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Abstract 

This thesis investigates how well different types of methodologies and co-movement measures 

can explain cross-commodity price co-movement using macroeconomic variables. Thereby, 

VAR, VARX, multiple regressions and Random Forest regressions are applied as models, and 

Pearson correlations and Gerber statistics as co-movement measures. They are implemented 

on a dataset of price co-movement of 20 major commodities and various macroeconomic 

factors from mid-2003 to early 2023. The findings show that VAR and VARX models 

outperformed Random Forests and multiple regressions, reaching 𝑅2 values as high as 89%. 

Random Forest regressions, however, only showed slightly better performance metrics than 

multiple regressions. Moreover, did the use of Gerber statistics over Pearson correlations 

enhance model performance for VAR and VARX models, but for Random Forests and multiple 

regressions this is less clear.  By examining and comparing different methodologies, this thesis 

contributes to existing literature on commodity price co-movement and lays a groundwork for 

further assessments of the performance of various methods in modelling this phenomenon. 
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1. Introduction 
Publicly traded commodities offer alternative investment opportunities to investors and have 

thus been a subject of research for academia and professionals alike. Thereby, the “co-

movement” of the prices of various commodities is of special interest, given its implications in 

for instance portfolio construction. It has been investigated for more than 30 years by now, 

with Pindyck and Rotemberg (1990) introducing the hypothesis of the existence of excess co-

movement, the remaining proportion of cross-commodity price co-movement that is not 

attributable to shared factors. Since then, various publications aimed at validating the theory of 

Pindyck and Rotemberg (1990), yet to this day research is still inconclusive about the existence 

of excess co-movement of commodity prices. Some studies rejected Pindyck and Rotemberg’s 

hypothesis or found no evidence for it (Ai et al., 2006; Deb et al., 1996) while others did not 

(Le Pen & Sévi, 2017). This already raises the need for a comprehensive evaluation of different 

methodologies aimed at capturing and explaining the phenomenon of commodity price co-

movement. The recent introduction of the Geber statistic as a robust alternative for measuring 

co-movement (Gerber et al., 2022), and the rising popularity of machine learning algorithms 

like Random Forest models (Breiman, 2001) in financial applications, underscore the need for 

this comparison. Thereby, their application may enhance prediction accuracy and hence 

minimize excess co-movement.  

1.1. Research questions 

To address this problem of a missing evaluation of methods to explain commodity price co-

movement, the main research question guiding the research presented in this thesis was 

formulated as follows: 

“How well can different types of co-movement measures and 

models with macroeconomic determinants as inputs explain 

commodity price co-movement between mid-2003 and early 2023?” 

The mentioned macroeconomic determinants are hereby specified in Section 2, while the co-

movement measures and methodologies applied to model them are presented in Section 3. In 

pursuit of answering this question, several sub-questions are formulated. These are aimed at 

tackling the research problem described previously by helping to give an answer to the main 

research question. They are formulated as follows:  

Sub-question 1. Is there evidence of significant macroeconomic factors acting as 

determinants of commodity price co-movement during the 

considered sample period? 

 

Sub-question 1a: Do direct macroeconomic factors acting as proxies for supply and 

demand have significant effects in explaining commodity price co-

movement? 

 

Sub-question 1b: Do indirect macroeconomic factors that are not directly related 

to supply and demand commodity pricing have significant effects 

in explaining commodity price co-movement? 
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Sub-question 2. Is there evidence that the effects of macroeconomic determinants 

on commodity price co-movement change over time within the 

sample period? 

 

Sub-question 3. Are the magnitude of commodity price co-movement, its proportion 

that remains unexplained, and the effects of macroeconomic 

determinants different between hard commodities and soft 

commodities? 

 

Sub-question 4. Does applying novel co-movement measures and methodologies to 

model them allow for a more precise prediction of commodity price 

co-movement, thus minimizing unexplained excess co-movement? 

 

Sub-question 5. Is there evidence of significant structural changes in levels of 

commodity price co-movement during the considered sample 

period? 

 

Here, Sub-question 1 suggests that certain macroeconomic variables can have an impact on the 

co-movement level of commodity prices, indicating their importance in explaining the behavior 

of commodity markets. Sub-question 1a further extends this topic and specifically focuses on 

the significance of macroeconomic indicators “directly” related to supply and demand 

dynamics in predicting commodity price co-movement. Similarly, Sub-question 1b recognizes 

that “indirect” macroeconomic factors beyond traditional supply-demand dynamics may play 

a role in shaping commodity price co-movement. The difference between direct and indirect 

factors is elaborated on in Section 2. Moreover, as the sample period considers almost two 

decades with interesting economic developments such as the 2008 financial crisis and the 

Covid-19 pandemic, Sub-question 2 was introduced. It anticipates that the impact of 

macroeconomic determinants on commodity price co-movement may vary over time, 

suggesting the presence of evolving dynamics in commodity markets. With regards to previous 

studies on this topic that showed co-movement levels to spike during economic crises (Zaremba 

et al., 2021), the effects of macroeconomic determinants are especially interesting during the 

economic disruptions included in the research’s sample period. Particularly, are there two 

subsamples characterized by the distinct economic events mentioned earlier. Additionally, co-

movement levels of the prices of only hard and only soft commodities are investigated as part 

of Sub-question 3. Thereby, attention is not only paid to the effects of macroeconomic variables 

like in Sub-questions 1, 1a, and 1b, but also to levels of co-movement and the unexplained 

proportion of “excess co-movement” as defined in Section 2.1. Hence, does Sub-question 3 

recognize that different commodity sectors, characterized as hard and soft commodities, may 

exhibit distinct patterns of co-movement. Moreover, it is aimed to give insights into whether 

the ability of macroeconomic determinants to explain co-movement varies when considering 

different commodity types. Lastly, it recognizes that the proportion of unexplained co-

movement may also be dependent on whether hard or soft commodities are investigated. 

Furthermore, several methodologies and two distinct co-movement measures were used to 

examine the main research question and Sub-questions 1 to 3. Thus, Sub-question 4 

investigates if an innovative co-movement measure (the Gerber statistic) and models new to 

the context of commodity price co-movement (Random Forest regression models) yield 



7 

 

superior results with regards to minimizing unexplained excess co-movement. In essence, Sub-

question 4 examines if utilizing Random Forest regression models (See Breiman, 2001) in 

contrast to conventional methodologies, could enhance the accuracy of predicting commodity 

price co-movement with macroeconomic variables. Similarly, it is examined if the novel co-

movement measure in forms of the Gerber statistic allows for higher prediction accuracy. 

Lastly, to complement the findings of the subsample models applied in this research, 

particularly with regards to Sub-question 2, and to extend the conclusions of previous research, 

Sub-question 5 was introduced. Is investigates if co-movement levels of commodity prices 

remain stable throughout the study period, of if they indicate significant structural changes. 

This is aimed to add to the conclusions of Zaremba et al. (2021), who found no structural 

changes in the 150 year sample period considered in their research.  

1.2. Relevance 

The research presented in this thesis holds significant relevance from both practical and 

academic perspectives. From a practical standpoint, the findings of this study can contribute to 

portfolio construction of institutional investors, helping them to make informed investment 

decisions. By understanding the macroeconomic determinants of commodity price co-

movement, investors can better manage their portfolios and mitigate risks associated with 

commodity investments by being able to anticipate changes in co-movement. For instance, this 

would enable investors to foresee periods of high commodity price co-movement and adapt 

positions in commodity investments. The implications of co-movement for investors are 

important, since two correlated assets having high co-movement tend to move together in price. 

By predicting co-movement, investors can invest in assets that are not highly correlated with 

each other and may thus offer diversification benefits. Conversely, when two assets do have 

high co-movement, investing in both may not be beneficial for diversification purposes. For 

instance, Algieri et al. (2021) found that investing in both gold and silver during their sample 

period would be redundant. Hence, co-movement is important because it can affect portfolio 

diversification strategies, hedging techniques, as well as risk management decisions. Although 

it can for instance help to avoid overdiversification, it must be noted that low co-movement 

does not necessarily imply low risk, as the assets may be highly volatile on their own. (Gerber 

et al., 2022)  

Academically, this research addresses a notable research gap, consisting of two crucial aspects: 

Firstly, it incorporates new data, capturing the full impact of the Covid-19 pandemic. More 

importantly however, this research explores the comparison of old and new methods for 

investigating commodity price co-movement. Pearson's correlation coefficients as an 

established co-movement measure have been widely used in previous studies to investigate co-

movement levels of commodity prices. However, the introduction of Gerber statistics as a new 

co-movement measure offers an innovative approach to analyzing commodity price 

relationships, and was shown to provide certain benefits compared to Pearson’s correlations 

(Gerber et al., 2022). Hence, is a direct comparison of the two needed in the context of 

commodity prices. Additionally, this research employs a Random Forest machine learning 

model for regression purposes, in contrast to traditional models used to investigate commodity 

price co-movement. Random Forests may hereby offer certain advantages over traditional, 

linear models due to for instance their abilities to capture nonlinearities in the data (See e.g., 

Schonlau & Zou, 2020). Such a comparison of methodologies provides a comprehensive 
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evaluation of the effectiveness of Random Forests in understanding the determinants of 

commodity price co-movement.  

