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Summary

Soft continuum robots constitute a category of inherently compliant robots which can
interact safely with their surroundings. Therefore, they are considered a promising
technology in the biomedical field with possible applications in laparoscopy and en-
doscopy, among others. Unlike rigid-link robots which have definite kinematic map-
ping, the accurate analytical modeling of soft continuum robots is difficult, especially
when considering their non-linear deformation when actuated, the non-linear elas-
ticity of their materials, and their susceptibility to interactions with the environment.
Hence, soft continuum robots face modeling errors which lower the performance
of model-based control. The scope of the present thesis is the development of a
model-free reinforcement learning control scheme in order to control a pneumatic-
driven soft continuum robot in 3D space. A physical simulation environment which
is based on Cosserat rod theory and discrete differential geometry is used for pol-
icy training data generation while Proximal Policy Optimization is utilized for policy
optimization (i.e. controller optimization).
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Chapter 1

Introduction

In the present research, the 3D position control of a single-segment, multi-backbone
and pneumatic-driven soft continuum robot is investigated. The inherent compliance
of the examined soft continuum robot allows it to safely interact with its environment,
rendering it a promising technology for laparoscopy or endoscopy. Due to the fact
that such robots lack definite kinematic mapping, their accurate control constitutes
a challenging task. The scope of the present MSc thesis is the development of a
Model-Free Reinforcement Learning control scheme that could be utilized in order
to efficiently control the provided soft robotic device. In this chapter, soft contin-
uum robotic systems are analyzed as well as their state-of-the-art control strategies.
Finally, the motivation for the control strategy proposed in the present thesis is dis-
cussed.

1.1 Soft Continuum Robots

Soft continuum robotics constitute a relatively recent sub-field of robotics, since it
has been pioneered in the mid 1980s by James Wilson at Duke University [1–3].
As its name suggests, it is concerned with the design, fabrication and control of
continuum robotic systems which are built from highly compliant and flexible mate-
rials [4, 5]. Since soft continuum robots are a sub-category of continuum robots,
continuum robots are discussed first.

Continuum Robots

Continuum robots are robotic systems which are characterized by (potentially) in-
finite degrees of freedom/number of joints [6] and are designed to mimic the behavior
of biological systems such as tentacles, snakes or elephant trunks. Hence, contin-
uum robots constitute a special category of inherently compliant robots, character-
ized by their dexterity as well as their ability to adapt [7]. According to J. Burgner-

1



2 CHAPTER 1. INTRODUCTION

(a) Continuum robot with curvilinear
elastic structure. Image from [10]

(b) Hyper-redundant serial robot with 10
rigid joints. Image from [11]

Figure 1.1: Continuum Robots Vs Hyper-Redundant Robots

Kahrs et al. (2015), ”A continuum robot is an actuatable structure, whose constitutive
material forms curves with continuous tangent vectors” (p.1262) [8]. More specifi-
cally, in contrast to rigid-link robots which are constructed with discrete joints, con-
tinuum robots have a curvilinear elastic structure which renders the adjustment and
modification of their shape at any point along their bodies possible (Figure 1.1a).
This special characteristic makes continuum robots suitable for deployment in com-
plex environments or space-limited environments (e.g. inside the human body),
where the use of standard rigid-body robots is impossible [9].

Based on the above, the continuum robots’ core structures which continuously
curve is what differentiates them, not only from standard rigid-link robots, but from
hyper-redundant manipulators as well [8]. In particular, the possible shapes of the
hyper-redundant manipulators, only approximate curves with continuous tangent
vectors, through the use of multiple, discrete, rigid links and joints (Figure 1.1b).

Classification of Continuum Robots based on Structure, Number of Seg-
ments and Actuation Mechanisms

The core structure of a continuum robot is called backbone and it deforms com-
pliantly when external forces/torques are applied [12]. Based on the design of the
core structure, continuum robots are classified in the following three categories:

• Single-Backbone Continuum Robots: The core structure of the continuum
robots of this category consists of one central elastic backbone. Thus, the
transmission or actuation elements run through it [12].

• Multi-Backbone Continuum Robots: In this case, the core structure of the con-
tinuum robot consists of two or more elastic elements which can be either
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Figure 1.2: The investigated soft continuum robot. It consists of a single segment
which is intrinsically actuated via three internal elastic pneumatic cham-
bers. Therefore, its core structure is composed by four elastic elements
i.e. the three soft actuators (blue rods) plus the main backbone. Hence,
the investigated device constitutes a pneumatic-driven, single-segment,
multi-backbone continuum robot.

tubes or rods. They are placed in parallel to each other while being connected
to each other through some type of fixture [13].

• Concentric-Tube Continuum Robots: In this category, the robot’s backbone
consists of multiple concentric tubes.

The body of a continuum robot may consist of one or more segments. Hence,
based on the number of segments that compose their body, continuum robots are
classified in two categories. Single-segment continuum robots and multi-segment
continuum robots [14].

The actuation mechanisms of continuum robots, based on their location, are di-
vided in two categories [15]: the intrinsic actuation mechanisms and the extrinsic
actuation mechanisms. The intrinsic mechanisms have actuators which are located
inside the robot’s mechanism (Integrated Actuators) [16]. More specifically, the ac-
tuators of intrinsic mechanisms, are located within the continuum backbone. The
backbones of such robots, are usually composed by their intrinsic actuation mech-
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anisms. Typical examples of intrinsically actuated continuum robots are the follow-
ing [17]:

• Pneumatic-actuated continuum robots which deform when internal elastic cham-
bers are inflated.

• Fluidic elastomer actuated continuum robots. In this case, the actuation mech-
anism consists of a pneumatic network of channels in an elastomer. In order to
make the robot’s body bend, these channels are filled with a pressurized fluid
so that they expand. This expansion results in the robot’s bending motion.

• Electroactive Polymers actuated Continuum Robots. Here, the robot’s actua-
tion is achieved through the utilization of Electroactive polymers (EAP) which
are smart soft materials whose size and/or shape change when run through
by electric current.

• Shape Memory Alloy actuated Continuum Robots. In this category of contin-
uum robots, the contraction of Shape Memory Alloy material when its temper-
ature rises, is exploited for actuation purposes. As soon as, it is cooled down,
it returns to its initial state.

On the other hand, in the case of extrinsic mechanisms, external components are
utilized in order to manipulate the body of the robot, i.e. the actuators are external to
the robot. Since the actuators are located outside the continuum backbone (usually
at the base of the robot), the size and weight of continuum robots with extrinsic
actuation mechanisms are reduced [17]. Typical examples of extrinsically actuated
continuum robots are the following:

• Tendon/Wire actuated continuum robots. In this case, tendons or wires are
placed along the backbone and are fixed at fixtures in groups. The actuator,
usually a motor at the base of the robot, applies forces to the tendons/wires in
the robot base, resulting in the application of torques at the termination points.
These torques cause the bending of the backbone.

• Concentric-Tube Continuum Robots. Continuum robots of this structure can
be actuated only extrinsically. As stated before,these robots have a backbone
that consists of multiple concentric compliant tubes (or rods). The actuation at
the base of the continuum robot allows rotational and translational movement
between the concentric tubes. [12].

Based on the analysis above, the investigated continuum robot is defined as a
pneumatic-driven (i.e. intrinsically actuated), single-segment, multi-backbone con-
tinuum robot (Figure 1.2).
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Applications of Continuum Robots and their Structural Limitations

In their early stage, continuum robots were characterized by a large structure
since they were found suitable for certain industrial applications such where high
robot flexibility and dexterity are required (e.g. grasping) [18]. Furthermore, the
applicability of continuum robots for human-rescuing operations in space-limited en-
vironments has been verified as well [19]. However the high flexibility of continuum
robots come at the cost of low payload which imposes considerable structural limi-
tation to these robots [15].

From Continuum Robots to Soft Continuum Robots

As the scale of continuum robots reduced, and the focus shifted to delicate ma-
nipulation and safe human-robot interaction, the category of soft continuum robots
emerged [15]. Soft continuum robots share all the characteristics of continuum
robots while being composed of highly compliant and flexible materials (i.e soft elas-
tic/ malleable materials). Therefore, the bodies of soft continuum robots are built
mainly from soft materials (e.g. polymers). In case of soft continuum robots with
intrinsic actuators (as in the investigated case), soft actuators are also utilized. In
general, the integrated sensors of soft continuum robots should be soft or at least
flexible [20]. Hence, soft continuum robots constitute a category of inherently com-
pliant robots which can interact safely with their surroundings [4]. The inherent com-
pliance and flexibility of soft continuum robots render them significantly safer for
human-robot interaction than their rigid-link counterparts, thereby giving them a sig-
nificant advantage [5]. Therefore, soft continuum robots are considered a promising
technology in the biomedical field with possible applications in minimally-invasive
surgery. In particular, the inherent compliance of soft continuum robots coupled with
their shape changing properties, renders them capable for navigating inside the hu-
man body while making the operation less invasive [8, 21]. Apart from minimally
invasive surgery, soft continuum robots proved to be a promising technology in the
fields of exo-suits and deep-sea exploration [22, 23].

Considering the above, soft continuum robots are highly adaptable in unstruc-
tured environments and characterized by increased safety in terms of physical inter-
action with humans [24]. These characteristics render them a promising technology
in surgical assistance, rehabilitation and environmental exploration among others.
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Figure 1.3: Kinematic mapping in rigid link robots. f(q) represents the robot’s for-
ward kinematics while f−1(x) represents the inverse kinematics. Ac-
tuation space is essentially the joint space (actuation through pris-
matic/revolute joints).

1.2 Challenges in Soft Continuum Robot Control

A large portion of soft continuum robot related research is focused heavily on the
design of control schemes that render the accurate control of these robotic devices,
possible. However, soft continuum robot control is considered a highly challenging
control problem due to the softness of the robot’s material as well as the need for
robot-specific controllers and integrated sensors. In particular, soft continuum robot
control is highly dependent on integrated sensors which measure the robot’s state
as well as the environment’s state [25]. However, sensor integration is particularly
challenging in soft continuum robots since these sensors have to stretch, bend and
deform along with the robot, while not restricting the robot’s movement [20]. Fur-
thermore, in soft robot control, the control system design and the sensor selection,
depends on the utilized actuation mechanism. Thus, each actuation mechanism
(fluidic, electric, magnetic etc.) requires different controllers as well as different sen-
sors. Furthermore, the soft materials that compose soft continuum robots, present
non-linear and time-dependant properties [25]. Hence, unlike conventional rigid-link
robots, which are controlled directly by the actuation produced by their joint motors
and have definite kinematic mapping (Figure 1.3), soft continuum robots lack definite
mapping between actuation space and task space [15]. In other words, in rigid-link
robots the relationship between the configuration space and the task space is linear
whereas in soft continuum robots the aforementioned relationship is non-linear due
to material elasticity.
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Figure 1.4: Kinematic mapping in soft continuum robots.

Naturally, the accurate analytical modelling of soft continuum robots is consid-
ered extremely difficult due to the elasticity of the robot’s material, the non-linear
deformation of the robot when actuated, and potential collisions with objects in their
environment. Due to the fact that soft continuum robots are highly compliant, their
interaction with an obstacle would cause deformation to their bodies, which could
result in undesired configurations regardless of the actuation commands [15]. Sens-
ing the deformation effects due to a collision and feeding them back to the model
is challenging and stability issues can emerge. It is also noteworthy that consider-
able modelling uncertainties are often present in the case of soft continuum robots,
since these robots are susceptible to wear-out effects which occur over time and can
alter their characteristics. Additionally, even though analytical models of soft contin-
uum robots exist [25] and they could be utilized for closed-loop position control in
the examined case, their dependence on integrated sensors and limited universality
constitute deterring factors. In particular, measurement systems for actuator de-
formation (i.e. measurements of actuator length/strain/curvature) and end-effector
displacement would be needed as well as a mathematical model of the utilized pneu-
matic actuators.

Finally, the objective of the present thesis is end-effector position control in task
space. Thus, in a closed-loop scenario, the inverse kinematics of the soft contin-
uum robot would play a significant role (i.e. start from the desired position in task
space and determine the needed actuation). Nonetheless, even when using an-
alytical models, the calculation of inverse kinematics is challenging as there is no
definite number of solutions and a closed-form solution might not even exist [7].
This can be understood when examining the kinematic mapping of soft continuum
robots’ analytical models (Figure 1.4). In these models, the modelling of continuum
kinematics is based on an evolving frame along a continuous backbone which is pa-
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rameterized by its arc length. These arc parameters are essentially the coordinates
of the configuration space thereby fully describing the robot’s shape. The mapping
from the actuation space to the configuration space (and vice versa) is non-linear
and depends on the soft continuum robot’s design and actuation mechanism (robot
dependent mapping). On the other hand, the mapping from configuration space to
task space is rendered possible via the arc parameters and it is independent of the
soft continuum robot’s design. Thus, the calculation of inverse kinematics when us-
ing (mapping from task space to actuation space) leads to non-linear equations with
often no analytical solution.

1.3 Data-Driven Soft Continuum Robot Control

Due to the aforementioned challenges in soft continuum robot control, data-driven
control techniques were extensively researched in the recent years. In fact, data-
driven control proved to be an effective way for controlling such robotic devices
due to the fact that no prior physics-based analytical modelling is required [15].
This is the case, because in data-driven control, the inverse kinematics are esti-
mated based on experimental data obtained by sensors, thereby circumventing the
need for parameterizing the soft continuum robot with differential equations. Natu-
rally, since physics-based analytical modelling can be avoided in data-driven control,
data-driven methods are less computationally complex. The main groups of control
strategies that have been widely utilized for soft continuum robot control, and are
based on data-driven control, are the following [15]:

• Iteration-based Kinematic Model-Free Control

• Control based on Supervised Learning

• Hybrid Control

• Reinforcement Learning-based Control

Although physics-based analytical modelling is limited in data-driven control,
modelling and simulation of soft continuum robots is required for the application
of hybrid control or Reinforcement Learning based control since they are dependent
either on prior knowledge of the robot’s forward dynamics/kinematics or on simula-
tion data. Therefore it is important to mention some common simulators used for
modelling and simulation of soft continuum robots:

• Simulators based on Finite Elements Modelling (FEM) [26]. Since Finite Ele-
ment Modeling (FEM) is considered an effective method to model soft robotic
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systems, FEM simulators have been widely used for soft continuum robot de-
sign and modelling [26]. FEM constitutes a general numerical method, which
can be used to solve the partial differential equations describing the dynamics
of soft continuum robots based on a continuum mechanics model, thereby ad-
dressing the non-linearities that occur due to large mechanical deformations
as well as material non-linearities and contact non-linearities. Two popular
continuum mechanics models for soft continuum robot modelling are Kirchoff-
Love models and Cosserat models. More specifically, in Kirchoff-Love rod the-
ory, the soft continuum robot is modelled as 1D slender rod which can only
bend and twist. Thus, it is assumed that the length of the rod is much larger
than the radius at any cross-section and therefore the rod’s (robot’s) dynamical
behavior can be approximated by averaging balance equations at every cross-
section [27]. In Cosserat-Rod theory the bodies of soft continuum robots are
Cosserat rods, which constitute an extension of Kirchhoff rods. In particular,
Cosserat rods share all the characteristics of Kirchhoff rods but apart from
bending and twisting, they can also account for stretching and shearing at ev-
ery cross-section [27]. Consequently, FEM simulators are used to solve the
partial differential equations that emerge, by dividing the soft continuum robot
into smaller, simpler parts called finite elements [28]. Popular soft robot sim-
ulators based on FEM are ”SOFA” and ”SAMCEF (MECANO)” but of course
”ANSYS”, ”COMSOL” and ”ABAQUS” can also be utilized for soft robot simu-
lation.

• Simulators based on Discrete Differential Geometry [29], which are essentially
numerical simulation tools for soft continuum robots based on a discrete differ-
ential geometry computational framework [29]. Discrete Differential Geometry
is the analysis of fundamental geometric concepts (e.g. curvature) through
computational and mathematical tools.

