
Design and implementation of destination tracking
and velocity control as an addition to a

boids-inspired traffic simulation
Thijmen Limbeek

University of Twente
EEMCS faculty

Enschede, the Netherlands

Abstract—With the ever-growing number of personal vehicles
sold, our roads will inevitably get to a point where they can not
smoothly accommodate all individual participants in traffic. A
possible result is an increase in traffic jams, accidents, chaos and
stress on the roads.
The common denominator in the problems that cause slow-down
of traffic flow is often the unpredictability of human input.
Instead of adapting the roads to the drivers, an alternative
solution to aid in vehicle throughput is automated vehicle
platooning. There are of course many different ways to implement
automated vehicle platooning, but the focus of this paper lies
on an adaptation of the boids model inspired by the work of
C. Reynolds [1]. This paper is an extension of previous work,
where a simulation environment was created using openGL
compute shaders that run in parallel on a GPU for increased
performance [2]. This simulation environment will extend the
used control algorithm by including vehicle speed adaptation and
making vehicles follow a path to their destination. The addition
of destination tracking and velocity matching was found to have
had a contribution to preventing crashes in situations where they
were previously unavoidable and allows vehicles to track a path
towards a destination sufficiently smoothly.

I. INTRODUCTION

Anyone who has driven a car in the last few years during
rush hour can tell you that our roads are busy. Since personal
vehicles are becoming more and more abundant, as well as
larger every year, it is safe to say the roads will get even
busier and more congested. Eventually, we will get to a point
where our current roads are unable to support the number of
drivers in a smooth way, which has cascading effects to the
entire road network. Views of whether or not roads should
be made bigger to accommodate drivers is a topic with many
differing opinions, but ultimately, it is not the best solution
because increasing the number of lanes or the size of the
roads is inefficient use of space, makes places less habitable
for people and ecosystems and costs unrealistic amounts of
money and time.
So instead of focusing on giving room to human error, the
issue can be approached from a technological point of view.
Automated driving is a topic that can be implemented in
many possible ways. Cooperative vehicle platooning is an
interesting concept that allows vehicles to form very tight-knit

clusters due to advanced automated vehicle perception and
closely coordinated communication with each other, reducing
congestion. It also has the potential benefit of lower energy
consumption and emissions [3].

In essence, vehicle platooning is similar to flocking be-
haviour found in nature: a group of entities travels together
in a cluster to reach a common goal without colliding into
each other. In the 1980s, C. Reynolds came up with a set of
rules that describe this flocking behavior for use in computer
simulation [1]:

• Cohesion: striving towards the centre of the group
• Alignment: attempting to match the group’s velocity
• Separation: collision avoidance, maintaining appropriate

distance

The intention of Reynold’s publication was to provide rules
for flocking, and did not include any algorithm proposals.
In publication [4], three approaches to an algorithm are
described that could be used for flocking in confined space,
such as roads. The paper makes a distinction between three
types of agents: α agents, which describe the moving flocking
agents themselves, β agents, which describe the effect of
obstacles (walls, road debris, etc.) and γ agents, describing
”group objectives” such as migration of a group towards a
destination for example.
The classic form of the boids algorithm is a reactive process
that does not rely on anticipation or prediction. Publications
[5] and [6] describe more complex form of cooperative
vehicle clustering that make heavy use of inter-vehicle
communication/intention messaging alongside the vehicle’s
own ”senses”. This is a concept that could be explored
further in the context of boids-inspired autonomous vehicle
simulation as well.

Previous research was conducted to simulate automated
vehicle platooning using the boids model proposed by C.
Reynolds. Where the boids model typically describes flock
dynamics in free space (either three or two dimensional),
this simulation environment adapted it to work in a two

dimensional confined space. Next to this, the calculations of
this simulation are performed using openGL compute shaders
that make use of the parallel computation that GPUs can
perform, resulting in fast execution times [2]. The simulation
environment does model roads, although relatively basic
”uninterrupted” ones. It does not support more realistic
situations such as highway exits or junctions to name a few.

The focus of this paper lies on designing and implementing
a destination tracking system and a basic speed adaptation
system based on autonomous decisions, as well as supporting
modifications to the previous simulation environment in an
attempt to make it more capable. Future work might include
road network simulations, path-finding for destinations, or
intention-messaging to other vehicles.

The main question that this paper will answer is the follow-
ing:

• How can the addition of destination-based navigation and
velocity control to a flocking-based autonomous vehicle
test environment be designed in a way to ensure safety
and stability?

In order to find an answer to this question, the following sub-
questions will be evaluated:

• What modifications are required to the simulation en-
vironment for destination-based navigation and velocity
control?

• What kind of experiments are required to measure the
performance of destination based navigation and velocity
control?

In section II-A, the reader will be introduced to a few
key concepts that help in understanding the subject matter.
Then, the improvements and additions to the simulation that
are required for destination tracking and velocity adaptation
to work will be discussed in section II-B. After this, the
concepts behind the chosen methods for destination tracking
and velocity adaptation will be explained in sections II-C and
II-D respectively. The methods for validating and improving
the system will be highlighted in III-A and III-B, and the
results will be shown and discussed in sections III-D and
III-C.

