
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

An Internet-wide investigation
of publicly accessible databases

Samuel J. Witt
M.Sc. Thesis
23-11-2023

Supervisors:
Dr. R. Holz

Dr. A. Continella

Design and Analysis of
Communication Systems Group

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

Database technology is a cornerstone of the modern digital society. In this report,
we investigate the worldwide landscape of publicly accessible databases and their
security postures. We design, implement and carry out 2 Internet scans for open de-
fault ports of 8 of the most popular database solutions in existence. Internet scan-
ning has been done numerous times for a multitude of purposes, an overview of
required background knowledge is presented, together with a discussion of relevant
previous work. Ethical guidelines with respect to Internet scanning as established by
the computer science community are followed to minimise the intrusiveness of our
scans. Our focus is on the connection and deployment security of publicly acces-
sible databases. To measure the connection security posture, we look at Transport
Layer Security (TLS) properties, including versions, cipher suites and certificate va-
lidity. Furthermore, we assume the perspective of an outside user in our security
assessment of deployed database systems to determine their level of vulnerability.
Our scan detected a total of 3.5 million databases among the 8 database solutions,
of which 51% offered TLS in 2023 as a way to secure the connection between client
and server. 89% of those servers do not use TLS versions prior to TLS 1.2, 78%
force RECOMMENDED cipher suites for TLS encryption, 9% of TLS server iden-
tity certificates could be verified using Mozzila’s CCADB, and 74% of servers offer
self-signed certificates. We discovered that 5 database solutions have their version
string available to any connecting client, and it is possible to deduce if the version is
vulnerable to remote attacks. We show that a significant portion of publicly accessi-
ble database servers run versions vulnerable to one or more attacks exploitable from
remote using an Internet connection. The key takeaway from our research is that
security configuration and software maintenance remain challenges for database
server administrators.

iii

IV ABSTRACT

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Research goals and contributions . 2
1.3 Report organisation . 3

2 Literature research 5
2.1 Background . 5

2.1.1 Transport Layer Security (TLS) 5
2.1.2 X.509 standard . 5
2.1.3 Common Vulnerabilities and Exposures (CVE) 6

2.2 Selecting related research papers . 6
2.3 Discussion of the research papers . 7

2.3.1 TCP layer scanning . 7
2.3.2 Scanning of databases . 9
2.3.3 Research findings from Internet-wide scanning 10

2.4 Ethical discussion . 12
2.5 Our research in perspective with previous work 13

3 Methodology 15
3.1 Database services . 15
3.2 Ethical considerations . 17
3.3 Active scan . 17
3.4 Data analysis . 18

3.4.1 TLS versions . 18
3.4.2 TLS cipher suites . 18
3.4.3 Heartbleed . 19
3.4.4 X.509 certificates . 19
3.4.5 Software versions . 20

v

VI CONTENTS

4 Results 21
4.1 TLS . 22

4.1.1 TLS versions . 22
4.1.2 TLS Cipher suites . 22
4.1.3 TLS Heartbleed . 24
4.1.4 TLS Certificates . 26

4.2 Database software versions . 28
4.2.1 Remotely exploitable vulnerabilities 28
4.2.2 Version changes over time . 37

5 Discussion of results 39
5.1 Individual database security postures 39

5.1.1 Oracle SQL . 39
5.1.2 MySQL . 40
5.1.3 Ms-SQL . 42
5.1.4 PostgreSQL . 42
5.1.5 MongoDB . 43
5.1.6 Redis . 44
5.1.7 MariaDB . 45
5.1.8 Cassandra . 46

5.2 Overall database security . 46

6 Conclusions 49
6.1 Public database connection security posture 49
6.2 Public database software security posture 49
6.3 Recommendations . 50

6.3.1 Improvements to our study . 50
6.3.2 Future work . 50

References 51

Appendices

A TLS complete data tables 57

B Vulnerability statistics 61

Chapter 1

Introduction

1.1 Motivation

In today’s digital society, there is an enormous amount of data created every day by
both organisations and individuals. Databases have become the foundation of mod-
ern information technology, serving as valuable repositories for research, informa-
tion sharing, and knowledge exchange across various domains. These databases
offer unprecedented opportunities for researchers, businesses, and the general pub-
lic to access, analyse, and utilise the large amounts of data the world generates in
ways that were previously unimaginable.

However, with the immense benefits of these databases come security concerns.
As the repository of sensitive and personal information expands, so does the poten-
tial for malicious activities and cyber threats. In recent years there have been more
and more data breaches, cyber attacks, and unauthorised access incidents, high-
lighting the need to evaluate the security landscape of such databases rigorously.

This research report seeks to address these concerns by conducting an in-depth
investigation into publicly accessible databases worldwide, specifically from a secu-
rity perspective. We focus our attention on the confidentiality of the communication
and the identity of database servers, and their susceptibility to remote cyber attacks.
The traffic between client and server might contain sensitive information like user-
names and passwords, and therefore it is important to ensure it is sufficiently en-
crypted to rule out possible third parties reading the communication. Furthermore,
the client needs to be able to verify that the server it is connected to is the gen-
uine server they intended to connect to and not a pretender. Scanning is a method
to detect servers and establish a connection emulating as a client. In this way the
server can be observed and information gathered about the way it presents itself
and secures its communication.

We carry out two worldwide scans, one in October 2021 and a second scan in
March 2023. The first scan serves as a benchmark for the state of publicly accessi-

1

2 CHAPTER 1. INTRODUCTION

ble databases to compare the second scan to in order to ascertain how the security
has progressed or declined over 17 months time. Originally the research focused on
doing one worldwide scan, however due to personal circumstances of one of the re-
searchers we found ourselves in a position to orchestrate a second scan with minor
improvements. This gives us the unique chance to look at how publicly accessible
databases and their security measures evolved over an extended time period.

This research report aims to raise awareness about the critical need for robust
data protection measures by unveiling the current state of security in publicly acces-
sible databases. The insights gained might serve as a valuable resource for poli-
cymakers, database administrators, cyber security professionals, and researchers,
aiding with creating effective security strategies and risk management protocols. Ul-
timately, this study aims to contribute to a safer and more secure digital landscape,
improving trust and confidence in the usage of databases.

1.2 Research goals and contributions

The goal of the research is to investigate the connection and deployment security
of publicly accessible databases. To measure the connection security posture, we
look at Transport Layer Security (TLS) properties, including versions, cipher suites
and certificate validity. We assume the perspective of an outside user in our security
assessment of deployed database systems to determine their level of vulnerability.

We have 2 main research questions, as follows:

• How secure are connections with publicly accessible databases?

• How secure is database management software (DBMS) running on publicly
accessible databases?

With our research, we paint a picture of a worldwide publicly accessible databases
landscape consisting of 8 of the worlds most popular database solutions. To achieve
this we leverage the Zgrab2 [1] scanning tool for our scans. We analyse the results
of the scans and discuss our findings. Our main contributions are:

• A Zgrab2 scanning module for Cassandra databases.

• Data from 2 worldwide Internet scans for 8 popular database solutions.

• An analysis of the gathered data focusing on the connection and software
security configurations.

• Insights for database administrators, policymakers, cyber security profession-
als, and researchers.

1.3. REPORT ORGANISATION 3

1.3 Report organisation

The remainder of this report is organised as follows. In Chapter 2, required back-
ground knowledge is given, as well as a discussion of related work and an overview
of ethical challenges with internet scanning. Then, in Chapter 3, we outline how the
scans are conducted and analysed . Results are presented in Chapter 4, we discuss
them in Chapter 5, and conclude in Chapter 6.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Literature research

2.1 Background

The purpose of this section is to introduce security concepts that are critical to under-
stand the results of this study: Transport Layer Security (TLS), the X.509 standard
for certificates, and the Common Vulnerabilities and Exposures (CVE) system.

2.1.1 Transport Layer Security (TLS)

TLS (Transport Layer Security) is a cryptographic protocol used to secure data com-
munication over computer networks, specifically on the internet. It ensures the confi-
dentiality, integrity, and authenticity of data transmitted between a client and a server.
TLS achieves this through encryption, a secure digital handshake process, and the
use of digital certificates for verifying the identity of servers. A TLS handshake con-
sists of the client and server deciding on which TLS version and cipher suite to
use, authenticating the server’s identity, and generating session keys for symmetric
encryption during the connection. By safeguarding sensitive information and es-
tablishing secure connections, TLS plays a vital role in maintaining the privacy and
security of online interactions. It has existed for quite some time and undergone
several iterations to keep up with an ever evolving cyber security environment, with
the most prevalent versions in use today being TLS 1.2 and TLS 1.3. Older TLS
versions 1.1 and 1.0 are no longer considered secure at the time of writing [2]. It’s
predecessor, SSL (Secure Sockets Layer), has critical security concerns and has
been deprecated since 2015 [3].

2.1.2 X.509 standard

X.509 is a widely adopted standard for digital certificates in public key infrastruc-
ture. These certificates play a crucial role in verifying the authenticity of entities,

5

6 CHAPTER 2. LITERATURE RESEARCH

such as servers, clients, or individuals, during secure communication. X.509 certifi-
cates contain, among others, information about the entity’s identity, the Certificate
Authority (CA), and the entity’s public key. They are digitally signed by the issuer to
ensure their integrity, and a chain of trust is established by verifying the issuer’s cer-
tificate up to a trusted root certificate. X.509 certificates are fundamental to secure
communication protocols, such as TLS, as they enable certificate-based authenti-
cation, digital signatures, and secure key exchange, enhancing the overall security
and trustworthiness of digital interactions.

2.1.3 Common Vulnerabilities and Exposures (CVE)

CVE [4] is a standardised cataloguing system that provides unique identifiers for
known security vulnerabilities and weaknesses in software and hardware systems.
It works as a reference for identifying and keeping track of vulnerabilities, enabling
organizations and individuals to assess potential risks, prioritise security patches,
and take proactive measures to protect their systems from cyber threats. The CVE
system improves collaboration among security researchers, vendors, and users, fa-
cilitating a more effective response to security issues and contributing to a safer
digital environment.

The vulnerabilities are categorised and scored according to the Common Vulner-
ability Scoring System (CVSS). The current version is 3.1, released in June 2019.
Every vulnerability has a vector string with information about attack characteristics,
enabling efficient categorisation.

2.2 Selecting related research papers

The papers discussed in section 2.3 are a representation of the recent develop-
ments in the Internet measurement research area. All the papers discussed were
published between 2010 and 2020. They are categorised in the following three sub-
jects: TCP layer scanning, database scanning, and scanning research findings. The
purpose of this categorisation is to ensure clear structure of the discussion and to
cover all aspects of the proposed research. In each category we review the state-of-
the-art research, carefully selected from the wide range of research papers available
worldwide. In choosing the papers, we used these categories as a first selection cri-
terion, a paper must fall into at least one of the three categories. Furthermore, to
ensure the papers have been reviewed substantially and have contributed meaning-
ful research, the second criterion is that a paper must be accepted at a reputable
conference or journal. The reputation of a conference or journal stems from the

2.3. DISCUSSION OF THE RESEARCH PAPERS 7

quality of the review process, the citations of published papers and the reputation of
program committee members.

2.3 Discussion of the research papers

In this section we will discuss previous research that has been done in the topic of
scanning the Internet for research purposes.

2.3.1 TCP layer scanning

To the best of our knowledge, two academically peer reviewed papers have been
written that propose a new software program with the purpose of Internet-wide scan-
ning [5] [6]. The first, written in 2010 by Derek Leonard and Dmitri Loguinov [5], pro-
poses a new scanner called IRLScanner. Their main goals with the design were to
be as polite as possible to scanned networks such that complaints from their admin-
istrators are greatly reduced, and to scan significantly faster than was ever possible
before, reducing the time to scan the whole Internet from weeks to approximately
24 hours. IRLScanner relies on a custom network driver for the Windows operating
system, IRLStack [7].

The second paper is from 2013, and describes ZMap, an open-source network
scanner. ZMap scans the whole Internet in under 45 minutes from one machine
utilising a gigabit Ethernet connection. It has a modular architecture, allowing users
to write their own code to define actions to take once a port has been scanned.
Packet sending and receiving runs in parallel to achieve maximum speed. While
scanning, a random permutation of the IPv4 address space is used to make sure
that networks are not overloaded. The permutation is generated with the guarantee
that every IP address is unique, and sequential IPs are spread evenly. Excluding
certain IP addresses from the scan can be easily configured. ZMap achieves its
high speed of scanning by sending Ethernet-layer packets via a raw socket. Kernel
overhead is prevented in this way, and by default TCP connections are automatically
closed with a TCP RST packet, as no TCP session is known to the kernel. ZMap
was used in many scans to demonstrate its usefulness, and in Table 2.2, guidelines
for politeness in scanning the Internet can be found, as determined in this paper.
ZMap is available for free and works on the Linux and macOS operating systems.

Two IP protocols are currently widely being used, IPv4 and IPv6. The previously
discussed papers consider IPv4 address scanning. Since the IPv6 address space
is far too large to allow for a full scan, new techniques are needed to mitigate this
problem.

8 CHAPTER 2. LITERATURE RESEARCH

In 2017, Murdock et al. [8] investigated the generation of IPv6 addresses likely to
be of interest while performing Internet scans. They explored what should be taken
into account when designing such algorithms, and designed their own algorithm:
6Gen. It works with a set of initial ”seed” addresses, from which dense address
space regions are discovered, and from there it generates addresses to scan. They
evaluated the performance of 6Gen compared with Entropy/IP [9], which was the
state of the art at the time of writing their paper. 6Gen performs between 1-8 times
better when used with the same data sets in train-and-test runs.

