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Abstract

Background: Venoarterial extracorporeal membrane oxygenation (VA ECMO) is a mechanical sup-
port modality that can be used to quickly restore the systemic circulation in patients with cardiogenic
shock. However, the clinical care management of patients supported with VA ECMO is complex,
mainly due to the interaction between the ECMO circuit and the patient’s native hemodynamics.
To improve this clinical management, it is important to gain insight in the native function of the
left ventricle (LV). This thesis therefore describes the application of a lumped parameter model to
continuously monitor LV flow using arterial blood pressure during VA ECMO.

Methods: Cardiovascular simulators and clinical data were used to evaluate the LV flow calculated
using the two-element Windkessel model. For the cardiovascular simulators, LV flow was compared
using the stroke volume (SV) and normalized root mean squared error (nRMSE). In the clinical data,
the calculated SV from the left ventricle was compared to the echocardiographic measurement of SV.
In addition, to compare the two-element Windkessel model to a model described by linearized one-
dimensional Navier-Stokes equations, transfer functions were derived and compared using Bode plots.

Results: In two of the three cardiovascular simulators the calculation of the LV flow resulted in
an average error in SV below 12%. For the third simulator, the average error was larger with an
average of 26%. The nRMSE showed large differences between the different simulators, varying from
0.1 to 2.6. In the clinical data, using current patient specific parameters, the average error in stroke
volume was 0.88 mL. Using patient specific parameters that are continuously estimated, the error in
SV becomes larger. Comparison of the two-element Windkessel model to linearized one-dimensional
Navier-Stokes equations showed no large differences for low frequencies.

Conclusion: Application of the two-element Windkessel model can be used to accurately determine
SV during VA ECMO in two of the three cardiovascular simulators and in clinical data, using known
patient specific parameters. We also showed that for low frequencies the linearized one-dimensional
Navier-Stokes equations will not lead to large improvements in the flow calculations from arterial blood
pressure. Further studies should show if more comprehensive models can improve the calculated LV
flow waveform and should focus on improving the accuracy of the continuous estimation of patient
specific parameters.
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1 General introduction

Cardiogenic shock is the main cause of mortality in hospitalized patients with acute myocardial in-
farction. Between 3 and 13% of the patients with acute myocardial infarction develops cardiogenic
shock, a state of end-organ hypoperfusion caused by a low cardiac output (CO) due to cardiac failure
[1], [2]. It is estimated that about 50-60% of these patients survive without mechanical circulatory
support. Another 15-25% of these patients could benefit from circulatory support, increasing the num-
ber of survivors [1]. Venoarterial extracorporeal membrane oxygenation (VA ECMO) is a mechanical
support modality used to quickly restore the systemic circulation in a patient with cardiogenic shock,
ultimately resulting in restored tissue perfusion and oxygenation [3], [4]. After the initial stabilization,
the aim for the patient is to recover and wean from VA ECMO, or to use VA ECMO as bridge to
transplant or long term mechanical support such as a left ventricular assist device (LVAD) [5]–[7].
Although VA ECMO supports patients in cardiogenic shock, over time the support also increases the
risk of complications such as bleeding, limb ischemia and thrombosis [4]. The duration of a VA ECMO
run can vary between one day to weeks. In total, about half of these critically ill patients can be suc-
cessfully weaned from VA ECMO, a small part of the other patients receive heart transplantation or
an LVAD. Despite the fact that the use of VA ECMO rapidly increased over the past decade, mortality
within one year remains high [8], [9].

The clinical care management of a patient supported with VA ECMO is complex, mainly due to
a large number of patient- and technology-related factors and mutual interaction that need to be
considered. This mainly involves the complex interaction between the ECMO circuit and the patient’s
hemodynamics. The most commonly used configuration for VA ECMO outside the operating room is
femoral cannulation. In this configuration deoxygenated blood is drained from the inferior vena cava
and pumped through an oxygenator. The blood is returned with a continuous flow into the arterial
circulation through a cannula in the femoral artery [3], [4]. The retrograde flow of oxygenated blood
from the ECMO mixes in the aorta with the pulsatile flow from the left ventricle (LV) in the so called
watershed zone. The drainage of blood from the venous system causes the venous return and therefore
the preload to decrease. The return of oxygenated blood into the aorta may increase the afterload for
the LV. An increased afterload can contribute to the deterioration of LV function, eventually leading to
dilatation of the LV [4], [5]. Additional unloading devices can be applied to unload the LV, such as an
intra-aortic balloon pump (IABP) or a ventriculo-aortic axial pump (Impella) [10]. The management
of a patient supported with VA ECMO is further complicated by the many therapeutic measures that
are considered, i.e. changing ECMO settings and administration of drugs or fluids.

1.1 Research aim

To improve the management of patients supported with VA ECMO in the intensive care unit (ICU)
it is important to gain insight into the condition of the heart. The aim of VA ECMO support is to
recover cardiac function and more specific, LV function. However, there is currently no accessible
and accurate parameter to continuously describe LV function in patients supported with VA ECMO,
since the available parameters are strongly influenced by ECMO flow, vascular resistance and arterial
compliance. Hence, a method is needed to continuously distinguish between the contribution of the
VA ECMO and the LV to the total hemodynamics of the patient. In addition, it is valuable to identify
the values for resistance and compliance for a specific patient. Therefore, in this thesis we study the
application of a simplified cardiovascular model, describing the relation of LV and ECMO flow with
arterial blood pressure. Eventually, continuously monitoring the LV function will give a better and
faster insight into the deterioration or improvement of the LV during VA ECMO.
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Ultimately, it would be beneficial to support the physician with a decision support model that can in-
terpret and weigh all different parameters to suggest the best setting for ECMO flow and additionally
drugs and fluid interventions. The design of a monitoring system for LV function will be the first step
towards a decision support model. The aim of this study is therefore to demonstrate the application
of a simple mathematical model to continuously monitor LV flow during VA ECMO.

2 Background

Currently, a multidisciplinary team with several medical specialists and perfusionists is involved in
the daily management of patients supported with VA ECMO. Daily monitoring is based on a combi-
nation of parameters, including arterial and venous saturation, lactate, diuresis, arterial pressures and
pulmonary pressures when available. In daily management, a balance is desired between reducing the
burden on the heart and maintaining sufficient tissue perfusion. For optimal treatment of the patient,
this balance should be maintained at all times. Although there are guidelines defining target values
per parameter, the ideal constellation remains difficult to find. It is extremely complex to weigh and
interpret all parameters in the dynamic context of an individual patient.

While systemic perfusion is often sufficiently managed during VA ECMO, LV unloading is regularly
insufficient [10]. To provide the optimal condition for the heart it is important to gain insight in the
function of and burden on the LV. Ideally, we want to determine the native contractility of the LV,
evaluating the current and potential function of the heart. This native contractility describes the
intrinsic ability of the ventricle to create a force, independent of other factors such as preload and
afterload. The contractility can be described using the pressure-volume (PV) loop. Figure 1 shows
an example of a PV loop, describing the pressure and the volume in the LV during the cardiac cycle.
Changing the loading conditions for the same contractility changes the PV loop, the end-systolic points
however, remain on the same line. This line is the end-systolic pressure volume relation (ESPVR).
The slope of this relation is Emax, the maximum elastance. Emax increases for increased intrinsic
contractility. The Ees is the elastance at the moment of aortic valve closure, which occurs very shortly
after maximum elastance. Therefore Ees is comparable to Emax. The advantage of Ees is that it is
sensitive for changes in contractility, but is insensitive to changes in preload and afterload. However,
measurement of Ees in patients supported with VA ECMO is challenging. Most measures of LV func-
tion largely depend on the loading conditions of the heart [11], [12]. In patients supported with VA
ECMO, the LV contractility is often estimated using the left ventricular ejection fraction (LVEF), or
by monitoring the pulse pressure (PP) [13].

LVEF is defined as the percentage of blood volume that is ejected by the LV, compared to the volume
of the ventricle at the end of diastole. Echocardiography is used to determine the LVEF. However, just
as most Ees estimates, LVEF does not exclusively depend on the native contractility of the LV. An
isolated decrease of preload or increase of afterload will result in a decrease of LVEF. Hence, a change
in LVEF is not necessarily caused by a change in the contractility of the LV. Therefore, exclusively
using the load-dependent LVEF as a measure for contractility can lead to an incorrect impression of
the LV function [13]–[15].

Next to LVEF, PP is also used as an indicator of the LV function in clinical practice. PP is the
difference between systolic and diastolic blood pressure. Since the ECMO flow is non-pulsatile, the
PP is only caused by the interaction of the native contractility of the heart with the arterial system.
However, the PP depends on many variables, such as systemic vascular resistance, arterial compli-
ance, left ventricular elastance, heart rate and blood volume [16]. Although several studies showed a

6



Figure 1: Pressure-volume loop, with the solid blue line indicating the
end-systolic pressure volume relation (ESPVR) and dashed blue curve
the end-disatolic pressure volume relation (EDPVR).

prognostic value for PP in VA ECMO, PP was never studied as a monitoring parameter for cardiac
function [6], [17]–[20]. Just as for LVEF, using solely PP to determine the LV function can lead to
an inaccurate assessment of the LV function. For example, PP can be high in patients with poor LV
contractility and low compliant arteries, indicating good contractility of the heart, although this is
not the case. Therefore, to improve the evaluation of the LV function, it is important to quantify the
arterial compliance in these patients.

2.1 Arterial compliance

The arterial compliance is mainly determined in the aorta. Compliance describes the change in
volume of as a consequence of a change in pressure. The aortic compliance in healthy, normotensive
or hypertensive, adults between 25 and 56 can range between 0.230 and 2.719 mL/mmHg [21]. With
increasing age from 19 to 83, the compliance decreases with 46%. Although this is a strong relation,
there is still a large individual variability [22], [23]. There are several methods to estimate compliance.
First, local compliance estimation, in which compliance is estimated as the change in volume of the
aorta, due to a certain change in pressure. The change in volume of the aorta can be measured using
the dissension of the aortic area due to the increase in pressure from diastolic to systolic pressure. The
change is pressure is then defined as the PP. However, assuming a non-significant axial vessel movement
leads to an underestimation of the total compliance [24], [25]. Moreover, in patients supported with VA
ECMO, PP is generally small. Therefore, the change in diameter of the aorta is small and cannot be
measured accurately. A second method is based on stroke volume (SV) derived by echocardiography.
The SV is used together with the PP to calculate compliance,

C =
SV

PP
. (1)

Estimation of the change of volume with SV to calculate compliance is a simplification that can lead
to overestimation of C [25]. A third option to estimate compliance is to use the arterial blood pressure
signal. Using the assumption of a two-element Windkessel model, the waveform of the arterial blood
pressure can be used to estimate C when the total vascular resistance (R) is known [25]–[27].
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2.2 Vascular resistance

The total vascular resistance is mainly determined in the peripheral arterioles. The vascular resistance
can increase between 19 and 83 years old with 37% [22]. The resistance mainly depends on the total
internal radius of the vessels. For a rigid tube the resistance depends on the fourth power of the
internal radius of the tube [28]. During VA ECMO and especially during the use of vasoactive drugs,
changes in this radius occur frequently, causing large daily changes in the systemic vascular resistance.
Total peripheral resistance can range between 0.6 – 0.9 mmHg·s/ml in healthy young subjects [29].
Using Ohm’s law, the systemic vascular resistance (R) can be expressed, using mean arterial pressure
(MAP) and cardiac output (CO),

R =
MAP

CO
. (2)
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3 Left ventricular flow monitoring using arterial blood pressure dur-
ing VA ECMO: a simulation study

3.1 Introduction

Cardiac function monitoring is important in critically ill patients in the ICU. Techniques for hemo-
dynamic monitoring in these patients have been further developed in the last years and the use of
minimally- and non-invasive techniques has increased [30]. Adequate hemodynamic monitoring is es-
pecially important in patients supported with VA ECMO, to monitor cardiac recovery and provide
the best possible conditions for the patient. It is however difficult to determine the cardiac function
in these patients. Many parameters and measurements are influenced by the interaction between the
VA ECMO circuit and the patient’s heart [31]. It would be beneficial to monitor the LV flow, inde-
pendently from the VA ECMO flow, to differentiate between their contributions.

Monitoring LV flow in patients supported with VA ECMO is not straightforward. Methods to deter-
mine SV become reduced or unreliable when applied during VA ECMO. A possible solution would
be to apply the two-element Windkessel model. This is a lumped parameter model describing the
global behaviour of pressure in the arteries due to the pulsatile flow from the LV. This model and
variations, are also the basis of most pulse wave analysis (PWA) methods which estimate CO from
arterial blood pressure waveforms [32]–[34]. These PWA methods can be applied to non-invasive
derived blood pressures, as well as to invasively obtained blood pressure from an arterial catheter.
In the ICU, a radial artery catheter is used to monitor arterial blood pressure. For these invasively
derived blood pressure waves, PWA methods can be classified into externally calibrated, internally
calibrated and non-calibrated. Externally calibrated methods use a reference method to calibrate the
PWA system, i.e. the PiCCO (Pulsion Medical Systems, Germany) system uses this type of calibra-
tion, where the system is calibrated with the CO measured using thermodilution to correct for patient
specific compliance. Internally calibrated methods only use the invasively obtained arterial blood pres-
sure waveform, together with biometric, demographic and hemodynamic data to estimate CO. These
methods can be less reliable in patients with specific pathophysiologies or in specific clinical settings,
such as during VA ECMO. Lastly, there are also non-calibrated PWA methods. These methods exclu-
sively use the arterial blood pressure waveform and its features to estimate the CO [35], [36]. To the
best of our knowledge, PWA methods have never been studied in patients supported with VA ECMO.
Besides, we think it is important to derive an estimation of the LV flow next to estimating SV or
CO, since parameters derived from LV flow can give an indication of the left ventricular contractility
[37]. Therefore the Windkessel model will be applied to determine LV flow from arterial blood pressure.