• Simulators based on Cosserat-Rod theory and Discrete Differential Geome-
try [30]. In these simulators, the Cosserat model is consistently discretized
based on discrete differential geometry. The open-source soft robot simulation
software ”Elastica” belongs in this category [30].

• Simulators based on Ritz-Galerkin method and Cosserat theory [31]. The ba-
sis of these simulators is the parameterization of the Cosserat rod’s configura-
tion by vector fields such as the strain vector field. In that way, the curvature
of the soft robot’s body is modelled, and the soft robot’s dynamics reduce to a
set of Lagrange Ordinary Differential Equations in time [31]. A well-known soft
continuum robot simulator of this category, is MATLAB’s ”SoroSim”.
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It is important to clarify that the feasibility of each of the aforementioned soft
continuum robot simulators depends on the user’s specific needs and goals. In
general, simulators based on continuum mechanics theories (e.g. ”SoroSim”, ”Elas-
tica”, ”SOFA”) are consistent in modelling the geometry, dynamics and kinematics
of soft continuum robots. Therefore, in the context of the present thesis, the focus
is concentrated on these simulators. In particular, FEM-based soft robot simula-
tors (such as ”SOFA”) achieve the highest modelling accuracy and in contrast to the
rest, they are also able to model 3D complex systems in a multi-physics context [31].
Hence, from a designer’s perspective, FEM-based simulators are the most suitable
choice since they can be utilized for soft robot actuation design as well. On the other
hand, from a control engineering perspective, such simulators are deemed unsuit-
able, since they are particularly computationally expensive and their adaptation to
soft continuum robot control is difficult because of the extremely large number of
DoF of the produced models. Simulators based on continuum mechanics and Ritz
method (such as ”SoroSim”) are most efficient for 1D problems that involve mod-
elling of systems which can be represented as beams with small cross-sectional
inflation [31]. The reduced complexity of the produced models in this case, render
their coupling with control possible. Similarly, simulators based on continuum me-
chanics and discrete differential geometry (Elastica) are suitable for 1D problems.
”Elastica” offers a fast real-time interactive soft continuum robot simulation which
can be adapted in order to be coupled with control algorithms [30].

In the present thesis, the objective is soft continuum robot control based on
Model-Free Reinforcement Learning. On one hand, computational expenses are
particularly important since this type of control is based on a large number of in-
teractive simulations and thus simulators that offer fast interactive simulations are
desired. On the other hand, a continuum mechanics simulator is also desired in
order to ensure consistent modelling at all levels. Therefore, both SoroSim and
Elastica are deemed suitable choices. However, Elastica is chosen as the physical
simulation environment in the present thesis, since it is an open-source software
and it has already been deemed suitable for RL control [30].

1.3.1 Iteration-based Kinematic Model-Free Control

As already mentioned, in rigid body robots there is a linear relation between ac-
tuation space and configuration space and thus a definite kinematic mapping be-
tween the actuation space and the task space exists. This is not the case with soft
continuum robots due to the non-linear elasticity of their material. Simultaneously,
the analytical models of soft continuum robots, only approximate the soft contin-
uum robot’s kinematic mapping using certain assumptions (e.g. constant curvature
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assumption). To address this problem, model-free approaches which are based on
iterative optimization have been developed in [32–35]. These approaches are based
on the estimation of the Jacobian matrix (at each time-step) in order to obtain the
robot-dependent mapping. Despite the fact that the Jacobian matrix changes non-
linearly while the soft continuum robot is moving, in the works presented in [32–35]
it is stated that within a control interval such changes can be considered linear if the
investigated continuum robot moves slowly.

Optimization-Based Jacobian Matrix Estimation

In the works presented in [32, 34, 35], optimization-based Jacobian matrix es-
timation is utilized for the development of closed-loop model-free control schemes
for tendon-driven continuum robots. Therefore, the goal in the aforementioned ap-
proaches is the update of Jacobian matrix at every time-step in order to obtain the
continuum robot’s inverse kinematics. Thus, the idea is the following: Assuming that
the robot has n-DoF design and each one is independent from the other, the Jaco-
bian matrix is initialized by actuating the n-DoFs successively with a small amount
while keeping track of the resulted displacements. Hence, the Jacobian matrix can
be reconstructed and updated at every time-step by solving an optimization problem
via quadratic programming. The optimization problem is essentially the calculation
of the smallest change of the Jacobian matrix which ensures that:

• the Jacobian matrix maps the small change in actuation to the small change in
End-Effector task position linearly, during a control interval.

• the Jacobian matrix of the current time step is equal to the Jacobian matrix of
the previous time step plus the change in the Jacobian matrix.

It is important to mention that in the discussed cases [32, 34, 35], tendon-driven
continuum robots are examined, in which the tension of each tendon can be mea-
sured with force sensors in order to calculate the minimum change in actuation com-
mand needed. Hence, even though the strategies followed in [32, 34, 35] may be
valuable for tendon-driven soft continuum robots, they are deemed unsuitable for the
pneumatic-driven soft continuum robot of the present thesis.

Methods Utilizing Adaptive Kalman Filter

Non-linear Kalman Filters have also been proposed for effective soft continuum
robot control. More precisely, an approach that does not involve kinematic modelling
has been introduced in [33]. In particular, in this case, the change in the elements of
the Jacobian matrix is addressed as the stochastic system’s process noise. There-
fore, an adaptive Kalman Filter is utilized for the estimation of the Jacobian matrix
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entries. The calculation procedure is based on the utilization of an adaptive covari-
ance matrix for the process noise η(k) which results in a Kalman Filter with improved
convergence as well as tracking performance against system uncertainties. Finally,
the desired configuration that corresponds to the minimal robot deformation (thus
minimal actuation change) is defined based on the updated Jacobian matrix.

1.3.2 Soft Continuum Robot Control based on Supervised Ma-
chine Learning

Supervised Learning algorithms are also utilized for soft continuum robot control
since they are able to learn the mapping from the actuation space to the task
space [15]. More precisely, this group of control algorithms use Supervised Ma-
chine Learning techniques in order to estimate the inverse Kinematics/Statics of soft
continuum robots. Similarly to the iteration-based model-free control schemes, su-
pervised learning control requires only actuator information and a sensor that can
provide information regarding the position of the end-effector in task space. Alter-
natively, information for other control objectives, like the robot’s configuration in the
task space, can be used. Hence, it can be concluded that in supervised learning
soft continuum robot control, dependence on sensors is low.

For context, assuming that all forces acting on the robot are at rest at equilibrium,
the configuration of the robot is described by a statics model. On the other hand, a
kinematics model does not take into consideration the applied forces and the robot
movement is described explicitly geometrically, in terms of its functional dimensions,
degrees of freedom, its workspace and its positional constraints/capabilities. Essen-
tially forward kinematics are used to map the actuator velocity to end-effector veloc-
ity. If cable-driven soft robots are examined, the tension of the cables are mapped to
the position of the tip via forward statics. Therefore, in this case, the inverse statics
are used to map the tip position to cable tensions. Thus, the inverse statics calcu-
late the needed cable tensions so that the tip of the soft robot reaches the desired
position [36, 37]. It is worth mentioning that open-loop control schemes are based
on the calculation of inverse statics, whereas feedback closed-loop control is also
dependent on the calculation of the inverse kinematics.

In the corresponding scientific literature, a variety of machine learning-based
control techniques has been proven promising or even validated for soft continuum
robot control [15]. An analysis on them is presented in the following pages.

Regression-Based Methods for Mapping Approximation

Neural Networks constitute a regression method that is often utilized for inverse
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Kinematics/Statics estimation [15]. Researchers in the field focused mainly on re-
gression methods to achieve accurate mapping approximation. Apart from the typi-
cal Feed-Forward Neural Networks, three regression methods were examined:

• Extreme Learning Machines (ELMs) [38]. Extreme learning machines are
feed-forward neural networks, commonly used for regression, classification,
clustering, feature learning etc. An extreme learning machine may consist of
a single hidden layer or multiple hidden layers. What differentiates ELMs from
standard neural networks is the utilization of the Moore-Penrose generalized
inverse for setting the weight matrix. In particular, the weights between the in-
put layer and the hidden layer do not require modification during the phases of
training and predicting [38]. The algorithm is the following: Firstly, the weight
matrix between the input and the hidden layer is randomly assigned by the
ELM. The same is done for the weight matrix between the hidden layer and
output layer. Subsequently, the ELM randomly assigns values for the bias of
the hidden layer. Then, an activation function in the hidden layer is selected.
Finally, the utilization of the least square optimization method, calculates the
weight matrix between the hidden layer and output layer that produces the
minimum error.

• Locally weighted projection regression (LWPR) [39]. This supervised learn-
ing algorithm is able to produce non-linear regression models, i.e the approx-
imation of non-linear relationship between input and output data is possible.
Therefore, high dimensional data spaces are not limiting the regression abili-
ties of such models. The basis of LWPR is the utilization of locally linear mod-
els, while univariate regressions are spanning them in the input space [39].

• Gaussian process regression (GPR) [40]. This algorithm also constitutes a
non-parametric approach to regression, but it is based on Bayes’ rule. What
differentiates GPR from other regression methods, is the prior specification
of a probability distribution over all the possible values of the fitted function’s
parameters. During the training stage, probabilities are changed based on the
observed data, using Bayes’ Rule [40].

The last two proved promising for the soft continuum robot control since they
were deemed satisfying in terms of performance [10, 41, 42]. Feed-Forward Neural
Networks have been found capable for estimating forward and inverse statics and
can be used for open loop soft continuum robot control where online sensors are
unavailable [15]. Nevertheless, forward/inverse kinematics constitute relative map-
pings, the calculation of which is usually difficult for Feed-Forward Neural Networks.
Thus, regression methods such as LWPR and GPR are utilized for Kinematics ap-
proximation since these algorithms typically converge more stably. Furthermore,
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when coupled with feedback from sensors, closed-loop control can be implemented,
leading to more accurate control [10, 37, 41, 42]. An advantage of regression mod-
els is the fact that they render online update of data possible. However, this comes
with higher computational expenses as well. For instance, calculating the inverse
of a high-dimension matrix for every model refinement time is necessary when uti-
lizing Gaussian Process Regression. The utilization of the local Gaussian Process
Regression however, can lead to high computational speed [42]. In such a case, the
workspace is divided into several sections (each consisting of less than 300 samples
for example) for the purpose of training and updating the model independently.

1.3.3 Hybrid Soft Continuum Robot Control

Hybrid controllers which combine analytical modelling and learning-based methods,
are considered effective for soft continuum robot control. In [43] a control strategy
based on fuzzy-neural control is utilized in order to control a flexible manipulator con-
sisting of multiple links. More specifically, a fuzzy controller constituted the primary
loop and determined the control actions while a neural network forming a secondary
loop, was used for compensating the impact of coupling. Furthermore, a control
scheme that combines model predictive control and model-free iterative learning has
been developed in order to make a soft robotic glove to track a trajectory [44, 45]. In
the studies of [46, 47] it is validated that the learning-based component of the hybrid
control schemes are able to compensate for errors in analytical modelling.

1.3.4 Reinforcement Learning-Based Control of Soft Continuum
Robots

Due to the recent developments in Artificial Intelligence, Reinforcement Learning-
based robot control has drawn the attention of the researchers of the field. Re-
inforcement Learning (RL) constitutes a framework in which the robot learns au-
tonomously to perform new tasks while interacting with its environment. Hence,
by utilizing RL the robot can execute a complicated task in a complex and dynamic
environment thereby surpassing limitations that may be present in conventional con-
trol strategies [15]. Reinforcement Learning robot control based on whether there
is prior knowledge of the state transition dynamics, can be divided in two main
categories: Model-Based Reinforcement Learning and Model-Free Reinforcement
Learning.

Model-Based RL for Soft Continuum Robot Control

Model-based RL for soft continuum robot control depends on the prior knowledge
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of the soft continuum robot’s forward dynamics and kinematics, since model-based
RL is applicable on problems where the transition model (i.e transition probability
matrix) and reward function are known a-priori or they are approximated [15, 48].
Therefore, in model-based RL soft continuum robot control, the robot’s forward
model, i.e. transition model, is either fit to real robot-environment interaction data or
analytical soft continuum robot models based on geometric assumptions are used
to derive the forward model. Once the forward model is available, it is utilized for
policy training data generation. The main advantage of model-based RL is that the
policy trained on a forward model which is derived from real data, can perform sta-
bly when transferred to the physical system. This is to be expected since data from
physical interactions are more realistic compared to data derived from simulation,
where a simplified virtual model is utilized. Nevertheless, it is important to clarify
that model-based RL soft robot control presents significant differences compared to
Reinforcement Learning-based control for conventional joint-linked robots since it is
associated with certain challenges which are not present in the case of conventional
joint-linked robots. In particular, apart from the difficulties which are associated with
the quality (presence of noise) and the collection (retrieving sensor data) of real
robot-environment interaction data. On top of that, frequent use of the soft contin-
uum robot for data collection purposes, can cause damages to the robot [15, 49].

Model-based RL control for a simulated tendon-driven soft robotic arm has been
proposed in [50]. The goal was to teach the manipulator to reach dynamic targets.
The forward model was derived using experiment data and utilizing a non-linear au-
toregressive network with exogenous inputs (NARX). The optimal action was given
directly by the policy trained on sampled trajectories. In [15], Deep Q-Learning was
utilized in order to control the position of a cable driven soft robotic arm. The robotic
arm was modelled using experimental data.

Model-Free RL for Soft Continuum Robot Control

The significant challenges associated with model-based RL soft robot control
shifted the focus of the research on model-free RL control techniques. In contrast
to the model-based RL approach, model-free RL does not require prior knowledge
of a transition model (i.e. transition probability matrix) and policy optimization is
achieved through the robot’s interaction with an unknown environment. In other
words, the optimal behavior is learned through interactions with an unknown environ-
ment. More precisely, in model-free RL soft continuum robot control, the robot and
its environment are modelled using a suitable soft robot simulator, and virtual robot-
environment data coming from the simulation are used for policy training. Therefore,
the utilization of virtual data instead of real data for policy training, bypasses the
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problems associated with real soft robot-environment interaction.

An example of model-free RL control scheme, which is implemented for con-
trolling a soft robotic arm with multiple segments, has been reported in [51]. The
objective was controlling the robot so that it is able to reach the desired target in 2D
space. Q-learning along with data derived from a simulation were utilized for policy
training. The developed control scheme was deemed effective and robust [51]. In
the work presented in [52], the same soft manipulator was used but with a more
complex objective. More specifically, a control algorithm was developed in order to
teach the robot to open a drawer and rotate a wheel. The designed control sys-
tem consisted of the RL controller trained by Q-learning algorithm for motion control
purposes and two more controllers. It was demonstrated that the proposed control
scheme can be effective for tasks involving robot-environment interaction within a
dynamic environment. Problems with higher dimensionality have also been exam-
ined however, since most real world soft robot applications require spatial control.
For instance, a 3D open-loop position control scheme for a soft manipulator, has
been proposed in [53]. The soft robot was modelled using Cosserat Rod theory and
policy training data were obtained from the corresponding simulation. In this case,
the RL algorithm that was utilized was Deep-Q Network (DQN) and the developed
strategy presented high accuracy according to the authors. Moreover, Dueling DQN
(DDQN) has also been examined and was utilized in order to teach a soft catheter
to steer inside a model of the human heart [54]. Multi-agent Temporal Difference
control has also been utilized by researchers in order to teach a soft manipulator to
provide bathing assistance [55]. In this case, each robot’s actuator is considered an
agent while all of them interacting with the same environment and policy evaluation
is done using the state-action-reward-state-action (SARSA) algorithm. Furthermore,
in [56], a closed-loop position control scheme for a soft continuum manipulator was
developed. The basic improvement of this study compared to [53], is the inclusion
of feedback from vision sensors as well as the utilization of the deep deterministic
policy gradient (DDPG) model-free RL algorithm. The introduced improvements en-
abled the examined soft robot to follow sophisticated trajectories with positional error
decrease due to the closed-loop formulation. Additionally, a control scheme based
on proximal policy optimization (PPO) and a central pattern generator (CPG), was
used for 2D position control of soft robot snakes in [57]. In [30], the model-free RL
control of a soft continuum robot with internal continuum actuation is examined. The
robot is modelled as a discretized Cosserat rod with the use of a suitable simulator
and the produced simulation is coupled with five deep RL algorithms. The objective
is to use model-free RL control in order to teach the robot to perform a series of
control tasks such as tracking a moving target in 3D space, reaching a target with
a specific orientation or reaching a target while moving through a series of physical



1.4. MOTIVATION FOR THE PROPOSED CONTROL STRATEGY & NOVELTY 17

obstacles. Finally, the soft continuum robot in this case is continuously actuated
through a continuous action functions which produces internal torques along the
robot’s body. The proposed actuation can make the robot bend and twist but not
elongate.