II. DESIGN

In the publication for the previous iteration of the sim-
ulation environment [2], it was found that the algorithm
implementation works well for simpler traffic situations, but
in some instances, crashes occurred that could be avoided
with active braking. The purpose of the previous research was
to investigate whether a form of boids algorithm could even
function at all in tight spatial constraints such as roads. This
is why the test setups consisted of uninterrupted stretches of
roads without more intricate traffic scenarios like junctions or
exits. The goal of this paper is to provide the groundwork
for a more realistic traffic situation by including the ability
to set a destination for a vehicle and velocity control. The

following section will inform the reader about prerequisite
terminology and theory. It will also discuss improvements
and supporting modifications to the previous iteration of the
simulation environment.

A. Key concepts and prerequisite knowledge

C. Reynolds described a set of behavioral rules for computer
simulation of herds, schools or flocks that when applied is
typically called a ”boids” algoritm. The term boid comes from
bird like objects, or bird-oids and describe individual entities
moving in a group. The following section will describe the
behavioral rules as implemented in [2]. The first of these
behavioral rules is cohesion, which is the group’s tendency
to steer towards the centre of the group. In essence, each
individual boid will experience a force towards the approx-
imate centre of the group. This force is proportional to the
distance to the centre: the further away, the higher the force.
Typically, a ”detection range” is implemented for the cohesion
force such that multiple flocking groups can exist in one space
without forming a single group comprised of all vehicles in
space. The cohesion factor can be mathematically described
by equation 1, in which q⃗ represents the position of another
vehicle within the cohesion detection range, and p⃗ represents
the position of the ”current” vehicle that is calculating the
cohesion contribution.

f⃗c = q⃗ − p⃗ (1)

The second behavioral rule is alignment, which causes
vehicles to attempt to match their velocity to that of the
group. In this context, when the term velocity is used, it is
meant to represent a vector that implies both direction and
speed, so the alignment factor is also responsible for steering
with the group and along with road. Equation 2 represents
the alignment factor mathematically, where v⃗i is the velocity
vector of another vehiclethat is being checked, and v⃗′j is that
same vehicle’s requested velocity from the previous time step.

f⃗a =
v⃗j + v⃗′j

2
(2)

The last of the three core rules is the separation factor,
which can best be described by working on a ”steer to avoid”
principle. In the context of autonomous vehicles, this means
that a hypothetical vehicle uses its sensors to be aware of its
surroundings and avoids obstacles on the road by applying
a force away from them when needed. Mathematically, the
separation factor is described by equation 3, in which r
represents the desired separation distance, d represents the
inter-vehicle distance for which to calculate the separation
component, and q⃗ and p⃗ are the same vehicle locations as
in the cohesion factor.

f⃗s = −er−d · q⃗ − p⃗

|q⃗ − p⃗|
(3)

The resulting velocity vector is the sum of total separation,
alignment and cohesion contributions times their respective
weights.

Other terms used for simulation entities are (α) agents and
actors for the vehicles or animals, and β agents for obstacles,
such as walls or hindrances on the road.

The simulation environment makes use of openGL compute
shaders. The enviroment was created due to the fact that
most traffic simulators typically take a long time to perform
a simulation, making it difficult to perform parameter sweeps
or gather data in a time-efficient way. A compute shader
is a script/set of instructions to be run on a GPU instead
of a computer’s CPU. It allows for parallel deployment of
a collection of calculations at a much larger scale to what
a typical CPU can handle in terms of parallelism. Variable
storage is saved on a memory buffer, which is required to
be pre-allocated. To put the performance into perspective,
when v-sync in the simulation was turned off, meaning the
framerate was uncapped, a single pass of the algorithm of
about 1300 frames at a timestep of 0.1 seconds per frame
takes about the same time as extracting the data collected in
the pass and plotting results.

The system will be designed based on a model of a 2019
Toyota Corolla LE, with a length of 4.9 meters and a width of
1.8 meters. The system evaluation will take place at a speed of
2m/s or 7.2km/h for consistency with the previous iteration
of the simulation environment.

B. Supporting modifications and improvements

1) Improved Collision Detection: Collision detection is
an important part of a traffic simulation environment, as
it can serve as a metric to immediately rule out certain
strategies (both parameters and additions to the algorithm)
during the design and optimization phase. While familiarizing
with the simulation framework, it became apparent that the
collision detection method works, but it is not as accurate.
The implementation assumes that every vehicle’s hit detection
shape is a circle with a fixed radius, which is a typical
occurence in boid simulations. If the centre point of another
vehicle comes within this radius, a flag is enabled in the
buffer that the vehicles have collided. This is of course a
simplified view of reality, but it has the advantage that very
few calculations are required.
The problem is that sometimes a crash is flagged while there
is still ample space between vehicles. The reason for this, is
that this radius has to assume the worst case scenario, which
is when two vehicles make contact with each other at their
corners in a rear-end collision.

The simple crash detection method that is used in the
previous iteration of the simulation environment was chosen
for a reason: it is simple to implement, requires very little
computation power and works for any kind of polygon. This
works fine for simpler traffic situations, but with the addition

of destinations and speed adaptation, the simulation starts to
more closely resemble a realistic traffic situation. Since the
vehicle flock will become more dynamic, using a circle as a
bounding box will be too inaccurate because this will likely
report more false-positive crashes.

In simulation and game development, there are two popular
ways that can be applied in the context of boid simulation
for realizing collision detection: Axis-aligned bounding boxes
and the separating axis theorem. Axis aligned bounding
boxes are a middle ground between distance based collision
detection and the separating axis theorem in terms of required
computation power. In some situations, it can be more
accurate than distance based collision detection, but it has
the significant drawback of requiring the bounding boxes
of the vehicles to be perpendicular to the x and y axis [7].
Essentially, this would mean that it would only serve as a
better crash detection alternative on stretches of road that are
parallel to either the x or y axis.

