive correlation (both signals are identical). 

• A value of -1 indicates a perfect negative correlation (one signal is the negative of the other). 

• A value close to 0 indicates little to no correlation (the signals are dissimilar). 
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4.5.3 Structural similarity index 
Many intensity-based metrics (e.g. PSNR) rely on quantifying errors between the images by quantifying the 

difference in the values of each corresponding voxel between the fixed and transformed image. These are 

widely used due to their clear physical meanings and simplicity to calculate. However, they do not match the 

perceived visual quality very well.  

SSIM perception-based method, which assesses the structural similarity between two images. SSIM metric 

extracts three critical features from an image and compares the two images based on these three features. 

The three features are luminance, contrast, and structure. Since luminance and contrast can vary across a 

scene, local luminance and contrast are used. It tries to replicate the human visual perception, which is 

highly capable of extracting structural information from a scene. In SSIM, the voxels have strong inter-

dependencies, especially when they are spatially close. These dependencies carry information about the 

structure of the objects [46]. 

SSIM score is given by: 

 SSIM (𝐱, 𝐲) = [𝑙(𝐱, 𝐲)]𝛼 ⋅ [𝑐(𝐱, 𝐲)]𝛽 ⋅ [𝑠(𝐱, 𝐲)]𝛾 (4) 

Here 𝑙 stands for luminance, 𝑐 for contrast and 𝑠 for structure. 𝛼 > 0, 𝛽 > 0 and 𝛾 > 0 are parameters used 

to adjust the relative importance of the three components. SSIM value is between 0 and 1. A value of 

1 indicates that the two given images are very similar or the same, while a value of 0 means the two given 

images are very different [46].  

In image registration, SSIM can tell how well the framework reserves the structural details of the reference 

image. SSIM can complement other metrics, such as overlap-based or distance-based metrics. Together, 

they can provide a more comprehensive view of registration quality, considering both structural similarity 

and spatial alignment. 

 

4.5.4 Target registration coefficient 
TRE is a distance-based metric in image registration assessment that measures the Euclidean distance 

between a specific reference voxel's position and the same voxel's position after the transformation. TRE 

validates the image registration performance by showing how accurately the framework aligns anatomical 

landmarks. 

The formula for calculating TRE is: 

 𝑇𝑅𝐸 = |√(𝑥𝐺𝑇 − 𝑥𝑇)2 + (𝑦𝐺𝑇 − 𝑦𝑇)2 + (𝑧𝐺𝑇 − 𝑧𝑇)2| (5) 

where 𝑥, 𝑦, 𝑧𝐺𝑇 stands for the x, y, and z coordinates of the voxel at the ground truth position and 𝑥, 𝑦, 𝑧𝑇  

stand for the voxel's x, y, and z coordinates at the transformed position. The mean value and the standard 

deviation value of multiple voxels from the image pair are used to evaluate the accuracy of the image 

registration. A low target registration error indicates that the image registration is performed well.  

 

4.5.5 Dice similarity coefficient 
DSC is an overlap-based metric that quantifies the similarity or overlap between two images by assessing the 

degree of voxel-wise overlap or agreement between the fixed and transformed images' segmentations. The 

benefit of using DSC for assessing image registration results is that it is sensitive to slight differences in 

overlap and can detect minor misalignments. DSC’s sensitivity is even more valuable in vascular image 

registration because vessels can have a width of only a few voxels. So, minor differences in distance can lead 
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to minimal to no overlap. A drawback is that the segmentation method and its performance can affect the 

DSC results. 

The Dice score can be calculated by [49]:  

 
𝐷𝑆𝐶 =  

2 ∗ |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

(6) 

where X stands for the fixed image and Y stands for the moving image. The Dice score ranges from 0 to 1, 

where a Dice score of 0 indicates no overlap between the segmented areas, and a Dice score of 1 indicates a 

complete overlap between the segmented regions, see Figure 2. 

 

 
Figure 2: Dice similarity coefficient [49] 

 

4.6 Chapter discussion & conclusion 
Image registration plays an essential role in the analysis of medical images by enabling the comparison of 

heterogeneous data.  

There are several challenges for analyzing PA images over time. First of all, there are no large data sets 

available. Secondly, vascular images contain large non-vascular and relatively textureless regions compared 

to other medical images, which can be challenging to register. Lastly, blood vessel widths are various, 

requiring precise registration at different scales. So, an image registration framework is needed that can 

overcome these challenges. Two image registration frameworks, Elastix and INR, were introduced in this 

chapter, which could possibly be used. 

Another aspect of image registration is the evaluation of the registration results. A list of criteria is formed 

for this thesis to ensure that the framework is suitable for our purpose, which is longitudinal PA imaging for 

monitoring NAC. A quantitative performance analysis is needed to assess if these criteria are fulfilled. 

Evaluation metrics can be used to quantify the accuracy and quality of the alignment achieved by the 

registration framework. Evaluation metrics will enable objective assessment of the image registration 

quality, surpassing subjective human judgments.  

Each metric has different objectives, so it is necessary to select the metrics that fit the purpose of the 

research. After literature research, the metrics were categorized based on their purposes and for each 

category, one or two metrics were selected to examine various aspects of the image registration. The final 

chosen metrics are PSR, SSIM, DSC, TRE, and NCC.   
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5 Algorithm: MUVINN 
The algorithm MUVINN stands for Multiscale Vesselness-based Image registration using Neural Networks. It 

is developed by Dr. B. De Santi at the Multi-Modality-Medical Imaging group (M3I) at the University of 

Twente, Netherlands. The framework is based on INR, developed by Dr. J.M. Wolterink [38]. 

MUVINN is a robust machine-learning framework optimized for unsupervised automatic image registration 

of photoacoustic images in a non-rigid method. MUVINN is based on INR, but it has been adapted to suit the 

application of vascular image registration. MUVINN will be used for this research to register three-

dimensional PA images.  

 

5.1 MUVINN architecture 
MUVINN uses a coordinate-based MLP with sinusoidal activation functions, which takes the coordinates of 

the reference image as an input to represent the displacement field, 𝒖(𝑥), ensuring that the transformed 

coordinates 𝚽(𝒙) =  𝒙 + 𝒖(𝒙) on the moving image anatomically correspond to coordinates 𝒙 in the fixed 

image. MUVINN consists of MLP with a sinusoidal activation function. The network consists of three inputs, 

six hidden layers, each containing 300 units with a sinusoidal activation function, except for the last layer, 

and three outputs in 3D image registration. See Figure 3. 

 

 

Figure 3: Overview of MUVINN frame work [50] 

 

MUVINN is optimized for vessel image registration due to the implementation of the Frangi vesselness filter. 

Frangi vesselness filtering is applied to PA images to enhance the signals from the vessels. The multiscale 

image registration is implemented by using a higher σ value at the start of the training and stepwise 

decreasing the σ during the training. By doing so, the network can align the images more efficiently and 

accurately by focusing on the prominent vessels first and then the smaller vessels, which appear later when 

the σ is reduced. This approach has shown improved robustness to noise.  

For each experiment, five values of sigma were defined 𝜎 =  {12, 9, 5, 3, 2}. For each sigma, 4000 training 

iterations were conducted, so the total number of training iterations was 20000. Intensities of the Frangi-

filtered images were adaptively modulated to improve image contrast. Portions of the image with low 

variability were enhanced to accentuate structures that were less visible in the image, while portions with 

high variability in intensity were attenuated. Adaptive modulation of intensity improved the homogeneity of 

voxel intensities, mitigating non-uniform illumination issues.  
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There are multiple benefits to using MUVINN for image registration of vessels. Firstly, it is simpler than other 

networks as it is unsupervised and does not require large training data like CNN. Like the original 

implementation of INR, MUVINN optimizes for each new image pair iteratively, so it does not generalize to 

unseen images. The network is only trained for one specific image pair, so the trained network only 

describes the transformation for the image pair that it is optimized for. However, there is still a generalizing 

aspect, as the network predicts the transformation for points that do not appear in training [39]. Secondly, it 

does not require any information about the transformation model beforehand. Thirdly, there is no 

restriction in different image sizes between the images in the image pair. MUVINN implicitly represents the 

displacement field continuously instead of explicitly using a discrete set of voxels.  

 

5.1.1 Loss function 
There are two terms in the loss function. The first term is a loss function regarding the data, and the second 

term is a loss function regarding the regularization. NCC between multiscale Frangi vesselness filtered 

images is used as a loss function. A drawback of using NCC as a loss term is that it treats all image 

components equally and may not capture the most effective features [48]. However, MUVINN solves this by 

applying multiscale Frangi vesselness filtering during the training. The multiscale approach is visualized in 

Figure 4. Starting from the top, each row shows the optimization results for each sigma from high to low. 

Figure 4a shows the size of the local patches on which the normalized cross-correlation is calculated. This 

patch length depends on the current sigma. The lower the sigma, the smaller the patch length. Figure 4b 

shows the training loss curve and c and d show the MIPs at the current phase's start and end. After the first 

iterations at sigma equal to 7, the framework succeeds in reducing the loss drastically. By the end of the first 

5000 iterations, image alignment is already improved. 

MUVINN network is easily differentiable as it is based on INR. A huge advantage is that MUVINN does not 

require numerical methods to compute regularization, while other traditional models do because 

regularization depends on the derivatives of the image [39]. Jacobian regularization is used to find smooth 

deformation fields without distortions. Jacobian regularization can penalize large expansion and shrinkage of 

vascular features. Weighing parameter α of 1 was used during the experiments. 

 

5.1.2 Activation function 
A sinusoidal representation network (SIREN) is implemented by using sinusoidal activation functions. It uses 

a sine as a periodic activation function: sin (𝜔 ⋅ Wx + b). Due to its use of the sine function, the output is a 

continuous value. This makes SIREN suitable for representing complex natural signals and their derivatives. 

The sinusoidal activation function has a superior ability to represent high-frequency information compared 

to ReLU [51]. Standard MLP based on ReLU activation functions struggles to represent high-frequency 

details, while SIREN can capture these details. 

Angular frequency ω is a hyper-parameter of SIREN that can tune the sine function's frequency. This ω 

depends on the presence of high-frequency details in the data. The higher the ω, the faster the MLP 

converges for the high-frequency components. Siren reports ω=30 to work well across a wide range of 

different tasks [39]. An angular frequency of ω=30 is implemented during the experiments. 
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Figure 4: Visualization of the coarse-to-fine strategy on image registration of a photoacoustic image pair. From top to 
bottom the different phases are shown in order. (a) Point sampling in the fixed image domain; (b) Training loss curve; (c) 

MIPs of the overlay at the end of the current phase [50] 

 

5.1.3 Implementation and training details 
The image coordinates were normalized in the range of [-1, 1] for all three dimensions. A segmentation mask 

of vessels and the skin was obtained of the fixed image using the Frangi vesselness filter and adaptive 

thresholding, where the threshold map exponentially decayed as a function of depth. The mask was dilated 

using a cubic structuring element of 3 x 3 x 3 to include the vessel edges.  

A random sampler randomly selected a batch of 200 points from the mask for each epoch. Every point in the 

sample mask has an equal chance to be selected, and a sample can be selected multiple times. A cubical 

patch of 5 x 5 x 5 was used for each coordinate from the random sampler to get the neighboring points as 
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well, leading to a total number of 200 ∙ 53 =  25000 coordinates for each training epoch. When the scale of 

the Frangi changes, the side length of the patch was changed as well according to the scale of the Frangi 

filtering in the iteration, which was 2.5 ∙ 𝜎 100⁄ . This allows the network to compute normalized cross-

correlation in smaller neighborhoods around the sampled coordinates during the optimization as the scale of 

Frangi decreases, see Figure 4. 

During the training, the fixed and the moving images are evaluated at the input and transformed coordinates 

by trilinear interpolation. A trilinear interpolator returns a value, a weighted average of the surrounding 

voxels, with the distance to each voxel taken as weight. 

Adam optimizer is implemented in MUVINN with a learning rate of 5e-5 with a learning rate decay of 5% at 

each point when the scale of Frangi decreased.  

A different number of epochs were used for the synthetically deformed data set compared to the serial 

image data set due to increased complexity in distortions in the serial image data set. One training consists 

of 5000 epochs for the synthetically deformed data set and 20000 epochs for a serial image data set. All 

training and tests were done on a Windows 11 machine with an Intel Core i9-11900K @ 3.5GHz, 128 GB RAM 

and NVIDIA RTX3090 24GB.  

 

5.2 Experimental evaluation of the framework with synthetically deformed data set 
The main purpose of MUVINN is to align the PA images over time. It should be able to align images when 

repositioning errors occur. Before acquiring a data set of repositioned images with a volunteer, it is 

necessary to validate the algorithm with synthetically deformed images. By using synthetically deformed 

images, no new volunteers are needed. Synthetically deformed images are beneficial for preliminary tests 

because they are easily-made, cost-efficient, and safe. It makes it possible to experiment the algorithm in a 

more controlled manner and to optimize the algorithm before acquiring a new serial image data with a 

volunteer. However, the disadvantage is that it is unknown how realistic this deformation is because it is 

synthetic. 

This chapter will describe how the synthetically deformed data set is created, evaluate how the framework 

works on the synthetically deformed data set, and compare its performance to another image registration 

framework, Elastix. 

 

5.2.1 Photoacoustic imager 
For the experiments conducted in this thesis, Twente Photoacoustic Mammoscope 3 (PAM3) is used as a 

photoacoustic imager.  

Twente Photoacoustic Mammoscope 3 (PAM3) is the 3rd generation imager of the PAMMOTH project. With 

this imager, it is possible to acquire photoacoustic and speed of sound reconstructions. The device has high 

throughput, possesses no carcinogenic potential, uses no contrast agent, and causes no pain or discomfort 

to patients [52]. It has the shape of a bed on which the patient can lie down in a prone position. The patient 

can put her breast in a cup-shaped hole. This hole is the imaging tank with 512 transducers and two laser 

heads. These are tuneable lasers that consist of an optical parametric oscillator [53]. 