The two-element Windkessel model describes the relation between blood pressure and blood flow
in the arterial system. Since the arterial blood pressure is continuously measured in patients in the
ICU, we hypothesized that the two-element Windkessel model can be used to continuously monitor
the flow originating from the LV, during VA ECMO. In this study we therefore used three different
cardiovascular simulators to evaluate the application of the Windkessel model in different hemody-
namic situations, all including VA ECMO support. Besides, a method to determine patient specific
arterial compliance is described and validated.

9



3.2 Methods

3.2.1 Windkessel model

The Windkessel model is a lumped parameter model that describes the relation between blood pressure
and blood flow. The model started as a one-parameter model, only using the vascular resistance (R).
Later, the model was extended towards the two-element model, which also includes the arterial com-
pliance (C). The two-elemement Windkessel model correctly describes the system for low-frequencies.
To improve the behaviour of the model for higher frequencies, the model was extended to a three-
element Windkessel model by adding the characteristic impedance of the proximal aorta (Zc) and to a
four-element model, which also includes the inertia of the blood, represented by a coil with inductance
(L) [38], [39]. Figure 2 shows the hemodynamic and electrical representation of the three Windkessel
models [38]. In all Windkessel models, the elements are parameters that need to be estimated for the
individual patient. Therefore, we selected the two-element Windkessel model, to simplify the defini-
tion of these patient specific model parameters.

Figure 2: Hemodynamic and electrical representation of the two-, three- and four-element
Windkessel (WK) model [38].

The two-element Windkessel (WK) model describes the relation between blood pressure and flow us-
ing arterial compliance and vascular resistance, as shown in the top part of Figure 2. This figure also
shows the electrical representation, using a capacitor and resistor. Using Kirchhoff’s law for current
in this two-element WK model, we can find the relation between the total blood flow (Q(t)) and the
arterial blood pressure (P (t)),

Q(t) =
P (t)

R
+ C

dP (t)

dt
, (3)

with parameters R and C, respectively representing vascular resistance and arterial compliance. In
the usual physiological situation, the blood flow into the arterial system only originates from the LV.
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When a patient is supported with VA ECMO, another source is added to the system. In this situation,
the input of the WK model consists of the pulsatile flow originating from the LV (QLV (t)) and the
constant ECMO flow (QE(t)). Figure 3 shows a schematic representation of the system,

QE(t) +QLV (t) =
P (t)

R
+ C

dP (t)

dt
. (4)

Figure 3: Schematic representation of the two-element Windkessel model with pulsatile LV
flow, QLV , and constant ECMO flow, QE , as inputs. Patient specific vascular resistance, R
and arterial compliance C as parameters and the arterial blood pressure P as output of the
system.

In the clinical setting, QE and P are known. Together with the patient specific parameters R and C,
the LV flow can be calculated from this model.

3.2.2 Simulations

In this study we used three different cardiovascular simulators: the cardiovascular simulator from the
University of Twente (Enschede, The Netherlands), the cardiovascular simulator from Harvi (PVLoops
LCC, New York, USA) and Aplysia CardioVascular Lab (Version 9.9.7.0, 2022, Aplysia Medical AB,
Stockholm, Sweden) [40], [41]. All three simulators are cardiovascular simulators based on a compre-
hensive lumped parameter model. In all simulators, cardiovascular parameters can be adjusted and
a VA ECMO device can be added to simulate different patients and situations. Using these cardio-
vascular simulators, the complex interaction between ECMO and the native hemodynamics can be
simulated. We performed 25 simulations in each simulator, while the VA ECMO device was turned
on according to the clinical guidelines of the University Medical Centre Utrecht (UMCU). For the
University of Twente (UT) simulator, data was acquired during 30 seconds with a sampling frequency
of 1kHz. Data with a duration of 60 seconds and a sampling frequency of 200Hz was obtained from
the Harvi simulator and from Aplysia.

To perform the simulations, first a baseline patient was set up, which is a patient with severe LV
heart failure. To create a realistic patient we used clinical data of patients supported with VA ECMO
in the ICU of the UMC Utrecht. The heart rate (HR) of this baseline simulation patient was set to 100
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Table 1: Simulation scenarios

R C HR RV function AS MR

Baseline 100% 100% 100% 100% None None
1 -30%
2 -50%
3 +30%
4 +50%
5 -30%
6 -50%
7 +30%
8 +50%
9 -30% -30%
10 +30% -30%
11 -60%
12 -40%
13 -20%
14 +20%
15 +40%
16 -10%
17 -30%
18 -60%
19 Mild
20 Moderate
21 Severe
22 Mild
23 Moderate
24 Severe

beats per minute (BPM). The systemic vascular resistance, was calculated using R = MAP−CVP
CO , with

ranges for CO, MAP and central venous pressure (CVP), obtained from the clinical data. The mean
pulmonary artery pressure (mPAP), and the pulmonary wedge pressure (PWP), were used similarly to
calculate the pulmonary vascular resistance [40]. Subsequently, the PV loop was adjusted by changing
the LV elastance and filling properties. The ESPVR as shown in Figure 1 was fitted such that it
passes through the point where the pressure equals the systolic blood pressure (SBP) and the volume
equals the LV end-systolic volume from the clinical data. The EDPVR was adjusted such that it
passes through the point where the pressure equals PWP and the volume equals the LV end-diastolic
volume estimated from the clinical data [42].

Starting with the created baseline patient, several parameters were varied to study the accuracy
of the LV flow calculations for different hemodynamic situations. Table 1 shows all the 25 simulations
performed in each simulator. The R and C were varied with 30 and 50%, heart rate (HR) was varied
from 40 to 140 BPM, right systolic function was impaired by decreasing right ventricular elastance to
90, 70 and 40% of the healthy situation and aortic valve (AV) stenosis (AS) and mitral valve (MV)
regurgitation (MR) were introduced. To simulate no, mild, moderate and severe AV stenosis, we used
guidelines from the European Association of Cardiovascular Imaging and the American Society of
Echocardiography [43]. In the Harvi simulator and Aplyisa, the aortic valve area (AVA) could be set,
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in the UT simulator the resistance of the AV was increased to simulate the stenosis. To simulate no,
mild, moderate and severe MR, we used values for the effective regurgitation orifice area for the Harvi
simulator and Aplysia. In the UT simulator the backward resistance of the MV was decreased and
the severity was assessed by calculating the regurgitation volume [44]. The grading of AS and MR
was performed without flow from the VA ECMO.

3.2.3 Left ventricular flow

From the simulations with all 25 different sets of parameters, we used ECMO flow, LV flow, resistance
and compliance and the resulting arterial pressure waveform to determine the left ventricle flow over
time by applying the two-element Windkessel model using MATLAB (Version 2022b, MathWorks Inc.,
Natick, USA). The LV flow calculated with the Windkessel model was compared to the corresponding
LV flow from the simulators. Figure 4 shows the procedure to evaluate the LV flow calculations. For
blood pressure P , we used the pressure in the ascending aorta from the UT simulator, for the Harvi
simulator we used the aortic pressure and for Aplysia we used the arterial pressure. The blood pressure
from the UT and Harvi simulator was filtered, since this data contained small high-frequency fluctu-
ations in the signal that caused large errors in the derivative of the pressure. The blood pressure is
filtered using a 20 Hz, 2nd order low-pass Butterworth filter, since we are interested in the frequencies
below 20 Hz [45]. The P is used together with the set values for the QE , R and C in Equation (4),
to determine QLV . Since ECMO flow is not exactly constant, but is afterload dependent, the ECMO
flow changes through the cardiac cycle. However, in the clinical setting, only a constant value for
ECMO flow is registered. Therefore the data from the UT simulator was used to calculate LV flow
with both, the actual ECMO flow and a constant ECMO flow for QE .

Figure 4: The method used to compare the LV flow calculated from the two-element Wind-
kessel model (QWK), with the flow originally from the cardiovascular simulator (Qor). The
normalized root mean squared error (nRMSE) and the stroke volume from the simulator
(SVor) and from the calculated LV flow (SVWK) are used to compare the two LV flows.
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To evaluate the quality of the LV flow determined with the two-element WK model (QWK), it is
compared to the LV flow from the simulator (Qor). The Qor is given by the UT simulator, for the
Harvi simulator this is calculated from the LVOT velocity and LVOT diameter, for Aplysia the flow
through the aortic valve is used. To compare QWK with Qor, two different measures are used. First the
stroke volume (SV), this is also used in the clinical practice and is therefore an important characteristic
of the calculated LV flow. The SV is calculated as the mean of the integral of the LV flow over ten
beats. To also define the degree of similarity of the entire LV flow signal, the second measure we used
is the normalized root mean squared error (nRMSE),

RMSE =

√∑N
i=1 ∥Qor(i)−QWK(i)∥2

N
(5)

nRMSE =
RMSE

Q̄or
, (6)

with N the length of the signal and Q̄or the mean of Qor.

3.2.4 Adapted time-decay method

The two-element WKmodel requires two patient-specific parameters. Therefore the vascular resistance
and arterial compliance need to be determined in patients to be able to apply the WK model. The
time constant RC is also known as the time constant of the exponential decay of the blood pressure
during diastole. The diastolic part of the blood pressure wave can therefore be used to estimate RC.
The time-decay method uses this time constant from the arterial blood pressure curve to determine
arterial compliance. In the diastolic phase, it can be assumed that there is no blood flow from the
heart. Hence, the left-hand side of Equation (3) becomes zero. Solving this differential equation such
that P0 is the pressure at t0 during the diastolic phase,

P (t) = P0e
−(t−t0)

RC . (7)

Assuming the pressure decay in the diastole is exponential according to the above equation, the time
constant RC can be determined. For known vascular resistance or arterial compliance, respectively C
or R can be estimated [25], [27]. However, for this method it is assumed that Q = 0, which is not true
at any time for patients supported with VA ECMO. Hence, an adjustment was made to this method.
Assuming QLV is indeed zero during diastole, but there still is a constant flow QE from the ECMO
circuit, Equation (4) can be solved such that P1 is the pressure at t1 during the diastolic phase,

P (t) = (P1 −RQE)e
−(t−t1)

RC +RQE . (8)

This equation can be used in patients with and without VA ECMO support, since for QE = 0 Equation
(7) and Equation (8) are equal. To validate the equation, we used the blood pressure and parameters
from the simulations described in Section 3.2.2. Using Equation (8) to determine Cdecay, first the
diastolic phase of the arterial blood pressure wave needed to be selected, as shown in blue in the blood
pressure wave in Figure 5. Since the blood pressure in the Harvi simulator and Aplysia show a dicrotic
notch, the pressure after this dicrotic notch is used as the diastolic part. For the UT simulator, the
time at which flow becomes zero is used to determine the start of the diastole. This diastolic phase was
selected in three consecutive beats. Next, for every beat we estimated C by the value that minimizes
the RMSE between the selected diastolic blood pressure signal and Equation (8). Values of C between
0.01 and 10 mL/mmHg were tested with increments of 0.01 mL/mmHg. Finally, Cdecay is defined as
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the average of the C estimations of three consecutive beats. We compared Cdecay with the original
compliance Cor set in the UT simulator using actual and constant ECMO flow and in the Harvi
simulator and Aplysia with actual ECMO flow, as shown in Figure 5

Figure 5: The method used to evaluate the compliance estimation using the adapted time-
decay method Cdecay in simulated arterial blood pressure data P , with a known resistance
R.

3.3 Results

In all three simulators, a baseline patient was simulated. Table 2 shows the values for MAP, CVP,
PWP, CO and QE for the baseline patient in all simulators. For the CVP and PWP, respectively the
right and left atrial pressure was used. All parameters used for the simulation in the UT simulator,
Harvi simulator and Aplysia can be found in Appendix A, Tables 7, 8 and 9.

Table 2: Mean arterial pressure (MAP), central venous pressure (CVP), pulmonary wedge
pressure (PWP), native cardiac output (CO) and VA ECMO flow (QE) of the simulated
baseline patient in the three simulators.

UT simulator Harvi simulator Aplysia

MAP [mmHg] 71 69 76
CVP [mmHg] 2.9 2.2 5.5
PWP [mmHg] 32 29 21
CO [L/min] 3.0 3.3 3.2
QE [L/min] 2.0 2.1 2.1
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(a) (b)

Figure 6: a) Arterial blood pressure and b) LV flow simulated with the UT simulator (Qor) in blue
and LV flow calculated from the blood pressure using the two-element WK model (QWK) in gray.

(a) (b)

Figure 7: a) Arterial blood pressure and b) LV flow simulated with the Harvi simulator (Qor) in blue
and LV flow calculated from the blood pressure using the two-element WK model (QWK) in gray.
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(a) (b)

Figure 8: a) Arterial blood pressure and b) LV flow simulated with Aplysia (Qor) in blue and LV flow
calculated from the blood pressure using the two-element WK model (QWK) in gray.

3.3.1 Left ventricular flow

Figure 6, 7 and 8 show on the right the Qor and QWK respectively for the UT simulator, the Harvi
simulator and Aplysia. On the left of side, these figures show the arterial pressure from the simulator,
used to calculate LV flow with the two-element Windkessel model. The three simulators have different
pressure waveforms and all show different patterns for QWK . Besides, the difference between Qor and
QWK is the smallest for the UT simulator.