The existing literature on model-free RL soft continuum robot control, proves the
feasibility of such approaches for the problem examined in the present thesis.

1.4 Motivation for the proposed control strategy &
Novelty

In the present research, the effective 3D position control of a single segment, multi-
backbone, pneumatic-actuated soft continuum robot is investigated. Due to its de-
sign, the investigated robot is associated with modelling errors due to intrinsic and
extrinsic factors, i.e. no definite relationship between actuation space and task
space, undesired configurations due to interactions with the environment and wear-
out effects, which seriously limit the performance of model-based control strategies.
The aforementioned limitations coupled with the recent developments in Reinforce-
ment Learning-based control constituted the motive for the proposed approach in
the present thesis. More precisely, Reinforcement Learning-based soft robot control
is promising for the following reasons:

• Prior knowledge of the soft continuum robot’s configuration can be avoided
[15].

• In contrast to Supervised Learning-based soft robot control, where modelling
is limited in a specific workspace, Reinforcement Learning-based soft robot
control can expand manipulation to a complex or/and dynamic environment
[49].

Reinforcement Learning enables the soft continuum robot to learn from experi-
ence while interacting with the environment. Thus, problems regarding the collection
and the quality of the obtained data can occur. Additionally, damages from the fre-
quent movement of the soft robot can occur due to its pneumatic actuation. To avoid
the aforementioned issues, Model-Free Reinforcement Learning control is chosen
in the present research, where virtual data obtained from a suitable physical sim-
ulation environment are used for policy training. However, in contrast to the works
in [56] and [53], where static, semi-analytical models are used to train the RL agents,
in this research, a dynamic Cosserat-Rod model is utilized. Therefore, the robot’s
soft-body physics as well as its dynamics, degrees of freedom and environmental
contacts are modelled, while being combined with RL [30]. Furthermore, different



18 CHAPTER 1. INTRODUCTION

from the works presented in [51, 52, 54], in this research a multi-discrete actua-
tion space that allows elongation as well as bending in all possible directions in 3D
space, is designed. The design of observation space differentiates also, since it is
continuous in the present case. Similar to [57], Proximal Policy Optimization (PPO)
is utilized but this time for solving a 3D position control problem. Finally, similarly
to [30], Elastica software is utilized for virtual policy training data generation, how-
ever in the present thesis a considerably softer, smaller and more under-actuated
soft robot is investigated. Additionally, in contrast to the implementation in [30], the
actuation space in the present thesis is multi-discrete and the reward design is de-
signed specifically in order to stabilize the robot’s end-effector on the desired task
space position. It is also worth noting that in the case of the present research the
soft continuum robot is also able to elongate due to its actuation.

In the following chapter, i.e. Chapter 2, the applicability of model-free RL control
for the investigated case is explained while the related fundamental theoretical con-
cepts are introduced. Furthermore, the feasibility of a physical simulation environ-
ment based on Cosserat-Rod theory, for modelling and simulating the investigated
soft continuum robot is discussed while the mathematical description of the utilized
Cosserat-rod model is presented. In Chapter 3, the physical simulation’s set-up as
well as its adaptation for model-free RL control with Proximal Policy Optimization
(PPO) are discussed in order to present the implementation details of the proposed
approach. In Chapter 4, the obtained results are presented and analyzed while
examining the impact of reward function design and certain PPO hyperparameters
on them. Finally, in Chapter 5, the advantages and the potential of the developed
control scheme are discussed, its limitations are pointed out and recommendations
regarding future extension of the present research are given.



Chapter 2

Theoretical Background

The subject of the present thesis is the development of a model-free RL control
scheme based on Proximal Policy Optimization in order to control a pneumatic-
driven soft continuum robot control in 3D space. The investigated soft continuum
robot is actuated by three soft pneumatic chambers which render bending and elon-
gation of its soft body in 3D space possible (Figure 2.1). The robot’s soft body is
one single segment and its core is composed by multiple elastic elements (3 soft
actuators + 1 central elastic element). Therefore, the examined robot can be char-
acterized as a single-segment multi-backbone soft continuum robot with one of its
ends fixed and the other one free (Figure 2.1). The goal is to develop a control
scheme that moves the soft continuum robot’s free end-point (i.e tip/end-effector)
from point A to point B, in order to reach a target (and stay on the target) in 3D
space (Figure 2.2).

In this section, the theoretical aspects of the tools that are utilized in the context
of the present thesis, are analyzed. Firstly, the applicability of model-free RL con-
trol for the investigated case is explained while the related fundamental theoretical
concepts are introduced. Secondly, the feasibility of a physical simulation environ-
ment based on Cosserat-Rod theory, for modelling and simulating the investigated
soft continuum robot is discussed while the mathematical description of the utilized
Cosserat-rod model is presented.

2.1 Control via Model-Free Reinforcement Learning

Reinforcement Learning (RL) constitutes a sub-field of Machine Learning where
learning is based on a trial and error approach. In particular, the learning process
is based on the feedback the agent receives when interacting with the environment.
Of course in the present thesis the application of RL is focused on robot control.

In reinforcement learning robot control, the robot learns to take actions in an en-

19
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Figure 2.1: The investigated soft continuum robot.It consists of a single segment
which is intrinsically actuated via three internal elastic pneumatic cham-
bers. Therefore, its core structure is composed by four elastic elements
i.e. the three soft actuators (blue rods) plus the main backbone. Hence,
the investigated device constitutes a pneumatic-driven, single-segment,
multi-backbone continuum robot.

vironment for the purpose of maximizing the receiving positive feedback [58]. This
way, the robot can learn to perform the desired task in a way that fundamentally
emulates the human way of learning. Consequently, reinforcement learning robot
control can be defined as a sequential decision making process based on the re-
ward hypothesis. The reward hypothesis states that all tasks can be described by
the maximization of the expected cumulative reward starting from an initial state [59].
Therefore, reinforcement learning robot control is essentially an optimization prob-
lem since its goal is finding the optimal sequence of decisions that have to be taken
by the robot in order to maximize the cumulative reward, i.e. perform the control
task optimally. Taking into consideration the above general definitions, controlling
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Figure 2.2: Schematic representation of the soft robot (red curve) moving its end-
effector from point A (initial position of the end-effector) to point B (tar-
get).

the End-Effector position of the investigated pneumatic-driven soft continuum robot
in 3D space using RL, essentially means finding the optimal sequence of decisions
that minimize the euclidean distance between the robot’s End-Effector and the tar-
get. However a mathematical representation of this decision making process is
necessary. In general, optimization problems based on decision making can be
modelled as Markov Decision Processes (MDPs) thereby rendering it possible for
almost all RL problems to be formalized as MDPs [48]. The 3D position control

Figure 2.3: Agent-Environment interaction in Reinforcement Learning [60]

problem for the examined pneumatic-driven soft continuum robot is no exception.
Hence, the soft robot’s actions and reactions within the 3D task space can be for-
malized by an MDP. The MDP is defined as the tuple (S,A, P (s′|s, α), R, γ), where S

is the set of states, i.e the state-space, A is the set of possible actions i.e. actuation
space, P (s′|s, α) is the transition probability matrix, R(s, α) constitutes the reward
function and γ is the discount factor [61]. For the examined problem, the MDP is
characterized by a continuous state-space S and each state s can consist of the soft
robot’s position and velocity as well as the target’s position (and velocity in case of
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a moving target). A finite set of actions A is defined in each state as well. Here,
the soft robot can inflate its pneumatic chambers thereby increasing or decreasing
or keeping constant the produced actuation forces in order to elongate/compress
and/or bend in 3D space. The soft robot’s selected action along with the stochastic
nature of the environment (e.g. blowing wind, a moving obstacle etc), will determine
the new state that the robot will end up. Thus this change of state is a random pro-
cess. Nevertheless, the current state-action pair determines the distribution of the
next possible states for the robot. This random process represents the soft robot’s
forward Dynamics/Kinematics and in MDP terminology is called transition probabil-
ity matrix P . Each state transition is associated with a positive or negative reward.
This is determined by the reward function R which defines the expected immediate
reward the soft robot receives when taking an action α at state s. The policy π(a|s)
constitutes the mapping from the current state to the suggested action. The objec-
tive is the maximization of the expected future reward through the selection of the
appropriate actions, while also introducing time-dependent discounting γ to give dif-
ferent weighting to future rewards. Therefore in the investigated RL control problem,
the policy plays the role of the controller, and essentially the goal is optimizing the
policy so that the state-action pairs with the highest cumulative reward are produced
(i.e. robot’s end-effector finds the best way to reach the target).

Summarizing the above, the examined RL control problem can be stated mathe-
matically as an MDP which can be represented using by the tuple (S,A, P (s′|s, α), R, γ)

where the state space S consists of the robot’s and target’s all possible positions and
velocities, the set of possible actions A are described by the inflation of the robot’s
pneumatic chambers, P (s′|s, α) is the transition probability matrix, R(s, α) the man-
ually designed reward function and γ is the discount factor.

Model-Free Approach

In the context of the present thesis, a model-free RL control scheme is selected
for the 3D position control of the investigated system to avoid problems associated
with the use of the actual physical system such as damages to the robot because of
its interaction with the environment, partially observable state-space, stochastic na-
ture of the environment which affects robot’s dynamics and artifacts due to computer
discretization [58].

In model-based RL soft continuum robot control, the robot’s forward model, i.e.
transition model, is either fit to real robot-environment interaction data or analytical
soft continuum robot models based on geometric assumptions are used to derive
the forward model. Subsequently, the obtained forward model of the robot is utilized
in order to produce the sequences of states and actions, i.e. trajectory data:

τ = [(s0, a0), .., (sT−1, aT−1), (sT , .)] (2.1)
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Figure 2.4: Policy Training in Model-Free RL Soft Robot Control

which are used for policy training. On the other hand, model-free RL control does
not use an estimation of the robot’s forward model. Therefore, in the model-free
approach, the transition probability matrix is unknown and as a result the MDP is
unknown. In contrast to model-based RL, the followed model-free approach utilizes
only a physical simulation environment to produce the policy-training data, i.e trajec-
tory data. In other words, a physical simulation environment is utilized to model the
dynamics and kinematics of the investigated soft robot and its environment and sim-
ulate their interaction. Finally, the reward function is manually designed to reward
the soft robot as it shortens the distance between its end-effector and the target.
The policy-training process in the context of the followed model-free approach is
visualized in Figure 2.4.

Proximal Policy Optimization

In the present thesis, Proximal Policy Optimization (PPO) is utilized in order to
obtain the optimal policy (i.e. the optimal controller) for the examined soft robot
RL control problem. PPO belongs to the family of Actor-Critic RL algorithms [48]
which estimate both the policy (Actor) and the state value function (Critic) of the
Markov Decision Process. In PPO, two neural networks are used as actor and critic
function approximators thereby parameterizing the policy π(α|s) by θ = [θ1, θ2, ..., θN ]

and the state value function V (s) by ϕ = [ϕ1, ϕ2, ..., ϕM ]. Hence, the deterministic
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policy π(s) → α of value-based methods [48] is replaced by a stochastic policy
πθ(a|s) = P (α|s,θ) which constitutes a probability distribution parameterized by θ =

[θ1, θ2, ..., θN ]. Simultaneously, the state value function approximator Vϕ(s) i.e Critic,
estimates the expected return when being at state s. Hence, in PPO, actions are
sampled from a probability distribution while the parameter vector θ dictates the
sampling probability of these actions and these actions are evaluated by the Critic.
Therefore, in PPO the policy can be tuned directly as in Policy Gradient Methods,
while the state-value function can be used as a baseline function to reduce the
variance induced by policy gradient updates [48, 59].

Considering the above, the goal of RL control based on PPO, is the optimization
of the parameter vector θ in order to maximize the amount of reward received from
the MDP. Therefore, in a finite horizon discounted MDP the parameter vector θ that
maximizes the probability of following the highest reward trajectory starting from
initial state s0, must be found. Hence, the objective function is:

J(θ) = Eπθ
[
T−1∑
t=0

γtr(st)] (2.2)

where r(st) is the immediate reward, i.e reward when taking action α in state s at
time-step t and E is the symbol for expectation.Thus, the corresponding maximiza-
tion problem is:

maxθ(J(θ)) = maxθ(Eπθ
[
T−1∑
t=0

γtr(st)]) (2.3)

In PPO, as in all policy gradient methods, the policy is differentiable and it is
approximated by a neural network whose weights are essentially the parameters θ.
In general, to optimize the objective function, the gradient ∇θJ(θ) must be utilized
in order to update the parameter vector θ. For policy gradient methods the following
equation stands [48, 59, 62]:

∇θJ(θ) = Eπθ
[(

T−1∑
t=0

∇θlogπθ(at|st))(
T−1∑
t=0

γtr(st))] (2.4)

By extending equation (2.4) the following expression can be obtained [62]:

∇θJ(θ) = Eπθ
[
T−1∑
t=0

∇θlogπθ(at|st)Q(st, at)] (2.5)

Where Q(st, at) is the action-value function. Since the expected policy gradient up-
date is independent from the state-value function approximation Vϕ(st), the latter
can be used as baseline function [48, 62]. Hence, by using Vϕ(st) and exploiting
the Bellman optimality equation, the following expression for the gradient can be
obtained:
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∇θJ(θ) ≈
T−1∑
t=0

∇θlogπθ(at|st)(r(st) + γVϕ(st+1)− Vϕ(st)) (2.6)

The term r(st) + γVϕ(st+1)− Vϕ(st) coincides with the Temporal Difference error
and it is called the advantage function A(st, αt) (or advantage function approximator
in this case) [48]. Furthermore, PPO restricts the range within which the policy can
change [63]. Therefore, the difference in expected returns between two consecutive
policies (πθ,πθ+δθ) is expressed by the sum of the expected reward while following πθ

and the expected advantage of the next policy πθ+δθ. Hence, the expected reward of
the new policy can be expressed as the sum of the expected reward of the previous
policy and the expected advantage of the new policy [64].