In general, five different wavelengths are used according to the protocol. These wavelengths are 720, 755, 

797, 833, and 870 nm. Out of these five different wavelengths, 797 nm and 800 nm were used for the 

synthetically deformed image data, and 720 nm and 870 nm were used for serial PA image data. 
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Between the imaging tank and the breast, a 3D-printed transparent nylon cup supports the breast and 

improves the light distribution. There are eight different cup sizes for variable breast sizes. Water is used as a 

conductive medium for the US and PA imaging. The holes in the nylon cup allow water coupling [54]. The 

images of the imaging tank, breast-supporting cup, and the PAMMOTH imager can be seen in Figure 5. 

 

 

Figure 5: Imaging tank (Left), Nylon cup (Middle), Twente Photoacoustic Mammoscope 3 (Right) [54] 

 

5.2.2 Synthetically deformed data set 
Synthetically deformed images are generated by applying a random deformation field to the existing PA 

image. These images allow evaluation of the accuracy of image registration in a controlled scenario. 

For generating a random deformation field, a random displacement can be applied to each voxel in x, y, and 

z directions, which forms a displacement field together. This displacement field can be combined with a 

rotation of the image. However, this displacement field can be rough as it is random, so smoothing the 

displacement field with a Gaussian filter is needed. 

A toolkit called MONAI is used for creating synthetically deformed data. MONAI is an open-source deep-

learning framework designed for medical imaging tasks. Rand3DElasticd function is one of its key functions, 

which can apply random 3D elastic deformations to images. By choosing the deformation's magnitude range 

and the rotation range, the user can control the intensity of the deformation and apply it to the image [55]. 

The definition of each parameter of the function is provided in Table 1. 

 

Table 1: Parameter definitions of Rand3DElasticd function [55] 

Parameter Definition 

sigma_range Defines the range from which the standard deviation of the Gaussian kernel is sampled. 
This affects the smoothness of the displacement field. 

maginitude_range Defines the range for randomizing the magnitude of the elastic deformation. The two 
tuples are minimum and maximum values for the magnitude. 

rotate_range Controls the range of random rotation to be applied to the elastic deformation. Three 
tuples are given. Each tuple specifies the minimum and maximum rotation angle in 
degrees in order of x, y, and z-axis. 

prob Determines the probability of applying the elastic deformation. 

mode Specifies which interpolation is used to perform the elastic deformation. 

 

Creating a synthetically deformed data set involves constructing synthetically generated deformed images in 

three different intensity levels: low, medium, and high. Within each intensity level, there are five randomly 

deformed images. The original, undistorted image serves as the fixed image, while the deformed images 



Algorithm: MUVINN 
 

25 
 

serve as the moving images. The fixed image is considered as the ground truth for registration evaluation. 

This approach enables us to quantify the accuracy of image registration.  

In this dataset, two PA images from two different volunteers acquired for previous studies were modified in 

three different intensity levels of deformation and range of rotation angle. Each level shares the same 

parameter configurations for the transformation. As the level increases, the deformation's intensity and the 

rotation angle range also increase, which results in a greater deformation. The parameter setting used for 

creating a random deformation for each level can be seen in Table 2. Each volunteer contributes to one fixed 

image and fifteen moving images, resulting in a total of thirty image pairs. Table 3 presents an overview of 

all the image pairs within the synthetically deformed dataset. 

 

Table 2: Parameter setting of Rand3DElasticd function for each level 

Levels Parameter settings 

Low monai.transforms.Rand3DElasticd(keys=['fixed'], sigma_range=(5,5), magnitude_range=(50,50), 
rotate_range=(np.pi/36, np.pi/36, np.pi/36), prob=1, mode=['bilinear']) 

Medium monai.transforms.Rand3DElasticd(keys=['fixed'], sigma_range=(5,5), magnitude_range=(100,100), 
rotate_range=(np.pi/18, np.pi/18, np.pi/18), prob=1, mode=['bilinear']) 

High monai.transforms.Rand3DElasticd(keys=['fixed'], sigma_range=(5,5), magnitude_range=(150,150), 
rotate_range=(np.pi*3/36, np.pi*3/36, np.pi*3/36), prob=1, mode=['bilinear']) 

 

Table 3: List of images in the synthetically deformed data set 

Distortion intensity level Volunteer A Volunteer B 

Low 1a, 2a , 3a, 4a, 5a  1b, 2b, 3b, 4b, 5b 

Medium  6a, 7a, 8a, 9a, 10a 6b, 7b, 8b, 9b, 10b 

High  11a, 12a, 13a, 14a, 15a 11b, 12b, 13b, 14b, 15b 

 

5.2.3 Results MUVINN 
The same training parameters were used for all the image pairs for image registration. The details about the 

parameters used can be found in the Implementation and training details. 

The image registration results are evaluated based on the visual inspection and image evaluation metrics. 

The fixed and moving MIPs are displayed as overlay images before and after image registration for 

visualization. The displayed images are processed using Frangi vesselness filtering for visualizing vessels. The 

fixed image is blue, the moving image is red, and their overlap results in a shade of purple. One image pair is 

shown for each level of distortion. In total, three image pairs are shown. 

Various image evaluation metrics, such as PSNR, SSIM, DSC, and NCC, are used for quantitative evaluation. 

Definitions of these metrics are explained in the Evaluation metrics. The absolute metric values pre- and 

post-registration can be seen in Appendix C. The computation time can be found in Table 14 of  Appendix C. 

The structures exhibited excellent alignment for every image pair. The structures display consistency and 

accurate overlap, indicated by the purple shade in Figure 6. 

Two structures were observed that were misaligned in the highest level of distortion images of Volunteer B, 

which can be seen in Figure 7. 
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Figure 6: Coronal and sagittal MIPs of pre- and post-registration of synthetically deformed images 

 

 

Figure 7: Misalignments after registration 

 

All analyzed image pairs have improved in all three evaluated metrics; see Table 4. 

The highest mean post-registration PSNR was found in the groups with the lowest distortion intensity, and 

the PSNR decreased when the distortion level increased. However, the largest mean percentage change was 
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not in the lowest intensity groups. All image pairs have shown an increase in post-image registration PSNR, 

indicating that the registered image has an improved similarity compared to the unregistered image. It 

suggests that there is less voxel-wise difference between the registered image and the reference image.  

The mean percentage change in SSIM increased when the distortion intensity level was increased except 

between the medium and high levels in volunteer B. However, the absolute values showed that the mean 

post-registration SSIM decreased when the distortion intensity level was increased. The increase in SSIM 

after the image registration indicates that the registered image has a higher structural similarity to the 

reference image than the unregistered image. It suggests that registration with MUVINN increases the 

alignment of structural information and patterns.  

There were large changes in initial DSC levels between the different intensity levels of the distortion. The 

higher the distortion level, the lower the initial DSC values. The increase in DSC shows that the segmented 

regions of the reference image and the moving image have a higher overlap after the image registration. 

Generally, the percentage change in DSC increased with escalating distortion levels, reflecting the reduced 

overlap between segmentations in the unregistered and reference images. 

The percentage change in metrics usually increased when the distortion level was increased. However, 

looking at the absolute values of metrics in Appendix C, mean post-registration metric values decreased 

when the distortion level was increased. Thus, a larger increase in the metrics in the images of higher 

distortion levels does not mean that these images were better aligned than those from lower distortion 

intensity levels. The absolute values provided more information than the percentage difference between the 

pre- and post-registration values of the evaluation metrics. For example, two structures were misaligned in 

the highest level of distortion for volunteer B, which were in image pair 12b and 13b, shown in Figure 6. The 

percentage change of metrics showed that these two image pairs had the largest increase in metrics among 

their group. However, the absolute values showed that these image pairs had the worst absolute evaluation 

metric values among their group after registration. The large difference in evaluation metrics between the 

pre- and post-registration can be explained by the low pre-registration values, which also explains that the 

registration was more challenging compared to other pairs.  

 

Table 4: The percentage change of PSNR, SSIM, and DSC before and after the image registration 
Acronyms: PSNR = peak signal-to-noise ratio, DSC= Dice similarity coefficient 

 Volunteer A Volunteer B 

Lo
w

 d
ef

o
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at
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n
 

Image pairs ΔPSNR (%) ΔSSIM (%) ΔDSC (%) Image pairs ΔPSNR (%) ΔSSIM (%) ΔDSC (%) 

1a 8.23 32.62 923.09 1b 8.52 32.40 937.45 

2a 9.95 46.28 2595.27 2b 8.28 32.11 673.77 

3a 8.34 32.88 630.58 3b 9.71 40.25 2159.20 

4a 9.72 44.11 2123.77 4b 11.82 57.36 2891.96 

5a 8.86 39.37 3087.45 5b 9.24 39.35 2039.06 

Mean  9.02 39.05 1872.03 Mean  9.51 40.29 1740.29 

Standard 
deviation 0.70 5.61 949.25 

Standard 
deviation 1.26 9.18 821.35 

M
ed
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m

 d
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rm
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io

n
 6a 8.51 38.25 5078.21 6b 11.37 57.32 1211.52 

7a 9.83 47.99 4941.41 7b 10.12 49.64 4230.04 

8a 8.83 41.12 5208.39 8b 9.75 48.36 5579.42 

9a 8.22 36.39 4401.94 9b 11.65 61.94 2931.40 

10a 9.72 48.10 9422.72 10b 10.03 48.77 2385.43 

Mean  9.02 42.37 5810.53 Mean  10.58 53.21 3267.56 

Standard 
deviation 0.65 4.87 1826.82 

Standard 
deviation 0.77 5.46 1509.27 
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 11a 8.73 46.23 13901.46 11b 8.35 40.55 9950.23 

12a 9.67 50.67 5654.30 12b 11.31 62.15 10152.39 

13a 7.75 36.78 2057.23 13b 10.30 53.67 14815.37 

14a 9.36 49.77 11967.41 14b 9.90 49.14 4488.26 

15a 9.68 48.84 6714.32 15b 8.77 42.47 5310.47 

Mean  9.04 46.46 8058.94 Mean  9.73 49.60 8943.34 

Standard 
deviation 0.73 5.06 4313.28 

Standard 
deviation 1.07 7.84 3741.71 

 

5.2.4 Results Elastix 
Elastix was used to compare the performance of MUVINN with another automatic image registration 

method.  

The input images were pre-processed with the Frangi vesselness filter to make the results comparable to 

MUVINN. The same initial parameters were used for all the image pairs. For Elastix, two transformation 

models are used to correct for both linear and non-linear deformations, first rigid transformation and 

subsequently B-spline transformation model. A multi-resolution scheme with four pyramid levels was used. 

Each pyramid level is a down-sampled version of the original image, in which the first level is the coarsest 

image. Then, each following level represents the image in a better resolution. The number of iterations for 

each pyramid was equal to 500 for rigid and equal to 1000 for B-spline transformations. Finally, for the 

similarity term of the loss function, the AdvancedNormalizedCorrelation and the TransformRigidityPenalty 

were used as regularization. Details about the parameters can be seen in Appendix B. 

For visual inspection, the fixed and moving MIPs are displayed as overlay images before and after the image 

registration. The fixed image is displayed in blue, the moving image is displayed in red, and their overlap 

results in a shade of purple. One image pair is shown for each level of distortion, which is the same image 

pair as shown in Results MUVINN. The same image evaluation metrics are used as in the previous 

experiment. The absolute values pre- and post-registration can be found in Appendix C. 

All the image pairs showed a better alignment after registration, but almost every image pair had several 

visible misalignments, see Figure 8. In the lowest distortion level, some vessels were even more misaligned 

compared to pre-registration. Although there were many misalignments, no visible artifacts were detected. 
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Figure 8: Coronal and sagittal MIPs of pre- and post-registration of synthetically deformed images 

 

All analyzed image pairs have shown improvements in all three evaluated metrics. The percentage change of 

each metric can be seen in Table 5.  

The results showed that PSNR and SSIM increased less when the level of distortion was increased, except 

between the medium and the highest distortion of Volunteer B for SSIM. 

For DSC, it was the other way around. The higher the level of distortion, the larger the percentage increase 

of DSC. This was due to the low initial DSC values in images of higher-order distortion. However, the post-

registration DSC values were still lowest in the image pairs of the highest order of distortion.  

Additionally, within the same level of distortions, variations in metrics were quite significant between the 

two volunteers after the registration. Elastix showed large standard deviation values in post-registration 

metric values of each level of distortion compared to MUVINN. These values can be found in Table 6 in 

Comparison between MUVINN and Elastix. 

 

Table 5: The percentage change of PSNR, SSIM, and DSC before and after the image registration 

 Volunteer A Volunteer B 

Lo
w

 d
ef

o
rm

at
io

n
 

Image pairs ΔPSNR (%) ΔSSIM (%) ΔDSC (%) Image pairs ΔPSNR (%) ΔSSIM (%) ΔDSC (%) 

1a 5.46 24.77 616.76 1b 7.33 31.06 832.12 

2a 7.04 37.72 2157.20 2b 6.40 30.22 510.96 

3a 6.07 27.04 895.28 3b 6.91 35.43 1718.21 

4a 8.05 40.48 2124.36 4b 7.90 46.87 2847.53 

5a 8.27 38.90 3124.99 5b 7.07 36.06 1631.53 

Mean  6.98 33.78 1783.72 Mean 7.12 35.93 1508.07 

Standard 
deviation 1.09 6.53 917.13 

Standard 
deviation 0.49 5.93 812.98 
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 6a 6.35 31.64 4105.00 6b 6.02 39.60 868.81 

7a 6.58 37.50 4004.54 7b 6.87 39.93 3722.21 

8a 4.84 27.56 2905.63 8b 7.05 40.13 5355.68 

9a 6.13 30.27 3499.02 9b 5.99 42.89 2014.36 

10a 7.01 39.52 8469.52 10b 6.15 37.76 4116.53 

Mean  6.18 33.30 4596.74 Mean 6.42 40.06 3215.52 

Standard 
deviation 0.73 4.50 1982.71 

Standard 
deviation 0.45 1.65 1587.37 

H
ig
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n

 11a 4.49 27.64 8547.96 11b 5.00 29.33 6741.79 

12a 4.80 30.52 3409.75 12b 5.87 40.24 7646.81 

13a 4.79 25.49 3560.28 13b 5.51 35.29 11190.56 

14a 4.73 30.70 7213.75 14b 4.95 32.52 2614.17 

15a 5.42 33.04 4757.27 15b 4.76 29.02 3457.02 

Mean  4.84 29.48 5497.80 Mean 5.22 33.28 6330.07 

Standard 
deviation 0.31 2.63 2045.01 

Standard 
deviation 0.41 4.17 3085.13 

 

5.2.5 Comparison between MUVINN and Elastix 
Overall, every image pair exhibits improved alignment after registration for both MUVINN and Elastix. 