The Separating Axis Theorem (SAT) is a more viable
alternative that allows accurate collision detection under any
angle, and is the preferred choice in the context of this paper.
This theorem requires that the shapes to be used in crash
detection are convex: from any point in the shape, you can
draw a line to any other point without going outside of the
shape. Since the vehicles are modelled as rectangles, their
shapes are convex, and the SAT can be implemented. Like
mentioned before, while the SAT is the most accurate out
of the previously discussed collision detection algorithms, it
comes at the highest computational cost.
The first step in SAT crash detection is to calculate the normal
for every edge of the shape. Figure 1 displays a schematic
drawing for a situation where the SAT will report no collision.
For visualization purposes, one can draw a line parallel to the
normal, which is the blue line at the bottom of figure 1. On
this parallel line, the minimum and maximum coordinates of
the vehicles are projected with respect to the blue line. These
minima and maxima are compared, and if the ”Line segments”
between the minimum and maximum of each shape overlap, it
means there is no separating axis can be drawn between these
two lines on this normal projection. The black arrow at the
bottom of figure 1 shows that there is no overlap between the
vehicle’s minima and maxima, indicating that a separating axis
can be drawn, so there is no collision. These steps are usually
repeated for all normal projections, and if it is possible to draw
a separating axis on a normal projection, the vehicles are not
colliding. In this context this is slightly different, since the
vehicles’ shapes are symmetrical both length-wise and width-
wise, meaning that only two normal projections are necessary
as long as they are adjacent, because the other two will be
the same as their respective edge on the opposing side of the
vehicle. This is why the separating axis theorem is prefered
over AABBs. In this context, only 2 axes have to be checked,
which means that the difference in computations required is
not very big while the performance gain is significant.

The advantage of the separating axis theorem is that it can be
very accurate in whether a crash has happened or not. Next
to this, it offers the possibility to calculate a more accurate
distance between vehicles as opposed to centre point to centre
point: it makes it possible to calculate the minium distance
between the vehicles.

Fig. 1. Illustration of SAT collision detection

2) Cohesion: Typically, the boids algorithm is implemented
in free-space, possibly with obstacles. Since a traffic environ-
ment is a confined space, the importance of the cohesion factor
can be questioned: the edges of the road and the other vehicles
on the road keep a vehicle in place, so a driving force to keep
with the group might be redundant, or even counter-productive
in some situations. Either the cohesion should be turned off
temporarily for vehicles attempting to leave the group, or it
should be turned off/kept to a low importance weight. Since
the provided code base as a results of the research in [2]
assigns a very low weight to cohesion already with no apparent
drawbacks in vehicles’ close proximity to each other, the
cohesion factor will be left enabled in the algorithm code with
the option to quickly disable it if needed in the future.

C. Destinations

In order to design and implement destination tracking for
the simulation, a system has to be created that lends itself
well to GPU computing. There are many ways of destination
tracking that could be used, but in essence, a driving force
towards the final destination should be exerted along the
vehicle’s path. An interesting option is to implement Bézier
curve path generation for smooth continuous track planning
towards the final destination [8]. While this will create an
ideal path for the vehicle to follow, it is computationally

expensive in case the route has to be recalculated, and
can take up significant amounts of buffer space. Another
option is vector field navigation, where a vector field map
is created that guides a vehicle towards it final destination.
This approach can provide dynamic, smooth motion towards
a vehicle’s final destination, but is difficult to adapt at larger
scale. Since each vehicle requires its own vector field map, an
excessive amount of buffer space will be taken up, slowing
down the simulation and requiring high amounts of GPU
memory to function at all in full scale traffic situations.

The chosen destination tracking approach is a form of
waypoint navigation, that makes use of a list of pre-defined
location markers. A system like this is simple, does not take
up large amounts of buffer space and is not computationally
expensive. These properties are ideal for implementation in a
compute shader. The most notable drawback for this form of
navigation is that it makes use of larger discrete steps between
location markers, which means that the navigation will likely
not be as smooth as the aforementioned alternatives.

The location markers are tracked using a mixed version of
the separation factor and γ agent as described in [4]. The
separation factor is a desired velocity component that varies
in strength with distance to the vehicle flock. The driving force
towards the location markers should be constant however,
such that vehicles do not experience inconsistent acceleration
forces. The reason for this, is that inconsistent acceleration
forces could cause traffic congestion and an uncomfortable
experience for people inside the vehicle. The implementation
of this constant force towards the next point is described in
formula 4:

f⃗d =
q⃗ − p⃗

|q⃗ − p⃗|
· dist (4)

In which f⃗d represents the destination factor, q⃗ represents
the coordinates of the next point in the coordinate track, p⃗
represents the centre point coordinates of the vehicle and dist
is the desired distance for the striving point. This equation
turns the vector that points towards the next location in the
destination track into a unit vector, and multiplies it with a
fixed distance to ensure that a constant force is applied to
the vehicle. Essentially, the exponential component that varies
with distance is replaced with a constantly present point in
front of the vehicle toward which it should strive.
When the vehicle finds itself within a certain range of a
location marker, it adds that marker to a list with visited
locations. During every simulation step, the vehicle checks
if it already visited the location. If it did, the new target will
be the next location in the destination track.