Hence, does the research presented in this thesis aim to give insights into the ability of Random 

Forest regressions to explain commodity price co-movement with macroeconomic variables. 

Thereby, their performance is compared to multiple regressions, VAR models, and VARX 

models. This is done considering pairwise averages of both traditional Pearson correlations as 

well as Gerber statistics over a 6-month rolling window. Hence, insights are also given about 

the performance of methodologies applying Gerber statistics to the topic. The study focusses 

on recent data, with monthly observations from mid-2003 to early 2023 and incorporates 

various potential determinants of co-movement levels. These macroeconomic variables include 

proxies for demand and supply, interest rates, exchange rates, inflation, and market volatility 

measures for uncertainty. The findings of the research presented in this paper indicate that the 

use of Gerber statistics over Pearson correlations helps in improving the accuracy of VAR and 

VARX models in predicting commodity price co-movement. Random Forest models on the 

other hand, performed worse than these linear models, only showing slightly better 

performance metrics than multiple regressions. Moreover, did the findings show that both the 

EUR/USD foreign exchange rate as well as commodity market volatility seem to be of 

importance in explaining commodity price co-movement.  

The rest of this paper is organized as follows: Section 2 defines co-movement for this study 

and reviews the existing literature on the topic, while Section 3 specifies the methods applied. 

The data used and the exact application of said methodologies is explained in Section 4, while 

the results are provided in Section 5. Lastly, the findings are interpreted in the discussion of 

Section 6, while Section 7 puts them into context and offers concluding remarks. 
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2. Literature review 
To illustrate the study selection process for the literature review conducted, Figure 4: Literature 

selection process presents six stages of filtering and searching for related academic articles. 

This was done in the style presented in Kumar et al. (2021) and can, together with a description, 

be found in Appendix A1: Study selection process. The literature review is structured in the 

following way: first, co-movement in the context of this study is defined. Consequently, the 

existing literature on the historical development of commodity price co-movement, and on its 

determinants is reviewed. Lastly, an overview of the different methods used in highly related 

past research is given. 

2.1. Co-movement definition 

In the literature on commodity price co-movement and co-movement in general, there is a lack 

of a universally used definition of co-movement. This results in only implicit definitions being 

used in many cases, yet, some papers aimed at providing a clearer definition. One of these 

papers is the work of Baur (2003) titled “What is Co-movement?”. There, it is stated that co-

movement refers to the degree to which two or more securities or financial assets move together 

in a specific period. Specifically, co-movement describes the degree to which two or more 

financial instruments move together in the same direction at the same time. It was defined in 

the given paper as the following: 

Definition 1: “Co-movement is the common movement of returns that is  

  shared by all returns at time t”. (Baur, 2003, p. 5)  

Hence, when co-movement is mentioned in financial literature it is oftentimes referring to price 

co-movement, since asset prices are the basis for returns upon which a degree of co-mevement 

can be determined (see, e.g., Byrne et al., 2013; de Nicola et al., 2014; Janzen & Smith, 2012). 

Thus, does price co-movement refer to the extent to which the prices of two or more assets are 

moving in the same direction at the same time. It is a measure of the correlation between the 

price returns of two (or more) assets, with Pearson’s correlation coefficients being a common 

measure of price co-movement and ranging from -1 to 1. A correlation of 1 means that the two 

assets move perfectly in tandem with each other and have perfectly positive co-movement, 

while a correlation of -1 means that the two assets move in perfectly opposite directions to each 

other and thus have perfectly negative co-movement. A correlation of 0 means that the two 

assets have no relationship to each other in terms of price movements and hence no co-

movement is present. (Baur, 2003) 

In mathematical terms it can thus be stated that, based on Pearson’s correlation coefficients, 

the bivariate co-movement of two return series 𝑥 and 𝑦 behaves as follows: 
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Definition 2: For return series 𝑥 and 𝑦, it can be said that: 

1. (𝑥, 𝑦) exhibits positive co-movement if 0 < 𝜌𝑥𝑦 ≤ 1, 

2. (𝑥, 𝑦) exhibits negative co-movement if 0 > 𝜌𝑥𝑦 ≥ -1, 

3. (𝑥, 𝑦) exhibits no co-movement if 𝜌𝑥𝑦 = 0, 

Whereby 𝜌𝑥𝑦 = 
𝛴𝑖[(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)]

𝜎𝑥𝜎𝑦
, for all observations i, with 

�̅� and �̅� denoting means of the return series,  

𝜎𝑥 =  √
𝛴𝑖(𝑥𝑖−�̅�)2

𝑁
  and  𝜎𝑦 =  √

𝛴𝑖(𝑦𝑖−�̅�)2

𝑁
  denoting standard deviations, and 

𝑁 denoting the total number of observations 𝑖.  

(see e.g., Ai et al., 2006; Baur, 2003; Zaremba et al., 2021) 

Similarly, to conventional correlation coefficients such as Pearson´s correlation coefficients, 

other measures of co-movement (or correlation for that matter) may be used. The literature on 

commodity price co-movement hereby used a variety of established measures and novel co-

movement measures to avoid drawbacks associated with certain measures. These are 

elaborated on in Section 3.1, where the co-movement measures used as part of this research 

are explained in more detail. However, a main limitation of many co-movement measures is 

that they are inherently static, and their computations are based on a specific period or point in 

time. To cope with this issue, time-varying co-movement was introduced by the literature. 

Hereby, time-varying (price) co-movement is a more sophisticated form of co-movement since 

it considers how the degree of co-movement between two or more asset prices changes over 

time (Algieri et al., 2021). One common method used to study time-varying co-movement is 

the use of rolling co-movement measures. Thereby, rolling correlation coefficients measure the 

correlation between two assets over a sliding window of time. Thus, they can help to identify 

trends in the co-movement between two assets and provide insights into the stability of their 

relationship over time. (Algieri et al., 2021; Le Pen & Sévi, 2017) 

In Baur (2003) it is furthermore distinguished between “normal” and “extreme” co-movements 

which can be seen as excessive. In the literature, these extreme co-movements are thus 

oftentimes referred to as “excess co-movement”. The study of Pindyck and Rotemberg (1990) 

investigated excessive co-movements in the context of commodity prices and gave further 

explanations to the definition of excess co-movement. There it is found that excess co-

movement in the context of commodities refers to the phenomenon where prices of a diverse 

range of commodities move together, with little to no direct relation in terms of for instance 

the cross-price elasticities of demand and supply effects. This co-movement cannot be entirely 

attributed to common factors like inflation, aggregate demand fluctuations, interest rates, or 

exchange rates. Contrary to this, is argued that “normal” co-movement can indeed be explained 

by these underlying common factors. The research of Pindyck and Rotemberg (1990) has 

furthermore shown that latent variables, such as unobserved forecasts for inflation and 

industrial production, play a significant role in explaining commodity price movements. 

Nevertheless, even when accounting for these factors, there remains an unexplained degree of 

excess co-movement in their study. One potential explanation for excess co-movement is 

hereby the dependence of results on the length of the holding period. The paper has found that 

the amount of unexplained co-movement increases with a longer holding period. This is said 

to be possibly due to the exclusion of relevant macroeconomic variables that impact commodity 
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prices slowly over time. For instance, an “unusual monthly change in inflation might have to 

persist for some time before it affects perceptions about the future” and hence prices and co-

movement levels (Pindyck & Rotemberg, 1990, p. 1186). These slowly acting effects of 

macroeconomic variables align with the observation that they explain more of the movements 

in commodity prices over extended holding periods. In consequence, the exclusion of any slow-

acting macroeconomic variable would result in an increase in unexplained co-movement as the 

holding period lengthens (Pindyck & Rotemberg, 1990). Hence, are there implications on the 

lenght of the holding period for investors, as well as the length of time-varying co-movement 

measures and data frequency for researchers aiming to minimize unexplained excess co-

movement of commodity prices. 

Hereby must be stated however, that the existence of excess co-movement of commodity prices 

is contested in the litereature. While there are studies supporting the findings of Pindyck and 

Rotemberg (1990) (e.g., Le Pen & Sévi, 2017), other studies were able to explain a higher 

proportion of co-movement, resulting in close to no unexplainable, excessive price co-

movements (e.g., Deb et al., 1996). As an example, did the study of  Ai et al. (2006) investigate 

whether commodity price co-movements are indeed excessive as indicated by Pindyck and 

Rotemberg (1990). Thereby, they concluded that the co-movements should not be considered 

as excessive since the vast majority can be explained by their models. 

2.2. Historical commodity price co-movement 

The historical development of commodity price co-movement has been a subject of interest for 

researchers, especially in recent years given its considerable developments in the early 21st 

century (See Figure 1). According to Zaremba et al. (2021), the co-movement of commodity 

prices experienced a significant increase in recent years which may be due to commodity 

financialization. However, this increase in co-movement peaked in the 2000s and 2010s, and 

no significant structural increase was observed across two centuries in their sample period from 

1850 to 2019. In fact, after reaching elevated levels in the early 2010s, the correlations 

measured in Zaremba et al. (2021) returned to the long-run average in more recent years. 