J(πθ+δθ) = J(πθ) + Eπθ+δθ
[
T−1∑
t=0

γtAπθ(st, αt)] (2.7)

A positive advantage implies that the action taken led to a positively unexpected
reward. The actor objective function after adjustments for compatibility with Monte
Carlo updates and after the utilization of state samples and importance sampling it
takes the following form [64]:

J(πθ+δθ)− J(πθ) = Eπθ
[
πθ+δθ(α|s)
πθ(α|s)

Aπθ(s, α)] (2.8)

Finally, PPO uses a clipping range so that advantages achieved by large pa-
rameter updates (i.e updates which exceeded the specified range) are rejected.
Thus, PPO ensures that the policy after the update stays close to the previous
policy. In other words, the goal is to assure that the importance sampling ratio
ρt(πθ, πθ+δθ) = πθ+δθ(α|s)

πθ(α|s)
stays within a range around unity [63]. Stating the above

mathematically, the actor objective function in PPO is:

Lclip
πθ

= Eπθ
[
T−1∑
t=0

[min(ρt(πθ, πθ+δθ)A
πθ
t , clip(ρt(πθ, πθ+δθ), 1− ϵ, 1 + ϵ)Aπθ

t )]] (2.9)

Since there is no dependence of (1 − ϵ)A and (1 + ϵ)A on θ, their gradient is
0 (Figure 2.5). Consequently, samples outside the defined region are rejected
thereby avoiding large updates and the parameters are updated via stochastic gra-
dient ascent [63]. Finally, the parameters of the critic are updated by regression on
mean-squared error [63]. Thus, Lcritic =

1
M

∑M
i=1(Gi − Vϕ(si))

2, where M are the set
of current experiences (i.e. trajectory of state, action, immediate reward obtained
by following the current policy) that are used in order to update the critic param-
eter vector ϕ, Gi is the return that corresponds to experience i defined by a set of
state, action, immediate reward, and Vϕ(si) the approximation of state-value function
that corresponds to the state of ith experience.
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Figure 2.5: If the deviation between the updated policy and the previous one is
larger than ϵ, the gradient is zero for the corresponding sample. In this
graph, r is the importance sampling ratio ρ. Image from [63].

2.2 Soft Continuum Robot Modelling & Simulation

Since Model-Free RL control is the followed approach in the present research, the
policy-training data must be derived from a physical simulation environment. As al-
ready stated in the previous chapter, multiple environments for modelling and simu-
lation of soft continuum robots exist, each one based on a different theory or method.
Hence, selecting one environment over another entails differences in model accu-
racy and complexity. Therefore, in the context of Model-Free RL control, it is essen-
tial to select a modelling and simulation environment which ensures that the special
dynamics and kinematics of soft continuum robots are captured while the produced
model’s complexity renders its coupling with Model-Free RL algorithms possible.

2.2.1 Physical Simulation Environment Selection

The investigated physical system is conceptually similar to the beams studied in
classical mechanics. In particular, the examined soft continuum robot, as the term
continuum implies, is a continuous three-dimensional dynamic structure, whose
length is much larger compared to the diameter. Hence, due to its geometry, it can
be considered as a continuous slender beam. Therefore, it can be assumed that only
6 strains are possible for each infinitesimal material point of the robot’s body i.e. 2
shear strains, 1 normal strain, 2 bending strains and 1 twisting strain. Consequently,
it can be argued that modelling the examined system based on continuum mechan-
ics is sufficient, since its 3D-dynamics can be analyzed [65]. However, due to the
softness of the robot’s material, strains are large and thus the deformed configura-
tion of the examined robot differs substantially from its un-deformed configuration.
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This essentially means, that in the examined case, linear elasticity does not stand
and a continuum mechanics model, based on non-linear elasticity must be utilized.
To capture the continuum nature of the investigated robotic device, Cosserat-Rod
theory can be utilized, since Cosserat rods present the ability to bend, twist, shear
and stretch thereby modelling sufficiently all the possible deformations of the exam-
ined soft robotic system. The robot’s dynamics are expressed through a system of
geometrically exact and decoupled non-linear equations [65]. Furthermore, it has
been shown that the Cosserat rod model presents high accuracy when it is used for
modelling the shape of elongated rod-like continuum robots, such as the one that is
investigated in the present thesis [66–69].

Therefore, in the present thesis, the physical simulation environment is chosen
based on whether or not it satisfies the following conditions:

• It utilizes a dynamic Cosserat rod model that captures all possible deformations
while accounting for the non-linear elasticity of the robot’s material

• Its computational cost is not prohibitive for coupling it with RL

Elastica satisfies both of the aforementioned conditions, since it is able to con-
sistently model the geometry, dynamics and kinematics of the investigated soft con-
tinuum robots while offering a fast real-time interactive simulation which can be
adapted in order to be coupled with RL control algorithms [30]. Hence, for the scope
of the present research, it is chosen as the physical simulation environment which
is used for the application of Model-Free RL soft robot control. Elastica has shown
sufficient modelling accuracy without constituting an oversimplified approach nor a
prohibitively expensive one, computationally [27]. In particular, unlike spring-damper
rigid body solvers [70], Elastica is able to simulate the soft robot’s elastic behav-
ior while avoiding the complexity of finite elements methods (FEM). The feasibility
of Elastica has been demonstrated in multiple engineering problems involving the
modelling of complex biophysical systems such as bio-hybrid soft robots and biolog-
ical systems such as human joints, snakes and wings [27, 71, 72]. In the following
sections Cosserat rod theory is explained as well as how Elastica can solve the
dynamics/kinematics equations of the Cosserat rod to account for the soft robot’s
non-linear elasticity, and simulate its behavior.

2.2.2 Cosserat-Rod Theory

Cosserat rod theory constitutes an extension of the Kirchhoff rod theory [27]. In par-
ticular, Kirchhoff rod theory is used to model one-dimensional slender rods which
can only twist and bend. Cosserat rods extend Kirchhoff theory by taking into con-
sideration the ability of a rod to stretch and shear on top of bending and twisting [27].
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The Cosserat rod can be characterized as a mathematical concept [27, 65, 73]. In
particular, it can be described as an infinitely thin filament which forms an one-
dimensional continuum of material points (also called center-line or space-curve or
material curve) r(s, t) in task space, where t represents time and s its arc-length
(Figure 2.6).

Figure 2.6: Mathematical Description of a Cosserat Rod. Image from [27].

This filament consists of cross-sections which cannot deform and whose thick-
ness is approaching zero. Due to the absence of cross-sectional distortion as well as
the elements’ homogeneity, Poisson expansion as well as lateral inertia and stochas-
tic internal damping can be omitted. Consequently, the 3D dynamics of the Cosserat
rod can be described by a system of deterministic and geometrically exact non-linear
equations [65]. To fully describe a Cosserat rod, apart from the definition of the right
handed fixed Cartesian base (i.e. global frame defined by i, j, k), a set of direc-
tors d1, d2, d3 (i.e a triad of orthonormal basis vectors) is defined at each material
point. The directors also constitute the Cosserat rod’s local frame at each material
point (Figure 2.6). Thus, the location of each material point at arc-length s and the
orientation of vectors d1,d2 at these material points, uniquely identify the Cosserat
rod’s position and orientation in task space. It must also be clarified that each arc-
length coordinate s which corresponds to the current configuration of the Cosserat
rod uniquely identifies a material point. The transformation between the local frame
of an arbitrary material point and the global frame is possible using the 3×3 rotation
matrix Q whose elements are the directors of this material point expressed in global
frame [27]. Therefore, assuming a vector x = x1i + x2j + x3k expressed in global
frame, the same vector can be expressed in local frame using the following equation:
xL = QxG. Similarly, x = QTxL.

Since axial stretching or compression is possible in the case of the Cosserat rod,
it is important to make a distinction between the arc-length coordinate s of the axially
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strained configuration and the rest (i.e. axial strain-free) configuration arc-length co-
ordinate ŝ. The local stretching or compression ratio expresses the Cosserat rod’s
local deformation i.e how much the material point’s arc length changed relative to
rest reference configuration due to the presence of axial strain (Figure 2.6). Mathe-
matically, it can be defined as:

e(ŝ, t) =
ds

dŝ
(2.10)

The unit tangent vector t of a material point s expressed in current deformed
configuration, is given by:

∂r(s, t)

∂s
= t (2.11)

In equation 2.11, t is time and t is the unit tangent vector corresponding to ma-
terial point s. Therefore by substituting equation 2.10 to equation 2.11, the tangent
vector of the same material point s expressed in the rest reference configuration ŝ

becomes:
∂r(s, t)

∂ŝ
= e(ŝ, t) · t (2.12)

If there is local deformation due to axial stretching/compression (i.e. e ̸= 1) and
no shear strains, the tangent vector of the material point s is parallel to the director
d3. Hence, the axial strain can be expressed in global frame as:

σ = ed3 − d3 = (e− 1)d3 (2.13)

However, in a scenario where shear strains are also present, the director frame
is detached from the tangent vector and thus the director d3 shifts away from the
tangent vector i.e. t ̸= d3. This is visualized clearly in Figure 2.6 and the strain
vector expressed, in global frame, takes the following form:

σ = et− d3 (2.14)

Finally, the equations that describe the Cosserat rod’s kinematics and dynamics
have to be identified. In particular, in order to track changes in the rod’s shape, the
rate of change of the material frame Q(s, t) with respect to time is needed, since it is
associated with the rod’s angular velocity [65]. The relationship between the rate of
change of the directors in time and the angular velocity ω expressed in global frame
is shown in the following equation.

∂dk

∂t
= ω × dk (2.15)

where k=1,2,3. The rod’s translational velocity is simply [65]:

∂r

∂t
= v (2.16)
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The Cosserat Rod dynamics are defined by the conservation of linear and an-
gular momentum at each material point’s cross-section. Mathematically, they are
described by Equations (2.17),(2.18) which are expressed in global frame.

Linear :
∂(ρAv)

∂t
=

∂n

∂s
+ f (2.17)

Angular :
∂h

∂t
=

∂τ

∂s
+

∂r

∂s
× n+ c (2.18)

where ρ is the density of the rod’s material, A is the cross-sectional area in cur-
rent state, v is linear velocity and h is the angular momentum line density. The
internal force vector, caused by the presence of shear and/or axial strains at the
cross-section is represented by n and described in global frame. Simultaneously,
internal torques due to internal forces are described by the term ∂r

∂s
× n and τ is

the internal torque vector as a result of bending and/or twisting strains. Finally,
the vectors f , c represent the externally applied force and torque respectively. The
aforementioned strains express the local deformations of the rod relative to its ref-
erence configuration and therefore they are naturally expressed in the local frame.
Of course, this is also the case for the internal forces/torques which are produced
because of these strains. Thus, the equations (2.17) and (2.18) need to be closed
by defining a constitutive relation between the internal forces/torques and then ex-
pressed in local frame.

2.2.3 Constitutive Model

The solution to the system of equations (2.15)-(2.18) provides the dynamics and
kinematics of the Cosserat rod. However, in order to close the aforementioned sys-
tem, it is necessary to derive an explicit description of the internal torques and forces
that act on cross-sectional level. Elastica restricts the Cosserat Rod model to a
system where local strains are linearly related to local stresses [27]. By integrat-
ing the stress/couple density over the area of the cross-section, the corresponding
load-strain relationships emerge. As already mentioned, the local bending/twisting
strains are naturally expressed in local frame and they constitute the local curvature
kL = k1d1 + k2d2 + k3d3 [65]. Thus, assuming that the Cosserat rod’s intrinsic cur-
vatures are zero (i.e. the rod is straight in its stress-free state), the corresponding
internal torque vector for a material point is:

τL = B · kL (2.19)

where B is the diagonal bend/twist stiffness matrix composed by the bending and
twisting stiffnesses.
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Similarly, assuming that the rod’s intrinsic shear/axial strains are zero, the internal
forces due to the local shear/axial strains σL = σ1d1 + σ2d2 + σ3d3 = Q(et − d3)

take the following form:

nL = S · σL (2.20)

where S is the diagonal shear/stretch stiffness matrix which consists of the shearing
and stretching stiffnesses.

Matrices B,S are diagonal since it is assumed that the rod’s material is isotropic,
i.e. material properties identical in all directions [27]. The aforementioned stiff-
nesses are defined by the material components (Young’s Modulus E and Shear
Modulus G) as well as the geometric components (Cross-sectional area A, second
moment of area matrix I ∈ R3×3 with diagonal elements (I1, I2, I3)) [74]. More pre-
cisely the stiffness matrices take the following forms:

B =

EI1 0 0

0 EI2 0

0 0 EI3

 (2.21)

S =

αcGA 0 0

0 αcGA 0

0 0 EA

 (2.22)

where αc is a constant for circular cross-sections. As it can be seen from equa-
tions (2.21) and (2.22), Elastica’s constitutive model renders the stiffness matrix S

directly dependent on the cross-sectional area A and the stiffness matrix B depen-
dent the second moment of area I. Since stretching/compression can occur in the
Cosserat rod, the radius of the cross-section changes upon deformation. Thus, A
and I are not constant and the load-strain relation is non-linear. Furthermore, Elas-
tica assumes that the Cosserat rod’s material is incompressible i.e. v = 0.5 and
that the material points’ cross-sections always retain their circular shape. Therefore,
the relationship between the cross-sectional area in rest configuration (Â) and the
cross-sectional area in the deformed configuration A can be defined as:

A =
Â

e
(2.23)

Similarly, the relationship between the second moment of area in rest configuration
(Î) and the second moment of area in the deformed configuration I can be defined
as:

I =
Î

e2
(2.24)
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Naturally, the rest of the geometric components have to be scaled by the local
stretching ratio e when axial extension/compression occurs. More specifically:

ds = edŝ, S =
Ŝ

e
, B =

B̂

e2
, kL =

k̂L

e
(2.25)

Based on the above, Elastica’s assumption of linear elasticity rendered the iden-
tification of the internal torques and forces possible and thus the system of equations
(2.15)-(2.18) can be closed. Simultaneously, even though the stress-strain relation-
ship is assumed linear, the load-strain relationship is non-linear and the equations of
the dynamics can be expressed with respect to the rest reference configuration, by
re-scaling the corresponding geometric components with the local stretching ratio e

(thanks to the incompressibility assumption). Hence, Elastica’s constitutive model is
based on a non-linear load-strain relationship which is dependent on local stretching
ratio. According to [27], Elastica’s model is able to approximate the Neo-Hookean
and Mooney–Rivlin models when axial extension/compression is below 30%. Thus,
the non-linear elasticity of soft continuum robots can be captured by Elastica if the
modelled strains are within the acceptable range and assumption of incompress-
ibility is not violated. Consequently, by substituting the constitutive relation, and by
expressing local strains and stresses in local frame the general Cosserat rod dy-
namics equations (2.17) and (2.18) can be transformed and expressed with respect
to the rest reference configuration ŝ as follows:

ρÂ
∂(v)

∂t
=

∂(Q
T ŜσL

e
)

∂ŝ
+ ef (2.26)

ρÎ
e

∂(ωL)
∂t

=
∂( B̂

e3
k̂L)

∂ŝ
+ k̂L×B̂k̂L

e3
+ (Qt× ŜσL) + (ρÎωL

e
)× ωL + (ρÎωL

e2
)∂e
∂t

+ ecL (2.27)

Finally, the kinematics equations have the following form:

∂dk

∂t
= QTωL × dk (2.28)

where k=1,2,3.

∂r

∂t
= v (2.29)

The equations (2.26)-(2.29) are non-linear partial differential equations whose
analytical solution is not always available. Therefore Elastica solves these equations
using a numerical method. Therefore, the obtained dynamic Cosserat rod model has
to be discretized both spatially and in time.

Spatial Discretization

Elastica follows the Discrete Elastic Rod (DER) approach [75] in order to spatially
discretize the Cosserat rod. In DER approach, the configuration of the rod at a
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specific time instant t0 is defined by the Cartesian position of each material point
(i.e. cross-section) r(s, t0) as well as by the orientation of the corresponding material
frames Q(s, t0). Thus, the poses of the rod’s cross-sections can be parameterized by
the space-curve r(s) and the angle Θ(s) between the Bishop frame and the material
frame Q(s), since the Bishop frame expresses the non-twisted material frame of the
cross-section [27, 31, 75]. DER exploits the aforementioned parameterization and
the fact that the Bishop frame’s evolution along the rod can be defined by parallel
transport, in order to discretize the rod using vertices ri and edges e (Figure 2.7)
[75].

Figure 2.7: Rod spatial discretization based on DER with Bishop frames attached
on each edge. Image from [31]

Since Elastica follows the DER approach in order to consistently discretize the
Cosserat rod, the deformation of the Cosserat rod in 3D space is captured through
the dynamics of a discrete set of vertices ri(t) ∈ R3, i ∈ [1, n+ 1] and a discrete set
of material frames Qi(t) ∈ R3×3, i ∈ [1, n] as shown in Figure 2.8.