To support the destination tracking system, a road marker
simulation object is added. These road markers are stylized
in the simulation as dashed lines, and act the same as regular
walls to vehicles that have to keep following the road, apart
from not being able to collide with the vehicle. This means
that when a vehicle has to exit the road, it will be able to do

so without issue, since the separation force exerted by the road
exit is simply ignored in this case. Other vehicles will keep
driving though, and if they happen to be accidentally forced
over the road marker, the force that the road markers apply
will help get the vehicle back on the main road.

Since compute shader buffer sizes have to be fixed during
the entirety of the openGL context run time, the buffer that
contains the location markers for the destination tracks for
each vehicle has to be pre-allocated. The location markers are
stored in a csv file that contains a specific track corresponding
to a vehicle in rows, and x and y coordinates in alternating
columns. During the import phase of the location markers,
the python driver code keeps track of the maximum number
of location markers out of any individual destination track.
Then, an N by L buffer block is created where N represents
the number of vehicles, and L represents the maximum number
of location markers. If a vehicle has no specific destination or
if it has a limited amount of location markers in its route, the
rest of that vehicle’s buffer entry is filled with coordinates out
of road bounds. The shader code that performs the destination
algorithm will simply ignore further entries for that vehicle
and the vehicle will follow the road as normal after this point.

D. Velocity control

Velocity control is a crucial component to add to the
previous iteration of the simulation environment. Without any
form of active braking and solely relying on the separation
force to slow a vehicle down, destination tracking will not be
able to function to its full potential, and crashes will happen
that are entirely preventable. Two options were considered
for velocity control as a means to avoid crashing. The first
of which is a force-based approach, and the second a scaling
based approach.
To better understand what choice was made, it is important
to understand the structure of the algorithm compute shader.
The shader consists of four parts: vehicle-to-vehicle force
evaluation, vehicle-to-wall force evaluation, vehicle-to-road
marker force evaluation and destination tracking forces. In
between these stages, the velocity vectors are normalized to
the desired speed of the vehicles. In any case, due to the
current structure of the compute shader, the velocity control
decision and the corresponding action have to be applied in
the ”evaluation loop” where the discovery that led to the
decision was made. For a force-based approach this poses a
problem. As an example: if the need arises to brake in the
vehicle-to-vehicle stage, the resulting velocity vector will
be calculated such that a crash can be prevented. This does
not necessarily mean that the final velocity vector will fully
reflect this change: if there is no risk of collision towards
the other kind of simulation entities found in the subsequent
evaluation loops, there will still be a separation and alignment
force applied to the vehicles, making it likely that vehicles
will not brake with the force required.
It is possible to re-structure the algorithm compute shader,
but due to the fact that the majority of GPUs are unable
to stream and synchronize real-time data back to the CPU

without complex tools, debugging becomes difficult. Instead,
the more simple, more compatible method to the current
compute shader structure is chosen: a scaling factor that is
applied to the algorithm’s output velocity vector.

The scaling method works by first running the boids al-
goritm as normal, and then performing a series of checks to
confirm if another vehicle is in front of it using a ”crash field
of view”. During the evaluation loops mentioned before, the
distance and angle of the closest other simulation entity are
kept track of. After each loop, the lowest distance is compared
to the proportional braking distance dp and emergency brake
distance de, and the angle is compared to the pre-set value
that corresponds to the crash field of view. If the conditions
for a braking stage are met, the required braking force of either
of those stages is applied. Distance calculations are performed
from centre point to centre point of vehicles, and a description
of how the angle is calculated between vehicles can be found
in appendix section V-A.
The advantage of this method is that the scaling factor can
be calculated anywhere and is applied only at the end, which
means that the contributions from all of the four stages are
dampened at once.

For the proportional braking stage dp, the scaling factor is
calculated using equation 5:

scaling =
dmin

fp
(5)

In which dmin is the minimum distance to another simulation
entity, and fp is the weight given to the proportional braking.
This method of scaling allows for a less jittery braking phase,
since less braking force is applied when the vehicle is further
away from the obstacle. This stage is meant to serve as a
bridge between what the separation factor can manage by
itself and emergency braking. In the emergency braking stage,
the velocity vector is set to near-zero. The actual deceleration
is clamped to the maximum deceleration force of the car on
which the vehicles are based, so this will not result in physics-
defying brake behavior.

E. Algorithm

The following section will describe the sequence of execu-
tion for the design of the control algorithm as sketched in this
paper and provide commentary on changes and new additions
to the simulation environment designed in [2]. This section
will only discuss the computational side of the algorithm, since
the rendering shaders are non-relevant in this context. The
final algorithm is split up into multiple compute shaders. For
algorithm initialization, two pre-calculation shaders are used:

• A pre-calculation shader to calculate location and wall
normal information and stores them in the GPU buffer.
This shader remains unchanged from its inclusion in [2].

• A pre-calculation shader for streaming location and road
marker normal information into the GPU buffer.

As these pre-calculation shaders are solely meant for initializa-
tion, they are only executed once. The road markers and their

information buffer are a new addition, but these two compute
shaders are very similar in nature. Separation of these shaders
allows for more structured shader programming and allows for
easier debugging.
The algorithm itself is performed in the following shaders:

• Distance calculation: this shader is responsible for cal-
culating distances and angles between all simulation
entities and stores them in the distance buffer. Collision
detection by means of the separating axis theorem is also
performed, and if a collision occurred, the simulation
state buffer entry for collisions of those vehicles are
flagged as positive.