The quality of the calculated LV flow is expressed as a percentage error for SV and by using the
nRMSE. Figure 9 and 10 show boxplots of the error in SV and nRMSE from the (a) UT simulator,
(b) UT simulator with constant ECMO flow, (c) Harvi simulator and from (d) Aplysia. The error
in SV is the smallest for the Harvi simulator, with a mean error of 2.5%. The calculated SV from
Aplysia differs the most from the original SV, with a mean error of 26.3%. For the UT simulator, the
error in SV is equal using actual and constant flow, both with a mean of 11.4%. The differences in
the percentage error for SV due to the change of parameters in the simulated scenario’s are shown in
Appendix D, Figure 24.

The UT simulator shows the smallest nRMSE with a mean of 0.16 using actual ECMO flow and
0.17 for constant ECMO flow. Compared to the UT simulator, the nRMSE for the Harvi simulator
and Aplysia are larger, which is in line with Figure 6b, 7b and 8b, since nRMSE also takes the wave-
form of the LV flow into account.
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Figure 9: The percentage error of the calcu-
lated SV, with respect to the original SV from
the (a) UT simulator, (b) UT simulator with
constant ECMO flow, (c) Harvi simulator and
from (d) Aplysia.

Figure 10: The nRMSE of the calculated LV
flow, with respect to the original LV flow from
the (a) UT simulator, (b) UT simulator with
constant ECMO flow, (c) Harvi simulator and
from (d) Aplysia.

3.3.2 Adapted time-decay method

Figure 11 shows the correlation between Cdecay and Cor, with the dashed line indicating Cdecay = Cor.
The values for Cdecay determined from the UT and Harvi simulator data is close to corresponding
values for Cor, for Aplysia the Cdecay overestimates the actual compliance in all cases. Note that the
range of the y-axis in Figure 11c is larger than for the UT and Harvi simulator.
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(a) (b)

(c)

Figure 11: The compliances determined using the adapted time-decay method, Cdecay and the com-
pliance originally set in the simulator, Cor. For respectively the (a) UT simulator with actual and
constant ECMO flow (QE), (b) the Harvi simulator and (c) Aplysia. The dashed line indicates
Cdecay = Cor.

3.4 Discussion

In this study we used three different cardiovascular simulators to study the quality of left ventricular
flow determined from the blood pressure signal using the two-element Windkessel model during VA
ECMO. In two simulators the calculation of the LV flow resulted in an average error in SV below
12%. For the third simulator, the average error was larger with an average of 26%. Data from the
same simulations was also used to study an adapted time-decay method to determine compliance from
arterial blood pressure in patients supported with VA ECMO. In two of the simulators, the compliance
did not differ more than 0.18 mL/mmHg. In the third simulator, the maximum difference was clearly
higher, with 2.6 mL/mmHg.

19



3.4.1 Stroke volume

Our results show that application of the two-element Windkessel model to arterial blood pressure can
estimate LV flow in simulated patients, supported with VA ECMO. Especially the errors found in the
calculation of the SV are consistence with other PWA methods. To the extent of our knowledge other
PWA methodes to estimate CO were never tested in simulation studies. However, there are multiple
studies in which PWA methods, based on two-element Windkessel models, are tested in porcine data
without VA ECMO support. The SV error below 12% we found in two of the three simulators agrees
with the average error in CO between 11.8 and 14.5% found in these studies with porcine data [32]–
[34]. Bond et al. studied the application of an uncalibrated PWA method in patients supported with
veno-venous ECMO and used echocardiography for the reference CO. Although the interaction of
veno-venous ECMO with the patients hemodynamics differs largely from VA ECMO, the SV error we
found in the UT simulator does agree with the average CO error of 10.1% found by Bond et al. [46].

3.4.2 Waveform

From Figure 6, 7, and 8 it becomes clear that the pressure and flow waveforms are different for all three
simulators. The blood pressure waveform for Aplysia is visually the most clinically realistic, showing
a clear dicrotic notch. Aplysia also shows left ventricular flow closest to what is expected, including
negative flow, which is physiologically followed by aortic valve closing [47]. The pressure waveform in
the UT simulator is the least complicated, visually the waveform of the calculated flow is also most
similar to the original LV flow. This is confirmed by the nRMSE, Figure 10 shows. When studying the
boxplots in Figure 9 and 10, it is noteworthy that application of the two-element Windkessel model
on data from the Harvi simulator results in a very small error in SV, even though there is a large
inaccuracy in the waveform, reflected by the nRMSE.

Values for nRMSE are not commonly used in evaluation of PWA methods, since most methods aim
to determine SV, or even CO. Hence, it is hard to translate the resulted nRMSE values to clinical
practice. We studied the nRMSE value since we think that LV flow waveform can help in the future
to study contractility estimators, such as the systolic acceleration of blood flow in the LVOT [37].
Regarding to the waveform it is also important to notice that in this study, both, the simulators and
the two-element WK model are lumped parameter models. These models do not account for wave
transmission and reflection, which are present in the real arterial system [38], [39]. To study the valid-
ity of the method proposed in this study in the situation where also wave transmission and reflection
occur, the method should be studied in clinical data.

3.4.3 Adapted time-decay method

Figure 11 shows that the estimation of C using the adapted time-decay method overestimates the
original compliance most of the time. Especially in Aplysia, this overestimation is large, with an
average overestimation of 0.78 mL/mmHg (37.0%) with outliers up to 2.6 mL/mmHg (68.0%). In
particular these outliers suggest that the adapted time-decay method would not be a suitable method
to estimate arterial compliance in the clinical setting. However, a different conclusion is drawn from
the data from the UT or Harvi simulator. In these simulators the compliance estimation results in
only small errors, on average between 0.05 and 0.1 mL/mmHg, respectively 4.6 and 6.8%. The errors
found in the UT and Harvi are similar to the values found by Stergiopulos et al., using a non-linear
computer model of the systemic arterial tree to test the time-decay method without VA ECMO [27].
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The different accuracy of Cdecay between the simulators may be explained by the main assumption
in the time-decay method. As explained in Section 3.2.4 the adapted time-decay method uses the
assumption that during diastole, the flow consists of only the VA ECMO flow. This is however only
true in the ascending aorta [25], [27]. Since the pressure data from Aplysia is defined more distally,
compared to the UT and Harvi simulator, this may have influenced the accuracy of the compliance
determined with the adapted time-decay method.

3.4.4 Strengths and limitations

In this study, cardiovascular simulators were used to validate the application a two-element Windkessel
model to calculate LV flow from arterial blood pressure. The advantage of using cardiovascular simu-
lators is the possibility to simulate a wide range of hemodynamic situations, including the interaction
with a VA ECMO device. Besides, in contrast to the clinical setting, all patient specific parameters,
including resistance and compliance are known in these simulations. Since it is difficult to deter-
mine compliance in patients, simulation data can be used to test the application of the Windkessel
model without the interference of inaccurate patient specific parameters. Additionally, in Appendix
D, Figure 24 shows that the change in SV error due to changing parameters is neglectable for the UT
and Harvi simulator, suggesting that our method stays accurate for changing hemodynamic situations.

Since all simulators are lumped parameter models, they only partly represent the interactions in the
cardiovascular system of a patient. Next to this, there is another difficulty in applying the Windkessel
model to clinical data. As discussed earlier, the parameters need to be estimated for each individ-
ual patients, while parameters also change over time. Although a method to calculate compliance is
proposed and shows promising results in this study, the estimation of compliance and resistance will
introduce extra uncertainty.

We also studied the effect of using constant instead of actual ECMO flow in our method. Whereas
the actual ECMO flow is known from the simulators, in the clinical practice only a constant value for
ECMO flow is registered. Since the fluctuation in ECMO flow due to the changing afterload during
the cardiac cycle are small, we expected this to have little to no influence in the calculations of our
model. This is indeed confirmed by the small difference in nRMSE and SV error between a) and b)
in Figure 9 and 10.

3.4.5 Conclusion

To conclude, LV flow could be calculated from arterial blood pressure using the two-element Windkessel
model. In two of the three cardiovascular simulators, the average stroke volume error was below 12%.
In these simulators, also arterial compliance could be accurately estimated using the proposed adapted
time-decay method, showing an average overestimation of arterial compliance below 0.1 mL/mmHg.
The results in the third simulator however, show a limited accuracy for both methods. Therefore, we
recommend to further evaluate the promising application of the two-element Windkessel model and
the adapted time-decay method in clinical data of patients supported with VA ECMO.
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4 Left ventricular flow monitoring using arterial blood pressure in
patients supported with VA ECMO

4.1 Introduction

To improve the clincal care management of patient supported with VA ECMO in the ICU, it is crucial
to accurately monitor the LV function. However, it is complex to gain insight in the LV function.
The currently evaluated hemodynamic parameters are a result of the interaction between the VA
ECMO circuit and the LV. In Section 3.2.1, we described a method to determine the contribution of
the LV. The study in different cardiovascular simulators showed promising results in two simulators.
These results are however of limited value to draw conclusions about the applicability in clinical data.
Compared to the simulated setting, the clinical setting involves more phenomena that might influence
the outcome. Not only the wave transmission and reflection, but also the occurrence of noise and
measurement errors in blood pressure and patient specific parameter calculations.

Currently, there are multiple methods available to determine CO or SV in patients at the ICU. First,
the use of thermodilution using a pulmonary arterial catheter, also known as a Swan Ganz catheter.
CO measurement with thermodilution includes the injection of cold fluid or intermitted heating of
the blood in the right atrium. Blood flows through the right atrium and ventricle to the thermistor
close to the tip in the pulmonary artery, which registers the temperature curve and uses it to calculate
pulmonary blood flow. Under the assumption that the output of the right ventricle is equal to the
output of the LV, the CO is determined. At this moment, thermodilution using a pulmonary artery
catheter is the golden standard for measuring CO in critically ill patients [32], [48]. However, this is
not validated during ECMO support [32], [49]. Overestimation of the cardiac output when using a
Swan Ganz catheter may occur due to indicator loss. Besides, the use of the Swan Ganz catheter is
invasive and not without risks [32], [48].

Another method to determine CO or SV is echocardiography, this can be performed transthoracic
(TTE) or transesophageal (TEE). With echocardiography the velocity time integral (VTI) of the left
ventricular outflow tract (LVOT) can be determined, as well as the diameter of the LVOT (dLVOT),

SV = π ·
(
dLVOT

2

)2

·VTI. (9)

However, the accuracy of SV measurements using TTE is limited and cannot be performed contin-
uously [49], [50]. Other available methods to determine CO include analysis of the arterial blood
pressure waveform as discussed in Section 3. The disadvantage of the PWA methods is that they are
not directly applicable to the patients in our study, due to the influence of the VA ECMO circuit.

The Windkessel model could provide a solution to continuously monitor the LV flow during VA
ECMO in the ICU. For the two-element Windkessel model, the patient specific values for vascular
resistance and arterial compliance are required. In addition to being used to apply the Windkessel
model, accurate estimations of R and C can also provide more insight in the cardiovascular status
of the specific patient. Compliance, for example, influences the PP and therefore might be used to
improve the interpretation of PP during VA ECMO.

Eventually, we want to improve cardiac function monitoring during VA ECMO. Continuously describ-
ing the LV flow will be a first step towards a comprehensive monitoring system, ultimately leading
towards a decision support system. The application of the two-element Windkessel model showed to
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be promising to calculate LV flow in cardiovascular simulation data. Hence, in this study we further
validated the application of this Windkessel model to calculate LV flow using blood pressure in pa-
tients supported with VA ECMO. Besides, also the application of the adapted time-decay method to
determine compliance and resistance was studied in clinical data.

4.2 Methods

To study the applicability of the two-element Windkessel model as described in section 3.2.1, we
conducted a prospective observational study for which echocardiograms and signals that are routinely
obtained as part of the daily clinical management are collected in patients supported with VA ECMO
in the ICU at the UMC Utrecht. Besides, the same data was also collected in patients supported with
a heart-lung machine (HLM) in the operating room (OR), since similar phenomena occur in these
patients.

4.2.1 Study population

We included seven patients supported with VA ECMO in the ICU or undergoing cardiac surgery while
supported with a HLM in the OR. Patients were excluded if they were supported by a ventriculo-aortic
axial pump (Impella) or if their age was below 18 years. Besides, patients were excluded if no LVOT
VTI measurement could be performed.

4.2.2 Data acquisition

In patients supported with VA ECMO in the ICU, the arterial blood pressure signals and VA ECMO
flow are registered during routine echocardiography. If data registration occurred during a weaning
trial, this was repeated for all consecutive flows for which a VTI measurement was available.

In the OR arterial blood pressure signals were registered during weaning of the HLM. In the weaning
process, HLM flow is gradually reduced and the LV generates SV again. This setting is similar to
the situation during VA ECMO support: flow from the heart and the ECMO together generate the
resulting arterial blood pressure. In the OR, pressure signals during three different flows were used,
75, 50 and 25% of the total expected CO.

Arterial blood pressure is measured using a catheter in the radial artery. Standard filtering is per-
formed by the monitor with a low-pass filter of 12Hz, which could not be turned off. Before data
registration it is assured that the pressure transducer is set at the correct height, as in daily clinical
practice. For each flow, one minute of arterial blood pressure is collected with a sampling frequency of
1kHz. In addition, calibration to zero and flushing of the arterial catheter was registered to calibrate
the pressure and review over- or underdamping afterwards.

For the echocardiogram TTE or TEE was used. For every patient, one value for dLVOT was used,
assuming this diameter is constant over time within a patient. For LVOT VTI, we used the average
VTI of three consecutive beats at each flow, measured with pulsed wave Doppler.

4.2.3 Analysis

Registered arterial blood pressure was first filtered using a 2nd order low-pass Butterworth filter with
a cut-off frequency at 20Hz to remove noise. If available, 30 seconds are selected around the VTI
measurement.
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Figure 12: The method used to determine a) Recho, Cecho, Rdecay and Cdecay and b) SVCdecay

and SVRdecay.

