MSec Business Information

Technology
Thesis

- Improving Decision

" Making in Warehouse:
Data-Driven Forecasting
and Storage Simulation

s Supervisors:

j@: dr. Luis Ferreira Pires

o %@y prof. dr. ir. Martijn Mes
&:ﬁ%@ . dr. Joao Luiz Rebelo Moreira

November, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.



Contents

Introduction

1.1 Problem Description . . . . . ... ... ... L.
1.2 Research Questions . . . . . . . . ... ...
1.3 Methodology . . . . . . . ...
1.4 Structure of the Thesis . . . . . . ... ... ... ... .. ......
Literature Review

2.1 Literature Search Strategy . . . . . . . .. ... ... ... ... ...
2.2 Demand Forecasting . . . . .. .. ... ... o0
2.3 ABC Storage Policy . . . . . . . . . . ...
2.4 Simulation Applications in Warehouse . . . . .. .. ... ... ...
2.5 Configuration of a Warehouse in a Simulation Model . . . . . .. ..
2.6 Simulation Methods for Storage Policy . . . . .. ... ... ... ..
2.7 Communication of Solutions to Warehousing Stakeholders . . . . . .
Forecasting Service

3.1 Workflow . . . . .. . .
3.2 Data Analysis . . . . . . ..
3.3 Forecasting Algorithms . . . . . . . . ... ... L
3.4 Error Metrics and the Objective . . . . . . . . .. ... .. ... ...
3.5 Forecast and Observation . . . . . . . . ... ... ... ... ...
3.6 Summary of Forecasting Service . . . . . . .. ... ... ..
Storage Simulator

4.1 Workflow . . . . . ..
4.2 Requirements . . . . . .. ...
4.3 Conceptual Model . . . . . . ... oo
4.4  Choice of Simulation Software . . . . . . . ... ... ... ......
4.5 KPIs . . . . .
4.6 Model Implementation . . . . ... ... ... ... .. ... ...,
Simulation Experiments

5.1 Travel Distance and Picking Time Assessment . . . . . . .. ... ..
5.2 Utilisation and Cost Assessment . . . . . . . . . . ... ... .....
53 Results. . . . . . .
5.4 Verification . . . . . . .. ...
5.5 Validation . . . . . . . ...

12
12
13
15
19
21
23
25

27
27
28
32
37
39
48

49
49
50
50
57
29
62



6 Evaluation 81

6.1 Implementation Model . . . . . . . .. ... ... ... .. 81
6.2 Use Case - Forecasting Service . . . . . . . . ... ... .. .. .... 82
6.3 Use Case - Generalised ABC Storage Analysis . . . . . ... ... .. 83
6.4 Use Case - Snapshot Analysis . . . . .. ... ... ... ... ... 83
6.5 Expert Survey . . . . . .. 84
7 Conclusion 87
7.1 Demand Forecast of Picking Workload . . . . . .. ... ... ... .. 87
7.2 Storage Simulator . . . . . .. ... 88
7.3 Use Cases of the Data-driven Services . . . . . . . . ... .. .. ... 90
T4 Summary ... ... 91
A 100
A.1 LightGBM Parameters . . . . . ... ... ... ... ......... 100
A.2 Simulation Model . . . . .. ... oo 101
Glossary

SKU (Stock Keeping Unit): A unique identifier for each distinct product. It
helps in the management and tracking of inventory.

ABC Storage Policy: A method of managing inventory where products are cate-
gorized into three categories (A, B, and C) based on their importance. A-products
are the most important, while C-products are the least. Products with higher im-
portance are stored closer to pick/delivery point (e.g. arrival dock and departure
dock for products).

DES (Discrete Event Simulation): A type of simulation that models the oper-
ation of a system as a discrete sequence of events in time. Each event occurs at a
particular instant and marks a change of state in the system.

ABS (Agent-Based Simulation): A type of simulation where entities with cer-
tain behaviors are modeled as agents, interacting with each other to assess their
impact on the system as a whole.

Digital Twin: A digital replica of a physical entity. By bridging the physical and
the virtual world, data is transmitted seamlessly allowing the virtual entity to mimic
the physical entity.

Data Warehouse: A centralized repository for storing large volumes of data from
multiple sources. Data is organised and tailored to business analysis.



Worker Utilisation: A measure of how efficient workers are used in a warehouse,
calculated by dividing the total working time by the total available time of the
workers.

Waiting Time: The time it takes for a product before it can be processed by a
worker in a particular task due to the queue it is waiting on.

Data Tool: A software tool with capability of using Python, R, or other program-
ming languages that supports data retrieval, manipulation, and export.

Storage Simulator: A simulation model for a warehouse enabled by a simulation
software.

Preface

This thesis is carried out at Bricklog, an IT service company serving the logistics
industry. The company offers software and data-driven solutions for small-and-
medium sized transport companies. We participated in an initiative project which
revolves around building data-driven solutions for warehousing companies.

Abstract

The thesis presents a data-driven solution that utilises a data warehouse and sev-
eral software tools to help decision making in warehousing business. The solution
consists of the forecasting service and the storage simulator service. In warehousing,
forecasting is often desired to predict the daily workload to meet the demand for
picking and to have an appropriate number of workers available for the day. Storage
policy is a method to allocate products in different sections of the storage primarily
based on their demand in order for pickers to reach these products faster. Forecast-
ing the picking demand with higher accuracy and choosing a suitable storage policy
help improve efficiency and reduce costs in warehousing operations. We illustrated
how these two services are realised with an architecture based on a data warehouse.
Use cases of the services were created to help warehousing managers and supervisors
make improved data-driven decisions.



Chapter 1

Introduction

This chapter introduces the context of the problems addressed in the thesis and the
approach to solve them. The following subsections are included: Problem Descrip-
tion, Research Questions, Methodology, Approach, and Structure of the Thesis.

1.1 Problem Description

Many SME warehouses or companies with warehouses do not yet have or fully use
data-driven technology, such as data warehouse, dashboard or simulation applica-
tions, to help them improve operational effectiveness or make more informed deci-
sions. What they usually have is a collection of enterprise software and databases
that are dedicated to specific business processes and hold records of operational data
such as customers, orders, financials, inventory, transports, and planning. These
data could be put together in a data factory to build a data warehouse. Inmon
defines a data warehouse as “a subject-oriented, integrated, time-variant, and non-
volatile collection of data in support of management’s decision-making process" [29].
A data warehouse can be used by various software tools to provide various data-
driven services such as data quality improvement, customer and inventory analysis,
forecasting, and storage optimisation.

Two common challenges in warehousing are addressed in the thesis: demand forecast
and ABC storage policy.

The forecast of demand for workload [21] |7] and products [27] helps warehouse man-
agers and supervisors to anticipate demand and plan resources in advance. Studies
[21] [7] [27] [84] [25] have shown that forecasts backed by historic data and refined
forecasting algorithms can improve forecasting accuracy. With a data warehouse,
the data required for forecasting algorithms can be easily retrieved. There are a myr-
iad of studies that apply different algorithms for demand forecasting with real case
studies, which range from custom-built algorithms|27] to complex Machine Learning



algorithms|70|. Traditional models such as ARIMA and Exponential Smoothing are
usually the choices for many forecasting applications. However, case studies of ap-
plying newer algorithms such as XGBoost and Light GBM (both introduced in 2016)
in warehousing context are still lacking. So, we aim to include both traditional algo-
rithms and new algorithms to compare their performance in the forecasting solution.

A storage policy determines how the stored products are allocated or organised in a
storage area. This is a common concern for a warehouse because it affects the picking
time and travelling distance[82], which are the KPIs that translate into the labour
cost and the performance cost[16]. In general, products with higher demand should
be more easily and quickly accessed for picking. To solve this, ABC storage policy is
a commonly used method and is proven to be effective in reducing travelling distance
and picking time in several studies [76] [46] [73] [11]. These studies also showed the
viability of using the simulation approach, which produces quantitative assessment
of the impact of different policy settings on the travel distance and picking time. For
example, a real case study [73]showed that a proposed ABC policy combined with a
change of storage layout could reduce the distance travelled and the picking time by
more than 40% on average in a simulation model for a warehouse. The advantage of
using simulation is the ability to perform experiments that are otherwise not feasible
in the real world. For example, a simulation study [76]designed a model to balance
the cost and pick-up efficiency of the forward and reserve zones in a warehouse by
varying the number of storage bins. When multiple experiments were performed,
an optimal number of bins was found for the fast-pick zone. Another paper [46]
showed a comparison of the impact of ten different arrangements of products based
on different ABC classification methods on the average picking time in a case study.
However, many of these studies did not mention the methods of measuring the KPIs.
For example, some studies did not say whether the picking time include the time for
a forklift to search, elevate, or retrieve a pallet. Our goal is to design a simulation
model for a warehousing storage environment with clear measurement methods for
KPIs, which are used to evaluate variants of ABC storage policies.

To solve these two problems, we used a data warehouse containing synthetic data
of the movement history of bulk products in a hypothetical warehouse. With the
architecture shown in Figure 2, we generated forecast and made a simulation model
that ran experiments on the variants of ABC storage policy. The architecture con-
sists of a Data Tool that carries out forecasting and a Storage Simulator that carries
out the evaluation of the storage policies. The key data resulting from the solutions
are presented to stakeholders with a visualisation tool. The forecasting solution is
to be used daily for approximating the picking demand. The connection between
the picking workload forecasting and the Storage Simulator in the current design is
that the forecast should provide a reference to how many pickers are needed in a
simulation experiment with a certain picking workload given a fixed time horizon.
The Storage Simulator is to be used quarterly to determine the best storage policy
for the current quarter. There are two reasons for it to be used quarterly: the first is
that a warehouse should not change the storage policy too frequent because it would
add regular operational and managerial expense; the second is that we assume the
warehouse have a seasonal demand pattern that could be summarised on quarterly



basis, and that if there are newly introduced products in the next quarter, the policy
should be changed accordingly.

1.2 Research Questions

The main research question we answer in this thesis is:

How can a warehouse improve decision making by using data-driven ser-
vices consisting of picking demand forecast and storage simulation?

The main question is decomposed into the following sub-questions:

e RQ1: Which forecasting method is the most suitable to predict daily picking
demand?

e RQ2: Which factors affect the effectiveness of an ABC storage policy?

e RQ3: How to model an environment with storage and other areas of a ware-
house and measure KPIs including the travel distance and picking time in the
picking process?

e RQ4: How do warehousing stakeholders use the forecast and storage simulation
services for decision making?

1.3 Methodology

This section describes the process of designing the solution with Design Science
Methodology along with the solution’s components.

1.3.1 Using Design Science Methodology

Figure 1 shows the steps of applying Design Science Methodology for our work. We
reviewed the literature related to the forecasting and ABC storage policy. Based on
the literature review findings, we carried out design & development comprising two
services. The first phase of the design is the forecasting service. The forecasting
service is about making workload forecasts through statistical and Machine Learning
methods and present forecasts to stakeholders with intelligible visualisation. The
second phase of the design is a storage evaluation service built upon a simulation
model we developed. The service consists of the estimation of picking time and
travelling distance resulting from different variations of ABC storage policies and of
a resource monitor measuring utilisation of workers and waiting time in the picking
process. The Demonstration & Evaluation step includes use case description of the
artefact and the expert survey.
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FIGURE 1: Steps of Applying Methodology

1.3.2 Literature Review

We reviewed the literature related to warehousing management, demand forecasting,
ABC storage policy, and simulation to gain an understanding of these subjects and
solutions to similar problems from other studies and to form connections with these
papers. The literature review addressed the following aspects:

L1. Common data-driven forecasting methods in a warehouse.

L2. Forecasting methods with relatively better performance than others in
case studies.

L3. The common variants of ABC storage policy and the variation of ABC
storage policy that may lead to minimal travel distance and picking time in
the picking process.

L4. Besides variants of policy, the other factors that may affect the efficacy of
an ABC storage.

L5. Simulation models suitable for the evaluation of ABC storage policies.

L6. Use cases or features that a simulation application can offer to help deci-
sion making in a warehouse.

L7. Communication medium of forecasting and simulation solutions in the
case studies with warehousing stakeholders.

L1 and L2 are connected to RQ1; L3 and L4 are connected to RQ2; L5 is connected
to RQ3. L6 and L7 are connected to RQ4.



1.3.3 Scope and Components

The components of the solution are shown in Figure 2. We assume that a Data
Tool is available and able to retrieve data, manipulate data, and apply algorithms
for forecasts. A Data Tool can be a development environment with Python or R
language which supports this kind of operations. We also built a simulation model
with which we can run experiments and evaluate different ABC storage policies. The
results of forecasts and storage evaluation are formatted and presented in various
graphs or charts through a visualisation tool to help decision support for warehousing
stakeholders.
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FI1GURE 2: Conceptual Design of the Solution

1.3.4 Forecasting Service

Synthetic data provided by the company is used to train and test the forecasting
methods: SARIMA, exponential smoothing, Light GBM, and XGBoost. The data
includes movement history of SKUs from 2020 to 2022, indicating the daily work-
load in this period. Data analysis includes graphs of daily workload, histogram, and
seasonality decomposition. The data pre-processing removed Sundays since there



is no movement on these days. The train set includes daily workload history up
until 30 days before the end of history; the test set is the last 30 days in the his-
tory. The forecasting service consists of the calculated workload forecasts and their
visualisation based on use cases.

1.3.5 Storage Simulator Service

The steps to build the Storage Simulator include building a conceptual model, defin-
ing KPIs, and designing experiments.

Conceptual Model for Simulation

We employed the conceptual model framework proposed in|[61] (see Figure 20) for the
simulation model, and used a mixture of Discrete Event and Agent-based approach.

KPIs

KPIs are defined for travelling distance, total picking time, for ABC storage evalua-
tion service. Worker utilisation, and total waiting time are defined for the resource
monitoring service.

Experiment Design

Two experiments were designed. (1) the evaluation of the ABC storage policy;
we constructed horizontal, low-level, diagonal, and random policies, then measured
travelling distance and picking time for each policy. (2) resource monitor; we mea-
sured the utilisation of the workers for the checking task in the picking process. We
also measured total waiting time of SKUs for the checking task. In addition, a chart
was drawn and configured in the simulation software to show congestion resulting
from waiting SKUs.

Verification and Validation

Our verification included extreme conditions, modularised testing, debugging, an-
imation, and graphic inspection. Validation is based on the framework provided
by North & Macal (2007) [53]. The following validations were performed: data
validation, process validation, face validation, theory validation, and requirements
validation.
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1.4 Structure of the Thesis

The thesis is structured with the following chapters.

Chapter 2 explains the approach of the literature search and answers the literature
questions from the materials consulted about picking demand forecasts, ABC stor-
age policy, simulation applications, simulation methods, and how these applications
benefit warehousing stakeholders.

Chapter 3 presents the workflow and the development of the forecasting service
by analysing data and applying algorithms in a Python development environment;
After comparing the performances of the algorithms, SARIMA forecasting method
is found to be the best and is selected for daily picking workload demand.

Chapter 4 presents the modelling and implementation of the Storage Simulator that
enables the evaluation of ABC storage policy variants and a simple resource monitor
in a hypothetical warehouse.

Chapter 5 illustrates the experiments conducted in the Storage Simulator to assess
total distance travelled and picking time in the variants of ABC storage policy, and
to assess the workers’ utilisation and waiting time during the picking process.

Chapter 6 discusses how stakeholders can benefit from the designed solution through
use cases, and discusses the evaluation of our visualisation by expert surveys.

Chapter 7 concludes the thesis by discussing each research questions, related works,
and contributions. Recommendations are also given for future work.

11



Chapter 2

Literature Review

This chapter explains the search strategy for the literature review and presents an
overview of topics related to research questions. The subjects include warehouse
management matters related to forecasts and storage, workload and product de-
mand forecasting, simulation methods, simulation applications in warehousing, ABC
storage policy, and mechanisms with which stakeholders interact with forecasts and
simulation applications for decision making.

2.1 Literature Search Strategy

To answer the research questions, we consulted academic papers, conference articles,
grey literature, books, and website articles. The academic papers were selected from
various sources including IEEE, Springer, ResearchGate, Elsevier and other journal
websites. Snowballing method is also used to find more relevant articles by reading
and selecting related articles from the reference list of the current article. General
search engines such as Bing and Google were also employed to help locate relevant
papers and articles. Grey literature is sourced from companies such as Anylogic and
DHL who are active in the supply chain domain.

12



Subjects Keywords used for Literature
Search

Aspects of Warehouse Management Warehouse operations, inventory man-
agement, warehouse layout, material
handling, picking process, human re-
sources, labour cost, labour utilisation,
KPI.

Demand forecast Workload demand forecast, product
demand forecast, inventory forecast,
warehouse workload forecast, sales
forecast, picking demand forecast

Simulation Methods Discrete event simulation, agent-based
modeling, hybrid simulation

ABC Storage Policy Class-based storage, ABC storage,
SKU classification, product classifica-
tion, storage policy, slotting policy

Simulation Applications in Warehousing Warehouse simulation, Digital Twin
simulation, warehouse process simula-
tion

TABLE 1: Subjects and Corresponding Keywords for Literature Search
2.2 Demand Forecasting

In this section we explain demand forecasting of workload and products. Product
demand forecast is not directly related to our design, it is reviewed for contextual
information on warehousing management.

2.2.1 Workload Demand Forecast

Daily workload in a warehouse can be approximated by the number of order lines as
it implicates the number of pickers needed for a given day|21]. Both statistical and
machine learning methods can be used to predict the workload demand. For exam-
ple, a study designed a composite forecasting method [21] to predict the workload
for zones in a real warehouse in Belgium. It achieved higher forecasting accuracy
than before, when the predictions were based on supervisors’ experience and judge-
ment. By employing statistical methods including exponential smoothing, SARIMA,
and ARIMAX, it reduced MASE error from 0.33 to 0.29. Additionally, the study
compared the top-down approach (which forecast all zones), and the bottom-up ap-
proach (which forecast individual zones) and found that the bottom-up approach
outperformed except for one zone which has the least activities. It was because of
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the strong fluctuating demand and lack of recurring weekly cycle in that zone. Pa-
per|[37] argues that a combination of statistical methods and empirical methods may
enhance the forecasting performance. It suggests using a linear model to include the
prediction from the statistical method and the prediction from managers to opti-
mise the forecasts based on the weighting of these two factors. Another study [7]
compares Prophet, ARIMA, SARIMA, and Light GBM methods. They were used to
predict picking volume of several warehousing sites and the performance of Prophet
was comparable to ARIMA and SARIMA. LightGBM notably showed improved
results in short-term horizon up to ten to fourteen days and then its accuracy be-
came almost the same as the other methods. The Light GBM model used features
such as upfront forecasts, open orders and open shipments. Another study found
that Generalised Linear Model was the best performing model compared to Deep
Learning, Random Forest, and Gradient Boost Trees (which is what Light GBM and
XGBoost based on) in predicting the workload in a Dutch supermarket [27] It used
shift, date specifics, service percentage and planned hours, and so on as coefficients
for the model.