In 2018, using a multitude of IPv6 address sources including Entropy/IP and
6Gen, Gasser et al. [10] explored the concept of IPv6 hit lists. They find that re-
sponsiveness of server and client IPv6 addresses is significantly different. Client
addresses do not stay active for long, confining measurements to take place within
minutes after hit list generation. Server addresses however remain active for weeks.
They set up a IPv6 hit list service, a publicly available database with daily updated
hit lists and aliased prefixes, enabling further research.

Another relevant paper, written by G. Wan et al. [11], analyses the effect of loca-
tion on Internet-wide scans. They scanned the Internet from seven geographically
and topologically different networks. While scanning from a single origin, on av-
erage 1.6–8.4% of HTTP, 1.5–4.6% of HTTPS, and 8.3–18.2% of SSH hosts are
not scanned. They show that transient outages, permanent and temporary block-
ing, geographic biases and packet loss impact scans. They recommend to scan
from 2-3 diverse origins to prevent transient loss, and encourage researchers to use
multiple source IP addresses, and/or probing addresses multiple times with a delay
in between. Scanning from only one location still yields significant results, but it is
important to keep potential geographical bias in mind.

In 2015, Durumeric et al. [12] published their paper in which they introduce Cen-
sys, a search engine with data collected through Internet-wide scanning. Censys is
available online for the research community to conduct research which would other-
wise require additional scans. The paper describes 16 protocols regularly scanned
and stored. Only standardized ports of those specific protocols are scanned.

Izhikevich et al. [13] published their paper on identifying unexpected Internet ser-
vices in 2020. Following observations from previous work that a significant portion
of Internet hosts might be running on different ports then the default IANA-assigned
(Internet Assigned Numbers Authority) ports for the services they run, they find out
that many services run on a widely spread out range of ports, and that it is more
likely that they are less secure then the same service running on the designated
IANA-assigned port. They design a scanner called LZR, which is capable of fin-
gerprinting 99% of identifiable services running on unexpected ports with only 5
handshakes, and 88% with just one single packet. Furthermore, because scanning

2.3. DISCUSSION OF THE RESEARCH PAPERS 9

all 65535 ports on all IPv4 addresses is not currently feasible, and there is no evi-
dence for any subset of ports to be clearly valuable to scan for a particular purpose,
they recommend to scan a small amount of IP addresses on all ports to determine
a representative subset of ports of the protocol(s) to be researched. LZR takes an
IP/port list or stream of SYN-ACKS from ZMap, and a list of protocols to identify.
With this it sends a single packet to each of them, using a raw socket, similar to
ZMap.

2.3.2 Scanning of databases

A prior study conducted, similar to the scan proposed in this paper, by Ferrari et
al. [14], conducted a large-scale analysis of NoSQL service configurations. They
contribute an approach to investigate misconfigurations in NoSQL services while
not compromising the integrity of the databases. They created a tool that can au-
tomatically scan the IP addresses of cloud service providers to find publicly acces-
sible MongoDB, Elasticsearch, Redis and Cassandra databases. They leveraged
their tool to study the configurations and reflect on the security and privacy implica-
tions. First they listed the IP addresses of cloud storage providers, then scanned
those with Nmap [15] for open ports. Lastly they analysed the found publicly acces-
sible services by sending commands that count all accessible data instances, and
commands that try to create a new section in the database in which they write a
message stating that the database is insecure and information about the research.
The ethical dilemmas this research poses are addressed extensively.

An investigation into the configuration of Amazon S3 cloud storage containers
(buckets) , was conducted in 2018 by Continella et al. [16]. Amazon’s access pol-
icy configuration is quite extensive, and can be misconfigured, possibly leading to a
variety of security and privacy issues. They created a tool that can check Amazon
S3 buckets automatically for vulnerabilities, verified their tool, analysed the secu-
rity performance of the bucket ecosystem, and developed a browser extension that
protects Internet users from loading potentially malicious resources from publicly
writable buckets. S3 buckets are identified with a unique name between 3 and 64
characters, and to create a list of candidate bucket names they created numerous
mutations and enumerations from words in the English dictionary. Together with a
list of known public bucket names they run a scan, and find 240,461 existing buckets,
of which 27,492 are readable, and 6599 writable. They also identified 191 websites
that are vulnerable to code injection in writable S3 buckets. Their browser exten-
sion uses a hashed list of vulnerable buckets to protect users from exploiting the list.
Furthermore, they present a thorough overview of ethical issues and how they dealt
with them.

10 CHAPTER 2. LITERATURE RESEARCH

Additional research on cloud storage configuration conducted by Cable et all. [17]
focused on multiple bucket storage providers, improving on the work done by Con-
tinella et al [16]. They adapt password cracking algorithms to guess bucket names,
and create their own cloud scanning tool named Stratosphere that uses those algo-
rithms to generate candidate bucket names, trained with a large amount of bucket
names gathered from high quality passive DNS measurement data. Stratosphere
relies on training with high quality training data only available to verified researchers
to avoid abuse. They evaluate the performance of Continella’s tool and an online
system called GrayHat [18] with Stratosphere and find that both are biased towards
a small portion of the bucket name space as they find relatively short names. They
find that the vulnerability of Amazon S3 buckets is a factor 5 times worse than Con-
tinella estimated, and also worse than the vulnerability of other bucket providers.
They hypothesise that the cause is Amazon’s complex permissions model. Further-
more, they show that the problem of finding bucket names is fundamentally limited
by unguessable randomness added to bucket names.

2.3.3 Research findings from Internet-wide scanning

Since the creation of ZMap [6] and Masscan [19], numerous studies have used
scanning as their methodology for the research carried out.

Springall et al. [20] used ZMap to measure HTTPS behaviour for their research
on the use of cryptographic shortcuts in Transport Layer Security (TLS). These
shortcuts reduce overhead computation on the server and decrease the latency for
the client side, but also significantly reduce the security of forward-secret cryptog-
raphy. They modified ZMap to work with session IDs and session ticket resumption
for their research. They showed that 38% of the Top Million HTTPS websites are
affected such that they can be compromised up until 24 hours after cryptography
took place, and 10% even up until 30 days. The chosen cryptographic cipher does
not influence this vulnerability.

Another security focused paper by Amann et al. [21] used active and passive
measurements to investigate the security state of HTTPS, particularly the adoption
of recently developed features like HTTP Public Key Pinning (HPKP), Certificate
Transparency (CT) and HTTP Strict Transport Security (HSTS). For their active mea-
surements they aggregated a total of 193M domain names from various sources,
and resolved those to IP addresses. An IPv6 capable version of ZMap is used to
port scan IPv6 addresses, and Goscanner [22] is used to execute TLS handshakes.
They find that there might be a correlation between deployment of new features, and
configuration difficulty and risks to site availability.

To study the values of TCP’s initial congestion window (IW), an important pa-

2.3. DISCUSSION OF THE RESEARCH PAPERS 11

rameter for performance in the Internet, Rüth et al. [23] adapted ZMap to be able to
make TCP connections, and to remember properties of the connection like segment
length, to allow calculating the IW. They show that scanning only 1% of the IPv4
Internet at random is enough to get representative IW data for the whole Internet.
Their main contribution is to bring data to the debate about what size the IW should
be. The trend observed in the evolution of services on the Internet is that the IW
is adapted per service and thus becoming less and less a static constant within the
Internet traffic.

Durumeric et al. [24] investigate the HTTPS certificate ecosystem in 2013. They
conducted 110 Internet-wide scans over 14 months to obtain insights into the prac-
tices and adoption of security standards of certificate authorities (CAs). Scanning
the entire IPv4 address space is done with ZMap to discover hosts with port 443
open to TCP connections. Then a TLS handshake is performed using OpenSSL,
and the obtained certificates validated with custom emulated browser validation.
The ethical nature of the research is addressed extensively. They find that CAs lack
behind with the implementation of best practices developed by the security commu-
nity. In November 2011 the CA/Browser Forum, a cooperation between CAs and
Browser makers, developed guidelines to deal with many certificate security risks.
However, lacking any enforcement, these guidelines have not been widely imple-
mented. Browser support for new security technologies is also a significant part
of the problem. Compatibility between CAs and browsers is need for both to func-
tion correctly, and neither has really the incentive to adopt a new technology first,
since the other party needs to update as well before it achieves any value. Lastly,
they found more than 50 root authorities using a key size of 1024-bit for RSA, with
the latest expiry date set at 2040. They recommend that more awareness about
long term security consequences should be raised, since 1024-bit RSA keys were
recommended to use until 2020.

After the discovery of the major security vulnerability in OpenSSL called Heart-
bleed in 2014, Durumeric et al. [25] conducted Internet-wide scans to find vulnerable
hosts, notify them of their security issue, and monitor the patch rate among notified
hosts. They use a non-intrusive way to detect the vulnerability in hosts, exploiting
the fact that vulnerable versions of OpenSSL reply to Heartbeat requests without
any payload or padding, and the length field set to zero. The patched version of
OpenSSL and other similar libraries deal with such incoming requests correctly as
specified in RFC 6520 [26]: namely to drop the packet. They modified ZMap to send
such empty HeartBeat requests to find all vulnerable hosts. The analysis of the
resulting data revealed that certificate management requires a good understanding
of the security ecosystem and the protocols used, which many administrators do
not possess. Furthermore, the mass certificate revocation as a result of Heartbleed

12 CHAPTER 2. LITERATURE RESEARCH

caused CAs to be overloaded, and stresses the need for new methods to make
revocation more scalable. Additionally, a need for a well streamlined mass vulner-
ability disclosure follows the chaotic fashion with which Heartbleed was disclosed,
leaving a number of major websites uninformed about Heartbleed for more than 24
hours after it was disclosed. Lastly, while most sites patched within two weeks after
disclosure, the patch rate plateaued after that. The global awareness for Heartbleed
was not enough to make all hosts affected patch the problem. All vulnerable hosts
found during the scanning phase were notified of being vulnerable, and this led to
the patch rate increasing with 47%.

Holz et al. [27] used Internet-wide scanning as a data source for their research
on the deployment of TLS 1.3 in 2020. The adoption of TLS version 1.2 took over
5 years, and with version 1.3 arriving, they took the opportunity to track the de-
ployment, over a long period starting at the early design phase until a year after
standardisation finished. They collected a huge number of domain names from dif-
ferent sources, to create a set consisting of many different subsets to be able to
compare the differences in TLS 1.3 deployment between them. They scan period-
ically, starting in 2017-10 from Aachen in Germany, and shift scanning to Sydney
in Australia in 2019-05, after TLS 1.3 was standardised. They use massdns, ZMap
and ZGrab, as well as Goscanner [22], as published by Amann et al. [21]. Further-
more, they use passive monitoring data of TLS traffic in North America and a data
set from Android application’s use of TLS. They find that TLS 1.3 is widely deployed
quickly after standardisation, due to an extended phase during which organizations
with control over both client and server implementation (like Google and Facebook)
could experiment relatively risk-free, and the increased centralisation of the Inter-
net, which makes that if a few large providers activate TLS 1.3, a great portion of
the Internet traffic goes via TLS 1.3. They also highlight the importance of a varied
data set, limits of passive and active measurements, as well as platform limits can
be overcome by combining the data.

2.4 Ethical discussion

Scanning the Internet is subject to ethical concerns. In Table 2.2, recommenda-
tions for good citizenship are listed, as described in [6]. These guidelines are very
important to keep in mind with Internet measurement research. Previous work on
the ethics of network measurements states that the impact on normal Internet users
should be minimal [28]. From a scanning perspective, this means that scanning
should not be aggressive, and be very clear in describing the purpose and meth-
ods of the scans, to not overload network administrators. Craig Partridge and Mark
Allman [29] state that all network measurement research should include an ethics

2.5. OUR RESEARCH IN PERSPECTIVE WITH PREVIOUS WORK 13

section, and all papers discussed previously indeed discuss the ethical nature of
their research. In Table 2.1 an overview of what each paper mentions can be found.
Note that Leonard et al. [5] published their research before the ZMap paper existed.

Our research follows all the best practices in Table 2.2, aiming to be as polite
as possible, and to only read information that should be publicly accessible. We
perform a banner grab on discovered public databases to collect data, which is not
published, and only used for research purposes. Any complaints that came in, were
handled promptly and adequately.

Cite [6] 1 2 3 4 5 6 7
Leonard et al. [5] # G# # # #
Gasser et al. [10] # # G# G# # #
Wan et al. [11] # # G# G#
Durumeric et al. [12]
Izhikevich et al. [13] # G# # #
Cable et al. [17] # # # # G# # #
Springall et al. [20] # # # # G# # #
Amann et al. [21] # # G# # #
Rüth et al. [23] # # G# G# G#
Durumeric et al. [24] #
Durumeric et al. [25] # # # # # G# #
Holz et al. [27] # # #

Table 2.1: An overview of ethical information present in papers. The first column de-
picts if the paper cites the ZMap paper [6] in an ethical context, and the
numbered columns refer to the practises listed in Table 2.2. Means
fully described, G# means mentioned and # means not explicitly men-
tioned.

2.5 Our research in perspective with previous work

For conducting our research, ZMap is more suitable then IRLScanner. The primary
reason is because ZMap is significantly faster in scanning the Internet, 45 minutes
vs 24 hours, if used with a Gigabit Ethernet connection. Another scanner, Masscan,
was also developed [19] and achieves the same speed as ZMap. Masscan however,
was not developed by the research community and does not have a scientific paper
behind it. Furthermore, all research discussed in this paper regarding IPv4 scanning
uses ZMap, and many modifications have been developed that can be utilised.