Interestingly, the peak in commodity price correlations during the early 2010s was not 

exceptionally high compared to historical levels. Pearson's correlation coefficients displayed 

similar levels in the 1860s, 1920s, 1930s, and 1940s. A closer examination of the results 

suggests that spikes in co-movement coincided with major crises and disruptions in the global 

economy, such as the American Civil War, the Great Depression, World War II, and the global 

financial crisis. Thus, the increase in commodity dependence in the 2000s to 2010s may simply 

reflect effects of major economic and financial disruptions linked to the 2008 financial crisis, 

rather than a structural change linked to commodity market financialization. (Zaremba et al., 

2021) 
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Figure 1 was taken from the paper of Zaremba et al. (2021, p. 3) and illustrates their findings 

described in the previous paragraph. It depicts historical commidity price co-movement levels 

during their sample period based on the two co-movement measures also used in the research 

presented in this thesis. In line with these findings, the study of Algieri et al. (2021) found 

evidence of cross-commodity return co-movements as well as evidence of changes in these co-

movement levels over time. There, it was also stated that extreme market distress tends to lead 

to rising levels of commodity co-movement. This supports the findings of Zaremba et al. (2021) 

and moreover is consistent with the argumentation of for instance Bekaert et al. (2005) and 

Dornbusch et al. (2000), where it is argued that prices of seemingly unrelated assets may start 

to move together during crisis periods. Additionally, Alquist et al. (2020) found the highest 

degrees of co-movement in commodity prices occurring between 1973 and 1975, the early to 

mid-1980s, the late 1990s, and the mid- to late 2000s continuing to 2013. The time variation in 

co-movement was primarily explained by changes in the indirect factor (which will be 

elaborated on in Section 2.3.2.). Thereby, periods with strong co-movement coincided with 

those where commodity price changes were driven by the “endogenous response of commodity 

prices to non-commodity shocks” (Alquist et al., 2020, p. 2). These non-commodity shocks are 

likely to be for instance the consequences of economic disruptions and crises, as was also 

indicated by Zaremba et al. (2021) and Algieri et al. (2021). 

Hereby is notable that the periods of exceptionally high commodity price co-movements 

identified by Alquist et al. (2020) and Zaremba et al. (2021) do not perfectly align. This can be 

attributed to different time periods being investigated, with some periods of especially high co-

movement identified by Zaremba et al. (2021) not being included in the sample of Alquist et 

al. (2020). Moreover, these differences might be due to different commodities being used in 

Figure 1: Historical commodity price co-movement levels (Zaremba et al., 2021, p. 3) 
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the respective analyses. This would be in line with the findings of Algieri et al. (2021), where 

it was found that co-movement levels differ between commodity pairs and that they are more 

noticeable for some pairs (e.g., wheat–corn, corn–soybeans, silver–gold, gold–oil). Further 

supporting this, did Cai et al. (2019) find that the degree of co-movement differs between 

commodity sectors. Thereby, several commodity sector pairs showed rather strong co-

movement1, while on the other hand, the pairs of agriculture, livestock, and precious metals 

only showed weak co-movement patterns. Hence, does this underline the importance of 

commodity selection for investigating co-movements of commodity prices. Furthermore, did 

Byrne et al. (2013) find that commodity sectors also react differently to macroeconomic shocks. 

These shocks include various influential determinants of commodity prices and their co-

movement, which are elaborated on in the following section. 

2.3. Determinants of commodity prices and their co-movement 

Adding to the historical development of co-movement of commodity prices, research has 

investigated potential sources or determinants of the variation in the levels of co-movement. 

Hereby, was distinguished between “direct” supply and demand factors on the one hand, and 

“indirect” factors on the other in the FAVAR framework of Alquist et al. (2020). There, direct 

factors represent commodity-related shocks and hence factors directly shifting the supply and 

demand curves of commodities and thus their prices. Conversely, indirect factors do not 

directly shift supply and demand curves and thus only indirectly affect prices. This is said to 

occur for instance through their effects on aggregate output (Alquist et al., 2020). Although no 

factors were extracted for factor analysis purposes, this distinction was also made in the 

research presented in the following sections to classify potential determinants of commodity 

price co-movement. 

2.3.1. Direct factors 

Firstly, direct factors influencing the supply and demand of commodities are reviewed. They 

have been shown to have influential effects on the pricing of commodities, and hence on the 

amount of co-movement through changes in these prices (Ai et al., 2006; Byrne et al., 2013). 

As early as Pindyck and Rotemberg (1990) it was argued that both supply and demand factors 

have a major role in determining the prices of commodities and their co-movement. Thereby 

however, changes in supply and demand were only approximated into one index in the model. 

Later research on this topic compared supply and demand factors, such as the paper of Ai et al. 

(2006) where agricultural and energy commodities were investigated. Thereby, the findings 

suggested supply factors to have a greater influence on co-movement compared to demand 

factors. The framework of Alquist et al. (2020) furthermore suggests, that the impact of supply 

factors on commodity prices and consequently price co-movement is dependent on the 

substitutability between commodities. Thereby, for non-substitutable commodities, supply 

factors can have significant price implications, while contrary to this, supply factors may only 

have a limited influence for highly substitutable commodities. Moreover, the authors gave 

examples of direct factors, with supply factors being for instance productivity as well as input 

prices, such as labor and energy. Demand factors on the other hand are for example derived 

 
1 agriculture - energy, agriculture - industrial metals, energy - industrial metals, industrial metals - precious metals, 

energy - livestock, energy - precious metals, and industrial - livestock 
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from the relative need of commodities for the production of consumption goods. (Alquist et 

al., 2020) 

To account for supply and demand factors, different approaches were taken in past literature. 

For instance, did Ai et al. (2006) use U.S. prices of commodities, inventory levels, and data on 

harvests or yields to fit an equilibrium model accounting for both supply and demand factors 

to commodity prices. Similarly, Bakas and Triantafyllou (2020) controlled for both aggregate 

and commodity specific demand using commodity price returns in the VAR model presented. 

Moreover, were proxies of both supply and demand used in the literature, with recent examples 

being the works of Byrne et al. (2013, 2019). There, the real U.S. GDP growth rate was used 

to proxy for demand effects, while real crude oil prices proxied for supply effects, since they 

(partly) represent energy input costs. There, both factors appear to positively relate to the 

common factor of commodity prices. Moreover, is noteworthy that the remaining results 

investigating indirect macroeconomic indicators are robust to their inclusion (Byrne et al., 

2013). In a subsequent article by Byrne et al. (2019), U.S. industrial production was used as a 

proxy for demand instead of the U.S. GDP growth rate. Supply factors, on the other hand, were 

for instance also proxied for using energy indices by other authors (Poncela et al., 2014). 

Lastly, must be stated that Alquist et al. (2020) pointed out that direct factors may have 

additional indirect effects on commodity prices through for example their general-equilibrium 

effects on aggregate income. Similarly, indirect factors are said to also influence commodity 

prices through either the standard “demand channel” or “supply-side channel” (Alquist et al., 

2020, p. 42). This underlines the importance of also considering indirect factors, which make 

up the second group of influential determinants of commodity prices and their co-movement 

and are elaborated on in the following section. 

2.3.2. Indirect factors 

As indicated previously, indirect factors do not directly influence the supply and demand 

equilibrium, but still have important implications for commodity co-movement through their 

influence on prices. Hence, do indirect factors refer to the broader economic and financial 

conditions that influence commodity pricing. These include for instance interest rates, currency 

fluctuations, and financial and economic developments among others. 

The paper of Alquist et al. (2020) found that the “primary source of commodity price 

movements is their endogenous response to non-commodity-related shocks” (Alquist et al., 

2020, p. 2). Thus, was argued that most historical commodity price movements can be 

attributed to indirect factors, as changes or shocks in indirect factors lead to corresponding 

supply and demand equilibrium responses. Thereby, the indirect common factor accounted for 

about 60-70% of the variance in commodity prices in the model presented in Alquist et al. 

(2020). Nevertheless, there were several periods identified where direct factors at least had 

some influence on movements of commodity prices, with the most notable being around 1979-

1980, the early 2000s where commodity prices increased, and 2008-2009 where commodity 

prices declined. Moreover, as mentioned earlier, were two channels of indirect factors affecting 

commodity prices identified in Alquist et al. (2020): Firstly, the standard demand channel has 

effects on commodity prices since it is argued that, for example, high aggregate economic 

activity leads to a high demand for commodities used in production. This, in return, raises the 

prices of the respective commodities. Moreover, it is argued that the supply-side channel also 
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raises commodity prices when aggregate income is high. The reasoning behind this is that 

income effects lead to a lower relative supply of commodities. This is since suppliers may be 

less willing to provide the inputs for the production of commdities, consequently raising prices. 