When it comes to the impact of forecasts, a study argued that some bias for fore-
casting is desired. If the bias is related to labour and inventory costs, it can reduce
costs [41]. Under-forecasting is supreme if labour cost is an important consideration
and over-forecasting is desired if the main costs are delay panties for stock-outs [37].

2.2.2 Product Demand Forecast

Products are stored in the inventory of a warehouse. For some types of warehouses
such as spare parts warehouse or manufacturer’s warehouse, they usually try to keep
the optimise inventory level for each product to balance supply and demand. An
excessive inventory of a product means that there is oversupply and it occupies the
storage that could be otherwise used for other products. Conversely, if the inventory
of the product is low, there is a danger of losing revenue because it may run out
of products that could have been sold to customers. Therefore, each product must
have certain amount of storage level in order to meet demand [52] while it is also
monitored for oversupply [36]. For other types of warehouse such as third-party
warehouses, they generate revenue by storing products for customers. They try to
store as many as products as possible and expand inventory’s capacity when there
are more products coming in to meet the demand.

There are studies that used other machine learning methods for product demand
forecast. For example, A study [70] compared the performance of convolution neu-
ral network (CNN), long short term memory (LSTM), and artificial neural network
(ANN) and found CNN to be the highest performer for outbound product demand
with long term horizon. The downside is that a neural network is not easily un-
derstandable or explainable and the study used no exogenous features. Peak Range
Prediction was used in another study [13] to predict shipment demand of items in a
warehouse. It demonstrated that it performed better than ARIMA and Peak Auto
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Prediction; it also handles the issue of shifting demand. This issue occurs for ex-
ample, the peak demand occurring in 51st week in 2018 could also occur in 52nd
week in 2019. The authors provided structure and steps of applying the Peak Auto
Range algorithm. However, they did not mention the mathematical model behind
to compute peak range, so replication using this method is not possible until the
model is specified.

Product demand forecast is a complex subject since the demand may be influenced
by many factors such as customers’ behaviour, product life cycle, economic condi-
tions, and so on. We touched on this subject to give some contextual information
about warehousing management. It requires a more comprehensive review in future
study and is outside the scope of the forecasting service in this thesis.

2.2.3 Summary of Demand Forecast

To summarise demand forecasting, statistical methods and machine learning meth-
ods are applied in various case studies. A warehouse may use statistical meth-
ods such as ARIMA and exponential smoothing without external features, and a
more advanced warehouse may prefer more complex algorithms such as Prophet
and LightGBM with exogenous features such as incoming orders, date specifics,
previous predictions, and so on.

The review addresses L1: common data-driven forecasting methods in a warehouse.
The answer is: common demand forecasting methods may include ARIMA, exponen-
tial smoothing, gradient boosting tree algorithms such as Light GBM and XGBoost.
It also addresses L2: the forecasting methods showing relatively better performance
than others in the case studies. The answer is: using composite ARIMA and ex-
ponential smoothing method to make workload predictions showed the best per-
formance among statistical methods in one study. Using Light GBM showed better
results in short-term forecast than statistical methods and prophet in another study.

2.3 ABC Storage Policy

This section reviews ABC division methods, variations of ABC storage policy and
other factors that may affect the efficacy of an ABC storage.

2.3.1 ABC C(Classification Methods

ABC category of a product can be classified through various methods. For example,
if categorised by movement frequency, the products that are moved in or out the
most should be classified as A Class and stored in the storage area where it is

15



closest to the pick/delivery points (which would take pickers the least amount of
time and travelling distance to reach these products). In this way, picking efficiency
is improved. Class B products are located further than A products, and Class C
products are the furthest away from the pick/delivery points[16]. Other methods
to categorise ABC category include quantity [60], profit, COL (Cube-per-Order
Index)[30] [46], EIQ analysis [47|, and weight & volume of the product [12]|54].
Some argued that classifying ABC products in sub-categories offer more benefits:
as seen from Figure 3, each one division offers actionable insight in relation to the
business strategy. Similarly, another paper|30] used a recursive method to classify
products in sub-categories to reduce picking costs further compared to using just
three categories.

F a r !
< Minimize ordering costs + Usually high stock value
< Have a good relationship basad on few items
with your supplier + Focus on shorter lead times
+ Minimize product cost price « High risk of obsolescence
< Increase sale price « Spend time on forecasting
¢ Increase service level « Be careful when ordering
« Spend time on optimization Frequency + Be close to the customers
\” Count stock frequenthy ) ‘*-— )

BC

Value

BB
CB cC
P "
< Usually “cheap’ items « Check for obsolescence
« Usually low stock value « Usually relative low stock
< Don't spend too much time value per item
here « Usé simple ordering
“ Increase service level principles
« Ovdering: big lot sizes « Decrease service level
+ Usa Kanban or VMI + Periodic stock counts
LS F %, F

F1GURE 3: ABC Product Classification [60]

2.3.2 Variants of the ABC Storage Policy

A specific arrangement of A, B, C areas/zones on a storage is called a variant.
Common variants of the ABC storage policy include horizontal (across-aisle), ver-
tical (within-aisle), diagonal, and perimeter policies [12, 56|. These policies may
perform differently [71|, based on pick/delivery points. Figure 4 shows the visuali-
sation of some variants of ABC policies. Area A, B, and C are allocated differently
for each variation, but their common goal is to minimise the distance from Area A
(in pitch black) to the P/D point. Area B (in grey) is located further, followed by
Area C.
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FIGURE 4: Variations of ABC Policy [56]

2.3.3 Layout and ABC Zone Sizes

Layout design can affect the effectiveness of an ABC Policy. For example, an ABC
storage policy does not work well with a drive-in storage. A drive-in storage is that
in which the products that are stored the first will be retrieved the last. It makes it
difficult to retrieve a selected product in the middle or in the end of the storage lane.
Changing it to a rack storage allows products to be retrieved straightaway via the
access lane. Because of this reason, a study [74]| changed the layout of a warehouse
from a drive-in storage to a rack storage in order to apply an ABC storage policy.
Another layout factors are the storage lane depth, explained by the study [15]; it
argued that a warehouse should determine suitable lane depth and the size of ABC
zones to prevent overstocking which occurs when there are excessive items forced

17



to be stored in another zone. When it comes to the sizing of ABC zone, there are
heuristics with the 20/80 rule and the 20/30/50 rule. For instance, the 20/30/50 rule
assigns 20% zone space for A products, 30% for B, and 50% for C. These rules assign
an arbitrary sizes for A, B, and C zones. However, they are not the optimal size
allocation: a study [67] aimed to optimise ABC zone sizes using a simulator method
originated from paper [62] and then applied Machine Learning methods to determine
optimal zone sizes and showed highly improved picking efficiency (measured by
average route length for picking) compared to arbitrary sizing. The features used in
the Machine Learning model include: number of aisles. aisle length & width, routing
policy, storage policy variation, and so on. Among the algorithms, random forest
and multi-layer perception methods performed better than ordinary least square
and regression tree. Machine Learning methods are fast and fairly accurate, it
argued. It avoided the downside of having to keep running the simulator, which
requires huge amount of data to simulate the warehouse settings such as routing
policies, pick lists, and zone sizes. It was extremely slow (as it took 12,000 CPU
hours to simulate 16,000 instances). Applying Machine Learning method would save
significant amount of time and they could still achieve high accuracy in determining
optimal zone sizes.

2.3.4 Real-time Assignment of Products Based on ABC Stor-
age Policy

When it comes to assigning incoming products to specific slot /cell of a rack storage,
there are real-time methods available. In a warehouse with stable demand and
supply pattern, storage allocation of individual product can be done using a linear
programming method that can satisfy constraints such as storage space utilisation
and travelling distance|73]. If the demand pattern of products is erratic, a dynamic
assignment can be achieved through the method proposed by paper [57]. Another
method is affinity-based [76] [45] (which was shown to reduce travelling distance
significantly in a case study|[45]). Affinity method stores products that are frequently
ordered together close to each other. Combining ABC storage policy and real-
time assignment methods such as the affinity method would likely to improve the
effectiveness further as shown by a case study using simulation[45].

2.3.5 Summary of ABC Storage Policy

The section addresses L3: common variations of ABC policy are: diagonal, within-
aisle, across-aisle, and perimeter. L.4: in addition to the variation of policy, the other
factors that may affect the efficacy of an ABC storage include layout specification,
ABC zone sizes, and real-time allocation methods.
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2.4 Simulation Applications in Warehouse

This section reviews case studies of simulation applications that help improve deci-
sion making of warehouses.

Some of the simulation applications for warehousing are based on Digital Twin
(DT), In 2002, Michael Grieves formally introduced the Digital Twin concept aimed
at Product Lifecycle Management [23]. Grieves defined Digital twin as a virtual
representation of the real system [22]. The main characteristics of a Digital Twin is
its ability to exchange real-time data with the real counterpart with the possibility
to interact or control the real system [65][17][19]. The case studies with Digital
Twin applications utilise the real-time characteristics of Digital Twin for improved
decision making.

The research in [39] outlines an architecture (shown in Figure5) for a warehouse
Digital Twin that focuses on simulation. It divides types decision support services
into three categories for a Digital Twin. This architecture is similar to our model
depicted in Figure 2 with decision support services. The services from the Figure
5 is based on a DT while our model is based on a data warehouse. With the DT
architecture, a DT was designed and tested for a warehouse to support decisions on
the allocation of employees during shifts in different areas and it showed the benefit
of using this DT is that it enabled inexperienced planners to plan and learn more
effectively in order to reduce total man-hours without orders being delayed.

Decision support Layouting Programm planning Fire fighting
services : .
Resources and L .
technology ABC-Optimization . Dyn. resource allocation
Process variants shift planning Dyn. order shifting

Prediction and evaluation via simulation

D T X N N

Digital Twin

Real system

FIGURE 5: Application Architecture of a Digital Twin in Warehousing|39]

A DT was built for a warehouse which handles 10,000 to 20,000 orders per day [35].
The aim of the implementation is to assign an optimal number of workers to each
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zone in an automated goods-to-person setting. It is done by forecasting the number
of orders for each zone from the simulation tool. The tool then prescribes the picking
time and number of workers needed for the next day. Users can decide whether to
take the advice from the tool. The author noted that the order picking process is
complex since it is subject to individual decisions by human actors. Because of the
complexity, deciding on the level of detail that should be modelled in the simulation
environment of a DT remains a challenge. These factors affect the accuracy of the
model and thus its performance. The next step to improve the model is to estimate
the quality of the decision making support with the use of cost functions, which are
used in a feedback loop to tune the algorithm.

In an automated storage facility, a DT prototype [44| was designed for optimising the
packing and storage process. 3D models of the packing station and the storage are
made in the open source engine called Unity3D. The DT retrieves data from sources
including sensors through USB, Ethernet, and serial port connections, incoming and
outgoing goods, and so forth. It optimises the packing, storing, and picking processes
by calculating the best strategy for packing and put-away, and instruct the physical
system to perform them. The main limitation of the proposed DT framework is
that it does not examine the impact of random or unforeseen physical disruptions
on the physical systems. It is therefore essential to predict and handle bottlenecks
and deadlocks in the future. This is an example of how simulation can optimise the
real-time operations in a warehouse. Users can feed in specific workload information
into the model and it automatically instructs the system to perform the work with
optimised handling processes.

A study [20] used a simulation to assign an optimal number of workers to different
areas of warehouses for different types of works. Every day there are thirty one
workers, each with ten possible skills. The skills are the constraint for the system
because not everyone is suited for a given task. Gamma distribution was used to
model the time consumed for each task. By using a combination of the O2DES
(object-oriented discrete event simulation) framework and a random neighborhood
search method, the model determined the best number of workers for each task
and achieved significant improvement inbound and outbound service productivity.
However, the study did not model any physical aspects of the warehouse.

Another study[42] presented a data-driven discrete-event simulation modeling ap-
proach to serve as an analysis tool for determining the appropriate mix of bulk and
rack storage locations to utilize warehouse space effectively. The model evaluates
system configurations including the number of racks and storage locations, the num-
ber of bulk lanes and lane depth, etc. This approach should help design a suitable
layout for a warehouse.

Table 2 summarises the simulation applications reviewed in warehousing. In addi-
tion to simulation applications for storage policy, we found several applications help
improve assignment (who to what problem) and allocation (who and when problem)
of workers in warehousing processes; this is one of the reasons we decided to imple-
ment a resource monitor function for workers in our Storage Simulator to measure
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the impact of scenarios where assignments and allocation of workers are different.

Decision Factors References

Worker Assignment and Allocation [20, 35, 39, 80]

Process Optimisation [44] (automated workload distribution)
Layout Optimisation [42]

Storage Policy [L1, 15, 30, 45, 46, 50, 62, 73, 75, 70]

TABLE 2: Reviewed Simulation Applications in Warehousing

This section addressed L6: Use cases or features that a simulation application can
offer to help decision making in a warehouse. It is mainly the assignment and
allocation of workers. Few studies presented use cases for process optimisation or
layout optimisation.

2.5 Configuration of a Warehouse in a Simulation
Model

When modelling a warehouse for simulation, there are a number of configurations to
be considered. They are divided into Physical Assets, Picking & Put-away Processes,
and Human Resources.

2.5.1 Physical Assets

Physical assets include storage, layout and equipment selection. Rack storage and
drive-in storage are the two of the common types of a storage system. A rack
storage (see Figure6) allows pallets to be accessed from the aisle and a drive-in
storage allows a forklift to drive directly into the lane of stacked rows. It is a first-
in, last-out method of storage (see Figure7) with advantage of utilising the space
efficiently by eliminating picking aisles. A limitation is that each bay is usually
dedicated to a single product type for picking efficiency.
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FIGURE 7: A Drive-in Storage System|[51]

The layout specifies the placement of the assets and the physical dimensions of the
physical assets. A good design can improve the efficiency of warehouse processes
and maximise the value of the space[34]. There are traditional layouts [36][24]and
new Flying-V layouts|34|. They will affect the routing choices of the workers. This
is usually done during design phase of a warehouse. The layout should be built or
modified to meet the type of operations, constraints and efficiencies of the warehouse.
The dimensions of the zones, rack and aisle [24] should be suitable for operators,
machines, and designated products. The appropriate zoning of the space should also
ensure the smooth transition of products during each stage of handling.

Equipment selection [36] depends on the size of the warehouse, volume of products,
types of products, etc. A warehouse that must handle tens of thousands of products
every day, for example, would be better off with automated storage system. For
a small and medium-sized warehouse with low volume, manual storage by labour
is enough. In e-commerce warehouses, automated guided vehicles and even drones
may be chosen to transport goods.
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2.5.2 Picking and Put-away Processes

Put-away is the process of placing the received goods into storage locations. Some-
times it is equivalent to replenishment process where products are restocked. Picking
is the process of retrieving the goods and preparing them for dispatch. Common
picking methods include zone picking (divided into sequential and parallel), wave
picking, and batch picking, etc. [36][24][3]. Picking is time consuming and can ac-
count for up to 60% of all warehouse time of labour activities and cost[49|[31]. The
efficiency of picking depends on the size of the warehouse, the picking system, the
storage policy, the layout, and the routing strategies [10]. There are many routing
methods. Basic routing methods such as traversal, midpoint, return, and combined
policies are specified by a paper|[63]. Most routing optimisation are based on Trav-
elling Sales Man (TSP) problem and heuristics [36]. Route determination can be
done by using algorithms to determine optimal routes for workers in the picking or
put-away process.

2.5.3 Human Resources

The costs associated with labour can amount to about 80% of total expenses in
warehouses [60]. Therefore, labour management should be prioritised for optimisa-
tion in warehousing. The description below highlights the main concerns of labour
management.

Labour scheduling and assignment On the basis of incoming and outgoing or-
ders, a suitable number of workers must be assigned to fulfil the total demand.
In warehouses with dedicated zones, the number of workers for each zone
should also be considered|39][35].

Labour performance measurement These are KPI metrics such as pick accu-
racy, processing time of receiving, storing, picking, and shipping, costs, and
units/cases per man hour. [60][86] [58| They are often used for bench-marking
to identify inefficient parts of material handling processes.

Balance utilisation and cost Normally high utilisation of workers in picking and
put-away process is desired; this implies that workers are actively doing tasks,
but the throughput rate or cycle time [40] could be negatively affected since
the queue could increase in size and possibly create congestion or bottleneck.

2.6 Simulation Methods for Storage Policy

This section discusses the simulation methods for storage policies.
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Discrete-Event Simulation DES models the operation of a system as a sequence
of events in time. FEach event occurs at an instant in time and triggers activities
or processes in the simulated system|79]. A DES model is a system of queues
and processes|8|. In a warehouse scenario, the arrival of an order is a discrete
event that can be modelled by the rate of arrival per hour, by Poisson or
gamma distribution, by an arrival schedule, etc. The system responds to each
of these events by, for instance, triggering a process flow.

Agent-Based Simulation ABS models individual agents and their interactions
with each other and their environment. ABS can provide a detailed, bottom-
up perspective on the operation by modelling the actions and interactions of
individual agents in the warehouse environment. An ABS model contains a
simulated environment filled with autonomous entities [8].

Using an ABS approach, the following agents can be defined in a warehouse simu-
lation.

@® Workers: Warehouse workers are responsible for tasks such as picking, packing,
and storing. Their efficiencies can be affected by their skill level and level of
fatigue.

@ Products: Although they are passive entities, products can be assigned char-
acteristics such as size, weight, fragility, location where it is stored, customer
owning them, and the order assigned to them.

@ Vehicles: Forklifts, Automated Guided Vehicles (AGVs), or drones in ware-
houses can be modeled as agents with their own navigation logic and loading
capacities.

@ Storage Locations: Locations such as shelves or bins can be considered agents,
with properties such as capacity, accessibility, or climate conditions.

A study [80] designed an ABS model similar to the above with autonomous vehicle
and workers agents in an e-commerce warehouse. It is an ABS model with DES
elements: the robots and workers pick orders generated by the system. After picking
tasks are finished, the system checks the orders and summarises data. Experiments
were conducted to measure throughput and costs. It found that costs could be
reduced by having human operators and robots work together and assigning them
to certain areas. It also found that routing choices can impact costs and that Largest
Gap method performs better than with the S shape and Return method.

Hybrid simulation with DES and ABS addresses the shortcomings of DES, which
lacks the ability to model the behaviour, properties, and states of an individual
entity. An application is demonstrated by a case study in a radiology center [1] using
AnyLogic software that models the processes and behaviours for patients, nurses,
receptionists, doctors, and X-ray technicians. After running the model for a week,
the length of stay for patients from the model was in line with the actual value from
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the real world. This model can be helpful to monitor resource utilisation and predict
the length of stay for each patient given the arrival patterns of patients. Another
paper|55| proposed a hybrid DES and ABS modelling approach to simulate the
picking activity of a warehouse using FlexSim software. With the schedule generator
and schedule control agents, picking tasks can be accepted or refused by the forklift
agents based on their own logic. A state-of-art review |8]was conducted in 2018 and
showed that hybrid simulation was a rapid developing field with many promising
new opportunities; it reviewed 69 papers about hybrid simulation applications and
there were 13 papers using a combination of ABS and DES. It also mentioned
that AnyLogic was a promising tool for future hybrid simulation development, but
cautioned that it has limitations of being a jack-of-all-trade software because it
requires Java programming skills to implement a hybrid model.