Thus, the concept is basically similar to the continuous Cosserat rod but instead
of infinitesimal material points, cylindrical elements with finite length (edges) formed
by sequential vertices are defined. In particular, for each vertex, its velocity vi,
the externally applied force f i on it and its mass mi are defined. Two consecutive
vertices form an edge of length li. This edge is basically a cylindrical element of
current length li which is uniquely identified by its material frame Qi(t). Thus, each
edge is defined by its cross-sectional area Âi, its mass second moment of inertia
Ĵ i, its angular velocity ωL, its Bending/Twisting Stiffness B̂i, its Shearing/Stretching
stiffness and Ŝi at rest edge length l̂i. The unit tangent vector of edge li is simply:

ti =
li
li

(2.30)
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Figure 2.8: Spatial Discretization of Cosserat Rod in Elastica [27]

Hence, the stretching ratio e can be expressed as:

e =
li

l̂i
(2.31)

Finally, discrete shear/axial strain vector that corresponds to edge li can be math-
ematically expressed as:

σL
i = Qi(eti − di

3) (2.32)

In the continuum approach (i.e. before spatial discretization), curvature kL is
considered at each material point along the Cosserat rod. Nevertheless, after DER
spatial discetization, the curvature is expressed naturally in an integrated form over
a domain D of the rod and not point-wise [75]. The division of the integrated quantity
by the length of domain D, produces the point-wise average [75]. Therefore, in the
discretized case, the interior vertex ri (where i=1,..,n-1) defines the domain D which
is essentially a Voronoi region Di with length li+li+1

2
and thus curvature kL

i is defined
at each interior vertex. In order to be able to re-scale geometrical components at
the defined domain length to model the desired non-linearity, Elastica defines the
dilatation ratio for the domain D as:

ϵi =
Di

D̂i

(2.33)

where D̂i is the Voronoi domain length at rest stretch-free state.
Since curvature can be described as rotation per unit length about its axis, DikL

i

represents the rotation of the material frame Qi+1 with respect to material frame Qi.
Hence, the relative rotation between two consecutive edges can also be expressed.
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The discrete curvature in Elastica is given by the following equation:

kL
i =

log(Qi+1Qi
T )

Di

(2.34)

Based on the above representation, Elastica defines the rest of necessary dis-
crete quantities (e.g. discrete bend/twist stiffness matrix), and through spatial in-
tegration, the spatially discretized kinematics and dynamics equations are derived.
In [27], the analytical derivation of the spatially discretized cosserat rod dynamics
and kinematics equations, is presented.

Time Discretization

In order to numerically integrate the spatially discretized system of equations, the
second order position Verlet Integration scheme is utilized [76]. Thus a full iteration
of the algorithm from time-step t to time-step t + δt consists of three stages [27].
Firstly, the position of vertices and edges’ material frames is updated for half a step.
Mathematically it looks like this [27]:

ri(t+
δt

2
) = ri(t) +

δt

2
vi(t) i = 1, .., n+ 1 (2.35)

Qi(t+
δt

2
) = e

ωL
i(t)δt

2 Qi(t) i = 1, .., n (2.36)

Subsequently, the local accelerations are calculated.

vi(t+ δt) = vi(t) + δt
dvi

dt
(t+

δt

2
) i = 1, .., n+ 1 (2.37)

ωL
i(t+ δt) = ωL

i(t) + δt
dωL

i

dt
(t+

δt

2
) i = 1, .., n (2.38)

Finally the positions of the full step are obtained through the following expres-
sions:

ri(t+ δt) = ri(t+
δt

2
) +

δt

2
vi(t+

δt

2
) i = 1, .., n+ 1 (2.39)

Qi(t+
δt

2
) = e(

[ωL
i(t+ δt

2 )]δt

2
)Qi(t+

δt

2
) i = 1, .., n (2.40)

Hence, during an iteration, the calculation of dvi

dt
(t+ δt

2
) and dωL

i

dt
(t+ δt

2
) is needed

only once. This entails significant computational cost reduction since the evaluation
of the right-hand side of the dynamics equations (discretized forms of equations 2.26
and 2.27) is minimized. Furthermore, according to [27], a Courant–Friedrichs–Lewy
(CFL) condition has not been derived for the Elastica simulator. Thus, the maximum
time-step that guarantees numerical stability is not specified. Instead of a CFL, an
empirical relationship for the time-step is presented in [27]:

δt = a · L
n

(2.41)
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where L is the rod’s length, n the number of spatial discretization elements (i.e.
edges) and a ≈ 0.01s/m. The aforementioned empirical relationship entails that the
computational cost per time-step is inversely proportional to the chosen number of
edges. Furthermore, as it can be observed from the equations (2.36) and (2.40),
the exponential term used for expressing material frame rotation in time, can cause
stability issues. Finally, the relationship between the duration of the simulation (i.e
specified number of Verlet iterations) and the real time needed to produce the simu-
lation varies from linear to quadratical [27].

2.2.4 The physical system’s pneumatic actuation in Elastica’s
discretized dynamic Cosserat rod model

It is concluded that Elastica’s discretized dynamic Cosserat rod model is able to
capture all six deformations at each cross-section thereby accounting for the elon-
gation, bending, twisting and shearing of the examined soft robot. Consequently,
the chosen model is deemed sufficient for modelling the soft robot’s body. However,
it is important to examine whether the soft robot’s actuation system can be mod-
elled sufficiently in Elastica as well, since the actions chosen by the policy should
produce realistic deformations to the Elastica model, i.e. in accordance to the ac-
tual system. The investigated physical system utilizes three soft actuators which
are known as the reverse Pneumatic Artificial Muscles (rPAM) [77]. Each of these
actuators constitutes a cylindrical pressure chamber which is made from an elas-
tomer (Figure 2.9). Additionally, each chamber is helically re-inforced by two woven
fibres (Figure 2.9). The first fibre is woven clockwise while the second one is woven
counter-clockwise, and the robot cannot twist. The helical reinforcement renders the
translation of positive pressure inside the artificial muscle i.e. inflation, into elongat-
ing force acting along the longitudinal axis of chamber, due to the fact that the fibres
are inextensible and circumferential stresses are countered [77]. Therefore, rPAM
is essentially similar to the McKibben actuator [78] but it operates in reverse [77].
In particular, inflation of the reverse pneumatic artificial muscle, results in its radial
expansion and due to the use of a helical reinforcement with an initial (winding) an-
gle of nearly 90 deg, the rPAM is longitudinally extended [78]. Thus, the inflation of
an rPAM entails the axial stretching of its structure and its deflation makes it return
back to its initial length. In order to achieve bending in all directions in 3D space, the
investigated physical system uses three rPAMs which are radially distributed thereby
creating a section (Figure 2.10). If internal pressure is changed in the same way
in all chambers simultaneously, the section elongates or contracts (back to natural
length). On the other hand, if the applied pressures differ in magnitude, the section
bends. Naturally, the inflation/deflation of each chamber determines the bending
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plane.

Figure 2.9: The investigated pneumatic-driven soft continuum robot (physical sys-
tem). The three rPAMs are the blue pneumatic chambers which are
helically reinforced. The produced forces act on a rigid end-cap.

Based on the equations (2.26) and (2.27), Elastica is able to simulate the actua-
tion forces produced by the rPMAs as external forces and torques. In particular, the
forces can be modelled as external forces acting on the last vertex rlast of the rod
i.e. robot’s free endpoint in Elastica, and along the final edge’s tangent vector tlast,
due to the presence of a rigid end-cap at the robot’s free endpoint (Figure 2.9). Sim-
ilarly, the produced torques due to pressure difference among the chambers, can be
modelled in Elastica as external torques acting on the rod’s last edge of the rod and
expressed in its material frame Qlast. In chapter 3, the modelling of the actuation is
described in detail.
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Figure 2.10: Cross-sectional view of the investigated soft robot. The robot’s radially
distributed rPAMs are the blue pneumatic chambers which are made
from elastomer and constitute the robot’s multi-backbone core.
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Figure 2.11: Schematic representation of the rPAM actuator utilized by the exam-
ined soft robot. Image from [77]. The left scheme depicts the actuator
and its geometrical parameters before pressure application while the
right one is after pressure application. The total length of the thread
is represented by b, while L0, L are the actuator’s initial length and
increased length due to deformation respectively and θ0 is the initial
(winding) angle and θ is the one after deformation. Finally, A0, A are
the cross-section areas of the actuator wall before and after defor-
mation correspondingly. Upon inflation of the chamber with pressure
P , the utilized helical reinforcement makes the rPAM elongate while a
force Fext is produced along the chamber’s direction.
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Chapter 3

Implementation

3.1 Modelling & Simulation of the Physical system in
Elastica

In the context of the present thesis, the application of Model-Free RL control de-
pends upon the utilization of a suitable physical simulation environment which mod-
els the soft robot, its environment and their interactions in order to produce the
policy-training data. The Elastica simulator is able to sufficiently capture the soft
robot’s possible deformations, since its discretized dynamic Cosserat rod model ac-
counts for all six deformation modes associated with the 6 DoF at each cross sec-
tion along the rod. Before coupling the Elastica simulator with a Model-Free RL
algorithm to train a policy, it is essential to produce a stable model of the soft robot
and its environment and simulate its behavior upon realistic actuation. Deriving a
stable discretized dynamic Cosserat model that faithfully represents the examined
soft continuum robot in Elastica is not trivial. Firstly, the physical parameters and
geometric characteristics of the system must be defined and simultaneously it must
be ensured that they comply with the assumptions of Elastica’s modelling. Secondly,
the spatial and time discretization parameters have to be chosen in such a way so
that numerical stability is ensured, robot’s flexibility is not compromised and the final
model’s complexity is not too high that it becomes prohibitive to couple it with RL.
Finally, the actuation system of the physical system has to be modelled in Elastica.
Therefore, in this section the procedure that was followed for the creation of a suit-
able simulation environment in Elastica, which can later be coupled with Model-Free
RL, is described.

The investigation of the soft robot’s physical parameters and geometric charac-
teristics has to be prioritized to ensure that Elastica is able to reproduce the behavior
of the actual system faithfully enough. The body of the examined pneumatic-driven
soft robot is essentially a cylindrical rod (as shown in Figure 2.9) which is in line

41
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with the Elastica’s assumption of Cosserat rods consisting of cylindrical elements
and having circular cross-sections. Furthermore, the physical system has the fol-
lowing geometric characteristics: Length L = 0.1 m and Radius R = 0.009 m. This
follows Elastica’s consideration of Cosserat rods being cylindrical slender structures
with length much larger than cross-sectional radius. The investigated soft robot is
built from the elastomer Eco-Flex 00-10. Hence, due to the assumptions that the
Elastica software is based upon, the soft robot’s physical parameters which are uti-
lized in order to model it, are the following [79–81]:

• Density D = 1040.5979 kg/m3

• Young’s Modulus E = 0.05 MPa

Furthermore, the Eco-Flex 00-10 material has a Poisson ratio of approximately
0.5 ,i.e v ≈ 0.5 [80], which satisfies Elastica’s assumption of incompressibility. Thus,
the shear modulus can be calculated, G ≈ 0.0166 MPa. According to [27], the
rods with high Young’s modulus make the Elastica’s governing equations stiff, and
as a result, extremely small steps have to be taken when solving them numerically.
The low Young’s Modulus of the examined case implies that this problem can be
avoided. The process of modelling and simulating the investigated soft robot and its
workspace in Elastica consists of 6 steps [82]. The first step is to set up the system
simulator combining all the modules required for the needs of the simulation. The
necessary modules for the examined case are:

• ”Constraints” in order to be able to use boundary conditions,

• ”Forcing” for actuation purposes,

• ”CallBacks” in order to be able to collect data during simulation and

• ”Damping” to introduce damping into the simulation.

The second step is to model the investigated soft robot as a straight, spatially dis-
cretized, Cosserat rod (i.e initial state’s curvature and shear/axial strains are zero).
For the creation of the rod, the soft robot’s physical parameters have to be spec-
ified as well as the number of cylindrical elements (edges) that should constitute
the Cosserat rod. Subsequently, the appropriate boundary conditions of the rod as
well as its forcing and damping have to be defined. Then, the data collection func-
tions have to be designed. The next step is to define the dicretization time-step in
order to numerically solve the system of partial differential equations. Finally, post-
processing functions are designed in order to plot the data obtained from the call-
back functions and create animation videos of the rod in 3D space. The described
process can be visualized in Figure 3.1.
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Figure 3.1: Process of creating an Elastica Simulation

Having defined the necessary simulation modules as well as the soft robot’s
physical parameters, the next step is to define the number of cylindrical elements
of the straight Cosserat rod. The higher the number of cylindrical elements, the
higher the flexibility of the simulated rod. Of course it is not possible to accu-
rately identify the physical system’s total number degrees of freedom. Therefore
a specific number of elements is not suggested by the physical device. The goal
is to choose a number of spatial discetization elements that ensures high flexibility,
i.e. much higher DoF than typical rigid link manipulators while not raising the time
needed to solve the kinematics and dynamics equations to prohibitive levels (e.g.
quadratic relationship between physical simulation time and real time needed solve
the PDEs [27]). Even though the relationship between the computational cost per
time-step and the number of elements is linear [27], the Elastica’s empirical rela-
tionship [82] dt = a · dx (where a is a configurable constant parameter, dt is the
numerical integration time-step and dx is the edge length after spatial discetization),
implies that a larger number of cylindrical elements entail smaller time-steps and
therefore increased computational cost. Furthermore, large a could produce expo-
nentially large rotations of the material frame in time as equations (2.36) and (2.40)
imply and therefore lead to inaccuracy or even instability depending on the chosen
number of cylindrical elements. A small number of cylindrical elements allows larger
time-steps without causing numerical stability issues, however the modelling accu-
racy is substantially impaired. Of course the exact impact of each choice is difficult
to predict, however since the parameter a can be configured and the relationship
between the computational cost per time-step and the number of elements is linear,
using a larger number of cylindrical elements is possible without reaching prohibitive
computational costs. Elastica’s suggestion is to use 30-50 spatial discretization ele-
ments for one rod without specifying the rod’s length [82]. Nevertheless, the length
of the rod has to be taken into consideration as well. In the examined case the
length of the Cosserat rod is 10cm therefore the use of 30 spatial discretization ele-
ments is deemed sufficient, since 90 DoF are ensured and therefore high flexibility
is guaranteed. In the initial state, the rest edge length of each one of the 30 edges is
dx = 0.1 m

30
= 0.0033 m. Following the procedure shown in Figure 3.1, the Cosserat

rod’s boundary conditions must be defined next as well as the external forces that
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are exerted on it and the type of damping that acts on it. One of the physical system’s
ends is fixed while the other one is free, similar to a Cantilever beam. Therefore in
the context of Elastica simulation, assuming a (x, y, z) global frame, it chosen that
one end of the rod is fixed at (0, 0, 0) and the rod’s free end is located at (0, 0, 0.1).
Thus, the rod’s normal vector is (0, 1, 0) since the rod is normal to X-Y plane. The
rod’s direction and constraint can be visualized in Figure 3.2.

Figure 3.2: Schematic representation of the soft robot as modelled in Elastica. The
yellow edges and nodes represent the model’s spatial elements and
vertices.

The physical system’s actuation consists of multiple pneumatic chambers (actu-
ators) which constitute the multi-backbone core of the robot. When these chambers
are inflated forces which act along the soft robot’s free endpoint tangent vector, are
produced. These forces make the robot elongate along the free endpoint’s tangent
vector and when there is difference in the magnitude of the aforementioned actua-
tion forces, bending of the robot’s body in 3D space also occurs. It is important to
mention that the actuation system is not able to twist the soft robot. In Figure 3.3
an example of how the physical system’s actuation produces a bending motion is
presented.