Thus, indirect factors should usually have both supply and demand side effects on commodity 

pricing. Additionally, it can be stated that both channels induce positive co-movement of 

commodity prices, as their effects described above can either influence prices to rise or to fall. 

(Alquist et al., 2020)  

Several macroeconomic and financial factors considered to be “indirect” were shown to impact 

both the prices of commodities and their co-movement in recent literature. Hereby, different 

argumentations were made. For instance, Byrne et al. (2013) found significant cross-

commodity price co-movement in their sample of 24 commodities. There, the research shows 

that this co-movement has a negative relationship with the macroeconomic variables of interest 

rates and stock market uncertainty within their FAVAR model. More precisely, they found that 

interest rate shocks have a significantly negative effect that is absorbed over a five-year period 

following the shock. This was further supported by a consequent study, which also showed 

significant negative effects of interest rate shocks on commodity co-movement (Byrne et al., 

2019). The paper of Gruber and Vigfusson (2018) further supports this as it provides evidence 

of declining interest rates positively affecting commodity price co-movement. Contrary to 

these findings however, did the macroeconomic model of Ai et al. (2006) show no statistical 

significance for the effects of interest rates and only explained a comparably small proportion 

of the variance in commodity price returns. Hence, are the effects of interest rates on 

commodity price co-movement still somewhat contested within the literature. 

Next to interest rates, the effects of foreign exchange rates on commodity prices and their co-

movement were investigated, however, with less emphasis in the literature. Regarding 

exchange rates, the study of Ai et al. (2006) found no statistically significant evidence of effects 

on commodity price co-movement, similarly to interest rates. In support of this, did de Nicola 

et al. (2016) find little to no statistically important effects of both exchange rate and interest 

rate variations on commodity price co-movement. For exchange rates there was a weak 

statistical association found, but for interest rates none was detected. More recent research 

however, found that exchange rate fluctuations are correlated with commodity prices. For 

instance, Poncela et al. (2014) found exchange rates to have negative impacts on the prices of 

non-fuel commodities. Another example is the research of Chien et al. (2021), where co-

movement between exchange rates and both gold and oil prices was found. There, however, 

only gold prices showed significance during the period of the Covid-19 pandemic while oil 

prices did not. 

Additionally, uncertainty, as captured by the volatility of financial asset prices, was also 

employed to model commodity prices and their co-movement. Thereby, Byrne et al. (2013) 

have found a negative relationship between stock market uncertainty and commodity prices. It 

was shown that increases in volatility result in a significant, immediate decrease of commodity 

prices. This decrease is said to hold for about four years following the increase in risk as 

measured by stock market volatility. Adding to this, did Byrne et al. (2019) also detect a 

negative relationship between risk and commodity prices, with the effect being the most 

pronounced from mid-2007 on and the strongest in late 2008. Moreover, de Nicola et al. (2016) 

have found a positive association between stock market uncertainty and the co-movement of 
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commodity price returns. This, combined with the earlier mentioned findings of a negative 

relationship between stock market volatility and commodity prices, would imply that as 

volatility in stock markets rises, various commodity prices tend to fall, thereby exhibiting 

positive co-movement.  

Although it can be considered an indirect factor since it does not directly influence the supply-

demand equilibrium, inflation plays a special role in determining commodity price co-

movement. To account for this, past literature oftentimes used the U.S. Consumer Price Index 

(CPI) to deflate commodity prices before applying methods to model them with explanatory 

variables. Examples of this are the studies of Ai et al. (2006), where commodity prices were 

CPI-deflated before their logarithmic returns are regressed on contemporary and lagged 

indicator variables, and Byrne et al. (2013) where the extracted principal component is deflated 

using the U.S. CPI. The same was applied in more recent studies as well, such as for instance 

in Alquist et al. (2020) where price series are normalized with regards to inflation. Moreover, 

did Byrne et al. (2019) not only deflate commodity prices, but also used the U.S. CPI to realize 

explanatory variables such as interest rates. 

To sum up, the main determinants of the co-movement of commodity 

prices are summarized on the right, whereby two main categories of 

direct factors and indirect factors can be distinguished. Here, direct 

factors are represented by for instance supply and demand proxies, 

while indirect factors include e.g., interest rates, exchange rates, and 

uncertainty. Inflation is also considered to be an indirect factor but 

has additional, crucial effects in determining commodity prices and 

co-movement. In response, other variables may need to be adjusted 

to it. 

2.4. Methods used in past literature 

To conclude the literature review, an overview of the different co-movement measures and 

models used in highly related literature is given. The full overview can be seen in Appendix 

A2: Literature comparison, together with information on validation methods, datasets, 

commonly used variables, and model fit measures where applicable.  

Regarding co-movement measures, different methods were used to capture commodity price 

co-movement. Thereby, both Pearson correlations (Ai et al., 2006; Cai et al., 2019; Zaremba et 

al., 2021) and 𝑅2 measures are commonly seen. In the context of 𝑅2 measures, excess co-

movement is investigated in many cases (e.g., Pindyck & Rotemberg, 1990), but it was also 

used to capture overall price co-movements (Alquist et al., 2020; Zaremba et al., 2021). 

Moreover, dynamic conditional correlations (DCC) were used in some cases (de Nicola et al., 

2014; Le Pen & Sévi, 2017), while in other papers commodity price co-movement was derived 

from extracted factors (Byrne et al., 2019; Poncela et al., 2014). Here is notable, that also 

Gerber statistics, which are used in the research presented in this thesis, show some uses in 

recent literature on the topic (Algieri et al., 2021; Zaremba et al., 2021). This diversity in co-

movement measures underlines the lack of a universal definition of co-movement in related 

financial literature, as discussed earlier.  

Figure 2: Determinants of      

commodity price co-movement 
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Similarly, a variety of different models were applied in past research to investigate the co-

movement of commodity prices. Firstly, various types of regressions were used (Ai et al., 2006; 

Le Pen & Sévi, 2017; Pindyck & Rotemberg, 1990; Zhang et al., 2019). Moreover, did several 

authors use VAR models (Bakas & Triantafyllou, 2020; de Nicola et al., 2014; de Nicola et al., 

2016; Janzen & Smith, 2012), oftentimes in combination with factor extraction as FAVAR 

models (Alquist et al., 2020; Byrne et al., 2019; Poncela et al., 2014). Additionally, it is 

noteworthy, that DCC models were also used in several cases (See Appendix A2: Literature 

comparison). Resulting from this, it can be stated that multiple regressions and VAR model 

types form a basis for evaluating the performance of novel methodologies in the context of 

commodity price co-movement. The same holds true for Pearson correlations, especially 

considering its comparability to Gerber statistics (See e.g., Zaremba et al., 2021).  
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3. Methods 
This section presents the two co-movement measures and four types of models used in this 

research to investigate commodity price co-movement. The methodologies considered to be 

established are hereby Pearson’s correlation coefficients and multiple regressions, reduced 

VAR models, and reduced VARX models. On the other hand, the methodologies that are 

considered novel to research on commodity price co-movement are Gerber statistics and 

Random Forest models used for regression purposes. Here these methods are specified, while 

their exact application to the research of this thesis is presented in Section 4.3. 

3.1. Co-movement measures 

To measure the magnitude of co-movement, which essentially refers to correlations between 

the return series of commodity prices considered, pairwise Pearson’s correlations are used. 

These are defined as follows for return series x and y at time t for all observations i.  

𝜌𝑥𝑦,𝑡 =
∑ [(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)]𝑡

𝑖=1

𝜎𝑥𝜎𝑦
 

Thereby, 𝜎𝑥 and 𝜎𝑦 denote the respective standard deviations for return series x and y during 

period (i=1, t). Similarly, �̅� and �̅� denote the average or mean values observed for each series 

during the period considered. (Also see Definition 2) 

However, recent research introduced a novel measure of co-movement that is said to provide 

certain benefits over traditional Pearson correlations. This so-called Gerber statistic was shown 

to be superior to Pearson’s correlation coefficients for capturing characteristics of financial 

time series, as it is less distorted by for instance volatility clustering, leptokurtosis, as well as 

outliers. This is the case since it is insensitive to both extremely large co-movements and noise 

commonly found in financial time series. (Gerber et al., 2022) 

For the purposes of this research, the Gerber statistic of return series x and y for a sample of t 

observations i is defined as presented in Algieri et al. (2021): 

𝑔𝑥𝑦,𝑡 =  
∑ 𝑚𝑥𝑦(𝑖)𝑡

𝑖=1

∑ |𝑚𝑥𝑦(𝑖)|𝑡
𝑖=1

 

Where: 

𝑚𝑥𝑦(𝑖) =  𝐼(𝑟𝑥,𝑖 ≥ 𝑄𝑥) 𝐼(𝑟𝑦,𝑖 ≥ 𝑄𝑦) + 𝐼(𝑟𝑥,𝑖 ≤ −𝑄𝑥) 𝐼(𝑟𝑦,𝑖 ≤ −𝑄𝑦)

− 𝐼(𝑟𝑥,𝑖 ≥ 𝑄𝑥) 𝐼(𝑟𝑦,𝑖 ≤ −𝑄𝑦) − 𝐼(𝑟𝑥,𝑖 ≤ −𝑄𝑥) 𝐼(𝑟𝑦,𝑖 ≥ 𝑄𝑦) 

(See Algieri et al., 2021, p. 340) 

Hereby, I is an indicator variable that is equal to 1 if the condition in the brackets following it 

is met, and equal to 0 otherwise. 𝑟𝑖 is the observed return of its respective return series at 

observation i, while 𝑄 denotes the respective Gerber threshold. Resulting from this, 𝑚𝑥𝑦(𝑖) is 

equal to 1 if both returns exceed their threshold simultaneously at observation i; is equal to -1 

if both returns exceed their threshold in opposite directions simultaneously at observation i; 

and is equal to 0 if at least one absolute value of returns does not exceed the respective 

threshold. These thresholds are further defined in Section 4.3. 