Currently, IPv4 is still the most used Internet Protocol, and represents a good

14 CHAPTER 2. LITERATURE RESEARCH

1. Coordinate closely with local network admins to reduce risks and handle
inquiries.

2. Verify that scans will not overwhelm the local network or upstream provider.
3. Signal the benign nature of the scans in web pages and DNS entries of the

source addresses.
4. Clearly explain the purpose and scope of the scans in all communications.
5. Provide a simple means of opting out, and honor requests promptly.
6. Conduct scans no larger or more frequent than is necessary for research

objectives.
7. Spread scan traffic over time or source addresses when feasible.

Table 2.2: Recommended practices for good Internet citizenship while conducting
fast Internet-wide scans [6].

overview of the Internet. While IPv6 is already in use, its scanning is still an ongoing
research area, and thus our research will focus on scanning the Internet over IPv4.

Our scan is conducted from one geographical location, for several reasons ex-
plained in Section 3.3, following the research findings of G. Wan et al. [11] that this
will yield significant results.

We take a similar approach to Internet scanning as all described previous scan-
ning work, where we take ethics very seriously into account, and gather and analyse
data with the same tools and mindsets. The expectation is that we will find many
publicly accessible database instances, and that security is not always taken into
account while setting up the database server.

Chapter 3

Methodology

The process of scanning the world for running database services begins with se-
lecting target databases and determining their default listening Transmission Con-
trol Protocol (TCP) ports. Next, all reachable IPv4 addresses are generated and
scanned to identify open ports associated with databases. This initial scan pro-
duces a list of IPv4 addresses that require further investigation to determine the
existence of publicly accessible databases.

3.1 Database services

Many database solutions are in existence, and to investigate them all would ex-
ceed the scope of this research. To identify the most popular and widely deployed
databases, we refer to the database management system ranking provided by DB-
Engines [30]. The scanning software we use, Zgrab2 [1], has implementations for
the top 6 databases in the ranking: Oracle, MySQL, Ms-SQL, PostgreSQL, Mon-
goDB and Redis. They are listed in descending order, and have been the top 6 in
the same order for years. Zgrab2 is written in Go, a programming language known
for its speed, support for concurrency and is designed for the internet. In the scan
findings pertaining to MySQL, we identified the inclusion of ”MariaDB” in many ver-
sion numbers, indicating the presence of a MariaDB server. As a result, we opted to
segregate the MySQL and MariaDB instances for individualised examination.

Additionally, since our research aims to include the development of a database
scanning module, we chose one more database to investigate. We find it essen-
tial to include the wide-column database Cassandra in our investigation. Despite
ranking 11th in August 2022, Cassandra holds the highest position among wide-
column databases. Notably, its deployment by major companies like Apple and Net-
flix, coupled with the availability of a Go library to integrate with the Zgrab2 module,
strengthens our decision to add Cassandra to our security research. As a result,

15

16 CHAPTER 3. METHODOLOGY

we have implemented an additional Zgrab2 module specifically tailored for scanning
Cassandra databases.

The following is a short description of the 8 investigated databases:

• Oracle:
Default TCP port: 1521
Oracle Database is a proprietary and security feature-rich relational database
management system. It is widely used in enterprise-level applications and
supports large-scale data processing and complex transactions.

• MySQL:
Default TCP port: 3306
MySQL is an open-source relational database management system (RDBMS)
known for its speed, reliability, and ease of use. It is commonly used in web
applications and is compatible with various programming languages.

• Ms-SQL (Microsoft SQL Server):
Default TCP port: 1433
Microsoft SQL Server is a popular relational database management system
developed by Microsoft. It offers a wide range of features, including data ware-
housing, business intelligence, and high-performance data processing.

• PostgreSQL:
Default TCP port: 5432
PostgreSQL is a powerful open-source object-relational database system known
for its flexibility and support for advanced data types. It is commonly used in
web applications and data-driven projects.

• MongoDB:
Default TCP port: 27017
MongoDB is a widely used NoSQL document-oriented database known for its
flexibility and scalability. It stores data in JSON-like documents and is often
used in modern web applications and big data projects.

• Redis:
Default TCP port: 6379
Redis is an in-memory data structure store often used as a cache, message
broker, or for real-time analytics. It is known for its speed and versatility, making
it popular in various applications.

• Cassandra:
Default TCP port: 9042

3.2. ETHICAL CONSIDERATIONS 17

Apache Cassandra is a wide-column distributed NoSQL database known for
its ability to handle large amounts of data across multiple servers, providing
high availability and fault tolerance. It is widely used in big data and real-time
applications.

• MariaDB:
Default TCP port: 3306
MariaDB is an open-source relational database management system (RDBMS)
that originated as a fork of MySQL. It aims to offer enhanced performance, re-
liability, and features while remaining compatible with MySQL.

3.2 Ethical considerations

All recommended practices from Table 2.2 are taken into account for the scans.
A scanning speed of 30 Mbps is used for the Zmap scan in accordance with the
local network admins and upstream provider, to not overwhelm their networks. The
benign nature of the project is explained in a simple web page running on the source
address, with a clear way of opting out. Scans are not run during weekends in any
part of the world. A blocklist is used which contains all IP addresses of people and
organisations who opted out of being scanned. The scans are of such nature that
only publicly accessible data is read and no write operations are performed.

3.3 Active scan

To ensure an efficient and streamlined active scan, we have chosen to run the scan
from a single IP address and one geographical location. This approach allows us
the advantage of setting up a simplified and consistent single server infrastructure.
By centralising our scanning operations, we can reduce complexity and ensure con-
sistency and reliability of our results. In line with those requirements, we have es-
tablished a dedicated Linux server, equipped with sufficient broadband network ca-
pacity. The server is located in Sydney due to a collaboration with Sydney University
for this project. We maintained regular contact with the local network administrators
facilitating seamless communication and coordination during the scanning process.

The scans are run with a bash script incorporating all necessary steps. To avoid
scanning IPv4 addresses that aren’t in use, we employ Pyasn [31]. Pyasn provides
a list of all currently reachable IPv4 prefixes. It does this by obtaining the current bor-
der gate protocol (bgp) routing information base (rib) from RouteViews [32] and ex-
tracting the reachable IPv4 addresses from it. Then, for every port to scan, Zmap [6]

18 CHAPTER 3. METHODOLOGY

is invoked, doing a TCP syn (synchronise) scan resulting in a list of IPv4 addresses
with the specified port open. Using this list, Zgrab2 [1] scans for a running database
to connect to, and records findings as JSON encoded data. Zgrab2’s implementa-
tion is limited at the time of utilisation to TLS versions up to TLS 1.2, hence TLS 1.3
is not investigated in this study. All internet traffic is captured with TCPDump [33].

We develop a Zgrab2 module to scan the Cassandra protocol, using the GoCQL
library [34]. The Zgrab2 module creates an instance of GoCQL configured such
that it will initiate a connection to the open port designated for Cassandra at the
target IPv4 address. The GoCQL code is modified to collect all public configuration
data the server has to offer and return it to the Zgrab2 module. In order to have
the same consistent TLS fields recorded for TLS connections as all other Zgrab2
database scanning modules, the cryptographic TLS library in GoCQL is replaced
with the Zcrypto [35] TLS library.

Table 4.1 provides an overview of the scanned databases, their corresponding
outcomes, and the number of TLS encrypted connections. It’s important to highlight
that the Cassandra scan conducted in 2021 exclusively scanned for databases that
offered TLS encrypted connections. However, the scan performed in 2023 includes
both encrypted and unencrypted connections. Additionally, the scan conducted in
2023 includes an assessment for the Heartbleed vulnerability in the servers offering
TLS. This check was not implemented in the earlier 2021 scan. In all other aspects
the scans are performed and implemented identically.

3.4 Data analysis

We store the gathered server configuration data on the server in Sydney, and anal-
yse security aspects. Analysing is done using Python and Bash scripts that refine,
count and validate our data.

3.4.1 TLS versions

In the TLS handshake, the TLS version is agreed upon by client and server. Our
client offers the server the choice of all existing protocols, and records the chosen
version by the server. We aim to map the usage of TLS versions to analyse the
security provided by the database servers.

3.4.2 TLS cipher suites

The servers offering TLS do so by advertising their supported cipher suites, which
consist of algorithms and key lengths to protect communication. During our scans,

3.4. DATA ANALYSIS 19

our client offers all cipher suites available in the agreed upon TLS protocol, which
includes all supported weak and broken ciphers. The server will choose which suite
will be used for encryption. In this way we can measure the level of security the
server chooses by default. We collect the agreed upon cipher suites used to encrypt
our scan traffic, and compare them to the security current best practices set out in
RFC 9325 [36]. To facilitate this, we aggregate them into the categories described
in the RFC: ’MUST NOT’, ’SHOULD NOT’ and ’RECOMMENDED’.

3.4.3 Heartbleed

The Heartbleed vulnerability has been around since April 2014, and Zgrab2 features
a non-invasive check if a TLS server is vulnerable. To the best of our knowledge of
Zgrab2’s implementation the check for Heartbleed is exhaustive. In the first scan in
October 2021 this feature was not enabled, however, in the second scan in March
2023 we did enable it, allowing us to ascertain the impact this vulnerability has on
database servers in 2023.

3.4.4 X.509 certificates

Our investigation encompasses an examination of the certificates employed by servers
to establish their identity. For this purpose, we make use of OpenSSL [37]. To
ensure the reliability of these certificates, we rely on the Common CA Database
(CCADB) [38], administered by Mozilla, which serves as a repository of trusted root
certificates. The CCADB is the leading CA repository initiative [39], utilised for exam-
ple by Microsoft (Microsoft Trusted Root Certificate Program) and Google (Google
Chrome). Note that while the CCADB is the source of root stores for large com-
panies, there is no obligation to strictly use all certificates in the ccadb store, nor
restrictions to include additional certificates as deemed necessary. With a bash
script, we invoke OpenSSL’s ”verify” function and configure it to assess the certifi-
cates’ legitimacy and security attributes.

The core objective of this endeavour is to acquire valuable insights into the extent
to which the identities of databases are trustworthy. By assessing the certificates
against a reputable source of trusted roots, we aim to obtain the authenticity and se-
curity posture of the server certificates. This process aids us in comprehending the
level of confidence that can be placed in the identities asserted by these databases,
contributing to an extensive assessment of their security mechanisms.

20 CHAPTER 3. METHODOLOGY

3.4.5 Software versions

Our research encompasses an examination of the software versions installed on the
database servers. The scanning procedure involves identifying whether a server
exposes its software version to any connecting client, and subsequently records this
information.

This data-set allows us to conduct a comparative analysis between the 2021
and 2023 scans for machines responding on the same IP address and port. We
cannot say with 100% certainty that it was the same machine and database server
in both years, but it is unlikely that a different person or organisation obtaining such
an IP address would use it to run the same type of database server on the same
port less then 2 years later. By uncovering any version alterations that occurred
within this time-frame, we gain valuable insights into the maintenance and update
practices of open databases, or the evolution of the usage of database solution
software versions. Servers responding on the same IP address and port running the
same database software after a 1 year 7 month time period are likely to be the same
server or employed within the same data center environment. Version numbers
comprising of a major, minor and patch level are extracted from the version string
recorded by Zgrab2 to enable this comparison.

In addition, we undertake an in-depth exploration of the software versions them-
selves. To achieve this, we use CVE-search [40], enabling us to cross-reference
version numbers against the CVE database. CVE-search operates on inputs with
a product name and a version number consisting of a major, a minor and a patch
number, for example ”mariadb:10.9.2”. We extract these version numbers from the
version string recorded by Zgrab2, and only search the CVE database with versions
from which we can clearly identify major, minor, and patch numbers. This step pro-
vides an overview of the vulnerabilities associated with specific software versions
and their susceptibility to remote cyber attacks. Our focus will be on vulnerabilities
that can be exploited from anywhere on the internet, using regular expressions to
filter the vulnerabilities. We take older vulnerabilities categorised with CVSS version
2 into account as well, matching them into the equivalent categories under version
3.1. With the characteristics and impact scores of the vulnerabilities we make the
vulnerability of publicly accessible database servers tangible and comparable. This
evaluation aids us in appraising the security stance of publicly accessible databases,
enhancing our comprehension of their vulnerability to potential threats.

Database #DB’s 2021 #DB’s offering TLS #DB’s 2023 #DB’s offering TLS

Oracle 214 214 (100%) 9 (-96%) 9 (100%)
MySQL 1,475,271 923,503 (63%) 1,556,114 (+5%) 1,012,351 (65%)
Ms-SQL 357,665 357,665 (100%) 375,601 (+5%) 375,601 (100%)
PostgreSQL 873,734 326,438 (37%) 767,887 (-12%) 206,551 (27%)
MongoDB 77,796 - 94,435 (+21%) -
Redis 99,050 - 176,553 (+78%) -
Cassandra 241 24 1,8531 9 (0.5%)
MariaDB 461,786 25,382 (5%) 558,314 (+21%) 81,654 (15%)

Table 4.1: Number (#) of databases found in 2021 and 2023. MongoDB and Redis scan
implementations do not support TLS handshakes.

1 Scanning for non-TLS servers was not implemented in the 2021 Cassandra scan.

Chapter 4

Results

The outcomes of both conducted scans are presented in Table 4.1, showcasing the
number of databases detected during each scan. Beyond mere database counts,
the study’s focus is on identifying security-related insights. This section details the
noteworthy security findings obtained from the scans, shedding light on potential
vulnerabilities, configurations, or trends observed in the database landscape. In
total, we found 3,345,540 databases in 2021, and 3,530,766 in 2023, a 6% increase
over 17 months. Calculated using only the database statistics which included TLS
scanning (not using the MongoDB and Redis database counts), we find that in 2021,
52% of servers offer TLS, which decreased slightly to 51% in 2023. Our Zmap TCP
scan results are in Table 4.2, which details for each database port the amount of IP
addresses responding to the TCP syn scan.

