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Abstract

Significance Scattering is one of the main limitations in achieving microscopic imag-
ing deep inside tissue. Solving this would enable the research of biological phenomena
on a larger scale. A technique to overcome the scattering of tissue is wavefront shaping.
Wavefront shaping was conceived 16 years ago by Vellekoop and Mosk, and the field has
developed significantly since then.

Aim This thesis works towards a practical application of these developed techniques.
Wavefront shaping is a swiftly developing field in which user-friendliness, developer-
friendliness, and the ability to share work through the scientific community are vital. The
current implementation is not satisfactory in any of these requirements. The aim of this
thesis is to create a developer-friendly system which can be used with the press of a button.

Approach A novel code-based platform, OpenWFS, was designed that allows for the
development of wavefront shaping algorithms in Python. Additionally, this platform fa-
cilitates executing the code for wavefront shaping at the push of a button from a widely
used open-source microscope controlling software called µManager. Using this software,
a state-of-the-art wavefront shaping algorithm was expanded to simplify and generalise
its use for the end user.

Results OpenWFS is able to integrate Python code into µManager microscope control
software using a custom plugin that reads Python code and interfaces it with µManager.
A large portion of the existing wavefront shaping code was restructured, clarified and
adopted into this new platform. The µManager plugin was well received by the leading
µManager developers and we are in the process of adopting it into the distribution of the
software. The expansion upon the state-of-the-art wavefront shaping algorithm was done
by considering that significantly contributing modes are spatially coherent, thus creating
an algorithm that determines and refines its measurement protocol during measurement.
It was determined that the wavefront shaping effectiveness can be successfully projected
during the execution of the algorithm, allowing for further user-oriented development.

Conclusion OpenWFS successfully achieved the requirements of both users and devel-
opers, enabling the integration of Python code with the widely-used µManager micro-
scope control software through a custom plugin. A substantial portion of the pre-existing
wavefront shaping infrastructure was incorporated into OpenWFS, with the µManager
plugin currently undergoing integration into the software’s general distribution. The
refinement of the state-of-the-art wavefront shaping algorithm has also been realised,
demonstrating comparable or improved efficiency compared with the current golden stan-
dard, meaning a more user-friendly and robust implementation. The innovations pre-
sented serve as a foundation for further advancements in the field, facilitating more coop-
erative, accessible and versatile applications of wavefront shaping techniques.
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Chapter 1

Introduction

‘It is very easy to answer many of these fundamental biological questions; you just look at the
thing!’ - Richard Feynman

To see is to know. The incredible developments in the fields of biology and medicine were
nigh impossible without the advancements made in technology that visualise the micro-
scopic processes that underlie our biological machinery.
Scientists in the field of biomedical imaging work on the limitations of imaging technol-
ogy to enable colleagues in biology. Dutch scientists have a long history in this field, e.g.
Van Leeuwenhoek, Huyghens and Zernike, to name a few. The latter, Frits Zernike, was
awarded the Nobel prize for his work on the phase contrast microscope, which is a solu-
tion for the limitation of the low contrast of cells, using the difference in refractive index
of cells. This happens to intersect with my personal history, as my great-grandfather was
his gardener.

On a larger scale, the refractive index mismatch of cells causes a different limitation: scat-
tering. Scattering causes a loss in resolution as dispersed light cannot be distinguished
from other light, causing a blurring of the image. The resolution is, fortunately, not irre-
trievably lost. In 2007, Vellekoop and Mosk showed that by using a Spatial Light Modula-
tor (SLM) [1], light can be retrieved by sending in a tailored wavefront such that a focus is
created despite scattering. This technique has since been coined ‘Wavefront shaping’.

1.1 Wavefront shaping

In figure 1.1, we show the principle of wavefront shaping as presented in work from
Vellekoop [1]. In 1.1a, a plane wave interacts with a strongly scattering material, resulting
in a random speckle of diffused light. Although this seems like a random process, it is
actually deterministic; with a static medium, the random speckle is reproducible. Due to
the random scattering, some light reaches our desired focus location. As seen in figure
1.1b, by changing the wavefront of incoming light using a spatial light modulator (SLM),
these random interactions can result in a constructively interfering focus. The challenge of
wavefront shaping is finding the wavefront that does this.
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FIGURE 1.1: The principle of wavefront shaping from [1]. (a): The effect of
a strongly scattering sample on a plane wave. Due to the scattering interac-
tions, the light is spread out into a random speckle pattern. (b): The effect of
a shaped wave, by shaping the wave in a particular manner, the scattering

interactions result in a constructively interfering focus.

As generalised in [2], a wavefront can be optimised for any output mode, such as a focus,
a plane wave or any other field pattern. Optimising a wavefront for a desired output is
relatively simple once we know the transmission matrix of our scattering sample. In or-
der to find this sample-specific transmission matrix, techniques and algorithms have been
developed, which can be roughly separated into model-based, feedback-based and phase
conjugation approaches.

The feedback-based approach works by measuring the elements of the transmission ma-
trix individually. The most simple implementation of this is selecting a small region of the
incoming light, changing the phase of this light, and measuring the response. Doing this
for many regions allows you to build up the transmission matrix of the whole scattering
object. This is called the ‘stepwise sequential algorithm (SSA)’. There are more techniques to
do this, such as Hadamard- or Fourier-based methods [3], but both are still techniques to
measure the transmission matrix of a scattering sample. Typically, this approach requires a
significant number of measurements and therefore takes much time. Deciding how many
measurements need to be done is a trade-off; measure too little, and the enhancement is
low, measure too much, and the procedure takes long without much additional benefit.

The model-based approach treats the scattering sample not as a single transmission ma-
trix, but characterises the optical behaviour of a sample by simulation [4]. Using wave
propagation simulations, such as WaveSim [5], the propagation of light in a scattering
sample can be estimated. Because scattering is a reversible phenomenon, one can model
the propagation of light from the desired focus location and derive the required field of
the incoming wave. Although it requires significant effort to build up such a simulation,
using a model-based can be significantly faster than feedback-based methods.

The phase-conjugation approach involves measuring the field of the light coming out of
the sample [6] [7]. The phase of this field is then sign-changed and used as the corrective
illumination field. This is both fast and requires no prior knowledge, but a requirement
is that the measured light all comes from the same spot, and we can only optimise the
wavefront for that spot.

In this thesis, the groundbreaking work achieved in these efforts will be used towards
making a platform and algorithms that are tailored for the use of the end user. The main
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contribution is designing a robust open-source platform for wavefront shaping called
‘OpenWFS’ that enables both development and use. Additionally, the state-of-the-art al-
gorithm developed by Mastiani and Vellekoop is developed further towards application.
This was done using the setup specifically designed for deep-tissue microscopy: the two-
photon wavefront shaping microscope.

1.2 Two-Photon microscopy

Two-photon microscopy is a laser-scanning fluorescence microscopy technique that uses
non-linear optical effects to excite fluorophores at a specific focal spot selectively. This fo-
cal spot is then scanned through a sample, allowing the detection of the signal to be traced
back to that one focal spot. Combining the scanned spots, an image is created.

Regular linear fluorescence requires the uptake of a photon with characteristic energy by
the fluorophore. The excited fluorophore, after some internal relaxation, will then emit a
Stokes-shifted photon. In multiple-photon microscopy, the same excited state is reached
with multiple photons, which together have the characteristic excitation energy of the flu-
orophore [8]. This does, however, have a strong requirement that the photons arrive at
the fluorophore at the ‘same time’. This is the case when the arrival time is within 10−18

seconds. This is a statistical process, which depends on the laser power, as more incom-
ing photons increase the chance of them arriving together. In conventional setups, this is
achieved by using a pulsed laser source. The pulses of the laser are very short, packing
the power of the laser into a very confined region. This prevents the use of a high-power
continuous laser source, which would be problematic in many aspects.

FIGURE 1.2: The difference between conventional and multiple photon ex-
citation. Left: excitation by linear and non-linear methods [9]. Note that the
green colour signifies the excitation area. Right: Jablonski diagram of one-

and two-photon excitation and emission [8].

One of the key advantages of two-photon microscopy is its ability to image deep tissue
structures [9]. This is in part due to the fact that longer wavelengths experience less scat-
tering, allowing for more effective penetration into tissue [8]. In addition, due to the non-
linear effect of two-photon excitation, only fluorophores in the focus are excited. This
gives two-photon excitation much better spatial resolution compared to single-photon ex-
citation.

Another advantage of two-photon microscopy is its ability to reduce photodamage to the
sample being imaged. As can be seen in figure 1.2, traditional one-photon microscopy has
a large area where photodamaging effects can occur. Due to two-photon excitation only
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happening at the focus, photodamaging effects are only at the spot that is being measured.
this allows for longer imaging times of biological samples.

Two-photon microscopy has been widely used in a variety of research areas [8], including
neuroscience and cell biology. The ability to perform deep-tissue imaging is especially
suitable for neural imaging, and this has been used to study the activity of neurons in the
brains of mice [10] [11]. In cell biology, it has been used to study the dynamics of intracel-
lular processes, such as vesicle trafficking [12] and cell division [13].

Expanding the use of two-photon microscopy with wavefront shaping has potential. As
both techniques work towards deep-tissue imaging, the techniques can be used to enhance
each other. Applying wavefront shaping for biology research, however, is not straightfor-
ward. The current state of the technology is not suited for end users, and that is a problem.

1.3 Problem statement

The current control software that is used for the two-photon microscope and wavefront
shaping algorithm is complex to use, for both the end user and the algorithm developer.
Especially for the end user, wavefront shaping is too complex to apply to their research
without extensive aid from experts. Additionally, sharing work with scientists working
on wavefront shaping outside the University of Twente is cumbersome, as they typically
use different hardware.