(2) 

(1) 
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3.2. Multiple Regression 

Firstly, to create base models for purposes of comparison, multiple regressions are specified. 

Regressions were deemed to be an appropriate model for comparison in this context because 

of their use as early as Pindyck and Rotemberg (1990), and their continued use in e.g., the 

models of Ai et al. (2006). They are specified as follows: 

𝑦𝑡 =  𝛼0 + 𝛽1𝑥1,𝑡 + ⋯ + 𝛽𝑛𝑥𝑛,𝑡 + 𝜀𝑡  

Thereby, 𝑦𝑡 refers to the dependent variable at time t, 𝛼0 refers to the intercept in the model, 

while 𝑥1,𝑡 to 𝑥𝑛,𝑡 denote the n number of independent variables at time t. 𝛽1 to 𝛽𝑛 are the 

estimated coefficients of each respective independent variable. Lastly, the error term is given 

as 𝜀𝑡. 

3.3. VAR model 

Moreover, a reduced VAR model is applied and specified in this section. Hereby, VAR models 

were chosen to be appropriate for model comparison purposes because of their prominent use 

in related literature (See Section 2.4). In matrix notation the reduced VAR(p) models used in 

this research is given as follows: 

𝑌𝑡 = 𝐶 + 𝐴1𝑌𝑡−1 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝜀𝑡 

Hereby, 𝑌𝑡 denotes a vector of endogenous variables included in the model at time t, while 𝐴𝑝 

is a matrix containing coefficients of lag 𝑝 and 𝑌𝑡−𝑝 is a vector containing the respective lagged 

variables. For each of the variables, the respective equations are defined as given here for 𝑦1𝑡: 

𝑦1𝑡 = 𝑐1 + ∑ ∑ 𝑎1𝑗,𝑙𝑦𝑗,𝑡−𝑙

𝑛

𝑗=1

+ 𝜀1𝑡

𝑝

𝑙=1

 

𝑦𝑗,𝑡−𝑙 are thereby the endogenous variables of lag l and 𝑎1𝑗,𝑙 the respective coefficients. 𝑐1 

denotes the first equation’s intercept, 𝜀1𝑡 the first equation’s error term, and 𝑦1𝑡 the endogenous 

variable being predicted by the equation at time t.  

3.4. VARX model 

Similarly, to the reduced VAR models from Section 3.3, reduced VARX models are introduced 

which include exogenous variables. Thereby, only one additional variable is used as an 

endogenous variable in the model along with the variable of interest to maintain a VAR 

structure, while all other predictor variables are included as exogenous variables. Hence, can 

the VARX model in matrix notation be defined as follows: 

𝑌𝑡 = 𝐶 + 𝐴1𝑌𝑡−1 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝐵0𝑋𝑡 + 𝐵1𝑋𝑡−1 + ⋯ +  𝐵𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

Hereby, 𝑌𝑡 again denotes the matrix of current values of the endogenous variables, 𝑌𝑡−𝑝 their 

pth-lagged values, and 𝐴𝑝 the estimated coefficients at lag p. Similarly, matrix 𝐵𝑝 denotes the 

coefficients of the exogenous variables at lag p while 𝑋𝑡−𝑝 denotes their respective lagged 

values. However, unlike in the VAR model of the previous section, the current values of 

exogenous variables, 𝑋𝑡, are included in the model along with their coefficient estimates 𝐵0. 

(4) 

(3) 

(5) 

(6) 
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Resulting from this, the equation predicting the variable of interest, 𝑦1,𝑡, is given as the 

following:  

𝑦1𝑡 = 𝑐1 + ∑ 𝑎11,𝑙𝑦1,𝑡−𝑙

𝑝

𝑙=1

+ ∑ 𝑎12,𝑙𝑦2,𝑡−𝑙

𝑝

𝑙=1

+ ∑ ∑ 𝑏1𝑗,𝑙𝑥𝑗,𝑡−𝑙

𝑛

𝑗=1

+ 𝜀1𝑡

𝑝

𝑙=0

 

Adding to the definitions of terms given earlier for the VAR model, 𝑎11,𝑙 and 𝑦1,𝑡−𝑙 denote the 

first endogenous variable’s coefficient and value at lag l, while 𝑎12,𝑙 and 𝑦2,𝑡−𝑙 denote the 

second endogenous variable’s coefficient and value at lag l. Similarly, 𝑏1𝑗,𝑙 and 𝑥𝑗,𝑡−𝑙 denote 

the coefficients and lagged values of the n number of  exogenous variables. Hereby, however, 

current values are included. 

3.5. Random Forest model 

Next to the models presented, Random Forest regression models were applied. These Random 

Forest models can be specified as follows, loosely based on Breiman (2001): Firstly, for each 

of 𝐾 number of trees at each point in time 𝑡, there are 𝑁 randomly selected samples drawn from 

the original data 𝐷𝑡 with replacement to create bootstrap data 𝐷𝑡
(𝑘)

. 

𝐷𝑡
(𝑘)

⊂ 𝐷𝑡 , 𝑘 = 1,2, … , 𝐾;            𝑡 = 1,2, … , 𝑇 

Based on these bootstrap datasets, decision trees are constructed on each one of them: 

ℎ𝑡
(𝑘)

(𝒙𝑡, 𝜃(𝑘)). At each node in these trees, 𝑚 out of the total of 𝑀 features are considered for 

splits. As the model is built for regression purposes, these features and split rules are 

determined to maximize the variance reduction. This process is repeated, letting the tree “grow” 

and creating and splitting new nodes, until the nodes contain less than the minimum number of 

observations to be split any further. This minimum number of observations to split nodes is 

hereby referred to as 𝑛. Consequently, the Random Forest prediction for a new data point, 

�̂�𝑡(𝒙𝑡), describing the target variable at time 𝑡 with predictor variables 𝒙𝒕 is obtained by 

averaging the ensemble of predictions of individual trees ℎ(𝒙𝑡, 𝜃(𝑘)):  

�̂�𝑡(𝒙𝑡) =
1

𝐾𝑂𝑂𝐵
∑ ℎ(𝒙𝑡, 𝜃(𝑘))

𝑘∈𝑂𝑂𝐵

 

Since it is not spit into test and training sets, 𝐾𝑂𝑂𝐵 is the number of trees where �̂�𝑡(𝒙𝑡) is an 

out-of-bag (OOB) sample. Averaging the predictions of 𝐾𝑂𝑂𝐵 number of trees hence results in 

the Random Forest’s prediction �̂�𝑡(𝒙𝑡). Resulting from this, the true observed value 𝑦𝑡(𝒙𝑡) in 

relation to the prediction �̂�𝑡(𝒙𝑡) and error term 𝜀𝑡 is specified along with the Mean Squared 

Error, 𝑀𝑆𝐸. They are defined as:  

𝑦𝑡(𝒙𝑡) = �̂�𝑡(𝒙𝑡) + 𝜀𝑡 , 

and  

𝑀𝑆𝐸 =
1

𝑇
∑ 𝜀𝑡

𝑇

𝑡=1

 

This definition of the error term and 𝑀𝑆𝐸 is crucial since the 𝑀𝑆𝐸 is oftentimes used as the 

loss function in hyperparameter tuning, and as a performance metric to evaluate the Random 

(7) 

(8) 

)) 

(9) 

) 

)) 

(11) 

) 

)) 

(10) 

) 

)) 
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Forest models’ accuracy and compare it to other models. Hyperparameter tuning hereby refers 

to the optimization process of so-called model hyperparameters. In the Random Forest 

regressions defined above, these are 𝐾, the number of trees, 𝑚, the number of splits considered 

at each node, and 𝑛, the minimum number of observations needed for splits, although there are 

several others one might consider.  

Moreover, two distinct variable importance measures (VIMs) can be used to evaluate the 

effects of predictor variables on the target variable. Firstly, an impurity-based VIM is specified 

and secondly a permutation-based VIM. Impurity importance can be defined as follows: “For 

the impurity importance, a split with a large decrease of impurity is considered important and 

as a consequence variables used for splitting at important splits are also considered important.” 