A hybrid DES and ABS model would allow for both systematic view and bottom-
up view of a warehouse. In a warehouse, resources (such as workers and forklifts),
storage slot, and products could be modelled as agents with their own properties,
states, and actions based on events, allowing us to track and manage them. When
considering the travel distance of a forklift, for example, it can be measured regularly
at a short interval; the total distance can be obtained by summing up the distances
travelled by all forklifts.

This section addressed L5: the simulation methods that are suitable for a storage
simulator. We look at the strength and weakness of DES and ABS simulation
methods and review studies using these methods. A combination of DES and ABS
would allow for a more accurate measure of the travel distance and picking time
during the picking process.

2.7 Communication of Solutions to Warehousing Stake-
holders

We investigated how forecasting and simulation solutions from case studies were
communicated with or used by stakeholders in warehouse, and we found two main
types of interfaces: (1) web-based or custom software applications. For example, a
web-based application [39] was designed for dispatchers in a warehouse to view sce-
narios and help allocate employees’ shifts. (2) Visualisation tools that has built-in
features of data retrieval, drag-and-drop charts, or even data manipulation. Power
BI and Tableau are examples: they allow for faster development without having
to build a custom software or web application from ground up. Other studies pre-
sented results & recommendation but did not mention how the solutions are used
by stakeholders. Table 3 summarises the findings.
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Category References

Web-based or custom software [20, 35, 39|

Using a Visualisation Tool [27]

Simply Presenting Results & Recom- | [7, 11, 15, 30, 46, 50, 73, 76, 80|
mendation

TABLE 3: Communication with Warehousing Stakeholders

This section addressed L7: the communication methods of forecasting and simula-
tion solutions in case studies with warehousing stakeholders. They include custom
software, web applications, using visualisation tools such as Power BI, or presenting
results & recommendations straightaway.
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Chapter 3

Forecasting Service

This chapter describes the forecasting service for the daily picking demand. First,
the workflow enabling the service is explained. Second, an analysis of the demand
data is carried out. Third, the algorithms to be applied are introduced and discussed.
Fourth, error metrics measuring the performance of the forecasting methods are
explained along with the objective for our forecast error. Fifth, the process of
applying algorithms for forecast is explained. Finally, the results are described. The
objective, as will be shown in Section 3.4, is to achieve prediction error measured
by MAPE to be less than 15% for an algorithm to be acceptable. Also, the MASE
error should be less than 0.8 to be acceptable.

3.1 Workflow

Figure 8 outlines the workflow, summarising which data is retrieved and processed
for the forecasting service. As seen from figure, the process of the data flow begins
with data retrieval from the data warehouse with synthetic data provided by the
company. It is done through a Python develop environment through the Spyder
software. After retrieving data, it is cleaned and transformed to reflect the picking
demand. The transformed data set is then used to train the forecasting algorithms;
these details can be found in Section 3.2. After comparing performance of the
algorithms, the most suitable one according to the objective is used to predict daily
picking demand; the details are found in Section 3.5. The forecasts are visualised in
Power BIL.
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FiGURE 8: Workflow for Forecasting Service

3.2 Data Analysis

As Table 4 shows, the original data contains the movement history of pallets starting
from January 2020 and ending in June 2022 in a hypothetical warehouse that deals
with bulk items. The products are stored in bulk on pallets (as Figure 9 shows) and
the picking volume is treated as the number of pallets that are sent out for orders.
To extract the outgoing workload demand, the number of pallets being moved out
each day are summed up and aggregated for each day, as Figure 5 shows. This
represents the daily picking volume each day in the warehouse. The aggregated
data upon visual inspection, as Figure 10 shows, suggests a slight volume decrease
in 2021 compared to the previous year. On any given day with picking activities,
there were always three pickers.
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Movement | Movement | Code Employee | Pallet Product
Date ID ID ID ID
2020-04- 17685 I 5 n/a 10007
11T00:00:00
2020-04- 17881 I 5 n/a 10010
11T00:00:00
2020-04- 17931 I 5 n/a 10003
11T00:00:00
2020-04- 144044 O 6 10482 10010
11T00:00:00
2020-04- 144134 O 6 10425 10003
11T00:00:00

TABLE 4: Table of The Pallet Movement History

FIGURE 9: Bulk Pallet
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650 4

BO0

550

500 4

Product Demand

450 4

400 1

350 4

Apr ul oct Apr Jul Oct

Jan Jan
2020 2021

FIGURE 10: Weekly Demand Over Time

When we look at the daily picking volume on weekly basis, we found that in 2020
Tuesdays, Wednesdays, Thursdays, and Fridays follow a similar distribution pattern.
On Mondays, there were less than 10 pallets being picked, as Figure 11 shows.
Furthermore, in 2021 there were no more picking volume on Mondays, as Table 5
and Figure 12 show.

Distribution of Product Demand for Each Day of the Week (Excluding Demand < 10}

= Monday
14 Tuesday
Wednesday
Thursday
e Friday
2 mm Ssturday
Sunday

Frequency

o T T T T T
0 20 40 60 80

Product Demand

F1GURE 11: Weekly Demand Distribution
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MovementDate | Count
2021-08-31 109
2021-09-01 111
2021-09-02 111
2021-09-03 130
2021-09-04 134
2021-09-05 0
2021-09-06 0
2021-09-07 97
2021-09-08 128
2021-09-09 102
2021-09-10 90
2021-09-11 104
2021-09-12 0
2021-09-13 0

TABLE 5: Aggregated Picking Volume

A seasonal decompose is performed, which is a method to help understand a time
series|9], as Figurel2 shows. A seasonal decompose is a useful method to break a
time series into three components: trend, seasonal, and residual. The trend is the
increasing or decreasing values in the series. The seasonality is the repeating short-
term cycle in the series. The residuals (a.k.a the noise) are the random variations
in the series. As seen from the decomposition, there is a seasonal pattern with some
random variation of the data across the history.
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FIGURE 12: Seasonal Decompose

To clean the data, Sundays and Mondays are removed since there is no picking
volume on these two days from 2021. With the cleaned data, we applied four
forecasting methods as explained in the next section.

3.3 Forecasting Algorithms

In this section, we discuss the forecast algorithms to be applied to the demand
data set. From the literature review we found three algorithms showing excep-
tional performance from studies |7, 21|: triple exponential smoothing, SARIMA,
and LightGBM; so, they are going to be trained and tested on the data set. In
addition, we used simple moving averages as the baseline algorithm to be compared
to those three methods. The reason is to check whether those three algorithms could
outperform the baseline model.

3.3.1 Simple Moving Averages

We used simple 3-day, 6-day, 10-day, 20-day moving average as a baseline models.
The Simple Moving Average (SMA) is calculated by adding up a set of data points
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within a specific window size N, and then dividing the sum by the window size. The

formula is as follows: N

1
Forecast; 1 = N Z:(; X,

Where N = 3, 6, 10, 20 respectively. The SMA is a simple and straightforward
method to make forecast based on the moving averages in the past.

3.3.2 Triple Exponential Smoothing

Triple Exponential Smoothing (also called Holt-Winter method) can account for
trend and seasonality. It captures three components in time series data: level,

trend, and seasonality. There are two variations: Additive model and multiplicative
model |26, 28, 81].

Additive method

Uent = Le + Wby + Siph—m@r+1)
U=y — St—m) + (1 —a)(li—y + bi—q)
by =B (e — lio1) + (1 = B7)br—s
sp =Yy — L1 — b—1) + (1 — )81,

Multiplicative method

Jernlt = (b + hbe) St h—m(kt1)
tyt + (1= ) (lr + brs)
by = B"(ly — b—1) + (1 — B")bi1

Yt
=y—" 1 (1 - —m
5t " (gt—l + bt—l) ( /V)St

gt:Oé

Where [18]:

Seasonal Component Adjustment: The term k£ is derived from the formula = 1)

where h represents the forecast horizon, and m represents the number of sea—
sons per period. The expression s;i,_mk+1) ensures that the seasonal com-
ponent is always derived from the corresponding season in the previous cycle,
thus maintaining seasonal consistency in the forecasts.

I

Level Component (I;): The level component, denoted by [y, is essentially a weighted

average. The weight, o, is applied to the seasonally adjusted observation while
the remainder of the weight, 1 — «, is applied to the non-seasonal forecast from
the previous period. This process helps adjust the level component based on
the most recent observation while considering past forecasting information.
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Trend Component(;): is the smoothing parameter for the trend, which deter-
mines how quickly the trend component responds to changes in the underlying
trend of the data. The value of 3 lies between 0 and 1; a higher value of trend
allows the trend component to adapt more quickly to changes in the trend,
while a lower value makes the adaptation slower.

Seasonal Component (s;): The seasonal component, s;, is computed as a weighted
average with a weight of v. The weight is applied between the current seasonal
index and the seasonal index of the same season from the previous cycle. This
mechanism helps update the seasonal component based on the latest seasonal
patterns while considering past seasonal information.

In the additive method, the forecasted value is the sum of the level, trend, and
seasonal components. The equations adjust the level, trend and seasonal components
based on the observed data and previous estimates.

In the multiplicative method, the forecasted value is the product of the level and
trend components, and the seasonal component. Similar to the additive method, the
equations adjust the level, trend, and seasonal components based on the observed
data and previous estimates, but with the seasonal component being a ratio rather
than a difference.

Table 6 explains the two models.

Component Additive Multiplicative

Trend Trend is linear. Trend is exponential.
Difference between peri- | Increases or decreases at
ods is roughly constant. | an increasing rate. [69]

Seasonality Seasonal variations are | Seasonal variations
roughly constant. change proportionally.
Magnitude of seasonality | Magnitude of seasonality
doesn’t change. [69, 83| | changes with series level.

[4, 83|

TABLE 6: Comparison of Additive and Multiplicative Trend and Seasonality
in Holt-Winters Method

3.3.3 SARIMA

SARIMA is an extension of ARIMA that includes seasonal parameters. So, we used
it to account for the seasonality. The ARIMA model is given as:

ARIMA(p. d, q)
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where:

p : Order of the autoregressive (AR) term.
d : Degree of differencing.
q : Order of the moving average (MA) term.

Autoregressive Component (p)

The AR component assumes that the current value of the series is a linear combi-
nation of its previous values.

Yt = P1Yp—1 + GoYr—2 + -+ + OpUr—p + €4

where ¢1, ¢, ... are AR coefficients.

Moving Average Component (q)

The MA component represents the influence of the previous white noise error terms
on the current value.

Yp = Ohep1 +baes o+ -+ 050 g + &

where 61,05, ... are MA coeflicients.

Integrated Component (d)

This component makes the series stationary by subtracting. Stationary means the
mean, variance, and auto-covariance of the series are constant. It is done by sub-
tracting the current observation by its previous value. The series is subtracted d
times. For example, the equation for a differenced series Y; at lag-1 is:

Yi=X, - Xi
ARIMA Prediction

Assuming the series is differnced and stationary, the prediction becomes a combina-
tion of Auto Regressive and Moving Average components |2, 6]:

Y = O+ Q1Ys—1 + QoY + -+ + GpYi—p + 01641 + Oagpo + -+ Opei—q + &4

Where

1S a constant.
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SARIMA

The SARIMA model is given as:
SARIMA(p.d, q) X (P, D, Q)
where:

: Order of the autoregressive (AR) term.

: Degree of differencing.

: Order of the moving average (MA) term.

: Order of the seasonal autoregressive (SAR) term.
: Degree of seasonal differencing.

: Order of the seasonal moving average (SMA) term.

SO U ve ax

: Number of periods per season.

P, D, QQ, and m are introduced. These are seasonal components.

Seasonal Components

Seasonal AR and MA components (P and Q) account for seasonality, with lags (m)
based on the season (for example, m = 12 for monthly data with yearly seasonality).
Integral component means D times for seasonal differencing. The Seasonal AR
component (P) is mathematically represented as follows:

Y = P14 + Polp—om + -+ + Pryi_pm

Seasonal Moving Average Component (QQ) The Seasonal MA component is mathe-
matically represented as follows:

Y;f = @15t—m + @25t—2m +- @QEt—Qm

SARIMA prediction

The SARIMA model’s prediction, which extends ARIMA by including seasonal com-
ponents, is as follows:

Y=+ QY1+ P22+ -+ Pplip
+ 0161+ Osp o+ -+ 046
+ P1Yi—m + Poyrom + -+ PrYr_Pm
+ O161—m + Osct_2m + - + OEt_gm
+ &
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3.3.4 LightGBM

Light GBM is based on gradient boost trees |78]. It is an ensemble model, which
means it builds multiple decision trees and aggregates their outputs for better pre-
diction accuracy. Specifically, Light GBM constructs an ensemble of decision trees for
tasks like classification and regression prediction. The common and most important
parameters [5] are summarised in Table 29 in the appendix.

Two methods are available in Light GBM to determine the importance of feature:
gain and split [66].

Gain Each feature has its importance level. Gain is the relative contribution of a
feature in a particular tree. A higher gain means the feature contributes more
to making better predictions.

Split Split for Light GBM calculates the relative count of times a feature occurs in
all splits of the model’s trees. A downside to this method is that it is subject
to more bias when there are many categorical features.

3.4 Error Metrics and the Objective

Error metrics measure the accuracy of the predictions by comparing them with and
the actual values. For example, A higher value of Root-Mean-Square Error means
that the prediction is less accurate. In this section five error metrics are explained.
Table 7 shows the methods of measurement with description of each method. We
explained why we chose RMSE, MAPE, and MASE as the metrics for our evaluation
of forecasting methods.
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Error Measure

Formula

Description

Mean Absolute FError
(MAE)

3 i — il

MAE measures the av-
erage magnitude of the
errors between the pre-
dicted values and the ac-
tual values.

Mean Squared Error
(MSE)

MSE squares the errors
before averaging them,
placing more weight on
larger errors.

Root Mean Squared FEr-
ror (RMSE)

RMSE is the square root
of the mean squared er-
rors. It has the same unit
as the output, which can
be useful for interpreta-
tion.

Mean Absolute Scaled
Error (MASE)

T
T D ieo [Yi—Yi-1]

Mean Absolute Percent- %Z?Zl % MAPE expresses errors
age Error (MAPE) as a percentage; it is the
error percentage of the
prediction compared to
the actual values.
% ?:1 [y —3s|

A MASE value less than
1 indicates that the fore-
cast is better than a naive
forecast, while a value
greater than 1 indicates
the forecast is worse.

TABLE 7: Summary of common error metrics used

chine learning.

where:

y;: Actual value

y;: Predicted value

n: Total number of observations

1: Index of each observation

in forecasting with ma-

As described above, MAE, MSE, RMSE, and MAPE are straightforward metrics.
MASE needs more explanation: its numerator calculates the Mean Absolute Error
(MAE) between the actual values y; and the predicted values g; over n observations.
The denominator is a naive baseline model that computes the mean absolute error of
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a naive forecast which simply takes the previous observed value y;_1 as the forecast
for the current value y;. This ratio compares the error of the predictions to the error
of a naive baseline model. Here are the implications of the MASE value:

e MASE < 1: The model has lower error compared to the naive model. This
is generally indicative of a good model.

e MASE = 1: The model’s error is equal to that of the naive model.

e MASE > 1: The model has higher error compared to the naive model. This
is generally indicative of a poor model.

MAE and RMSE are in the original units of the data, making them more inter-
pretable than MSE. MAPE and MASE provide percentage-based and scale-independent
error metrics, respectively, offering a relative measure of accuracy.

Judging from the characteristics of the error metrics. We chose MAPE, MASE, and
RMSE to measure the performance of the algorithms. The objective is to achieve
MAPE error of less than 15% for an algorithm to be acceptable. MASE should
be less than 0.8 to be acceptable. MAPE and RMSE are used to measure the
performance among the algorithms.

3.5 Forecast and Observation

In this section, we describe the application of the forecasting algorithms including
Simple Moving Averages, Triple Exponential Smoothing, SARIMA, and Light GBM.
The prediction and test data are compared to each other with graphs and with the
error metrics: RMSE, MAPE, and MASE. The training data is the demand data
from the start date of the data set up until 30 days before the end date. The test
set is the last 30 days of the data set. This applies to all algorithms.

3.5.1 Simple Moving Averages

We used simple 3-day, 6-day, 10-day, 20-day moving average as a baseline models.
Figure 13 shows the comparison of test data and predicted values.
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FIGURE 13: Test Set vs. Simple Moving Average (SMA) Forecast

2022.05-22

Date

2022-06-01

2022-06-08

SMA | MAPE (%) | RMSE | MASE
SMA_3 11.53 14.81 | 0.6689
SMA_6 11.45 14.13 | 0.6658
SMA_10 11.81 14.46 | 0.6867
SMA_ 20 11.86 13.95 | 0.6817

TABLE 8: Error metrics for different Simple Moving Averages (SMA)

All moving average methods yielded low MAPE, lower than 15% and MASE less
than 0.8. From graphical inspection only the 3-day moving average roughly captured
the peak and trough of the demand. The other moving average methods reflect the
overall trend, but did not capture well the fluctuations like 3-day moving -average
does. The result suggests that the 3-day SMA might be suitable to estimate the

demand in the short term for this data set.

3.5.2 Exponential Smoothing

Grid search |72] is a practical method to find optimal parameters for Exponential
Smoothing methods. Two grid searches as described below were conducted to find

optimal parameters that minimises RMSE.

@® Grid Search for the Linear and Seasonal Model:

e Different trends (‘additive’ or ‘multiplicative) are tested using the ‘Ex-

ponentialSmoothing’ model.
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e For each trend, the model is trained on the training data, and the RMSE
between the forecasted and actual test data is computed.

e An iteration within the trend configuration is carried out with seasonal
configurations.

e The ‘seasonal periods‘ parameter is fixed at 5 (since Mondays and Sun-
days are removed).

e If a lower RMSE is found, the ‘best holt rmse‘ and ‘best holt params
are updated.

@ Parameter Optimization using a Coarser Grid: A coarser grid implies
a less granular, broader step size between the values in the grid. It covers a
wider range of values but with less precision. The search setting is as follows:
Trend and Seasonality: additive trend, additive seasonality
Seasonal period: 5 days (weekly seasonality with Sundays and Mondays
removed).

Searched parameters: «,(3,7, each ranges from 0.01 to 0.5. 10 sample values
equally spaced between this range are used, specifically: 0.01, 0.065, 0.12,
0.175, 0.23, 0.285, 0.34, 0.395, 0.45, 0.5.

e This grid search is performed to optimize the smoothing parameters:
‘alpha‘, ‘beta’, and ‘gamma’.

e The Root Mean Squared Error (RMSE) is used as the evaluation metric.

e Lower RMSE values update the ‘best rmse‘, ‘best alpha‘, ‘best beta’,
and ‘best gamma' variables.