4.2.3.1 Compliance and resistance

For application of the two-element Windkessel model, the vascular resistance and arterial compli-
ance need to be estimated for each patient and flow. SV and PP or CO and MAP from the arterial
blood pressure and echocardiogram measurement are used to determine respectively Cecho and Recho,
according to Equation (1) and (2). These values were used to validate the adapted time-decay method
as proposed in 3.2.4. Equation (8) is used to calculate Cdecay, using Recho. The compliance deter-
mined with the adapted time-decay method is compared to Cecho. The equivalent was performed to
determine the quality of the resistance estimated with the adapted time-decay method, Rdecay, using
Cecho. The upper part of Figure 12 shows a schematic representation of this method.

To determine LV flow, all registrations were first analyzed individually. Equation (4) was applied to
the arterial blood pressure data, using 1) Recho with Cdecay and 2) Rdecay and Cecho, as the bottom
part of Figure 12 shows. The resulting LV flow was used to calculate the average SV of three con-
secutive beats, using the integral of the LV flow. Next, for the patients with a series of successive
registrations at different flows, we used compliance from Equation (1) during the previous ECMO flow,
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C0, to calculate the resistance during the current ECMO flow with the adapted time-decay method,
R1. Subsequently, these C0 and R1 were used to calculate LV flow with the two-element Windkessel
model.

4.2.3.2 Bland-Altman analysis

To display the relation between the two-element Windkessel model derived SV and the SV deter-
mined from the LVOT VTI and dLVOT, a Bland-Altman plot was used. The Bland-Altman plot
shows the agreement between the two methods with the average of the two methods on the x-axis and
the difference between the two methods on the y-axis . The mean of the differences is called the bias.
Variation around the bias is described by the Limits of Agreement (LoA), defined by ±1.96 times the
standard deviation. Assuming a normal distribution of the differences, 95% of the differences will be
within the LoA [51], [52]. The same method is applied to describe the agreement between the patient
specific parameters derived using the adapted time-decay method and using Equation (1) and (2).

4.3 Results

In total 19 data registrations were performed in seven patients, of whom three were supported with
VA ECMO in the ICU and four were supported with a HLM in the OR.

First, the parameters were determined. Figure 13a shows the agreement between compliance de-
termined using Equation (1), Cecho and compliance determined using the adapted time-decay method
in Equation (8), Cdecay. The average difference between these two compliances is -0.56 mL/mmHg,
the limits of agreement are -1.68 and 0.57 mL/mmHg for compliances between 0.8 and 2.4 mL/mmHg.
Figure 13b shows the agreement for the resistance, comparing the resistance calculated using Equa-
tion (2), Recho, with the resistance from the adapted time-decay method, Rdecay. For these resistances
between 0.6 and 1.2 mmHg·s/mL, the mean difference is -0.15 mmHg·s/mL, with limits of agreement
of -0.43 and 0.13 mmHg·s/mL.

The values for arterial compliance and vascular resistance were used to determined SV. Figure 14a
shows the agreement between the SV determined using the echo measurement of the LVOT VTI and
dLVOT (SVV TI) and the SV determined in the two-element Windkessel model using the compliance
Cdecay and the resistance Recho. The mean difference between the SV of these two methods is 0.88
mL, with LoA of -0.51 and 2.27 mL. The agreement between the SV calculated with the Windkessel
model using compliance Rdecay and compliance Cecho, is shown in the Bland-Altman plot in Appendix
E, Figure 25.

Not in all patients data registration was available for multiple consecutive flows. In five patients
data was registered for two to four consecutive flows, together resulting in 15 data registrations. Fig-
ure 14b shows the Bland-Altman plot comparing SVV TI with the SV calculated with the two-element
Windkessel model, using R1 and C0. Using these parameters, the difference of the calculated SV,
SVC0R1, with the SVV TI show a larger range, with limits of agreement between -25.45 and 26.00 mL,
although having an mean difference of 0.26 mL. The agreement of the corresponding values of R1 with
the values for Recho are shown in Appendix F, Figure 26.

Figure 15 shows an example of the arterial blood pressure with the corresponding LV flow, calculated
using the two-element Windkessel model. The LV flow shows a large positive flow to almost 1500
mL/s and a large negative flow, less than -500 mL/s.
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(a) (b)

Figure 13: Bland-Altman plots, with the solid line indicating the mean difference, the dashed line the limits of
agreement. a) show the agreement between Cecho and Cdecay with an mean difference of -0.56 mL/mmHg and
limits of agreement of -1.68 and 0.57 mL/mmHg. b) shows the agreement between Recho and Rdecay, with a
mean difference of -0.15 mmHg·s/mL and limits of agreement of -0.43 and 0.13 mmHg·s/mL.

(a) (b)

Figure 14: Bland-Altman plots, with the solid line indicating the mean difference, the dashed line the limits of
agreement. a) shows the agreement between SVV TI and SVCdecay with a mean difference of 0.88 mL and limits
of agreement of -0.51 and 2.27 mL. b) shows the agreement between SVV TI and SVC0R1, with a mean difference
of 0.26 mL and limits of agreement of -25.48 and 26.00 mL.
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Figure 15: Example of arterial blood pressure [mmHg] in gray and corresponding calculated left
ventricular flow [mL/s] in blue.

4.4 Discussion

In this study we performed a proof of principle for the application of the two-element Windkessel
model to determine LV flow from arterial blood pressure in patients supported with VA ECMO. We
used 19 data registration in 7 patients supported with VA ECMO in the ICU or with a HLM in the OR.

To evaluate the LV flow calculations, results were shown using Bland-Altman analysis. The main
advantage of Bland-Altman is that the agreement between two methods can be studied. There is cur-
rently no golden standard to determine SV, C or R in patients supported with VA ECMO. Therefore
it is most useful to study if our method could replace current available methods. The Bland-Altman
plots also include the calculation of the limits of agreement (LoA), which described the range of
95% of the differences, assuming a normal distribution. This assumption is less strict then in usual
statistical testing and is therefore visually assessed using boxplots and histograms of the differences.
However, due to the small amount of samples, accurate assessment of the normal distribution assump-
tion is difficult. Nevertheless, the LoA can be used as an indication of the agreement between the two
methods.

4.4.1 Patient specific parameters

The agreement between the patient specific parameters determined using the adapted time-decay
method and using Equation (1) and (2) is large. Especially the average difference is small for both,
resistance and compliance. The range of compliance we found in this study agrees with normal values
for compliance, between 0.2 and 2.7 mL/mmHg [21]. Figure 13a shows that the difference between
Cecho and Cdecay increases as the average value for C increases. This shows that for possible high
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compliant vessels, the adapted time-decay method does not give the same results as Equation (1). It
is important to take into account that the compliance determined with Equation (1) is not necessarily
the correct value. In fact, for this equation, it is assumed that the SV is the volume entering the
compliant arteries, without taking the outflow of blood into the peripheral vessels into account. This
can cause overestimation of the compliance, although Chemla et al. showed the compliance calculated
with Equation (1) corresponds to the compliance estimated with the area method [25], [26]. In our
results, Cdecay is usually larger than Cecho, which would imply that Cdecay is an overestimation of the
actual arterial compliance. From Figure 13b it seems that Rdecay is also an overestimation of the real
vascular resistance. For the resistance there is no clear dependency of the difference on the mean value
of Recho and Rdecay.

In our study, arterial compliance and vascular resistance are determined using the adapted time-
decay method on peripheral arterial blood pressure, measured in the radial artery. As discussed in
Section 3.2.4, it is assumed that blood flow equals VA ECMO flow during the diastolic phase. How-
ever, this assumption is violated when using peripheral pressure, since in the peripheral vessels, the
flow during diastole is larger than only VA ECMO. This can lead to incorrect estimation of RC. To
improve the estimation of patient specific parameters, a transfer function, transforming peripheral to
central arterial blood pressure could be used. The disadvantage of such a transfer function is that it
also introduces new uncertainties. Therefore, it might be more beneficial to also study new compli-
ance estimation methods, such as proposed by Arai et al., which claims to be less dependent on the
differences between central and peripheral measured blood pressure [53].

4.4.2 Left ventricular flow

The LV flow calculated using the arterial blood pressure and Recho and Cdecay (SVCdecay) shows an
average difference of 0.88 mL and a range described by the LoA of -0.51 and 2.27 mL. It is evident
that this difference between SVV TI and SVCdecay is small and would therefore probably be clinically
useful. To better clinically interpret these values, it is helpful to estimate the cardiac index (CI). The
CI is defined as, CI = CO

BSA , with BSA the body surface area, which is 1.85 m2 for an average person
with a length of 1.80 m and a weight of 80 kg. A normal value of the CI is above 2.5 L/min/m2 and
a value below 2.0 L/min/m2 is associated with cardiogenic shock. To translate the LoA for SVV TI

and SVCdecay to CI values, we assume a HR of 80 BPM. The LoA between -0.51 and 2.27 from Fig-
ure 14a then correspond with a CI between -0.02 and 0.10 L/min/m2. These errors would be small
enough to make a distinction between a normal CI (above 2.5 L/min/m2) and a CI associated with
cardiogenic shock (below 2.0 L/min/m2). However, when using C0 and R1, as in Figure 14b, the LoA
become large, although the average difference is small, 0.26 mL. The LoA between -25.48 and 26.00
mL, correspond to a range for CI between -1.10 and 1.12 L/min/m2. This range is too large to make
a distinction between a normal CI (above 2.5 L/min/m2) and a CI associated with cardiogenic shock
(below 2.0 L/min/m2). This shows that monitoring SV using the two-element Windkessel model is
applicable if the exact values for arterial compliance and venous resistance are known. A relative small
error in these parameters can have large influence on the calculated SV.

Figure 15 shows an example of calculate LV flow with the corresponding arterial blood pressure.
Despite that a negative flow just before aortic valve closure is expected, the negative flow in Figure
15 is larger than expected [47]. The peak of the positive flow is also larger than expected. The larger
negative and larger positive flow cancel each other out in the calculation of the SV, making it possible
to have a correct SV, despite showing an unexpected waveform for LV flow. The waveform of the
LV flow influences parameters such as the LVOT mean systolic acceleration (LVOTacc), for which
Bauer et al. showed a strong correlation with Ees [37]. To be able to use LV flow to continuously
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monitor such estimates of Ees, the waveform of the calculated LV flow should be improved. One of the
causes of the incorrect waveform might be the simplification of the interaction between blood pressure
and flow in the two-element Windkessel model. Improvement of the calculate LV waveform may be
possible by using a more elaborate model, such as the three- or four-element Windkessel model, or
even one-dimensional models that also take wave transmission and reflection into account.

4.4.3 Strengths and limitations

To proof the principle of LV flow calculations with the two-element Windkessel model in patients
supported with VA ECMO, we used data during VA ECMO or HLM support. Data registration in
the OR was performed during weaning of the HLM. During weaning, blood flows from both, the heart
and the HLM into the arterial system. Similar to the conditions during VA ECMO, the LV and the
support device together influence the total hemodynamics. There are however also dissimilarities.
Most importantly, with HLM support, central cannulation is used, while VA ECMO in the ICU is
usually peripheral cannulated in the femoral artery. In the application of the two-element Windkessel
model the site of cannulation is not taken into account, because the Windkessel model is a lumped
parameter model, assuming all blood flow enters into one single vessel with a compliance and resistance.

To determine the quality of the calculated SV, we used the SV determined using echocardiographic
measurements of the LVOT VTI and dLVOT. Although echocardiography is an accepted method to
determine SV, also during VA ECMO, this measurement is also not perfectly accurate. Different stud-
ies are performed to study the accuracy of the VTI measurement. The least significant change in VTI
that can be trusted between two TTE examinations is around 14% [54], [55]. Blanco et al. showed
that the VTI measurements can vary 11% between measurements [50]. Besides the error in the VTI
measurements, the measurement of the dLVOT introduces another error. As shown in Equation (9)
the SV is proportional to the inverse of the squared radius. Correct estimation of dLVOT is therefore
important for accurate SV calculation. For the measurement of dLVOT, it is usually assumed that
the LVOT is circular, while in practice the LVOT is elliptical of shape, causing an underestimation
of 29% in the area of the LVOT [56]. The calculation of the area could therefore be improved using
measurements in multiple directions. Together with the error in the VTI measurement, the error in
LVOT diameter can lead to an error up to 43%. Although, in practice the VTI is often overestimated,
which is found to compensate for the underestimation of the LVOT area [56]. However, this is not
an assurance that the values of SVV TI in our study are correct. The agreement between SVV TI and
SVCdecay is larger than the agreement between two VTI measurements found in the studies described
above. The difference we found between SVV TI and SVC0R1 is larger, also compared to the difference
between two TTE examinations.