(Nembrini et al., 2018, p. 3712) In the Random Forest regression models specified before, this 

impurity measure refers to the variance of the target variable’s observations included in the 

sample of the respective node. Hence is MDI, the “mean decrease in impurity”, for predictor 

variable j defined as: 

𝑀𝐷𝐼𝑗 =
1

𝐾
∑ ∆𝑉𝑎𝑟𝑗

(𝑘)
𝐾

𝑘=1
 

There, ∆𝑉𝑎𝑟𝑗
(𝑘)

 refers to the impurity (or variance) decrease for all nodes of tree k and predictor 

variable j. Additionally, permutation VIMs can be used to further evaluate the effects of 

predictor variables in the models. The computation of permutation VIMs was hereby defined 

in recent research as the following: “To calculate the permutation importance of the variable 

𝑋𝑖, its original association with the response 𝑌 is broken by randomly permuting the values of 

all individuals for 𝑋𝑖. With this permuted data, the tree-wise OOB estimate of the prediction 

error is computed. The difference between this estimate and the OOB error without 

permutation, averaged over all trees, is the permutation importance of the variable 𝑋𝑖.” 

(Nembrini et al., 2018, p. 3712) Hence, for the Random Forest regression models specified 

above, where 𝑀𝑆𝐸𝑂𝑂𝐵 is used as the prediction error, the “permutation decrease in impurity”, 
𝑃𝐷𝐼, for predictor variable j can mathematically be defined as: 

𝑃𝐷𝐼𝑗 =
1

𝐾
∑(𝑀𝑆𝐸𝑂𝑂𝐵

(𝑘)
− 𝑀𝑆𝐸𝑂𝑂𝐵,   𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑗)

(𝑘)
)

𝐾

𝑘=1

 

There, 𝑀𝑆𝐸𝑂𝑂𝐵
(𝑘)

 is the OOB-prediction error of tree k, and 𝑀𝑆𝐸𝑂𝑂𝐵,   𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑗)
(𝑘)

 the OOB-

prediction error of tree k with predictor variable j being permuted. For more details on the exact 

mechanics behind Random Forest models, please refer to Breiman (2001) and the user manual 

of ranger, the R package used for model implementations.2  

  

 
2 Wright, M. N., Wager, S., Probst, P. (2023, April 3). Ranger: A fast implementation of random forests.      

 The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/ranger/ranger.pdf  

(12) 

) 

)) 

(13) 

)) 

https://cran.r-project.org/web/packages/ranger/ranger.pdf
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4. Experimental setup 
The data to which the models presented in Section 3 are applied to can be split into two distinct 

parts: firstly, the price series of the 20 commodities that are used to calculate co-movement 

measures; and secondly, data on the macroeconomic determinants that may be assumed to be 

influential according to the literature review. These price series and macroeconomic indicators 

are collected for the sample period from 1st of July 2003 to 1st of March 2023. This sample is 

furthermore split into two parts: Subsample 1 including data up to the end of July 2013 and 

subsample 2 including data from August 2013 on.  

4.1. Commodity price data 

For commodity price series, monthly prices of continuous futures were collected from the 

Refinitiv Eikon database. The basis for the selection of commodities was hereby the combined 

list of commodities considered in the research of Alquist et al. (2020) and Zaremba et al. 

(2021). Moreover, several restrictions were put on the selection of commodities from that list, 

similarly but distinctly to the selection in Alquist et al. (2020). Thereby, commodities that are 

too vertically integrated were excluded. To give an example of this, including both soybeans 

and soybean meal would not be beneficial when investigating co-movement levels, as soybeans 

are used as the direct input in the production of soybean meal. Nonetheless, several 

commodities excluded in the research of Alquist et al. (2020) were included in the selection of 

commodities in this research. Examples of this are commodities that are primarily used for 

financial speculation purposes, such as several precious metals including gold and silver. To 

keep the commodity selection realistic and close to the investment profiles of institutional 

investors, the commodities considered in past literature are compared to those in AQR’s Risk-

Balanced Commodity Strategy Fund as of March 1st, 20233. The commodities included in the 

final selection are all included in the Risk-Balanced Commodity Strategy Fund with two 

exceptions: Palladium and rubber.  

Additionally, an emphasis was made to include commodities from different sectors to enable a 

cross-sector comparison as part of the analyses presented in Section 5. This resulted in an equal 

amount of hard and soft commodities being included in the selection of 20 commodities. 

Regarding hard commodities, four price series from the energy sector were included. These 

are: Brent crude oil, light sweet crude oil, natural gas, and heating oil. For the base metal sector, 

the continuous futures of copper and aluminum were collected. Lastly, to represent the precious 

metal sector, the price series of gold, silver, platinum, and palladium were included. For soft 

commodities, the prices of wheat (soft red winter wheat) and corn represent grains, while for 

the livestock sector lean hogs and live cattle are included. Moreover, are prices of oilseeds in 

forms of soybeans, and fibers in forms of cotton in the sample. Additionally, rubber, sugar, 

coffee, and cocoa, are included as other soft commodities. The exact continuous futures 

collected as price series of these commodities are given in Appendix B1: List of Commodity 

future continuations. 

Prior to the calculations of the two co-movement measures considered, several data 

transformations were undertaken. Firstly, the price series of brent crude oil, heating oil, copper, 

and silver were corrected as the raw data from Refinitiv Eikon did not account for changes in 

 
3 AQR Funds. (2023, March 31). AQR Funds Consolidated Schedule of Investments.

 https://connect.rightprospectus.com/AQRFunds/TADF/00203H180/QH1?site=AQRFunds  

https://connect.rightprospectus.com/AQRFunds/TADF/00203H180/QH1?site=AQRFunds
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currency from U.S. Dollar cents (USc) to U.S. Dollar (USD). This was the case for brent crude 

oil, copper, and silver, while heating oil was denoted in tenth of a U.S. Dollar cent. Moreover, 

did the price series of both palladium and platinum show missing values. As this was more 

pronounced for closing prices compared to opening prices, the latter were used instead. For 

palladium, this resulted in 8 missing values instead of 32 for closing prices, while for platinum 

there were 10 missing values in opening prices compared to 25 in closing prices. These missing 

values were imputed using the “Last Observation Carried Forward” (LOCF) method. (See e.g., 

Little & Rubin, 2019) Additionally, regarding the price series of aluminum, it was converted 

to U.S. Dollar within Refinitiv Eikon to keep consistency as the initial data was given in 

Chinese Yuan. Consequently, prices were deflated using the U.S. CPI Index before their 

logarithmic returns were calculated. Based on these real returns of the continuous futures of 

the considered commodities, both co-movement measures were computed like specified in 

Sections 3.1 and 4.3.  

4.2. Determining variable data 

Moreover, data on macroeconomic indicators was collected to serve as determinants of 

commodity price co-movement. These data series can be classified into demand proxies, supply 

proxies, interest rates, exchange rates, market uncertainty, and inflation. Thereby, the selection 

of macroeconomic variables was based on the results of the literature review conducted in 

Section 2. Regarding demand proxies, GDP growth as captured by the Brave-Butters-Kelly 

Real GDP Index was used since it allows for a monthly data frequency. It was shown by for 

instance Byrne et al. (2013) that GDP growth can serve as a proxy for demand. Moreover, the 

index of industrial production was used as a demand proxy, similarly to Byrne et al. (2019). 

Both indices were thereby taken from the economic database of the Federal Reserve Bank of 

St. Louis (FRED). 

Supply proxies on the other hand reflect shared input prices that producers of different 

commodities face. To account for this the United States Energy Price Return Index as available 

on Refinitiv Eikon was used. Similarly, did oil prices serve as a supply proxy in the research 

on commodity price co-movement of Byrne et al. (2013). These, however, were directly 

included in the calculation of co-movement levels in the research presented in this thesis, and 

hence not used as a proxy for energy input prices. Additionally, the producer price index for 

all commodities was introduced as a novel proxy for supply since it “measures the average 

change over time in the selling prices received by domestic producers for their output […] from 

the first commercial transactions”4. Hence, does it reflect a variety of shared input prices and 

supply-side effects faced by various producers of different commodities. Monthly values of the 

index are hereby available on FRED. For both indices as well as the industrial production index, 

logarithmic returns were calculated. Since the U.S. Energy Price Return Index is not inflation 

adjusted by nature, it was deflated using the U.S. CPI Index prior to return calculations. 

Regarding interest rates, the monthly market yields on two distinct U.S. T-Bills were collected. 

Firstly, the yield on U.S. Treasury Securities with a 3-Month constant maturity was used to 

represent short term interest rates. Moreover, the yield on U.S. Treasury Securities with a 10-

 
4 U.S. Bureau of Labor Statistics. (2022, February 22). Producer Price Index Home. https://www.bls.gov/ppi/  

https://www.bls.gov/ppi/
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Year constant maturity was used to capture long term interest rates. Again, both series were 

collected from FRED.  

Furthermore, exchange rates were captured using the ICE U.S. Dollar Index, as available on 

Refinitiv Eikon. The reasoning behind this is that the commodity prices used to determine co-

movement levels are also (mostly) given in (and otherwise converted to) U.S. Dollars. 