The search yield the following parameters that minimizes RMSE error:

e « for level smoothing: 0.01
e [ for trend smoothing: 0.01

e v for seasonal smoothing: 0.28

The search was resource and time-consuming for a regular computer. We attempted
to increase the number of sample values from 10 to 15, the search would not complete
for half an hour.
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FIGURE 14: Test Set vs. Triple Exponential Smoothing Forecast

Metric Test Set

MAPE 13.4%
MASE  0.7823
RMSE 16.33

TABLE 9: Triple Exponential Smoothing Forecasting Errors on the Test Set

Judging from MAPE and RMSE, triple exponential smoothing performed worse than
moving average methods, but from the graphic review it appears to be capturing

the fluctuations in the last one-third of the test set.

3.5.3 SARIMA

To estimate the optimal parameters of p, d, q, P, D, Q parameters, a grid search is
a practical approach [9, 68]. The AutoARIMA library in Python was imported and

applied to search the parameters. AIC (Akaike information criterion) was used as
error metrics by AutoARIMA by default. The formula for AIC is given by:

AIC = 2k — 21n(L)

where k is the number of estimated parameters in the model and L is the likelihood,
and In(L) is the maximum log-likelihood estimate for the model [38, 59]. Compared
to RMSE, AIC seeks a balance between the fit of the model and its complexity. It
penalizes models with more parameters, aiming to balance complexity and accu-

racy|32].

The search setting is as follows:
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seasonal: This parameter is set to True to indicate that the data has a
seasonal component.

m: Specifies the seasonal period; in this case, it is set to 5, indicating a seasonal
cycle every 5 observations (since Sundays and Mondays are excluded).

trace: Set to True, this parameter enables the output of convergence infor-
mation during the fit.

error action: The value ’ignore’ tells the function to ignore errors and
continue the search.

suppress _warnings: This parameter is set as True, suppressing warnings
generated during the fit process.

step-wise: This parameter is set to True, enabling a step-wise search over
the model parameters which can significantly speed up the search process by
evaluating only a subset of models.

A SARIMA configuration of (5,1,1), (1,0,1,6) results in the lowest AIC, with the

following results in Table 10:
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Metric Test Set
MAPE 12.51%
MASE 0.728
RMSE 15.37

TABLE 10: SARIMA Forecasting Errors for Training and Test Sets

Test Data and Forecast (SARIMA)

—— Test Data
—- Forecast (SARIMA}

2022-05-08 2022-05-15 2022-05-22 2022-06-01 2022-06-08 2022-06-15

Date

FIGURE 15: Test Set vs. SARIMA Forecast

SARIMA model appears to capture the peaks and troughs in the last one-third of
the test set, and it has lower MAPE and RMSE than Triple Exponential Smoothing.
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3.5.4 LightGBM

LightGBM requires feature engineering for the data to be trained. We derived
the following time-related features [7] [27] from the time series. The features are
explained and shown in Table 11.

Feature Description

year The year of the movement date

month The month of the movement date

week The week number of the movement date

day The day of the month of the movement
date

day of week The day of the week of the movement
date (0=Monday, 6=Sunday)

holiday Binary feature indicating if it’s a holi-
day in the Netherlands (1 for holiday, 0
otherwise)

lag 1 Value of the demand from 1 day prior

lag 3 Value of the demand from 3 days prior

lag 5 Value of the demand from 5 days prior

lag 6 Value of the demand from 6 days prior

rolling mean 3

Rolling average of the demand over the
past 3 days

rolling mean 5

Rolling average of the demand over the
past 5 days

rolling mean 6

Rolling average of the demand over the
past 6 days

rolling mean 10

Rolling average of the demand over the
past 10 days

rolling mean 15

Rolling average of the demand over the
past 15 days

rolling mean 20

Rolling average of the demand over the
past 20 days

rolling mean 60

Rolling average of the demand over the
past 60 days

TABLE 11: Features Used in The Light GBM Model

To train the model, we chose a range of parameters |7] to form a grid, which is
used for a grid search to find the best performing configuration. With the grid
parameters shown in Table 12, training and testing were done using loops to find
the configuration that results in the least RMSE error. The best configuration with
the least RMSE error is found to be the parameters indicated in Table 13.

By using the best configuration, forecast was applied to the test set, and the results
are shown in Figure 16. Like the other algorithms, predictions of Light GBM in the
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Parameter Values
objective regression
boosting ghdt

metric rmse
learning rate 0.10

num _ leaves 11, 21, 31, 41

max__depth

6,8, 10, 12, 14, 16

min data_in leaf

2,4, 5, 10, 15, 20

bagging fraction 0.9
bagging freq 10
early stopping rounds 50
verbose -1
seed 1

TABLE 12: Grid Parameters
Parameter Value
bagging fraction 0.9
bagging freq 10
boosting ghdt
early stopping rounds 50
learning rate 0.1
max_ depth 16
metric rmse
min data_in leaf 4
num_ leaves 41
objective regression
seed 1
verbose -1

TABLE 13: The Best Configuration found for the Light GBM Model

short-term (the first 7 days of the test set) did not line up with the actual values.
However, it did capture the direction of the fluctuation in the last one-third of the

test set.
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FIGURE 16: Predictions from Light GBM

The error metrics of the forecast from the Light GBM model are shown in Table 14.

Metric Test Set

MAPE  10.46%
MASE 0.69
RMSE 13.82

TABLE 14: Light GBM Forecasting Errors for Training and Test Sets

The features’ importance can be obtained by calling a built-in function from the
LightGBM library: Figures 17 18 show the importance of features based on splits
and gains respectively. The top 3 features based on split importance, are lag 1,
lag 3, and day; Split importance measures how frequently a feature is used to split
data across all trees. A feature with higher split importance is used more often in
making binary splits in trees[48]. Based on gain importance, the most important
parameters are "day of week", lag 1, and lag 3. The gain is a measure of the
improvement in accuracy from a feature in its branches [14]. In other words, it’s a
sum of the decreases in loss function brought by that feature.
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3.6 Summary of Forecasting Service

We noted that each day there were always three workers for picking. So, we could
not establish a correlation between daily number of pallets to be picked and how
many workers are needed on that day. We proceeded to predicting the daily picking
demand measured by number of pallets being picked. Table 15 lists the performances
of the algorithms with the test set. MAPE from all algorithms achieved lower

Algorithm Metric MAPE (%) RMSE MASE
Light GBM 10.46 13.82 0.69

SARIMA 12.51 15.37 0.728

Triple Exponential Smoothing 13.4 16.33 0.7823
SMA 3 11.53 14.81 0.6689
SMA 6 11.45 14.13  0.6658
SMA 10 11.81 14.46  0.6867
SMA 20 11.86 13.95  0.6817

TABLE 15: Forecasting Errors of the Algorithms for the Test Set

than 15%, and their MASE are lower than 0.8. When comparing RMSE, the SMA
outperformed the other algorithms. LightGBM did not outperform others in the
short-term (1 to 7 days) forecast. Notably, SARIMA was able to capture both the
fluctuation and magnitude of data at the last one-third of the test set while other
algorithms did not. Therefore, SARIMA was used as the forecast model to predict
the daily picking volume and the results are used for visualisation.
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Chapter 4

Storage Simulator

This chapter shows the design process of the Warehouse Simulator with the fol-
lowing steps: First, the workflow is explained. Second, the requirements for the
Storage Simulator are specified. Third, the conceptual model is illustrated with
tables, state machine model, and process diagrams. Fourth, we listed a number of
available simulation software and explained why AnyLogic was chosen. Fifth, KPIs
about travelling distance, picking time, worker utilisation, and total waiting time
are specified. Sixth, we explained the layout, data model, and how the KPIs are
measured in AnyLogic.

4.1 Workflow

This section describes the workflow of Storage Simulator, as Figure 19 shows. First
the movement history of pallets (as Table 4 shows) are retrieved from the data
warehouse (provided by the company) to the Python development software Spy-
der, which then processed it and classify A, B, and C products by their frequency
of being picked. The pick list data (used for experiments) was derived from the
movement history. With a pick list spanning two days, the simulation model ran
experiments and produced results for storage policy and resource monitor. The re-
sults are formatted by Spyder again and manually sent over to the visualisation tool
Power BI.
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F1GURE 19: Workflow for Storage Simulator

4.2 Requirements

The simulation model is used to fulfil the following requirements to provide decision-
support data for warehousing stakeholders:

@ Measure travelling distance and time during the picking process.

@ Compare the impact of variations of ABC storage policies on the travelling
distance and picking time during the picking process.

® Monitor the utilisation of workers, waiting time and bottlenecks/congestion re-
sulting from changing the number of available workers given the same amount
of the task.

4.3 Conceptual Model

The conceptual model consists of two process models (see Figures 21 ?7) and a state
machine model (see Figure 23) . The framework proposed in [61] was used to explain
the conceptual model with aspects shown in Figure 20.
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4.3.1 Process Models

Figure 21 shows the picking process model and Figure 22 shows the storing process
model. The storing process starts with an arrival event. With a product unit going
through a checking process carried out by a worker. After checking is complete, it
goes to a storing queue and is then transported by a forklift to its assigned storage
slot. The picking process is similar: an order arrival event specifies which product is
ordered. Afterwards a forklift is assigned to pick it up and drop it off to the checking
point where a worker is assigned to check the product before it is shipped out of the
warehouse.
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FIGURE 21: Behaviours of the Picking Process
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FIGURE 22: Behaviours of the Storing Process

4.3.2 State Machine Model

The state and behaviour of each type of agent are modelled by a state machine:
an agent can be inside one of the states that can be transitioned to another state
depending on the event it receives. Figure 23 shows the state machine for SKU,
storage location, worker, and forklift. The SKU state diagram specifies the states

53



of an SKU from the time it enters the warehouse until it leaves the warehouse. The
Storage Location state diagram specifies the states of a slot /cell in the rack storage:
the Empty State means that the cell does not contain a SKU; the Occupied State
means that a SKU is currently stored in the cell. A forklift can have three states:
being idle, transporting products for storage, or transporting products for picking.
Similarly, a worker can be idle, or checking arriving products, or checking outgoing
products. The benefit of using a state machine for each agent is the ability to track
the status of all agents at any given time.

SKU State Machine Forklift State Machine

-

Arrived |

/.

Idle_forklift |

CompleteCheck Assigned for Storage Storage Complete Assigned for Picking \Picking Complete
R S— P ; . .
[ Checked | | Transporting to Storage ‘ | Transporting for Picking ‘
}—‘ | ] | ]
.~/ iy A
Pickedup
Worker State Machine
P SE—
| Being Transported | (Idle worker )
A /I \ J
StoreSKU SKU Arrived Checking Complete SKU at Dock Checking at Dock Complete
I S—
In Storage |‘/ Checking SKU upon Arrival | "/ Checking SKU at Outgoing Dock |
) [ | | |
] < . oy "y

Reserved for Picking ; :
Storage Location State Machine

-

Reserved | Empty'

h

- . A .
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FIGURE 23: State Machine Model for Agents
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4.3.3 Aspects of the Conceptual Model

Non-functional Requirements Description

Time-scale 1 day to 1 week

Flexibility Medium (can be expanded, modified)

Visual display 2D and 3D

Ease of Use Used mainly by technicians, communi-
cated to stakeholders

TABLE 16: Non-functional Requirements

Input Description

Arrangement of Class A,B,C Areas Based on variations of ABC storage
policies

Order Product orders on daily basis

Storage Snapshot The location of products in the rack
storage.

Storing/Replenish Tasks Products to be stored on daily basis

Number of available workers Variable number

TABLE 17: Model Inputs

Output Description

Total travelling distance Quantitative measurement
Total picking time Quantitative measurement
Individual SKU picking time | Represented in a chart
Worker Utilisation Quantitative and chart
Total Waiting Time Quantitative and chart

TABLE 18: Model Outputs

4.3.4 Model Details

This section explains the details of queues, agents, assumptions and simplifications.

Checking Queue

It is assumed that the checking area has a max capacity of 10 SKUs. The checking
queue follows a First-In-First-Out (FIFO) queue discipline.
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Order-line Queue and Storing Queue

We assume that order-line queue and storing queue have a capacity of 30 SKUs
each. FIFO is applied here as well.

SKU (Stock Keeping Unit)

A SKU is used as an identification code in warehouses to represent a unique type
of product associated with colour, size, brand, etc. For example, a jar of blue and
red paint manufactured by the same company with the same packaging will have
different SKU IDs.

e ID: The unique identifier for a SKU.

e Product Name.

e ABC Class: Type of the ABC class it belongs to.

e Coordinate (x, y, z): The location of the storage slot storing the SKU.

e Colour: Visual identifier, corresponding to the ABC class.

e Time Stamps: Timestamps to track the processing stages.

e States: Different states the SKU can be in during its lifecycle in the warehouse.

Worker

A worker checks products from the checking queue in the picking or storing process.
It often involves scanning, labelling, verifying and packaging products.

e [D: The ID of a worker.

e Processing Time: The distribution of time it takes for a worker to complete
the checking activity.

e States: being idle, busy checking incoming or outgoing products.

Forklift

e ID: The ID of a forklift.
e Speed: Movement speed of the forklift.

e Acceleration: Rate at which the forklift changes its speed.
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e Elevation Time: Time taken to raise/lower the forks.
e Distance Measurement: Measurement of distance covered during a period.

e States: being idle, busy transporting for storing, or busy transporting for
picking.

Storage Location

A storage location is a slot/cell that can host a pallet loaded with products in a rack
storage.

e Coordinate (x, y, z): The location coordinates of the storage slot.

e Assigned ABC Class Category: The classification category based on the im-
portance level.

e Assigned SKU ID: The identifier of the SKU assigned to the storage location.
e States: being empty, reserved for storing, occupied, or reserved for picking.
The model assumption is that workers and forklifts are available throughout the

day and have no shifts. The model simplifications is that a single SKU occupies one
pallet.

4.4 Choice of Simulation Software

We reviewed six major simulation software tools that can be used for modelling a
warehouse through their official websites, website articles, and videos of using these
tools. We summarise the findings for each simulation tool in Table 19.
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TABLE 19: Comparison of Warehousing Simulation Software

Software ‘ Features ‘ Limitations ‘ Notable Feature

AnyLogic Has numerous libraries in- | Steep learning curve. Mea- | Free version comes with
cluding one for material | ger number of tutorials on- | most features with few
handling. 2D and 3D ob- | line. restrictions. Multimethod
jects customisation. Can modeling (combines
add, modify, or customise discrete-event  modelling,
most components using na- agent-based modelling,
tive Java code. Supports system dynamics).

Java debugging.

FlexSim 3D with drag-and-drop. | Costly. Challenging script- | Interactive 3D  models.
It specializes in logistics, | ing language. Free version | Modules  for  conveyor
manufacturing, healthcare, | difficult to acquire. systems, AGVs, etc.
and warehousing.

Arena Tools for simulating var- | Mainly discrete-event | Good track record.
ious processes. Uses the | modelling support. Old-

SIMAN simulation lan- | fashioned user interface.
guage.

SIMULS Visual drag and drop. | Basic visualization. | Fast simulations.
Used for logistics, manu- | Discrete-event only. Cus-
facturing, etc. tom scripting language

for more complex logic
requirements.

Tecnomatix | Part of the Siemens PLM | Paid. Uses the SimTalk | Integration with Siemens
software suite.  Detailed | programming language software. Works well with
production system models. other Siemens products.
3D visualization.

WITNESS | Discrete and continuous | Non-intuitive UI, Paid Discrete and continuous

simulation. Visual process-
driven design.

simulation combination.

We evaluated them with two dominant factors in mind: first, the tool should prefer-
ably use a general-purpose programming languages; second, it should support DES
and ABS modelling. AnyLogic was chosen because of its ability of multi-modelling
so that we can employ both discrete-event and agent-based methods in our model.
It is also one of the few with free version readily available on the official website.
It has no restrictions on the number of components or simulation time in the free
version. More importantly, it supports native Java, a general-purpose programming
language unlike the proprietary scripting languages required by some of the other
simulation software. It offers a Material Handling Library consisting of physical
and operational assets, allowing for the representation of a warehouse. 2D and 3D
animations are supported, and 3D objects can be imported and customised.
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4.5 KPIs

KPIs are defined for travelling distance, picking time, resource utilisation and cost.

4.5.1 Travelling Distance in the Picking Process (single pallet
pickup)

In a picking process, a forklift picks up a pallet containing the SKU from a cell in
a rack storage and transport it the the dock. Let S = {sy,s2,...,5,} be the set
of SKUs with each SKU s; having a coordinate (x,, ys,, 2s;). Let (xf,yr, zf) be the
home location coordinates of the forklift and (z4,yq, z4) be the coordinates of the
docking area.

For each SKU s;, the distance from the forklift’s home location to the SKU is:

dforkliftvsi = \/(xsz - xf)Q + (y57, - yf)2 + (Zsi - Zf)2

The distance from SKU s; to the docking area is:

dsi,dock - \/(xsl - xd)z + (ysZ - yd)z + (Zsi - Zd)2

The objective is to find where the SKUs should be stored in S that minimizes the
total distance the forklift travels:

n

Minimize Z (dforktitt,s; + ds; dock) (4.1)

=1

4.5.2 Travelling Distance in the Picking Process (multiple
SKU pickup in a single trip)

For the picking process in some warehouses such as e-commerce warehouse or spare
parts warehouse, a transporter picks up multiple SKUs from different locations and
batch them to the destination, which corresponds to a Travelling Sales Man problem
[43]. Considering a warehouse with a set of SKUs that a transporter has to pick up,
the goal is to determine the shortest possible route for the transporter to pick up
all SKUs to minimise the total traveled distance.

Definitions:
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o S={s1,59,...,8,}: Set of SKUs.
e d, ;: Distance between SKU s; and SKU s;.

e The binary decision variable x; ; Represents the travelling of a transporter to
move from the location of SKU s; to that of s; without other SKUs in the way.

— x;; = 1: Represents the direct travel from SKU s; to SKU s;.

— z;; = 0: No direct move from SKU s; to SKU s;, meaning that the
locations of other SKUs to be picked were reached first.

Objective:

Minimize

Z Z di,jxi,j (42)

i=1 j=1,j#i

It is difficult mathematically to solve it directly [77]. Thus, methods such as Nearest
Neighbour Algorithm [64] (a greedy approach), v-opt, k-opt, and Christofides &
Serdyukov algorithms are often used as heuristics to solve TSP problems. Since the
multiple-sku pickup method is not applied in our simulation model, discussing and
applying these heuristics algorithms are outside the scope of this work.

4.5.3 Picking Time

Picking time (Tpie) is defined by the duration it takes for a forklift to travel to
the SKU’s location, collect the SKU, and then transport it to the destination. It
consists of the following components:

® Travel Time (Ti;aye): Time taken to move to the specific location of the item.

@ Search Time (Tyeaen): Time taken to identify the correct item once at the
location.

® Elevation Time (T,jevation): Time taken to adjust to the height of the item
and retrieve it.

@ Retrieval Time (T etrievar): Time taken to attach to the pallet and pick it up.

Considering a linear relationship with height, the elevation time can be calculated
as:

Televation =kxH

Where:
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e [ is a constant representing time taken per unit height.

e H represents the height from which the pallet is picked.