In this study, we additionally tested the ability to apply the proposed method, using the two-element
Windkessel model and the adapted time-decay method, to eventually continuously monitor the LV.
The method we propose for the continuous application of the SV calculation uses the assumption of
a constant compliance within one patient. Compliance is determined once, using Equation (1), for
which an echocardiography should be performed. Thereafter, the resulted arterial compliance, C0 is
used with the adapted time-decay method to determine vascular resistance R1 at any moment. Ul-
timately, these parameter are used in the two-element Windkessel model to repeatedly calculate SV.
We studied this method using the available consecutive registrations for different ECMO flows, within
one patient. Despite the large LoA range, it is expected that with an improved R estimation, this
method can be used to continuously monitor the SV, using a single calibration to determine arterial
compliance.
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4.4.4 Conclusion

Application of the two-element Windkessel model could be used to accurately determine SV during
VA ECMO or HLM support, using known patient specific parameters. The waveform of the LV flow
could however not be determined correctly using this simplified representation of the cardiovascular
system. Furthermore, correct patient specific parameters are important in the SV calculation and
the current estimations are too imprecise for continuous application of the Windkessel model. It
is therefore recommended to further improve continuous parameter estimation methods for patients
supported with VA ECMO.
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5 The additional value of a one-dimensional cardiovascular model to
describe the relation between blood pressure and flow in patients
supported with VA ECMO

5.1 Introduction

Cardiovascular models are used for various clinical applications, including CO estimation from arte-
rial blood pressure [32]–[34]. The three most used types of cardiovascular models are zero-dimensional
models, or lumped parameter models, one-dimensional models and three-dimensional models. All hav-
ing their own advantages and disadvantages. The choice of the type of model therefore depends on the
application. The zero-dimensional model is the least computational expensive, unfortunately at the
cost of being an extreme simplification of the entire cardiovascular system. Where the more elaborate
three-dimensional model is less simplified and describes the pressure and flow in three dimensions, the
computational costs of such a model are large. In terms of computational costs and simplification, the
one-dimensional model is between the zero- and three-dimensional model [45].

In this thesis a lumped parameter model is used to calculate LV flow from arterial blood pressure. As
discussed above, the lumped parameter model simplifies the calculations. However, the disadvantage
is that for this simplification, phenomena such as wave transmission and reflection are ignored. The
application of the two-element Windkessel model as described in Section 3 and 4 used arterial blood
pressure from the radial artery to estimate flow originating from the LV. When flow from the LV gen-
erates a pressure in the radial artery, the phenomena that cannot be described by a zero-dimensional
model are involved. Therefore, extension of the model towards a one-dimensional model might im-
prove the quality of the LV flow calculation.

Although we know that the one-dimensional model takes more aspects of the transmission of LV flow
into radial artery pressure into account, we do not know if a one-dimensional model would notably im-
prove the calculation of LV flow in patients supported with VA ECMO, compared to the two-element
Windkessel model. The aim of this study is therefore to compare the two-element Windkessel model
to a one-dimensional distributed parameter model, to determine if the use of a one-dimensional model
would be of added value. Zero- and one-dimensional models were compared using transfer functions.
Besides, the two-element Windkessel model was compared to a more elaborate lumped parameter
model and the effect of inaccurate resistance and compliance estimation was studied.

5.2 Methods

To be able to compare zero- and one-dimensional models, we will use Bode plots of the transfer
functions derived from different models. Below, we will explain the models we used and describe the
derivation of their transfer functions. In total, we will derive six transfer functions. An overview of
all transfer functions is give in Table 5, at the end of this section.

5.2.1 Lumped parameter models

The two-element Windkessel model uses total vascular resistance (R) and arterial compliance (C) to
describe the relation between pressure and flow in the cardiovascular system. Figure 16 shows the
electrical analogue of this model. The transfer function using left ventricular flow as input and the
arterial blood pressure as output of the system, HWK(s), is described by:

HWK(s) =
RWK

1 +RWKCWKs
. (10)
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Figure 16: Electrical representation of the two-element Windkessel model.

Figure 17: Electrical representation of a part of the model used in the UT simulator.

The cardiovascular simulator of the University of Twente (UT) uses a more elaborate model. Figure
17 shows the electrical analogue of a part of this model. Compared to the two-element Windkessel
model, the compliance and resistance are split into several compartments. To be able to correctly
compare both transfer functions, the total vascular resistance for the two-element Windkessel model,
RWK , was estimated as the equivalent resistance of all resistances in the model of the University of
Twente simulator, ignoring the very small venous resistances and other components. Hence,

Rp =
1

1
Rkid

+ 1
Rspl

+ 1
Rll

+ 1
Rrl

(11)

RWK =
1

1
Rp+Ra2

+ 1
Rub

+Ra1. (12)

Similarly, the arterial compliance for the two-element Windkessel model, CWK , was estimated as
equivalent compliance,

CWK = Ca1 + Ca2. (13)

Table 3 shows the parameter values used in these calculations. From the electrical analogue in Figure
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17, we can derive a transfer function,

HUT (s) =
B1s

4 +B2s
3 +B3s

2 +B4s+B5

B6s3 +B7s2 +B8s+B9
. (14)

for the cardiovascular simulator from the University of Twente using the following coefficients,

B1 = Ca1 Ca2 La1 La2 Rub Rp (15)

B2 = Ca1 Ca2 La1 Ra2 Rub Rp + Ca1 Ca2 La2 Ra1 Rub Rp + Ca1 La1 La2 Rub + Ca2 La1 La2 Rp

(16)

B3 = Ca1 Ca2 Ra1 Ra2 Rub Rp + Ca1 La1 Ra2 Rub + Ca1 La1 Rub Rp + Ca1 La2 Ra1 Rub

+ Ca2 La1 Ra2 Rp + Ca2 La1 Rub Rp + Ca2 La2 Ra1 Rp + Ca2 La2 Rub Rp + La1 La2 (17)

B4 = Ca1 Ra1 Ra2 Rub + Ca1 Ra1 Rub Rp + Ca2 Ra1 Ra2 Rp

+ Ca2 Ra1 Rub Rp + Ca2 Ra2 Rub Rp + La1 Ra2 + La1 Rub + La1 Rp + La2 Ra1 + La2 Rub (18)

B5 = Ra1 Ra2 +Ra1 Rub +Ra1 Rp +Ra2 Rub +Rub Rp (19)

B6 = Ca1 Ca2 La2 Rub Rp (20)

B7 = Ca1 Ca2 Ra2 Rub Rp + Ca1 La2 Rub + Ca2 La2 Rp (21)

B8 = Ca1 Ra2 Rub + Ca1 Rub Rp + Ca2 Ra2 Rp + Ca2 Rub Rp + La1 (22)

B9 = Ra2 +Rub +Rp. (23)

A simple calculation gives B5
B9

= RWK , see Equation (12). So at s = 0 the transfer function of the
two-element Windkessel model is equal to the transfer function of the model of the UT simulator as
shown in Figure 17.

Table 3: Parameter values for the lumped parameter models.

Parameter Value Unit

Ca1 0.660 mL/mmHg
Ca2 0.550 mL/mmHg
La1, La2 5 · 10−5 mmHg·s2/mL
Rkid 3.19 mmHg·s/mL
Rspl 2.34 mmHg·s/mL
Rll, Rrl 5.58 mmHg·s/mL
Rub 3.00 mmHg·s/mL
Ra1 0.013 mmHg·s/mL
Ra2 0.009 mmHg·s/mL
Rub 3.00 mmHg·s/mL
RWK 0.716 mmHg·s/mL
CWK 1.21 mL/mmHg
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5.2.2 One-dimensional Navier-Stokes

The lumped parameter models were compared to a one-dimensional distributed parameter model. The
one-dimensional model for this study should describe flow in a compliant tube. The three-dimensional
Navier-Stokes equations describe such a flow, assuming a laminar flow and an incompressible fluid
[57]. The one-dimensional Navier-Stokes equations were derived from this, assuming there is a flat
velocity profile, except at the walls, where the flow becomes zero within a thin layer (δ). Additionally,
it is assumed that the pressure is constant over the cross-sectional area of the vessel and the blood
density ρ is also a constant. The resulting, one-dimensional Navier-Stokes equations we use in this
study are,

∂A

∂t
+

∂q

∂x
= 0 (24)

∂q

∂t
+

∂

∂x

(
q2

A

)
+

A

ρ

∂p

∂x
= −2πνr0

δ

q

A
. (25)

With the cross-sectional vessel area A, the blood flow q and the blood pressure p dependent on time
t and location on the vessel x. The first equation is the one-dimensional derivation of the continuity
equation. The second equation represents the momentum equation, with the fluid acceleration ex-
plained by the first two terms and the forces on the fluid by the other terms. The right-hand side
represents the viscous stress on the wall, with kinematic viscosity ν. The viscous term in the longitu-
dinal direction is neglected, since it is small compared to this right-hand side [58]. With Equation (24)
and (25), we have two equations with three unknowns, q, A and p. Therefore a third equation was
used to be able to solve the system of equations. This third equation describes the relation between
cross-sectional blood vessel area A and pressure p. Several options exist to describe this relation,
assuming an elastic wall. We choose to use,

p =
4

3

Eh

r0

(
1−

√
A0

A

)
. (26)

With E Young’s modulus, h the thickness of the vessel wall, r0 the unstressed radius at p = 0 mmHg
and A0 = πr20.

5.2.2.1 Boundary conditions

For the model described by Equations (24), (25) and (26), two boundary conditions are necessary, one
at each end of the vessel, represented by a and b in Figure 18.

At side a, where the heart is, we assume a certain flow from the left ventricle, u(t),

q(a, t) = u(t). (27)

In this study we used a = 0 as the start of the one-dimensional vessel.

At side b, the brachial artery ends and is coupled to a two-element Windkessel model to relate the
blood pressure and the blood flow, described by

q(b, t) =
p(b, t)

Rb
+ Cb

dp(b, t)

dt
. (28)
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Figure 18: Schematic representation of the vessel described by the one-dimensional Navier-
Stokes equations, with boundaries at the side of the LV, x = a and at the radial artery
x = b.

5.2.3 Parameter values for the one-dimensional Navier-Stokes equation

To be able to apply the described one-dimensional model, parameter values were needed for all pa-
rameters involved. We assumed one single vessel from the LV towards the start of the radial artery,
without branches or tapering. The dimensions of the single vessel were determined using the dimen-
sions of all the vessels in the assumed trajectory. Table 4 shows the estimates used for length, radius
and wall thickness of the different parts of this trajectory [58], [59]. The length of the single vessel
is the total length of all the segments. The radius is set such that the total resistance of the single
vessel equals the sum of the resistances of the different segments. For resistance (Rt), Poiseuille’s law
for resistance in a tube was used,

Rt =
8Lη

πr4
, (29)

with L the length of the tube, η a viscosity constant and r the internal radius of the tube [38]. The
wall thickness of the single vessel is calculated as the weighted thickness, using the segment length as
weight. The result was a single vessel with a length (b) of 52.8 cm, a radius (r0) of 0.38 cm and a wall
thickness (h) of 0.088 cm. Values for r0 and h were used to determine values for Eh

r0
, with Young’s

Table 4: Estimated geometry of the arteries from the left ventricle to the brachial artery [58], [59].

Artery Length [cm] Radius [cm] Wall thickness [cm]

Ascending aorta 7 1.20 0.164
Aortic arc part 1 1.8 1.13 0.151
Aortic arc part 2 1 1.10 0.151
Subclavian + Brachial artery 43 0.36 0.071
Single 1D vessel 52.8 0.38 0.088

modulus E = 4 ·106 g
cm·s2 [59]. To fit with the units of the other parameters, the unit for pressure used

is g
cm·s2 = 7.5 · 10−4 mmHg.

When using the two-element Windkessel model as a boundary condition for the one-dimensional
Navier-Stokes equations, the values for resistance and compliance are different compared to the
Windkessel model that describes the entire arterial system. The coupled Windkessel model only
describes the vascular system after the brachial artery, with a higher resistance and a lower com-
pliance than the total arterial system. To estimate values for the resistance (Rb) and compliance
(Cb) of the coupled Windkessel model we used values of the radial artery compartments described
by Westerhof et al., assuming resistances in series and compliances in parallel [59]. Resulting in

Rb = 1.8304 · 104 g
cm4s

= 13.72 mmHg·s
mL and Cb = 1.877 · 10−6 cm4s2

g = 2.5 · 10−3 mL
mmHg .

35



5.2.4 Transfer functions for partial differential equations

For linear time-invariant systems described with ordinary differential equations such as the above
described lumped parameter models, the application and derivation of transfer functions are common.
The associated transfer functions are rational functions. For linear time-invariant partial differential
equations however, the transfer functions are irrational, often having infinite or no poles and zeros.
Moreover, the boundary conditions are of large influence on the location of the poles and the zero’s and
therefore the stability of the system [60]. The system described by the one-dimensional Navier-Stokes
equations, Equation (24) and (25), is non-linear. However, an irrational transfer functions can only be
described for linear partial differential equations. The next sections describe how the transfer function
is obtained for these non-linear equations, starting by linearizing the equations around a steady-state
solution. We obtained the steady-state solution in two situations, 1) when the blood has a viscosity
of zero, ν = 0 and 2) when there is no blood flow. The transfer function is derived with two different
boundary conditions: 1) a given flow at both ends of the vessel and 2) coupled to a two-element
Windkessel model at the end of the brachial artery.

5.2.5 Inviscid fluid

We first derived the transfer function for a fluid without viscosity, ν = 0. Hence, the right-hand side
of Equation (25) becomes zero.