However, there are notable misalignments in almost all image pairs for Elastix. Within these misaligned 

regions, identical vessel structures are usually in close proximity, indicating that they are the same structure, 

yet fail to achieve perfect overlap compared to post-registration images using MUVINN. MUVINN had only 

two image pairs in the highest order of distortion, exhibiting one misalignment.  

Both frameworks also demonstrated improved evaluation metrics following the registration. However, the 

improvements achieved by MUVINN are notably higher in all metrics.  

Interestingly, the evaluation metrics reveal a considerable discrepancy between the two volunteers after 

registration in Elastix and MUVINN. Looking at the standard deviation within the same level of distortion, 

Elastix showed larger variance in all levels, except for DSC in the highest intensity of distortion. The standard 

deviation values of each distortion intensity level can be found in Table 6. 

A higher standard deviation implies more significant variability or inconsistency in the corresponding metric. 

The higher standard deviation of PSNR and SSIM can indicate inconsistent image similarity based on the 

intensity between the image pairs. A high standard deviation of DSC suggests that the quality of structure 

alignment varies among the different image pairs. This indicates that the performance of Elastix is more 

sensitive to variations in vessel structures during the image registration process than MUVINN, leading to 

inconsistent registration quality and reduced reliability. 

 

Table 6: Standard deviation of post-registration PSNR, SSIM, and DSC of both volunteers 

Intensity of distortion Framework PSNR SSIM DSC 

Low  MUVINN 0.49316 0.019173 0.020354 

Elastix 0.61178 0.028253 0.062242 

Medium MUVINN 0.28324 0.011063 0.029097 

Elastix 0.55309 0.027672 0.058283 

High MUVINN 0.40067 0.015419 0.033706 

Elastix 0.50250 0.027093 0.018640 
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In terms of computational efficiency, it is hard to compare because different devices were used for 

computations using each framework. For MUVINN, a Windows 11 machine with an Intel Core i9-11900K 

@3.5GHz, 128 GB RAM and NVIDIA RTX3090 24GB was used. For Elastix, Google Colab’s CPU was used. The 

default CPU for Colab is an Intel Xeon CPU @2.50GHz and 13GB of RAM [56].  

Elastix exhibited an average computation time of 11 minutes and 24 seconds, while MUVINN exhibited an 

average computation time of 5 minutes and 22 seconds. However, these values cannot be compared to each 

other without knowing the amount of impact using a different device can cause. The computation time of 

both frameworks can be seen in Table 14 of Appendix C. 

 

5.2.6 Discussion & conclusion of experiment with synthetically deformed data 
Using synthetically deformed images has certain advantages, such as enabling precise control over 

distortions, providing the ground truth, generating images easily, and eliminating the need for volunteers. 

However, several limitations make it unsuitable as a validation method of the algorithm in real use.  

These synthetically deformed images do not represent changes in images over time, as they do not fully 

capture the complexity and variability in real data. These synthetic deformations cannot account for 

variations in human anatomy, tissue properties, and changes in field-of-view. It is a simplified presentation 

of a deformation. Although they can be used as an initial testing ground to validate the algorithm before 

human trials, as how they are used in this research, their results will not be sufficient to validate the 

algorithm for real-world use.  

Some improvements can be made to the experiments with serial image data. It is better to use the same 

device for computations so the computational efficiency of different frameworks can be compared to each 

other. Due to the limitation of available hardware, a different device was used for Elastix compared to 

MUVINN. 

This experiment uses multiple metrics to evaluate the image registration result. Three categories of image 

evaluation metrics are used: intensity-based, perception-based, and overlap-based. For each metric, the 

absolute values and percentage difference between pre- and post-registration are used for evaluation. 

Combining these three categories of image evaluation metrics provided a more comprehensive insight into 

image registration results. By combining SSIM, PSNR, and DSC, information about image similarity based on 

intensity and spatial accuracy could be evaluated. However, TRE would add much value to spatial accuracy 

analysis as it provides the Euclidean distance between the same landmarks. In this experiment, no notable 

changes were detected in image quality according to the visualization. No artifacts or distortions were 

detected after registration. 

In conclusion, the visual inspection suggests that the image registration for PA images is successfully done 

using MUVINN. Vessel structures in the registered image closely match those in the fixed image.  

The evaluation metrics collectively indicate that the registered image shows a good alignment considering 

various aspects by showing a remarkable increase in all three evaluation metrics. The registered image 

demonstrates close similarity to the reference image, confirming that the image registration for PA images 

has been successful. 

The visual inspection of Elastix suggests it can align the vessels, but the accuracy is visibly lower than 

MUVINN. Elastix exhibits enhanced evaluation metric values, although notably less impressive than those 

achieved by MUVINN. Additionally, it demonstrates a notable variance between different volunteers. 
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A high-quality alignment is required for a comprehensive analysis over time. MUVINN would be a robust 

solution for vascular image registration. However, this holds true only for synthetically deformed images for 

this experiment, as these do not represent changes in vasculature over time and do not fully capture the 

complexity and variability in real data. 

 

5.3 Chapter discussion & conclusion 
Previously, quantitative analysis of 3D PA imaging in longitudinal settings was suboptimal due to the need 

for an image registration framework which can face challenges mentioned in the Challenges of vascular 

image registration. An accurate image registration framework is needed to correct repositioning 

deformations for comparison between images over time to detect subtle biological changes. 

For this issue, a novel image registration MUVINN was developed that uses coordinate-based neural 

networks and multiscale Frangi vesselness filtering to align longitudinal, three-dimensional PA images. By 

using a coordinate-based neural network, the framework can represent deformation fields in a continuous 

domain. This approach allows the deformation field to be calculated at any coordinate in the spatial domain.  

MUVINN uses similarity metrics tailored to the vascular image registration task. It uses a similarity term 

based on vesselness features by incorporating the Frangi vesselness filter. By doing so, only relevant features 

are considered, and potential noise is neglected. This feature is combined with NCC, which allows the 

method to be robust to image intensity variations. Like Elastix, a coarse-to-fine strategy is implemented in 

this framework. Decomposing the image on different scales significantly improved the accuracy of the 

registration.  

Preliminary experiments with synthetically deformed images were conducted to investigate the framework's 

effectiveness. MUVINN successfully registered all image pairs accurately, which was visually and 

quantitatively assessed in this chapter. However, it is important to note that these synthetical deformations 

do not represent the repositioning deformations which occur in real-world scenarios. Thus, further research 

is needed to validate the framework. 

Comparing the results of preliminary experiments for MUVINN and Elastix, MUVINN outperformed Elastix in 

both visual and quantitative assessments. Both MUVINN and Elastix share the common approach of 

implementing a multi-resolution strategy during the image registration process. However, there are several 

drawbacks to using Elastix compared to MUVINN.  

Firstly, the input images of Elastix require pre-processing using the Frangi vesselness filter, while MUVINN 

does not require any pre-processing of the image due to the incorporation of the Frangi vesselness filter 

during the training. Secondly, the user needs to specify the transformation model in advance for Elastix, 

while MUVINN does not require any information about the transformation model. The specification of the 

transformation model may clarify the weak performance of Elastix compared to MUVINN. The 

parameterization of the transformation model may not be suitable to correct the deformation that occurs in 

the breast after repositioning. These drawbacks decrease the performance of Elastix and make it less user-

friendly compared to MUVINN. 
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6 Experimental evaluation of the framework with serial image data set 
The performance of the algorithm has been assessed using synthetically deformed images in the prior 

experiment. However, there remains uncertainty about the algorithm’s ability to accurately align images 

over time when there is a real repositioning error. A major drawback of synthetically deformed images lies in 

their lack of realism compared to a real repositioning error. 

A different type of data set needs to be obtained in which real repositioning errors occur to evaluate the 

algorithm’s applicability in the real world. This approach can validate the algorithm using images that 

contain real repositioning errors, a challenge that synthetically deformed images fail to evaluate.  

Initially, it is necessary to construct a data set for assessing the algorithm's performance, which raises the 

primary research question of this chapter: 

- What are the appropriate validation methodologies to assess its accuracy? 

This research question results in the following sub-questions:  

• What are the inclusion criteria for the volunteer? 

• Which experiments are needed to evaluate the performance of the algorithm, and how should the 

measurements be done to acquire adequate images for these experiments? 

When the data set is constructed, the secondary research question to evaluate the algorithm’s performance 

is formulated as follows:  

- How does MUVINN perform in a realistic scenario and a challenging scenario? 

This results in the following sub-questions: 

• How well does the algorithm work when there is a realistic repositioning error? 

• How well does the algorithm work when a different wavelength is used? 

• How well does the algorithm work when the volunteer is mispositioned? 

• How well does the algorithm work when an incorrect cup size is used? 

 

6.1 Volunteer criteria 
To establish a data set for algorithm validation, it is crucial to construct a representative data set that closely 

mirrors a typical data set with a breast cancer patient. This entails finding a volunteer who possesses 

characteristics similar to the demographic profile often associated with patients diagnosed with breast 

cancer.  

According to the American Cancer Society, breast cancer mainly occurs in middle-aged and older women. 

The median age at the time of breast cancer diagnosis is 62. Factors such as menopause and obesity can 

increase the chance of breast cancer, according to Dunneram et al. [57]. Considerations will be given to skin 

tone to occur to prevent potential artifacts in PA image, which can occur due to certain characteristics.  

A single volunteer is selected to construct a data set for this experiment. A 59-year-old woman who was 

classified with Fitzpatrick skin type 2 and wore brassiere size 80E was selected as the volunteer. The 

volunteer was informed about the study, and informed consent was obtained. 
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6.2 Types of measurement 
Three types of measurements were performed to evaluate the algorithm: 

1. Repeated measurement of the volunteer after correctly repositioning 

2. Repeated measurement of the volunteer after mispositioning 

3. Repeated measurement of the volunteer with a different cup size 

These measurements will be done using Twente Photoacoustic Mammoscope 3 (PAM3) imager as described 

in Photoacoustic imager. Four experiments will be done with these three types of measurements. With 

these experiments, the algorithm’s performance in image registration can be evaluated across various 

scenarios. 

 

6.2.1 Measurement 1: Correct repositioning 
In the first measurement, images with realistic repositioning errors will be acquired. For each image, the 

volunteer must leave the imaging system before the repositioning so she is fully repositioned. The operator 

will correctly position the volunteer, so the repositioning error is solely due to the breast repositioning. Five 

images of the volunteer will be acquired for the first measurement.  

Two wavelengths are used to see if wavelength will influence image registration. Three of the five images 
will be acquired with two wavelengths and the other two with one wavelength. The two wavelengths are 
720 nm and 870 nm. The intensities of the vessels will change when a different wavelength is used due to 
changes in laser energy output and the absorption coefficient of the skin, oxygenated and de-oxygenated 
vessels at the two wavelengths. Experiments 1 and 2 will be done using the images from measurement 1. 
 

6.2.2 Measurement 2: Mispositioning  
In measurement 2, images with a large magnitude of deformation will be acquired. The operator will 

intentionally misposition the volunteer by placing the breast of the volunteer not precisely at the center of 

the cup but slightly more downwards. Mispositioning will shift the field-of-view, resulting in the absence of 

certain vessels between the images. The vessels in the bottom will be absent in the mispositioned images 

due to the downward shift of the breast, which results in more challenging images for the algorithm. The 

Operator’s protocol in the Appendix D explains how the breast is mispositioned. Experiment 3 will be done 

using images from measurement 2. 

 

6.2.3 Measurement 3: Different cup sizes 
In measurement 3, images of different cup sizes will be acquired. The same breast will be imaged in three 

cup sizes different from the optimal cup size.  

In real-world scenarios, the operator selects the cup size based on the breast size before acquisition. There 

are situations when the operator selects the wrong cup size, resulting in lower-quality images. However, it is 

unlikely that a cup of a different size will be used over time for repeated measurements. The imaged breast 

volume correlates with the chosen cup size, causing a shift in the field-of-view. If the cup size is too small, 

the breast gets compressed within the cup, leaving the parts close to the chest wall out because they will not 

fit inside the cup. Conversely, when the cup size is too large, the breast will be elongated and not fit 

properly, resulting in gaps between the breast and the cup. The breast will not be stabilized in the cup, 

resulting in larger motions. The maximum depth and the breast volume inside each cup are listed in Table 7. 

The geometrical curves describing the eight cup sizes are shown in  Figure 9. 
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The images with smaller cup sizes will show what happens with the image when the field-of-view decreases 

in a controlled manner. The images with larger cup size will show what happens with the image when the 

breast is slightly hanging in the cup. The image without a cup will show what happens when the breast is not 

fixed at all. The quality of the image will decrease due to uneven illumination, noise and motion artifacts. 

In total, eight images will be acquired: Two images of the optimal breast-supporting cup size, two images of 

the two sizes smaller cup, two images of the three sizes smaller cup, two images of the one size larger cup, 

and one image without a cup. 

 

Table 7: Maximum depth and submerged volume [54] 

Size Max depth (mm) Submerged volume (mL) 

4 52 496 

5 58 599 

6 64 717 

7 71 856 

8 71 1013 
 

Figure 9: Geometrical curves describing the eight cup 
sizes [54] 

 

6.3 Types of experiments 
Four types of experiments were conducted using the measurements acquired as described in the subchapter 

Types of measurement. 

1. Aligning images with repositioning errors of a correctly repositioned breast 

2. Aligning images with repositioning errors of a mispositioned breast 

3. Aligning images with different illumination 

4. Aligning images with different in field-of-view 

 

6.3.1 Experiment 1: Aligning images with repositioning errors 
In experiment 1, correctly repositioned volunteer images of the same wavelength will be aligned. This 

experiment aims to assess the algorithm’s ability to align real repositioning errors.  