The soft robot body is modelled in Elastica as a single, straight, and spatially dis-
cretized Cosserat rod with the same physical parameters, characteristics and con-
straints. Hence, the soft robot is modelled in Elastica as a single backbone in order
to avoid an implementation that includes a complex and computationally expensive
system of Cosserat rods. However, Elastica does not contain a force implementa-
tion that matches the physical system’s actuation system. Consequently, a custom
”Forcing” class has to be designed within Elastica in order to model the physical
system’s actuation. In particular, it is specified that the actuation forces are exter-
nal forces which act on the free endpoint’s vertex (31st vertex). Furthermore, four
force sources i.e. actuators are modelled, the locations of which are circumferen-
tial of the endpoint’s center of mass at a distance df = R(t)

2
. These actuators play

the role of the physical system’s pneumatic chambers and produce four force vec-
tors (F1,F2,F3,F4) ,with non-negative magnitudes, which have the direction of the
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Figure 3.3: Bending due to the inflation of a chamber and the deflation of the other.
Image from [83].

endpoint’s tangent vector every time. The use of four actuators ensures bending in
all directions in the 3D space along with elongation, thereby faithfully emulating the
physical system’s actuation system (Figure 3.4). An example is presented in Figure
3.5 for intuitiveness. Nevertheless, at the Elastica level, all forces act in reality on
the last vertex, therefore there is no torque produced in a physical sense. Hence,
the application of external torques as products of the four force vectors, has to be
mathematically stated.

The modelled actuation forces can be expressed in global frame as F = F ∂r
∂s

=

F t and this is sufficient for simulating elongation. Nonetheless, in order to simulate
bending in 3D space, the externally applied torques need to be expressed in local
frame. Therefore, the directors of the material frame corresponding to the last edge
have to be expressed in local frame. Hence, using the transformation matrix Q, the
directors in local frame can be obtained through the equation dL = Qd. The Force
vector can then be expressed in local frame as: F = FQt = (F1 + F2 + F3 + F4)Qt.
Hence Fi = FiQt where i=1,2,3,4. Since bending in 3D space is possible but twisting
is not, torques about directors d1 and d2. The equations that describe the modelled
applied external torques are the following (Figure 3.4):

τ1 = [(0.5R(t)d2)× F1] + [(−0.5R(t)d2)× F2] (3.1)

τ2 = [(0.5R(t)d1)× F4] + [(−0.5R(t)d1)× F3] (3.2)

Where R(t) is the radius of the Cosserat rod at time-step t. The total applied torque
is:

τtotal = τ1 + τ2 (3.3)

Gravity: In Elastica, gravitational forces can also be modelled. More specifically
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Figure 3.4: Visualization of the Modelled Actuation System in Elastica (Cross-
Sectional View)

Figure 3.5: Modelled actuation in Elastica. The cosserat rod is in its initial state. If
the four actuators produce forces with magnitudes F1 = F2 and F3 < F4,
the rod will elongate along the endpoint’s tangent vector and perform
bending in the X-Z plane.
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due to Elastica’s spatial discretization, gravity is modelled as a uniformly distributed
force. Nevertheless, since the actuation forces act only on the endpoint, the mod-
elled actuation system is not able to perform gravity compensation effectively and
therefore gravitational forces are omitted. This is also the case for the physical sys-
tem as well, because the actuation system of the examined soft continuum robot is
not an internal continuum one.

Damping: In order to model damping, an analytical linear damper is introduced.
The way the velocities of the vertices and the edges are damped, is described by
the following equations:

v⃗(n+ 1) = v⃗(n)e−cdt (3.4)

ω⃗(n+ 1) = ω⃗(n)e(
−cmdt

J
) (3.5)

Where n is the current discrete time step, c is the damping coefficient, m is the mass
of the vertex, dt is the selected simulation time-step, and J is the second moment
of inertia of the edge. The analytical linear damper class treats the damping term
analytically and not numerically. Consequently, configuring the damping coefficient
does not affect time-step size. Hence, the damping coefficient can be set high in
order to over-damp the rod and ensure that potential instabilities occur due to the
selected simulation time-step dt and not from insufficient damping .

CallBack Functions & Post-Processing: Finally, the callback functions collect
the position and the velocity of the Cosserat rod, i.e. modelled soft robot, throughout
the simulation as well as the external torques and forces applied on its last edge
and vertex respectively, due to actuation. Data are collected every 100 time-steps.
Post-processing functions are designed plot the collected data in order to analyze
the system’s behavior and create 3D animations of the rod for intuitiveness.

Choosing simulation time-step dt: The choice of numerical integration time-
step dt is the most critical aspect of creating a numerically stable simulation in Elas-
tica. Additionally, the time-step dt determines the computational cost of the simula-
tion. In order to find a suitable dt, the damping coefficient is set to the extremely high
value 1000 s−1 so that numerical instability caused by unsuitable time-step can be
differentiated by the instability caused by the excitation of an insufficiently damped
frequency. The proposed heuristic of Elastica, dt = a · dx is also used. Since
dx = 0.0033 m finding a suitable dt is essentially tuning the parameter a. Elastica
suggests the use of a = 0.01 [82]. Two things have to be considered nonetheless.
On one hand, this relationship is based on the observations of Elastica’s creators
and it is not supported by a CFL condition [27]. On the other hand, apart from sta-
bility, the computational cost is important since it could become prohibitive for RL
application. Thus, tests with different values of the parameter a are run in order to
obtain a time-step that is appropriate for the examined problem (Appendix A.1). It is
concluded that a = 0.05 constitutes a reasonable choice. In particular, by applying
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a = 0.05, time-step becomes dt = 0.0001667 s. By simulating the rod’s behavior for
10 seconds while having only one actuator producing a constant force of 0.1N (Step
Input, Figure 3.7), the results shown in Figure 3.6 are produced:

Figure 3.6: Model’s end-effector position and velocity norm when a step force is
given as input during time-step tuning test (Figure 3.7)

Figure 3.7: Force input during time-step tuning test

The 10 second Elastica simulation lasted 10 real seconds while being numeri-
cally stable. The choice of a = 0.05 strikes a balance between numerical stability
and computational complexity. Thus dt = 0.0001667 s is deemed acceptable for the
present case.
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Based on the analysis above, the crucial parameters of spatial and time dis-
cretization are specified. However, in order to further check the competence of the
obtained model, its behavior is examined in the presence of a small normal stress
i.e. stress which corresponds to the material’s linear stress-strain region. Thus, it is
checked that when a small axial stress is acting on the free endpoint of the rod in its
initial state (σ = Eϵ = 0.05 MPa · 0.0009 = 45 Pa), the resulted strain coincides with
the expected strain from theory ϵ = 0.0009. The details of this sanity check can be
found in the Appendix A.2.

Configuration of the damping coefficient

From Figures 3.7 and 3.6 it can be clearly seen that even though only one
actuator produced a step force of 0.1N, the robot just elongated along the tangent of
its endpoint, instead of performing the expected movement i.e a bending movement
along with elongation. The reason for that unexpected behavior is the choice of
damping coefficient. In particular, due to the fact that a high damping coefficient
was chosen during the time-step tuning experiments, the rod is over-damped when
it comes to the less stiff deformation mode i.e. bending. By decreasing the value
of the damping coefficient until the rod seems sufficiently damped and the expected
dynamics are recovered, the damping coefficient can be tuned. By following this
procedure, it is concluded that the damping coefficient should be c = 0.1s−1 (Figure
3.8).

Putting everything together, the simulation parameters are tuned. More precisely,
the number of spatial discretization elements is fixed at n = 30, the time-step is cho-
sen as dt = 0.0001667 s and the damping coefficient is set equal to c = 0.1 s−1.
By simulating the rod’s behavior for 10 seconds while having only one actuator pro-
ducing a constant force of 0.1N (Step Input), the end-effector of the tuned model
performs the expected movement (Figure 3.9).

As it can been seen from Figure 3.9, large changes in actuation forces produce
large oscillations through the excitation of natural frequencies that the analytical
linear damper cannot sufficiently damp out. These oscillations can even become
unstable under some circumstances. Since the modelled system is essentially a
hyper-elastic cantilever beam, it is possible that there is an infinite number of eigen-
frequencies [84]. Therefore to avoid the excitation of eigenfrequencies which can
cause large oscillations that can even become unstable during actuation, the force
change per time-step is chosen to be bounded. More precisely, the maximum tol-
erable actuation force change per time-step is investigated. The objective is to find
the maximum force change per actuator which does not produce large/unstable os-
cillations. As it can been concluded from Figure 3.9, the most under-damped os-
cillations appear in the stiffer deformation mode of elongation. This is expected of
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Figure 3.8: End-effector response with damping coefficients ranging from 0.1 s−1 to
1000 s−1. More precisely, orange line corresponds to c = 1 s−1, green
line to c = 10 s−1, red line to c = 1000 s−1, purple line to c = 0.5 s−1 and
blue line to c = 0.1 s−1. Green and orange lines are covered by the red
line. It is clear that the expected dynamics are recovered for c = 0.1 s−1.

Figure 3.9: Tuned model’s end-effector position and velocity norm when only one
actuator produces a constant force of 0.1N (Figure 3.10, bottom right
graph). The actuation profile is the same as in time-step tuning test)

course due to the fact that the shear/stretch Stiffness matrix contains much higher
values compared to the bend stiffness matrix. To quantify this statement, the ele-
ments of the Bending Stiffness matrix for the last edge of the rod at its initial state
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Figure 3.10: Actuation forces acting on the tuned soft robot model.

is:

B =

0.00025765 0 0

0 0.00025765 0

0 0 0.00017177

 (3.6)

while the corresponding shear stiffness matrix is:

S =

4.08968044 0 0

0 4.08968044 0

0 0 12.72345025

 (3.7)

Therefore, the effect of force change per time-step is firstly checked on a strict
elongation case, i.e. actuators’ forces are equal in magnitude (Appendix A.3). It
is concluded that by enforcing 10−5N force change per time-step, no instabilities
emerge and the system’s response can be characterized marginally stable since
small under-damped oscillations are present. However these oscillations are much
smaller in magnitude compared to the system’s step response 3.9. The under-
damped oscillations are unavoidable since only one damping coefficient can be
specified and deformation modes with very different stiffnesses are present i.e.
Bending and Stretching/Compression.

Considering the above, by enforcing this bounded force change, each actuator
can increase/decrease the force it produces by 10−5N N or keep it constant. Math-
ematically this can be stated as df ∈ {−10−5, 0, 10−5}. Finally, to test a combined
movement, i.e. elongation along the tangent and bending, the force of one actuator
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is increasing by 10−5N per dt until 3.3 seconds and then it is kept constant, while the
rest of the actuators are not producing any force. The described actuation profile is
presented in Figure 3.11 while the rod’s end-effector response is depicted in Figures
3.12 3.13. As it can be seen from the graphs, the modelled robot’s end-effector (or
rod’s endpoint) reaches its final position stably, without oscillations.

The behavior of the tuned model when choosing a larger number of spatial dis-
cretization elements is examined in the Appendix A.4.

Figure 3.11: Elongation & Bending in X-Z plane. Only one actuator is activated and
force Change per time step is +10−5N until t=3.3 seconds. Then, the
force is kept constant. The force input is essentially a ramp.

3.2 Coupling Elastica with Model-Free RL

In section 3.1 the followed process in order to model and simulate the investigated
soft robot and its 3D workspace, in Elastica, was analyzed. Until that point, there
was no involvement of RL. During that process, all the necessary components for
modelling and simulating the investigated soft continuum robot in 3D space were
obtained. Thus the simulation environment is designed and presents the desired
characteristics and as a result coupling it with Model-Free RL is the next step to-
wards the present thesis’ objective: Model-Free RL Control. In order to couple the
produced Elastica simulation with Model-Free RL, an interface between Elastica and
Stable-Baselines3 [85] is created. Stable-Baselines3 constitutes a set of implemen-
tations of Model-Free RL algorithms in PyTorch [85]. The simulation environments
that are used in Model-Free RL applications based on Stable-Baselines3, are either
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Figure 3.12: Modelled robot’s end-effector position under the actuation profile de-
scribed in Figure 3.11

Figure 3.13: Modelled robot’s end-effector velocity under the actuation profile de-
scribed in Figure 3.11

derived from OpenAI Gym Environments (e.g. Mujoco) or they are custom envi-
ronments which follow OpenAI Gym’s application programming interface [85]. In
particular, OpenAI Gym provides an application programming interface (i.e. API) for
RL environments which involve one single agent [86]. Consequently, the Elastica
simulation discussed in section 3.1 must be encapsulated as a single agent RL en-
vironment which follows OpenAI’s API. This is possible since the soft robot is the
only agent in the examined RL problem and in Elastica the soft robot and its 3D
workspace are simulated. The encapsulation of the Elastica simulation environment
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is done through the Gym’s API key functions [86]. The core idea is that by following
Gym’s API the created Elastica environment is reconstructed as a Markov Decision
Process, rendering its coupling with RL possible. The process of this reconstruction
is described in the following lines.

Firstly, a class called ”Environment” is created which inherits methods and at-
tributes from the Gym’s Environment class. This is needed in order to utilize the
Gym’s key functions. Then the ”Environment’s” attributes and parameters are de-
fined. For example spatial and time discretization parameters and simulation dura-
tion. Since an MDP representation is desired, the type of observation and actuation
space associated with the environment are also defined at that point. Subsequently,
in order to create the Cosserat rod (agent) and its 3D space the Gym’s reset() func-
tion is utilized [86]. More specifically, this class method, resets and creates the sim-
ulation environment. First, the rod is initialized and the boundary conditions which
act on it are defined. Any extra simulated bodies can be initialized and appended to
the simulation via this method. Finally, callback functions are defined here for data
collection purposes.

In the examined case, the Elastica rod (modelled soft robot) moves inside a
3D space due to the action of external forces (modelled pneumatic actuation). In
other words, actions in the form of forces are picked by the agent (Elastica Rod) in
order to move in 3D space. As a result, expressing this process in MDP format, the
agent should receive a new observation from the updated environment as well as an
immediate reward for the taken action. In a position control framework, the reward
should be positive as the tip of the rod moves closer to the target and negative when
it moves away. The new observation should be received since the taken action
results in state transition as discussed in section 2.1. In the context of the present
thesis, when an action is taken and a new observation is received as a result, a
learning step is performed. Therefore, the learning step can be differentiated from
the simulation time-step since a new action can be picked by the agent at a lower
frequency than simulation’s time-sampling frequency. Of course in the investigated
case, the total number of learning steps are defined by the action-taking frequency
and the total duration of the Elastica simulation i.e. the time frame the Elastica
rod has at its disposal to reach the target. In MDP terminology, this time frame
during which the Elastica rod interacts with its environment can be called an episode.
Nonetheless, after some learning steps, the episode may end prematurely due to
numerical issues or excision of rod’s physical limits. In such a case, the episode ends
even if the maximum number of learning steps are not reached. However, due to the
modelled actuation in Elastica, these issues are very unlikely to appear. As already
implied an episode has a specific duration. If the total number of learning steps
which constitute the episode are exceeded, then the episode ends. OpenAI Gym’s
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step() class method is utilized in order to implement the aforementioned sequential
state-action-reward-new state process as well as the episode termination process.
In order for a new episode to start, i.e.start a new Elastica simulation, the created
”Environment” has to be restarted via reset() class method. Implementation details
regarding the encapsulation of Elastica Environment via the Gym’s functions can be
found in the thesis’ supplementary Python files.

Definition of Observation Space, Action Space and Reward Function

Since the soft robot simulation is reconstructed as a MDP, its observation space
and actuation space have to be defined. The model-free RL approach that is fol-
lowed in the present thesis renders the reconstructed MDP incomplete i.e. the tran-
sition probability matrix P is unknown and the reward function R(s, a) needs to be
manually designed. However, in the examined case, it is possible for the observation
space to coincide with the MDP’s state space since the created custom ”Environ-
ment” can be completely observable by the agent. Nevertheless, for the needs of
the examined position control problem, a smaller observation space that consists of
the possible positions and velocities of the robot and the target, is deemed sufficient.
In particular, since only stationary targets are considered in the investigated posi-
tion control problem, the observation space is composed by the 3D positions of 11
equidistant vertices along the rod as well as by the 3D position of the target and the
velocity of the robot’s tip (magnitude and direction). It is worth noting however that
the velocity of the target can also be included in case of a position control problem
with a moving target. Thus, the observation matrix consists of 40 elements and it is
specified as a matrix with continuous elements that range from −∞ to +∞. Thus,
the observation space is continuous as in almost all robotics RL position control
problems. The choice of a higher dimension state-space is based on the fact that an
estimation of the whole rod’s position provides more information (i.e. more trajectory
data) and this state representation can also be used for more complicated position
control tasks such as reaching a target with a specific configuration.