• Algorithm: this shader performs a round of cohesion,
alignment and separation calculations for vehicles on
vehicles and vehicles on walls, and scales the velocity
request vectors based on if a crash is imminent. If the
destination track buffer has a valid entry for the invoca-
tion ID of a specific vehicle, the final set of calculations of
the algorithm shader applies force towards the vehicle’s
destination if further conditions are met.

• Vehicle movement: as the name suggests, this shader
executes movement of the vehicles and stores the new
vehicle positions and rotation in the buffers. Movement
is restricted to the physical limits of the vehicles, so
it prevents unrealistic acceleration or deceleration and
enforces a maximum steering angle. This shader also
remains unchanged apart from minor bugfixes.

III. EXPERIMENTS AND RESULTS

The following section will describe the experiments that
were used to improve the performance of the control algorithm
and verify its performance. The sub-research question: What
kind of experiments are required to measure the performance
of destination based navigation and velocity control? will
therefore also be answered in this section.

A. Velocity adaptation validation and parameter sweep

In order to make sure that the velocity adaptation is
working as intended, a test setup is created where vehicles
drive towards a y-junction. The most favorable situation is
where the braking force and emergency distance are as small
as they possibly can be while being safe, or in other words,
the lowest jitter in vehicle velocity. This way, passengers
will not feel uncomfortable with the high acceleration and
deceleration forces. Figure 2 shows the vehicles positioned in
a grid structure. The green triangles in front of the vehicles
show the field of view of a vehicle in which a braking
operation will trigger if another vehicle’s centre point is
located within the triangle. Half of the vehicles will follow
the track of red dots to the left and the other half will follow
the track to the right. Which vehicle gets which track is
chosen in such a way that the paths of the vehicles are
somewhat intertwined. This will test the vehicles’ ability to
break to avoid crashing, as well as the vehicles’ ability to
follow a location marker track.

The performance measures for velocity adaptation are the
following:

• Velocity standard deviation (σv): the average standard
deviation of the grid of vehicles as shown in figure 2 will
be used to gauge ride quality. Higher standard deviations
are less desirable, and indicate more jitter in vehicle speed
or even crashes. For the final decision on parameters,
optimization will be performed based on the minimum
σv .

• Collisions: For a set of parameters to be usable, a crash
occurring is out of the question.

• Time spent (frames): Using just the standard deviation
and collisions could result in situations where indeed no
crashes have happened with a smooth ride quality, but it
is possible that these parameters are not up to standard
when it comes to travel time. A hard maximum time of
1300 frames is set for the full grid of vehicles to reach
their goal. This time was empirically determined to be
more than enough for the vehicles to reach their final
destination, without being excessive. The final destina-
tions are either of the two upper red dots in figure 2

Fig. 2. Experiment setup for speed adaptation validation

The first step in finding ideal parameters is finding the
minimum safe braking distance. During testing, it was found
that the emergency braking stage has a significant impact on
crash prevention. To find a minimum safe distance, a sweep
was set up with the following parameters:

• fs: The weight of the separation component.
Range: 2.0 to 3.0. Step size: 1.0

• dp: Proportional braking distance.
Range: 7.0 to 10. Step size: 0.5

• fp: Proportional braking force scaling factor.
Range: 5.0 to 15.0. Step size: 1.0

• de: Emergency brake distance.
Range: 4.0 to 7.0. Step size: 0.5

These ranges for these parameters were determined em-
pirically, and cover a reasonably wide range of possible
combinations (980 in total). They were also chosen to be con-
sistent and kept in line with the speed (2m/s) and parameters
determined in [2]. It should be noted that the safety result of
140 simulations in total for each braking distance serves as an
indication of where to start.

To reproduce the experiments, the map files y.wls, y.loc and
y.spn should be used. The four parameters mentioned before
vary with the sweep. Other notable paramters are:

• Cohesion weight: 0.1
• Cohesion distance: 15m
• Separation distance: 10m
• Alignment weight: 6
• Destination tracking pointer distance: 20m

These parameters remain consistent for all experiments.

B. Destination system validation

For the destination tracking, two types of more challenging
road environments will be tested: a y-junction and a highway
exit. The destination tracking points will be plotted together
with the path of the vehicle(s) to assess if the vehicles’ actual
paths are close enough to the pre-defined track of points. Both
of these situations will be evaluated for a single vehicle, as
well as for multiple vehicles on the road to simulate quiet and
more busy roads. What is expected for a functioning system
is that the vehicle’s path will come within an acceptable range
of the location marker and move on to the next one, because
the markers are supposed to act more as a guideline rather
than the exact track a vehicle should take. If all vehicles
have to cross the exact location marker coordinates, they will
have to line up to do so which creates congestion and will
possibly cause dangerous traffic situations. There is a high
likelihood that the path will not be completely direct between
points, due to the forces exerted by other simulation entitites.
Even for single vehicle scenarios, the walls will most likely
slightly throw off the ideal curve.

The test setup for the y-junction can be observed in figure
2. The red dots indicate the (approximate) location markers
as used in the simulation. A path to the left and a path to the
right is defined. The markers and road segments are mirrored
in the middle, so for the singular vehicle test, the vehicle
can be placed to the left, right and in the middle of the road
leading to the y-junction and the resulting vehicle path should
be very similar if not the same depending on whether the
vehicle goes left or right. For the test with multiple vehicles,
half of the vehicles will be assigned to the left path and

half of the vehicles will be assigned to the right path randomly.