21

22 CHAPTER 4. RESULTS

Database Port open 2021 #DB’s 2021 % 2021 Port open 2023 #DB’s 2023 % 2023

Oracle 4,849,667 214 0.00% 5,325,271 9 0.00%
MySQL 7,160,153 1,937,057 27.05% 7,320,985 2,114,428 28.88%
Ms-SQL 3,106,800 357,665 11.51% 3,565,017 375,601 10.54%
PostgreSQL 6,222,291 873,734 14.04% 6,062,813 767,887 12.67%
Mongodb 2,746,427 77,796 2.83% 3,370,439 94,435 2.80%
Redis 3,438,856 99,050 2.88% 3,539,541 176,553 4.99%
Cassandra 5,194,578 24 0.00% 5,232,862 1,853 0.04%

Table 4.2: The number of IP addresses with a machine responding to our Zmap TCP syn scan on
the default database ports, and the percentage of those ports which run the expected
database service.

4.1 TLS

4.1.1 TLS versions

Figure 4.1 illustrates the preference for TLS versions among various database servers.
All versions older then TLS 1.2 are no longer considered secure due to their lack of
support for currently recommended cryptographic algorithms and protocols [2].

In 2021, nearly half (49.7%) of Ms-SQL servers opted for a deprecated TLS
version to secure their connections. By 2023, this percentage had slightly decreased
to 45.2%. This may be a consequence of the default settings which enable TLS
1.0 and TLS 1.1 in SQL Server 2019 and older versions with TLS support [41].
Administrators need to actively disable older TLS versions to bring their servers up
to the latest security standards.

With 100% TLS 1.2 in 2021 and 22.2% deprecated versions in 2023, Oracle
stands out as well, but please note that we found very few Oracle installations, which
means we cannot directly compare these numbers.

In contrast, other database servers displayed relatively far fewer (4.9% and lower)
instances of using outdated TLS versions in 2021, and this number further declined
by 2023 to at most 2%.

For a comprehensive breakdown of the TLS versions recorded during our scan,
please refer to Table A.1 in Appendix A.

4.1.2 TLS Cipher suites

In Figure 4.2 is a bar chart with the cipher suite chosen by the database server to
encrypt the connection. In order to present the results in a compact way, we de-

4.1. TLS 23

214 9 923,503 1,012,351 357,665 375,601 326,438 206,551 24 9 25,382 81,654

0%

25%

50%

75%

100%

Orac
le

20
21

Orac
le

20
23

MyS
QL 2

02
1

MyS
QL 2

02
3

Ms-S
QL 2

02
1

Ms-S
QL 2

02
3

Pos
tgr

eS
QL 2

02
1

Pos
tgr

eS
QL 2

02
3

Cas
sa

nd
ra

20
21

Cas
sa

nd
ra

20
23

Mari
aD

B 20
21

Mari
aD

B 20
23

Previous versions TLSv1.2

Figure 4.1: TLS versions found in 2021 and 2023.

24 CHAPTER 4. RESULTS

cided to group the cipher suites in terms of their security, according to the latest
best practices described in RFC 9325 [36]. The full specification of the categories
is described in RFC 9325 and the meaning of the capitalised words is described
in RFC2119 [42]. In appendix A in Table A.2 are the individual cipher suite occur-
rences.

• MUST NOT: Cipher suites in the ’MUST NOT’ category offer less than 112 bits
of security or contain the RC4 cipher.

• SHOULD NOT: Cipher suites in the ’SHOULD NOT’ category offer less than
128 bits of security or do not have forward secrecy.

• RECOMMENDED: Cipher suites in the ’RECOMMENDED’ category have for-
ward secrecy and offer 128 or more bits of security.

We see differing results for the different databases. For Ms-SQL we observe
a trend that is in line with its TLS version distribution, namely a 61.3% combined
SHOULD NOT and MUST NOT cipher suite usage in 2021, slightly reduced to
53.5% in 2023. This could be correlated with the amount of deprecated TLS versions
found, as those do not offer RECOMMENDED cipher suites. PostgreSQL shows a
remarkable decrease in SHOULD NOT cipher suite usage from 50.5% in 2021 to
0.5% in 2023. In stark contrast, the MUST NOT cipher suite selection from MariaDB
servers, which grew from 20% in 2021 to a very concerning 59.5% in 2023. MySQL
shows 86.5% and 84.3% RECOMMENDED cipher suites in 2021 and 2023 respec-
tively. Oracle and Cassandra have very few servers opting for non RECOMMENDED
cipher suites.

4.1.3 TLS Heartbleed

In March 2023, a total of 307 PostgreSQL, 1 MariaDB and 6 MySQL servers are
found to be vulnerable to the Heartbleed vulnerability [25]. That is almost nothing
in all cases. This is in stark contrast with the massive numbers of online servers
using a vulnerable version of OpenSSL in 2014 when Heartbleed was discovered.
We additionally compare our results to more recent Heartbleed data from November
2020, when a researcher from the SANS Internet Storm Center investigated a num-
ber of high-impact vulnerabilities including the Heartbleed vulnerability and found
over 200,000 systems affected by Heartbleed worldwide [43]. With a total of 314
vulnerable servers, which is 0.019% of the 1,676,175 database servers offering TLS
found in the 2023 scan, the impact of Heartbleed on database servers is significantly
small with respect to the 200.000 found by the Storm Center researcher in 2020.

4.1. TLS 25

214 9 923,503 1,012,351 357,665 375,601 326,438 206,551 24 9 25,382 81,654

0%

25%

50%

75%

100%

Orac
le

20
21

Orac
le

20
23

MyS
QL 2

02
1

MyS
QL 2

02
3

Ms-S
QL 2

02
1

Ms-S
QL 2

02
3

Pos
tgr

eS
QL 2

02
1

Pos
tgr

eS
QL 2

02
3

Cas
sa

nd
ra

20
21

Cas
sa

nd
ra

20
23

Mari
aD

B 20
21

Mari
aD

B 20
23

MUST NOT SHOULD NOT RECOMMENDED

Figure 4.2: TLS cipher suite usage in 2021 and 2023, categorised in accordance
with the classification for cipher suites in RFC 9325 [36].

26 CHAPTER 4. RESULTS

4.1.4 TLS Certificates

Certificates offered by the servers to identify themselves are important for secu-
rity. In Figure 4.3 are results of running the openSSL verification tool [37] with the
CCADB [38] certificate authority information as trusted roots. The full validation
results can be found in appendix A in Table A.3.

We use the security definitions of OpenSSL verify [44] for our classification.
Please refer to the citation for the full description of how the security levels are
determined.

• Unable to get local issuer certificate: No trusted root certificate could be
found within the CCADB root store to verify the integrity of the certificate.

• Self signed certificate: The certificate is signed with a private key belonging
to the server owner. There is no guarantee the key has never been compro-
mised.

• Security levels: Security level 2 is set to 112 bits of security. ’Certificate key
too weak’ means that at least one of the keys used does not provide 112 or
more bits of security. This can either be one of the server’s keys or the CA’s
keys. Level 3 is set to 128 bits and all ciphers are required to offer forward
security. For level 4 a minimum security of 192 bits is necessary.

The results of the certificate validation do not indicate database administrator effort
to provide trustworthy database identity certification. 78% of all certificates across
databases are either self signed or unable to get local issuer certificate in 2021,
which slightly worsened to 82% in 2023. The only database with a highly significant
positive development is MariaDB, which went from 27.8% verifiable valid certificates
in 2021, to 95.4% in 2023. For MySQL, Ms-SQL and PostgreSQL we see slight in-
creases in valid certificates, from 2.7& in 2021 to 10.1% in 2023 for MySQL, 5.6% in
2021 to 6.5% in 2023 for Ms-SQL and 1.3% in 2021 to 5.8% in 2023 for PostgreSQL.
Cassandra servers offered self signed certificates exclusively in 2021, as well as in
2023 with the exception of 1 certificate giving the error of unable to get local issuer
certificate.

Oracle is an outlier in 2021 with 96.3% valid certificates, but 0% in 2023. Due to
its 96% reduction in publicly accessible databases from 2021 to 2023, it has almost
exactly the same amount of self signed and unable to get local issuer certificates
in 2023 as in 2021, with an absence of any verifiable valid certificates in 2023.
However, none of these IP addresses were seen in both years so we cannot say
they are the same servers.

4.1. TLS 27

214 9 786015 933852 357373 375222 323954 204316 24 9 25197 81133

0%

25%

50%

75%

100%

Orac
le

20
21

Orac
le

20
23

MyS
QL 2

02
1

MyS
QL 2

02
3

Ms-S
QL 2

02
1

Ms-S
QL 2

02
3

Pos
tgr

eS
QL 2

02
1

Pos
tgr

eS
QL 2

02
3

Cas
sa

nd
ra

20
21

Cas
sa

nd
ra

20
23

Mari
aD

B 20
21

Mari
aD

B 20
23

Unable to get local issuer certificate Self signed certificate Valid, security level 2 (at least 112 bits)

Figure 4.3: Validation of server certificates.

28 CHAPTER 4. RESULTS

4.2 Database software versions

We acquired software version information for MySQL, Ms-SQL, MongoDB, Redis,
Cassandra and MariaDB. Accurate extraction of the major, minor and patch level
from the version string is found to be possible for nearly all servers responding with
their version string.

Ms-SQL server version strings do not contain information on whether vulnera-
bility fixes have been installed, which makes it not possible for us to determine if a
version is affected by vulnerabilities.

Not all Redis servers revealed their version information, possibly due to the fact
that Redis administrators can customise commands. The INFO command which
our scan used to collect information about the server did not get a response from
82.6% of Redis servers in 2021 and 84.7% of Redis servers in 2023. Additionally, a
total of 57 Redis servers run the Redis ”unstable” version, which is 999.999.999 in
2021, and in 2023 this amount has increased to 63. ”Unstable” means that the main
development branch at the time of installing is running on the Redis server.

PostgreSQL and Oracle servers did not disclose their version information to us.
PostgreSQL requires authentication before the version can be read. In Oracle’s
case, we found that all databases in both scans reported a version of 0, which does
not disclose any useful information for an attacker. However all of them did disclose
their TNS (Transport Network Substrate) listener version number (VSNNUM), with
which attackers could possibly calculate the actual version number of the server soft-
ware. This vulnerability in Oracle servers [45] has a medium severity, and the only
solution is to restrict access to the database from remote to allowlisted IP addresses
only. This might be a reason why we see so few Oracle servers publicly available on
the internet.

4.2.1 Remotely exploitable vulnerabilities

The scatter plots in Figure 4.4 detail the software versions we encountered with the
amount of servers deploying that version, plotted against the number of remotely
exploitable (AV:N) vulnerabilities present in that version. Their respective average
impact scores are plotted in Figure 4.5. To make the data comparable between
database solutions, we have included scatter plots with the percentage of servers
per version on the x-axis in figures 4.6 and 4.7. The total number of servers used
to calculate the percentage of servers per version is the total number of servers
responding with a version string. Which in the case of Redis means that the afore-
mentioned 82.6% of Redis servers in 2021 and 84.7% of Redis servers in 2023
that did not disclose their version string are not included in the total Redis server

4.2. DATABASE SOFTWARE VERSIONS 29

count used to calculate the percentage values. This ensures a comparison across
database solutions of all servers identifiable as vulnerable by their version string.

We utilise the CVSS [46] to categorise the found vulnerabilities for a better com-
prehension of how vulnerable servers are to specific attacks. Below are the terms
used in this report explained. Please refer to the citation for the complete CVSS
specification.

• Attack Vector (AV) is the context within which the vulnerability can be ex-
ploited. We only consider attacks from the worldwide internet network for our
study, notated as AV:N

• Attack Complexity (AC) is how difficult or easy the attack is to perform, for
example what other conditions need to be present or controlled. There are
two metrics in this category: AC:L means there is no specialised conditions
necessary for the attack to succeed, low complexity. AC:H however, means
that the success of the attack is not guaranteed, conditions outside of thea
attackers control need to be right, high complexity.

• Privileges Required (PR) comes down to whether the attacker needs to be
authenticated to perform the attack. PR:N means no authorisation is needed,
for PR:L the attacker needs to have basic user rights, and for PR:H administra-
tor rights are necessary for the attack. We use the PR:HL notation to indicate
vulnerabilities that need at least some form of authentication.

• Impact scores are indications of how severe a vulnerability is when it is ex-
ploited, relative to other vulnerabilities. A score between 0.1 and 3.9 is consid-
ered low severity, 4 to 6.9 is medium, 7 to 8.9 means high, and critical scores
are between 9 and 10.

We found in general that versions with higher deployment tend to have fewer
vulnerabilities affecting them. This shows from the plots in Figure 4.4, where data
points on the upper left of the graphs represent versions with relatively low server
deployment and a relatively high number of vulnerabilities. The data points in the
lower half of the graph represent versions with relatively low amounts of vulnerabil-
ities. In all graphs we see relatively many versions on the upper left part, and no
versions reside in the upper right part. In Figure 4.5 are the corresponding average
impact scores, from which we see that versions tend to have similar average impact
scores, regardless of their deployment statistics.