As for the algorithms themselves, the feedback-based wavefront shaping approach is an
effective method for wavefront shaping, but selecting which and how many measure-
ments need to be done is complex. After a procedure, we can precisely tell which mea-
surements were the most significant for the enhancement, but by then, much time has
already been spent taking these measurements.
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1.4 Project goals

The goal of the project is to develop wavefront shaping, from an experimental technology
to a functional tool for biologists.

In the last 16 years, many developments have followed the initial results shown by Vellekoop
and Mosk [1]. More efficient [3] and faster methods [4] [14] [7] for wavefront shaping have
been developed.

This project can described by a number of system engineering goals and wavefront-shaping
research questions. System engineering goals are:

1. Simplify the development of future wavefront shaping algorithms for the scientific
community.

2. Simplify the use of currently existing wavefront shaping algorithms for the end user.

The design considerations will be discussed in Chapter 2. The product of this develop-
ment is a code library written in Python, which we coined OpenWFS. It will be presented
in Chapter 3. The last design requirement leads to our final chapter, Chapter 4. This is the
research part of the project, where it is explored how the wavefront shaping algorithm can
be expanded.

As mentioned in the problem statement, the use of the current feedback-based algorithm
requires manual input for the number and type of measurements that are performed. In
order to simplify its use, the following research questions emerge.

1. Can the number of input parameters of golden standard wavefront shaping algo-
rithms be reduced?

2. Can we build a more efficient wavefront shaping algorithm?

3. How can we make the wavefront shaping algorithms robust for more sample types?

4. Can the potential of the wavefront shaping procedure be gauged before or during
measurement?
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Chapter 2

Design methodology

In this chapter, we analyse the requirements for the design of our new code for wave-
front shaping. We do this by defining requirements and additionally useful features by
performing a stakeholder analysis. A vital decision for this design is which microscopy
control software is used, as this determines both the end-user experience and the ease of
development. This decision was made by ranking and weighing the essential aspects of
the available options.

Before commencing with the implementation, a developmental plan was conceived. This
is shown in figure 2.1. Following that plan, Requirements were selected and rated with
the current users, as shown in Section 2.1. Then, we investigated the potential microscope
control software packages; these are described in Section 2.2. This chapter ends with the
final selection of the platform, which is the final step in planning the development as de-
scribed by figure 2.1.

In chapter 2.2 two viable choices were considered. From a planning perspective, this could
be condensed to either improving the existing infrastructure or to replace the current one
and build new functionality. Improving existing infrastructure would most likely mean
that there is more time for individual features, and would result in a circular development
process. Replacing the entire infrastructure on the other hand, is more likely to result in a
linear development process.
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2.1 Requirements

As stated in Chapter 1, the goals for the wavefront shaping software are:

1. Simplify the development of future wavefront shaping algorithms for the scientific
community.

2. Simplify the use of currently existing wavefront shaping algorithms for the end user.

In order to meet these goals, requirements were set up. For orientation, the current users of
the system were asked to rate and add to a list of potential requirements. This is shown in
Appendix B. However, the current users are all wavefront shaping developing physicists
and, therefore, not representative of our full target audience. Even though we cannot
directly select the platform based on the requirements of the current users, this allowed us
to create distinct requirements that are important for the achievement of our goals:

1. The system needs to be easy to implement.

2. The system needs to be easy to use.

3. The system needs to allow easy wavefront shaping algorithm development.

4. The system needs to be open-source.

5. The programming language needs to be accessible and widely used.

We will use these requirements to make our final choice. Before that, however, we need to
know what we can choose from.
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2.2 Available software

In order to make an informed decision, we considered the characteristics of the available
software packages. The software packages considered are microscope control software
packages. Because a end-user requires an interface to interact with, these software pack-
ages all have an graphical user interface (GUI). Information herein was primarily gathered
from users in the field, mostly in the form of correspondence with these experts and users.

2.2.1 Current implementation: ScanImage ®

ScanImage is software for laser scanning microscopes with a GUI. It is a MATLAB-based
program that allows a developer to control a custom build laser-scanning microscope. It
was developed on an NIH grant, which allowed the project to be open-source [15]. After
the lapse of this grant in 2019, the project moved to a licensed and commercialized project
supported by MBF Bioscience [16]. There are efforts to secure another grant, which would
allow the project to return to an open-source state, but there is no guarantee that this will
be achieved.

The software currently installed in the 2-photon setup is the open-source unsupported
version of ScanImage. Its GUI is editable using the Matlab GUIDE toolbox. This toolbox
will be discontinued in future Matlab versions, which would make future customization
and development unsustainable.

The licensed ScanImage has two versions: a basic version and a premium version. In both
cases, the license will be provided by MBF Bioscience. This licence allows for source access
to the ScanImage codes. Especially with the help of ScanImage support, changing internal
scanner properties should be possible.

Advantages ScanImage is currently implemented already, which allows for much time
for development in improving the user experience. ScanImage is specifically built for
laser-scanning microscopes, so it has many features that aid with its control.

Disadvantages The support of the open-source distribution of ScanImage is very limited,
and the complex MATLAB code makes further development hard. As the tool for expand-
ing its GUI will be unsupported by the MATLAB developers, building and maintaining a
wavefront shaping GUI will not be easy.

2.2.2 SciScan

Another commonly used laser-scanning software package is SciScan [17]. This is an open-
source software package based in LabView. Though developed by Scientifica, it can also
be used for non-Scientifica-based applications. LabView is not necessarily a convenient
programming language to work in for several reasons; therefore, many of the potential
users strongly oppose its adoption. Moreover, the site of Scientifica no longer provides
any direct links to SciScan but provides links to ScanImage instead [18].

2.2.3 µManager

µManager is a widely used and adapted open-source platform for microscope control. It
has been installed on 10.000+ systems [19] and has built-in support for many hardware de-
vices, including commercial ones. Its robust implementation yet extensive customizability
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lets it surpass any commercially available software. Pycromanager is the Python package
that interfaces with µManager.

However, µManager is missing support for laser-scanning devices, a requirement for 2-
photon imaging. Therefore the only labs that have implemented µManager for their 2-
photon setups have highly specific and custom-built packages interfacing and controlling
the laser-scanning setup with µManager.

Because µManager is not built for laser-scanning microscopes, an addition must be added
to the package to create a functional platform. This adds a device adapter that performs
the scanning and behaves as if it was a camera, thus providing images to µManager. A
open-source general-use software for this exists: OpenScan. However, it still being devel-
oped, and the software’s author, Mark Tsuchida, has specified that if this option was going
to be used in our implementation, at least to some degree we will have to do some low-
level programming, enough to be considered contributors to the project. Other groups,
like the Krummel Lab from the University of California were contacted, but also used cus-
tom software tailored for their specific hardware, thus not useful for our project.

Advantages µManager is software designed for easy use by developers and end-users.
The API is very helpful, and support by the developers and community is great. The GUI
is commonly used for many different microscope setups.

Disadvantages µManager has no support for laser-scanning software. Extending the
software to support laser-scanning software would require extensive effort. Additionally,
micromanager is written in C++, so we either need to bridge this software with another
language or write all our wavefront shaping algorithms in C++.

2.3 Final selection

If we ignore the project-planning requirements, we see that µManager would provide a
much better system. Considering that the support and longevity of µManager are pro-
jected to go up, whereas the support and longevity of ScanImage are expected to go down,
choosing µManager is a more future-proof solution. Because the table in Appendix I fails
to weigh these considerations, we present a more general matrix in Table 2.1.

Ease of implementation:
ScanImage is already implemented. Therefore little work is necessary to commence fur-
ther development. On the other hand, µManager will require extensive effort to imple-
ment. Other groups have working versions for their specific hardware, but no general
implementation for laser scanning microscopy are available. This means much low-level
development has to be done. This does provide the opportunity to shape the platform
exactly to our needs, but might significantly decrease time for expanding on the current
functionality of the wavefront shaping algorithms.

Ease of use:
The ease of use is very dependent on the degree of development of the platform and on the
users themselves. Nevertheless, having briefly used both systems, the authors consider
neither superior in ease of use. µManager is more intuitive and visually more pleasing,
but ScanImage is more extensively developed. Furthermore, the structure ScanImage uses
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with the SI handle is suited for expansion and relatively easy to work with. All things
considered, µManager gets 7 out of 10 points. ScanImage currently has more features than
µManager but as it is less supported, it gets a 7 out 10.

Ease of development:
In order to judge the difference between the ease of developing a feature in both ScanIm-
age and µManager, a certain feature was implemented in both packages: a GUI to control
the gain. Because µManager does not have a working laser-scanning setup, as mentioned
before, we implemented this feature in µManager using a conventional camera. Both pack-
ages have a laser-power plugin controlled through a NI data acquisition card. The result-
ing interfaces are shown in figure 2.2.

FIGURE 2.2: The implemented functional GUIs for both µManager (left) and
ScanImage (right)

Both were connected with NI boards, and functionality was checked with oscilloscopes.
The ease of implementation for µManager was better, as more online information was
available, and the platform of µManager was deemed more convenient. That is not to say
that the ease of implementation in ScanImage was complex, nevertheless. µManager &
ScanImage both immediately put the values of the new GUI into the metadata. Because
of the available information, µManager was deemed more capable for development than
ScanImage. Note that this is not a fully independent judgement, as ScanImage was imple-
mented first. The knowledge gained implementing a gain feature in ScanImage aided the
development of the feature in µManager.