Additionally, the foreign exchange spot rates of the U.S. Dollar to the Euro and the Chinese 

Yuan were collected as well. Both the index as well as the foreign exchange spot rates were 

collected from Refinitiv Eikon. For the U.S. Dollar Index, logarithmic returns were calculated, 

while the USD / CNY foreign exchange spot rate was converted to CNY / USD for consistency. 

Moreover, uncertainty for both stock markets and commodity markets were used as 

determinants of commodity price co-movement. This uncertainty was captured by computing 

the monthly variances of two indices based on their daily prices. For stock markets, historical 

prices of the S&P 500 Index were used to calculate variances, while for commodity markets 

the Bloomberg Commodity Index was used. The price series of both indices were hereby taken 

from Refinitiv Eikon. 

Lastly, data on inflation in the United States was needed both to serve as a determinant, and to 

deflate certain variables. The latter was done using the U.S. Consumer Price Index (CPI), which 

is also available on FRED. For commodity prices, a similar deflation using the U.S. CPI was 

done in the research of Ai et al. (2006); Alquist et al. (2020); and Byrne et al. (2013), while 

additionally several macroeconomic factors were deflated in past research (Byrne et al., 2019). 

All commodity prices and the U.S. Energy Price Return Index were deflated using the U.S. 

CPI Index (with a value of 100 in 2015), while the monthly U.S. CPI growth rate was used to 

deflate treasury bill yields and moreover used as a determining variable in the following 

analyses.  
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Table 1: Data sources and transformations 

Variable/Factor Name Raw data series Transformation Data sources 

Commodity 

prices 

Pearson, 

Gerber 

20 Commodity 

continuous future price 

series 

Price-corrections; Deflation 

using U.S. CPI Index; Log 

return calculation 

Refinitiv Eikon5 

Demand proxies GDP U.S. GDP growth % conversion FRED6 

IP U.S. Industrial 

production 
Log return calculations 

FRED7 

Supply proxies US Energy U.S. Energy Price 

Return Index 

Deflation using U.S. CPI 

Index; Log return calculation 

Refinitiv Eikon8 

PPI U.S. PPI Log return calculations FRED9 

Interest rates TBill 13w 13-week U.S. T-Bills % conversion, deflation 

using U.S. CPI 

FRED10 

TBill 10y 10-year U.S. T-Bills FRED11 

Exchange rates USD Index ICE U.S. Dollar index Log return calculations Refinitiv Eikon12 

EUR/USD EUR/USD FX spot rate  - Refinitiv Eikon13 

CNY/USD USD/CNY FX spot rate Conversion to CNY/USD Refinitiv Eikon14 

Uncertainty SP500 Var S&P 500 
Monthly variance based on 

daily price series 

Refinitiv Eikon15 

BCI Var Bloomberg Commodity 

Index 

Refinitiv Eikon16 

Inflation CPI U.S. CPI % conversion FRED17 

- U.S. CPI Index 

(2015=100) 

% conversion, only used for 

deflation 

FRED18 

   

Table 1 above summarizes the sources of the raw data series, their transformations, and if 

applicable the variable they are representative of. Using these (transformed) data series, the co-

movement measures and models specified in Section 3 are computed and implemented. The 

following section gives further explanations about the exact application of methods. 

 
5 See Appendix B1: List of Commodity future continuations 
6 FRED. (2023, October 30). Brave-Butters-Kelley real gross domestic product [Data set].

 https://fred.stlouisfed.org/series/BBKMGDP  
7 FRED. (2023, October 17). Industrial Production: Total index [Data set]. 

 https://fred.stlouisfed.org/series/INDPRO  
8 Thomson Reuters. (2023). RIC: .TRXFLDUSPENE [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
9 FRED. (2023, October 11). Producer Price Index by commodity: All commodities [Data set].

 https://fred.stlouisfed.org/series/PPIACO  
10 FRED. (2023, November 3). Market yield on U.S. Treasury Securities at 3-Month Constant maturity, quoted 

on an investment basis [Data set]. https://fred.stlouisfed.org/series/DGS3MO  
11 FRED. (2023, November 3). Market yield on U.S. Treasury Securities at 10-Year Constant Maturity, quoted 

on an investment basis [Data set]. https://fred.stlouisfed.org/series/DGS10  
12 Thomson Reuters. (2023). RIC: .DXY [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
13 Thomson Reuters. (2023). RIC: EUR= [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
14 Thomson Reuters. (2023). RIC: CNY= [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
15 Thomson Reuters. (2023). RIC: .SP500 [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
16 Thomson Reuters. (2023). RIC: .BCOM [Data set]. Eikon. https://eikon.refinitiv.com/index.html 
17 FRED. (2023, October 12). Consumer Price Index: All items: total for United States [Data set].

 https://fred.stlouisfed.org/series/CPALTT01USM657N  
18 FRED. (2023, October 12). Consumer Price Index: All items: total for United States [Data set]. 

 https://fred.stlouisfed.org/series/USACPIALLMINMEI  

https://fred.stlouisfed.org/series/BBKMGDP
https://fred.stlouisfed.org/series/INDPRO
https://eikon.refinitiv.com/index.html
https://fred.stlouisfed.org/series/PPIACO
https://fred.stlouisfed.org/series/DGS3MO
https://fred.stlouisfed.org/series/DGS10
https://eikon.refinitiv.com/index.html
https://eikon.refinitiv.com/index.html
https://eikon.refinitiv.com/index.html
https://eikon.refinitiv.com/index.html
https://eikon.refinitiv.com/index.html
https://fred.stlouisfed.org/series/CPALTT01USM657N
https://fred.stlouisfed.org/series/USACPIALLMINMEI
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4.3. Method application 

Firstly, overall commodity price co-movement measures are calculated based on the returns of 

the deflated commodity price series. The computation of Pearson is hereby specified in 

Equation (1) while Gerber statistics are specified in Equation (2). Regarding Gerber statistics, 

the Gerber threshold is defined as follows, similarly to both Gerber et al. (2022) and Algieri et 

al. (2021), with the fraction 𝑞 being set equal to 
1

2
. Resulting from this, the Gerber thresholds 

of return series 𝑥 and 𝑦 are defined based on their standard deviations 𝜎𝑥 and 𝜎𝑦: 

𝑄𝑥 = 𝑞𝜎𝑥 =  
𝜎𝑥

2
; 𝑄𝑦 = 𝑞𝜎𝑦 =

𝜎𝑦

2
 

(See, e.g., Algieri et al., 2021; Gerber et al., 2022) 

For both co-movement measures considered, rolling arithmetic averages of all given pairwise 

measures over the last six observations (or months) are used. These are hereby denoted as 𝑔𝑡̅̅̅ 

and 𝜌�̅� respectively and can be defined as follows for Pearson correlations: 

𝜌�̅� =  
1

(
𝑛
2

)
∑ 𝜌𝑥𝑦,𝑖=𝑡−6

(𝑥,𝑦)∈𝑋𝑌
 

And as follows for Gerber statistics: 

𝑔𝑡̅̅̅ =
1

(
𝑛
2

)
∑  𝑔𝑥𝑦,𝑖=𝑡−6

(𝑥,𝑦)∈𝑋𝑌
 

Thereby, XY denotes the set of all possible unique combinations of return series pairs, while 

𝜌𝑥𝑦,𝑖=𝑡−6 and  𝑔𝑥𝑦,𝑖=𝑡−6 denote their respective co-movement measure computed using the last 

six available data points. (
𝑛
2

) is hereby equal to the number of unique pairwise combinations 

of return series and used to calculate averages. Both co-movement measures are calculated in 

this manner for the whole sample of 20 commodities, as well as for the two subsamples of 10 

hard commodities and 10 soft commodities. Using these measures as the variable of interest, 

the models specified in Section 3 are implemented.  