This experiment has already been conducted during this study with two existing repeated measurements. 

The outcome of this previous experiment showed that the algorithm successfully aligned vessels that were 

present in both images while leaving the vessels visible in only one of the images. Due to a small and limited 

data set, validating the algorithm was not possible. Hence, a new data set was needed. With the new data 

set, the algorithm is expected to work the same way as in the previous experiment with the smaller data set. 

In this experiment, one of the images from the first measurement will be the fixed image, and the other four 

will function as the moving images, forming four image pairs. Sub-question 3 can be answered with this 

experiment. 

 

6.3.2 Experiment 2: Aligning images with different illumination 
In experiment 2, images at 870 nm will be aligned with different images at 720 nm. This experiment aims to 

assess the algorithm’s ability to align images when there is a difference in illumination wavelength.  
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Besides the repositioning error, there will be a change in the intensity of the vessels between the two 

images due to a change in laser energy output and absorption coefficient. Laser wavelength of 720 nm can 

reach a higher depth than a larger wavelength due to higher energy. The three images acquired with two 

wavelengths from the first measurement will be aligned in this experiment.  

One of the three images will be the fixed image, and the other two will be the moving image, which will form 

two image pairs. 

In this experiment, image pairs of two different wavelengths will be used to compute the displacement field. 

However, the moving images of the same wavelength will be transformed using the acquired displacement 

field to enable accurate comparison between registered images. See Figure 10 for a schematic diagram. 

This experiment aims to find out whether the algorithm can match the correct points and align the images 

when there is an optical fluence difference between the images. If the transformation is successful, it 

indicates that the same points are matched to each other even when there is a difference in optical fluence 

due to the wavelength difference. Sub-question 4 can be answered with this experiment. 

 

 

Figure 10: Schematic diagram of Experiment 2 

 

6.3.3 Experiment 3: Aligning images with mispositioning errors 
In experiment 3, the algorithm will be challenged by aligning mispositioned images to correctly positioned 

images. The objective is to assess if the algorithm can minimize the operator’s dependency by aligning the 

mispositioned breast to the correctly positioned breast. The expectation is that the algorithm will align 

vessels visible in both images and keep the vessels not visible in both images.  

In this experiment, one image from the first measurement will be used as the fixed image, and the two 

images from the second measurement will function as the moving images. Sub-question 5 can be answered 

with this measurement. 
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6.3.4 Experiment 4: Aligning images with a shift in field-of-view 
In experiment 4, adding a change in the field-of-view to the repositioning error will challenge the algorithm. 

The objective is to assess whether the cup size error influences the image registration outcome.  

This experiment comprises three different parts. The first part involves aligning images of two cup sizes 

smaller than the optimal size. In the second part, the algorithm aligns images of three cup sizes smaller. The 

final part focuses on aligning images of one cup size larger. 

When there is a cup size difference of three, almost half of the peripheral volume will not be imaged, which 

is challenging for image registration. The algorithm is expected to align the vessels only visible in both 

images. This experiment will show what the algorithm does to the vessels in the moving image which are not 

visible in the fixed image. 

In this experiment, two images of the optimal cup size will be used as the fixed image, and the images of 

wrong cup sizes will function as the moving images. Sub-question 6 can be answered with this 

measurement. 

 

6.4 Summary of acquired data 
Sixteen images are acquired in total, from which three are acquired in two different wavelengths. The image 

name contains two terms. The first term is the acquisition order, and the second determines the 

wavelength. 01 in the second term means that the image is acquired with a wavelength of 720 nm, and 02 

indicates that the image is acquired with a wavelength of 870 nm. Table 8 lists all acquired images for each 

experiment. Due to some errors, image 10 could not be reconstructed, so this image was not available. 

Figure 11 summarizes all the experiments and measurements mentioned above. 

 

Table 8: List of acquired images for Serial image data set 

Image 
name 

Experiment Wavelength 
(nm) 

Breast 
side 

Description 

01-01 
02-01 
03-01 
04-01 
05-01 

1 720 L Correctly repositioning 

01-02 
02-02 
03-02 

2 870 Correctly repositioning 

06-01 
07-01 

3 720 Mispositioning 

08-01 
09-01 

4 R Correctly repositioning in an optimal cup size (cup size = 7) 

10-01 
11-01 

Correctly repositioning in a two size smaller cup (cup size = 5) 

12-01 
13-01 

Correctly repositioning in a three size smaller cup (cup size = 4) 

14-01 
15-01 

Correctly repositioning in a one size larger cup (cup size = 8) 

16-01 Positioning without a cup 
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Figure 11: Schematic summary of the volunteer experiments 

 

6.4.1 Safety specifications 
Following maximum exposure duration regulations is vital to ensure the volunteer's safety. The first two 

measurements are done with the left breast. The third measurement is done with the right breast. 

One measurement takes 2 minutes when one wavelength is used and 2 minutes and 40 seconds when two 

wavelengths are used. Sixteen images were acquired in total. Seven images of the left breast were taken. 

From these seven images, three images have two different wavelengths and four images have one 

wavelength. Nine images are taken from the right breast. All of them are acquired with one wavelength. This 

results in 16 minutes of exposure for each breast. This follows the safety measures, which allow 20 minutes 

of exposure to each breast. A detailed schedule can be seen in the  Operator’s protocol in Appendix D. 

 

6.5 Results 
Eighteen image pairs were included in total, divided into four different experiments. All image pairs used the 

same initial parameters. The image registration results are evaluated based on the visual inspection and 

image evaluation metrics. 

For visual inspection, the fixed and moving MIPs are displayed as overlay images for pre- and post-image 

registration. For the MIPs, images are processed using Frangi vesselness filtering to enhance the vessel 

structures. The fixed image is displayed in blue, the moving image is displayed in red, and their overlap 
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results in a shade of purple. One image pair is shown for each experiment, and in case the experiment is 

divided into subsections, one is shown for each subsection. In total, six image pairs are shown in the results.  

Various image evaluation metrics, such as PSNR, SSIM, and DSC, are used for quantitative evaluation, like in 

Results MUVINN. Additionally, NCC and TRE are also calculated for volunteer measurement. The landmarks 

chosen to compute TRE were the branching points of the vessels. The matching voxels were manually picked 

using an open-source software called Mevislab. Definitions of these metrics are explained in Evaluation 

metrics. The pre- and post-registration evaluation metrics values of all image pairs can be found in Appendix 

E. 

The correctly repositioned images of the same wavelength were aligned in the first experiment. The 

structures exhibited excellent alignment for all image pairs, as shown in Figure 12. One small misalignment 

was observed in the first image pair, as shown in Figure 17a. No significant inconsistencies or distortions 

were observable in the transformed image.  

TRE analysis of the first experiment showed an initial maximum mean displacement of 10.97 ± 3.78 mm, 

which decreased to a maximum mean displacement of 0.89 ± 0.48 mm post-registration. This means that the 

mean displacement error is less than two voxels, as the voxel size is 0.43 mm. 

 

 

Figure 12: MIPs and depth images of before and after image registration of Experiment 1 

 

Correctly repositioned images with two different wavelengths were aligned in the second experiment. 

Varying the wavelengths led to different intensities between the images due to different absorption of tissue 

between the two wavelengths, which can be seen in Figure 13. The structures exhibited excellent alignment, 

but the first image pair had the same misalignment as the previous experiment, as shown in Figure 17a. 

The initial maximum mean displacement was 10.97 ± 3.78 mm, which decreased to 0.87 ± 0.49 mm post-

registration. This post-registration displacement was very similar to the value of the same image pair from 

experiment 1, which was 0.89 ± 0.49 mm. The other image pair also showed a post-registration 

displacement value similar to experiment 1.  
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Figure 13: MIPs of Fixed and Moving images without any pre-processing (Left), MIPs before and after image registration 
of Experiment 2 (Right) 

 

The volunteer was intentionally mispositioned in the third experiment to create a more challenging scenario. 

The largest initial mean displacement value was found in experiment 3, indicating how challenging this 

experiment is compared to all other experiments. The initial maximum mean displacement was 33.31 ± 5.16 

mm, more than three times larger than the value of the correctly repositioned image pair of the first 

measurement.  

The mispositioning led to changes in the field-of-view, which was visible as some vessels were only present 

in one of the images. The bottom part of the breast was not imaged in the moving image. Common vessels 

were aligned, and uncommon vessels, which were only present in one of the images, were still visible and 

were kept intact after the registration, as shown in Figure 14. However, there was also an inconsistency next 

to just misalignments. The inconsistency can be seen in Figure 17c, where small speckles were visible. 

Nonetheless, the vessel structures were aligned well after the image registration. Figure 15 shows the initial 

distance differences between the landmarks between the first two measurements. There is clearly a larger 

difference in distance between the landmarks of the fixed image and the moving image in experiment 3 

compared to experiment 1. The post-registration result demonstrates the success of the image registration 

result, as indicated by a reduced mean displacement value of 2.15 mm from 29.14 mm, as shown in Table 22 

in Appendix E. 
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Figure 14: MIPs and depth images of before and after image registration of Experiment 3 

 

 

Figure 15: Figure: 3D rendered vascular network of the moving image; before co-registration: green spheres represent 
the ground truth, namely the annotated points on the moving image, and blue spheres are the annotated points on the 
fixed image; after co-registration: red spheres are the annotated points on the fixed image after transformation to the 

moving coordinate system [50] 
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The wrong sizes of breast-supporting cups were used in the fourth experiment, which led to changes in the 

field-of-view. This change was visible as some vessels were only present in one image. In images 11 to 13, 

vessels close to the chest wall fell out of the boundaries of the cup, so they were not imaged. In images 14 

and 15, some vessels in the center were less visible compared to reference images 8 and 9, while some 

peripheral vessels closer to the chest wall were more visible, see Figure 16. In Figure 16, the blue arrows 

show examples of the vessels that are more visible in the reference image, and the red arrows show 

examples of vessels that are more visible in the moving image. 

Like in the third experiment, there was an inconsistency next to just misalignments. For example, in Figure 

17e, a small vessel appears as a series of dashed segments instead of a continuous and unbroken vessel. 

As expected, TRE analysis showed that the most significant mean displacement occurred during the second 

part of the experiment. This part involved the largest deformation of the moving image due to the 

substantial change in breast-supporting cup size. The difference in cup size resulted in a cup volume 

shrinkage from 856 mL to 496 mL and a depth difference of 19 mm. In Figure 16, the difference in depth is 

quite visible in the sagittal images of experiments 4a and 4b before the registration. The largest initial mean 

displacement occurred in experiment 4b, which was 28.11 ± 5.25 mm. This value decreased to 1.45 ± 0.9 

mm, confirming a successful registration. 

 

 

Figure 16: MIPs of before and after image registration of Experiment 4 
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a.  b.  c.  
01-01 – 02-01/02-02 01-01 – 06-01 01-01 – 07-01 

d.  e.  f.  
01-01 – 07-01 08-01 – 12-01 08-01 -  13-01 

   

Figure 17: Misalignments and inconsistencies 

 

The percentage change in the evaluation metric is listed in Table 9. The mean and standard deviations are 

calculated for every part or subpart of the experiment for every metric. All registered images have shown 

improvements in all five evaluated metrics. The percentage change after registration can be significantly 

higher in some experiments compared to others. For example, the more challenging experiments, like 

experiment 4, have shown large positive changes in all metrics compared to other experiments. Still, the 

absolute post-registration metric values are worse than those of experiment 1. The discrepancy in the initial 

metrics between the reference images in challenging and less challenging scenarios is high. The initial metric 

values of the reference image are lower in a challenging scenario compared to a less challenging scenario. 

This leads to a significant percentage change in experiments 3 and 4, compared to experiments 1 and 2, 

although they show lower post-registration metrics values. So, it is also good to use absolute post-

registration metric values to have a more reliable view of the results.  

Experiment 1 showed the highest increase in PSNR. It showed the highest mean post-registration PSNR and 

the highest mean PSNR change, while the initial mean PSNR value was also the highest compared to other 

experiments. Experiment 3 showed the smallest increase in PSNR compared to other experiments.  

Although experiments 1 and 2 showed a higher post-registration SSIM, the largest increase in mean SSIM 

was found in experiments 4a and 4b, which had moving images using smaller breast-supporting cups. The 

first two parts of experiment 4 had significantly lower initial SSIM values than other experiments, which 

clarifies the large increase. The mean initial SSIM value of experiment 4b is 0.7543, while the mean initial 

SSIM value of experiment 1 is 0.8582. The low initial value in experiments 4a and 4b is probably due to a 

large decrease in the breast-supporting cup volume and depth. There is no depth difference between the 

cups used in other experiments, even when a larger cup is used.  

While experiment 1 exhibited the best overlap, resulting in the highest post-registration DSC, the largest 

mean DSC change occurred in experiment 4b. The skin was included in the segmentations for a better 

registration result, which led to significantly lower initial DSC values in experiment 4 than in other 

experiments. When a differently sized breast-supporting cup is used, the surfaces of the cups do not match.  

The highest mean NCC change was found in experiments 4a and 4b, which had moving images of smaller 

breast-supporting cups. The initial correlation between the images is significantly lower when a smaller 

breast-supporting cup is used for the moving image than when a larger cup is used. As explained before, this 

is probably caused by the difference in depth between the cups. Although moving images of smaller cup 
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sizes have shown the largest increase in NCC, the post-registration NCC is higher in all other experiments 

except for experiment 3. Experiment 1 shows the highest post-registration NCC 

 
Table 9: The percentage change of PSNR, SSIM, DSC, NCC, and TRE before and after the image registration 
Acronyms: PSNR = peak signal-to-noise ratio, NCC = normalized cross-correlation, DSC= Dice similarity coefficient, TRE = 
target registration error. 

 

 
An additional experiment was done using a measurement without any breast-supporting cup to challenge 

the framework further. This scenario will not happen when a PAM3 imager is used, as a breast-supporting 

cup is always used during the measurement with PAM3. However, this could be used for a preliminary test 

towards multi-modal imaging with MRI, as breast MRI also does not use a breast-supporting cup. 