Developing features and functionalities is dependent on the available information and the
robustness of the platform. µManager was specifically build to be developer friendly, and
supports a plethora of microscope setups. The API is actively curated and community
support is high. ScanImage also has an API, but the support of the open-source versions
is non-existent, and community support is meagre.

Open source:
Both options are open source. The open source version of ScanImage, however, is no
longer supported by the original creators. Because the open source version of ScanImage
has to potential to become obsolete because of this reason, it does get 6 out of 10 points, as
at some point, moving to the licensed option might be required.
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Programming language:
Both MATLAB and Python are commonly used by scientific users. However, most users
are more familiar with MatLab, but potential developers usually use Python. When ask-
ing the relevant stakeholders, and considering that the staff of the University of Twente
is starting to replace its MATLAB programs with Python, we give Python 8 points and
Matlab 7.

We ranked the properties on importance in accordance to users and assigned weights of
10, 15, 20, 25 and 30, respectively. Filling this into the WDM scheme results in Table 2.1.

TABLE 2.1: Weighted aspects of the platforms ScanImage and µManager.

Property Weight ScanImage µManager

Ease of implementation 15 10 4
Ease of use 25 7 7
Ease of development 30 6 8
Open source 20 6 10
Programming language 10 7 8

Weighed average: 6.95 7.55

This results in a choice for µManager. The main differences are in the ease of implementa-
tion, ease of development and open-source categories. In short, µManager will be harder
to implement but more worthwhile to implement. As mentioned, µManager is also the
more future-proof choice, with constantly improving open-source developments on the
platform. It is of key importance to get the structure of the integration with µManager to
utilise most of the platform.
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Chapter 3

OpenWFS: Open-source software for
Python-based wavefront shaping

In this Chapter, we present the design of OpenWFS. We wrote this chapter in the form of
a whitepaper that will be submitted. It has been written to concisely show and clarify the
capabilities of the platform. After interaction with the scientific field, the field has reacted
enthusiastically to our efforts, and the PyDevice µManager connection will most likely be
integrated into the main version of µManager. In this thesis, it will also serve the purpose
of clarifying and demonstrating the functionalities of OpenWFS. The co-authors of this
paper are all people who worked in the development of the MATLAB code.



OpenWFS: A Python package for wavefront shaping and
seamless integration in µManager microscopy software.

Jeroen Doornbos, Bahareh Mastiani, Gerwin Osnabrugge, Tom Knop, Daniël Cox,
Harish Sasikumar, Michele Gintoli, Siebe Meijer, Giulia Sereni, Tzu-Lun Ohn, Ivo
Vellekoop
University of Twente

Light scattering is one of the main limitations of imaging depth in microscopic imaging. Wavefront shaping is a
technique that allows for a recovery of resolution despite this scattering. However, there is a need for a common
platform to use and develop consistently, clearly and cooperatively. To that purpose, we present an open-source
framework in Python called OpenWFS. It contains code controlling a wavefront shaping microscope using a Mi-
croManager device that will run a Python script as a device for straightforward microscopy use. This paper will
clarify and promote the use of the OpenWFS package.

Introduction
In optical microscopy, the main limitations of imaging
depth are aberrations and the light scattering of sam-
ples [1]. Possible techniques developed for deep-tissue
imaging despite or avoiding scattering are thoroughly in-
vestigated. Examples are the separation of ballistic and
non-ballistic light [2], or chemical clearing techniques of
the sample [3]. However, it was shown that this light
can still reach the target destination despite scattering
[4]. This has since been coined ‘wavefront shaping’.

In wavefront shaping, As in adaptive optics (AO), a spa-
tial light modulator (SLM) is used to spatially shape
the phase of the light in the objective plane to achieve
a better focus in the focus plane. In adaptive optics,
the correction patterns are assumed to be smooth and
continuous, while wavefront shaping has been shown to
converge in strong aberrating and non-continuous cases
[4].

Typical feedback-based wavefront shaping is performed
by decomposing the light field into orthogonal modes
[2], which can be optimized individually, setting that
mode to the phase that enhances the image most, before
combining into a single correction pattern.

The development of wavefront shaping significantly ben-
efits from the contribution of many different research
groups around the globe. Much progress has been made
towards the methodology of wavefront shaping, such as
a pixel-by-pixel, Hadamard pattern, or Fourier-based
approaches [5], Fast techniques that enable wavefront
shaping in diffusive samples [6] [7], and many potential
applications have been developed and prototyped, in-
cluding endoscopy, optical trapping [8] and deep-tissue
imaging [9].

Because the techniques have reached a state of matu-
rity over the decades of development, the focus will

shift from a technique-developing effort to a technique-
application effort such that a wide user base can make
use of this emerging technique. This requires high-
level control that is not typically built into experimental
code. Therefore, we have integrated this platform with
µManager. µmanager is ImageJ-based microscope con-
trol software that makes use of very powerful Java and
C++ libraries. The recent additions in micromanager
allow Python control of micromanager functions [10], but
the reverse, micromanager control of Python functions,
is still lacking. Here, we introduce a generic µManager
device that integrates Python-based hardware control
with µManager, allowing for a ‘plug-and-play’ style of
user control of developmental wavefront shaping algo-
rithms.

The development and use of wavefront shaping algo-
rithms are done by vastly different fields. It can be said
that there is a gap between optics-orientated physicists
and microbiology-oriented biologists. The goal of Open-
WFS is to close that gap, by allowing the users to inter-
face with the algorithms through a familiar user inter-
face, while not creating any additional overhead for the
developers of algorithms. Our goals for this platform are
therefore stated as such:

1. Easy-to-use Python-based platform for simulation
and use of wavefront shaping and adaptive optics
algorithms.

2. Modular code structure to maximise developer ef-
ficiency and enable easy cooperation between re-
search groups.

3. A seamless zero-overhead integration with the
µManager microscope control software.

Together, this works towards the goal of a ‘push of a
button’ wavefront shaping system.
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Wavefront shaping using Python
As the field of wavefront shaping has expanded, there is
no longer one workflow or method for wavefront shap-
ing. However, common requirements are the control of an
SLM, detectors, and auxiliary hardware such as trans-
lation stages. Control of these hardware components
typically requires detailed technical knowledge and low-
level programming. Additionally, other setups may use
different types of hardware.

Therefore, code for wavefront shaping tends to be com-
plex and setup-specific. The goal of OpenWFS is to
provide a library of re-usable components for hardware
control and Wavefront shaping algorithms. This makes
development easy, allowing developers to swap out and
add components at will.

In figure 1 we break down a wavefront shaping proce-
dure in simple steps. An algorithm determines a wave-
front and projects it on the SLM. Then, a measurement
is done in the setup, resulting in a measurement by the
detector. This feedback is then used as an input to the
algorithm. This loop may be traversed iteratively, or
once, depending on the algorithm.

Figure 1: Diagram of a wavefront shaping proce-
dure. The algorithm projects a pattern to the SLM,
a measurement is done in the setup, resulting in a
feedback measurement in the detector.

In OpenWFS, templates for the SLM, detector and al-
gorithm were made. Furthermore, templates for com-
mon hardware components were added, such as the
1-dimensional stage and the XY stage. We will dis-
cuss them here individually, and then show how a sim-
ple wavefront shaping algorithm can be implemented
in OpenWFS using these components. Where possi-
ble, the templates implement enforced units from the
astropy.units package [11]. All these components have
been made µManager compatible, which will be shown
in the next chapter.

Spatial light modulator
The spatial light modulator (SLM) is the hardware re-
sponsible for shaping the wavefront. We have imple-
mented support for a phase-only SLM, as shown in Ap-
pendix C, which is an interface containing methods for
setting and updating the pattern shown on the SLM.

As one of the implementations of the general interface,
we have implemented an SLM object using OpenGL,
that controls the SLM connected to the display port

of the PC. It has additional functionality to check and
regulate spatial transformations, look-up tables & syn-
chronisation. The spatial transformations are a texture
mapping functionality, allowing the user to send a pat-
tern to an SLM in a matrix, which is then mapped onto
a specific geometry. This is useful, for example in [5],
where a spherical geometry is used.

Detector
The detector can be any object that provides feedback
for the wavefront shaping algorithm. It can be imple-
mented as a camera, a laser-scanning microscope [12],
photacoustic feedback [13], or guide-star-based feedback
[14]. Algorithms for wavefront shaping should be gener-
alisable for many types of detectors.

Controller
The controller is an implementation of an object that
contains both a detector and an SLM. It solves communi-
cation and timing issues between the SLM and detector,
as, at high speeds, synchronising measurements with the
refresh rate of an SLM is not trivial. A single call to the
‘measure’ method in the controller object corresponds
to updating the SLM, waiting for the image to stabilize,
triggering the detector and reading the data from the
detector. This way, the algorithm developer does not
need to worry about these specifics.

This is particularly useful for synchronisation function-
ality that facilitates advanced timing. An SLM typically
has an idle time between receiving and physically per-
forming that instruction. For optimising SLM perfor-
mance, this can be used by updating the SLM pattern
before the previous measurement has been finished.

Additional components
With the basic necessities of a wavefront shaping setup
covered, we typically require additional hardware control
to make a useful microscope. We have added a template
for a one-dimensional and XY stage, shown in Appendix
C, both are µManager compatible. Any other device is
also compatible with µManager, as shown in the next
chapter.

Simulations
Currently, almost the entire setup has a mock software
counterpart. We can simulate an experiment by cre-
ating a simulation object that contains the required
functionality of both an SLM and a detector, allowing
for the testing and development of wavefront shaping
algorithms.

Algorithm
Using these interfaces, building an algorithm for wave-
front shaping is straightforward. Below, we present code
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that performs a wavefront shaping procedure called the
stepwise sequential algorithm (SSA) [15].