Due to the fact that the force change per time-step is bounded to 10−5N , the oth-
erwise naturally continuous action space becomes discrete. In particular, each one
of the four modelled actuators can either decrease or increase its produced force
by 10−5N or keep it constant. Therefore, a multi-discrete action space is defined
and its action is described by a vector of four elements where each one of them can
take three values 0,1,2. These discrete values represent the three possible actions
of each modelled actuator i.e. 0: keep the force constant, 1: increase the force
by 10−5N 2: decrease the force by 10−5N . An example of an action can then be
α = [0, 1, 1, 2] where the first actuator keeps its force constant, the second and third
increase their force by 10−5N and fourth decreases its force by 10−5N . For a 10 sec-
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ond simulation the produced forces do not exceed 0.6N. Hence, the rod’s physical
limits are not violated and a realistic actuation is modelled since the physical sys-
tem’s pneumatic actuators typically produce small forces (F ≈ 0.4N ). Moreover, the
actuation space is filtered so that the actuator’s force does surpass 0.6N and simul-
taneously it does not reach negative values, thereby following the physical actuation
as faithfully as possible.

Finally, the reward function is manually designed to reward the agent as it gets
closer to the target. Therefore the immediate reward that the agent experiences
when being at state s and taking action α is r(s, a) = −||xt − xtip|| where xt is
the current position of the target and xtip is the current position of the rod’s free
endpoint. If the simulation becomes unstable a negative reward of -500 is given to
the agent. In chapter 4, different variations of the reward function are examined and
their corresponding results are presented.

3.3 Control via Proximal Policy Optimization

Stable-Baselines offer multiple Model-Free RL algorithms which can be utilized for
training purposes. However, it is important to clarify that not all RL algorithms fit
the examined problem. The MDP is the examined RL problem is characterized by
a continuous observation space and a multi-discrete actuation space. Therefore,
the Model-Free RL algorithms that are compatible with the investigated MDP are
Trust-Region Policy Optimization (TRPO) [64], Proximal Policy Optimization (PPO)
[63] and Advantage Actor Critic (A2C) [87]. However, Proximal Policy Optimization
has been chosen for the following reasons: It combines ideas of TRPO and A2C
since it uses a trust region for actor improving while utilizing multiple workers but on
one hand,PPO is easier to implement and tune than TRPO [63] and on the other
hand A2C is a special case of PPO [88]. Thus the transition from PPO to A2C
is considered much easier [88] in case it is deemed worthy of future investigation
for the examined RL control problem. Finally, PPO as an actor-critic method has
characteristics which are deemed beneficial for the investigated control problem. In
particular, it updates the policy directly while not experiencing the high variance of
strictly policy gradient methods [48]. Furthermore, a stochastic policy can be learned
by the agent and a certain degree of exploration is guaranteed. Secondly, PPO
as all policy gradient methods that utilize neural network function approximators, it
presents better performance in control problems with large actuation space [89].
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Results

Each episode is chosen to last for 10.01 seconds which is equivalent to 60059 sim-
ulation time-steps since dt = 0.1667 ms. Nevertheless, the time-sampling frequency
required by the Elastica simulation is considerably higher than the action-taking fre-
quency i.e. controller update frequency, needed to control the soft robot in the de-
signed MDP. Therefore, the controller update interval is decoupled from the sim-
ulation time-step and Elastica takes multiple simulation time-steps between each
controller update. In particular, 1000 simulation time-steps are taken before the
controller updates thereby rendering the controller update interval equal to 0.167
seconds while each episode consists of int(60059

1000
) = 60 learning steps. As a result,

the possible trajectories during an episode are significantly reduced and thus the
problem’s complexity is reduced while policy-training becomes faster. However, at
the same time the system’s accuracy is decreased since the reduction of the con-
troller update frequency renders the reaching of certain states impossible. More
precisely, The force change per controller update per actuator is 0.01 N. In order for
the robot to reach a stationary target and stay on the target, the target must become
the new equilibrium point for the robot’s free endpoint (sum of forces/torques exerted
on the free endpoint are zero i.e. ΣF⃗ = 0,Στ⃗ = 0). The larger force jumps decrease
the range of possible new equilibriums. For example, starting from the initial state, if
one learning step with action α = [0 0 1 0] is performed and for the rest 59 learning
steps α = [0 0 0 0] so that a bending movement in the x-z plane occur and a new
equilibrium is reached, targets at euclidean distance shorter than 0.93mm cannot
be reached. This can be clearly seen in Figures 4.1 and 4.2.

Due to the introduction of discrete force changes per step i.e. −10−5N, 0,+10−5N

per time-step or −0.01N, 0,+0.01N per learning step, the MDP’s actuation space
becomes multi-discrete and Proximal Policy Optimization is utilized in order to train
the RL controller (i.e. policy) [85]. In particular, the Proximal Policy Optimization
variant with the clipped-surrogate is used [85]. The algorithm’s hyperparameters are
not optimized using an optimization method, however certain hyperparameters are

57
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Figure 4.1: Euclidean distance of the soft robot’s free endpoint from the initial state

Figure 4.2: Soft Robot’s free Endpoint position and velocity norm. The new equilib-
rium is [0.927,0, 100.07] in mm and oscillations around that point and
along the tangent vector occur, due to high stretch stiffness.

tuned based on the nature of the investigated RL problem and observations coming
from training data. More specifically, the hyperparameter ”nsteps” is set nsteps = 60.
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This hyperparameter expresses the number of experiences that are collected from
the environment (i.e. Elastica simulation as MDP) while following the current policy’s
suggestions, before it is updated. Therefore it was deemed a reasonable choice to
set its value equal to the episode length. The mini-batch size (batchsize) varies from
60 (equal to the episode length) to 15.

Variations of Reward Function Design

Firstly, the impact of the reward function design is examined through a set of 3
experiments. In all 3 experiments the goal is the same: The robot’s end-effector must
reach a stationary target and stay on the target, within 10.01 seconds. However,
different variations in the reward function are tested to examine which of them can
potentially lead to faster convergence to the optimal policy. The stationary target is
set on: [0.0, -0.0836, 0.0462] thus, the robot’s end-effector is 9.94 cm away from the
target. It has been checked that this point is within the robot’s workspace however
it is not certain that the robot’s end-effector can be ”sufficiently stabilized” on that
target. The term ”sufficiently stabilized” is used for two reasons: 1) It is known
from the analysis in chapter 3, that oscillations are under-damped in the direction of
end-effector’s tangent and thus these oscillations do not damp out within the 10.01
second time frame. 2) Due to the action-taking frequency it is not certain that the
chosen target can become the end-effector’s new equilibrium point.

Finally, the default PPO hyperparameters [85] are used in all 3 scenarios except
for nsteps and batchsize which are both set equal to 60.

Scenario 1

The reward function is:

R(s) =

{
−||xt − xtip|| if stable simulation

−500 if unstable simulation
(4.1)

where xt is the position of the target and xtip is the current position of the robot’s end-
effector. If the euclidean distance between the robot’s tip and the target becomes
smaller, the reward becomes larger. If the simulation becomes unstable the episode
is truncated and a negative reward of -500 is given to the agent. It is worth noting
that the designed actuation cannot lead to instability though. Training is done for
500 episodes which corresponds to 30000 learning steps in total, and the produced
results are shown in Figures 4.3 and 4.4.

As it can be seen from Figure 4.3, the error is rapidly decreasing until roughly
t=5.7s and then it slowly settles at a point 2.03 mm away from the reference position
while presenting small oscillations (the system is under-damped in the tangential
direction). The corresponding cumulative reward when following the obtained policy
is -2.31. Since it is not certain that the specified reference point can become an



60 CHAPTER 4. RESULTS

Figure 4.3: Position Error when using the trained controller from scenario 1.

Figure 4.4: Learning Curve corresponding to scenario 1. The cumulative reward
of each training episode is plotted against the learning steps thus each
blue dot represents the cumulative reward of an episode. The blue con-
tinuous line represents the mean cumulative reward which stabilizes at
roughly -2.46.

equilibrium point for the end-effector, it is hard to assess the produced controller. It
is also uncertain if the training time is sufficient for the optimal policy to be found.
On one hand the learning curve shows convergence (Figure 4.4), but on the other
hand, a surge in average cumulative reward might occur after many steps. In theory,
if the chosen target can be reached and the robot can stabilize its end-effector on
it, the implemented reward function in this scenario should be sufficient. The end-
effector behavior as presented in Figure 4.3, is very close to the desired behavior
however it is difficult to assess if it is the optimal behavior or not. Nevertheless,
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the reward function in this case is deemed time-consuming since no extra reward
is given based on the state (e.g end-effector velocity or acceleration) in which the
end-effector should reach the target is provided.

Scenario 2

The reward function is:

R(s) =

{
−||xt − xtip(n)||+ (||xt − xtip(n− 1)|| − ||xt − xtip(n)||) if stable simulation

−500 if unstable simulation

(4.2)
where xt is the position of the target, xtip(n) is the current position of the robot’s
free endpoint xtip(n − 1) is the robot’s previous position. The basic difference with
the previous scenario is that if an action leads to a larger jump towards the target,
reward becomes larger, whereas an action that moves the robot away from the target
results in a more severe punishment. The idea here is to check if the robot can learn
to reach the target faster, i.e. move faster towards the target. Again, if the simulation
becomes unstable the episode is truncated and a negative reward of -500 is given
to the agent. Training is done again for 500 episodes which corresponds to 30000
learning steps in total, and the obtained results are presented in Figures 4.5 and
4.6.

Figure 4.5: Position Error when using the trained controller from scenario 2.

As it can be observed from Figure 4.5, the total error is steadily reducing un-
til roughly t=5s and then it starts stabilizing at 0.018m. This means that the end-
effector is stabilized at a point approximately 1.8cm away from the target while col-
lecting a cumulative reward of -2.55. The obtained policy is substantially worse
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Figure 4.6: Learning Curve corresponding to scenario 2. The cumulative reward of
each training episode is plotted against the learning steps thus each
blue dot represents the cumulative reward of an episode. The blue
continuous line represents the mean cumulative reward which is ap-
proximately -2.58 by the end of the training while showing decreasing
tendencies.

compared to the previous scenario. From Figure 4.6 it can be concluded that the
training time is probably not sufficient since the expected cumulative reward is not
stabilized and even tends to decrease. Nonetheless, it seems that the reward de-
sign in this case resulted in a substantially worse performing policy while utilizing
the same training time as in the previous scenario. This is expected since higher
reward is given to the agent when the end-effector is getting closer to the target
faster. However, reaching the target with higher velocity results in the end-effector
diverging from the desired target and convergence to the optimal policy might need
a lot more training episodes thereby rendering this reward function sub-optimal for
the investigated control task.

Scenario 3

The reward function is:

R(s) =

{
−||xt − xtip|| if ||xt − xtip|| > 1.3 mm

−||xt − xtip||+ ((initial dist)− ||xt − xtip||)− 0.1||atip|| if ||xt − xtip|| ≤ 1.3 mm and ||atip|| < 0.0035m/s2

(4.3)
where xt is the position of the target, xtip is the current position of the robot’s free
endpoint and initial dist = ||xt − xtip(0)|| is the initial distance between the end-
effector and the target. If the robot’s free endpoint is away from the target at a
distance less or equal to 1.3mm (defined tolerance for the problem) and its acceler-
ation is practically zero, an extra reward is given, which gets larger as the accelera-
tion norm of the tip gets closer to zero and current distance to the target becomes
smaller. In that way, a new equilibrium as close to the reference position (target)
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as possible, can be found for the robot’s end-effector. In order to account for the
fact that a target might be inside the robot’s workspace but cannot be reached due
to the actio-taking frequency, the tolerance ratio of 1.3mm is introduced. Simulta-
neously, since the reward function gives an extra reward when a point within the
tolerance range of 1.3mm, becomes the end-effector’s new equilibrium, exploration
should be reduced thereby leading to faster convergence to the optimal policy. Fur-
thermore, the impact of the acceleration in the extra reward is scaled by 0.1 since
already end-effector acceleration norms less than 3.5mm/s2 are considered practi-
cally zero given the fact that under-damped oscillations occur in the direction of the
end-effector’s tangent. The penalty of -500 is removed since the designed actua-
tion system cannot lead to simulation instabilities. Training is done for 500 episodes
which corresponds to 30000 learning steps in total, and the corresponding results
are shown in Figures 4.7 and 4.8. As it can be seen from Figure 4.7, the er-
ror is steadily reducing until roughly t=4s and then it stabilizes at roughly 0.006m.
The robot’s end-effector reaches its final position which deviates from the target by
6mm in the x-axis, while presenting an oscillatory behavior in the tangential direc-
tion (system is underdamped in that direction). The produced policy did not lead
the end-effector inside the tolerance range, however the accumulated reward while
following this policy amounts to -1.82, which significantly surpasses the cumulative
reward from scenario 1. That means that a better policy was found while utilizing the
same training time. The improvement of the policy can also be confirmed by Figure
4.7, since the total error decrease is steeper compared to scenario 1. In particular,
even though the final total position error is larger by 4mm compared to scenario 1,
the end-effector gets closer to the target faster, which means that the series of ac-
tions chosen by the trained policy were keeping the end-effector closer to the target
during the episode. The evolution of the average episodic cumulative reward during
training for scenarios 1-3 is presented in Figure 4.9. It can be observed that the
reward function of scenario 3 achieved the highest mean cumulative reward. Con-
sidering the above, the reward function of scenario 3 is deemed the most suitable
choice for the present research. This is confirmed by the corresponding obtained
numerical results as well as its theoretical foundation. Hence, the reward function of
scenario 3 is used in the next series of experiments. This time, a stationary target
located at a point that the robot’s end-effector can reach and settle on, is considered.

Tuning Mini-Batch size

In the next series of experiments, the reward function presented in scenario 3 is
utilized. The stationary target’s coordinates expressed in global frame are [0.0592,
0.0, 0.0783]. It is verified that this point is within the robot’s workspace and the
end-effector can be stabilized at that point with insignificant error i.e. < 0.5mm
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Figure 4.7: Position Error when using the trained controller from scenario 3

Figure 4.8: Learning Curve corresponding to scenario 3. The cumulative reward
of each training episode is plotted against the learning steps thus each
blue dot represents the cumulative reward of an episode. The blue con-
tinuous line represents the average cumulative reward which is approx-
imately -2.22 by the end of the training while showing with increasing
tendencies.

(Figure 3.12). Again, the simulation lasts for 10.01 seconds which corresponds to
60599 simulation time-steps and episode length of 60 learning steps. Hence, in the
following experiments, nsteps = 60.

Scenario 1B: Mini-Batch size = 60 and nsteps = 60

Training is done for 1500 episodes which corresponds to 90000 simulation time-
steps in total, and the corresponding results are shown in Figures 4.10 and 4.11.
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Figure 4.9: Average episodic rewards during training. Blue line corresponds to sce-
nario 1, orange line to scenario 2 and green line to scenario 3. After
training, the average episodic returns are -2.46.-2.58,-2.22 for scenar-
ios 1,2 and 3 respectively.

By following the trained policy, the robot does not reach the desired target even
though the error is consistently decreasing until roughly t=7s. After that point, the
robot starts deviating from the target and by the end of the episode it is 5.6 mm
away from the target. The cumulative reward collected while following the policy
amounts to -1.22 while the average cumulative reward stabilized at approximately
-1.3. It can be concluded that the optimal policy is not found, however the learning
curve confirms that training is successful and stable since the average cumulative
reward consistently increased (Figure 4.11).