Combining the components, the overall equation of the picking time becomes:

Tpick = ﬂravel + Tsearch + kEx H + Tretrieval (43)

The idea is to use an optimal variation of the ABC storage policy to reduce Tp;cx.

4.5.4 Utilisation & Waiting Time

To maintain efficiency in a warehouse, it is necessary to balance the utilization
of resources (such as workers and forklifts) and associated costs. Queuing theory
provides a mathematical framework to analyze and understand these dynamics.

The utilization factor p in queuing systems is given by:

pP= ; (4.4)

Where:

e )\ is the average arrival rate.
e 1 is the average service rate (productivity).

e s is the number of resources such as workers or forklifts.

Higher utilization (p closer to 1) means resources are used more efficiently. However,
it might lead to longer waiting times when there are too many tasks awaiting to be
processed at the same time, potentially increasing indirect costs due to delays or
congestion. Thus, there is a trade-off between direct costs of adding more resources
(reducing p) and the indirect costs of imposing a high utilization.

The total waiting time (W) in the SKU checking process is computed as the sum of
the waiting times for each individual SKU (w;) from ¢ = 1 to n, where n is the total
number of SKUs.

W=> w (4.5)
=1
and
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e IV is the total waiting time
e w; is the waiting time for the ¢-th SKU

e 1 is the total number of SKUs in the queue

Each w; is the time that the ¢-th SKU spends waiting to be checked, which con-
tributes to the total waiting time in the checking process.

4.6 Model Implementation

In this section, the implementation of model in AnyLogic is explained. We describe
the physical layout, agent and Java class model, arrival events, picking and routing
strategy, and how the KPIs are measured in the software.

4.6.1 Layout

The layout designed for the simulation is depicted by Figure 24. Overall it is sim-
plified to contain the core areas of a warehouse for storing and picking processes.
The incoming dock area is where SKUs are generated, and the outgoing dock area
is where the ordered SKUs are sent out. The trucks, however, are not active agents
in the model because we can then treat the arrival and departure of SKUs simply
as a function of time. The checking area is for workers to verify SKUs before they
were stored. There is a temporary ground storage space (with no space limit to
host products) in both docking area. The incoming dock area is assigned to the top
left relative to the rack storage while the outgoing dock area is assigned to the top
right. This layout contains the main physical components in a warehouse without
considering doors, walls, and other obstacles except for the rack storage.
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FI1GURE 24: Layout Used for Simulation

4.6.2 Agent and Java Class Model

Figure 25 shows a class diagram to represent agents and general classes in the
simulation model. Storage Location, Worker, Forlift, and SKU are agents classes;
Coordinate and ClassStorage are utility classes.

Rack Storage Location A rack storage with 10 racks, 40 bays, and 5 shelves
is modelled in our simulation. Each individual cell/slot is called Storage Location
and is represented by a three-dimensional coordinate. A single SKU occupies one
cell/slot in this rack storage.

Workers Workers function as checkers who verify SKUs in the storing and picking
processes. The time it takes to check any given SKU is modelled with a triangular
distribution. No schedule or work shifts are configured in the current implementa-
tion.

Forklifts We have six forklifts with an average speed of 1m/s. Each forklift has its
own home location. No work shifts are configured.

SKUs Each SKU is assumed to occupy one pallet. So, retrieving a SKU is equivalent
to retrieving a pallet from the storage.

63



Ed sku

+ ID: Integer [1]

+ productMame: String [1]

+ abcClass: String [1]

+ colour: String [1]

+ coordinate: Coordinate [1]
- pickStartTime: EDate [1]

- pickFinishTime: EDate [1]

- wartStart Time: EDate [1]

- waitEndTime: EDate [1]

+ state: String [1]

E‘.@ Worker
Egz +ID: Integer [1]
= + processingTime: EFloatObject [1]
=+ state: String [1]

+ calculatePickTime( in startTime: EDate, in endTime: EDate)
+ calculateWaitTime( in startTime: EDate, in endTime: EDate)

€€ 000 0J000Ogy

+ SKU

+ storagelocation

Ed ForklLift
+ ID: Integer [1]
+ avgSpeed: EFloat [1]
+ acceleration: EFloat [1]
+ elevationSpeed: EFloat [1]
+ distanceTravelled: EFloat [1]
+ state: String [1]

Q Storagel ocation
+ coordinate; Coordinate [1]
+ assignedABCCategory: String [1]
+ assignedSKL: Integer [1]
+ state: String [1]

ODoo@ooga
ooom

4 + calculateTravelDistance()

E‘.g, ClassStorage

+ D Elnt [1]

+ storageClass: EString [1]

+ maxX: Elnt [1]

+ max¥: Elnt [1]

+ maxZ: Eint [1]

- locations: EEList [1]

- occupiedLocations: EEList [1]

g wg¥a)

E‘.g, Coordinate

+ rack_num: EInt [1]
+ bay_num: Eint [1] &
+ shelf_num: Elnt [1] &
&

+ diagonalP olicy()

+ horizontalPolicy()

+ lowLevelPolicy()

i@+ calculateNumFreeSlots()

ooo

% + calculateDistanceFrom({ in Coordinate: Coordinate)

FIGURE 25: Agent and General Class Diagram

Below is the description of the general Java classes.

Coordinate A coordinate (x,y,z) corresponds to the storage rack number (equiv-
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alent to column), bay number (equivalent to row) and shelf number (equivalent to
level), respectively. A coordinate represents a unique cell/slot of the rack storage.

ClassStorage It contains the coordinates, functions, and other utility variables for
the designated area of an ABC-based storage. It can be instantiated to represent
A, B, or C area. When the simulation starts, the chosen policy is configured using
this class.

4.6.3 SKU Arrival Events

There are several options for generating events for SKU order arrival such as rate,
rate schedule, inter-arrival time, arrival table from databases, calling custom func-
tion. In our experiment, we chose scheduled arrival table to generate incoming SKU
order events, which contains the number of SKUs and their arrival time for one day.
The table is fixed so that we can use the same table to test different scenarios in our
simulation runs.

4.6.4 Picking and Routing Strategy

Single order pick is chosen as the pick strategy. It is the default picking behaviour
in AnyLogic, because a forklift can only transport one SKU object at a time. This
means that a forklift picks a single SKU from an order and transport it to the
destination rather than combining several SKUs in one trip. This means that the
distance measurement with Equation 4.1 is used instead of Equation 4.2. The rout-
ing strategy is automatically determined by the AnyLogic software with the shortest
path chosen for each picking activity.

4.6.5 Methods for KPI Measurement

The KPIs are measured in the simulation runs with the following methods.

Distance Travelled Equation 4.1 reflects the measurement. The distance trav-
elled by individual forklifts can be measured by calling a specific function of
Transporter Agent. We sum up the distance travelled by all forklifts every
time a forklift completes a picking activity.

Picking Time For each picking activity, we measure it by placing two Time Mea-
surement blocks between the start and the end of the picking activity blocks
(namely before and after the retrievel block. Individual picking time can be
displayed on a chart and the total picking time can be viewed directly by click-
ing on the block during a simulation run. Another way to measure the picking
time is to record and subtract the timestamps of each SKU right before and
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after the picking activity. These two methods are tested to yield the same
results. The measurement is reflected by Equation 4.3.

Utilisation, Waiting Time We measure utilisation of workers (see Equation 5.3)
for the picking process flow by calling a calculation function and the results
are plotted in a line chart during the simulation. The total waiting time (see
Equation 4.5) can be measured by attaching time measurement blocks between
the checking queue. It can also be measured by summing the individual waiting
time of SKUs recorded in each SKU agent. The waiting time can be visualised
in a line chart plotted against time to show how queued up the SKUs are while
waiting to be processed in the checking activity.
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Chapter 5

Simulation Experiments

Based on the simulation model specified in the last chapter, this chapter describes
two experiments. The first is to assess the ABC storage policy variants’ impact
on travelling distance and picking time in the picking process. The second is to
measure the utilisation of workers and the cost measured by the waiting time and

queue.

The equations for the KPIs measured and the steps of each experiment

are specified therein. After showing and discussing the results of the experiments,
verification and validation were conducted.

Both experiments used the common configuration shown in Table 20 with the order

table shown in Table 30.

Subject

Parameters

Forklifts

Speed: 1m/s, Acceleration: 1m/s” Ele-
vation speed: 0.3 m/s, Number of fork-
lifts: 6

SKU Order Arrival Rate

Based on a schedule in the span of 24
hours.

Workers (Checkers)

Number of checkers: 3, Checking time:
triangular (0.5, 1, 1.5) minutes.

Rack Storage

Rack configuration 10x40x5 (10 racks,
40 bays, b5 shelves), total slots:
2000, rack depth: 1.5m, shelf height:
lm, storage length: 30m, storage
width:29m, access zone width: 6m

ment

Warehouse Indoor Dimension 60m x 60m
Simulation Seed Seed number: 2
Total Running Time for Each Experi- | 48 hours

Total Number of Pallets to Be Picked

228 pallets

TABLE 20: The Common Configuration
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According to movement history from forecasting service, There are always three
forklifts assigned each day, and on average 120 pallets were the daily demand for
picking. We could not model the correlation between number of forklifts and number
of pallets to be picked because we do not have data about it. So, we assume that
they follow a linear relationship where if number of the picking demand is doubled,
twice as many forklifts are needed. Therefore, we allocated six forklifts to fulfil
picking tasks of 228 pallets for our experiments.

5.1 Travel Distance and Picking Time Assessment

This section describes ABC classification, size of ABC area, the location of the
products prioritised to be picked, ABC storage policy variants, and simulation steps.
The objective is to evaluate the impact of four variations of the ABC storage policy
on the total distance travelled by forklifts and the total picking time in the picking
process flow. This should help us identify the most efficient storage policy in terms
of these two KPIs.

5.1.1 ABC Classification, Area Size, Selection Priority

Based on the movement frequency of products for the first quarter of 2021, class
A, B, C products account for 63%, 24%, and 13% of the movements respectively.
We extrapolated this information to generate a list of orders (see Table 30) for an
24-hour period, meaning that class A orders comprise 63%, class B 24%, and class
C 13% of the orders respectively. The implication is that the order list represents
the daily frequency of the products being ordered on average for the quarter.

The occupancy rate of the storage is set to be 85% for each area, because we assume
the storage is highly utilised by this warehouse. This means that on average A
products are occupying 85% of slots in Area A, and so do B and C products in their
respective area. As for the allocated sizes of A, B, and C areas in our experiments,
they are configured to be close to each other as shown in Table 21.

Storage Policy Area Sizes

Horizontal A:800; B:600; C:600; Total:2000
Low-level A:800; B:400; C:800; Total:2000
Diagonal A:690; B:780; C:530; Total:2000
Random Total: 2000

TABLE 21: Storage and SKU

When a picking task is generated for a specific product, the product that is closest
to the p/d point (in our case the left dock) is going to be picked.
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Traveling Distance (D) The traveling distance D for a forklift is calculated based
on the summation of distances from the home location to each location of the SKU
plus the location of the SKU to the docking area plus the forklift’s returning distance
from the dock to home location. N is the total number of SKU to be picked. The
distance does not include the vertical lifting of the forklift reaching the pallet at a
height.

N
D = (Dhome,i + Di, dock + Ddoclghome) (51)

=1

Picking Time (7pick) The total picking time T for forklifts to pick up N SKUs
comprises the following components:

® Tiraveli - Time taken to travel from the forklift’s home location to the i-th SKU,
then to the dock.

e k x H; - Elevation time, which depends on the height H; from which the SKU
is picked.

® Tietrieval - A constant time for a forklift to attach to a pallet and mount it to
itself.

® T gock- Time taken to travel from the i-th SKU to the dock

Thus, Thia can be expressed as:

N

Tpick - Z(ﬂravel,i + k x Hz + Tretrieval) (52)

=1

5.1.2 Variations of the ABC Storage Policy

We define four variations of the ABC storage policy, derived from [11] [71], as:
P e {P17P27P37P4}

where each P; represents a spatial arrangement of A, B, and C products by these
variants: random, horizontal, diagonal, low-level policy variants. SKUs in area A,
B, C are represented as blue, green, red boxes respectively (as shown in Figure 29).
Area A is the closest to the top left dock, followed by area B and C.

e Random Policy: the assignments of pallets are randomly allocated to all pos-
sible storage locations, as shown in Figure26.
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FIGURE 26: Random Policy

e Horizontal Policy: the storage racks are divided into three horizontal sections,
with the section A closest to the docks, as shown in Figure 27.

u
n
B
|
iy
"
i
L]

\ _‘-

LY. “v;-_-v
Ry v v
N

FIGURE 27: Horizontal Policy

e Low-Level Policy: as shown in Figure 28, Class A products are stored on the
lower levels and sections closer to the docks. It would take less time to retrieve

them compared to products located higher on the rack due to less elevation
time taken for forklifts to pick them up.
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FIGURE 28: Low-level Policy
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e Diagonal Policy: sections are divided diagonally and section A is close to
forklifts and the docks, as shown in Figure 29.

FI1GURE 29: Diagonal Policy

5.1.3 Steps

For each storage policy F;,

e At the start, we initialise the storage with 9 different SKUs from A,B,C class
categories with ID ranging from 0 to 8. In total, they occupy 85% of the
storage’s max capacity. SKUs with higher ID are stored further away and thus
have incrementally more total distance as defined by Equation 4.1. Coordinate
(0,0,0) is used as the reference point to the p/d point. For example, the first
SKU with ID 0 belongs to class A and is assigned the coordinate (0,0,0),
followed by the second SKU with ID 0, assigned to (0,0,1), etc.

e The arrival schedule from Table 30 in the Appendix is used to generate picking
orders. Each experiment runs for 48 hours. 228 SKUs are ordered in the span
of the first 24 hours. For the next 24 hours the same orders are repeated.

e Measure and record D Equation 5.1and Tp;a Equation 5.2.

e Repeat three times to account for variations of total distance travelled and
total picking time.

Table 22 below shows the configuration of storage and SKUs for this experiment.
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Subject Parameters

Storage Occupancy/Utilisation 85% for each of the A, B, C area.

Storage Policies P1: Random; P2: Horizontal; P3: Di-
agonal; P4: Low-level

SKU ID Allocated in Each Area Area A: 01 2 ;Area B: 34 5 ;Area C:
678

Number of SKUs in each area 0:50% of Area A; 1:25% of Area A;

2:25% of Area A; 3:50% of Area B;
4:25% of Area B; 5:25% of Area B;
6:50% of Area C; 7:25% of Area C;
8:25% of Area C;

Number of SKUs ordered for each ID in | 0:63 ;1:48 ;2:33 3:20 ;4:20 ;5:15 ;6:11

the 24-hour period ;7:9 ;8:9
Total ordered SKUs for the 24-hour pe- | 228
riod

TABLE 22: Storage and SKU

5.2 Utilisation and Cost Assessment

This experiment measures the impact of having different number of workers in the
picking process flow. The experiment considers scenarios with 1, 3, and 5 workers.

N, € {1,3,5}

We measure the workers’ utilisation as the proportion of time they are busy in a
certain period T. We approximate the indirect cost by the number of SKUs waiting
to be checked in a certain period T.

Worker Utilization (p) is represented by p, measuring the efficiency of a worker in
terms of how much of the available working time is actively spent on tasks. It is

defined as:

Tbusy
— busy 5.3
p=—7 (5.3)
Where:

o Tiusy is the amount of time the worker is busy.

e T is the total available working time (in our case the entire simulation time).

Total waiting time for all SKUs is defined in Equation4.5.
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Steps
For each scenario (the allocated number of workers in N,,) :

e The configuration is the same as Section 5.1 and it uses horizontal policy where
the picking activities are run for two days.

o We measure the utilisation of workers with Equation 5.3and total waiting time
of SKUs with Equation 4.5. Their results are displayed as charts during the
simulation runs.

e FEach scenario is repeated three times to observe whether there are random
effects during simulation.

5.3 Results

We present the KPI measurements and observations for the two experiments.

5.3.1 Travel Distance and Picking Time Assessment

Table 23 shows the result for the experiment: Travel Distance and Picking Time.
An average value is taken from three runs per scenario. These three runs showed
consistent results with almost no variations for the KPIs measured.

Scenario: Storage | Total travelling dis- | Total Picking Time
Policy Name tance (D) (Tpick)

Horizontal Policy 4.37km 9.16 hours

Low-level Policy 4.03 km 7.20 hours

Diagonal Policy 3.93 km 7.87 hours

Random Policy 5.33km 11.57 hours

TABLE 23: Results for Travel Distance and Picking Time Assessment

We sorted and allocated 9 different SKUs based on their order frequencies: the
highest are the closest to the forklifts and the docks; then we assign them to the
corresponding class-based areas, varied by the variants of ABC storage policy. Or-
ders were generated in a way the the most frequently ordered SKUs are picked up
the most during a 24-hour period, with Class A SKUs constituting 63% of the total
order volume. The result shows that the diagonal policy incurs the least travelling
distance but the low-level policy triumph others in time saving, which could be at-
tributed to the fact that there were less elevation time spent during pickups. This
experiment suggests that we can choose the best policy based on the performance

73



of the KPIs. If picking time is vital to stakeholders, the low-level policy should
be considered. It could also be used as a testing ground to help us devise a more
specific policy with higher performance.

5.3.2 Worker Utilisation and Waiting Time Assessment

Table 26 shows the results for the experiment: Worker Utilisation and Waiting Time
Assessment.

Scenario: Number of | Worker Utilisation (p) | Total Waiting Time
Workers (Wsum)

1 18% 45.96 hours

3 6% 13.92 hours

) 4% 8.10 hours

TABLE 24: Experiment Results for Worker Utilisation and Waiting Time

With only one worker, we have utilisation of 18% with a long waiting time of 45.96
hours for SKUs. The total waiting time can be reduced by 69% by adding two extra
workers. However, whether the two metrics could really impact the operational
effectiveness is better estimated through chart inspection, as Figure 30 shows. For
utilisation in this time window, the worker is busy for about 15 minutes every hour,
which is likely not going to cause stress for the person. When viewing the activity
from 6 am, we had about 12 SKUs waiting to be checked and it lasted for about
15 minutes. Congestion issues may occur if there was not enough capacity in the
checking area, and it could also cause higher waiting time for trucks if these SKUs
cannot be checked and loaded into outbound trucks fast enough. In comparison,
having three workers can significantly reduce the duration of the waiting, as shown
in Figure 31.

FIGURE 30: Scenario: One Worker
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FIGURE 31: Scenario: Three Workers

The experiment illustrates how the operational performance can be estimated for
scenarios containing different number of available workers in a single checking ac-
tivity. The chart inspection showed us a possible congestion when we have only
one worker. In a real warehouse, we may have the same pool of workers performing
multiple activities in multiple process flows. This is when chart inspection can aid
in detecting inefficient parts of the process.

5.4 Verification

Verification includes Exception Handling, which are the functions to handle errors
that could occur during a simulation run when unexpected or unwanted situations
take place. Debugging, Animation & Graphical Inspection are used to test syntac-
tical, compilation, and run-time errors. Run-time testing is used to check whether
the simulation runs normally continuously given fixed inputs.