The test setup for the highway exit can be observed in figure
3. Once again, the red dots indicate the approximate location
markers as used in the simulation. The dashed line is a road
marker that exerts a force on the vehicles that will continue
along the road, acting as an artificial wall segment. Vehicles
that are supposed to take the exit will ignore this force. In the
single vehicle scenario, the path of the vehicle should show
a smooth line close to the location markers. In the multiple
vehicle scenario, the paths will likely deviate a little from the
ideal line between the location markers, and the vehicles will
take longer to reach the final destination, but depending on the
maximum amount of vehicles that will fit through the slightly
narrowed curve section, they should be able to follow a path
close to the location markers without issue.

Fig. 3. Test environment 2 for destination system validation

The performance measures for the destination tracking
system are the following:

• The traces of the vehicles’ paths and their proximity to,
and fluidity through location markers.

• Travel time.

C. Results: Velocity adaptation

Figure 4 shows the result of the first parameter sweep
described in section III-A with the intention of finding a
baseline for the minimum emergency brake distance.

Fig. 4. Crashes vs safe runs for varying de

Figure 4 shows a bar graph that compares the amount
of crashes versus safe, crash-free runs in the original wide
parameter sweep for which the ranges are described in section
III-A. The total number of simulation runs is 980. While this
graph should not be used for definite conclusions on what
minimum brake distance to use at the given speed of 2m/s,
it can be used as an indication for a starting point of a higher
resolution sweep. In the graph, there is a clearly observable
downward trend in crashes when the emergency brake distance
de becomes larger. Using this graph, the sweeping range
for figure 8 was determined. With this same sweep, it is
found that the following variables give the lowest average
standard deviation when only simulations with a minimum
brake distance of 5.5 are taken into account that contain no
crashes and no simulations with vehicles that haven’t been
able to reach their goal before the simulation ended:

• Separation component weight fs: 2.0
• Proportional braking distance dp: 9.5
• Proportional braking force scaling factorfp: 5.0
• Emergency braking distance de: 6.5

Even though a minimum brake distance of 5.5 m does result
in a few crashes in figure 4, preferably the brake distance
should be as small as possible. There could be a better standard
deviation value with no crashes anywhere in between 5.5 and
6, so values above 5.5 are still taken into consideration the
optimization process.

An optimization process was performed for these variables,
resulting in the following plots:

Fig. 5. Optimization plot for separation weight

Figures 5 and 8 show the clearest ranges of what their
respective parameters should approximately be. For the
separation weight fs, for which the plot is observable in
figure 5, the most stable behavior also happens to bear the
lowest standard deviation. This behaviour is observed between
a value of approximately 1.6 to 2.0. The higher peaks are
caused by runs that contained one or more crashed vehicles.
For this optimization sweep, crash events are more or less
evenly distributed throughout the parameter range, with a
notable absence between a weight of approximately 0.8 and
2.4

Fig. 6. Optimization plot for proportional braking distance

For optimal usage of proportional braking, it’s range should
be big enough to bridge the gap between emergency braking
and obstacle avoidance by means of the separation factor.
It is meant as a transition phase after all. Looking at the
plot in figure 6, the lowest range of standard deviation that
meets this criteria, as well as being in a ”stable” range of

standard deviation, the ideal option would be a value within
the range 8.0 to 9.0. In this optimization sweep, 186 crashes
occured, with all but 3 of them being for dp values greater
than 10.1. The most plausible explanation for this is that the
the proportional braking and separation forces overlap. The
scaling factor will be applied to the entire ”requested” velocity
vector, thus also scaling the alignment with flock members.
This likely results in a ”chain of collisions” of sorts due to
the fact that the average standard deviation is so high for larger
dp.

Fig. 7. Optimization plot for proportional braking weight

The proportional braking weight is at its most stable with the
lowest standard deviation in the range 8.5 to 9.5. Intuitively,
having the highest standard deviation for lower braking forces
like figure 7 displays is not the most logical observation
because braking is not applied with as high of a force. This
is explained by the fact that when the braking force in the
proportional braking phase is too low, the vehicle will have
to over-rely on emergency braking, causing a jittery vehicle
speed, or the vehicle will simply crash. Data collected during
the optimization sweep shows that out of the 50 crashes in the
1000 iterations performed, half of them take place in the fp
range 2 to 3.27, which coincides with the large peaks at the
beginning of the plot. If a vehicle crashes somewhere halfway
in the run, the mean value will lie somewhere around 1m/s,
and then the standard deviation quickly becomes larger, which
also explains the higher standard deviation in this parameter
range.

Fig. 8. Optimization plot for emergency braking distance

Figure 8 shows the optimization plot for the emergency
brake distance de. Stable behavior with low standard
deviation is observed below a distance de of approximately
6.5 m when keeping fs, dp and fp at their ”optimum” that
was obtained before. The lower standard deviation in this
region makes sense: waiting longer for braking with the
highest force possible and instead relying on proportional
braking first should provide a less jittery ride, which will
result in a lower standard deviation. No crashes happened
during this sweep, which can also be seen in the plot by the
absence of high peaks (0.6) like those found in the other plots.