More specifically, Cassandra shows the lowest amounts of vulnerabilities in its
versions, in 2021 the highest count is 4, and in 2023 one version has 5 vulnerabil-
ities. In 2021 the most used Cassandra version has 0 vulnerabilities, whereas in

30 CHAPTER 4. RESULTS

2023 this is 1 vulnerability. Note that in 2021 the scan did not identify non-TLS of-
fering Cassandra servers, and in 2023 those servers are included. Most Cassandra
versions have a relatively low deployment rate. There is 1 version with a critical av-
erage impact score, and the others score medium in 2021, but in 2023 servers are
more vulnerable, with more versions scoring critical and high. The most deployed
Cassandra version in 2023 scores medium.

For MariaDB and MySQL, the vulnerability counts are significantly higher than for
the others. MariaDB has many versions inhibiting 40 to 80 vulnerabilities, and some
versions reach as high as 115, in both 2021 and 2023. Again we see that wider
deployed versions are affected by less vulnerabilities, at most having below 40 vul-
nerabilities. MySQL peaks with a few versions affected by nearly 500 vulnerabilities
in both 2021 and 2023. We can clearly see that MySQL is the most vulnerable
software in terms of sheer number of exploits. In terms of average impact scores,
MariaDB shows scores between 6 and 8 mostly, but MySQL impact averages be-
tween 5 and 6, with a couple of critically affected versions in both 2021 and 2023,
although those are the least wide deployed. MySQL vulnerabilities have an average
of medium severity, while for the other database solutions the impact scores are
averaging at high severity.

MongoDB and Redis have maximums of 17 vulnerabilities per version in 2021
and in 2023. Redis stands out with 10 vulnerabilities in their most widely deployed
version in 2021. In the second scan in 2023 this version is no longer widely de-
ployed, and instead its most widely deployed version now only has 2 vulnerabilities.
Average impact scores are all at high, for both Redis and MongoDB in both scans.
A few MongoDB versions with low deployment have critical scores, and 1 version in
Redis 2023 has a critical score as well.

In Figure 4.6 we can compare the database solutions as the range on the x-
axis is now in percentages. Cassandra’s x-axis ranges from 0% to 60%, while all
others range from 0% to 20%. We see that the distributions are very similar, with
a lot of low deployment versions for all databases and in both scans. Few versions
are widely deployed with over 5% of the total responding servers, and those have
in common that they are affected by significantly less vulnerabilities. However, the
average impact scores are not different from versions with lower deployment.

4.2. DATABASE SOFTWARE VERSIONS 31

0 2 4 6 8 10 12 14
#Servers per version

0

1

2

3

4

AV

:N
 C

VE
s

cassandra.2021.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

1

2

3

4

5

AV

:N
 C

VE
s

cassandra.2023.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2023.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

mongodb.2023.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2021.csv

0 50000 100000 150000 200000
#Servers per version

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2023.csv

0 500 1000 1500 2000 2500
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

redis.2021.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

redis.2023.csv

Figure 4.4: AV:N vulnerabilities present in database versions, and the amount of
servers found running that version.

32 CHAPTER 4. RESULTS

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure 4.5: The average impact score of AV:N vulnerabilities present in database
versions and the amount of servers found running that version.

4.2. DATABASE SOFTWARE VERSIONS 33

0 10 20 30 40 50 60
% of total open database servers

0

1

2

3

4

AV

:N
 C

VE
s

cassandra.2021.csv

0 10 20 30 40 50 60
% of total open database servers

0

1

2

3

4

5

AV

:N
 C

VE
s

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

5

10

15

AV

:N
 C

VE
s

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

5

10

15

AV

:N
 C

VE
s

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

5

10

15

AV

:N
 C

VE
s

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

5

10

15

AV

:N
 C

VE
s

redis.2023.csv

Figure 4.6: AV:N vulnerabilities present in database versions, and the percentage
of servers found running that version.

34 CHAPTER 4. RESULTS

0 10 20 30 40 50 60
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 10 20 30 40 50 60
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total open database servers

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure 4.7: The average impact score of AV:N vulnerabilities present in database
versions and the percentage of servers found running that version.

4.2. DATABASE SOFTWARE VERSIONS 35

In appendix B we provide a range of scatter plots showing statistics for individual
database solutions and individual classifications of vulnerabilities. We identify a
number of vulnerability categories below to enable better comprehension of what
those statistics mean.

• AV:N encompasses all vulnerabilities exploitable anywhere with an internet
connection, meaning anyone with internet access is able to perform attack(s)
enabled by the vulnerability. All vulnerabilities mentioned in this report share
this property.

• AV:N PR:None AV:Low is the most dangerous category. Vulnerabilities with
these properties can be exploited from anywhere, without any authentication
or special circumstances, and are consistently reproducible.

• AV:N PR:None AC:High consists of vulnerabilities for which no authentication
is needed, however, there need to be special conditions present outside of the
attacker’s control. These vulnerabilities are less dangerous then the previous
category due to their inconsistency in exploitability.

• AV:N PR:HL AC:Low require some form of authentication, but no special cir-
cumstances. Usernames and passwords need to be guessed, stolen, or social
engineered. This makes the likelihood of an attack lower then for PR:None vul-
nerabilities

• AV:N PR:HL AV:High require authentication, as well as complex circumstances
outside of the attacker’s control to be in such a way that the attack can suc-
ceed.

MySQL

In Figure B.1 are the scatter plots for vulnerability categories in MySQL 2021, and
in Figure B.2 are the plots for MySQL 2023. We see that there are few of the most
dangerous vulnerabilities, AV:N PR:None AV:Low, in MySQL versions. In both years
the maximum amount of vulnerabilities per server is 12, and the average impact
scores range from high to critical. We see a maximum of 14 vulnerabilities per
server for the AV:N PR:None AC:High category and medium average scores in both
years. AV:N PR:HL AC:Low vulnerabilities are very prevalent, occurring up to 420
times per MySQL version in 2021 and 2023. However, their average scores are all
medium except for 1 version with very low deployment with a critical average score
in 2021 and 2023. Their high complexity variant, AV:N PR:HL AV:High, occurs up to
55 times per version and has exclusively medium average impact scores except for
1 version with very low deployment with a high average score in 2023.

36 CHAPTER 4. RESULTS

MongoDB

In Figure B.3 are the scatter plots for vulnerability categories in MongoDB 2021, and
in Figure B.4 are the plots for MongoDB 2023. We see that there are few of the most
dangerous vulnerabilities, AV:N PR:None AV:Low, in MongoDB versions. In both
years the maximum amount of vulnerabilities per server is 4, and the average impact
scores range from medium to critical. We see no servers with any AV:N PR:None
AC:High vulnerabilities in both years. AV:N PR:HL AC:Low vulnerabilities occur up
to 13 times per MongoDB version in 2021 and 2023. Their average scores are all
medium. AV:N PR:HL AV:High vulnerabilities occur 0, 1, or 2 times per version and
have medium to high average impact scores in 2021 and 2023.

Redis

In Figure B.5 are the scatter plots for vulnerability categories in Redis 2021, and in
Figure B.6 are the plots for Redis 2023. We see that there are at most 4 of the most
dangerous vulnerabilities, AV:N PR:None AV:Low, in Redis versions. In both years
there is just one version with 4, the rest have 3 or less of these vulnerabilities. The
average impact scores are medium to high in 2021, but range from medium to critical
in 2023. We see no servers with any AV:N PR:None AC:High vulnerabilities in both
years for Redis. AV:N PR:HL AC:Low vulnerabilities occur up to 9 times per Redis
version in 2021 and 2023. Their average scores are all high in 2021 and in 2023,
but in 2023 there are 2 versions with critical average impact scores. AV:N PR:HL
AV:High vulnerabilities occur maximally 5 times per version and have high average
impact scores in 2021 and 2023. In 2021 the version with the widest deployment has
4 AV:N PR:HL AV:High vulnerabilities, whereas in 2023 the widest deployed version
is not affected by this category.

Cassandra

In Figure B.7 are the scatter plots for vulnerability categories in Cassandra 2021,
and in Figure B.8 are the plots for Cassandra 2023. The statistics in 2021 are not
comparable with 2023 due to the difference in scan implementation. One Cassandra
version has 2 AV:N PR:None AV:Low vulnerability and the rest have 1 or 0 of those,
all with a high impact score in 2023. The high complexity variant has many versions
with 2 vulnerabilities, and the most widely deployed version with 1 of those. All have
a medium average impact score. There is one authenticated vulnerability with low
complexity in many Cassandra versions with critical impact score.

4.2. DATABASE SOFTWARE VERSIONS 37

MariaDB

In Figure B.9 are the scatter plots for vulnerability categories in MariaDB 2021, and
in Figure B.10 are the plots for MariaDB 2023. MariaDB has many AV:N PR:None
AV:Low vulnerabilities with high average impact scores, up to 39 per version in 2021
and 2023. Only 6 versions do not have any of these dangerous vulnerabilities af-
fecting them in 2021, which is much improved in 2023 with about half of the versions
unaffected. Up to 7 AV:N PR:None AV:High vulnerabilities per version affect Mari-
aDB versions, with impact scores ranging from medium to critical in both years. We
see a substantial increase in unaffected versions in 2023 with respect to 2021.

4.2.2 Version changes over time

Machines responding on the same IP address and port in both 2021 and 2023 are
compared in terms of software version. We cannot say with 100% certainty that
it was the same machine and database server in both years, however the large
amount of servers with the same IP address, open port and version string in both
years does suggest this is a reasonable assumption to take. In Figure 4.8 the results
are visible. Version not found means that the scan is not able to discover the soft-
ware version of the database service found. Most servers are found to have their
version unchanged, meaning they have the same version string in both scans. A
very small portion of machines are found to have a version running in 2023 that is
older than the version recorded in 2021.

49.8% of MySQL software on the same IP address and port has a newer version
in 2023 with respect to 2021. MariaDB comes second with 38.7%, Ms-SQL third
with 19.5%, MongoDB follows with 13%, and Redis showcases 0.7% of machines
with newer versions in 2023.

Note that in the case of Oracle, the version compared is the TNS listener version
(VSNNUM), which was the same in 2021 and in 2023.

38 CHAPTER 4. RESULTS

1 742168 150642 471040 25829 25009 8 224687

0%

25%

50%

75%

100%

Oracle MySQL Ms-SQL PostgreSQL MongoDB Redis Cassandra MariaDB

Version not found Older version Version unchanged Newer version

Figure 4.8: Version recorded of machines online in 2023 with respect to the version
recorded in 2021.

Chapter 5

Discussion of results

Our presented results provide a broad insight into the security landscape of pub-
licly accessible database servers, spanning multiple analyses including TLS config-
urations, vulnerabilities, certificate validations and software versions. The findings
allow us to draw significant conclusions for the security posture of publicly accessi-
ble database servers running on their default IANA-assigned port of all 8 examined
database solutions.

5.1 Individual database security postures

5.1.1 Oracle SQL

Our results highlight significant changes in Oracle’s publicly accessible databases
security posture between 2021 and 2023. Oracle shows a relatively low number of
found servers compared to the other database solutions. A likely explanation for this
is that databases in the Oracle Cloud Infrastructure (OCI) are by default not acces-
sible from outside their virtual networks. To access a database in OCI it is required
to first login to OCI before a connection with the database is setup within the vir-
tual network. In addition, Oracle showcased a 96% reduction of publicly accessible
databases between 2021 and 2023. These findings could be explained by the pro-
prietary nature of Oracle and its focus on large-scale data and enhanced security
features, which aligns with the characteristics of large enterprises. These compa-
nies typically prioritise security because of the sensitivity, scale and complexity of
their operations.

In both 2021 and 2023 we see 100% TLS adoption in exposed Oracle databases,
with a surprising discrepancy in configuration between the two scans. In 2021, 100%
of servers used TLS 1.2 with a recommended cipher suite, 96.3% had a valid certifi-
cate, and 213 out of the 214 servers seen in 2021 are no longer publicly accessible
in 2023. This suggests that Oracle database administrators in 2021 were very secu-

39

40 CHAPTER 5. DISCUSSION OF RESULTS

rity aware, and took steps to stop exposure of their databases to the internet. Fur-
thermore, in 2023 only nine open Oracle databases were found, highlighting that the
vast majority of Oracle databases already running before our first scan are no longer
publicly accessible, and only a fraction of newly setup Oracle databases post-2021
are publicly accessible. A possible explanation could be the fact that in the Oracle
Cloud Infrastructure (OCI), one must actively setup a rule in the configuration to al-
low Internet-wide incoming traffic on port 1521, and this rule already existed before
our first scan in 2021. To the best of our knowledge there do not seem to be straight-
forward explanations as to why we see a drastic drop in publicly accessible Oracle
databases. While a 96% reduction may sound drastic, in absolute numbers, the re-
duction from 214 to 9 is very small compared to the tens of thousands difference in
other database solutions results.

In 2023, only 7 out of the 9 Oracle databases offer safe cipher suites, and none
offer a verifiable certificate. These results show that security awareness

Oracle does not disclose software version information directly, however, its servers
do advertise with their TNS (Transport Network Substrate) listener version number
(VSNNUM), which can be used in certain cases to compute the Oracle server soft-
ware version. Since the only solution is to restrict access to allowlisted IP addresses
only, it is likely that the administrators of all Oracle servers found were not aware of
this vulnerability at the time of the scans.

In conclusion, Oracle’s approach to database security appears to be closely
aligned with the requirements of large enterprises, which prioritise security due to
their scale and sensitivity of operations. The large reduction in publicly accessible
databases, combined with 100% TLS adoption, underscores Oracle’s commitment
to security best practices. However, the discrepancies in configuration between
2021 and 2023 highlight the potential challenges of maintaining consistent security
practices, especially as new administrators enter the landscape.