5.4.1 Exception Handling

Some exceptions were taken into account including:

e Condition: receiving an order where there is no matching SKU in storage.
Solution: reject the order and record it in the database.

e Condition: there is no storage space for an incoming SKU in the corre-
sponding class-based area. Solution: destroy the SKU object and record the
destroyed object in the database. Alternative Solution (not implemented):
store the SKU in the closest available area.
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5.4.2 Debugging, Animation and Graphic Inspection

During development, syntactic and compilation errors occurred time to time and
they are identified by reading error messages and using the debugging terminal.
Having these errors outstanding would cause the model not to start at all. Thus,
these errors were prioritised to be solved during the development.

Run-time errors may occur when the simulation is running. It can be identified
by graphic inspection of the process blocks. Figure 32 shows a process block (in
red). For example, if there is an error when storing a product into a cell of the rack
storage because that slot is reserved or already occupied, a red dot in the process
block would be visualised with additional information in the debugging terminal.
In the 3D graph (as shown in Figure 33, a red rectangular shape would also be
highlighted at the cell slot where the problem occurred. These errors are more
difficult to solve than syntactic or compilation error because it implies that part of a
running processes caused the program flow to err. It is usually identified and solved
by doing run-time testing.

initialStore

N storeRandom1
root.storeRandoml: Store
In: 1700
exity out: 639
N Contains: 1061
“  storeRandomi - number of waiting: 1057
B39

select2
entersSkuU queHe

*N?DU 700

FIGURE 33: Graphical Inspection with the 3D Graph

5.4.3 Run-time Testing

The storing and picking process are tested together and ran for seven days (in sim-
ulation software time) with automatically generated incoming and outgoing orders

76



using rate of arrival. The simulation did not encounter any run-time issue. This
suggested that all the incoming and outgoing products were handled correctly by
the process flows.

5.5 Validation

Data, process and theory validation ensure that the simulation model of the ware-
house resembles the real-world counterpart. Face validation ensure that the model
can be effectively used by stakeholders. Since our design is based on a hypothetical
warehouse, guidelines are provided for real warehouses for data, process, and face
validation.

5.5.1 Data validation

Data validation can be carried out as Table 25 illustrates.
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Data Parameters

Forklifts Speed, acceleration, elevation
speed: measured by comparing them
against the real-world counterpart.
They can be estimated by doing field
experiments. Shifts: follow the real
schedule of forklift operators.

SKU Types of SKU, ID numbers, de-
mand patterns, sizes, Special Con-
ditions: whether they require special
storage area. The number of SKUs
that can be stored into a single
pallet.

Workers Shifts: check the real schedule of work-
ers against the table used by the simu-
lation model. Productivity: may vary
based on skill level; can be acquired
through field observation or by using
historic data. The processing time for
a task might follow a distribution pat-
tern.

Rack Storage Total Slots, Rack Depth, Shelf
Height, Storage Length, Storage
Width, Access zone Width.
Warehouse Indoor Environment Indoor dimensions, Building Com-
ponents such as walls, obstacles, and
elevators can be validated by compar-
ing the real blueprint and the 2D model
in the simulation tool.

TABLE 25: Data Validation Table

5.5.2 Process Validation

The process validation can be done by:

e Verifying process flows with the stakeholders of the processes.
e Expert review and adjustment based on their feedback.

e Conducting experiments with storing and picking processes using real-world
historic data. For instance, use a week of data to check whether average
storing and picking time matches with the reality, whether processing
time of each activity closely follow the ones measured in real world.
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5.5.3 Face Validation

Face validation is to check whether the behaviours of the agents and processes match
with those in the real-world system. One of the validation tasks to be considered
is the routing of forklifts: it may not resemble the real choices of their operators
because human operators may occasionally take any route they feel the best or
make detours or delay the task because of various reasons such as distractions. As
a result, the model could underestimate the travelling distance and picking time.
Another validation task is whether the workers store or pick up SKUs according
to the computer’s instructions; in the real world, sometimes workers do not follow
these instructions; they might store, for example, a SKU somewhere close to the slot
originally assigned by the computer. The impact resulting from these issues should
be quantified and adjusted to make the measured KPIs closer to reality.

5.5.4 Theory Validation

The KPIs measured in the two experiments should reflect the theories behind them.
Table 26 shows the theory validation by comparing theory and what is measured in
the simulation software.
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KPI

Comparison

Validation

Total travelling distance

(D)

Equation 4.1 & Equation
5.1

The distance covered by
the forklifts were calcu-
lated for the picking pro-
cess and the components
match with the equation
from the theory.

Total Time

(Tpick)

Picking

Equation 4.3 & Equation
5.2

The total picking time
started the moment a
picking task is generated
for a forklift and ended
when the picked product
is delivered to the out-
going dock. It accounts
for travelling time, search
& retrieval time, and ele-
vation time and thus re-
flects the picking time
from the theory.

Worker Utilisation (p)

Equation 4.4 & Equation
5.3

The duration of every
worker when busy is mea-
sured by the simulation
software; the total time
workers are working is
the entire duration of the
simulation run-time (48
hours). Thus, the mea-
surement reflects the the-
ory.

Total Waiting Time

Equation (W) 4.5

Each SKU’s waiting time
is calculated and summed
up and thus it reflects the
theory.

Cost

N/A

The cost is approximately
by how queued up in the
checking queue by chart
inspection.

TABLE 26: Theory Validation
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Chapter 6

Evaluation

This is chapter describes how the artefact can be used by developers, warehousing
supervisors and managers. Use cases are designed to illustrate the usage of the
artefact. Specific details and data of the use cases have been omitted to maintain
confidentiality. We also evaluated dashboard pages in Power BI visualisation tool
with experts surveys.

6.1 Implementation Model

Figure 34 shows the implementation model of the two solutions. Spyder with Python
capability serves as the Data Tool; the Warehouse Simulator is run by AnyLogic
simulation software, and visualisation tool is chosen to be Power BI.
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FIGURE 34: Implementation Model

6.2 Use Case - Forecasting Service

Description

Algorithms are used to forecast short-term and medium-term workload demands,
helping decisions in resource allocation and capacity planning.

User Interactions

Developers utilize data tools and visualization software for algorithm optimization
and dashboard design. Managers and Supervisors access these dashboards for oper-
ational insights and decision-making.

Output Data

The output includes forecasts of picking workload in various forms of graph such as
line charts, pie charts, and tables.

Figure 35 shows a sample page of Power Bl Dashboard.
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FIGURE 35: Power BI Dashboard Sample for Forecasting

6.3 Use Case - Generalised ABC Storage Analysis

Description

The use case optimises the warehouse storage space and picking efficiencies based
on product classification and ABC storage policy.

User Interactions

Developers utilize the Data Tool to perform product classification and design inter-
active graphs in the visualisation tool to show which products should be stored in
which section. They then use the simulation model to test different policy variants
and look for the best options. Managers and Supervisors access the visualisation
tool to view the configurations. Integration could be done to configure the Ware-
house Management System (WMS) with the desired parameters.

Output

Recommendations for product classification and their allocation in storage areas. In
case there is an integration with the WMS, the configurations can be manually or
automatically realised.

6.4 Use Case - Snapshot Analysis

Description
A snapshot analysis provides a view of how the storage and operations warehouse
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respond to given inputs. We can simulate a short-term scenario where one can
analyse for example, various KPIs given a list of orders and replenishment tasks
for the next day. Parameters such as number of workers and their schedule can be
varied to construct different scenarios.

User Interactions

Developers uses the Data Tool to obtain the input data from the data warehouse.
The parameters including workers’ count and schedule, storage snapshot, incoming
orders, and replenishment tasks are fed into simulation model to preview short-term
KPIs. Managers and Supervisors get a summary of KPIs from the visualisation tool
and recommended actions.

Output

Various KPIs produced by the simulation model under different scenarios along with
recommendations.

6.5 Expert Survey

Two experts in warehousing business and Power BI were consulted. The maximum
score for a criteria is five. Questions asked during interviews are as follows:

1. It is straightforward to understand what is being forecasted.

2. As a warehouse supervisor, I find it useful to view the trend chart and table for
daily workload forecasts of incoming and outgoing pallets.

3. As a warehouse supervisor, I find it useful to see the current storage utilisation
(how much percent the storage is occupied) and estimate whether the storage can
accept new pallets in the short and medium term with the net incoming pallet table.

4. As a warehouse manager, I find it useful to view and identify quarterly Class A,
B, C products with the classification table.

5. It is useful to see the best ABC policy variation in terms of picking time and the
travel distance.

6. The best ABC policy recommended can be applied in practise.

7. As a supervisor I can understand the impact on worker utilisation, waiting time,
and when assigning 3 workers to the checking activity compared to assigning only
1 worker.

8. Which parts of the visualisation can be improved?
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6.5.1 Survey Feedback

No. Criteria surveyorl’s | surveyor2’s | Average
Feedback Feedback Score
1 Clarity of | 4 3.5 3.75
forecasts  in
dashboard
pages

2 Daily  work- | 4.5 4.5 4.25
load forecasts
usefulness

3 Usefulness 4 4 4
of storage
utilization
view

4 ABC Classifi- | 4 3.5 3.75
cation Useful-
ness

5 Differentiating | 3.5 4 3.75
storage poli-
cies

6 Real-life  ap- | 4 4.5 4.25
plicability
7 Understanding | 3 3.5 3.25
of the impact
of worker
allocation and
assignments
on Utilisation
and Conges-
tion

TABLE 27: Summary of Expert Survey Feedback

As for the improvements, surveyor 1 mentioned that users could be more customised
forecasts with which stakeholders can input a percentage number to alter the fore-
casts produced by algorithms. If a manager with experience knows an upcoming
period of surging demand, the forecasts should also be adjusted in case it underesti-
mated the demand. Moreover, the user interface could be improved with navigation
bars and simple descriptions. The resource monitoring part is rather static because
it is not interactive. If a supervisor wants to inspect the charts hour by hour in
detail, he/she must use the simulation software. Surveyor 2 said that the simulation
part could be improved by incorporating a 3D embedded element to show interac-
tive 3D storage inside Power BI. It allows users to view and locate individual ABC
products in the 3D model; this gives them a detailed view of the size of ABC sections
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and cell/slot location for each SKU based on the optimal storage policy. The read-
ability of dashboard can be improved. For instance, it can be improved by changing
the names of the columns and tooltips. Furthermore, more textual explanation is
needed for the each page of the dashboard for a warehouse manager to understand
it.

Overall, the visualisation tool provided warehousing stakeholders with information
to help several operational and strategic decision making cases in general. Some
improvements are suggested for future works. In addition, when the artefact is to
be applied for a specific warehouse, some dedicated pages in Power BI may be needed
to suit the type of the warehouse. For example, when applying it on a spare parts
warehouse, a new page for the supply and demand of individual products should
be built to demonstrate their dynamics and suggestions produced by forecasting
service. Another example would be an e-commerce warehouse, where demand is
influenced by many societal and environmental factors. A new page could be built
to allow users to view how these factors could affect product demand.
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Chapter 7

Conclusion

This thesis aimed to answer the main question:
How can a warehouse improve decision making by using data-driven services?

This is answered by RQ1, RQ2, and RQ3, which we discuss with the following three
sections respectively.

7.1 Demand Forecast of Picking Workload

This section answers RQ1:
Which forecasting method is the most suitable to predict daily picking demand?

SARIMA was chosen as the best algorithm for our data set, shown in Chapter 3.
A data-driven demand forecast is usually done through a statistical or Machine
Learning approach. A statistical approach is to take trend and seasonality into con-
sideration. Exponential Smoothing and ARIMA /SARIMA methods are statistical
methods with mathematical equations containing trend and seasonal components.
Light GBM, in comparison, is a Machine Learning method that bases its predic-
tions on features. It take can take time-related features (such as day of the week)
and exogenous features (such as number of open orders) into consideration. We
experimented the implementation of the Exponential Smoothing, SARIMA, and
Light GBM algorithms in Python using a synthetic data set, and they all showed ac-
ceptable error metrics with MAPE lower than 15%, and MASE lower than 0.8. We
found that SARIMA to be able to capture both the magnitude and fluctuation of the
data while the forecast produced by exponential smoothing and Light GBM did not.
We therefore concluded that SARIMA was the most suitable model for daily picking
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demand forecast. When comparing our findings to some other similar studies, there
are some disparities. For example, paper 7] did a case study in case-picking volume
demand and showed that Light GBM (with more than 40 features) performed bet-
ter than ARIMA in short-term forecast. However, the medium term performances
(more than 7 days) were similar to ARIMA. Another study [21] (which used sta-
tistical methods and no machine learning methods) demonstrated that a composite
forecast using exponential smoothing and SARIMA/ARIMA performed the best
and showed MAPE as low as 5%. It was because the model captured the demand
pattern well with level and trend for both ARIMA and exponential models.

A limitation to this part of research is the fact that the data was synthetic, which
means there is no information about business context to help us choose suitable
features and algorithms. There is also no exogenous factors such as open orders
available in the data set. It is the reason why only time-related features were used
in training the Light GBM algorithm. Normally Light GBM has issue dealing with
trend and seasonality in a time-series data, but it can be mitigated by using the
output of LightGBM as weight to adjust the forecast by trend forecasting models
such as ARIMA and Prophet [85]. A future research direction we suggest is to
use statistical and Machine Learning methods with a hybrid approach [21, 85] to
improve forecast accuracy.

7.2 Storage Simulator

To answer RQ2:
Which factors affect the effectiveness of an ABC storage policy?

Five factors affect the effectiveness of an ABC storage policy: the policy variant,
classification /division method, layout, zone size, and real-time assignment methods.
A policy variant is how A, B,and C sections are arranged based on the specific
indoor environment of a warehouse. Variants may perform differently due to different
pick/delivery points. For layout, we should choose suitable storage types: a drive-
in storage does not work well with ABC storage policy while rack storage does.
For ABC class division methods, frequency is a common parameter used to classify
the products, and more advanced methods such as EIQ and COI can also be used
depending on the type of warehouse. We also found from studies that ABC storage
zone size allocation should be optimised to prevent overstocking, causing products
to be stored in another section. The optimal size can be determined by heuristics
or a method proposed by [67] with Machine Learning and simulation methods. Last
but not least, using real-time assignment methods such as linear programming and
affinity methods can further improve picking efficiency.

The next part answers RQ3:
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How to model an environment with storage and other areas of a ware- house and
measure KPIs including the travel distance and picking time in the picking process?

We applied a combined DES and ABS method to design the simulation model in
Chapter 4. The model may be classified based on the framework by paper [8] with
the following subjects, as Table 28 shows.

Subject Description Justification

Type of Study

A mix of Type A and
B: for specific application
and template that can

We showed an applica-
tion of measuring several
KPIs in a hypothetical

warehouse. The model
is specified conceptually
and the implementation
is also described.

The DES part consists of
process flows, queue han-
dling, event and schedule
generation, etc. The ABS
part consists of proper-
ties, states and variables
of individual agents.

be utilised by other mod-
ellers.

Type of Simulation DES plus partial ABS

Hybrid Simulation Inte- | Interaction AnyLogic uses interac-
gration Method tion method [8] to close
the gap between DES and
ABS.
Data Input Sources [lustrative Synthetic Data.
Level of Implementation | Potential for real-life im- | Other modellers can ex-
plementation pand and modify the

model and implementa-
tion to suit different pur-
poses and level of detail.

TABLE 28: Classification of our Simulation Model

The simulation model we proposed is suitable for warehouses that deals with bulk
SKUs, meaning that all SKUs are palletised and picking a SKU implies picking up a
pallet. It is dissimilar to multiple SKU picking where a picker travels to the storage,
collects a SKU from a storage bin, and proceeds to the next picking location until
all order-lines are collected. Multiple picks are applicable to, for example, an e-
commerce which deals with cellphones, medicines, supplements, etc. or to a spare
parts warehouse where small spare parts of cars are stored. Single picking is the
default picking behaviour in the AnyLogic Material Handling Library. Multiple picks
can be custom designed and implemented with Java, but it would require additional
programming effort.

In the AnyLogic simulation model, we employed some aspects of ABS method by
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utilising properties and variables of individual products so that we can assign them
to the correct class-based areas in the storage, and it also enables us to measure, for
instance, time stamps and states of individual products. A full ABS would suggest
that agents have autonomous behaviour and can interact with or react to other
agents. These features are feasible to be implemented in AnyLogic, as shown by an
example [33]. A full ABS might be suitable for warehouses with AGVs or drones,
who are agents with their own logic of searching for a route and avoiding traffic
congestion. In our case, full ABS is unnecessary because we do not have any AGVs,
and we assume that every forklift follows a pre-defined routing logic with automatic
avoidance of obstacles; this allows us to isolate these factors and focus on our KPI
objectives.

Our model is similar to study [71] which examines order picking time using multiple
SKU picking method with pre-defined routing methods. For future research, our
KPIs about worker utilisation and waiting time could be useful if incoming and out-
going SKUs are known upfront in the short term. It allows the user of the simulation
tool to detect bottleneck. This is similar to study [20], in which it attempts to allo-
cate workers to maximise inbound and outbound service level. The assignment and
allocation of workers found using the method from this study can be tested in the
AnyLogic model to simulate the real operations in warehouse. Another feature that
could be implemented in our model is schedule generator and control introduced by
paper [55] to manage storing and picking tasks.

There are some limitations to the model. For example, the simplification of the
designed layout. In a real warehouse, obstacles such as walls and doors should be
modelled so that the forklifts will act based on these environmental factors while
travelling. In the assessment of the total travel distance and picking time, we did not
perform storing process in parallel with picking process because different warehouses
may have different replenishment or storing mechanisms and we want to isolate
picking from storing. In a real warehouse, they might affect each other and have
impact on the picking time. Another limitation to the experiments is that the orders
generated are extrapolated from the historic order frequency for a 24-hour period.
The KPIs obtained are therefore representative of an average day.

7.3 Use Cases of the Data-driven Services

This section answers RQ4:

How do warehousing stakeholders use the forecast and storage simulation services
for decision making?

From the literature review, we observed that few study had touched on how to ef-
fectively apply the solutions in the real decision making processes in warehouses
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particularly in simulation studies. For example, many simulation studies demon-
strated the results derived from simulation models but it was unclear whether the
solutions offered by the models were actually applied in the real warehouses or how
the solutions could be used to benefit stakeholders on a regular basis. To tackle
this issue, we designed use cases so that developers and stakeholders can work to-
gether to benefit from the services to make better decisions on worker assignment
and storage policy. The forecasting and storage simulator services have the following
implemented architecture, as Figure 34 shows. A limitation of this architecture is
that the data transfers between AnyLogic and Power BI are mostly manual.