A final, high resolution sweep is performed in the stable
ranges as determined in this section:

• fs: 1.6 to 2.0 Step size: 0.05
• dp: 8.0 to 8.75 Step size: 0.05
• fp: 8.0 to 9.0 Step size: 0.05
• de: 5.75 to 6.5 Step size: 0.05
The sweep in these stable variable ranges resulted in the

following parameters in search of the lowest standard devia-
tion:

• fs: 1.6
• dp: 8.5
• fp: 8.75
• de: 5.9

These parameters result in a velocity standard deviation σv of
0.3798 in the y-junction test environment.

D. Results: destination tracking

In order to gauge the performance of the destination
tracking system, the test setups as described in section III-B
are used in combination with the ideal parameters that were
extracted from the stable ranges in figures 5, 6, 7 and 8. The
following plots show the traces of the vehicles compared
to the location markers, as an evaluation of the algorithm’s
ability to smoothly follow a track of markers.

It is important to note that for the plots in figure 9, 10, 11
and 12, the origin of the vehicles is the lowest y coordinate in
the plot: the vehicles are driving upwards. The plot in figure
9 shows the trace of a single vehicle going to the left on the
y-junction road as portrayed in figure 2.

Fig. 9. Trace of a single vehicle on the left side of y junction

In figure 9, the dashed trace represents the left path of
the y junction test simulation, which the vehicle took in the
simulation. The orange dots with black outline represent the
location markers. This will be the case for figures 10, 11 and
12 as well.
The path that the vehicle took came within sufficient proximity
of the location markers, indicating that the destination tracking
works reasonably well. Around coordinate (10.0, 105.0), the
vehicle takes a relatively sharp right. There are two likely
reasons for this, which both have to do with the map layout.
The first of which was discovered during testing, which is
that the boids algorithm does not bode very well in confined
space with curves with large, ”mismatched” discrete wall
segments. What this essentially means, is that in order to
create a (sharp) curve that works well with vehicles, relatively
short line segments have to be drawn as the walls that have
to be roughly matched to a line segment on the other side
of the road. The ”v” shape in the centre of the y junction
also causes some strange behavior, since those line segments
are very close to each other. The line segments will exert a
force in opposing directions. Once the vehicle has progressed
a certain amount on either of the two lanes, the line segment
that exerts the unwanted force is outside of the detection range.
The transitional point where this happens will likely not be
very smooth.
The second possible reason for this sharp bend is that the
placement of location markers is relatively far apart. The
large spacing between location markers was done on purpose
however, to make sure that it is not required to calculate an
exact line for the vehicles to take.

Fig. 10. Traces of 9 vehicles for both sides of y junction

Figure 10 represents both sides of the y junction test road
and shows the traces of nine vehicles in total. A noteworthy
observation is that for vehicles that started on the opposing
side of the road to where they were going, the ”sharp bend”
near the first location marker is much less noticeable than for
the single vehicle, and for the vehicles that start in the centre
or at the same side of the road as the side they are going.
This is especially clear for vehicle 2 (green trace) and vehicle
8 (yellow trace). There is a sharper bend present for vehicle
2 and 8 as well, but it takes place just below y = 80.0. The
initial positioning and earlier bend does line vehicle 2 and 8
up better for a clean curve through the location markers. Since
the road is relatively small, vehicles start to follow each other
in a line formation (caused by alignment) through the smaller
corridors rather than forming clusters again. The alignment
between vehicles is likely also one of the causes for the slightly
smoother lines. Compared to the simulation displayed in figure
9, the average vehicle takes 74 frames of extra time when
roads are busy, which translates to 7.4 seconds extra over a
distance of 100 meters. At a speed of 2m/s, this is deemed
an acceptable difference.

Fig. 11. Trace of a single vehicle taking the road exit

The trace in figure 11 shows a smooth line through the
location markers where the contours of the road are clearly
visible in the vehicles path. An example of this is the stretch
between the location marker at approximately (110.0, 82.5)
and the location marker at (160.0, 90.0). Cross-referencing
this with the map layout as displayed in figure 3, there is
a section of road that starts to narrow towards the centre of
the smaller road section. There is a sharper bend present in
the vehicle’s trace at approximately (55.0, 70.0). The most
likely explanation for this is that this location is also close to
a sharp corner that consists of relatively large discrete curve
line segments (especially on the outer edge of the curve).

Fig. 12. Traces of 4 vehicles taking the road exit with the rest on the main
road

The final test for the destination tracking system is the
highway exit scnenario with a busy road. The first observation
is that there is a difference of 75 frames between the average
of four vehicles taking the exit and the time it took for a single
vehicle to get to the final location marker. This translates to a
real life time loss of 7.5 seconds over a distance of 200 meters.
This indicates that this traffic situation has better traffic flow
compared to the y junction. Two of the vehicles leaving the
flock on the highway initially came from the left side of the
flock, and two of them came from the right side. In terms
of angle, the same observation can be drawn as for the y
junction scenario with multiple vehicles, which is that after
the second half of the vehicle traces, a line formation has
formed and the location markers are followed quite smoothly.
The vehicles leaving the flock, especially vehicle 2 and 0 reach
a state where the angle towards the location marker is starting
to become too large, with one or more vehicles too close to
safely turn towards the exit. What the vehicles do in this case,
is slow down until there is enough room around them to make
a safe turn. This is clearly visible by the trace of vehicle 1,
which corrects its trajectory around the turning location of
vehicle 2. With human drivers, behavior like this will likely
cause congestions or accidents, but since in this context, the
vehicles are automated, this is not as big of an issue. While not
visible in the plot, the vehicles were later observed to catch

up and form a flock again.