As can be seen in the code, the SLM is divided into
smaller elements, which are optimised individually using
phase-stepping.

1 class StepwiseSequential:

2

3 def __init__(self, phase_steps, n_x, n_y, controller):

4 self._n_x = n_x

5 self._n_y = n_y

6 self._controller = controller

7 self._phase_steps = phase_steps

8

9 def execute(self):

10 self.controller.slm.phases = np.zeros(

11 (self.n_x, self.n_y), dtype="float32")

12 # reserve space to hold the measurements

13 self.controller.reserve((self.n_x, self.n_y,

14 self.phase_steps))

15

16

17 phases = np.arange(self.phase_steps) /

18 self.phase_steps * 2 * math.pi

19

20 for n in range(self.n_x * self.n_y):

21 for p in phases:

22 self.controller.slm.phases.flat[n] = p

23 self.controller.measure()

24

25 self.controller.slm.phases.flat[n] = 0

26

27 t = np.conj(self.controller.compute_transmission(

28 self.phase_steps))

29 return t

As seen in this code, the algorithm changes the incom-
ing field by shifting the phase of a segment of the SLM.
In lines 4 and 5, the segments are defined by n x and
n y segments in the x and y direction. In line 10, an
array is reserved to enter the measurements. In SSA, we
measure the response of each segment (line 20) by pro-
jecting different phases (line 21) while keeping the other
segments constant. The number of phases is defined in
line 7, and the phase-stepping is done in lines 17-25.
Because we are showing different phases on the segment,
we expect the measurements to have the shape of a sine
wave. A certain phase causes the maximum constructive
interference and a π phase step from that, we expect
maximum destructive interference. The amplitude of
this sine wave is how much that segment contributes to
the overall feedback.

In line 27, the transmission matrix elements of each
segment are determined by a computation, which is
essentially a discrete Fourier transform, as shown in Ap-
pendix C. The phase of the field can be used to set the
SLM to the optimal wavefront.

In conclusion, wavefront shaping requires control over an
SLM, a detector and an algorithm. A wavefront shaping
environment additionally requires additional hardware,

mock hardware and simulations. We present a frame-
work in which these have been implemented in a general
and flexible manner, which allows the user to develop
and perform wavefront shaping experiments with full
control in Python.

Controlling OpenWFS from
µManager
OpenWFS allows for a consistent, testable and flexible
framework to develop and experiment with wavefront
shaping. However, as the techniques improve and be-
come more capable, there will be a stronger focus on
applying wavefront shaping rather than developing this
technique. Therefore, we require control over wavefront
shaping algorithms from a microscope environment that
can be used by non-experts.

For this, we have chosen the widely used open-source mi-
croscopy control software µManager. We have integrated
the OpenWFS functionality with µManager with the use
of a µManager plugin we call ‘Pydevice’. As shown in
figure 2, this plugin allows the end user to select pre-
existing Python code and automatically integrate it in
the µManager environment. Performing a wavefront
shaping experiment in µManager is straightforward and
will store the parameters of the experiment automati-
cally in the µManager metadata structures. This unlocks
the technique of wavefront shaping for a whole new group
of potential users, as a minimal amount of programming
knowledge is necessary.

Figure 2: Blue: This paper introduces the Python-
based wavefront shaping package OpenWFS, for
the development of wavefront shaping algorithms.
Green: The pre-existing µManager microscope
control workflow. A GUI interfaces the control
layer MMcore, which communicates with the indi-
vidual hardware elements. Orange: The Pydevice
enables µManager control of OpenWFS function-
ality.

PyDevice: wavefront shaping for everyone
The Pydevice plugin allows a user to import their own
object chart into µManager. The user selects the file
that contains the required objects and imports it in
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µManager. For example, a test camera was created to
create and fill the image buffer with random noise. The
code for this is shown in Appendix C. Incorporating it in
µManager is simple, a Python file containing the follow-
ing is selected:

1 from test import Camera,RandomGenerator

2

3 r = RandomGenerator()

4 devices = {'cam': Camera(random_generator=r), 'rng': r}

Which is recognised by PyDevice with the keyword ‘de-
vices’ and loaded into µManager as devices, shown in
figure 3.

Figure 3: The configuration of a PyDevice is as
straightforward as the configuration of any other
µManager device.

The two classes can be loaded into µManager with the
use of the PyDevice as shown in figure 3, by providing
the script path or selecting a file with the file browser.
The Python interpreter path can be specified, as well as
a virtual environment path. As can be seen in Figure 4,
the camera object has a property that is the Random-
Generator object, which is also added as an object in
µManager. This allows communication between Python
objects, which is necessary for more complex functional-
ities.

Figure 4: A test camera returning noise in the
µManager environment.

How the bridge works
Typically, µManager devices have to be written in C++.
This makes sense, as the devices are typically used to
control hardware, and C++ is well suited for that task.
For our purposes, however, we require control over the

parameters and execution of Python objects. Therefore,
Pydevice is a C++ plugin that runs a Python inter-
preter. In order to make the Python variables accessible
to µManager, it translates and reads the variables from
Python to C++.

This translation is done by PyDevice by scanning the
properties of the Python objects. One of the essential
translations is from the dynamic typing of Python to-
wards the static typing of C++. In OpenWFS, object
properties are given type hints to solve this. In Python,
these type hints are not enforced, but Pydevice enforces
these hints and converts the properties to the corre-
sponding µManager property.

The Pydevice plugin automatically detects if a Python
object implements the methods of a µManager Camera,
Stage, or StageXY device, and exposes the Python object
in µManager as such. The templates for these objects are
seen in Appendix C. This allows the µManager interface
to register a camera device in Python as a camera, which
unlocks all plugins and interfaces that require such an
object.

Developing new components
Pydevice allows the developer to prototype a device in
Python with relative ease and import it to µManager
with minimal modifications. We will show how this is
done by showing a simple implementation of a Camera
device, which was loaded into µManager in figure 3 and 4.

Camera device
Using the @property and @name.setter decorators, the
properties become available in µManager. As explained,
additional methods and properties are required for the
Pydevice to recognise it as a specific device class, such
as a camera. The templates in Appendix C contain all
required properties and methods, so all code that follows
the OpenWFS templates is compatible.

The properties top, left, width, height and exposure ms
are required by the µManager API for a camera. Ad-
ditionally, the methods trigger and read are required.
get image is responsible for creating the buffer, and wait
is responsible for filling it. This allows µManager to ac-
cess this buffer. This allows the developer to make any
Python class capable of returning a Numpy array behave
like a camera in µManager. For clarity, we show the im-
plementation of a demo camera in its entirety:
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1 class Camera:

2 """

3 Demo camera implementation that returns noise images.

4 """

5

6 def __init__(self, left=0, top=0, width=100, height=100,

7 random_generator=None,

8 measurement_time: Quantity[u.ms]=100 * u.ms):

9 if random_generator is None:

10 random_generator = RandomGenerator()

11 self._resized = True

12 self._image = None

13 self._left = left

14 self._top = top

15 self._width = width

16 self._height = height

17 self._measurement_time = measurement_time.to(u.ms)

18 self._random_generator = random_generator

19

20 def trigger(self):

21 if self._resized:

22 self._image = np.zeros(self.data_shape,

23 dtype=np.uint16)

24 self._resized = False

25 self.random_generator.generate_into(self._image)

26

27 def read(self):

28 return self._image

29

30 @property

31 def data_shape(self):

32 return self._height, self._width

33

34 @property

35 def left(self) -> int:

36 return self._top

37

38 @left.setter

39 def left(self, value: int):

40 self._top = value

41 @property

42 def top(self) -> int:

43 return self._top

44

45 @top.setter

46 def top(self, value: int):

47 self._top = value

48

49 @property

50 def width(self) -> Annotated[int, {'min': 1,

51 'max': 1200}]:

52 return self._width

53

54 @width.setter

55 def width(self, value: int):

56 self._width = value

57 self._resized = True

58

59 @property

60 def height(self) -> Annotated[int, {'min': 1,

61 'max': 960}]:

62 return self._height

63

64 @height.setter

65 def height(self, value: int):

66 self._height = value

67 self._resized = True

68

69 @property

70 def measurement_time(self) -> Quantity[u.ms]:

71 return self._measurement_time

72 @measurement_time.setter

73 def measurement_time(self, value):

74 self._measurement_time = value.to(u.ms)

75

76 @property

77 def random_generator(self) -> object:

78 return self._random_generator

79

80 @random_generator.setter

81 def random_generator(self, value):

82 self._random_generator = value

As can be seen, this Camera implementation follows the
template for the camera, shown in Appendix C. As seen
in line 35, the required property left has the type hint int.
PyDevice will convert this property in the corresponding
µManager property. Optionally, a range can be defined,
such as in line 50. As seen in line 70, the measurement
time requires a unit. As the unit is internally set to µs,
the value will always be in the unit µManager expects.

Simulations
With the device creation process clear, the next step is to
simulate our experiments, ensuring that our algorithms
are valid and efficient before any real-world application.
We will now discuss these simulations, show their results
and describe how this enables the development of wave-
front shaping algorithms.

For the demonstration, we chose to simulate the exper-
iment in the most simple manner possible: we compute
the focus as the Fourier transform of the wavefront before
the objective. All simulated aberrations are simulated as
phase offsets in the pre-objective plane. This allows the
user to ‘set’ a correct wavefront that can be solved by
the wavefront shaping algorithms. This is an acceptable
simulation, as the fact that an aberration in the image
plane can be represented as phase shifts in the objective
plane is the basis of all wavefront shaping. This working
principle was then built into a device that both meets
the requirements of an SLM and a camera, allowing a
wavefront shaping algorithm to use the simulation device
as both.