Not using a breast-supporting cup led to a very noisy image with a low signal due to the motion of the 

volunteer, uneven illumination, and difficulties with reconstruction due to the different shape of the breast. 

Next to the increased noise and decreased signals, the positioning of the vasculature changed drastically 
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Image pair ΔPSNR (%) ΔSSIM (%) ΔDSC (%) ΔNCC (%) ΔTRE (%) 

01-01 – 02-01 10.174 6.605 91.286 99.539 -91.89 

01-01 – 03-01 14.571 12.160 463.049 447.983 -87.12 

01-01 – 04-01 15.490 12.619 426.040 447.475 -89.71 

01-01 – 05-01 16.344 13.729 572.296 505.554 -89.48 

Mean  14.145 11.278 388.168 375.138 -89.55 

Standard deviation 2.12579 2.4666 160.676 143.877 1.511 
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Image pair ΔPSNR (%) ΔSSIM (%) ΔDSC (%) ΔNCC (%) ΔTRE (%) 

01-01 – 02-02  9.368 6.189 360.066 93.323 -92.07 

01-01 – 03-02  13.994 11.888 550.336 437.341 -86.55 

Mean  11.681 9.039 455.201 265.332 -89.31 

Standard deviation 2.313 2.850 95.135 172.009 2.76 
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Image pair 11.681 9.0385 455.201 265.332 -89.31 

01-01 – 06-01 10.222 11.129 459.093 367.705 -92.11 

01-01 – 07-01 8.259 9.269 461.175 320.424 -93.00 

Mean  9.2405 10.199 460.134 344.0645 -92.56 

Standard deviation 0.98150 0.9300 1.0410 23.6405 0.4450 

Ex
p

er
im

en
t 

4
a Image pair ΔPSNR (%) ΔSSIM (%) ΔDSC (%) ΔNCC (%) ΔTRE (%) 

08-01 – 11-01 13.607 17.980 804.30 819.840 -92.11 

09-01 – 11-01 13.604 18.221 714.17 795.425 -93.01 

Mean  13.606 18.101 759.24 807.633 -92.56 

Standard deviation 0.0015000 0.12050 45.065 12.2075 0.4500 
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 Image pair ΔPSNR (%) ΔSSIM (%) ΔDSC (%) ΔNCC (%) ΔTRE (%) 

08-01 – 12-01 14.055 20.357 1369.95 1263.45 -93.61 

09-01 – 13-01 13.310 20.343 748.331 1189.68 -93.71 

08-01 – 12-01 11.708 17.636 1412.34 1162.00 -94.84 

09-01 – 13-01 12.898 19.758 1499.50 1251.16 -95.27 

Mean  12.993 19.524 1257.53 1216.57 -94.36 

Standard deviation 0.84987 1.1162 297.672 42.1163 0.7148 
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Image pair ΔPSNR (%) ΔSSIM (%) ΔDSC (%) ΔNCC (%) ΔTRE (%) 

08-01 – 14-01 13.76 15.26 1001.05 614.01 -86.40 

09-01 – 14-01 13.31 15.57 1543.58 625.71 -95.27 

08-01 – 15-01 11.35 13.96 787.00 553.46 -94.66 

09-01 – 15-01 12.05 14.71 1147.87 588.64 -89.99 

Mean  12.62 14.87 1119.88 595.46 -91.58 

Standard deviation 0.9625 0.6117 276.243 27.703 3.623 
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compared to other measurements, as the breast was hanging. The comparison image between the correctly 

repositioned breast with a breast-supporting cup and the breast without any support can be seen in Figure 

18. 

The algorithm did not successfully align the vasculature of a breast without any support to the vasculature of 

a correctly positioned breast, Figure 18. There are two potential causes. The primary potential cause is the 

large deformation between the two images. Another potential cause could be the low signal-to-noise ratio.  

A different set of training parameters were used for this experiment, as the original set of parameters did 

not work. Various parameters were tested based on a trial and error approach. However, none of these 

parameters resulted in the alignment of the vasculature. There might be better parameters, which results in 

better results. However, this could not be found during our experiment. 

 

 

Figure 18: MIPs of Fixed and Moving images without any pre-processing (Left), MIPs before and after image registration 
of Additional experiment with no breast-supporting cup (Right) 

 

6.5.1 Comparison study 
Elastix is used again to compare the results of MUVINN with another conventional framework. The data sets 

from the two most probable situations were selected for the comparison study, which are from the first and 

the third experiments. The change in cup size, like in experiment 4, is unlikely to happen in a real scenario. 

To ensure a fair comparison, the images were pre-processed using Frangi vesselness filtering with the same 

sigma values used for MUVINN (𝜎= {12,9,5,3,2}), and adaptive intensity modulation was performed. The 

initial parameters were selected based on the accurate registration results and similar computational times 

of MUVINN. 
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A rigid transformation followed by a non-rigid B-spline was chosen as the transformation model to correct 

for both linear and non-linear deformations to achieve image registration. The coordinates were sampled 

inside the cup to optimize transformation only inside the breast. A multi-resolution scheme with four 

pyramid levels was used with a number of iterations for each pyramid equal to 400 for rigid and equal to 

1200 for B-spline. For the similarity term of the loss function, the AdvancedNormalizedCorrelation and the 

TransformRigidityPenalty were used as regularization. The details about the parameters can be found in 

Appendix B. 

In experiment 1, Elastix has shown better alignment than before the registration. However, every image pair 

had multiple misalignments. Figure 19 shows the best registration result of experiment 1, which still contains 

multiple misalignments which were not visible in the results of MUVINN. In Figure 19, the misalignments are 

highlighted with a dashed box in the full coronal view of the MIP. The misalignments are zoomed in in the 

bottom part of the figure with a border of the same color as the dashed box in the full coronal view. 

In contrast, MUVINN showed an accurate alignment. No misalignment was detected in the same image pair, 

and it outperformed Elastix in every evaluation metric. TRE values of Elastix show a minor mean decrease of 

13.11% compared to pre-registration, while MUVINN shows a decrease of 89.55%. 

 

 

Figure 19: Comparison of registration result between Elastix and MUVINN in experiment 1; Coronal MIPs of the image 
pair (Top), Misalignments of Elastix highlighted (Bottom) 

 

Table 10 shows pre- and post-registration values of all evaluation metrics used. Compared to the post-

registration values of MUVINN Evaluation metrics in Appendix E, they are all lower. 

 

Table 10: PSNR, SSIM, DSC, NCC, and TRE before and after the image registration with Elastix in experiment 1 

 

Pre-registration Post-registration: Elastix Post-registration: MUVINN 

 
TRE: 6.99 ± 2.34 

 
TRE: 6.47 ± 2.91 

 
TRE: 0.9 ± 0.4 

Misalignments of Elastix 

 

Image pairs  PSNR SSIM DSC  NCC TRE (mm) [mean, std] 

01-01 – 
02-01 

Before 39.95 0.8903 0.3329 0.3649 [10.97, 3.78] 

After 39.34 0.8724 0.4044 0.3649 [8.66, 3.57] 
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In experiment 3, Elastix has shown worse results than before the registration. The MIP in Figure 20 shows 

that none of the vessels were aligned, and the mean TRE value increased from 29.14 to 31.70. The MIPs at 

different depths showed that the vessels were also not aligned in depth.  

The metrics of experiment 3 remained similar to their initial values, see Table 11. These results show that 

Elastix is not able to register images in more challenging scenarios than just repositioning.  

In contrast, MUVINN proved that it can register mispositioned images to correctly repositioned images. The 

full MIPs and MIPs at different depths show that the vessels are accurately aligned. All the evaluation 

metrics have shown an improvement after the registration. The mean TRE decreased by 92.56% post-

registration.  

 

 

Figure 20: Comparison of registration result between Elastix and MUVINN in experiment 3 
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Pre-registration Post-registration: Elastix Post-registration: MUVINN 

 
TRE: 24.98 ± 6.75 

 
TRE: 27.04 ± 9.18 
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01-01 – 
03-01 

Before 38.75 0.8492 0.1193 0.1372 [6.99, 2.34] 

After 41.12 0.9093 0.6293 0.4832 [6.42, 2.977] 

01-01 – 
04-01 

Before 38.80 0.8501 0.1317 0.1419 [6.22, 1.79] 

After 40.34 0.8972 0.5372 0.3759 [4.38, 1.18] 

01-01 – 
05-01 

Before 38.55 0.8432 0.1029 0.1288 [5.99, 1.23] 

After 39.82 0.8836 0.5071 0.3759 [8.00, 1.18] 

Mean  Before 39.01 0.8582 0.1717 0.1932 7.54 

After 40.16 0.8906 0.5195 0.4000 6.87 

Standard 
deviation 

Before 0.5493 0.01872 0.09363 0.09924 2.01 

After 0.6599 0.01391 0.08027 0.04826 1.65 
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Table 11: PSNR, SSIM, DSC, NCC, and TRE before and after the image registration with Elastix in experiment 3 

 

The comparison study with Elastix reveals that MUVINN demonstrates more accurate registration results for 

PA breast images compared to Elastix.  

 

6.6  Chapter discussion & conclusion 
Although the breast-supporting cup improves the light distribution and stabilizes the breast to prevent 

motion artifacts, it is not enough to make the images reproducible. This is visible in the images and also in 

the initial evaluation metrics. For example, the initial TRE values range from 5.99 to 10.97 mm in correctly 

positioned breast images. Due to the deformability of the breast tissue, repositioning the breast will 

introduce repositioning errors and may change the field-of-view.  

The image registration framework MUVINN has shown good alignment of the structures. All evaluation 

metrics indicated an improvement in alignment after the registration. The framework could register images 

in challenging situations, such as after increasing the magnitude of deformation by purposefully 

mispositioning the breast or changing the field-of-view using a breast-supporting cup of the wrong size. The 

alignment could also be seen visually, which was visible in MIP images, MIPs at different depths, and 3D 

renderings.  

Like in experiments with synthetically deformed data set, MUVINN showed superior results compared to 

other conventional image registration framework, Elastix. Two factors could potentially cause Elastix's 

suboptimal performance. Firstly, the chosen transformation model, rigid and B-spline, might not be suitable 

for capturing the deformations caused by breast repositioning. Secondly, using a relatively low number of 

iterations may hinder the optimization process. The computation time for Elastix was lower than MUVINN. 

However, increasing the number of iterations by 300 for both transformation models did not improve the 

results, while the computational time increased to 23 minutes and 59 seconds on average. 

For future studies, including additional image registration frameworks for a more comprehensive 

comparison would be beneficial. Demons and Voxelmorph could be valuable options to consider. Demons is 

an algorithm that can compute the deformation field based on intensity differences and gradients. Unlike 

Elastix, it does not require parametrization of the transformation. Demons also use a multiscale approach 

like MUVINN and Elastix [43]. VoxelMorph is an unsupervised deep-learning framework for image 

registration of medical images. It uses an architecture similar to U-Net. VoxelMorph aligns images based on 

their intensity values using similarity metrics like mean squared error or local normalized cross-correlation 

[58]. 

The amount of epochs has been doubled for serial image data experiments compared to the synthetically 

deformed data experiments due to the higher complexity of the image registration problem. This led to a 

higher computational time compared to the synthetically deformed data experiments. The mean 

Image pairs  PSNR SSIM DSC  NCC TRE (mm)  [mean, std] 

01-01 – 
06-01 

Before 37.96 0.8239 0.08669 0.1236 [24.98, 6.75] 

After 38.33 0.8290 0.05883 0.1239 [29.04, 7.98] 

01-01 – 
07-01 

Before 38.27 0.8226 0.07674 0.1209 [33.31, 5.16] 

After 38.53 0.8252 0.03973 0.1238 [34.02, 5.89] 

Mean  Before 38.12 0.8233 0.08172 0.1223 29.14 

After 38.43 0.8271 0.04928 0.1239 31.53 

Standard 
deviation 

Before 0.1829 0.002140 0.01602 0.001114 3.25 

After 0.1000 0.001900 0.009550 0.00005 2.49 



Experimental evaluation of the framework with serial image data set 
 

49 
 

computational time was 20 minutes and 3 seconds with a margin of ± 41 seconds. Each pair of images 

requires new training, as a new neural network needs to be optimized. This has several benefits as the 

network is unsupervised and does not need a training set. However, this also leads to higher computational 

times than a supervised technique.  

For all serial image data experiments, identical initial training parameters were used. Selecting the right 

parameter was performed based on a trial and error approach, involving multiple attempts to identify a set 

of parameters that worked for every case during the experiments.  

Some parameters were more critical than others. The number of iterations and the choice of scales were 

critical. A higher number of iterations usually gave better image registration results. However, it was at the 

expense of computational time. By increasing the sigma (𝜎) values, the algorithm will prioritize aligning large 

structures before fine-tuning the alignment for more minor details. High 𝜎 also produces more regular 

displacement fields, but there is a risk of fine structures being neglected. 

Conversely, a very low 𝜎 can lead to a wrong displacement field with irregular distortions in the transformed 

image. Thus, finding an effective combination of scales was crucial for the performance of MUVINN. 

Similarly, when dealing with distortions in the transformed image, adjusting the learning rate or increasing 

the patch length to capture the neighbouring points could work to prevent these distortions. Decreasing the 

learning rate could prevent distortions until a certain limit. The network’s learning capability will be 

constrained when it is too low. By increasing the patch length, the network can have a more overall view of a 

larger area instead of focusing on details in a small area. During the parameter tests, the transformation of 

the image was monitored, and the parameters were adjusted when distortions started to happen. Like other 

networks, the explainability is limited and finding the right parameter can be challenging.  

These parameters will likely not work for every case, but they worked in more challenging scenarios, such as 

purposely mispositioning the breast in the cup or using the wrong cup size. There were better training 

parameters for each experiment, which showed a higher image registration quality. However, the 

parameters used in this research have shown the best general performance without changing the 

parameters for each experiment. 