7.4 Summary

This thesis addressed two main challenges of warehousing business: picking demand
forecast and evaluation of ABC storage policy variants. They are deemed as two
data-driven services because first: data is acquired from a data warehouse, which
can be refreshed on daily basis to be up-to-date; second: decision-making factors
are also based on data generated by forecasting algorithms in forecasting service,
and simulation model in the Storage Simulator. For forecasting service, we used
SARIMA for our picking demand prediction, and discussed that accuracy could be
further improved in the future by combining Light GBM and trend-based models.
For Storage Simulator, we used a combined DES and ABS approach to model a
warehouse in AnyLogic, allowing us to accurately define and measure the KPIs in
the picking process, which then enables us to evaluate the goodness of the policy
variants. We also reviewed factors influencing effectiveness of ABC storage policy,
which provides directions for future research on optimisation of ABC storage policy.
The connection between the two services is that the forecasting service can estimate
the number of workers needed to carry out picking tasks in a given time frame. It
is especially true for a large warehouse. As shown by [21], forecast was done for
different zones in a large warehouse that handles tens of thousands of product units
per day. Knowing how many pickers are needed for each zone helps us allocate the
right number of pickers in the simulation model to have the simulation environment
closer to the reality.

Our recommendation for future research is to expand the forecasting service to serve
as a generic data service so that it supports the Storage Simulator with more data
as input such as shift and schedule. The Storage Simulator can also be expanded to
include features such as layout change analysis and shift optimiser for workers. An
improvement could be made for the integration, which should be more automated
rather having to transfer data manually to the visualisation tool.

91



Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

9]

[10]

Mohammed Abdelghany and Amr Eltawil. “A Discrete-Event and Agent-
Based Hybrid Simulation Approach for Healthcare Systems Modeling and
Analysis”. In: Mar. 2016.

AndresHG. Time Series Analysis: A Complete Guide. Kaggle. 2022. URL:
https://www . kaggle . com/ code/andreshg/timeseries - analysis-a-
complete-guide.

AnyLogic. “Optimizing E-commerceWarehouse Operations”. In: (2023). URL:
https://www.anylogic.com/resources/case-studies/optimizing-e-
commerce-warehouse-operations/.

Unknown Author. Chapter 4 Ezponential Smoothing. See section 4.4.2 Mul-
tiplicative Holt-Winters Method. Unknown Year. URL: https://bookdown .
org/fjcc/timeseries/chapter-4-exponential-smoothing.html.

MJ Bahmani. Understanding Light GBM Parameters (and How to Tune Them,).
2023. URL: https://neptune.ai/blog/lightgbm-parameters-guide.

Prashant Banerjee. ARIMA Model for Time Series Forecasting. Accessed:
2023-09-29. 2021. URL: https://www . kaggle . com/ code/prashant1ll/
arima-model-for-time-series-forecasting.

M. L. J. Boer. “A Forecasting Model for Daily Case Picking Volumes in Ware-
houses”. In: (2022). URL: https://research.tue.nl/en/studentTheses/a-
forecasting-model-for-daily-case-picking-volumes-in-warehouses.

Sally C. Brailsford et al. “Hybrid simulation modelling in operational research:
A state-of-the-art review”. In: European Journal of Operational Research 278.3
(2019), pp. 721-737. 1SSN: 0377-2217. DOI: https://doi.org/10.1016/j.
ejor .2018.10.025. URL: https://www.sciencedirect . com/science/
article/pii/S0377221718308786.

Jason Brownlee. Introduction to Time Series Forecasting with Python: How to
Prepare Data and Develop Models to Predict the Future.

Aurelija Burinskiene. “Order picking process at warehouses”. In: International
Journal of Logistics Systems and Management - Int J Logist Syst Manag 6
(Jan. 2010). DOT: 10.1504/IJLSM.2010.030958.

92


https://www.kaggle.com/code/andreshg/timeseries-analysis-a-complete-guide
https://www.kaggle.com/code/andreshg/timeseries-analysis-a-complete-guide
https://www.anylogic.com/resources/case-studies/optimizing-e-commerce-warehouse-operations/
https://www.anylogic.com/resources/case-studies/optimizing-e-commerce-warehouse-operations/
https://bookdown.org/fjcc/timeseries/chapter-4-exponential-smoothing.html
https://bookdown.org/fjcc/timeseries/chapter-4-exponential-smoothing.html
https://neptune.ai/blog/lightgbm-parameters-guide
https://www.kaggle.com/code/prashant111/arima-model-for-time-series-forecasting
https://www.kaggle.com/code/prashant111/arima-model-for-time-series-forecasting
https://research.tue.nl/en/studentTheses/a-forecasting-model-for-daily-case-picking-volumes-in-warehouses
https://research.tue.nl/en/studentTheses/a-forecasting-model-for-daily-case-picking-volumes-in-warehouses
https://doi.org/https://doi.org/10.1016/j.ejor.2018.10.025
https://doi.org/https://doi.org/10.1016/j.ejor.2018.10.025
https://www.sciencedirect.com/science/article/pii/S0377221718308786
https://www.sciencedirect.com/science/article/pii/S0377221718308786
https://doi.org/10.1504/IJLSM.2010.030958

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Felix T.S. Chan and H.K. Chan. “Improving the productivity of order pick-
ing of a manual-pick and multi-level rack distribution warehouse through the
implementation of class-based storage”. In: Fxpert Systems with Applications
38.3 (2011), pp. 2686-2700. 1SSN: 0957-4174. DOIL: https://doi.org/10.
1016/ j . eswa.2010.08.058. URL: https://www. sciencedirect . com/
science/article/pii/S0957417410008547.

Felix T.S. Chan and H.K. Chan. “Improving the productivity of order pick-
ing of a manual-pick and multi-level rack distribution warehouse through the
implementation of class-based storage”. In: Fxpert Systems with Applications
38.3 (2011), pp. 2686-2700. 1SSN: 0957-4174. DOIL: https://doi.org/10.
1016/ j . eswa.2010.08.058. URL: https://www . sciencedirect . com/
science/article/pii/S0957417410008547.

Cheng chen et al. “High season demand forecasting method in logistics ware-
house inventory management”. In: JEICE F-025 (2020). URL: https://www.
ieice.org/publications/conferences/summary.php?id=FIT0000014278&
expandable=2&ConfCd=F&session_num=6d&lecture_number=F-025&year=
2020&conf _type=F.

Tiangi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. 2016.

Kelsey Clements et al. “Evaluation of warehouse bulk storage lane depth and
ABC space allocation using simulation”. In: 2016 Winter Simulation Confer-
ence (WSC). 2016, pp. 2239-2249. DOT: 10.1109/WSC. 2016 . 7822265.

Kelly Derickx. “A comparative study of different storage policies in warehouse
management”. In: (2012).

Negri E. and Fumagalli L.and Macchi M. “A Review of the Roles of Digi-
tal Twin in CPS-based Production Systems”. In: Procedia Manufacturing 11
(2017), pp. 939-948. DOI: https://doi.org/10.1016/j.promfg.2017.07.
198.

Michael P. Foley. Chapter 4 Exponential Smoothing. See sections on Additive
and Multiplicative Holt-Winters Method for information on the trend com-
ponent. 2023. URL: https://bookdown . org/mpfoleyl1973/time-series/
exponential.html.

Aidan Fuller et al. “Digital Twin: Enabling Technologies, Challenges and Open
Research”. In: IEEE Access 8 (2020), pp. 108952-108971. por: 10 . 1109/
ACCESS.2020.2998358.

Odkhishig Ganbold et al. “A Simulation-Based Optimization Method for Ware-
house Worker Assignment”. In: Algorithms 13.12 (Dec. 2020), p. 326. ISSN:
1999-4893. DOI: 10.3390/213120326. URL: http://dx.doi.org/10.3390/
al1l3120326.

93


https://doi.org/https://doi.org/10.1016/j.eswa.2010.08.058
https://doi.org/https://doi.org/10.1016/j.eswa.2010.08.058
https://www.sciencedirect.com/science/article/pii/S0957417410008547
https://www.sciencedirect.com/science/article/pii/S0957417410008547
https://doi.org/https://doi.org/10.1016/j.eswa.2010.08.058
https://doi.org/https://doi.org/10.1016/j.eswa.2010.08.058
https://www.sciencedirect.com/science/article/pii/S0957417410008547
https://www.sciencedirect.com/science/article/pii/S0957417410008547
https://www.ieice.org/publications/conferences/summary.php?id=FIT0000014278&expandable=2&ConfCd=F&session_num=6d&lecture_number=F-025&year=2020&conf_type=F
https://www.ieice.org/publications/conferences/summary.php?id=FIT0000014278&expandable=2&ConfCd=F&session_num=6d&lecture_number=F-025&year=2020&conf_type=F
https://www.ieice.org/publications/conferences/summary.php?id=FIT0000014278&expandable=2&ConfCd=F&session_num=6d&lecture_number=F-025&year=2020&conf_type=F
https://www.ieice.org/publications/conferences/summary.php?id=FIT0000014278&expandable=2&ConfCd=F&session_num=6d&lecture_number=F-025&year=2020&conf_type=F
https://doi.org/10.1109/WSC.2016.7822265
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.198
https://bookdown.org/mpfoley1973/time-series/exponential.html
https://bookdown.org/mpfoley1973/time-series/exponential.html
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.3390/a13120326
http://dx.doi.org/10.3390/a13120326
http://dx.doi.org/10.3390/a13120326

21

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

Teun van Gils et al. “The use of time series forecasting in zone order pick-
ing systems to predict order pickers’ workload”. In: International Journal of
Production Research 55.21 (2017), pp. 6380-6393. DOI: 10.1080/00207543.
2016.1216659. URL: https://doi.org/10.1080/00207543.2016.1216659.

M. Grieves and J. Vickers. “Digital Twin: Mitigating Unpredictable, Undesir-
able Emergent Behavior in Complex Systems. In Transdisciplinary Perspec-
tives on Complex Systems”. In: Springer (2017), pp. 85-113. DOI: https :
//doi.org/10.1007/978-3-319-38756-7_4.

M. Grieves and J. Vickers. “Origins of the digital twin concept”. In: 2016,
pp. 2798-2810.

Jinxiang Gu, Marc Goetschalckx, and Leon F. McGinnis. “Research on ware-
house operation: A comprehensive review”. In: FEuropean Journal of Opera-
tional Research 177.1 (2007), pp. 1-21. 1SSN: 0377-2217. DOIL: https://doi.
org/10.1016/j.ejor.2006.02.025. URL: https://www.sciencedirect.
com/science/article/pii/S0377221706001056.

Zhang He and Sun Yu. “Application of Light GBM and LSTM combined model
in vegetable sales forecast”. In: Journal of Physics: Conference Series 1693.1
(Dec. 2020), p. 012110. DOI: 10.1088/1742-6596/1693/1/012110. URL:
https://dx.doi.org/10.1088/1742-6596/1693/1/012110.

Charles C. Holt. “Forecasting seasonals and trends by exponentially weighted
moving averages”. In: International Journal of Forecasting 20.1 (2004), pp. 5—
10. 1SSN: 0169-2070. DOIL: https://doi.org/10.1016/j.ijforecast.2003.
09.015. URL: https://www.sciencedirect.com/science/article/pii/
S50169207003001134.

N.J. Huitink. “Workforce Prediction of Order Picking Personnel”. In: (Aug.
2020). URL: http://essay.utwente.nl/83027/.

Rob J Hyndman and George Athanasopoulos. Holt-Winters’” seasonal method.
In Forecasting: Principles and Practice (2nd ed). 2018. URL: https://otexts.
com/fpp2/holt-winters.html.

W. Inmon. “The data warehouse and data mining”. In: Communications of the
ACM 39 (11 1996), pp. 49-50. DOI: 10.1145/240455.240470.

Milan Jemelka et al. “ABC analyses with recursive method for warehouse”.
In: 2017 jth International Conference on Control, Decision and Information
Technologies (CoDIT). 2017, pp. 0960-0963. DOI: 10 .1109/CoDIT . 2017 .
8102722.

Abby Jenkins. “55 Expert Warehouse Order Picking Tips and Best Practices”.
In: (2021). URL: https://www.netsuite.com/portal/resource/articles/
ecommerce/warehouse-order-picking-tips.shtml.

Nick Cox Jeremias K. Determine best ARIMA model with AICC and RMSE.
2016. URL: https ://stats . stackexchange . com/ questions /219605 /
determine-best-arima-model-with-aicc-and-rmse.

94


https://doi.org/10.1080/00207543.2016.1216659
https://doi.org/10.1080/00207543.2016.1216659
https://doi.org/10.1080/00207543.2016.1216659
https://doi.org/https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/https://doi.org/10.1016/j.ejor.2006.02.025
https://doi.org/https://doi.org/10.1016/j.ejor.2006.02.025
https://www.sciencedirect.com/science/article/pii/S0377221706001056
https://www.sciencedirect.com/science/article/pii/S0377221706001056
https://doi.org/10.1088/1742-6596/1693/1/012110
https://dx.doi.org/10.1088/1742-6596/1693/1/012110
https://doi.org/https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/https://doi.org/10.1016/j.ijforecast.2003.09.015
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134
http://essay.utwente.nl/83027/
https://otexts.com/fpp2/holt-winters.html
https://otexts.com/fpp2/holt-winters.html
https://doi.org/10.1145/240455.240470
https://doi.org/10.1109/CoDIT.2017.8102722
https://doi.org/10.1109/CoDIT.2017.8102722
https://www.netsuite.com/portal/resource/articles/ecommerce/warehouse-order-picking-tips.shtml
https://www.netsuite.com/portal/resource/articles/ecommerce/warehouse-order-picking-tips.shtml
https://stats.stackexchange.com/questions/219605/determine-best-arima-model-with-aicc-and-rmse
https://stats.stackexchange.com/questions/219605/determine-best-arima-model-with-aicc-and-rmse

[33] Edward Junprung and Sahar Esmacilzadeh. “ Automated Guided Vehicle (AGV)
Powered by AI”. In: (2023). URL: https://cloud. anylogic . com/model/
bc88f3be-bba6-4962-abcl-a26def59994d?mode=SETTINGS.

[34] Jan Karasek. “An Overview of Warehouse Optimization”. In: International
Journal of Advances in Telecommunications, Electrotechnics, Signals and Sys-
tems 2.3 (2013), pp. 111-117. 1sSN: 1805-5443. DOI: 10.11601/ijates.v2i3.
61. URL: http://www.ijates.org/index.php/ijates/article/view/61.

[35] Dirk Kauke, Stefan Galka, and Johannes Fottner. “Digital Twins in Order
Picking Systems for Operational Decision Support”. In: Jan. 2021. DOI: 10.
24251/HICSS.2021.200.

[36] Vivek Khanzode and Bhavin Shah. “A comprehensive review of warehouse
operational issues”. In: International Journal of Logistics Systems and Man-
agement 26 (Jan. 2017), p. 346. DOI: 10.1504/IJLSM.2017.10002597.

[37] Thai Young Kim, Rommert Dekker, and Christiaan Heij. “Improving ware-
house labour efficiency by intentional forecast bias”. In: International Journal
of Physical Distribution and Logistics Management 48.1 (2018). Cited by: 12;
All Open Access, Green Open Access, pp. 93-110. boI: 10.1108/IJPDLM-10-
2017-0313. URL: https://www.scopus. com/inward/record.uri?eid=2-
s2.0-85040256873&doi=10.1108%2fIJPDLM-10-2017-0313&partnerID=
40&md5=£d57b798e61b4dc8a9490436e1150772.

[38] S. Kolassa. “Combining exponential smoothing forecasts using Akaike weights”.
In: International Journal of Forecasting 27.2 (2011), pp. 238-251.

[39] Benjamin Korth, Christian Schwede, and Markus Zajac. “Simulation-ready
digital twin for realtime management of logistics systems”. In: 2018 IEEE
International Conference on Big Data (Big Data). 2018, pp. 4194-4201. DOTI:
10.1109/BigData.2018.8622160.

[40] R. d. Koster, T. Le-Duc, and K. J. Roodbergen. “Design and control of ware-
house order picking: a literature review”. In: European Journal of Operational
Research 182 (2 2007), pp. 481-501. DOI: 10.1016/j.ejor.2006.07.009.

[41] Nikolaos Kourentzes, Juan R. Trapero, and Devon K. Barrow. “Optimising
forecasting models for inventory planning”. In: International Journal of Pro-
duction Economics 225 (2020), p. 107597. 1SSN: 0925-5273. DOI: https://doi.
org/10.1016/j.1ijpe.2019.107597. URL: https://www.sciencedirect.
com/science/article/pii/S0925527319304323.

[42] Michael E. Kuhl et al. “Warehouse Digital Twin: Simulation Modeling and
Analysis Techniques”. In: 2022 Winter Simulation Conference (WSC) (2022),
pp. 2947-2956. URL: https://api.semanticscholar. org/CorpusID:256220070.

[43] Gilbert Laporte. “The traveling salesman problem: An overview of exact and
approximate algorithms”. In: Furopean Journal of Operational Research 59.2
(1992), pp. 231-247. 1SSN: 0377-2217. DOI: https://doi.org/10.1016/0377-
2217(92) 90138 -Y. URL: https : //www . sciencedirect . com/ science /
article/pii/037722179290138Y.

95


https://cloud.anylogic.com/model/bc88f3be-b5a6-4962-abc1-a26def59994d?mode=SETTINGS
https://cloud.anylogic.com/model/bc88f3be-b5a6-4962-abc1-a26def59994d?mode=SETTINGS
https://doi.org/10.11601/ijates.v2i3.61
https://doi.org/10.11601/ijates.v2i3.61
http://www.ijates.org/index.php/ijates/article/view/61
https://doi.org/10.24251/HICSS.2021.200
https://doi.org/10.24251/HICSS.2021.200
https://doi.org/10.1504/IJLSM.2017.10002597
https://doi.org/10.1108/IJPDLM-10-2017-0313
https://doi.org/10.1108/IJPDLM-10-2017-0313
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040256873&doi=10.1108%2fIJPDLM-10-2017-0313&partnerID=40&md5=fd57b798e61b4dc8a9490436e1150772
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040256873&doi=10.1108%2fIJPDLM-10-2017-0313&partnerID=40&md5=fd57b798e61b4dc8a9490436e1150772
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040256873&doi=10.1108%2fIJPDLM-10-2017-0313&partnerID=40&md5=fd57b798e61b4dc8a9490436e1150772
https://doi.org/10.1109/BigData.2018.8622160
https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/https://doi.org/10.1016/j.ijpe.2019.107597
https://doi.org/https://doi.org/10.1016/j.ijpe.2019.107597
https://www.sciencedirect.com/science/article/pii/S0925527319304323
https://www.sciencedirect.com/science/article/pii/S0925527319304323
https://api.semanticscholar.org/CorpusID:256220070
https://doi.org/https://doi.org/10.1016/0377-2217(92)90138-Y
https://doi.org/https://doi.org/10.1016/0377-2217(92)90138-Y
https://www.sciencedirect.com/science/article/pii/037722179290138Y
https://www.sciencedirect.com/science/article/pii/037722179290138Y

|44]

|45]

[46]

47|

48]

[49]

[50]

[51]

[52]

[53]

[54]

Jiewu Leng et al. “Digital twin-driven joint optimisation of packing and storage
assignment in large-scale automated high-rise warehouse product-service sys-
tem”. In: International Journal of Computer Integrated Manufacturing 34.7-8
(2021), pp. 783-800. DOI: 10.1080/0951192X.2019.1667032. eprint: https:
//doi.org/10.1080/0951192X.2019.1667032. URL: https://doi.org/10.
1080/0951192X.2019.1667032.