5.1.2 MySQL

MySQL is also owned by Oracle Corporation, but differs from Oracle SQL in that it is
mostly used for self hosting instead of in Oracle managed clouds. MySQL stands out
with the highest number of publicly accessible databases among the eight database
solutions studied. In 2021, there were 1.475 million servers, which increased to
1.55 million in 2023, indicating a 5% growth. This widespread adoption underscores
MySQL’s popularity as a database solution of choice for various applications. The
increase in TLS adoption from 63% in 2021 to 65% in 2023 is a positive indicator of
heightened security awareness among MySQL database administrators. The reduc-
tion in outdated TLS versions, from 3.5% in 2021 to 2% in 2023, showcases global

5.1. INDIVIDUAL DATABASE SECURITY POSTURES 41

efforts to stop the usage of deprecated security protocols. What is concerning, how-
ever, is the slight increase in the use of MUST NOT cipher suites from 13.5% in
2021 to 15.7% in 2023. This trend could have many underlying reasons, such as
some MySQL administrators being less concerned with security or less aware of
the latest best security practices. The observed lack of verifiable TLS certificates
from MySQL servers strengthens this notion, underscoring the need for improved
certificate management knowledge among administrators.

In 2023, only six out of 1.55 million servers remain vulnerable to Heartbleed,
signalling commendable efforts to manage known vulnerabilities within the MySQL
community.

MySQL servers are especially vulnerable to authenticated attacks, with some en-
countered software versions affected by over 400 vulnerabilities in 2021 and 2023.
On average these versions are impacted with a medium score, so most vulnera-
bilities are not particularly dangerous. More concerning is the maximum of 12 low
complexity unauthenticated vulnerabilities per MySQL version in 2023, down from
13 in 2021. This category has a few average critical scores, but mostly high average
impact scores. MySQL server administrators will need to become more aware of the
vulnerabilities affecting the version their servers are running, and update to versions
with no known vulnerabilities to increase security.

The statistics related to software version updates highlight the challenge of database
maintenance. 47.7% of IP addresses running a MySQL server in 2023 were already
seen in 2021 with a server on the MySQL port. While nearly half of those machines
run newer software versions in 2023, half remained unchanged, and a small fraction
is running an older version in 2023. This suggests that about half of MySQL admin-
istrators regularly update their software, which is significantly higher then for all other
investigated database solutions. It is concerning on the other hand to witness more
than half of the databases without signs of regular software version maintenance,
assuming our assumption that the same IP addresses in both scans will belong to
the same server holds.

In conclusion, MySQL’s security trends demonstrate a mixed landscape of im-
provements and challenges. The increase in TLS adoption and reduced use of
outdated TLS versions are positive signs, but the persistence of insecure cipher
suites and a majority of self-signed or unverifiable certificates highlight areas for
improvement. Continuous security education with attention to best practices, and
ongoing software maintenance are essential for enhancing the security posture of
MySQL databases, especially since the popularity of MySQL databases amplifies
the potential impact of security incidents.

42 CHAPTER 5. DISCUSSION OF RESULTS

5.1.3 Ms-SQL

Microsoft SQL server runs publicly accessible on 357,665 machines in 2021, and
that number is increase by 5% in 2023. Ms-SQL comes with TLS by default, which
is likely the explanation for the observed 100% TLS adoption in both years. At first
glance this looks well configured, however, upon examining which TLS versions Ms-
SQL servers offer, we found that 49.7% of servers in 2021 and 45.2% in 2023 offer
a deprecated TLS version. This goes hand in hand with 48.9% SHOULD NOT and
12.4% MUST NOT cipher suite usage in 2021, slightly improved to 45.3% SHOULD
NOT and 8.2% MUST NOT in 2023. This is likely the result of the default settings
which enable TLS 1.0 and TLS 1.1 in SQL Server 2019 and older versions with
TLS support [41], which enable backwards compatibility between Ms-SQL versions.
Administrators need to actively disable older TLS versions to bring their servers up
to the latest security standards. There is possibly a long way to go for Ms-SQL
to improve the security of data in transit between client and server, which is made
difficult by the trade-off with backwards compatibility for old versions of Ms-SQL
server running on older Windows versions like Windows XP and Windows 7 which
are still in use.

Ms-SQL servers have very low rates of valid verifiable certificate usage for prov-
ing their identity. 5.6% in 2021, slightly improved to 6.5% in 2023. The vast majority
of certificates are self-signed. Certificate usage is poor with most other database
solutions as well. It is cheaper and easier to setup to use self-signed certificates,
which is the most likely explanation for the amounts of self-signed certificates we
encountered.

40.1% of IP addresses with Ms-SQL servers online in 2023, also had a Microsoft
SQL server running in 2021. Of these, 1.2% shows an older version, 79.3% the
same version, and 19.5% is running newer version in 2023 with respect to 2021.
Maintaining servers to always run the newest software version does not consistently
happen, and this is likely part of the reason why backwards compatibility continues
to be needed.

In conclusion, Ms-SQL scores poorly on the security of their publicly accessible
databases. This shows mostly in the choice made to tackle the trade off between
security and backwards compatibility, with the default settings favouring backwards
compatibility.

5.1.4 PostgreSQL

PostgreSQL is with 873,734 servers in 2021 and 767,887 in 2023 the second most
widely publicly deployed database solution. PostgreSQL shows a 12% decline in
publicly accessible databases in 2023, despite DB-Engines [30] showing an in-

5.1. INDIVIDUAL DATABASE SECURITY POSTURES 43

crease in popularity for PostgreSQL between 2021 and 2023. This can be seen
as a positive development showcasing efforts to reduce exposure of PostgreSQL
databases.

In 2021, 37% offered TLS, but in 2023 this was reduced to 27%. TLS is not
enabled by default in PostgreSQL, and it has a relatively easy setup process. Many
people not fully aware of how to securely setup a database using PostgreSQL could
be an explanation as to why so many publicly accessible PostgreSQL databases
lack TLS support.

The PostgreSQL databases that do support TLS use TLS 1.2 overwhelmingly,
with 99% in both years. Whereas in 2021 only 45.7% of servers offered a RECOM-
MENDED cipher suite, in 2023 this is drastically improved to 98.4%. An explanation
for this could be that there is growing awareness of TLS best practices among Post-
greSQL database administrators. PostgreSQL uses OpenSSL on Linux installations,
they have changed their TLS default settings to be a little more secure in march 2023
with the release of OpenSSL version 3.1, the default security level increased from
1 to 2, however, level 2 still allows for SHOULD NOT cipher suites. The extra fo-
cus on security could have had a positive effect on security awareness amongst
PostgreSQL database administrators.

TLS certificate practices within the PostgreSQL community are similarly mean-
ingless as most other databases, with just 1.3% valid certificates in 2021, and a
minor improvement to 5.8% in 2023.

The authentication barrier before the server version can be found, helps Post-
greSQL servers hide their potential vulnerabilities during scans. This is a good ex-
ample of security by design and has prevented us from identifying potential vulnera-
bilities on the publicly accessible PostgreSQL servers.

To conclude, PostgreSQL faces its biggest challenge with the declining number
of TLS enabled servers. More awareness could be raised about the risks of plain-
text communication and how TLS mitigates the potentially harmful effects of it.

5.1.5 MongoDB

MongoDB has a moderate publicly accessible presence of 77,796 servers in 2021,
significantly increased with 21% to 94,435 in 2023. According to DB-engines, the
popularity of MongoDB has decreased by a small amount, but this is not reflected in
our results.

The MongoDB scan did not check whether a server offered TLS connections, so
unfortunately we do not have TLS configuration statistics to analyse.

It is quite feasible to figure out which vulnerabilities affect MongoDB servers, as
software version information is available to anyone who connects to publicly acces-

44 CHAPTER 5. DISCUSSION OF RESULTS

sible MongoDB databases. More than half of MongoDB servers are affected by at
least one vulnerability. A majority of running versions is affected by at least one
very dangerous no authentication low complexity vulnerability, including the most
deployed version in both years. With impact scores up to 10, the critical level, and
on average a score of 7, the medium impact level, MongoDB servers are exposed
to quite some risks. A possible reason for this is that MongoDB administrators do
not actively monitor the CVE nor update their software versions regularly.

MongoDB servers on IP addresses with the MongoDB port open in both 2021
and 2023 have the lowest newer version statistic of all investigated databases. 13%
are found to run a newer version in 2023 compared to 2021, while 86.5% adver-
tised the same version in both years. This is more reason to believe that MongoDB
servers are not regularly updated.

5.1.6 Redis

Redis has 99,050 publicly accessible servers in 2021, significantly increased with
78% to 176,553 in 2023. According to DB-engines, the popularity of Redis has
decreased by a small amount, but this is not reflected in our results.

The Redis scan did not check whether a server offered TLS connections, so
unfortunately we do not have TLS configuration statistics to analyse.

It is quite feasible to figure out which vulnerabilities affect Redis servers, as soft-
ware version information is available to anyone who connects to publicly accessible
Redis databases. More than half of Redis servers are affected by at least one vul-
nerability. A majority of running versions is affected by at least one very dangerous
no authentication low complexity vulnerability, including the most deployed version
in 2021, but excluding the four most widely deployed versions in 2023. With impact
scores up to 10, the critical level, in 2023, and on average a score of 7, the medium
impact level, Redis servers are exposed to quite some risks. Redis sees a fair re-
duction of the most dangerous category of vulnerabilities affecting widely deployed
versions from 2021 to 2023, which is a result of newer Redis versions not being
affected by these vulnerabilities, and Redis database administrators installing the
newest versions.

With this in mind, it is a good feature that most Redis servers do not publicise
their version string to unauthenticated connections, 82.6% in 2021 and 84.7% in
2023. Our version change over time check found that 89.7% of Redis ports open on
the same IP address in 2021 and 2023 do not advertise server version, and 9.5%
remained on the same version.

5.1. INDIVIDUAL DATABASE SECURITY POSTURES 45

5.1.7 MariaDB

MariaDB stands out with the lowest TLS adoption in servers around the world. Of
the 460,786 servers found in 2021, just 5% offered TLS. In 2023, the amount of
servers increased by 21%, and the TLS adoption increased, to 15%. MariaDB uses
unencrypted connections by default, and TLS needs to be manually enabled during
server installation. MariaDB administrators might be unaware of the risks that come
with unencrypted connections or do not take the effort needed to configure their
database with TLS.

The MariaDB administrators that do configure TLS for their server, do rarely allow
for TLS versions older than 1.2 to be used, 4.9% in 2021, shrunk to 1.2% in 2023.
The configured servers in 2021 saw 27.8% verifiable certificates, which improved
greatly to 95.4% in 2023. MariaDB is the only database solution with a minority of
just 8.6% self-signed certificates in 2021, which decreased to 2.5% in 2023. These
good MariaDB security statistics are however accompanied by very poor cipher suite
usage. In 2021, 20% MUST NOT cipher suite usage is registered, worryingly, this
has increased to a stunning 59.7% in 2023. In the certificate domain, MariaDB ad-
ministrators are well aware in 2023 how to setup their certificates securely, but at
the same time they do allow their servers to choose old deprecated encryption ci-
phers to encrypt connections. This could be explained by the MariaDB procedure to
configure TLS, a certificate is required, and active setup is hence needed to make
the server install. However, the server will install just fine without any cipher suite
restrictions. It is not a required step to look at those. It seems like many MariaDB
administrators have not taken the cipher suite restriction option into account when
configuring their server. It is highly recommended for MariaDB to raise more aware-
ness about recommended cipher suites.

In 2021, MariaDB versions are affected by up to 38 unauthenticated low com-
plexity vulnerabilities. Just six versions are not affected by this category of vulnera-
bilities. Impact scores average at high. In 2023, this has improved somewhat with
almost half of versions not affected by any unauthenticated low complexity vulner-
ability, and impact scores remaining at the high average level. Yet there are some
widely deployed versions in both years with quite a lot of dangerous vulnerabilities
affecting them. We see that MariaDB shows 38.7% of IP addresses with the Mari-
aDB port open operating a newer version in 2023 compared to in 2021. This shows
that MariaDB administrators do update their software, but not not enough to really
phase out older more vulnerable versions staying deployed. More awareness on the
importance of software maintenance and updates could help to reduce the weak
security posture of MariaDB servers.

46 CHAPTER 5. DISCUSSION OF RESULTS

5.1.8 Cassandra

With 24 TLS offering servers found in 2021 and 9 in 2023, it is difficult to say whether
the Cassandra TLS statistics are very meaningful. The TLS configurations all use
TLS 1.2 and only offered RECOMMENDED cipher suites in 2023, however none
offered a verifiable certificate. These results are better than Oracle’s 9 TLS results
in 2023.

8 IP addresses in 2023 were also found to have the Cassandra port open in
2021, and all remained on exactly the same version. So there is no indication of
server maintenance done on Cassandra servers running for a long time. Again, just
8 results makes this not too meaningful.

The most deployed version in 2021 has zero vulnerabilities. All other versions
have a few, with just one server vulnerable to one unauthenticated low complexity
vulnerability with a high impact score. In 2023, the maximum amount of vulnerabili-
ties in a server version is 5. Cassandra administrators would do good to update their
servers to versions without known vulnerabilities to increase security.

5.2 Overall database security

In total, 3.5 million databases among our 8 investigated solutions are publicly acces-
sible in 2023 with 51% of those servers offering TLS. We’ve looked at TLS configu-
rations and version vulnerability, and presented insights based on our results.

TLS version support for deprecated versions is minimal except for Ms-SQL. The
configuration of TLS is however still a concern, with self-signed certificates being
very common, and unsafe cipher suite usage occurring too often. Herein lies a task
for database software publishers to change their default configurations to safe and
up to date security best practice standards, and ensure that sufficient information on
security best practices is available with the database products. In that way, admin-
istrators will need to make a conscious choice to enable deprecated configuration
options, for example to make a server backwards compatible if that is a requirement.