The simplest example of this is shown in Figure 5, where
the simulation shows two foci, one shifted from the cen-
tre due to an angled wavefront. Note that due to the
wrapping of a phase, 2π and 0 are identical from a wave-
front shaping perspective. Because these phase values
cyclically wrap around after reaching 2π, we can effec-
tively portray a wavefront angle of 40π on the SLM by
portraying 20 phase wraps.

Additionally, similar to how we simulate the wavefront
by altering the phases of the objective plane, we can sim-
ulate SLM illumination by altering the amplitudes of the
objective plane by illuminating the SLM with a Gaussian
distribution, which results in a Gaussian distribution in
the image plane.
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(a) (b)

Figure 5: Simple example of a wavefront shaping
simulation. a): an illustration of how an angle in
the SLM plane results in a location in the image
plane. b): Results of a simulation where half of the
SLM plane creates an angular wavefront, resulting
in 2 foci in the image plane.

This is an idealized version of the physical situation dur-
ing wavefront shaping. Therefore, any feedback-based
algorithm should work here as well. To test the Open-
WFS framework, we perform a Fourier-based wavefront
experiment, as developed and tested in [5].

(a) (b)

Figure 6: a): The image set as an ‘aberration’ to
the simulation objective plane. b) The resulting
wavefront produced by a Fourier-based wavefront
shaping algorithm with 121 modes.

Figure 6 demonstrates the effect of using a limited num-
ber of Fourier modes on the computed wavefront. Since
only low-frequency modes were measured, only the low-
frequency aspects of the correct wavefront were found
during the simulation. In this case, low-frequency modes
contained much of the potential enhancement, so this
correction pattern reached 74% of the theoretical en-
hancement with only a k-space of 11 by 11 frequencies.
Low-frequency corrections, corresponding to forward
scattering, is the problem Fourier-based wavefront shap-
ing was designed for [5].

Additionally, we can compare the Fourier-based algo-
rithm simulation with the algorithm we have shown pre-
viously: SSA. The corrected wavefront is shown in figure
7. Its simulated enhancement reached 68% with the same
number of modes as used in the Fourier-based algorithm.

(a) (b)

Figure 7: a): The image is set as an ‘aberration’
to the simulation objective plane. b) The resulting
wavefront produced by a stepwise sequential algo-
rithm with 121 modes.

Simulations in micromanager
These experiments were run in Python directly, but can
also be integrated into µManager, as shown by Figure 8.

Figure 8: A simulation of wavefront shaping ex-
periment in the µManager environment. The area
marked red shows the patterns displayed on the
SLM.

Experimental results
OpenWFS was tested on a forward-scattering PDMS
with a single scattering interface of grid 120 containing
fluorescent beads with a 500 nm diameter [12]. The ex-
periments were performed at a depth of 91 µm below the
scattering surface. The effect of this procedure is shown
in figure 9.
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(a) (b)

Figure 9: Images of fluorescent beads in a forward
scattering sample a) before and b) after Fourier-
based wavefront shaping with 169 modes

(a) (b)

Figure 10: Correction patterns found by a)
Fourier-based and b) stepwise sequential algo-
rithm. Note that the correction patterns gave rise
to a signal enhancement of 2.9 and <1.0, respec-
tively.

As shown in Figure 10, the correction patterns show
similar features. Due to the low signal-to-noise of the
SSA signal, however, it did not result in signal enhance-
ment. The Fourier-based algorithm was able to produce
significant enhancement, as seen in figure 9.

Future implementations
From the Fourier-based wavefront shaping perspective,
intelligent techniques can be developed to scan the wave-
front shaping modes more efficiently. Additionally, with
the rise of model-based wavefront shaping, this platform
can be used to connect the most recent developments
with potential users.

Conclusions & Discussion
In this work, a standardised framework for wavefront
shaping is presented. Due to the PyDevice plugin in
µManager, any Python-based class can be integrated into
the most widely used open-source microscopy framework
available. Therefore, its use extends beyond wavefront
shaping. We present a user- and developer-focussed
open-source wavefront shaping code base which can be
easily adopted and is highly modifiable, enabling further
research and development. On top of this, the integra-

tion of µManager in this project enables the translation
to common use in a robust, consistent and flexible man-
ner. We have demonstrated the ease of development by
implementing two established wavefront shaping algo-
rithms and testing them in simulation and experiments.

In conclusion, we encourage the reader to join us in
developing new algorithms and components for this
framework. Code and documentation for this project
is available at github.com/IvoVellekoop/openwfs.
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Chapter 4

A new, pathfinding wavefront
shaping algorithm

In this chapter, we introduce our novel algorithm for wavefront shaping. This new al-
gorithm is intended to improve performance and increase usability for the end user. In
section 4.1, we will elucidate how this was built on top of the existing Fourier-based algo-
rithm. In section 4.2 the theory and implementation will be discussed, and in section 4.3,
we will compare the performance of the conventional Fourier-based algorithm with the
improved Fourier-based algorithm.

4.1 Approach

The challenge in feedback-based wavefront shaping is to optically characterise a sample
efficiently. As explained in chapter 1; this can be done in different ways. In this chapter,
we will work on a feedback-based wavefront shaping algorithm. The problem of effi-
cient wavefront shaping can be reduced to finding a measurement technique that finds
the largest amount of information on the corrective wavefront in the lowest amount of
measurements. As shown in [3], different algorithms can have different rates of conver-
gence. This is explained by the fact that some measurements give more information on
the ideal wavefront than others. Our new approach builds on the elegant Fourier basis
wavefront shaping algorithm developed by Mastiani et al. [3].

In chapter 4.2, we will further detail our new approach. Then, we will show the results of
wavefront shaping experiments using the Fourier algorithm by Mastiani et al. and the new
algorithm. The experiments were performed on samples with a single scattering layer: a
PDMS sample filled with fluorescent beads with a diameter of 0.5 µm, with a scattering
PDMS layer moulded from grid 220 glass diffuser as described in the sample preparation
by Thendiyammal et al. [4].

4.2 Theory & Implementation

In feedback-based wavefront shaping, we measures the effect of a scattering sample on the
light field. We do this by dividing the problem in smaller bits we call modes. In SSA we
divide the SLM up into several blocks, and determine the optimal phase for each block.
The optimal phase of these blocks can then be combined to create a corrective wavefront.

Fourier-based wavefront shaping works on the same principle as SSA, but uses a different
type of mode. Instead of measuring the effect of smaller SLM segments, we measure the
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effect of tilted plane waves, as shown in figure 4.1. This approach was developed to com-
pensate for forward scattering, where the scattered light only requires a small tilt to come
back to the focus. The phase patterns in figure 4.1 show phase-wrapping patterns, which
allows us to tilt a wave by more than 2π phase difference.

In this dual-reference Fourier-based wavefront algorithm, we split the SLM into two sides,
left and right, with a small overlap. We measure the effect of the tilted plane waves by
phase-stepping, and combine the two sides by comparing the relative phase of overlap-
ping segments. Just like in SSA, the measurements are processed by applying the Fourier
transform on the results of the phase-stepping for each mode, which gives us the phase
and amplitude of each mode.

FIGURE 4.1: The displayed phase patterns for the left (left) and right(right)
pupil in a Fourier dual reference experiment by Mastiani et al. [3]. Gray
values represent values from -π to π. For illustration, note that the patterns

signified in blue are represented by (kx, ky) = (5, 0)

In Fourier-based wavefront shaping, we need to determine which tilted plane waves are
going to be measured, as there are (theoretically) infinite options. The matrix of measured
tilted plane waves is called a k-space. There is no clear way to know, before the experi-
ment is done, what the most effective k-space is. If we measure too little modes, we risk
missing out on possible enhancement. If we measure too many modes, to procedure takes
unnecessarily long without significant benefit. This problem is what we solve using the
the new algorithm.
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FIGURE 4.2: The normalised averaged amplitude of the feedback for each
mode for the left (left) and right(right) pupil in a Fourier dual reference
experiment by Mastiani et al. [3]. The black line envelopes the measured
frequencies. As the measurements are done for the left and right pupils sep-
arately, we portray the Fourier-space of the found correction pattern for the

right and left pupils separately.

Our new algorithm is based on the observation that strongly contributing modes are clus-
tered in the k-space, as can be seen in figure 4.2. Additionally, we also observed that the
different sides of the SLM do not necessarily have the same useful modes.
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The algorithm we came up with is shown in figure 4.3. The algorithm begins by mea-
suring nine modes near and on the origin in the frequency domain. Next, it will find the
highest measured signal that borders unmeasured frequency domain elements, and mea-
sures these adjacent unmeasured elements. The ranking and measuring is repeated until
a stopping criteria is met. Since this is a 2-step dual-reference algorithm, this algorithm is
performed separately for the left and right side, and the results are combined after.

FIGURE 4.3: Graphical explanation of the pathfinding implementation

Because the Fourier modes are assumed to be orthogonal, it is possible to estimate inter-
mediate enhancement during this procedure. If the effect on the overall feedback signal
strength is low for a measured mode, the enhancement it can produce is also low. This
allows for a rough projection of the potential enhancement as the experiment progresses.
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4.3 Results

4.3.1 Algorithm comparison in simulation

To get a mechanistic understanding of the differences between the two algorithms, we will
show the performance of the algorithms for different solutions. We will dub the conven-
tional Fourier-based algorithm the basic Fourier approach, and our novel approach the
pathfinding Fourier approach. Firstly, the extreme non-realistic cases. As the basic Fourier
implementation is a growing square in k-space around (kx, ky) = (0, 0), we expect optimal
wavefront shaping for a random k-space with its main modes around (0, 0). To achieve
this, the optimal wavefront was set to an image, the public domain camera image from
the SciPy.data set [20], as shown in figure 6 of chapter 3. This has the most of its highest
effecting modes centred around (kx, ky) = (0, 0), as seen in figure 4.4 (left). Figure 4.4
(right) shows the other extreme, where the ‘correct’ wavefront was set to a specific fre-
quency convolved with a Gaussian. This results in a distinct peak in the k-space, which
the pathfinding algorithm can find well.