Jiaxi Li and Mohsen Moghaddam. “Dynamic storage assignment with product
affinity and ABC classification—a case study”. In: vol. 84. 2016, pp. 2179-2194.
URL: https://link.springer.com/article/10.1007/s00170-015-7806-
T#citeas.

Augustyn Lorenc and Tone Lerher. “Effectiveness of Product Storage Policy
According to Classification Criteria and Warehouse Size”. In: (2018). URL:
http://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2019/1451-
20921901142L . pdf.

Shan Lu, Hongyue Li, and Xiaojun Yu. “The Application of EIQ Analysis
to The Order Picking of Book Industry”. In: Proceedings of the International
Conference on Logistics, Engineering, Management and Computer Science.
Atlantis Press, 2015/07, pp. 93-97. I1SBN: 978-94-6252-102-5. DOI: 10.2991/
lemcs-15.2015.18. URL: https://doi.org/10.2991/1lemcs-15.2015.18.

Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc. 2017.

Yuri Merkuryev, Aurelija Burinskiene, and Galina Merkuryeva. “Warehouse
Order Picking Process”. In: Jan. 2009, pp. 147-165. ISBN: 978-1-84882-186-6.
DOI: 10.1007/978-1-84882-187-3_9.

Bhoomica Nataraja. “Simulation of storage strategies for a forward-reserve
warehouse”. In: (2019). URL: https://research.tue.nl/en/studentTheses/
simulation-of-storage-strategies-for-a-forward-reserve-warehouse.

N.C. Nielsen. AR Racking - Drive In compact racking system. 2023. URL:
https://www.nc-nielsen.com/ar-racking-drive-in-racking-system.

Kannan Nilakantan. “Replenishment policies for warehouse systems under
cyclic demand”. In: International Journal of Business Performance and Supply
Chain Modelling 5 (Jan. 2013). DOIL: 10.1504/IJBPSCM.2013.053491.

Michael J. North and Charles M. Macal. Managing Business Complezity: Dis-
covering Strategic Solutions with Agent-Based Modeling and Simulation. Ox-
ford University Press, Apr. 2007. 1SBN: 9780195172119. DOI: 10.1093/acprof :
0s0/9780195172119.001.0001. URL: https://doi.org/10.1093/acprof:
0s0/9780195172119.001.0001

Fariborz Y Partovi and Murugan Anandarajan. “Classifying inventory using
an artificial neural network approach”. In: Computers Industrial Engineer-
ing 41.4 (2002), pp. 389-404. 1sSSN: 0360-8352. DOI: https://doi.org/10.
1016/50360-8352(01) 00064 -X. URL: https://www.sciencedirect.com/
science/article/pii/S036083520100064X.

96


https://doi.org/10.1080/0951192X.2019.1667032
https://doi.org/10.1080/0951192X.2019.1667032
https://doi.org/10.1080/0951192X.2019.1667032
https://doi.org/10.1080/0951192X.2019.1667032
https://doi.org/10.1080/0951192X.2019.1667032
https://link.springer.com/article/10.1007/s00170-015-7806-7#citeas
https://link.springer.com/article/10.1007/s00170-015-7806-7#citeas
http://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2019/1451-20921901142L.pdf
http://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2019/1451-20921901142L.pdf
https://doi.org/10.2991/lemcs-15.2015.18
https://doi.org/10.2991/lemcs-15.2015.18
https://doi.org/10.2991/lemcs-15.2015.18
https://doi.org/10.1007/978-1-84882-187-3_9
https://research.tue.nl/en/studentTheses/simulation-of-storage-strategies-for-a-forward-reserve-warehouse
https://research.tue.nl/en/studentTheses/simulation-of-storage-strategies-for-a-forward-reserve-warehouse
https://www.nc-nielsen.com/ar-racking-drive-in-racking-system
https://doi.org/10.1504/IJBPSCM.2013.053491
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/https://doi.org/10.1016/S0360-8352(01)00064-X
https://doi.org/https://doi.org/10.1016/S0360-8352(01)00064-X
https://www.sciencedirect.com/science/article/pii/S036083520100064X
https://www.sciencedirect.com/science/article/pii/S036083520100064X

[55] Pawel Pawlewski. “DES/ABS Approach to Simulate Warehouse Operations”.
In: Highlights of Practical Applications of Agents, Multi-Agent Systems, and
Sustainability - The PAAMS Collection. Ed. by Javier Bajo et al. Cham:
Springer International Publishing, 2015, pp. 115-125. ISBN: 978-3-319-19033-4.

[56] C. G. Petersen. “The impact of routing and storage policies on warchouse effi-
ciency”. In: International Journal of Operations Amp; Production Management
19 (10 1999), pp. 1053-1064. DOI: 10.1108/01443579910287073.

[57] Benjamin Kai Pierre et al. “DYNAMIC ABC STORAGE POLICY IN ER-
RATIC DEMAND ENVIRONMENTS”. In: 2004. URL: https://api.semanticscholar.
org/CorpusID:55370916.

[58] Anindita Putri and Bayu Wahyudi. “Design of Performance Indicators in
Warehouse Management”. In: Indikator: Jurnal llmiah Manajemen dan Bisnis
7 (Jan. 2023), p. 73. DOI: 10.22441/indikator.v7il.17843.

[59] F. Abd. Razak et al. “Load Forecasting Using Time Series Models”. In: Jurnal
Kejuruteraan 21.1 (2009), pp. 53-62.

[60] Gwynne Richards. “Warehouse processes: pick prepration”. In: Warehouse Man-
agement: A complete guide to improving efficiency and minimizing costs in the
modern warehouse. KoganPage, 2017.

[61] Stewart Robinson. “Conceptual modelling for simulation Part II: A framework
for conceptual modelling”. In: Journal of the Operational Research Society 59
(Mar. 2008), pp. 291-304. DOI: 10.1057/palgrave. jors.2602369.

[62] Kees Jan Roodbergen. “Storage Assignment for Order Picking in Multiple-
Block Warehouses”. In: (2012). Ed. by Riccardo Manzini, pp. 139-155. DOI:
10.1007/978-1-4471-2274-6_7. URL: https://doi.org/10.1007/978-1-
4471-2274-6_7.

[63] Kees Jan Roodbergen and René De Koster. “Routing order pickers in a ware-
house with a middle aisle”. In: European Journal of Operational Research 133
(Aug. 2001), pp. 32-43. DOI: 10.1016/S0377-2217(00)00177-6.

[64] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis. “An analysis
of several heuristics for the traveling salesman problem”. In: SIAM journal on
computing 6.3 (1977), pp. 563-581.

[65] A. Al-Saadi, W. Al-Saadi, and J. M. Guerrero. “Microgrid Digital Twins: Con-
cepts, Applications, and Future Trends. IEEE Transactions on Industry Ap-
plications”. In: Springer (2021). DOI: https://doi.org/10.1109/TIA.2021.
3107980.

[66] Sumit Saha. XGBoost vs Light GBM: Which Algorithm Wins in a Fight? Ac-
cessed: yyyy-mm-dd. 2023. URL: https://neptune.ai/blog/xgboost-vs-
lightgbm.
[67] Allyson Silva et al. “Estimating optimal ABC zone sizes in manual ware-
houses”. In: International Journal of Production Economics 252 (2022), p. 108579.
ISSN: 0925-5273. DOI: https://doi.org/10.1016/7.1ijpe.2022.108579.
URL: https://www.sciencedirect.com/science/article/pii/S0925527322001682.

97


https://doi.org/10.1108/01443579910287073
https://api.semanticscholar.org/CorpusID:55370916
https://api.semanticscholar.org/CorpusID:55370916
https://doi.org/10.22441/indikator.v7i1.17843
https://doi.org/10.1057/palgrave.jors.2602369
https://doi.org/10.1007/978-1-4471-2274-6_7
https://doi.org/10.1007/978-1-4471-2274-6_7
https://doi.org/10.1007/978-1-4471-2274-6_7
https://doi.org/10.1016/S0377-2217(00)00177-6
https://doi.org/https://doi.org/10.1109/TIA.2021.3107980
https://doi.org/https://doi.org/10.1109/TIA.2021.3107980
https://neptune.ai/blog/xgboost-vs-lightgbm
https://neptune.ai/blog/xgboost-vs-lightgbm
https://doi.org/https://doi.org/10.1016/j.ijpe.2022.108579
https://www.sciencedirect.com/science/article/pii/S0925527322001682

[68] Taylor G. Smith et al. pmdarima: ARIMA estimators for Python. 2017—. URL:
http://www.alkaline-ml.com/pmdarima.

[69] Stata Time-Series Reference Manual. See section on Seasonal Holt-Winters
methods. URL: https://www.stata.com/manuals/tstssmoothshwinters.
pdf.

[70] Ashik Talupula. “Demand Forecasting Of Outbound Logistics Using Machine
learning”. In: (2018). URL: http://www.diva-portal . org/smash/get/
diva2:1367098/FULLTEXTO02. pdf.

[71] Grzegorz Tarczynski. “Warehouse Real-Time Simulator — How to Optimize
Order Picking Time”. In: (2013). DOI: https://dx.doi.org/10.2139/ssrn.
2354827. URL: https://ssrn.com/abstract=2354827.

[72] Tran Thanh and Le Van Dai. “Grid search of exponential smoothing method:
a case study of Ho Chi Minh City load demand”. In: Indonesian Journal of
FElectrical Engineering and Computer Science 19 (May 2020). DOT: 10.11591/
ijeecs.v19.13.pp1121-1130.

[73] Korrakot Yaibuathet Tippayawong, Apichat Sopadang, and Patchanee Pati-
tad. “Improving warehouse layout design of a chicken slaughterhouse using
combined ABC class based and optimized allocation techniques”. In: 2013.
URL: https://api.semanticscholar.org/CorpusID:16222836.

[74] Korrakot Yaibuathet Tippayawong, Apichat Sopadang, and Patchanee Pati-
tad. “Improving warehouse layout design of a chicken slaughterhouse using
combined ABC class based and optimized allocation techniques”. In: 2013.
URL: https://api.semanticscholar.org/CorpusID:16222836.

[75] Ngoc Cuong Truong, Truong Giang Dang, and Duy Anh Nguyen. “Building
Management Algorithms in Automated Warehouse Using Continuous Cluster
Analysis Method”. In: AETA 2017 - Recent Advances in Electrical Engineering
and Related Sciences: Theory and Application. Ed. by Vo Hoang Duy et al.
Cham: Springer International Publishing, 2018, pp. 1068-1077. 1SBN: 978-3-
319-69814-4.

[76] Metasebiya Tsige. “Improving order-picking efficiency via storage assignments
strategies”. In: 2013. URL: https://api.semanticscholar.org/CorpusID:
17291058.

[77] René van Bevern and Viktoriia A. Slugina. “A historical note on the 3/2-
approximation algorithm for the metric traveling salesman problem”. In: His-
toria Mathematica 53 (2020), pp. 118-127. 1SSN: 0315-0860. DOI: https://
doi.org/10.1016/j.hm.2020.04.003. URL: https://www.sciencedirect.
com/science/article/pii/S0315086020300240.

[78] Nicolas Vandeput. Data Science for Supply Chain Forecasting. Walter de Gruyter,
2021.

[79] Jesus Vazquez-Serrano, Rodrigo Peimbert-Garcia, and Leopoldo Cardenas-
Barron. “Discrete-Event Simulation Modeling in Healthcare: A Comprehen-
sive Review”. In: International Journal of Environmental Research and Public
Health 18 (Nov. 2021), p. 12262. DOI: 10.3390/1jerph182212262.

98


http://www.alkaline-ml.com/pmdarima
https://www.stata.com/manuals/tstssmoothshwinters.pdf
https://www.stata.com/manuals/tstssmoothshwinters.pdf
http://www.diva-portal.org/smash/get/diva2:1367098/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:1367098/FULLTEXT02.pdf
https://doi.org/https://dx.doi.org/10.2139/ssrn.2354827
https://doi.org/https://dx.doi.org/10.2139/ssrn.2354827
https://ssrn.com/abstract=2354827
https://doi.org/10.11591/ijeecs.v19.i3.pp1121-1130
https://doi.org/10.11591/ijeecs.v19.i3.pp1121-1130
https://api.semanticscholar.org/CorpusID:16222836
https://api.semanticscholar.org/CorpusID:16222836
https://api.semanticscholar.org/CorpusID:17291058
https://api.semanticscholar.org/CorpusID:17291058
https://doi.org/https://doi.org/10.1016/j.hm.2020.04.003
https://doi.org/https://doi.org/10.1016/j.hm.2020.04.003
https://www.sciencedirect.com/science/article/pii/S0315086020300240
https://www.sciencedirect.com/science/article/pii/S0315086020300240
https://doi.org/10.3390/ijerph182212262

[30]

[81]

[82]

[83]

[84]

[85]

[36]

Sven Winkelhaus et al. “Hybrid order picking: A simulation model of a joint
manual and autonomous order picking system”. In: Computers Industrial En-
gineering 167 (2022), p. 107981. 1SSN: 0360-8352. DOI: https://doi.org/
10.1016/j.cie.2022.107981. URL: https://www.sciencedirect.com/
science/article/pii/S0360835222000511.

P. R. Winters. “Forecasting sales by exponentially weighted moving averages”.
In: Management Science 6 (3 1960), pp. 324-342. DOI: 10.1287/mnsc.6.3.
324.

Yugang Yu Xiaolong Guo and René B.M. De Koster. “Impact of required
storage space on storage policy performance in a unit-load warehouse”. In:
International Journal of Production Research 54.8 (2016), pp. 2405-2418. DOTI:
10.1080/00207543.2015.1083624. eprint: 3.2015.1083624. URL: https:
//doi.org/10.1080/00207543.2015.1083624.

Charles Zaiontz. Holt-Winters Additive Method. 2021. URL: https://www.
real-statistics.com/time-series-analysis/forecasting-smoothing/
holt-winters-additive-method/.

Tong Zhou. “Improved Sales Forecasting using Trend and Seasonality Decom-
position with LightGBM”. In: (May 2023).

Tong Zhou. “Improved Sales Forecasting using Trend and Seasonality Decom-
position with LightGBM”. In: 2023 6th International Conference on Artifi-
cial Intelligence and Big Data (ICAIBD). 2023, pp. 656—661. DOI: 10.1109/
ICAIBD57115.2023.10206380.

Margareta Ziviénjak, Kristijan Rogi¢, and Ivona Bajor. “Case-study analysis
of warehouse process optimization”. In: Transportation Research Procedia 64
(2022). International Scientific Conference “The Science and Development of
Transport - Znanost i razvitak prometa”, pp. 215-223. 1SSN: 2352-1465. DOI:
https://doi.org/10.1016/j.trpro.2022.09.026. URL: https://www.
sciencedirect.com/science/article/pii/S2352146522006408.

99


https://doi.org/https://doi.org/10.1016/j.cie.2022.107981
https://doi.org/https://doi.org/10.1016/j.cie.2022.107981
https://www.sciencedirect.com/science/article/pii/S0360835222000511
https://www.sciencedirect.com/science/article/pii/S0360835222000511
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1287/mnsc.6.3.324
https://doi.org/10.1080/00207543.2015.1083624
3.2015.1083624
https://doi.org/10.1080/00207543.2015.1083624
https://doi.org/10.1080/00207543.2015.1083624
https://www.real-statistics.com/time-series-analysis/forecasting-smoothing/holt-winters-additive-method/
https://www.real-statistics.com/time-series-analysis/forecasting-smoothing/holt-winters-additive-method/
https://www.real-statistics.com/time-series-analysis/forecasting-smoothing/holt-winters-additive-method/
https://doi.org/10.1109/ICAIBD57115.2023.10206380
https://doi.org/10.1109/ICAIBD57115.2023.10206380
https://doi.org/https://doi.org/10.1016/j.trpro.2022.09.026
https://www.sciencedirect.com/science/article/pii/S2352146522006408
https://www.sciencedirect.com/science/article/pii/S2352146522006408

Appendix A

A.1 LightGBM Parameters

Below is the most important parameters in Light GBM according to[5].
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Parameter Description

objective Specifies the optimization objective during the training
process, e.g., binary, regression.

metric Defines the evaluation metric to be used for model eval-
uation, e.g., auc, binary error, binary logloss, etc.

boosting Specifies the boosting type to be used, e.g., gbdt
(traditional Gradient Boosting Decision Tree), dart
(Dropouts meet Multiple Additive Regression Trees),
goss (Gradient-based One-Side Sampling), etc.

lambda 11 Controls L1 regularization, helping to avoid overfitting

by penalizing complex models.

bagging fraction

Specifies the fraction of data to be used for each boost-
ing iteration, also known as subsampling.

bagging freq

Defines the frequency of bagging, i.e., performing bag-
ging every k iterations.

num_ leaves

Sets the maximum number of leaves for each weak
learner (tree).

feature fraction

Specifies the fraction of features to be used for each
boosting iteration, also known as column subsampling.

max_depth

Controls the maximum depth of each trained tree.

max_bin

Specifies the maximum number of bins that feature
values will be bucketed into, which is crucial for the
histogram-based training method.

num _iterations

Specifies the number of boosting iterations, i.e., the
number of trees to build.

learning rate

Sets the step size shrinkage to prevent overfitting, com-
monly set between 0.01 and 0.3.

early stopping rounds

Stops training if the validation metric does not improve
for a specified number of rounds.

categorical feature

Specifies the categorical features in the dataset.

verbosity

Controls the level of detail in the output generated dur-
ing model training, e.g., 0 (silent), 1 (warning), 2 (info),
ete.

min data_in leaf

Sets the minimum number of data points required in a
leaf to continue splitting, helping to prevent overfitting.

TABLE 29: Descriptions of Light GBM Parameters

A.2 Simulation Model

This section contains topics related to the AnyLogic Simulation Model.
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A.2.1 Order Arrival Schedule

Below is the arrival schedule of orders for the two experiments.

Date & Time SKU Class SKU ID Number of SKU
Ordered

7/24/2023 9:00

7/24/2023 9:00

7/24/2023 9:01

7/24/2023 10:00
7/24/2023 10:01
7/24/2023 10:02
7/24/2023 11:00
7/24/2023 11:01
7/24/2023 11:02
7/24/2023 12:00
7/24/2023 12:01
7/24/2023 12:02
7/24/2023 13:00
7/24/2023 13:01
7/24/2023 13:02
7/24/2023 14:00
7/24/2023 14:01
7/24/2023 14:02
7/24/2023 14:03
7/24/2023 15:00
7/24/2023 16:00
7/24/2023 16:01
7/24/2023 17:00
7/24/2023 18:00
7/24/2023 18:01
7/24/2023 19:00
7/24/2023 20:00
7/24/2023 20:01
7/24/2023 21:01
7/24/2023 22:00
7/24/2023 22:01
7/24/2023 23:00
7/25/2023 0:00

7/25/2023 0:01
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TABLE 30: Scheduled SKU Order Arrival
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