E. Future work

While the addition of the speed adaptation, improved
crash detection and destination tracking has made the
simulation environment more realistic, there are still points
of improvement. To name a few, future renditions of
this simulation environment could add path-finding for
destinations, intention messaging for smoother traffic flow,
variation in vehicle shape (model a semi-truck and trailer for
example) and improved vehicle detection. The simulation has
also not been verified with higher speeds. This would likely
require performing a new sweep of variables like performed
in the context of this paper, together with the parameters
that were decided on in [2]. The base for more accurate
distance measurements between vehicles is present with the
introduction of the separating axis theorem, but could not be
fully implemented.

IV. CONCLUSION

The addition of waypoint based navigation and velocity
vector scaling as a means of velocity control to a boids
algorithm provides a control strategy for simple every-day road
situations in an efficient simulation environment making use
of compute shaders. The system was found to be capable of
safely guiding individual vehicles towards a destination with
limited speed fluctuation, providing an acceptable ride quality
in reasonable time. Stable behavior can be achieved for a
decent range of control parameters. Compared to the standard
boids algorithm, the control strategy provided in this paper
is able to overcome more challenging scenarios in confined
space. These include, but are not limited to models of a y-
junction and a highway exit.
The performance of the velocity control system was able to
be evaluated by using the average standard deviation of a
vehicle flock as a measure of speed fluctuation, while also
measuring the time it took to reach a goal without a single
crash occurring. The destination control system was evaluated
by comparing the vehicle’s trajectories to the layout of location
markers, and judging the traces’ accuracy and smoothness. By
implementing a more sophisticated crash detection algorithm,
the system’s performance was able to be evaluated more care-
fully, resulting in fewer false-positive crash detection reports.
This opened up a broader range of control parameter values
to use and improve the system with.
While the addition of destination tracking and velocity control
brings the boids inspired simulation environment as described
in [2] closer to a more realistic traffic simulation environment,
it is still a basis. For one, it is important to evaluate the
functionality of the control strategy at higher speeds. While
the road scenarios are designed to resemble more realistic
traffic situations, they are loosely based on sattelite images
and could be improved upon by creating a tool for smoother
curve creation, or following road design guidelines publicised
by government agencies.

REFERENCES

[1] C. W. Reynolds. (1987) Flocks, herds and schools: A distributed
behavioral model. [Online]. Available: https://dl.acm.org/doi/10.1145/
37402.37406

[2] J. Blondel. (2021) Distributed control algorithm for cooperative
autonomous driving vehicles inspired by flocking behaviour. [Online].
Available: https://essay.utwente.nl/85648/

[3] H. C. et al., “Truck platooning reshapes greenhouse gas emissions of
the integrated vehicle-road infrastructure system,” Nature Communica-
tions 14, article 4495, 2023, available: https://www.nature.com/articles/
s41467-023-40116-0.

[4] R. Olfati-Saber. (2006) Flocking for multi-agent dynamic systems:
algorithms and theory. [Online]. Available: https://ieeexplore.ieee.org/
document/1605401

[5] C. F. Caruntu, C. Pascal, L. Ferariu, and C. R. Comsa, “Trajectory
optimization through connected cooperative control for multiple-vehicle
flocking,” 2020 Mediterranean Conference on Control and Automa-
tion, pp. 915–920, 2020, available: https://ieeexplore.ieee.org/document/
9182964.

[6] C. F. Caruntu, L. Ferariu, C. Pascal, N. Cleju, and C. R. Comsa,
“Connected cooperative control for multiple-lane automated vehicle
flocking on highway scenarios,” 2019 23rd International Conference on
System Theory, Control and Computing, pp. 791–796, 2019, available:
https://ieeexplore.ieee.org/document/8885496.

[7] P. C. et al., “Collision detection using axis aligned bounding boxes,”
Simulations, Serious Games and Their Applications, pp. 1–14, 2014,
available: https://link.springer.com/chapter/10.1007/978-981-4560-32-01.

[8] J. wung Choi, R. E. Curry, and G. H. Elkaim, “Continuous curvature path
generation based on bezier curves for autonomous vehicles,” IAENG Inter-
national Journal of Applied Mathematics, 40:2, pp. 91–101, 2010, available:
https://users.soe.ucsc.edu/∼elkaim/Documents/IAENG JAM Choi.pdf.

V. APPENDIX

A. Angle calculations velocity control

For the angle calculation, the first step is to take the dot
product between the vehicle’s relative rotation and the vector
between the centre points of vehicle i and vehicle j. After this,
the expression is normalized and then the arc cosine is taken.
Equation 6 demonstrates this:

angle = cos−1

[
cos(−roti +

π
2)

sin(−roti +
π
2)

]
·
[
xj − xi

yj − yi

]
abs

([
xj − xi

yj − yi

])
 (6)

In which roti is the rotation of vehicle i in world space,
and (x, y)i and (x, y)j are the coordinates in world space of
vehicle i and j respectively. The reason why the cosine and
sine contain the negative rotation in world space and a factor
of π

2 has to do with how the coordinate frame is defined in
the simulation environment: usually, the rotation direction is
positive when going counter-clockwise, and an angle of zero
is defined when pointing parallel to the positive x axis. In the
simulation environment, the clockwise direction is defined as
positive and a rotation of 0 degrees is when the vehicle is
pointing parallel to the positive y axis.