Software version vulnerability appears to be a major concern for publicly acces-
sible databases, as established with our CVE database and server version cross-
referencing. The scatterplots in Section 4.2.1 and in Appendix B tell a story of vulner-
able servers seemingly easy to target. We do note that there are limitations with our
approach, for example it is possible that servers have been manually patched with-
out their version string being changed or updated to reflect the security updates. To
verify our claims it would be necessary to conduct an experiment to check whether
identified vulnerabilities in publicly accessible database servers are exploitable in
practice, however such evaluation would present major ethical and legal challenges.

5.2. OVERALL DATABASE SECURITY 47

We have identified a massive amount of publicly accessible database servers
running versions with vulnerabilities affecting them. Software maintenance is prov-
ing to be very difficult, many database administrators do not seem to update their
software to the latest version regularly or move to newer releases when they come
out. Knowledge about the number of vulnerabilities affecting database software
might not be very common unfortunately. We highly recommend database software
to not reveal their version information to anyone who happens to connect. This
could be achieved in multiple ways, for example, Ms-SQL version information does
not disclose whether vulnerability fixes have been applied to the version running.

This report has highlighted the challenges and risks that database software pub-
lishers deal with. It sheds light on the many publicly accessible databases online
worldwide, and the ease with which they can be scanned and targeted.

48 CHAPTER 5. DISCUSSION OF RESULTS

Chapter 6

Conclusions

6.1 Public database connection security posture

Connections with publicly accessible databases are not secured by default in a ma-
jority of publicly accessible databases. About half of publicly accessible databases
offer the possibility to establish a secure connection with the TLS protocol. TLS is
in a minority of cases configured in such a way that an agreement on deprecated
security protocols can be established, but most servers direct clients to TLS version
1.2. Most concerning is the tendency of unverifiable certificate usage amongst the
majority of publicly accessible databases. In conclusion, database administrators
could do more to help secure their clients connections and ensure that data remains
confidential in transit, by configuring their database servers to offer the currently rec-
ommended TLS versions, with RECOMMENDED cipher suites, and investing in a
CA signed certificate for encrypted connections.

6.2 Public database software security posture

We have learned that MySQL, MongoDB, Redis, Cassandra and MariaDB allow their
version string to be acquired by anyone who attempts a connection to a publicly ac-
cessible database. From this information it is possible to deduce how vulnerable the
software running on the server is by cross referencing version information with the
CVE database [40]. From our analysis we can conclude that a majority of servers
run DBMS versions affected by vulnerabilities, and that many servers do not get up-
dated to newer versions regularly. We have to conclude that the security posture of
publicly accessible databases is poor, and it is important to raise awareness about
this issue to database vendors and administrators. We recommend database ad-
ministrators to hide version information as an added measure of security. Note that
security by obscurity does not make a server safe, attacks can be launched in an

49

50 CHAPTER 6. CONCLUSIONS

automatic manner to see whether they succeed, hidden version or not.

6.3 Recommendations

6.3.1 Improvements to our study

To improve this research were it repeated, we discuss two key recommendations
here. The first is to make the scan process as equal as possible for all the differ-
ent databases. This includes enabling TLS scanning for all databases for example,
which has the advantage of a more complete overview and better comparability. The
second recommendation is that more analysis could have been done on the gath-
ered data, for example IP address geographical location could be taken into account
to study differences between countries. This might shed light on the effectiveness
of attention to security within tech education in different countries, and help national
policymakers and researchers gain insights for evaluation of current policies and
data to base new policies and research on.

6.3.2 Future work

For future work building and improving on our method and results, we discuss two
key recommendations here. The first recommendation is to find a way to verify
whether servers with a particular version are provably vulnerable to identified vul-
nerabilities affecting that version. This could for example be done by analysing the
vulnerabilities to find out if some of them can be checked for in an ethical way to
confirm their presence without any impact. This would need a sharp ethical review,
but would be necessary to prove our claims about server vulnerability. The second
recommendation would be to increase the amount of database solutions to scan,
which would give a more complete overview of the publicly accessible database
landscape.

Bibliography

[1] (2020) Zgrab 2.0. [Online]. Available: https://github.com/zmap/zgrab2

[2] K. Moriarty and S. Farrell, “Deprecating TLS 1.0 and TLS 1.1,” RFC 8996, Mar.
2021. [Online]. Available: https://www.rfc-editor.org/info/rfc8996

[3] R. Barnes, M. Thomson, A. Pironti, and A. Langley, “Deprecating Secure
Sockets Layer Version 3.0,” RFC 7568, Jun. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7568

[4] (2023) Cve. [Online]. Available: https://cve.org/

[5] D. Leonard and D. Loguinov, “Demystifying service discovery,” in Proceedings
of the 10th annual conference on Internet measurement - IMC '10. ACM
Press, 2010. [Online]. Available: https://doi.org/10.1145/1879141.1879156

[6] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide
scanning and its security applications,” in Proceedings of the 22nd USENIX
Security Symposium, Washington, D.C., United States, Aug. 2013.

[7] M. Smith and D. Loguinov, “Enabling high-performance internet-wide measure-
ments on windows,” in Proceedings of the 11th International Conference on
Passive and Active Measurement, ser. PAM’10. Berlin, Heidelberg: Springer-
Verlag, 2010, p. 121–130.

[8] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson, “Target
generation for internet-wide ipv6 scanning,” in Proceedings of the 2017
Internet Measurement Conference, ser. IMC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 242–253. [Online]. Available:
https://doi.org/10.1145/3131365.3131405

[9] P. Foremski, D. Plonka, and A. Berger, “Entropy/ip: Uncovering structure in ipv6
addresses,” in Proceedings of the 2016 Internet Measurement Conference, ser.
IMC ’16. New York, NY, USA: Association for Computing Machinery, 2016, p.
167–181. [Online]. Available: https://doi.org/10.1145/2987443.2987445

51

https://github.com/zmap/zgrab2
https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc7568
https://cve.org/
https://doi.org/10.1145/1879141.1879156
https://doi.org/10.1145/3131365.3131405
https://doi.org/10.1145/2987443.2987445

52 BIBLIOGRAPHY

[10] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle, “Clusters in the expanse: Understanding
and unbiasing ipv6 hitlists,” in Proceedings of the Internet Measurement
Conference 2018, ser. IMC ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 364–378. [Online]. Available: https:
//doi.org/10.1145/3278532.3278564

[11] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow, and
Z. Durumeric, “On the origin of scanning,” in Proceedings of the ACM
Internet Measurement Conference. ACM, Oct. 2020. [Online]. Available:
https://doi.org/10.1145/3419394.3424214

[12] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman, “A search
engine backed by internet-wide scanning,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’15. New York, NY, USA: Association for Computing Machinery, 2015, p.
542–553. [Online]. Available: https://doi.org/10.1145/2810103.2813703

[13] L. Izhikevich, R. Teixeira, and Z. Durumeric, “LZR: Identifying unexpected
internet services,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/izhikevich

[14] D. Ferrari, M. Carminati, M. Polino, and S. Zanero, “NoSQL breakdown: A
large-scale analysis of misconfigured NoSQL services,” in Annual Computer
Security Applications Conference. ACM, Dec. 2020. [Online]. Available:
https://doi.org/10.1145/3427228.3427260

[15] (2020) Nmap network scanning: A quick port scanning tutorial. [Online].
Available: https://nmap.org/book/port-scanning-tutorial.html

[16] A. Continella, M. Polino, M. Pogliani, and S. Zanero, “There’s a hole in that
bucket! a large-scale analysis of misconfigured s3 buckets,” in Proceedings of
the 34th Annual Computer Security Applications Conference, ser. ACSAC ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p. 702–711.
[Online]. Available: https://doi.org/10.1145/3274694.3274736

[17] J. Cable, L. Izhikevich, D. Gregory, and Z. Durumeric, “Stratosphere:
Finding vulnerable cloud storage buckets,” 2021. [Online]. Available:
https://lizizhikevich.github.io/assets/papers/stratosphere.pdf

[18] Public buckets by grayhatwarfare. [Online]. Available: https://buckets.
grayhatwarfare.com/

https://doi.org/10.1145/3278532.3278564
https://doi.org/10.1145/3278532.3278564
https://doi.org/10.1145/3419394.3424214
https://doi.org/10.1145/2810103.2813703
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich
https://doi.org/10.1145/3427228.3427260
https://nmap.org/book/port-scanning-tutorial.html
https://doi.org/10.1145/3274694.3274736
https://lizizhikevich.github.io/assets/papers/stratosphere.pdf
https://buckets.grayhatwarfare.com/
https://buckets.grayhatwarfare.com/

BIBLIOGRAPHY 53

[19] (2020) Masscan: Mass ip port scanner. [Online]. Available: https:
//github.com/robertdavidgraham/masscan

[20] D. Springall, Z. Durumeric, and J. A. Halderman, “Measuring the
security harm of TLS crypto shortcuts,” in Proceedings of the 2016
Internet Measurement Conference. ACM, Nov. 2016. [Online]. Available:
https://doi.org/10.1145/2987443.2987480

[21] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz, “Mission
accomplished? https security after diginotar,” ser. IMC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 325–340. [Online].
Available: https://doi.org/10.1145/3131365.3131401

[22] Goscanner. [Online]. Available: https://github.com/tumi8/goscanner

[23] J. Rüth, C. Bormann, and O. Hohlfeld, “Large-scale scanning of tcp’s initial
window,” in Proceedings of the 2017 Internet Measurement Conference, ser.
IMC ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.
304–310. [Online]. Available: https://doi.org/10.1145/3131365.3131370

[24] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the https certificate ecosystem,” in Proceedings of the 2013 Conference
on Internet Measurement Conference, ser. IMC ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 291–304. [Online]. Available:
https://doi.org/10.1145/2504730.2504755

[25] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman,
“The matter of heartbleed,” in Proceedings of the 2014 Conference on
Internet Measurement Conference. ACM, Nov. 2014. [Online]. Available:
https://doi.org/10.1145/2663716.2663755

[26] M. Williams, M. Tüxen, and R. Seggelmann, “Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension,” RFC
6520, Feb. 2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6520.txt

[27] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of tls 1.3 on the
web: A story of experimentation and centralization,” SIGCOMM Comput.
Commun. Rev., vol. 50, no. 3, p. 3–15, Jul. 2020. [Online]. Available:
https://doi.org/10.1145/3411740.3411742

https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/3131365.3131401
https://github.com/tumi8/goscanner
https://doi.org/10.1145/3131365.3131370
https://doi.org/10.1145/2504730.2504755
https://doi.org/10.1145/2663716.2663755
https://rfc-editor.org/rfc/rfc6520.txt
https://doi.org/10.1145/3411740.3411742

54 BIBLIOGRAPHY

[28] E. Kenneally and D. Dittrich, “The menlo report: Ethical principles guiding
information and communication technology research,” SSRN Electronic
Journal, 2012. [Online]. Available: https://doi.org/10.2139/ssrn.2445102

[29] C. Partridge and M. Allman, “Addressing ethical considerations in network
measurement papers: Abstract,” in Proceedings of the 2015 ACM SIGCOMM
Workshop on Ethics in Networked Systems Research, ser. NS Ethics ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p. 33.
[Online]. Available: https://doi.org/10.1145/2793013.2793014

[30] “DB-Engines Ranking — db-engines.com,” https://db-engines.com/en/ranking,
2023, [Accessed 05-08-2023].

[31] “pyasn,” https://catalog.caida.org/software/pyasn, accessed: 12-09-2023.