Scenario 2B: Mini-Batch size = 30 and nsteps = 60

In the previous scenario, mini-batch size is set equal to batch size. Therefore,
the benefits of mini-batch gradient descent used in PPO is not exploited and batch
gradient descent is essentially used instead. Batch gradient descent is more pro-
noun to converging at a local minimum thereby slowing down the training process.
On the other hand, the mini-batch gradient descent enables more gradient updates
thereby ensuring transitions that will avoid local minima convergence while speeding
up convergence [90, 91].

Considering the above, the mini-batch size is reduced to 30. Again, Training
is done for 1500 episodes which corresponds to 90000 simulation time-steps in
total, and the corresponding results are shown in Figures 4.12 4.13. As it can
be seen from Figure 4.12, there is a slight improvement in the system’s behavior
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Figure 4.10: Position Error to the target against time for the obtained policy of sce-
nario 1B

Figure 4.11: Cumulative rewards plotted against the learning steps (learning curve)
for scenario 1B. Each blue dot represents the cumulative reward of an
episode. Thus, each dot appears every 60 learning steps. The blue
and orange continuous lines represent the average cumulative reward
averaged over 100 and 50 episodes respectively.

since the obtained policy tends to stabilize the end-effector at a position roughly
9mm away from the target while the obtained cumulative reward for the followed
trajectory (dictated by the trained policy) is -1.11, which is higher by 0.11 compared
to the previous one in scenario 1B. The average cumulative reward settles at -1.20
(Figure 4.16

Scenario 3B: Mini-Batch size = 20 and nsteps = 60

In this scenario, the mini-batch size is set equal to 20. Therefore, each batch
consists of 3 mini-batches. The produced results are shown in Figures 4.14 4.15.
As it can be observed from Figure 4.14, the robot gets closer to the target and stays
closer to the target for longer compared to scenarios 1B and 2B and a cumulative
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Figure 4.12: Position Error to the target against time for scenario 2B

Figure 4.13: Cumulative rewards plotted against the learning steps (learning curve)
for scenario 2B. Each blue dot represents the cumulative reward of an
episode. Thus, each dot appears every 60 learning steps. The blue
and orange continuous lines represent the average cumulative reward
averaged over 100 and 50 episodes respectively

reward of -1.04 is collected. However, again the optimal policy is not found, and even
though the end-effector stays approximately 6mm away from the target, deviating
tendencies are observed in Y-axis (Figure 4.14). The average cumulative reward is
roughly -1.22 by the end of the training period, matching the average cumulative of
scenarios 1B and 2B. Nevertheless, the obtained policy is improved.

Scenario 4: Mini-Batch size = 15, nsteps = 60

In this scenario, the mini-batch size is slightly reduced and is set at 15. Thus,
each training batch consists of 4 mini-batches. Furthermore, the training time is
significantly increased, i.e. from 1500 episodes to 6000 episodes. The obtained
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Figure 4.14: Position Error to the target against time for scenario 3B

Figure 4.15: Cumulative rewards plotted against the learning steps (learning curve)
for scenario 3B. Each blue dot represents the cumulative reward of an
episode. Thus, each dot appears every 60 learning steps. The blue
and orange continuous lines represent the average cumulative reward
averaged over 100 and 50 episodes respectively

results are depicted in Figures 4.17 and 4.18. The produced policy is successful
in executing the desired task. More precisely, the robot’s end-effector after gradual
diminishing oscillations reaches the target with a deviation of 0.3mm. However, it
can easily be concluded that the obtained policy is not the optimal one since it does
not produce the expected behavior of Figure 3.12. This can also be confirmed by
the corresponding learning curve, since the average cumulative reward converged
at -1.13 which is considerably lower than the cumulative reward that corresponds to
the optimal policy.
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Figure 4.16: Comparison of average cumulative reward curves for scenarios 1B-
3B. Blue,orange and green lines correspond to scenarios 1B, 2B and
3B respectively. Reduction of the mini-batch size tends to speed-up
training and promote convergence to improved policies.

Figure 4.17: Position Error to the target against time for scenario 4
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Figure 4.18: Cumulative rewards plotted against the learning steps (learning curve)
for scenario 4. Each blue dot represents the cumulative reward of an
episode. Thus, each dot appears every 60 learning steps. The blue
and orange continuous lines represent the average cumulative reward
averaged over 100 and 50 episodes respectively



Chapter 5

Conclusion

In the present thesis, the utilization of Model-Free RL as an autonomous control
strategy for a pneumatic-driven soft continuum robot is investigated. The objective
is to train the soft continuum robot to stabilize its end-effector on a stationary target
in 3D space. In this research, the body of the examined soft continuum robot as
well as its actuation and workspace are modelled in a simulator based on Cosserat
rod theory and discrete differential geometry (Elastica). The chosen modelling ap-
proach, based on a consistently discretized Cosserat rod, is able to approximate
the robot’s dynamics and kinematics, thereby sufficiently capturing the physical sys-
tem’s behavior. The forces produced by the rPAM actuators can also be modelled
with the use of the chosen simulator. The system’s actuation is modelled as external
forces which act along the free endpoint’s tangent vector causing axial strain, and
which upon magnitude difference produce torques that result in bending moments,
thereby simulating the robot’s pneumatic actuation. Furthermore, the system’s ex-
pected behavior is obtained after proper tuning of the simulator’s parameters such
as number of spatial discretization elements, discretization time-step and damping
coefficient while ensuring that the modelled actuation forces do not exceed realistic
values and are applied in way that does not lead to instability. The created simula-
tion environment is successfully transformed into a Markov Decision Process with
a manually designed reward function compatible with the latest implementation of
Proximal Policy Optimization (in Stable-Baselines3). Thus, the application of Model-
Free RL control is made possible for the examined position control problem. More
specifically, the use of a discontinuous reward function that provides extra rewards
when the end-effector finds a new equilibrium point as close as possible to the set-
point, is deemed the most suitable choice for the investigated control problem. It
is also concluded that the use of mini-batches instead of the whole batch results in
faster convergence to improved policies. Finally, through the implementation of the
designed control scheme, the robot (Elastica rod) learns to stabilize its end-effector
just 0.3mm away from the desired target.

71



72 CHAPTER 5. CONCLUSION

The designed control scheme offers a series of benefits. Firstly, all policy training
data are derived from the physical simulation environment and thus no real robot-
environment interactions are needed. Hence, potential damages to the physical
system due to its interaction with the environment are avoided. Furthermore, since
virtual data are used, there is no dependency on sensor data which are difficult to
collect and require filtering due to the presence of noise. Moreover, the investigated
control scheme can easily be extended and employed for more complicated control
tasks. In particular, the designed control scheme can easily be modified in order to
train the robot to track a moving target. On top of that, through the utilization of PPO
the implemented controller is essentially a stochastic policy. Therefore, through the
usage of a stochastic policy, the investigated robot could learn to perform compli-
cated tasks inside a dynamic and complex environment. For example, the robot
could learn to avoid randomly moving obstacles. This is a particularly interesting
scenario in the context of a biomedical application of the investigated robot. For
instance, if the soft continuum robot is employed inside a confined space such as
the human body during a surgery, it would be extremely important to ensure that
the robot does not get in contact with vulnerable points (e.g. arteries). On the other
hand, the followed approach is associated with certain limitations as well. Firstly,
even though the utilized Elastica model is consistent in modelling the geometry, dy-
namics and kinematics of the soft continuum robot, its accuracy suffers compared to
models based on FEM. In any case however, modelling the physical system without
real data could lead in inaccuracies. Therefore, in the model-free approach of the
present thesis, deviations when transferring the trained RL controller to the physical
system, may occur.

Regarding future extensions of this research, it would be valuable to include
gravitational forces in the model to achieve higher modelling accuracy and there-
fore higher control accuracy in real conditions. In the context of the present thesis,
gravitational forces are omitted due to the fact that the system is extremely under-
actuated and the design of an efficient gravity compensation scheme is impossible.
Nevertheless, gravitational forces should be taken into consideration in order to en-
sure the proposed control scheme’s feasibility in a real situation. Moreover, since
there is no knowledge of the real system’s dynamics, it is difficult to assess the
model’s accuracy. Thus it is important to conduct model verification in the future
in order to minimize deviations when transferring the controller to the physical sys-
tem. Finally, hyperparameter optimization for PPO could potentially improve policy
training and thus convergence to the optimal policy could be achieved.
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“A2c is a special case of ppo,” arXiv preprint arXiv:2205.09123, 2022.

[89] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

https://www.smooth-on.com/product-line/ecoflex/
https://docs.cosseratrods.org/en/latest/guide/workflow.html
https://docs.cosseratrods.org/en/latest/guide/workflow.html
https://vlab.amrita.edu/?sub=3&brch=175&sim=1080&cnt=1
https://vlab.amrita.edu/?sub=3&brch=175&sim=1080&cnt=1
https://stable-baselines3.readthedocs.io/en/master/
https://stable-baselines3.readthedocs.io/en/master/
https://gymnasium.farama.org/


BIBLIOGRAPHY 81

[90] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010: 19th International Conference on Compu-
tational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Con-
tributed Papers. Springer, 2010, pp. 177–186.

[91] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online
stochastic gradient for tensor decomposition,” in Conference on learning theory.
PMLR, 2015, pp. 797–842.

[92] J. L. Sparks, N. A. Vavalle, K. E. Kasting, B. Long, M. L. Tanaka, P. A. Sanger,
K. Schnell, and T. A. Conner-Kerr, “Use of silicone materials to simulate tissue
biomechanics as related to deep tissue injury,” Advances in skin & wound care,
vol. 28, no. 2, pp. 59–68, 2015.



82 BIBLIOGRAPHY



Appendix A

Modelling and Simulation in Elastica

In this section, particular details regarding the experiments that were run in order to
verify the competence of the obtained model are presented.

A.1 Tests for Simulation Time-Step Tuning

Test 1

By applying a = 0.01, time-step becomes dt = 0.000033 s. By simulating the rod’s
behavior for 10 seconds while having only one actuator producing a constant force
of 0.1N (Step Input, Figure 3.7), the results shown in Figure A.1 are produced. The
produced simulation is numerically stable. Nevertheless, the physical simulation of
10 seconds requires 35 real seconds. This computational cost is considered high
for Model-Free RL standards. Therefore larger time-steps need to be examined.

Test 2

By applying a = 0.05, time-step becomes dt = 0.0001667 s. By simulating the
rod’s behavior for 10 seconds while having only one actuator producing a constant
force of 0.1N (Step Input, Figure 3.7), the results shown in Figure A.1 are produced.
The 10 second Elastica simulation needed 10 real seconds to be completed while
being numerically stable. As it can be seen from Figure A.1, the endpoint presented
the same behavior as in test 1 while being less expensive computationally.

Test 3

By applying a = 0.15, time-step becomes dt = 0.0005 s. By simulating the rod’s
behavior for 10 seconds while having only one actuator producing a constant force
of 0.1N (Step Input, Figure 3.7), the results shown in Figure A.1 are produced. The
10 second Elastica simulation needed 3 real seconds to be completed while being
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numerically stable. As it can be seen from Figure A.1, the endpoint presented the
same behavior as in tests 1,2 while being the least expensive computationally.

Figure A.1: Rod’s Endpoint Position and Velocity norm during tests 1-3. Blue line
corresponds to test 1, orange line to test 2 and green line to test 3.
The rod’s endpoint presents the same behavior in all tests. However
magnitude differences exist due to the fact that as time-step becomes
larger and data-collection frequency remains the same, data points are
getting lost.

Test 4

By applying a = 0.2, time-step becomes dt = 0.00066 s. By simulating the rod’s
behavior for 10 seconds while only one actuator produces a constant force of 0.1N
(Step Input, Figure 3.7), the results shown in Figure A.2 are produced.

The chosen time-step leads to instability as the plot in Figure A.2 confirms.
Based on the obtained results, parameter a can be between 0.05 and 0.15 (i.e.
0.0001667 ≤ dt ≤ 0.0005 for the purposes of the present thesis. Nevertheless, in
order to be on the safe side, the a is chosen as 0.05 and thus dt = 0.0001667

A.2 Response of the model in small axial stresses

Based on the analysis in chapter 3, the crucial parameters of spatial and time dis-
cretization are specified. However, in order to verify that the obtained model is com-
petent, its behavior is examined in the presence of a small normal stress i.e. stress
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Figure A.2: Rod’s Endpoint Position and Velocity norm during test 4

which corresponds to the material’s linear stress-strain region. It is known that for
most engineering materials linear stress-strain relationship is observed for strains
< 0.1%. For Eco-Flex 00-10 this is confirmed by the work presented in [92]. There-
fore, assuming that a small normal stress σ = Eϵ = 0.05 MPa · 0.0009 = 45 Pa is
acting on the free endpoint of the Elastica rod in its initial state and along its axis,
a force of 45Pa · π(0.009 m)2 = 0.01145 N acts on the rod’s free endpoint. Hence,
a constant force acting on the rod’s free endpoint is simulated. The input force can
be seen in Figure A.3 and the rod’s response in Figure A.4. As it can be observed
from Figure A.4, the rod elongated and its length increased by 0.00009 m which
corresponds to the expected from theory 0.0009 strain.

A.3 Defining force change per time-step

Large force changes (e.g. step input force) lead to excitation of under-damped natu-
ral frequencies which are associated with the stiff deformations and especially elon-
gation. Therefore, in this section, the largest force-change per time-step that does
not lead to unstable behavior when the robot elongates, is searched. In the most
extreme elongation case (when the force change per time-step is bounded) each
actuator would produce equal force per time-step which would increase per time-
step by a fixed amount. Since, each actuator should not produce more than 0.6N,
during a 10 second simulation (10s/0.0001667s = 59999 simulation steps),the maxi-
mum elongation force should be 2.4N. Hence, the largest tolerable force change per
time-step is a bit larger than 10−5N .
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Figure A.3: The Force that simulates the axial stress acting on Elastica rod’s free
endpoint.

Figure A.4: The response of the Elastica rod to the axial stress. As it can be seen
in the bottom left plot, the rod elongated and its endpoint stabilized at
0.10009 m.

Based on the above, three different force changes per time-step are considered:
10−5N ,10−7N and 10−9N . In each case, the force of each actuator increases with
time until t=3.3s. Beyond that time instant, the actuator forces are kept constant. As
it can be observed from Figure A.5, force changes 10−7N and 10−9N are unable
to produce acceptable elongation at a reasonable time frame. On the other hand,
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the force change of 10−5N seems a reasonable choice. This force change per time
step does not cause numerical issues the system’s response can be characterized
marginally stable since small under-damped oscillations are present. However these
oscillations are much smaller in magnitude compared to the system’s step response
3.9. The under-damped oscillations are unavoidable since only one damping co-
efficient can be specified and we have two deformation modes with very different
stiffnesses i.e. Bending and Stretching/Compression. The described system be-
havior can be observed in Figure A.5. Hence, it is concluded that a force change
df = 10−5N is suitable for the scope of the present thesis.

Figure A.5: End-Effector’s behavior under 10−5N (blue line),10−7N (green line) and
10−9N (orange line) force change per time-step.

A.4 Higher Flexibility Test

In this section the model that was used in the present thesis is used again just with
higher number of spatial discretization elements i.e 40 and 50. It can be seen from
Figures A.6 and A.7 that with higher number of spatial discretization elements
the end-effector’s workspace is increased. Nevertheless the behavior of the End-
Effector remains the same in all cases.
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Figure A.6: End-Effector’s behavior under the same actuation profile and different
number of spatial discretization elements. Blue line corresponds to n =

30, orange line to n = 40 and green to n = 50.

Figure A.7: End-Effector’s behavior under the same actuation profile and different
number of spatial discretization elements. Blue line corresponds to n =

30, orange line to n = 40 and green to n = 50.
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