5.2.5.1 Steady-state solution

For ν = 0, the one-dimensional Navier-Stokes equations are,

∂A

∂t
+

∂q

∂x
= 0 (30)

∂q

∂t
+

∂

∂x

(
q2

A

)
+

A

ρ

∂p

∂x
= 0. (31)

In the steady state q and A need to be independent of t, using Equation (30): ∂q
∂x = 0. For the steady

state solution, q(a) = q(b) = qeq with qeq a constant flow. Since we have the boundary conditions in
Equations (27) and (28). Using these constants in Equation (31) with (26),(

−q2

A2
+

1

ρ

4

3

Eh

r0

√
A0

2

1√
A

)
dA

dx
= 0. (32)

Which gives,

A =

 q2

1
ρ
4
3
Eh
r0

√
A0
2

2/3

∨ dA

dx
= 0. (33)

Both solutions give that in the steady state A is constant over the length of the vessel. The steady
state solution for the one-dimensional Navier-Stokes equations, assuming an inviscid fluid, is given by
the constants qeq and Aeq. This steady state solution should also satisfy the boundary conditions at
both ends. Since qeq is a constant flow, the boundary condition at x = a is satisfied. For the boundary
condition at x = b, we have Equation (28), together with Equation (26),

qeq =
4

3Rb

Eh

r0

(
1−

√
A0

Aeq

)
. (34)

We choose qeq = 33 mL/s, which is a low ECMO flow of 2 L/min, resulting in Aeq = 1.732 cm2.
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5.2.5.2 Linearization

The system was linearized around the steady state solution qeq and Aeq. In Equation (30) and (31),
A = Aeq + Av and q = qeq + qv was substituted, where Av and qv represent the variable part of
respectively the cross-sectional vessel area and the blood flow,

∂Av

∂t
+

∂qv
∂x

= 0 (35)

∂qv
∂t

+
∂

∂x

(
(qeq + qv)

2

(Aeq +Av)

)
+

(Aeq +Av)

ρ

∂p

∂x
= 0, (36)

where we used that qeq and Aeq are constants. Substituting Equation (35) into Equation (36),

∂qv
∂t

+ 2
∂qv
∂x

(
qv

Aeq +Av

)
+ 2

∂qv
∂x

(
qeq

Aeq +Av

)
− ∂Av

∂x

q2eq
(Aeq +Av)2

− ∂Av

∂x

q2v
(Aeq +Av)2

− ∂Av

∂x

2qeqqv
(Aeq +Av)2

+
Av

ρ

∂p

∂x
+

Aeq

ρ

∂p

∂x
= 0. (37)

This equation still includes the non-linear parts, 1
(Aeq+Av)

and 1
(Aeq+Av)2

. For further linearization,

these elements were described using a Taylor expansion around Av = 0,

1

(Aeq +Av)
≈ 1

Aeq
− Av

A2
eq

+O(A2
v) (38)

1

(Aeq +Av)2
≈ 1

A2
eq

− 2Av

A3
eq

+O(A2
v), (39)

in which we ignore A2
v and higher order terms, since Av is small. Substitute this into Equation (37),

∂qv
∂t

+ 2
∂qv
∂x

qv
Aeq
− 2

∂qv
∂x

qvAv

A2
eq

+ 2
∂qv
∂x

qeq
Aeq
− 2

∂qv
∂x

qeqAv

A2
eq

− ∂Av

∂x

q2eq
A2

eq

+ 2
∂Av

∂x

q2eqAv

A3
eq

− ∂Av

∂x

q2v
A2

eq

+ 2
∂Av

∂x

q2vAv

A3
eq

− ∂Av

∂x

2q0qv
A2

eq

+ 2
∂Av

∂x

2qeqqvAv

A3
eq

+
Av

ρ

∂p

∂x
+

Aeq

ρ

∂p

∂x
= 0. (40)

The components qv and Av are small, hence Equation (40) can be simplified by neglecting all non-
linear terms with qv and Av. Thus, the linearized system for an inviscid fluid in a single vessel is given
by the system of partial differential equations,

∂Av

∂t
+

∂qv
∂x

= 0 (41)

∂qv
∂t

+ 2
∂qv
∂x

qeq
Aeq
− ∂Av

∂x

q2eq
A2

eq

+
Aeq

ρ

∂p

∂x
= 0. (42)

To be able to apply the relation between the cross-sectional area A and pressure p, a Taylor expansion
of Equation (26) around A = Aeq was used,

p ≈ peq +
4

3

Eh

r0

(
1

2

√
A0Av

Aeq

√
Aeq

)
. (43)
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The pressure p is also substituted with a steady state (peq) and variable (pv) part, where peq is the
pressure for A = Aeq,

peq =
4

3

Eh

r0

(
1−

√
A0

Aeq

)
. (44)

Hence, the variable part of the pressure pv = p− peq,

pv ≈
4

3

Eh

r0

1

2

√
A0Av

Aeq

√
Aeq

. (45)

The boundary conditions are already linear and are therefore still described by Equation (27) and
(28).

5.2.5.3 Transfer function

To derive the transfer function for the linearized one-dimensional Navier-Stokes equations with an
inviscid fluid, Equation (45) is substituted into Equations (41) and (42), with k1 =

qeq
Aeq

and k2 =

1
ρ
2
3
Eh
r0

√
A0√
Aeq

. To construct a transfer function we apply the Laplace transform to the systems of partial

differential equations to obtain the system of ordinary differential equations,{
sAv +

∂qv
∂x = 0

sqv + 2k1
∂qv
∂x −

∂Av
∂x k21 + k2

∂Av
∂x = 0.

(46)

In matrix notation, [ ∂qv
∂x
∂Av
∂x

]
=

[
0 −s
−s

k2−k12
2k1s

k2−k12

] [
qv
Av

]
. (47)

With eigenvalues and corresponding eigenvectors,

λ1 =
−s√

k2 + k1
, v1 =

[ √
k2 + k1
1

]
, (48)

λ2 =
s√

k2 − k1
, v2 =

[
−
√
k2 + k1
1

]
. (49)

Hence, the general solution,

qv(x) = α
(√

k2 + k1

)
eλ1x + β

(
−
√
k2 + k1

)
eλ2x (50)

Av(x) = αeλ1x + βeλ2x. (51)

It appears we might divide by zero for k2−k21 = 0. In this situation, the system described by Equation
(46) becomes,

sqv − 2k1sAv = 0 (52)

and therefore the transfer function becomes scalar 1
2k1

. However, substituting the parameters values

described in Section 5.2.3, we find k2 ≫ k21, therefore this situation will not occur.
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Using Equation (50), α and β can be expressed in the flow at the boundaries qv(0) and qv(b),[
α
β

]
=

1

eλ2b − eλ1b

 eλ2b 1

(
√
k2+k1)

−1

(
√
k2+k1)

−eλ1b 1

(−
√
k2+k1)

1

(−
√
k2+k1)

[ qv(0)
qv(b)

]
. (53)

Using this expression of α and β in Equation (51),[
Av(0)
Av(b)

]
=

1

eλ2b − eλ1b

[
eλ2b√
k2+k1

− eλ1b

−
√
k2+k1

−1√
k2+k1

+ 1
−
√
k2+k1

e(λ1+λ2)b√
k2+k1

− e(λ1+λ2)b

−
√
k2+k1

−eλ1b√
k2+k1

+ eλ2b

−
√
k2+k1

] [
qv(0)
qv(b)

]
. (54)

Which we express as, [
Av(0)
Av(b)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
qv(0)
qv(b)

]
, (55)

with,

G11(s) =
eλ2b

(
√
k2 + k1) (eλ2b − eλ1b)

− eλ1b

(k1 −
√
k2) (eλ2b − eλ1b)

,

G21(s) =
2
√
k2e

(λ1+λ2)b

(
√
k2 − k1)(

√
k2 + k1) (eλ2b − eλ1b)

,

G21(s) =
2
√
k2e

(λ1+λ2)b

(
√
k2 − k1)(

√
k2 + k1) (eλ2b − eλ1b)

,

G22(s) =
eλ2b

(k1 −
√
k2) (eλ2b − eλ1b)

− eλ1b

(
√
k2 + k1) (eλ2b − eλ1b)

,

where λ1 and λ2 both depend on s. The system was first studied without coupling to the two-
element Windkessel model. At both ends, a and b, the flow will be a fixed value. Hence, as shown
in Equation (55), for an inviscid fluid with a fixed flow at both boundaries the transfer function from
qv(0) to Av(b) is,

HNSν0(s) = G21(s). (56)

5.2.5.3.1 Coupled to the Windkessel model

Next, the Windkessel model was added as a boundary condition at x = b, described by Equation
(28). Applying a Laplace transform and the linear relation between pv and Av at x = b,

qv(b) = WK(s)Av(b) (57)

with,

WK(s) =
ρk2
Aeq

(
1

Rb
+ Cbs

)
. (58)

To describe the transfer function for the system coupled to a two-element Windkessel model, we use
Equation (55) and (57),

Av(b) = G21(s) · qv(0) +G22(s) ·WK(s) ·Av(b). (59)
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So, the transfer function from qv(0) to Av(b) for the one-dimensional model with an inviscid fluid,
coupled to a two-element Windkessel model is described by,

HNSν0WK(s) =
G21(s)

1−G22(s)WK(s)
. (60)

5.2.6 Viscous fluid

Since blood does not have a viscosity of zero, we also studied the transfer function of a system when
the viscosity is nonzero.

5.2.6.1 Steady-state solution

To find a constant steady-state solution for the system when the viscocity is nonzero, we used the
assumption that there is no flow in the steady state, qeq = 0. The one-dimensional Navier-Stokes
equations with this assumption are,

∂A

∂t
= 0 (61)

A

ρ

∂p

∂x
= 0. (62)

The steady-state solution was found by substituting Equation (26) into Equation (62),

1

ρ

4

3

Eh

r0

√
A0

2

1√
A

dA

dx
= 0. (63)

Therefore, A is a constant in the steady state. The values for Aeq and qeq also need to satisfy the
boundary condition at both ends. The boundary condition at x = a is satisfied since qeq is a constant.
For the boundary condition at x = b we again use Equation (34) with qeq = 0, to obtain Aeq = A0 for
the steady state solution.

5.2.6.2 Linearization

The system for viscous fluid is linearized around the steady state solution. Again, by substituting
A = Aeq +Av and q = qeq + qv with qeq = 0 in Equations (24) and (25),

∂Av

∂t
+

∂qv
∂x

= 0 (64)

∂qv
∂t

+
∂

∂x

(
q2v

(Aeq +Av)

)
+

(Aeq +Av)

ρ

∂p

∂x
= − 2πνr0qv

δ(Aeq +Av)
. (65)

The linearized system was obtained using Equation (38) and (45) and neglecting all non-linear terms
that include Av or qv,

∂Av

∂t
+

∂qv
∂x

= 0 (66)

∂qv
∂t

+ k2
∂Av

∂x
= −k3qv, (67)

where k2 = 1
ρ
2
3
Eh
r0

√
A0√
Aeq

again, and k3 = 2πνr0
δAeq

. This is the linearized system we used to derive the

transfer function.
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5.2.6.3 Transfer function

To derive the transfer function for the linearized one-dimensional Navier-Stokes with a viscous fluid,
the Laplace transformation is applied to Equation (66) and (67), to obtain the ordinary differential
equations, {

sAv +
∂qv
∂x = 0

sqv + k2
∂Av
∂x = −k3qv.

(68)

In matrix notation, [ ∂qv
∂x
∂Av
∂x

]
=

[
0 −s

−k3−s
k2

0

] [
qv
Av

]
. (69)

With eigenvalues and corresponding eigenvectors,

λ3 =
−
√

k2s(−k3 − s)

−k3 − s
, v3 =

[
−
√

−k2s(−k3−s)

k2
1

]
=

[
vq
1

]
, (70)

λ4 =

√
k2s(−k3 − s)

−k3 − s
= −λ3, v4 =

[ √
−k2s(−k3−s)

k2
1

]
=

[
−vq
1

]
. (71)

Hence, the general solution,

qv(x) = −αvqe−λ3x + βvqe
λ3x (72)

Av(x) = αe−λ3x + βeλ3x. (73)

With Equation (72) from this general solution we can express α and β using qv(0) and qv(b), similar
to Section 5.2.5, [

α
β

]
=

1

e−λ3b − eλ3b

[
eλ3b

vq
−1
vq

e−λ3b

vq
−1
vq

][
qv(0)
qv(b)

]
. (74)

Using Equation (73) and (74),[
Av(0)
Av(b)

]
=

1

e−λ3b − eλ3b

 e−λ3beλ3b

vq
−2
vq

2
vq

−e−λ3b
λ2−eλ3b

vq

[ qv(0)
qv(b)

]
. (75)

Which we write as, [
Av(0)
Av(b)

]
=

[
F11(s) F12(s)
F21(s) F22(s)

] [
qv(0)
qv(b)

]
, (76)

with,

F11(s) =
e−λ3b + eλ3b

vq (e−λ3b − eλ3b)
(77)

F12(s) =
−2

vq (e−λ3b − eλ3b)
(78)

F21(s) =
2

vq (e−λ3b − eλ3b)
(79)

F22(s) =
−e−λ3b − eλ3b

vq (e−λ3b − eλ3b)
, (80)
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where λ3 and vq both depend on s. The transfer function was first determined using a fixed value
for the flow at both ends, qv(0) and qv(b). The resulting transfer function from qv(0) to Av(b) for the
one-dimensional Navier-Stokes equations, linearized around qeq = 0 with a viscous fluid is,

HNSq0(s) = F21(s). (81)

5.2.6.3.1 Coupled to the Windkessel model

Additionally, for the one-dimensional Navier-Stokes equations with viscous fluid, the transfer function
was also derived for the system coupled to a Windkessel model. To describe this transfer function,
we again used the Laplace transformation of the Windkessel boundary condition in Equation (58).
Further, Equation (76) is used to obtain,

Av(b) = F21(s) · qv(0) + F22(s) ·WK(s) ·Av(b). (82)

Therefore, the transfer function from qv(0) to Av(b) for the one-dimensional model with a viscous
fluid, coupled to a two-element Windkessel model is describe by,

HNSq0WK(s) =
F21(s)

1− F22(s)WK(s)
. (83)

Table 5: Overview of the different transfer functions

Transfer Steady-state
function Model Boundary Conditions assumption

HWK(s) Two-element Windkessel - -
HUT (s) UT simulator - -
HNSν0(s) One-dimensional Navier-Stokes q(a) = u1, q(b) = u2 Inviscid fluid