The framework did not succeed in aligning the vasculature of a breast without any support to the 

vasculature of a correctly positioned breast. There are two potential causes. The primary potential cause is 

the large deformation between the two images. Another potential cause could be the low signal-to-noise 

ratio. To test if the second cause was true, image pair 01-01 – 02-01 was used with a modified moving 

image. Both images are imaged with a correctly positioned breast. The moving image was modified by 

adding noise, and the signal of the vasculature was decreased. The intensity of the signal and the noise were 

similar to the image with no breast-supporting cup. The framework could still align the image pair well, 

meaning the second cause could be eliminated. These results gave some insights into the framework. As 

expected, the framework is robust to noise and intensity shifts due to the use of multiscale approach and 

normalized cross-correlation as a similarity metric. However, drastic changes in the shape and positioning of 

the vasculature can lead to misalignment. 

In conclusion, the results suggest that MUVINN is a robust network for image registration of correctly 

repositioned images, whether they share the same wavelength or differ in wavelengths, and for challenging 

scenarios like mispositioning and using a wrong breast-supporting cup size. There was no need to adjust the 

initial parameters for any of these experiments, even in different scenarios. 

The renderings and evaluation metrics collectively indicate that the registered image shows a good 

alignment by showing a remarkable positive change in all five evaluation metrics. It performed the best in 

experiment 1, where repositioned images were aligned without introducing other errors.  



General discussion 
 

50 
 

7 General discussion 
For diseases that change over time, like tumors, it is crucial to accurately register images from different time 

points to track disease progression. During the treatment of breast cancer, for example, with NAC, efficacy 

can vary between individuals. In some cases, the therapy might have minimal or no impact at all. The 

variability in response necessitates the importance of monitoring chemotherapy. Monitoring the disease by 

means of longitudinal imaging is necessary to spare the non-responders by preventing further disease 

progression and avoiding unnecessary exposure to toxicity. Longitudinal image registration helps doctors to 

track the same structures of interest over time and during the course of NAC and make informed decisions. 

There are several imaging modalities, such as MRI, US, PET, etc., which can be used for monitoring NAC. 

However, all these methods have certain limitations like challenges in tracking biomarkers related to NAC 

efficacy, lack of reproducibility, and the invasive nature of certain imaging technologies for patients. Despite 

the advantages these modalities offer, their limitations emphasize the need for more efficient and 

comprehensive imaging techniques for assessing the effectiveness of NAC. Compared to these standard-of-

care imaging modalities, PA imaging has advantages for repetitive measurements. It could be a valuable 

alternative to these modalities by visualizing functional responses in the tumor microenvironment in a non-

invasive manner.  

However, one important requirement for longitudinal imaging is that the images between the imaging 

sessions are comparable. In PA imaging, repositioning the breast can cause geometric misalignment of 

vasculature and changes in the field-of-view. Image registration is required for comprehensive quantitative 

and qualitative analysis with PA imaging. 

A few image registration algorithms are proposed for PA imaging, but these methods did not meet the goal 

of this research, as most of them were aimed at multimodal image registration [59, 60]. Other image 

registration methods, which focused on unimodal PA imaging registration, used a parametric approach using 

transformation models (e.g., rigid, affine, or B-splines) [61, 62]. The parametric approach can be problematic 

in the case of complex and unknown deformations like breast repositioning deformation.  

There are also several deep-learning approaches available for medical image registration. However, most of 

these require a pre-training phase, which requires a large data set. Compared to other standard-of-care 

imaging modalities, there are no large data sets of PA imaging available. Therefore, there is a need for an 

image registration framework that can align in vivo 3D PA images with complex and non-linear 

deformations. 

Our image registration framework is developed for vascular image registration to address these issues, 

which uses coordinate-based neural networks and multiscale Frangi vesselness filtering. The goal of this 

framework is unimodal intra-patient image registration of 3D PA images for longitudinal imaging. A list of 

requirements of a robust framework for an image registration framework for monitoring NAC is made, which 

are listed in Requirements of a robust image registration framework. To validate if the framework fulfils 

some of these requirements, experiments are set up by creating data sets with geometric misalignments in a 

realistic scenario by repositioning the volunteer, and in challenging scenarios, by introducing more 

significant change in field-of-view and deformations by mispositioning the volunteer and using a wrong-sized 

breast-supporting cup. MUVINN proved that it can correct complex non-rigid deformations and 

demonstrated a significant reduction of displacement and increase in image similarity in high accuracy, 

which could be assessed visually and quantitatively. By successfully aligning images with changes in the field-

of-view, such as in experiments 3 and 4, the framework showed its robustness to appearing and 

disappearing vessels, which can happen as an effect of treatment or disease progression during monitoring. 

This proved that the framework is robust to pathological changes. Jacobian determinant map was computed 

to assess if the vessel's diameter changed. The Jacobian determinant is the determinant of the Jacobian 
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matrix, which was already computed for the regularization, as mentioned in the Loss function. The Jacobian 

determinant map represents the ratio of the volume change of a local region before and after the 

transformation at each voxel. It shows local volumetric shrinkage and expansion regions in the image. 

Visualizing this local distortion of the transformation can be helpful in detecting and correcting registration 

errors [63]. The Jacobian determinant map was tested in a simplified test where a small sphere was aligned 

to a large sphere. Here, the map showed that there was a volumetric increase inside the sphere indeed. 

However, when it was used for PA images with no diameter change, it showed that there was volumetric 

change, while there was no volumetric change. Although the Jacobian determinant map has proven to work 

for visualizing volume changes in large structures such as organs and tumors [63, 64], it appears that it is not 

an appropriate method to visualize changes in the volume of a small structure like a vessel. 

MUVINN is INR-based and can represent deformation fields in a continuous domain, which allows the 

deformation field to be known at any coordinate, unlike frameworks which require transformation models. 

This approach also allows the integration of any similarity metrics as long as they are differentiable. For PA 

image registration, the similarity term was tailored for vascular images by incorporating Frangi vesselness 

filtering, which enhances signals from the vasculature and decreases potential noise. Combining this feature 

with normalized cross-correlation makes the method robust to variations in image intensities compared to 

other intensity-based similarity metrics like MSE. Additionally, Jacobian regularization in the loss function 

contributed to the regular deformation field by penalizing large vascular expansion and shrinkage. 

A coarse-to-fine strategy is implemented, which has shown good results in other registration frameworks 

[37]. By decomposing the image in different scales, the framework performs more efficiently even in the 

presence of noise or variations in structure, leading to improved robustness of the framework. The improved 

performance could also be seen in MUVINN when the coarse-to-fine strategy was applied, see Comparison 

of the framework with and without a multiscale approach in Appendix F.  

The combination of all these features contributed to a robust image registration framework capable of 

registering serial PA images in different conditions, as demonstrated in the Results. The framework could 

align vascular structures: 1) after displacement in different magnitudes, 2) in different intensities, and 3) in 

different field-of-view. 

Like many other deep learning frameworks, it is challenging to understand how the network makes certain 

decisions depending on the parameters. Parameter tuning is necessary for optimal performance of MUVINN, 

which is done by a trial and error approach, explained in more detail in  Chapter discussion of Chapter 5. 

Although the final parameters worked for all experiments, there were some inaccuracies in some vessels 

after registration in experiments 3 and 4, as shown in Figure 17. It could be that these inconsistencies 

occurred because these small structures did not have a significant influence on the loss function during 

optimization. Increasing the number of iterations or points sampled in each iteration may solve this issue, 

but the computational expenses would also increase. The average computational time of MUVINN was 20 

minutes and 3 seconds, with a margin of ± 41 seconds. These are acceptable computational times for disease 

treatment monitoring, but they are too long if this framework gets integrated into real-time applications.   

 

7.1 Other applications and future works 
The main goal of this framework is to enable longitudinal PA imaging for monitoring the treatment effect of 

NAC for breast cancer patients. Some other potential applications are using the framework in image 

mosaicking. Image mosaicking in medical imaging refers to the process of combining multiple overlapping 

images to produce a single, larger image. This application is necessary when the region of interest is larger 

than the field-of-view of the imaging device. In experiment 4, the algorithm aligned the images with 

different field-of-views, where some vessels were only present in one of the two images. 
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Another potential application is using this framework to align images of the same conditions for frame 

averaging.  In frame averaging, multiple independent images are averaged or summed. This leads to 

increased signal, which is consistent across the images, while the random noise tends to cancel out or 

reduce, resulting in clearer images. This may help to enhance smaller vessels that could not be identified 

with a human eye in MIPs or 3D renderings but were still aligned using the framework. 

The framework shows potential for a wider range of applications if it could be used across different imaging 

modalities or for multimodal image registration. Identifying tumor locations on the PA image becomes 

feasible if the framework can be used for multimodal imaging like PA-MRI registration. Combining these two 

modalities can offer a more comprehensive view, combining high-resolution images of the vasculature to 

assess the tumor microenvironment with the tumor and surrounding breast tissue. This could improve 

monitoring of the disease and enable the discovery of new image features indicating disease progression. An 

additional PA image without a breast-supporting cup was acquired for a preliminary test towards PA-MRI 

image registration, as a breast-supporting cup is not used in breast MRI. Unfortunately, the framework 

struggled to align the image with and without the cup. More investigation is needed to accomplish 

multimodal image registration with this framework. 

If this framework proves to work with other vascular images than PA images, it could be used for 

applications such as vascular image registration of MRI images to quantify vascular growth over time. This is 

essential in treatments with tissue-engineered grafts for the treatment of congenital heart disease [64]. 

There are still important points to investigate to ensure the framework's efficacy and relevance. The most 

important step is testing the framework with its target demographic: breast cancer patients undergoing 

NAC. It is still largely unknown how the therapy changes the morphology of the vasculature and breast. 

Thus, evaluating the framework in actual treatment monitoring conditions is essential to confirm its efficacy.  

Another future direction for improving the framework includes automated parameter optimization and a 

user-friendly interface, enhancing the framework's usability in a practical setting. 

 

8 General conclusion 
Reflecting on the overarching research question of this thesis: How can we develop and validate an accurate 

and robust image registration framework to monitor the effects of neoadjuvant chemotherapy in breast 

cancer using photoacoustic images? 

We’ve developed a novel image registration framework, MUVINN, for unimodal intra-patient registration of 

three-dimensional PA images, using coordinate-based neural networks and multiscale Frangi vesselness 

filtering. This framework demonstrated significant improvements in image alignment under various 

unfavorable conditions, such as after deformation in different magnitudes, in different intensities, and in 

different field-of-view. In Requirements of a robust image registration framework, essential criteria for a 

robust image registration framework for longitudinal PA imaging were outlined. The framework showed a 

high accuracy with a reasonable average computation time of 20 minutes and 3 seconds. The framework is 

robust to noise due to a multiscale approach and intensity variations due to the use of normalized cross-

correlation in its loss function and intensity modulation. The framework’s capability to correct complex non-

linear local deformations and adapt to pathological changes was proven in experiments. 

In summary, this framework is a promising tool for quantitatively monitoring disease progression and 

treatment response in breast cancer using photoacoustic. It has been proven to work for unimodal image 

registration of PA images with a Twente Photoacoustic Mammoscope 3 imager. However, more research is 

needed for multimodal image registration, such as PA-MRI image registration.  
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10 Appendix 

A. NAC efficacy studies with various imaging modalities 
 

Table 12: NAC efficacy studies with various imaging modalities summary 

Study  Modality  Population When is the image taken? Features Results 

[9] Mammography 207 

patients  with 

stage II or III 

breast 

cancers   

Two times: 

•         Before NAC 

•         One day before 
surgery after 
completion of NAC 

• Microcalcifications Of 11 patients with pCR, microcalcifications on post-
NAC mammography were decreased in five patients 
(45.5 %) and stable in 6 patients (54.5 %). No patients 
with pCR had increased microcalcifications on post-
NAC mammography. 

[65] MRI 107 breast 
cancer 
patients  

Six times:  

•         Before NAC 

•         After administering 
fluorouracil, epirubicin 
(FEC), and 
cyclophosphamide, 
which were four cycles 

•         After NAC 

• Maximum tumor 
diameter 

The tumor size was reduced by an average of 38% 
after FEC administration and 59% after completing 
NAC. The tumor size slightly increased in three 
patients who received the FEC regimen. 

[66] DCE-MRI 28 patients 
with grade 2 
to 3 invasive 
breast 
tumors 

Four times: 

•         Before NAC 

•         After the first cycle of 
NAC 

•         At the midpoint of 
NAC (usually after 3 or 
4 cycles of NAC or 
before the change of 
NAC agents) 

•         After completion of 
NAC 

• The  longest 
diameter (LD) of the 
tumor 

Two pharmacokinetic 
values, which are 

• Ktrans: contrast agent 
plasma/interstitium 
transfer rate 
constant 

• τi: mean 
intracellular water 
lifetime 

The pCRs show a significant increase in τi and a 
decrease in Ktrans compared to non-pCRs after the first 
NAC cycle. 
After the first cycle, Ktrans and τi provide excellent (C > 
0.9) early discrimination of pCR and non-pCR, and 
after the third cycle as well (0.8 < C < 0.9). However, 
LD is a poor early predictor of response after the first 
and second cycles (C < 0.7). 
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[67] DWI-MRI 24 breast 
cancer 
patients 

Two times: 

•         Before NAC 

•         After the first cycle of 
NAC 

• Diffusion coefficient 
(ADC) values 

The increase in mean ADC value was larger in 
responders than in non-responders. This was noted 
sooner than a reduction in tumor diameter. 
There was a significant correlation between the 
change in ADC values and response rate (p=0.016). 

[67] US 24 breast 
cancer 
patients 

Two times: 

•         Before NAC  

•         After the first cycle of 
NAC 

• Tumor size A decrease in tumor size was noted, but the 
correlation between the change in tumor size and the 
response rate was low (p=0.083). 