FIGURE 4.4: Simulation of wavefront shaping experiments using data gen-
erated from a SciPy sample image (left) and data generated to contain one
specific spatial frequency (right). The amplitude left SLM side measured
modes are plotted in the right bottom corners. the plots show the simu-
lated intensities of correction patterns generated by the basic and pathfind-

ing Fourier algorithms for 9, 25, 49, 81 and 121 modes.

As seen in figure 4.2, we can expect k-spaces we will encounter in practice to be between
these extremes. In order to explore the true experimental case without the loss of com-
patibility due to experimental circumstances, we optimised a wavefront using the basic
Fourier algorithm and set the optimised wavefront as the correct wavefront for the simu-
lation.

In order to represent the effects of the pathfinding Fourier algorithm, we show the left SLM
side k-space, or transformation row, as it is the major influence on the performance differ-
ences of the two algorithms in this case. In figure 4.5 (left), we see a large representation of
the k-space containing 172 = 289 modes. In figure 4.5 (right), the intensity of the simulated
feedback of the generated wavefront is compared between basic and pathfinding Fourier
algorithms for a number of modes, and figure 4.6 and 4.7 show the modes measured for
the left SLM side for each of the data points in figure 4.5 right.
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FIGURE 4.5: Simulation of wavefront shaping experiments using data from
a real experiment. The amplitude left SLM side feedback for each mode
(left), the simulated intensities of correction patterns generated by the basic

and pathfinding Fourier algorithms for 9, 25, 49, 81 and 121 modes.

For the basic Fourier implementation, the increasing number of modes is simply increasing
perfect squares centred in (kx, ky) = (0, 0), as shown in figure 4.6.

FIGURE 4.6: The normalized amplitude of the left SLM side measured feed-
back for each mode as computed by the basic Fourier algorithm for 9, 25, 49,

81 and 121 modes (left to right).

On the contrary, the pathfinding Fourier algorithm expands as detailled in figure 4.3. In
order to compare the results with the basic Fourier implementation, the amount of modes
was cut off after 9, 25, 49, 81 and 121.

FIGURE 4.7: The normalized amplitude of the left SLM side measured feed-
back for each mode as computed by the pathfinding Fourier algorithm for

9, 25, 49, 81 and 121 modes (left to right).

When the comparison between the basic and pathfinding Fourier implementation is made,
the most significant increase can be seen in the 49 modes case. When we purely look at
the amplitudes of the modes in figure 4.6 and 4.7, we can indeed see that the pathfinding
Fourier algorithm was able to select better modes.
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4.3.2 Experimental algorithm comparison

In order to present the efficiency of our new algorithm, we commence with a normal
Fourier-based wavefront shaping procedure at a depth of 80 µm with a 120 grit scatter-
ing sample. The amplitudes of the complex numbers representing the measured angles
from this experiment are presented in figure 4.8.

FIGURE 4.8: The normalised averaged amplitude of the feedback for each
mode for the left (left) and right (right) pupil in measured data in a basic

Fourier dual reference experiment for 49 modes per pupil

Next, the pathfinding Fourier implementation was tested with a maximum mode number
of 30, resulting in figure 4.9.

FIGURE 4.9: The normalised averaged amplitude of the feedback for each
mode for the left (left) and right(right) pupil in measured data in a pathfind-

ing Fourier dual reference experiment for 30 modes per pupil

As can be seen, the corrections are similar, and the algorithm successfully finds the most
contributing modes, comparably to figure 4.8. As mentioned before, the intermediate en-
hancement of the algorithm can be measured by constructing the wavefront from the cur-
rently measured modes.
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FIGURE 4.10: The intermediate enhancement of an experiment using the
pathfinding Fourier algorithm, found by computing intermediate wave-
fronts from 0 to 60 modes and measured in order 5 times. Separate results
are in blue. The average value per wavefront is signified in red. Enhance-
ment was defined as the feedback signal divided by the average feedback

signal for a flat wavefront

Because the pathfinding algorithm is a 2-step algorithm, one SLM side is optimised first.
During the measurement of the intermediate enhancement, the right side is left uniform.
For the intermediate enhancement measurements of the right side, the wavefronts are
combined. This causes a drop of intermediate enhancement when the right SLM modes
are added, as the overlapping SLM region is the average between the two optimisations.
When we conduct the experiment for 50 modes, we find the results of figure 4.11.

FIGURE 4.11: The normalised averaged amplitude of the feedback for each
mode for the left (left) and right(right) pupil in a pathfinding Fourier dual

reference experiment for 50 modes per pupil
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FIGURE 4.12: The intermediate enhancement of an experiment using the
pathfinding Fourier algorithm, measured from 0 to 100 modes in order 5
times. Separate results are in blue. The average value per wavefront is sig-

nified in red.

In this case, the right SLM side shows the expected behaviour as the enhancement initially
rises and levels off to a certain level of enhancement. The left SLM side however, shows
a sudden yet unexplained drop in enhancement during the experiment around the 35th

measured node.

To conclude, we provided the results of one the optimisations that the new pathfinding
wavefront shaping algorithm has performed in figure 4.13. Besides the very significant
increase in signal strength, we can also note that the signal of some beads is smaller than
before the measurement. This shows that the depth resolution was enhanced by the wave-
front shaping procedure as well.

FIGURE 4.13: Images after a 30 modes pathfinding Fourier wavefront shap-
ing procedure with a flat wavefront (left) and optimised (right) wavefront.

4.4 Discussion

In this chapter, we have introduced a new wavefront shaping algorithm that selects the
optimal Fourier modes for wavefront shaping automatically. This algorithm relieves the
end user of the burden of selecting modes through trial and error and makes the proce-
dure more robust and efficient.

As shown by the extremes in figure 4.4, we expect the pathfinding algorithm to perform
either similar or better than the current implementation for the same amount of modes.
Perhaps more importantly, this is a step towards robustness and simplicity, as it reduces
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the user-set parameters for the algorithm without hurting performance. Measuring inter-
mediate enhancement like in figure 4.10 allows for additional functionalities, like using
the plateauing enhancement as a stopping condition for the algorithm or rejecting modes
that decrease in enhancement as seen in figure 4.12.

In section 1.4, these questions restated here were introduced to direct our development for
an improved algorithm. We discuss these questions individually afterwards.

1. Can the number of input parameters of golden standard wavefront shaping algo-
rithms be reduced?

2. Can we build a more efficient wavefront shaping algorithm?

3. How can we make the wavefront shaping algorithms robust for more sample types?

4. Can the potential of the wavefront shaping procedure be gauged before or during
measurement?

4.4.1 Reduction of input parameters

In the previous algorithm, the input parameters determine which Fourier modes are mea-
sured. The pathfinding algorithm has reduced the number of parameters to one, namely
the maximum amount of measured modes, instead of requiring the user to define a square
or a circle in the k-space with respectively 4 or 2 parameters. Further improvement could
also be made by projecting how much time a measurement will take.

4.4.2 Increasing efficiency

As mentioned before, it is expected that the pathfinding algorithm performs at or above
the efficiency of the basic algorithm. Typically, a square or circle in the frequency domain
centred in (kx, ky) = (0, 0) is a reasonable estimation of the most contributing modes, but
it is never precisely correct, and especially in cases where this estimation is not valid, the
efficiency is greatly enhanced. In our algorithm, we have implemented a functionality that
re-measures the most contributing modes with a higher number of phase steps. From the
experimental data, it was inconclusive if this significantly improved efficiency, so further
investigation in that regard may show merit.

4.4.3 Increase robustness

The pathfinding algorithm increases robustness compared to the original implementation,
as it allows for more efficient solving of complex and askew forward scattering. Nonethe-
less, it cannot solve higher-frequency aberrations with high efficiency, like those seen in
heavy defocus or spherical aberrations. In order to create a truly robust wavefront shap-
ing algorithm, the algorithm should be able to choose between or able to combine multiple
procedures, suited for different types of aberrations. As an example, a wavefront shaping
procedure could consist of an initial defocus correction followed by a Fourier-based wave-
front shaping correction.
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4.4.4 Gauging potential

The final research question was directed towards gauging the potential merit of a wave-
front shaping procedure. If the potential gain of a wavefront shaping procedure could
be estimated before or during a measurement, the user could be provided with that in-
formation to influence the selection if and how the procedure should be performed. For
example, if the amount of potential enhancement could be projected for a certain measure-
ment time, a user could intuitively select the desired number of measured modes. This has
been attempted in two manners. The first manner is seen in figure 4.10, where intermedi-
ate enhancement is measured for an increasing number of measured modes. Functionality
was built into the pathfinding algorithm to measure the intermediate enhancement during
the procedure. A significant disadvantage of this implementation is that the computing of
a wavefront by mode-for-mode computing a corrective pattern and adding it the the cor-
rection front is a rather time-consuming task. These steps can be made significantly more
efficient by remembering the intermediate wavefronts and only adding the newly mea-
sured modes, but this has not been implemented.