HNSν0WK(s) One-dimensional Navier-Stokes q(a) = u1, q(b) =
p(b)
R + C dp(b)

dt Inviscid fluid
HNSq0(s) One-dimensional Navier-Stokes q(a) = u1, q(b) = u2 Zero flow

HNSq0WK(s) One-dimensional Navier-Stokes q(a) = u1, q(b) =
p(b)
R + C dp(b)

dt Zero flow

5.3 Results

5.3.1 Lumped parameter models

Figure 19a shows the Bode plot of the transfer function HWK(s) and HUT (s), together with HWK(s)
using a deviation of 30 or 50% in the resistance, Figure 19a shows the results over a wide range of
frequencies, Figure 19b focuses on the frequencies until 20 Hz. Changing the resistance shows the
largest effect for the lower frequencies, around 1 Hz both the magnitude and phase plot are similar for
the different resistances. Figure 20 shows the same results for adjustments in the compliances. These
changes show the largest effect above 0.1 Hz.
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(a)

(b)

Figure 19: Bode plots of HUT (s) and of HWK(s), using resistance R varying from -50 to +50% of
RWK . Over a) a wide frequency range and b) focused between 0 and 20 Hz.
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(a)

(b)

Figure 20: Bode plots of HUT (s) and of HWK(s), using compliance C varying from -50 to +50% of
CWK . Over a) a wide frequency range and b) focused between 0 and 20 Hz.
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5.3.2 One-dimensional Navier-Stokes equations

To be able to compare the Bode plots of the lumped parameter models to the Bode plots of the
one-dimensional models, we used two factors. First, the transfer functions of the one-dimensional

models is multiplied by 2
3
Eh
r0

√
A0

Aeq

√
Aeq

, according to Equation (45), to obtain a transfer function with

pressure p, instead of cross-sectional vessel area A as output and additionally the pressure in g
cm·s2 is

multiplied with 7.5 · 10−4, to obtain a pressure in mmHg. Next, HNSν0(s), HNSν0WK(s), HNSq0(s)
and HNSq0WK(s) are multiplied by an extra correction factor, Mν0 or Mq0 such that respectively the
magnification of HNSν0WK(s) or HNSq0WK(s) equals the magnification of HWK(s) at the HR of 100
BPM (1.67 Hz). These extra correction factors Mν0 and Mq0 equal respectively 0.281 and 0.048. Table
6 shows the values of the parameters used in the one-dimensional Navier-Stokes equations.

Figure 21 shows the Bode plot for transfer function HNSν0(s) and HNSν0WK(s), both showing large
peaks for magnitude for frequencies above 4 Hz. For HNSν0(s) these peaks retain their large amplitude
for increasing frequencies, while for HNSν0WK(s), where a Windkessel model is coupled, the amplitude
decreases for higher frequencies. At these peaks, the phase shows jumps, which can be seen in the
phase plot of Figure 21b.

Figure 22 shows the Bode plots for HNSq0(s) and HNSq0WK(s). These transfer functions do not show
peaks in the magnitude, but both show a gradually decrease in magnitude for increasing frequencies.
In the phase plot in Figure 22a one jump occurs.

Table 6: Parameter values for the one-dimensional Navier-Stokes equations.

Parameter Value Unit

r0 0.38 cm
A0 0.451 cm2

Aeq
1 1.732 cm2

Aeq
2 0.451 cm2

qeq
1 33 mL/s

qeq
2 0 mL/s

b 52.8 cm
h 0.088 cm
ν 4.64 · 10−4 [61] cm2/s
δ 0.1 [58] mmHg·s2/mL
E 4 · 106 [59] g/cm·s2
ρ 1.05 [61] g/mL
Cb 1.877 · 10−6 cm4·s2/g
Rb 1.8304 · 104 g/cm4s
1: for ν = 0, 2: for q = 0.

5.3.3 Comparison of zero- and one-dimensional models

To study the added value of a one-dimensional model to a two-element Windkessel model to describe
the relation between LV flow and arterial blood pressure, Figure 23 shows the Bode plot of HWK(s),
HNSν0WK(s) andHNSq0WK(s) together. The effects on the magnitude appear to be similar forHUT (s)
and HNSq0WK(s), not only around the corrected frequency of 1.67 Hz. Whereas for the effects in phase
HUT (s) and HNSν0WK(s) appear to behave similarly for frequencies below 5 Hz.
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(a)

(b)

Figure 21: Bode plots of HNSν0(s) in blue and of HNSν0WK(s) in black line, over a) a wide frequency
range and b) focused between 0.1 and 20 Hz.
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(a)

(b)

Figure 22: Bode plots of HNSq0(s) in solid blue line and of HNSq0WK(s) in black dashed line, over a)
a wide frequency range and b) focused between 0.1 and 20 Hz.
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(a)

(b)

Figure 23: Bode plots ofHWK(s) in solid grey line, HNSν0WK(s) in solid black line and ofHNSq0WK(s)
in dashed black line, over a) a wide frequency range and b) focused between 0.1 and 20 Hz.
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5.4 Discussion

In this study we used transfer functions to study the added value of a one-dimensional distributed
parameter model to describe the relation between blood pressure and flow. We compared the two-
element Windkessel model and a more elaborate lumped parameter model to a one-dimensional model
of a single compliant vessel. The one-dimensional Navier-Stokes equations were linearized around a
steady state with different assumptions to obtain different transfer functions.

5.4.1 Lumped parameter models

Figure 19 and 20 show that for the two-element Windkessel model the magnitude is almost zero above
10 Hz. This is in line with the statement that the two-element Windkessel model is not accurate
for high frequencies. The Bode plots shown for the two-element Windkessel model in this study are
similar to the Bode plots shown by Westerhof et al., for both the magnitude and phase [38].

The more elaborate model shown in Figure 17, that is part of the model of the cardiovascular simu-
lator of the University of Twente, shows results comparable to the two-element Windkessel model for
frequencies between 0 and 2 Hz. However, for higher frequencies the phase shifts, similar to results
of Westerhof et al. for the three- and four-element models [38]. The magnitude strongly increases for
frequencies above 5 Hz, eventually towards infinity. This is induced by the improper transfer function.
In the UT model, pressures are eventually used to calculate flow. Hence, pressure can be thought
of as input and flow as output for the part of the model of the UT simulator Figure 17 shows. To
compare the different models and transfer functions, flow is used as input and pressure as output,
resulting in an improper transfer function for the UT model. Additionally, it is important to notice
that for this comparison not the entire model is used, we did not include the valve models and the ve-
nous part of the model. Besides, we assumed an equal pressure after the peripheral resistances (Rkid,
Rspl, Rll, Rrl, Rub), while in the actual model this equality only applies at the right atrium. The
comparison with the UT model can be improved by using the entire model for simulations with differ-
ent input frequencies and use the magnification and phase shift of the output to construct a Bode plot.

To show the effect of incorrect estimation of the vascular resistance, the transfer function for the
two-element Windkessel model is also shown for varying resistances between -50 and +50%. Figure 19
shows that a modification of 50% in the vascular resistance also results in a modification of 50% in the
magnitude of the transfer function for 0 Hz. This can also be concluded from Equation (10) for s = 0.
Accordingly, an incorrect estimation of the vascular resistance can lead to large miscalculations of
pressure, especially for constant flow. Since we study the application of the two-element Windkessel
model during VA ECMO, a large part of the arterial blood pressure is caused by a constant flow.
This is also shown when applying the model in Section 4. This confirms the importance of correct
resistance estimation for the application of the two-element Windkessel model.

The effect of incorrect arterial compliance estimation is also shown. Figure 20 shows there is no
effect of the accuracy of compliance estimation for a constant flow, as can also be concluded from
HWK(s) itself. The compliance is of greater importance between 0.1 and 10 Hz, in particular for the
magnitude, where varying the compliance with -50 and +50% leads to respectively over- and under-
estimation of the magnification. However, this effect is less prominent than the effect for changes in
the resistance. Therefore, it remains important that especially vascular resistance is estimated with a
high accuracy for a correct LV flow calculation.

49



5.4.2 One-dimensional Navier-Stokes equations

In this study we used the one-dimensional Navier-Stokes equations to describe a single vessel. For all
corrected transfer functions based on these equations, the magnitude for low frequencies is similar to
the measured values shown by Westerhof et al. However, these results do not match for the higher fre-
quencies and for the phase. Actually, the comparison between these graphs is not entirely legitimate,
since Westerhof et al. show a Bode plot with both pressure and flow measured in the aorta, whereas
the transfer function we showed for the one-dimensional model describes blood pressure in the radial
artery and flow in the aortic root [38].

For the linearization to derive the transfer functions HNSν0(s) and HNSν0WK(s), we assumed a vis-
cosity of the blood of zero. This viscosity causes damping in the system, which can be noticed when
comparing Figure 21 and 22. The large peaks in Figure 21, where an inviscid fluid is assumed, do not
appear in Figure 22 where the viscosity of blood is taken into account. Figure 21 also shows the effect
of the addition of the two-element Windkessel model in the boundary condition. The damping effect
of the two-element Windkessel model causes the peaks in the magnitude to decrease for increasing
frequencies.

For the linearization to derive transfer functions HNSq0(s) and HNSq0WK(s), we assumed the flow
to be zero in steady-state. Although this situation does not occur during VA ECMO, we expected
this linearization to be more realistic than using the assumption of an inviscid fluid, since blood is
undoubtedly a viscous fluid.

5.4.3 Comparison of zero- and one-dimensional models

Figure 23 shows the Bode plot for the two-element Windkessel model together with the Bode plots
for the one-dimensional models, coupled to a two-element Windkessel model. Note that in this study
all transfer functions describe the relation between change in flow from the steady state to change
in pressure from the steady state, instead of the pressure and flow itself. The magnitude of HWK(s)
seems to match with the magnitude of HNSν0WK(s) and HNSq0WK(s) for frequencies above 0.3 Hz,
except for the peaks in HNSν0WK(s). Part of this agreement is caused by the correction factor that
aligns HNSν0WK(s) and HNSq0WK(s) with HWK(s) at 1.67 Hz. The magnitude of HNSq0WK(s) de-
cays towards zero just as fast as the Windkessel model. We did not expect to see this, since the
two-element Windkessel model does not account correctly for the higher frequencies and we expected
an improved performance for the one-dimensional model. It is unlikely that the small magnitude for
high frequency is caused by the coupling with the Windkessel model, since HNSq0(s) shows the same
behaviour. It is possible that this behaviour for large frequencies is due to the simplifications made
to derive the transfer function of an already simplified model. The frequencies between 0.3 and 5
Hz for which the models show similar magnification, correspond with HR between 18 and 300 BPM.
Physiological heart rates lie within this range.

The phase of HWK(s), HNSν0WK(s) and HNSq0WK(s) are not similar, as shown in Figure 23. Below 5
Hz, HNSν0WK(s) is similar to the two-element Windkessel model. The phase for HNSq0WK(s) remains
around zero, which only matches for higher frequencies to the measured results of Westerhof et al.,
which also fluctuates around zero for frequencies above 4 Hz [38].

50



5.4.4 Strengths and limitations

We derived and used transfer functions to study if the use of a one-dimensional model would be of
added value for LV flow calculations from radial artery pressure. The one-dimensional model we used
represents a single vessel, without tapering or branching. In reality, branching of the vessels introduces
wave reflection and is therefore likely to influence the LV flow calculations [59]. Analytic derivation
of transfer functions of more elaborate one-dimensional models is however complex. To be able to
compare the the LV flow calculation of the two-element Windkessel model to a situation with tapering
and branching, it is recommended to construct a Bode plot of such a one-dimensional model. Instead
of analytic derivation of the transfer function, a Bode plot estimation can be performed by using input
signals with different frequencies and determine the amplification and phase shift for every frequency,
as explained above for the UT model. Comparison with a one-dimensional model that includes taper-
ing and branching may give more insight in the improvement that can be made in LV flow calculations.

To derive the transfer functions of the one-dimensional model, the one-dimensional Navier-Stokes
equations were linearized. However, in this study we did not compare the solutions for the original
model to the solutions of the linearizations. To study the validity of these linearizations, their solutions
should be compared to the solutions of the non-linearized model in the physiological range around
the steady state solutions. Besides, in the current model we assume LV flow and ECMO flow to both
enter in the aortic arch as one source. In practice, femoral cannulation is most often used. While in
the lumped parameter models, location and direction of flow into the arterial system are not taken
into account, this is taken into account in a one dimensional model and can therefore influence the
description of the relation between flow and pressure.

In this study we used parameter values estimated from literature. Besides, we used an extra cor-
rection factor to be able to compare the lumped parameter model to the one-dimensional models. The
one-dimensional model requires a lot more parameters to be defined than the two-element Windkessel
model. In the clinical setting, determining the two patient specific parameters for the two-element
Windkessel model is already difficult. Since for the one-dimensional model even more patient-specific
parameters are necessary, it is expected that application of this model for LV flow calculations in
clinical practice will be challenging.

5.4.5 Conclusion

Comparison of transfer functions derived from linearized one-dimensional Navier-Stokes equations
and lumped parameter models, showed that for low frequencies there is little difference between the
models. Therefore, the use of these linearized distributed parameter models will not lead to large
improvements in the flow calculations from arterial blood pressure for low frequencies. However,
further studies should show if more comprehensive one-dimensional models can improve the LV flow
waveform calculated from blood pressure in the radial artery.
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6 General discussion

In this master thesis a method is studied to determine left ventricular flow from blood pressure
measurements in patients supported with VA ECMO in the ICU. We showed that application of
the two-element Windkessel model could be used to accurately determine SV during VA ECMO in
different hemodynamic situation, in cardiovascular simulation and clinical data, using exactly known
patient specific parameters. The waveform of the calculated LV flow from the clinical data did however
not agree with the expected waveform. We also showed that linearized one-dimensional Navier-Stokes
equations, describing the flow in a single vessel, will not lead to a large improvement in the flow
calculations for low frequencies.