[68] Color Doppler 
imaging 

50 breast 
cancer 
patients 

Two times: 

•         Before NAC  

•         After 2-4 cycles of NAC 

• 𝑃𝑆𝑉: peak systolic 
velocity  

• 𝑅𝐼 =
𝑃𝑆𝑉−𝐸𝐷𝑉

𝑃𝑆𝑉
  

* 𝐸𝐷𝑉: end-
diastolic velocity 

• 𝑃𝐼 =
𝑃𝑆𝑉−𝐸𝐷𝑉

𝑚𝑒𝑎𝑛
 

Patients with increased PSV velocity after 
chemotherapy had a greater likelihood of recurrence 
and metastasis than patients in whom PSV decreased 
after chemotherapy. 
However, neither 𝑅𝐼 nor 𝑃𝐼 correlated with the clinical 
response. 

[22] Elastography 75 patients  Seven times: 

•         Before biopsy 

•         One day before each 
cycle of NAC (5 cycles) 

•         Before surgery 

• Emax: maximum 
elasticity 

• Emean: mean 
elasticity 

• R: Strain ratio  

Emax, Emean, and R significantly declined among the 
different residual cancer burden groups, suggesting a 
correlation between the change in these parameters 
and response rate. Change in Emax before the second 
cycle showed the best predictive performance for 
assessing NAC efficacy.  
  

[69] PET 23 patients 
receiving 
eight cycles 
(conventiona
l dose), 55 
patients 
receiving six 
cycles 
(intensified 
dose) 

Two times: 

•         Before NAC 

•         After the second cycle 
of NAC 

• Change in SUV* 
after two cycles of 
NAC 

*SUV: [tracer 
concentration]/[injecte
d activity]/[patient body 
weight] 

Baseline tumor uptake was higher in patients who 
achieved pCR, and residual tumor uptake was lower in 
patients who achieved pCR. The decrease in tumor 
uptake before NAC and after the 2nd cycle of NAC was 
more pronounced in patients who achieved pCR.  
The decrease in tumor SUVmax was less pronounced in 
the conventional dose group compared to the 
intensified dose group. 
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B. Elastix parameter settings 
 

Table 13: Parameter setting used for image registration with Elastix in our comparison study 

  

Rigid transformation B-Spline transformation 

(AutomaticParameterEstimation "true") 
(AutomaticScalesEstimation "true") 
(CheckNumberOfSamples "true") 
(DefaultPixelValue 0.000000) 
(FinalBSplineInterpolationOrder 3.000000) 
(FixedImagePyramid 
"FixedSmoothingImagePyramid") 
(ImageSampler "RandomCoordinate") 
(Interpolator "LinearInterpolator") 
(MaximumNumberOfIterations 500) 
(MaximumNumberOfSamplingAttempts 8.000000) 
(Metric "AdvancedNormalizedCorrelation") 
(MovingImagePyramid 
"MovingSmoothingImagePyramid") 
(NewSamplesEveryIteration "true") 
(NumberOfResolutions 4.000000) 
(NumberOfSamplesForExactGradient 4096.000000) 
(NumberOfSpatialSamples 2048.000000) 
(Optimizer "AdaptiveStochasticGradientDescent") 
(Registration "MultiResolutionRegistration") 
(ResampleInterpolator "FinalBSplineInterpolator") 
(Resampler "DefaultResampler") 
(ResultImageFormat "nii") 
(Transform "EulerTransform") 
(WriteIterationInfo "false") 
(WriteResultImage "true") 

(AutomaticParameterEstimation "true") 
(CheckNumberOfSamples "true") 
(DefaultPixelValue 0.000000) 
(FinalBSplineInterpolationOrder 3.000000) 
(FinalGridSpacingInPhysicalUnits 16.000000) 
(FixedImagePyramid 
"FixedSmoothingImagePyramid") 
(GridSpacingSchedule 2.803221 1.988100 1.410000 
1.000000) 
(ImageSampler "RandomCoordinate") 
(Interpolator "LinearInterpolator") 
(MaximumNumberOfIterations 1000) 
(MaximumNumberOfSamplingAttempts 8.000000) 
(Metric "AdvancedNormalizedCorrelation" 
"TransformRigidityPenalty") 
(Metric0Weight 1.000000) 
(Metric1Weight 1.000000) 
(MovingImagePyramid 
"MovingSmoothingImagePyramid") 
(NewSamplesEveryIteration "true") 
(NumberOfResolutions 4.000000) 
(NumberOfSamplesForExactGradient 4096.000000) 
(NumberOfSpatialSamples 4096.000000) 
(Optimizer "AdaptiveStochasticGradientDescent") 
(Registration 
"MultiMetricMultiResolutionRegistration") 
(ResampleInterpolator "FinalBSplineInterpolator") 
(Resampler "DefaultResampler") 
(ResultImageFormat "nii") 
(Transform "BSplineTransform") 
(WriteIterationInfo "false") 
(WriteResultImage "true") 
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C. Synthetically deformed data set 

i. Computation time 
Table 14: Computation time for MUVINN and Elastix image registration in experiments with synthetically deformed data 
set 

 

 

 

 

 

 

 

 

 

 

 

ii. Evaluation metrics 
Table 15: The absolute values of PSNR, SSIM, and DSC before and after the image registration of synthetically deformed 
images with low deformation intensity 

 Computation time MUVINN (seconds) Computation time Elastix (seconds) 

Intensity  Volunteer A Volunteer B Volunteer A Volunteer B 

Low 
(5) 

322 
325 
330 
327 
323 

320 
324 
320 
320 
320 

687 
690 
688 
685 
688 

675 
678 
680 
673 
681 

Medium 
(5) 

324 
325 
326 
325 
325 

318 
318 
318 
312 
319 

687 
688 
687 
688 
688 

673 
675 
683 
673 
675 

High 
(5) 

324 
322 
326 
325 
325 

319 
321 
317 
322 
323 

695 
686 
689 
687 
686 

680 
676 
718 
677 
673 

Volunteer A Volunteer B 

Image pairs PSNR SSIM DSC Image pairs PSNR SSIM DSC 

1a 
 

Before 31.540 0.56465 0.063629 1b 
 

Before 32.238 0.58786 0.058591 

After 
MUVINN 

34.134 0.74884 0.65099 After 
MUVINN 

34.985 0.77831 0.60786 

After 
Elastix 

33.263 0.70451 0.45607 After 
Elastix 

34.602 0.77044 0.54614 

2a Before 30.673 0.49942 0.023989 2b Before 32.358 0.59141 0.079907 

After 
MUVINN 

33.724 0.73055 0.64656 After 
MUVINN 

35.037 0.78132 0.61829 

After 
Elastix 

32.832 0.68780 0.54148 After 
Elastix 

34.430 0.77016 0.48820 

3a Before 31.498 0.56333 0.050856 3b Before 31.597 0.54607 0.026822 

After 
MUVINN 

34.126 0.74856 0.64445 After 
MUVINN 

34.666 0.76584 0.60598 

After 
Elastix 

33.409 0.71566 0.50616 After 
Elastix 

33.780 0.73953 0.48768 

4a Before 30.774 0.50777 0.029074 4b Before 30.305 0.46471 0.020067 

After 
MUVINN 

33.766 0.73176 0.64654 After 
MUVINN 

33.888 0.73126 0.60038 

After 
Elastix 

33.252 0.71334 0.64671 After 
Elastix 

32.699 0.68250 0.59148 

5a Before 31.179 0.52964 0.019481 5b Before 31.913 0.55442 0.0278540 

After 
MUVINN 

33.942 0.73814 0.62095 After 
MUVINN 

34.861 0.77259 0.59581 

After 33.757 0.73567 0.62826 After 34.169 0.75436 0.48230 
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Table 16: The absolute values of PSNR, SSIM, and DSC before and after the image registration of synthetically deformed 
images with medium deformation intensity 

 

Elastix Elastix 

Mean Before 31.133 0.53296 0.037406 Mean Before 31.6822 0.548894 0.042648 

After 
MUVINN 33.938 0.73957 0.64190 

After 
MUVINN 34.687 0.76586 0.60566 

After 
Elastix 33.303 0.71140 0.55574 

After 
Elastix 33.936 0.74340 0.51916 

Standard 
deviation 

Before 0.35818 0.027192 0.016966 Standard 
deviation 

Before 0.737947 0.04572 0.022898 

After 
MUVINN 0.17272 0.007889 0.010689 

After 
MUVINN 0.41962 0.018091 0.0076070 

After 
Elastix 0.29779 0.015591 0.072292 

After 
Elastix 0.67770 0.032531 0.043049 

Volunteer A Volunteer B 

Image pairs PSNR SSIM DSC Image pairs PSNR SSIM DSC 

6a 
 

Before 31.211 0.52923 0.01161 6b Before 30.154 0.45361 0.042668 

After 
MUVINN 

33.868 0.73163 0.60144 After 
MUVINN 

33.582 0.71362 0.55960 

After 
Elastix 

33.193 0.69666 0.48820 After 
Elastix 

31.968 0.63324 0.41337 

7a  Before 30.516 0.48348 0.01212 7b Before 31.051 0.49300 0.012582 

After 
MUVINN 

33.515 0.71549 0.61117 After 
MUVINN 

34.193 0.73772 0.54482 

After 
Elastix 

32.523 0.66477 0.49747 After 
Elastix 

33.183 0.68984 0.48091 

8a 
 

Before 31.028 0.51485 0.011198 8b 
 

Before 31.210 0.49878 0.0093070 

After 
MUVINN 

33.768 0.72654 0.59443 After 
MUVINN 

34.254 0.73998 0.52859 

After 
Elastix 

32.529 0.65673 0.33657 After 
Elastix 

33.410 0.69896 0.50776 

9a 
 

Before 31.314 0.53675 0.013078 9b 
 

Before 30.118 0.43937 0.018075 

After 
MUVINN 

33.888 0.73206 0.58878 After 
MUVINN 

33.627 0.71149 0.54793 

After 
Elastix 

33.232 0.69925 0.47068 After 
Elastix 

31.923 0.62782 0.38217 

10a Before 30.545 0.48265 0.0062790 10b Before 31.134 0.49805 0.0097611 

After 
MUVINN 

33.513 0.71478 0.59793 After 
MUVINN 

34.257 0.74097 0.53651 

After 
Elastix 

32.686 0.67338 0.53808 After 
Elastix 

33.0478 0.68609 0.41158 

Mean Before 30.923 0.50939 0.010857 Mean Before 30.733 0.47656 0.018479 

After 
MUVINN 33.710 0.72410 0.59875 

After 
MUVINN 33.983 0.72876 0.54349 

After 
Elastix 32.833 0.67816 0.46620 

After 
Elastix 32.706 0.66719 0.43916 

Standard 
deviation 

Before 0.33328 0.022620 0.002374 Standard 
deviation 

Before 0.49049 0.025042 0.012491 

After 
MUVINN 0.16544 0.0075760 0.0074860 

After 
MUVINN 0.30989 0.013287 0.010505 

After 
Elastix 0.31589 0.0170200 0.068487 

After 
Elastix 0.63209 0.030273 0.047165 
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Table 17: The absolute values of PSNR, SSIM, and DSC before and after the image registration of synthetically deformed 
images with high deformation intensity 

 

  

Volunteer A Volunteer B 

Image pairs PSNR SSIM DSC Image pairs PSNR SSIM DSC 

11a 
 

Before 30.728 0.48109 0.0038246 11b 
 

Before 31.729 0.52661 0.0048195 

After 
MUVINN 

33.410 0.70351 0.53551 After 
MUVINN 

34.379 0.74015 0.48437 

After 
Elastix 

32.108 0.61408 0.33075 After 
Elastix 

33.316 0.68105 0.32974 

12a  Before 30.239 0.45933 0.0093357 12b Before 30.111 0.43138 0.0047031 

After 
MUVINN 

33.163 0.69208 0.53720 After 
MUVINN 

33.515 0.69947 0.48218 

After 
Elastix 

31.689 0.59952 0.32766 After 
Elastix 

31.880 0.60497 0.36434 

13a 
 

Before 31.213 0.52296 0.0100506 13b 
 

Before 30.467 0.45803 0.0030372 

After 
MUVINN 

33.632 0.71533 0.53818 After 
MUVINN 

33.606 0.70383 0.45301 

After 
Elastix 

32.707 0.65628 0.36788 After 
Elastix 

32.146 0.61968 0.342917 

14a 
 

Before 30.450 0.46677 0.0045249 14b 
 

Before 30.981 0.48780 0.011353 

After 
MUVINN 

33.300 0.69910 0.54604 After 
MUVINN 

34.048 0.72748 0.52091 

After 
Elastix 

31.889 0.61005 0.33094 After 
Elastix 

32.514 0.64643 0.30814 

15a Before 30.243 0.46618 0.0080749 15b Before 31.396 0.50927 0.0087115 

After 
MUVINN 

33.170 0.69384 0.55025 After 
MUVINN 

34.149 0.72557 0.47133 

After 
Elastix 

31.882 0.62022 0.39222 After 
Elastix 

32.892 0.65705 0.30987 

Mean Before 30.575 0.47927 0.0071620 Mean Before 30.937 0.48262 0.0065250 

After 
MUVINN 33.335 0.70077 0.54144 

After 
MUVINN 33.939 0.7193 0.48236 

After 
Elastix 32.055 0.62003 0.34989 

After 
Elastix 32.550 0.64184 0.33100 

Standard 
deviation 

Before 0.36584 0.022967 0.0025300 Standard 
deviation 

Before 0.59043 0.034358 0.003049 

After 
MUVINN 0.174280 0.0083170 0.0057020 

After 
MUVINN 0.32870 0.015320 0.022241 

After 
Elastix 0.35195 0.019338 0.025827 

After 
Elastix 0.51325 0.026983 0.021091 
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D. Operator’s protocol 
Measurement 1 

1. Fit the breast in different cup sizes to see which cup fits the best with the volunteer’s breast  

2. Put the volunteer on the bed and place her breast correctly in the cup with the chosen cup size 

3. Acquire a photoacoustic image of 720 nm and 870 nm simultaneously 

4. When measuring is done, let the volunteer get off the imager completely by letting her stand up 

next to the imager 

5. Repeat the process from step two until three images are acquired 

6. Put the volunteer on the bed and place her breast correctly in the cup with the chosen cup size 

7. Acquire a photoacoustic image of 720 nm 

8. Repeat the process from step six once 

*There is no need for waiting or warming up the volunteer. Getting off the imager completely and then 

repositioning is enough.  