The second potential method for intermediate gauging is by estimating the signal-to-noise
ratio of the measured modes. If the algorithm uses mostly orthogonal modes, the signal
strength of the measured modes should relate directly to the measured enhancement. This
method negates the disadvantage of additional measurements and the on-the-fly comput-
ing of the corrective wavefront but has the disadvantage of indirectly estimating enhance-
ment. As seen in figure 4.12 and discussed earlier, a high measured signal strength for a
mode does not necessarily translate into actual enhancement.

Additionally, an investigation was done on whether it would be valuable to ‘probe’ some
frequencies to estimate the location and strength of Fourier modes before commencing
the measurement. Although this shows potential for very specific situations, it was not
continued. A potential combination of the pathfinding and ‘probing’ ideas would entail
measuring a small number of random modes in a confined area and starting the pathfind-
ing wavefront shaping procedure from the mode that has the highest amplitude.

In conclusion, the pathfinding algorithm is a promising technique and a significant step
towards automated wavefront-shaping. This algorithm increases both the functionality
and the user-friendliness of the two-photon wavefront shaping microscope.
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Chapter 5

Conclusions and outlook

We have developed a Python-based open-source platform for wavefront shaping, called
OpenWFS, which both developers and end users can use. We have used this platform to
develop a novel version of the state-of-the-art Fourier-based wavefront shaping technique
that is more robust, efficient and user-friendly.

OpenWFS is a user- and developer-focused open-source wavefront shaping code base
which can be easily adopted and is highly modifiable, enabling further research and devel-
opment. We have integrated OpenWFS with µManager, a general-purpose, widely used
open-source microscope control software platform. This Python-to-µManager bridge, is
such a robust connection that the developers of µManager are glad to integrate it into
the platform. This means we have engineered a platform that meets our goal to simplify
wavefront shaping development, and our goal to simplify the use of currently existing
wavefront shaping algorithms for the end user.

Using OpenWFS, a novel pathfinding wavefront shaping algorithm was developed that
automatically selects the optimal modes. This algorithm is more efficient and robust than
current algorithms and relieves the end user from the task of selecting modes. The on-the-
fly selection of modes additionally opens the development of intermediate enhancement
gauging, which promises to make the algorithm even more automatic and robust. With
that, we have answered the research questions towards input parameter reduction, robust-
ness, efficiency, and intermediate enhancement gauging.

The work presented in this thesis also opens doors to future developments. The Open-
WFS framework opens the technique of wavefront shaping to many potential users and
developers. Efforts must be sustained to promote this framework such that it reaches that
potential. The newly developed pathfinding Fourier-based wavefront shaping algorithm
has been shown to be effective. However, it shows much promise for building extra func-
tionality on top of the current state. Using signal-to-noise ratio as a metric to decide the
merit of further measurements is promising.

Furthermore, we would strongly encourage the development of a multi-algorithm wave-
front shaping procedure that tackles different types of aberrations efficiently and incorpo-
rates model-based wavefront shaping into that multi-algorithm procedure. This will bring
us even further towards wavefront shaping at the push of a button.
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Appendix A

Current setup specifications

Laser

The laser used in the setup is the Spectra Physics Mai Tai HP. This is a mode-locked Ti:Saph
laser. The pulse width of the laser is less than 100 femtoseconds, and the laser can be tuned
to 690 - 1040 nanometers. The repetition rate is 80 MHz. It is currently controlled by the
MatTai 2.x GUI control program, which is controlled through a USB cable. For alignment
purposes, the laser can be put in a continuous-wave mode. This is done by performing
some manual steps in the MaiTai GUI.

Spatial Light Modulator (SLM)

The SLM is a device that is able to shape the wavefront of light. This is done by liquid
crystal devices that have electro-responsive crystals that can be oriented and reoriented
by applying a certain voltage. This reorienting changes the path length of the light, which
corresponds to a phase shift relative to the other light. As one might deduce, it requires
a bigger path length difference to shift the phase of 1040 nm light by π than it takes to
shift the phase of 480 nm light by π. The orientation of the crystals can then phase shift
the incoming light by 0 to 2π radians. As the laser is coherent, a 2π phase shift practically
equals no phase shift at all. Therefore, as the SLM is able to shift the light further than
2π, all shifts can be seen as shifts between 0 to 2π radians. As the voltage-to-phase-shift
relation is typically not fully linear, a wavelength-dependent lookup table associates the
0 to 255 grey value transmitted with an HDMI cable with the right voltage such that the
grey values linearly correlate with the 0 to 2π phase shift.

Galvanometer mirrors

Galvos, or Galvanometer mirror positioning systems are designed to accurately steer a
laser beam. In this application, 2 of them are used to control both x and y motions sepa-
rately. The model used in the setup is the GVS111(/M). It is controlled by output voltages
through a NI breakout box by the data acquisition card, which can directly be controlled
by Matlab or Python using the NI toolbox.
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Photo-multiplier tube (PMT)

The PMT, or photomultiplier tube, is a sensitive optical detector that transfers an incoming
photon into a current. This is done by a dynode cascade, which amplifies the number of
electrons in the cascade exponentially. This results in a very high sensitivity. The signal,
however, still needs to be converted from current to voltage in order to digitise it. This
voltage can then additionally be gained, allowing for detection through the NI box by the
DAC.

NI breakout box & DAC

The data acquisition card used in the setup is a PCIe-6363, which is an X-series DAQ. The
data acquisition card is connected to a national instruments device SCB-68A breakout box.
This is a device to translate the voltage inputs and outputs of the galvos, PMT & other de-
vices to a digital system. The DAC on the lab computer has room for 4 analogue outputs,
but the breakout box supports 2. Therefore, there are 2 SCB-68A breakout boxes. Cur-
rently, only 2 of the analogue outs are taken by the galvos, and the other 2 are free. There
are 8 analogue inputs per breakout box, which is not a limiting factor in the current setup.

Filters

Before the PMT, filters are placed to selectively filter out wavelengths. The multi-photon
filter 680/SP is always in the beam path, which is a short-pass filter to filter out the ex-
citation wavelength. On top of that, 5 further band-pass filters are available between 417
nm and 614 nm. Currently, there is a ThorLabs motorized filter wheel FW102C installed
in the setup, but it is not connected to the computer. This filter wheel allows the selection
between the 5 filters.

Software

The current setup uses ScanImage software to control the microscope & visualize its de-
tection. It is an open-source software package that is specifically built for laser-scanning
purposes. The ScanImage software can be controlled through its GUI, which has many
different windows for different purposes. Through the Data Acquisition Toolbox, it is
able to communicate through the DAC. As of 2019, ScanImage has been commercialized.
ScanImage has moved away from its open-source model and transitioned to a licensing
model. Due to this, the current implementation is unsupported and prone to be outdated.
Additionally, some of its functionalities should be automated & clarified for the common
user.
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Appendix B

Expansion of platform scoring

B.1 User requirement feedback

In order to make a well-considered choice for the platform, the a set of requirements was
defined. This set was then refined by the users, both by judging the set on importance on a
scale from 0 to 10, but also by allowing the users to add their own requirements. Here are
the average grades of the response of the users, rounded to the nearest tenth, there were 6
respondents, varying on levels of expertise.

General need to move away from ScanImage: 4.1/10

Hardware requirements

Laser scanning adaptable framework 9.7
Wavefront shaping adaptable 9.3
Galvo controls 9.3
DAQ control 9.5
SLM control 9.7
Laser power & shutter 7.5
Laser wavelength & settings adjustment 8.3
Stage control 7.3
Colour filter wheel selection 7.8
3D scanning (2D & Z control) 9.3

GUI requirements

Pixel dwell time adjustment 9.7
ROI size adjustment 8.5
Pixel size adjustment 9
Image visualisation 9.5
Zoom functionality 9.7
Bi- unidirectional scan 6.3
Stage control 8

User experience requirements

Ease of use (basic functionalities, common biologist) 8.8
Ease of use (complex functionalities, BPMI researcher) 8.5
User community size & platform support 7.3
Open-source licence 7
Modularity / ease of modification & expansion 8.5
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Automation requirements

Automatic gain adaptation 8.2
Automatic gain reinitialization 7.8
Automatic conventional wfs algorithms 8.5
Metadata generation 9
Automated sample properties detection 6.3
Quantifyable 3D scanning (+ stage control + model based coordinate computation of focus) 6.5



B.2. Scores by platform 45

B.2 Scores by platform

1-2: Very difficult, deal-breaking and/or very time-consuming 3-4: Difficult, sub-optimal
and/or time-consuming 5-6: Requirement requires serious research, investment, or con-
cession, but is undoubtedly reachable. 7-8: The requirement can be met with some effort,
or the current state of the requirement is workable. 9-10: The current state of this require-
ment is nearly or fully met.
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Appendix C

Code templates for the OpenWFS
framework

Detector

class Detector(Protocol):
"""Minimal implementation of a detector object. Any detector must implement these
members and attributes"""

data_shape: tuple[int]
"""shape of the data returned by this detector (from numpy.shape). Read only."""

measurement_time: float
"""In seconds. Read only. Used for synchronization, and should include the
measurement time of any child detectors (see Processor)."""

def trigger(self) -> None:
"""Triggers the detector to take a new measurement. Typically, does not wait
until the measurement is finished. A detector may have a hardware
trigger, in which case calls to trigger() may be ignored."""
pass

def read(self) -> np.ndarray:
"""Returns the measured data, in the order that the triggers were given.
This function blocks until the data is available and raises a
TimeoutError if it takes too long to obtain the data (typically because
the detector was not triggered)."""
pass

SLM

class SLM(Protocol):
phases: np.ndarray

def update(self, wait_factor=1.0, wait=True):
"""Refresh the SLM to show the updates phase pattern.