[32] (2023) University of oregon routeviews project. [Online]. Available: https:
//www.routeviews.org/routeviews/

[33] (2020) tcpdump. [Online]. Available: https://www.tcpdump.org/

[34] “Gocql,” 2016. [Online]. Available: https://github.com/gocql/gocql

[35] (2020) Zcrypto. [Online]. Available: https://github.com/zmap/zcrypto

[36] Y. Sheffer, P. Saint-Andre, and T. Fossati, “Recommendations for Secure
Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS),” RFC 9325, Nov. 2022. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9325

[37] “Openssl,” 1999. [Online]. Available: https://www.openssl.org/

[38] “Common ca database.” [Online]. Available: https://www.ccadb.org/

[39] Z. Ma, J. Mason, M. Antonakakis, Z. Durumeric, and M. Bailey, “What’s in a
name? exploring CA certificate control,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 4383–
4400. [Online]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/ma

[40] A. Dulaunoy, P.-J. Moreels, P. Tikken, and R. Vinot, “Search main page:
Cve-search - tool-set to perform local searches for known vulnerabilities.”
[Online]. Available: https://www.cve-search.org/

[41] (2023) Tls 1.2 support for microsoft sql server. [Online]. Avail-
able: https://learn.microsoft.com/en-us/troubleshoot/sql/database-engine/
connect/tls-1-2-support-microsoft-sql-server

https://doi.org/10.2139/ssrn.2445102
https://doi.org/10.1145/2793013.2793014
https://db-engines.com/en/ranking
https://catalog.caida.org/software/pyasn
https://www.routeviews.org/routeviews/
https://www.routeviews.org/routeviews/
https://www.tcpdump.org/
https://github.com/gocql/gocql
https://github.com/zmap/zcrypto
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.openssl.org/
https://www.ccadb.org/
https://www.usenix.org/conference/usenixsecurity21/presentation/ma
https://www.usenix.org/conference/usenixsecurity21/presentation/ma
https://www.cve-search.org/
https://learn.microsoft.com/en-us/troubleshoot/sql/database-engine/connect/tls-1-2-support-microsoft-sql-server
https://learn.microsoft.com/en-us/troubleshoot/sql/database-engine/connect/tls-1-2-support-microsoft-sql-server

BIBLIOGRAPHY 55

[42] S. O. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,”
RFC 2119, Mar. 1997. [Online]. Available: https://www.rfc-editor.org/info/
rfc2119

[43] (2023) Heartbleed, bluekeep and other vulnerabilities that didn’t disappear
just because we don’t talk about them anymore. [Online]. Available:
https://isc.sans.edu/diary/26798

[44] openssl security level. [Online]. Available: https://www.openssl.org/docs/man1.
1.1/man3/SSL CTX set security level.html

[45] (2023) Oracle tns listener vsnnum version remote information disclosure.
[Online]. Available: https://www.tenable.com/plugins/nessus/110053

[46] (2023) Common vulnerability scoring system sig. [Online]. Available:
https://www.first.org/cvss/

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://isc.sans.edu/diary/26798
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html
https://www.tenable.com/plugins/nessus/110053
https://www.first.org/cvss/

56 BIBLIOGRAPHY

Appendix A

TLS complete data tables

TLS version MariaDB 2021 MariaDB 2023 MySQL 2021 MySQL 2023

TLSv1.2 24,130 80,703 890,819 992,464
TLSv1.1 1,241 938 17,502 18,447
TLSv1.0 11 13 15,182 1,440
SSLv3 0 0 0 0

TLS version Cassandra 2021 Cassandra 2023 Oracle 2021 Oracle 2023

TLSv1.2 24 9 214 7
TLSv1.1 0 0 0 0
TLSv1.0 0 0 0 2
SSLv3 0 0 0 0

TLS version Ms-SQL 2021 Ms-SQL 2023 PostgreSQL 2021 PostgreSQL 2023

TLSv1.2 179,788 205,693 324,071 204,565
TLSv1.1 9 12 0 0
TLSv1.0 177,652 169,741 2,367 1,986
SSLv3 216 155 0 0

Table A.1: Full TLS version data

57

58 APPENDIX A. TLS COMPLETE DATA TABLES

Cipher suite MariaDB 2021 MariaDB 2023 MySQL 2021 MySQL 2023

TLS ECDHE ECDSA WITH AES 128 GCM SHA256 12 141 13 20
TLS ECDHE ECDSA WITH AES 256 CBC SHA 0 0 0 0
TLS ECDHE RSA WITH AES 128 CBC SHA 0 1 570 29
TLS ECDHE RSA WITH AES 128 GCM SHA256 20,043 32,605 798,567 853,785
TLS ECDHE RSA WITH AES 256 CBC SHA 244 176 0 0
TLS ECDHE RSA WITH RC4 128 SHA 0 0 0 1
TLS RSA WITH 3DES EDE CBC SHA 1 9 0 0
TLS RSA WITH AES 128 CBC SHA 894 2,274 102,138 138,748
TLS RSA WITH AES 256 CBC SHA 1,249 939 20,837 19,375
TLS RSA WITH RC4 128 SHA 2,939 45,509 1,378 393

Cipher suite Cassandra 2021 Cassandra 2023 Oracle 2021 Oracle 2023

TLS ECDHE ECDSA WITH AES 128 GCM SHA256 0 0 0 0
TLS ECDHE ECDSA WITH AES 256 CBC SHA 0 0 0 0
TLS ECDHE RSA WITH AES 128 CBC SHA 1 0 0 0
TLS ECDHE RSA WITH AES 128 GCM SHA256 19 9 7 214
TLS ECDHE RSA WITH AES 256 CBC SHA 0 0 0 0
TLS ECDHE RSA WITH RC4 128 SHA 0 0 0 0
TLS RSA WITH 3DES EDE CBC SHA 0 0 0 0
TLS RSA WITH AES 128 CBC SHA 0 0 0 0
TLS RSA WITH AES 256 CBC SHA 0 0 0 0
TLS RSA WITH RC4 128 SHA 4 0 2 0

Cipher suite Ms-SQL 2021 Ms-SQL 2023 PostgreSQL 2021 PostgreSQL 2023

TLS ECDHE ECDSA WITH AES 128 GCM SHA256 5 8 209 765
TLS ECDHE ECDSA WITH AES 256 CBC SHA 0 0 4 13
TLS ECDHE RSA WITH AES 128 CBC SHA 74 85 0 23
TLS ECDHE RSA WITH AES 128 GCM SHA256 138,387 174,472 148,875 202,457
TLS ECDHE RSA WITH AES 256 CBC SHA 174,954 170,211 164,839 1,017
TLS ECDHE RSA WITH RC4 128 SHA 0 0 0 0
TLS RSA WITH 3DES EDE CBC SHA 242 202 2 0
TLS RSA WITH AES 128 CBC SHA 38,251 26,748 730 4
TLS RSA WITH AES 256 CBC SHA 550 194 43 33
TLS RSA WITH RC4 128 SHA 5,202 3,681 11,736 2,239

Table A.2: Full TLS ciphersuite data

59

Validation MariaDB 2021 MariaDB 2023 MySQL 2021 MySQL 2023

Certificate is not yet valid 0 0 2 0
Certificate expired 67 340 523 627
Unable to get local issuer certificate 16,027 1,768 344,286 192,074
Self signed certificate 2,163 1,992 402,653 643,891
Level 2 security (server certificate key too weak) 6,180 10,044 13,722 16,626
Level 2 security (CA certificate key too weak) 827 67,315 156 128
Level 3 security (server certificate key too weak) 0 13 0 0
Level 4 security (server certificate key too weak) 0 1 1 0

Validation cassandra1 cassandra2 oracle1 oracle2

Certificate is not yet valid 0 0 0 0
Certificate expired 0 0 0 0
Unable to get local issuer certificate 0 1 2 3
Self signed certificate 24 8 6 6
Level 2 security (server certificate key too weak) 0 0 206 0
Level 2 security (CA certificate key too weak) 0 0 0 0
Level 3 security (server certificate key too weak) 0 0 0 0
Level 4 security (server certificate key too weak) 0 0 0 0

Validation Ms-SQL 2021 Ms-SQL 2023 PostgreSQL 2021 PostgreSQL 2023

Certificate is not yet valid 0 0 2 0
Certificate expired 110 185 500 399
Unable to get local issuer certificate 36,112 35,833 30,826 31,403
Self signed certificate 301,083 315,025 288,929 161,095
Level 2 security (server certificate key too weak) 20,120 24,271 4,104 11,619
Level 2 security (CA certificate key too weak) 58 91 93 192
Level 3 security (server certificate key too weak) 0 2 2 6
Level 4 security (server certificate key too weak) 0 0 0 1

Table A.3: Full certificate validation data.

60 APPENDIX A. TLS COMPLETE DATA TABLES

Appendix B

Vulnerability statistics

61

62 APPENDIX B. VULNERABILITY STATISTICS

0 50000 100000 150000 200000 250000
#Servers per version

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0.0

2.5

5.0

7.5

10.0

12.5

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

100

200

300

400

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

10

20

30

40

50

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mysql.2021.csv

0 50000 100000 150000 200000 250000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

Figure B.1: Categorised vulnerabilities in MySQL versions and their impact scores
in 2021.

63

0 50000 100000 150000 200000
#Servers per version

0

100

200

300

400

500

AV

:N
 C

VE
s

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0.0

2.5

5.0

7.5

10.0

12.5

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

100

200

300

400

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

10

20

30

40

50

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mysql.2023.csv

0 50000 100000 150000 200000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

Figure B.2: Categorised vulnerabilities in MySQL versions and their impact scores
in 2023.

64 APPENDIX B. VULNERABILITY STATISTICS

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mongodb.2021.csv

0 1000 2000 3000 4000 5000 6000 7000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

Figure B.3: Categorised vulnerabilities in MongoDB versions and their impact
scores in 2021.

65

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mongodb.2023.csv

0 1000 2000 3000 4000 5000 6000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

Figure B.4: Categorised vulnerabilities in MongoDB versions and their impact
scores in 2023.

66 APPENDIX B. VULNERABILITY STATISTICS

0 500 1000 1500 2000 2500
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

1

2

3

4

5

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

redis.2021.csv

0 500 1000 1500 2000 2500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

Figure B.5: Categorised vulnerabilities in Redis versions and their impact scores in
2021.

67

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

5

10

15

AV

:N
 C

VE
s

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

1

2

3

4

5

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

redis.2023.csv

0 500 1000 1500 2000 2500 3000 3500
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure B.6: Categorised vulnerabilities in Redis versions and their impact scores in
2023.

68 APPENDIX B. VULNERABILITY STATISTICS

0 2 4 6 8 10 12 14
#Servers per version

0

1

2

3

4

AV

:N
 C

VE
s

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

cassandra.2021.csv

0 2 4 6 8 10 12 14
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

Figure B.7: Categorised vulnerabilities in Cassandra versions and their impact
scores in 2021.

69

0 100 200 300 400 500 600 700 800
#Servers per version

0

1

2

3

4

5

AV

:N
 C

VE
s

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

cassandra.2023.csv

0 100 200 300 400 500 600 700 800
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

Figure B.8: Categorised vulnerabilities in Cassandra versions and their impact
scores in 2023.

70 APPENDIX B. VULNERABILITY STATISTICS

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

10

20

30

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

20

40

60

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0.0

2.5

5.0

7.5

10.0

12.5

15.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mariadb.2021.csv

0 10000 20000 30000 40000 50000 60000 70000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

Figure B.9: Categorised vulnerabilities in MariaDB versions and their impact scores
in 2021.

71

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

20

40

60

80

100

AV

:N
 C

VE
s

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

10

20

30

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

20

40

60

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0.0

2.5

5.0

7.5

10.0

12.5

15.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mariadb.2023.csv

0 10000 20000 30000 40000 50000 60000
#Servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

Figure B.10: Categorised vulnerabilities in MariaDB versions and their impact
scores in 2023.

72 APPENDIX B. VULNERABILITY STATISTICS

0 10 20 30 40 50 60
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

2.5

5.0

7.5

10.0

12.5

15.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

2.5

5.0

7.5

10.0

12.5

15.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

10

20

30

40

50

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

10

20

30

40

50

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

5

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

5

AV

:N
 P

R:
HL

 A
C:

Hi
gh

 C
VE

s

redis.2023.csv

Figure B.11: AV:N PR:HL AC:High vulnerabilities across all database solutions

73

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure B.12: Average impact score of AV:N PR:HL AC:High vulnerabilities across
all database solutions

74 APPENDIX B. VULNERABILITY STATISTICS

0 10 20 30 40 50 60
% of total servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

20

40

60

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

20

40

60

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

100

200

300

400

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

100

200

300

400

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

AV

:N
 P

R:
HL

 A
C:

Lo
w

CV
Es

redis.2023.csv

Figure B.13: AV:N PR:HL AC:Low vulnerabilities across all database solutions

75

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure B.14: Average impact score of AV:N PR:HL AC:Low vulnerabilities across all
database solutions

76 APPENDIX B. VULNERABILITY STATISTICS

0 10 20 30 40 50 60
% of total servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

2.5

5.0

7.5

10.0

12.5

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.0

2.5

5.0

7.5

10.0

12.5

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0.00

0.01

0.02

0.03

0.04

0.05

AV

:N
 P

R:
No

ne
 A

C:
Hi

gh
 C

VE
s redis.2023.csv

Figure B.15: AV:N PR:None AC:High vulnerabilities across all database solutions

77

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure B.16: Average impact score of AV:N PR:None AC:High vulnerabilities across
all database solutions

78 APPENDIX B. VULNERABILITY STATISTICS

0 10 20 30 40 50 60
% of total servers per version

0.0

0.2

0.4

0.6

0.8

1.0

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0.0

0.5

1.0

1.5

2.0

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

10

20

30

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

10

20

30

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

12

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

1

2

3

4

AV

:N
 P

R:
No

ne
 A

C:
Lo

w
CV

Es

redis.2023.csv

Figure B.17: AV:N PR:None AC:Low vulnerabilities across all database solutions

79

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2021.csv

0 10 20 30 40 50 60
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

cassandra.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mariadb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mongodb.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

mysql.2023.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2021.csv

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
% of total servers per version

0

2

4

6

8

10

Av
er

ag
e

im
pa

ct
 sc

or
e

redis.2023.csv

Figure B.18: Average impact score of AV:N PR:None AC:Low vulnerabilities across
all database solutions

	Abstract
	Introduction
	Motivation
	Research goals and contributions
	Report organisation

	Literature research
	Background
	Transport Layer Security (TLS)
	X.509 standard
	Common Vulnerabilities and Exposures (CVE)

	Selecting related research papers
	Discussion of the research papers
	TCP layer scanning
	Scanning of databases
	Research findings from Internet-wide scanning

	Ethical discussion
	Our research in perspective with previous work

	Methodology
	Database services
	Ethical considerations
	Active scan
	Data analysis
	TLS versions
	TLS cipher suites
	Heartbleed
	X.509 certificates
	Software versions

	Results
	TLS
	TLS versions
	TLS Cipher suites
	TLS Heartbleed
	TLS Certificates

	Database software versions
	Remotely exploitable vulnerabilities
	Version changes over time

	Discussion of results
	Individual database security postures
	Oracle SQL
	MySQL
	Ms-SQL
	PostgreSQL
	MongoDB
	Redis
	MariaDB
	Cassandra

	Overall database security

	Conclusions
	Public database connection security posture
	Public database software security posture
	Recommendations
	Improvements to our study
	Future work

	References
	TLS complete data tables
	Vulnerability statistics