6.1 Recommendations

Chapter 4 and 5 show that the correct estimation of the patient specific parameters and especially
total vascular resistance, is extremely important for a correct SV estimation with the two-element
Windkessel model. To continuously determine the flow from the LV, also R and C need to be deter-
mined continuously. We can assume a constant compliance over time and use the proposed adapted
time-decay method to continuously determine R as explained in Section 4.2.3.1. However, as shown in
Chapter 4, current estimations of R are not accurate enough for continuous SV calculations. There-
fore, the estimation of these patient specific parameter needs to be improved. Besides the method
proposed in this thesis, there are also other methods available to determine R and C that could be
adapted and validated for patients supported with VA ECMO, among which a method proposed by
Arai et al. [53].

In addition to being used for the application of the two-element Windkessel model, the patient specific
parameters can also be used for better patient characterization. The resistance and compliance influ-
ence MAP and PP. Therefore, to interpret the values for MAP and PP and choose the appropriate
intervention based on this, knowledge of the arterial compliance and total vascular resistance of the
individual patient is important.

Ideally, we would be able to monitor the ESPVR using its slope, which is comparable to Ees, to
gain insight in the recovery or deterioration of the LV during VA ECMO. This could be done by using
the LV flow waveform, instead of the stroke volume. From this flow, LVOTacc can be determined,
which is shown to related to Ees [37]. Models that are more elaborate than the two-element Wind-
kessel model, might improve calculation of the LV flow waveform. A downside of the application of
more elaborate models is that the increased complexity of the model also increases the number of
patient specific parameters that need to be determined. Another promising method to estimate LV
contractility is the use of a physiological model, such as the models used in Chapter 3. These models
can be fitted to a patient, using the available continuously measured data such as ECMO flow, arterial
and venous blood pressure and HR, together with estimations of the resistance and compliance of the
different compartments to determine the most probable value for Ees. Repetition of this fitting within
several hours to days for changing parameters, results in consecutive values for Ees. This would be of
great value to monitor the LV during VA ECMO, since Ees describes the LV function independently
of pre- and afterload.

6.2 Future perspectives

This thesis mainly focuses on monitoring of the LV function, to gain more insight in the status of
the patient. Continuous monitoring of the LV can also help to describe the ideal constellation for the
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patient, in terms of ECMO settings, LV unloading and drugs and fluid administration. With this, the
balanced situation that is aimed for in every patient can be defined. However, after defining the ideal
situation it remains difficult to achieve this situation in the dynamic patient. With a continuous LV
monitoring system we can strive for a decision support system to support the physician in the decision
on the best interventions, resulting in the best possible treatment. Eventually one could think of an
automated control system, in which the ECMO settings are (semi) automatically adapted based on
patient data.

Continuously monitoring the function of the left ventricle can contribute to the improvement of the
clinical management of patients supported with VA ECMO. Therefore, this can lead to improved
treatment with VA ECMO, eventually leading to an increased survival of patients with cardiogenic
shock in the future.
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[25] D. Švec and M. Javorka, “Noninvasive Arterial Compliance Estimation,” Physiological Research, vol. 70,
pp. 483–494, Dec. 2021, issn: 18029973. doi: 10.33549/physiolres.934798.
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B Results for left ventricular flow calculations in cardiovascular simulators

Table 10: Results of LV flow calculations from data obtained from the UT simulator.

Baseline nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 29.7 32.8 3.1 10.4

R and C nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 33.4 36.8 3.5 10.3
2 0.2 28.8 31.3 2.5 8.8
3 0.2 22.9 25.3 2.5 10.9
4 0.2 19.3 21.5 2.2 11.5
5 0.1 28.3 31.4 3.0 10.7
6 0.1 26.8 29.7 3.0 11.1
7 0.2 30.4 33.5 3.1 10.1
8 0.2 30.7 33.7 3.1 10.0
9 0.2 31.8 35.2 3.4 10.6
10 0.2 21.9 24.4 2.5 11.3

HR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 41.3 48.2 6.9 16.7
2 0.1 41.4 46.6 5.2 12.4
3 0.1 34.6 38.4 3.8 10.9
4 0.2 25.4 28.3 2.9 11.5
5 0.2 20.4 23.6 3.2 15.7

RV nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 29.4 32.6 3.2 10.8
2 0.2 28.7 32.1 3.5 12.0
3 0.2 26.1 30.4 4.3 16.3

AS nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.1 28.4 31.4 3.0 10.5
2 0.1 26.5 29.3 2.9 10.9
3 0.1 25.2 28.0 2.8 11.1

MR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 27.8 30.8 3.0 10.7
2 0.2 26.7 29.6 2.9 10.9
3 0.2 18.6 20.9 2.4 12.7
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Table 11: Results of LV flow calculations from data obtained from the UT simulator using constant
ECMO flow.

Baseline nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 29.7 32.8 3.1 10.4

R and C nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 33.4 36.8 3.5 10.4
2 0.2 28.8 31.3 2.5 8.9
3 0.2 22.9 25.3 2.5 10.9
4 0.2 19.3 21.5 2.2 11.5
5 0.2 28.3 31.4 3.0 10.7
6 0.2 26.8 29.7 3.0 11.1
7 0.2 30.4 33.5 3.1 10.2
8 0.2 30.7 33.7 3.1 10.0
9 0.2 31.8 35.2 3.4 10.6
10 0.2 21.9 24.4 2.5 11.3

HR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 41.3 48.2 6.9 16.8
2 0.2 41.4 46.6 5.2 12.5
3 0.2 34.6 38.4 3.8 11.0
4 0.2 25.4 28.3 2.9 11.5
5 0.2 20.4 23.6 3.2 15.7

RV nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 29.4 32.6 3.2 10.8
2 0.2 28.7 32.1 3.5 12.1
3 0.2 26.1 30.4 4.3 16.3

AS nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 28.4 31.4 3.0 10.6
2 0.1 26.5 29.3 2.9 10.9
3 0.1 25.2 28.0 2.8 11.2

MR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 0.2 27.8 30.8 3.0 10.7
2 0.2 26.7 29.6 2.9 10.9
3 0.2 18.6 20.9 2.4 12.8
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Table 12: Results of LV flow calculations from data obtained from the Harvi simulator.

Baseline nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.6 33.2 33.8 0.6 1.9

R and C nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.5 35.8 35.5 -0.3 -0.9
2 1.2 43.2 44.3 1.1 2.6
3 1.9 25.7 25.9 0.1 0.6
4 2.1 21.8 21.8 0.1 0.3
5 1.0 31.7 32.2 0.5 1.7
6 0.7 30.6 31.1 0.5 1.5
7 2.3 33.4 34.1 0.7 2.1
8 2.6 31.3 32.0 0.7 2.2
9 0.9 33.2 32.3 -0.9 -2.7
10 1.2 24.8 25.0 0.2 0.8

HR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.7 35.4 32.4 -3.0 -8.5
2 1.5 36.7 35.9 -0.8 -2.2
3 1.5 36.5 37.1 0.6 1.6
4 1.8 26.7 27.6 0.8 3.2
5 2.0 25.5 27.4 1.9 7.3

RV nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.6 32.5 33.4 0.8 2.6
2 1.7 31.8 33.1 1.3 4.2
3 1.8 28.9 32.3 3.5 12.0

AS nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.6 33.2 33.9 0.7 2.0
2 0.6 32.6 32.2 -0.4 -1.1
3 0.5 28.4 27.7 -0.7 -2.6

MR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.6 31.0 31.6 0.6 1.9
2 1.9 23.5 23.1 -0.4 -1.7
3 2.3 17.4 16.5 -0.9 -5.2
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Table 13: Results of LV flow calculations from data obtained from Aplysia.

Baseline nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.5 32.2 39.6 7.4 22.9

R and C nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.2 37.6 49.9 12.3 32.7
2 1.2 37.8 54.1 16.3 43.1
3 1.9 27.0 31.4 4.5 16.5
4 2.1 24.4 27.6 3.2 13.0
5 1.3 32.3 38.5 6.2 19.2
6 1.2 31.8 36.9 5.2 16.3
7 1.7 31.9 40.1 8.3 25.9
8 1.9 31.8 40.7 8.9 28.1
9 1.1 37.0 46.3 9.3 25.2
10 1.7 26.8 30.8 4.0 14.9

HR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.1 42.0 64.0 22.0 52.5
2 1.1 41.2 55.5 14.3 34.7
3 1.3 36.0 45.7 9.6 26.7
4 1.6 28.8 34.5 5.7 19.6
5 1.7 25.7 30.3 4.7 18.1

RV nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.5 30.7 38.5 7.8 25.2
2 1.5 28.8 36.7 7.9 27.2
3 1.5 22.7 31.6 8.9 39.3

AS nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.5 31.8 39.1 7.3 23.1
2 1.5 30.5 38.2 7.6 25.0
3 1.5 27.8 35.6 7.8 27.9

MR nRMSE SV original [mL] SV WK model [mL] SV error [mL] SV error [%]

1 1.5 30.7 38.2 7.5 24.4
2 1.4 27.9 35.6 7.8 28.0
3 1.4 25.3 33.6 8.4 33.1
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C Results for compliance estimations in cardiovascular simulators

Table 14: The original compliance Cor, the compliance determined using the adapted time-decay
method Cdecay and ∆C = Cdecay −Cor for the UT simulator, the UT simulator with constant ECMO
flow (UTc), the Harvi simulator and Aplysia in mL/mmHg.

UT

Cor Cdecay ∆C

1.21 1.28 0.07
1.21 1.28 0.07
1.21 1.26 0.05
1.21 1.30 0.09
1.21 1.31 0.10
0.85 0.90 0.05
0.61 0.64 0.04
1.57 1.67 0.10
1.82 1.93 0.12
0.85 0.90 0.05
0.85 0.90 0.05
1.21 1.34 0.13
1.21 1.32 0.11
1.21 1.32 0.11
1.21 1.30 0.09
1.21 1.36 0.15
1.21 1.29 0.08
1.21 1.30 0.09
1.21 1.35 0.14
1.21 1.29 0.08
1.21 1.29 0.08
1.21 1.29 0.08
1.21 1.29 0.08
1.21 1.29 0.08
1.21 1.31 0.10

UTc

Cor Cdecay ∆C

1.21 1.31 0.10
1.21 1.31 0.10
1.21 1.28 0.07
1.21 1.32 0.11
1.21 1.33 0.12
0.85 0.92 0.07
0.61 0.66 0.06
1.57 1.70 0.13
1.82 1.96 0.15
0.85 0.92 0.07
0.85 0.93 0.08
1.21 1.37 0.16
1.21 1.33 0.12
1.21 1.34 0.13
1.21 1.32 0.11
1.21 1.37 0.16
1.21 1.32 0.11
1.21 1.33 0.12
1.21 1.38 0.17
1.21 1.31 0.10
1.21 1.32 0.11
1.21 1.32 0.11
1.21 1.32 0.11
1.21 1.32 0.11
1.21 1.34 0.13

Harvi

Cor Cdecay ∆C

1.2 1.25 0.05
1.2 1.17 -0.03
1.2 1.19 -0.01
1.2 1.25 0.05
1.2 1.25 0.05
0.8 0.86 0.06
0.6 0.67 0.07
1.6 1.63 0.03
1.8 1.82 0.02
0.8 0.79 -0.01
0.8 0.86 0.06
1.2 1.09 -0.11
1.2 1.18 -0.02
1.2 1.23 0.03
1.2 1.27 0.07
1.2 1.25 0.05
1.2 1.25 0.05
1.2 1.27 0.07
1.2 1.38 0.18
1.2 1.25 0.05
1.2 1.25 0.05
1.2 1.23 0.03
1.2 1.24 0.04
1.2 1.21 0.01
1.2 1.15 -0.05

Aplysia

Cor Cdecay ∆C

1.23 1.84 0.61
1.23 2.91 1.68
1.23 3.85 2.62
1.23 1.40 0.17
1.23 1.28 0.04
0.88 1.52 0.64
0.62 0.97 0.35
1.56 2.39 0.83
1.92 2.67 0.75
0.88 1.62 0.75
0.85 1.15 0.30
1.23 2.53 1.29
1.23 2.21 0.97
1.23 2.11 0.87
1.23 1.88 0.65
1.23 1.87 0.64
1.23 1.99 0.75
1.23 1.90 0.67
1.23 2.15 0.92
1.23 1.87 0.64
1.23 1.98 0.75
1.23 2.00 0.77
1.23 1.97 0.74
1.23 2.13 0.90
1.23 2.08 0.85
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D Effects of changing parameters in cardiovascular simulators

(a) Resistance (b) Compliance

(c) Heart rate (d) Right ventricular function

(e) Aortic valve stenosis (f) Mitral valve regurgitation

Figure 24: Change in SV error [%] due to changes in parameters in the three different cardiovascular
simulators.
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E Left ventricular flow calculations using Rdecay and Cecho

Figure 25: Bland-Altman plot, the solid line indicating the mean difference, the dashed line the limits
of agreement. Shows the agreement between SVV TI and SVRdecay with a mean difference of 12.36 mL
and limits of agreement of -8.89 and 33.60 mL.

F Resistance estimated with the adapted time-decay method using C0

Figure 26: Bland-Altman plot, the solid line indicating the mean difference, the dashed line the limits
of agreement. Shows the agreement between Recho and R1, determined with the adapted time-decay
method, using C0. With a mean difference of 0.01 mmHg·s/mL and limits of agreement of -0.24 and
0.26 mmHg·s/mL.
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