If the SLM is currently reserved (see `reserve`), this function waits until the
reservation is almost (*) over before updating the SLM. The SLM waits for the
pattern of the SLM to stabilize before returning.
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*) In case of SLMs with an idle time (latency), the image may be sent to the
hardware already before the reservation is over, as long as the actual image on
the SLM is guaranteed not to update until the reservation is over.

:param wait_factor: time to wait for the image to stabilize.
Default = 1.0 should wait for a pre-defined time (the `settle_time`)
that guarantees stability for most practical cases. Use a higher value to allow
for extra stabilization time, or a lower value if you want to trigger a measurement
before the SLM is fully stable.

:param wait: when set to False, do not wait for the image to stabilize but
reserve the SLM for this period instead. This can be used to pipeline
measurements (see `Feedback`). The client code needs to explicilty call `wait`
to wait for stabilization of the image.
"""
pass

def wait(self):
"""Wait for the SLM to become available. If there are no current reservations,
return immediately."""
pass

def reserve(self, time: Quantity[u.ms]):
"""Reserve the SLM for a specified amount of time.
During this time, the SLM pattern cannot be changed."""
pass

1D stage

class Stage(Protocol):
step_size: Quantity[u.um]
"""Step size in µm"""

position: Quantity[u.um]
"""Position in µm. Setting the position causes the stage to start moving to
that position. Reading it returns the current position (note that the stage may still
be moving!). Overwriting this attribute while the stage is moving causes it to
start moving to the new position. Also see :func:`~wait`. Stages should use the
step_size to convert positions in micrometers to positions in steps, using the
equation `steps = round(position / step_size)`. This way, code that uses the
stage can also choose to make single steps by moving to a position n * step_size.
"""

def home(self) -> None:
"""Homes the stage. This function does not wait for homing to complete."""
pass

def wait(self) -> None:
"""Wait until the stage has finished moving.
This should include any time the stage may 'vibrate' after
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stopping."""
pass

XY stage

class XYStage(Protocol):
x: Quantity[u.um]
y: Quantity[u.um]
step_size_x: Quantity[u.um]
step_size_y: Quantity[u.um]

def home(self) -> None:
pass

def wait(self) -> None:
pass

Camera

class Camera(Protocol):
data_shape: tuple[int]
measurement_time: Quantity[u.ms]
top: int
left: int
height: int
width: int

def trigger(self) -> None:
pass

def read(self) -> np.ndarray:
pass

Controller

class Controller:
def __init__(self, detector: Detector, slm):

self.M = None
""" Number of elements in each measurement. Read only. Equal to

np.prod(source.data_shape). Updated when 'reserve' is called"""

self.N = None
""" Total number of measurements in the buffer. Read only.

Set by 'reserve' function. """

self.data_shape = detector.data_shape
""" Shape of the original data, before flattening into column of length M."""
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self.slm = slm
"""Spatial light modulator object. An algorithm sets or changes slm.phases,

and then calls measure() to schedule a measurement.
Note that there is no need to call slm.update manually."""

self._measurements_pending = 0
self._measurements = None # array storing all measurements.
self._measurements_flat = None # reshaped N x M view of the same array
self._source = detector # detector to take the feedback from.
self._n = None # current measurement number, must be < N

def __del__(self):
# clear remaining measurements. todo: implement aborting measurements?
while self._measurements_pending > 0:

self._await_data()

def reserve(self, shape):
""" Reserve space for storing measurements. Must be called before the first

call to 'measure'. """
self._n = 0
self.N = np.prod(shape)
self.M = np.prod(self._source.data_shape)
self.data_shape = self._source.data_shape
self._measurements = np.zeros((*shape, self.M), dtype="float32")
self._measurements_flat = np.reshape(self._measurements, (self.N, self.M))

def measure(self):
""" Schedule a measurement. A measurement corresponds to updating the SLM,

waiting for the image to stabilize, triggering the detector and reading
the data from the detector. There is no guarantee as to when this measurement
is performed (measurements may even be performed out of order or batched
together in some implementations). However, the data is guaranteed
to end up in the 'measurements' array in the correct order."""

# Update the SLM.
self.slm.update(wait=False)

# we can use this time to process a previous measurement (if any)
self._await_data()

self.slm.wait() # wait for the image on the SLM to stabilize
self._source.trigger() # trigger the camera
self._measurements_pending += 1

measurement_time = self._source.measurement_time
if measurement_time is not None:

# default fast wavefront shaping, continue processing (and even start next
# frame) during measurement
self.slm.reserve(measurement_time)

else:
# measurement time not known, wait till end of measurement
self._await_data()
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def _await_data(self):
""" Reads data from the detector (which includes processing it). If there are no

outstanding measurements, this function does nothing. Note that other
implementations of feedback may choose to batch-read data from
the device and not even implement this function"""

if self._measurements_pending > 0:
data = np.array(self._source.read(), dtype="float32", copy=False)
self._measurements_pending -= 1
self._measurements_flat[self._n, :] = data.flat
self._n += 1

@property
def measurements(self, partial=False):

""" Called after performing a sequence of measurements to obtain the measurement
data. Typically, you only call this function after performing all measurements
that your reserved space for. If you want to peek before
finishing all measurements, set 'partial'=True"""

while self._measurements_pending > 0:
self._await_data()

if not partial and self._n != self.N:
raise Exception(f"Measurement sequence not completed yet, only performed {

self._n} out of {self.N} "f"measurements.")
return self._measurements

def compute_transmission(self, phase_steps):
"""To do: calculate SnR"""
t = np.tensordot(self.measurements, np.exp(-1j * np.arange(phase_steps) /

phase_steps * 2 * np.pi(len(np.shape(self.measurements)) - 2,[0]))

Gain implementation

class Gain:

def __init__(self, port_ao="Dev4/ao0", port_ai="Dev4/ai0",
port_do="Dev4/port0/line0", reset=False, gain=0):

self._port_ao = port_ao
self._port_ai = port_ai
self._port_do = port_do
self._reset = reset
self._gain = gain

def set_gain(self, value):
with ni.Task() as write_task:

aochan = write_task.ao_channels.add_ao_voltage_chan(self._port_ao)
aochan.ao_min = 0
aochan.ao_max = 0.9

write_task.write(value)

return value
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def check_overload(self):
with ni.Task() as task:

task.ai_channels.add_ai_voltage_chan(self._port_ai)
in_stream = task.in_stream

data = in_stream.read(number_of_samples_per_channel=1)
if data > 2.5:

overload = True
else:

overload = False

return overload

def on_reset(self, value):
if value:

with ni.Task() as task:
task.do_channels.add_do_chan(self._port_do,

line_grouping=LineGrouping.CHAN_FOR_ALL_LINES)
task.write([True])
time.sleep(1)
task.write([False])

@property
def reset(self) -> bool:

return self._reset

@reset.setter
def reset(self, value: bool):

self.on_reset(value)
self._reset = value

@property
def gain(self) -> Annotated[float, {'min': 0, 'max': 0.9}]:

return self._gain

@gain.setter
def gain(self, value: float):

self.set_gain(value)
self._gain = value

Dummy camera implementation

class RandomGenerator:
"""Demo device, used to test building device graphs.
It generates random numbers for use in the Camera"""

def __init__(self, min=0, max=1000, noise_type = NoiseType.UNIFORM):
self._min = min
self._max = max
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self._noise_type = noise_type

def generate_into(self, buffer):
buffer[:, :] = np.random.randint(self._min, self._max, buffer.shape, dtype=np.uint16)

@property
def min(self) -> Annotated[int, {'min': 0, 'max': 0xFFFF}]:

return self._min

@min.setter
def min(self, value):

self._min = value

@property
def max(self) -> Annotated[int, {'min': 0, 'max': 0xFFFF}]:

return self._max

@max.setter
def max(self, value):

self._max = value

@property
def noise_type(self) -> NoiseType:

return self._noise_type

@noise_type.setter
def noise_type(self, value):

if not value == NoiseType.UNIFORM:
raise ValueError("Noise types other than uniform are not supported yet.")

self._noise_type = value

class Camera:
"""Demo camera implementation that returns noise images. To test building device
graphs, the random number generator is implemented as a separate object with
its own properties."""

def __init__(self, left=0, top=0, width=100, height=100, measurement_time:
Quantity[u.ms]=100 * u.ms, random_generator=None):

if random_generator is None:
random_generator = RandomGenerator()

self._resized = True
self._image = None
self._left = left
self._top = top
self._width = width
self._height = height
self._measurement_time = measurement_time.to(u.ms)
self._random_generator = random_generator

def trigger(self):
if self._resized:
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self._image = np.zeros(self.data_shape,
dtype=np.uint16)

self._resized = False
self.random_generator.generate_into(self._image)

def read(self):
return self._image

@property
def data_shape(self):

return self._height, self._width

@property
def left(self) -> int:

return self._top

@left.setter
def left(self, value: int):

self._top = value

@property
def top(self) -> int:

return self._top

@top.setter
def top(self, value: int):

self._top = value

@property
def width(self) -> Annotated[int, {'min': 1, 'max': 1200}]:

return self._width

@width.setter
def width(self, value: int):

self._width = value
self._resized = True

@property
def height(self) -> Annotated[int, {'min': 1, 'max': 960}]:

return self._height

@height.setter
def height(self, value: int):

self._height = value
self._resized = True

@property
def measurement_time(self) -> Quantity[u.ms]:

return self._measurement_time

@measurement_time.setter
def measurement_time(self, value):
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self._measurement_time = value.to(u.ms)

@property
def random_generator(self) -> object:

return self._random_generator

@random_generator.setter
def random_generator(self, value):

self._random_generator = value
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