 

Measurement 2 

1. Use the same cup size as measurement 1. 

2. Put the volunteer on the bed and place her breast slightly downwards from the center of the cup so 

that there is a distance between the cup’s edge and the breast’s edge. When the breast is correctly 

positioned, there is no distance between the edge of the breast and the edge of the cup. See Figure 

21 for definitions of the edge of the cup and the edge of the breast. The distance between the cup’s 

edge and the breast’s edge can be chosen based on the assisting tool for the placement of the 

breast. The center point of the breast was placed on the stripe pointed by the orange arrow in 

Figure 22 instead of the red point in the middle of the measuring tool like experiment 1. 

3. Acquire a photoacoustic image of 720 nm 

4. When measuring is done, let the volunteer get off the imager completely by letting her stand up 

next to the imager 

5. Repeat the process once more 

 

 

Figure 21: Correctly positioned breast and mispositioned breast 
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Figure 22: Measuring tool 

 

Measurement 3 

1. Choose the optimal cup size 

2. Put the volunteer on the bed and place her breast correctly in the cup 

3. Acquire a photoacoustic image of 720 nm 

4. When measuring is done, let the volunteer get off the imager completely by letting her stand up 

next to the imager 

5. Repeat the process once more from steps 2 to 5 

6. Change the cup size to the cup sizes in the Table 18 and repeat the process from steps 2 to 5 

 

Table 18: Number of acquisitions for each cup size used for experiment 4 

 

 

 

 

 

Measurement time schedule  

Measurement 1 - Correct repositioning: 

• A: 3 repeated measurements, 720 and 870 nm: 160*3 = 480 seconds 

• B: 2 repeated measurements, 720 nm: 120*2 = 240 seconds 

Measurement 2 - Mispositioning: 

• C: 2 repeated measurements, 720 nm: 120*2 = 240 seconds 

Total time estimation for this breast: 16 minutes of exposure for this breast 

Cup sizes Number of acquisition 

Optimal cup size (Size = 7) 2 

Two sizes smaller than the optimal cup size (Size = 5) 2 

Three sizes smaller than the optimal cup size (Size = 4) 2 

One size larger than the optimal cup size (Size = 8) 2 

No breast-supporting cup  1 
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1. The volunteer arrives in the room, coffee and explaining the device, the aim of the experiments and 

the protocol: 15 minutes 

2. Test different cup size on the volunteer and pick the best one: 5 minutes 

3. Volunteer positioning + laser glasses: 4 minutes 

4. Measurement A (160 seconds) + stand-up and lie again (3 minutes) + Measurement A (160 seconds) 

+ stand-up and lie again (3 minutes) + Measurement A (160 seconds) + stand-up (2 minutes): 16 

minutes 

5. Relax + change device settings: 5 minutes 

6. Measurement B (2 minutes) + stand-up and lie again (3 minutes) + Measurement B (2 minutes) + 

stand-up (2 minutes): 9 minutes 

7. Misposition patient (5 minutes) + Measurement C (2 minutes) + stand-up and misposition (6 minutes) 

+ Measurement C (2 minutes) + stand-up (2 minutes) 

8. Relax: 5 minutes 

Total: 59 minutes 

 

Measurement 3 - Different cup sizes (correct cup = 7): 

• D: 2 repeated measurements, cup 7, 720 nm: 120*2 = 240 seconds 

• E: 2 repeated measurements, cup 5, 720 nm: 120*2 = 240 seconds 

• F: 2 repeated measurements, cup 4, 720 nm: 120*2 = 240 seconds 

• G: 2 repeated measurements, cup 8, 720 nm: 120*2 = 240 seconds 

• H: 1 measurement without a cup, 720 nm: 120 seconds 

Total time estimation for this breast: 18 minutes of exposure for this breast 

1. Volunteer positioning with cup 7 + laser glasses: 4 minutes 

2. Measurement D (2 minutes) + stand-up and lie again (3 minutes) + Measurement D (2 minutes) 

+ stand-up (2 minutes): 9 minutes 

3. Change cup: 3 minutes 

4. Measurement E (2 minutes) + stand-up and lie again (3 minutes) + Measurement E (2 minutes) + 

stand-up (2 minutes): 9 minutes 

5. Change cup: 3 minutes 

6. Measurement F (2 minutes) + stand-up and lie again (3 minutes) + Measurement F (2 minutes) + 

stand-up (2 minutes): 9 minutes 

7. Change cup: 3 minutes 

8. Measurement G (2 minutes) + stand-up and lie again (3 minutes) + Measurement G (2 minutes) 

+ stand-up (2 minutes): 9 minutes 

9. Take off cup: 1 minute 

10. Measurement H (2 minutes): 2 minutes 

11. Wrapping up 

Total: 52 minutes 
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E. Serial image data set 

i. Computation time 
Table 19: Computation time for MUVINN and Elastix image registration in experiments with serial image data set 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Evaluation metrics 
Table 20: The absolute values of PSNR, SSIM, and DSC before and after the image registration in Experiment 1 

 

Table 21: The absolute values of PSNR, SSIM, and DSC before and after the image registration in Experiment 2 

Image pairs  Computation time MUVINN (seconds) Computation time Elastix (seconds) 

01-01 – 02-01 1251 1131 

01-01 – 03-01 1265 961 

01-01 – 04-01 1259 980 

01-01 – 05-01 1250 1013 

01-01 – 02-02 1143 - 

01-01 – 03-02 1195 - 

01-01 – 06-01 1242 961 

01-01 – 07-01 1269 948 

08-01 – 11-01 1192 - 

09-01 – 11-01 1178 - 

08-01 – 12-01 1179 - 

09-01 – 12-01 1181 - 

08-01 – 13-01 1182 - 

09-01 – 13-01 1184 - 

08-01 – 14-01 1177 - 

09-01 – 14-01 1163 - 

08-01 – 15-01 1165 - 

09-01 – 15-01 1172 - 

Image pairs  PSNR SSIM DSC  NCC TRE (mm) [mean, std] 

01-01 – 
02-01 

Before 39.95 0.8903 0.3329 0.3649 [10.97, 3.78] 

After 44.02 0.9491 0.6369 0.7281 [0.89, 0.48] 

01-01 – 
03-01 

Before 38.75 0.8492 0.1193 0.1372 [6.99, 2.34] 

After 44.40 0.9525 0.6717 0.7520 [0.9, 0.4] 

01-01 – 
04-01 

Before 38.80 0.8501 0.1317 0.1419 [6.22, 1.79] 

After 44.80 0.9573 0.6930 0.7769 [0.64, 0.33] 

01-01 – 
05-01 

Before 38.55 0.8432 0.1029 0.1288 [5.99, 1.23] 

After 44.85 0.9590 0.6919 0.7799 [0.63, 0.26] 

Mean  Before 39.01 0.8582 0.1717 0.1932 7.54 

After 44.52 0.9545 0.6733 0.7592 0.765 

Standard 
deviation 

Before 0.5495 0.01872 0.09363 0.09924 2.01 

After 0.3395 0.003913 0.02270 0.02098 0.130 

Image pairs  PSNR SSIM DSC  NCC TRE (mm) [mean, std] 

01-01 – 
02-02 

Before 39.95 0.8903 0.1037 0.3649 [10.97, 3.78] 

After 43.69 0.9454 0.4769 0.7054 [0.87, 0.49] 

01-01 – 
03-02 

Before 38.75 0.8492 0.0815 0.1372 [6.99, 2.34] 

After 44.17 0.9502 0.5302 0.7374 [0.94, 0.45] 

Mean  Before 39.35 0.8698 0.0926 0.2511 8.98 

After 43.93 0.9478 0.5036 0.7214 0.905 

Standard 
deviation 

Before 0.5995 0.02055 0.01110 0.1139 1.99 

After 0.2405 0.002400 0.02665 0.01600 0.0350 



Appendix 
 

68 
 

Table 22: The absolute values of PSNR, SSIM, and DSC before and after the image registration in Experiment 3 

 

Table 23: The absolute values of PSNR, SSIM, and DSC before and after the image registration in Experiment 4 

 

Image pairs  PSNR SSIM DSC  NCC TRE (mm) [mean, std] 

01-01 – 
06-01 

Before 37.96 0.8239 0.08669 0.1236 [24.98, 6.75] 

After 41.84 0.9156 0.4847 0.5779 [1.97, 2.62] 

01-01 – 
07-01 

Before 38.27 0.8226 0.07674 0.1209 [33.31, 5.16] 

After 41.43 0.8989 0.4306 0.5084 [2.33, 2.25] 

Mean  Before 38.12 0.8233 0.08172 0.1223 29.14 

After 41.64 0.9073 0.4577 0.5432 2.15 

Standard 
deviation 

Before 0.1550 0.0006500 0.004975 0.001350 4.17 

After 0.2045 0.008350 0.02705 0.03475 0.18 

 Image pairs  PSNR SSIM DSC  NCC TRE (mm) [mean, std] 

Ex
p

er
im

en
t 

4
a 

08-01 – 11-01 Before 37.69 0.7831 0.04290 0.07383 [17.3, 3.71] 

After 42.82 0.9239 0.5325 0.6791 [0.82, 0.56] 

09-01 – 11-01 Before 37.67 0.7802 0.05107 0.07606 [18.21, 3.08] 

After 42.67 0.9209 0.5397 0.6716 [1.23, 0.46] 

Mean  Before 37.68 0.7817 0.04699 0.07495 17.76 

After 42.75 0.9224 0.5361 0.6754 1.03 

Standard deviation Before 0.01000 0.001450 0.004085 0.001115 0.46 

After 0.07500 0.001500 0.003600 0.003750 0.21 

Ex
p

er
im

en
t 

4
b

 

08-01 – 12-01 Before 37.21 0.7560 0.03411 0.04903 [20.66, 2.78] 

After 42.44 0.9099 0.5014 0.6685 [1.32, 1.02] 

09-01 – 12-01 Before 37.19 0.7521 0.04912 0.03818 [18.13, 1.05] 

After 42.14 0.9051 0.4167 0.4924 [1.14, 1.42] 

08-01 – 13-01 Before 37.41 0.7564 0.03121 0.04771 [28.11, 5.25] 

After 41.79 0.8898 0.4720 0.6021 [1.45, 0.9] 

09-01 – 13-01 Before 37.37 0.7526 0.03171 0.04750 [21.36, 4.84] 

After 42.19 0.9013 0.5072 0.6418 [1.01, 0.64] 

Mean  Before 37.30 0.7543 0.03654 0.04561 22.065 

After 42.14 0.9015 0.4743 0.6012 1.23 

Standard deviation Before 0.09631 0.001938 0.007347 0.004327 3.69 

After 0.2318 0.007424 0.03585 0.06711 0.17 

Ex
p

er
im

en
t 

4
c 

08-01 – 14-01 Before 38.15 0.8166 0.05423 0.09962 [9.19, 2.26] 

After 43.40 0.9412 0.5971 0.7113 [1.25, 0.46] 

09-01 – 14-01 Before 38.09 0.8120 0.03639 0.09625 [15.87, 4.23] 

After 43.16 0.9384 0.5981 0.6985 [0.75, 0.45] 

08-01 – 15-01 Before 37.96 0.8133 0.06106 0.09543 [15.17, 3.23] 

After 42.27 0.9268 0.5416 0.6236 [0.81, 0.42] 

09-01 – 15-01 Before 37.92 0.8101 0.04462 0.09420 [14.79, 1.68] 

After 42.49 0.9293 0.5568 0.6487 [1.48, 1.56] 

Mean  Before 38.03 0.8130 0.04908 0.096375 13.76 

After 42.83 0.9339 0.5734 0.6705 1.07 

Standard deviation Before 0.09354 0.002370 0.009367 0.002011 2.663 

After 0.4645 0.006023 0.02479 0.03579 0.3043 
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F. Comparison of the framework with and without a multiscale approach 
As described in Chapter 4, Algorithm: MUVINN, MUVINN is based on implicit neural representations. The 

original implementation from reference [38] was adapted to work on photoacoustic images by implementing 

Frangi vesselness filtering and a coarse-to-fine strategy. There are several benefits of using a multiscale 

approach. Using a multiscale approach reduces the amount of data to be processed by starting at a lower 

resolution. Aligning the structures first at a course level provides a good starting point for the alignment of 

finer structures. This speeds up the registration process and is more computationally efficient. Without a 

multiscale approach, there is a larger chance that the algorithm might converge to a local minimum of the 

similarity measure, failing to reach the global minimum and leading to suboptimal registration [71, 72]. 

The original algorithm was applied to the data set from experiment 1 with images of normal repositioning 

using the same training parameters. For a fair comparison, the images were pre-processed using multiscale 

Frangi vesselness filtering following standard deviation values of (𝜎= {7,5,3,1.5}). The difference between the 

MUVINN and the original implementation is that the original implementation does not use a multiscale 

approach and that the patch length for the neighbouring points of the sampled point was fixed at 0.05 

instead of decreasing the patch length when the scale is reduced.  

The original implementation failed to align two of the four image pairs. The MIPs of the overlayed images 

before and after registration of the image pair in which registration failed are shown in Figure 23. The 

transformed image was highly irregular and not correctly aligned despite the decrease in the training loss. 

Not implementing the multiscale approach showed that the network failed to align features of different 

scales at the same time in a consistent way, as it failed to align two out of four image pairs. There was a 

decrease in the training loss curve, so the algorithm converged to a local minimum probably. For this reason, 

a coarse-to-fine approach was implemented in MUVINN, where the network gradually optimizes structures 

at different scales. Figure 23 shows the MIPs after registration with MUVINN for the same image pair which 

the original implementation of INR failed to align. 

 

 

Figure 23: MIPs and depth images of before and after image registration of image pair 01-01 – 05-01 with the original 
implementation of INR and MUVINN 

 

Pre-registration Post-registration: Original INR Post-registration: MUVINN 

   
> 0 cm > 2 cm > 4 cm > 0 cm > 2 cm > 4 cm > 0 cm > 2 cm > 4 cm 

         