In the multiple regression models, the two co-movement measures are linearly regressed on the 

macroeconomic predictor variables of Section 4.2. For Pearson’s correlations, this results in a 

model as follows: 

𝜌�̅� =   𝛼0 + 𝛽1𝐺𝐷𝑃𝑡 + 𝛽2𝐼𝑃𝑡 + 𝛽3𝑈𝑆 𝐸𝑛𝑒𝑟𝑔𝑦𝑡 + 𝛽4𝑃𝑃𝐼𝑡 + 𝛽5𝑇𝐵𝑖𝑙𝑙 13𝑤𝑡

+ 𝛽6𝑇𝐵𝑖𝑙𝑙 10𝑦𝑡 + 𝛽7𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥𝑡 + 𝛽8𝐸𝑈𝑅/𝑈𝑆𝐷𝑡 + 𝛽9𝐶𝑁𝑌/𝑈𝑆𝐷𝑡

+ 𝛽10𝑆𝑃500 𝑉𝑎𝑟𝑡 + 𝛽11𝐵𝐶𝐼 𝑉𝑎𝑟𝑡 + 𝛽12𝐶𝑃𝐼𝑡 + 𝜀𝑡  

Similarly, for Gerber statistics, the model is defined as: 

(14) 

)) 

(15) 

)) 

(16) 

)) 

(17) 

)) 
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𝑔𝑡̅̅̅ =  𝛼0 + 𝛽1𝐺𝐷𝑃𝑡 + 𝛽2𝐼𝑃𝑡 + 𝛽3𝑈𝑆 𝐸𝑛𝑒𝑟𝑔𝑦𝑡 + 𝛽4𝑃𝑃𝐼𝑡 + 𝛽5𝑇𝐵𝑖𝑙𝑙 13𝑤𝑡

+ 𝛽6𝑇𝐵𝑖𝑙𝑙 10𝑦𝑡 + 𝛽7𝑈𝑆𝐷 𝐼𝑛𝑑𝑒𝑥𝑡 + 𝛽8𝐸𝑈𝑅/𝑈𝑆𝐷𝑡 + 𝛽9𝐶𝑁𝑌/𝑈𝑆𝐷𝑡
+ 𝛽10𝑆𝑃500 𝑉𝑎𝑟𝑡 + 𝛽11𝐵𝐶𝐼 𝑉𝑎𝑟𝑡 + 𝛽12𝐶𝑃𝐼𝑡 + 𝜀𝑡 

Here, independent variables x from Equation (3) are filled in with predictor variable names 

from Table 1, while all other terms are defined as mentioned previously. For the VAR models 

described next, these predictor variables are defined jointly in vector 𝑦𝑗,𝑡−𝑙 for lag l. Again, 

since two distinct co-movement measures are investigated, two different types of VAR(p) 

models are defined. Hence, 𝑦1𝑡 from Equation (5) can be substituted by the respective averages 

of co-movement measures considered. For average Pearson’s correlation coefficients, 𝜌�̅�, this 

results in the following equation: 

𝜌�̅� = 𝑐1 + ∑ 𝑎11,𝑙𝜌𝑡−𝑙̅̅ ̅̅ ̅

𝑝

𝑙=1

+ ∑ ∑ 𝑎1𝑗,𝑙𝑦𝑗,𝑡−𝑙

13

𝑗=2

+ 𝜀1𝑡

𝑝

𝑙=1

 

In the second type of models considering the average Gerber statistic, 𝑔𝑡̅̅̅, the equation of 

interest is given as: 

𝑔𝑡̅̅̅ = 𝑐1 + ∑ 𝑎11,𝑙𝑔𝑡−𝑙̅̅ ̅̅ ̅

𝑝

𝑙=1

+ ∑ ∑ 𝑎1𝑗,𝑙𝑦𝑗,𝑡−𝑙

13

𝑗=2

+ 𝜀1𝑡

𝑝

𝑙=1

 

Hereby, 𝜌𝑡−𝑙̅̅ ̅̅ ̅ and 𝑔𝑡−𝑙̅̅ ̅̅ ̅ denote the lagged values of the endogenous variable of interest, while 

𝑦𝑗,𝑡−𝑙 denotes the lagged values of predictor variables j from 2 to 13 and 𝑎1𝑗,𝑙 their coefficients. 

p on the other hand denotes the number of lags included in the model. As this research is only 

aimed at investigating the two co-movement measures of interest, the other equations of the 

VAR models will not be further investigated nor specified. 

Consequently, the number of lags p was determined based on the Akaike information criterion 

(AIC) to evaluate model fit with regards to losses in degrees of freedom caused by introducing 

additional lags. Thereby, AIC was chosen over the Bayesian information criterion (BIC), as it 

led to lower mean squared errors in the models. Hence, was model accuracy preferred over 

model simplicity. The reasoning behind this is that performance metrics of different models 

are compared in the analyses and should hence be optimized to allow for conclusions into 

which model is most accurate. Nonetheless, was the maximum number of lags considered set 

to six, since we are predicting 6-month rolling averages and since the dataset size is rather 

limited. For both VAR models of Pearson correlations and Gerber statistics, this resulted in a 

lag number of two being selected. The exact information criteria for different lag numbers are 

given in more detail in Appendix B3: Information criteria results and RF learning curves. 

The implementation of VARX models was done similarly to the VAR models presented, 

however are all predictor variables except for the U.S. CPI Growth rate included as exogenous 

variables.19 This was already indicated in Equations (6) and (7). Substituting for the co-

movement measure of interest results in the following VARX models:  

 
19 In all VARX model implementations seen in the following sections, the U.S. CPI growth rate was used as the 

additional endogenous variable to maintain the models’ VAR structure. 

(18) 

)) 

(19) 

)) 

(20) 

)) 
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𝜌�̅� = 𝑐1 + ∑ 𝑎11,𝑙𝜌𝑡−𝑙̅̅ ̅̅ ̅

𝑝

𝑙=1

+ ∑ 𝑎12,𝑙𝑦2,𝑡−𝑙

𝑝

𝑙=1

+ ∑ ∑ 𝑏1𝑗,𝑙𝑥𝑗,𝑡−𝑙

11

𝑗=1

+ 𝜀1𝑡

𝑝

𝑙=0

 

for average Pearson correlations, 𝜌�̅�, and: 

𝑔𝑡̅̅̅ = 𝑐1 + ∑ 𝑎11,𝑙𝑔𝑡−𝑙̅̅ ̅̅ ̅

𝑝

𝑙=1

+ ∑ 𝑎12,𝑙𝑦2,𝑡−𝑙

𝑝

𝑙=1

+ ∑ ∑ 𝑏1𝑗,𝑙𝑥𝑗,𝑡−𝑙

11

𝑗=1

+ 𝜀1𝑡

𝑝

𝑙=0

 

for average Gerber statistics, 𝑔𝑡̅̅̅. Hereby, 𝑦2,𝑡−𝑙 refers to the U.S. CPI growth rates lagged 

values with associated coefficients 𝑎12,𝑙, while 𝑥𝑗,𝑡−𝑙 denotes lagged values of all other 

exogenous predictor variables with associated coefficients 𝑏1𝑗,𝑙. Regarding the selection of the 

number of lags p, the same procedure described previously for the VAR models also applies 

for VARX models. Again, a lag of 2 was selected and more details on the results of the AIC 

(and BIC for comparison) are given in Appendix B3: Information criteria results and RF 

learning curves. 

Lastly regarding method application, the Random Forest regression defined in Section 3.5 are 

implemented to the same dataset to give insights into the performance of novel machine 

learning algorithms in the context of commodity price co-movement. There, 𝑀𝑆𝐸s are 

specified in Equation (11). However, to allow for an additional comparison metric, out-of-bag 

𝑅2 statistics are calculated for the Random Forest model. They can be defined as follows: 

𝑅𝑂𝑂𝐵
2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖
𝑂𝑂𝐵)2

𝑖∈𝑂𝑂𝐵

∑ (𝑦𝑖 − �̅�𝑂𝑂𝐵)2
𝑖∈𝑂𝑂𝐵

 

There, 𝑦𝑖 denotes the actual target variable at observation 𝑖 of the OOB set 𝑖 ∈ 𝑂𝑂𝐵. �̅�𝑂𝑂𝐵 

denotes the mean value of the target variable in said OOB set, and �̂�𝑖
𝑂𝑂𝐵 the Random Forest 

Prediction for observation 𝑖. Although its computation is close to that of traditional 𝑅2statistics 

where the sum of squared errors and the total sum of squares are used, it should not be the sole 

criterion to provide insights into the Random Forest’s performance compared to traditional 

models like those of Sections 3.2 to 3.4. This is because of the differences in the models’ nature, 

and since the 𝑅𝑂𝑂𝐵
2  statistic is only drawn from OOB observations. Hence, does the 𝑀𝑆𝐸 

hereby provide a more general performance measure in the scale of the variable of interest20 

and is commonly used in both linear and non-linear regression models. (See, e.g., Hastie et al., 

2009; Murphy, 2012) 

Crucial for the implementation of Random Forests is hyperparameter tuning. In the Random 

Forest regression models specified in Section 3.5, several key hyperparameters are considered. 

Firstly, 𝐾, the number of decision trees included in the Random Forest plays an important role 

in model performance. Because of the rather limited data size (see Sections 4.1 and 4.2), and 

since model performance with a higher number of trees did not further increase but rather 

stayed constant (or even decreased) beyond 𝐾 =  500, it was set equal to 500 in all random 

 
20 Since MSE sums up squared values of the errors, using RMSE results in a scale that is directly comparable to 

the variable of interest. It is defined as: 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

(21) 

)) 

(22) 

)) 

(23) 

)) 
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Forest models considered. This is visualized in the learning curves of 𝐾 on 𝑀𝑆𝐸 which can be 

found in Figure 5 of Appendix B3: Information criteria results and RF learning curves. 

Moreover, automated hyperparameter tuning was performed using 10-fold cross-validations, 

where a grid search optimization algorithm was employed to explore possible combinations of 

the hyperparameters. Thereby, two hyperparameters were directly optimized to maximize 

model performance by minimizing the mean value of the earlier specified loss function (𝑀𝑆𝐸) 

across all 10 folds: 

1. The number of randomly selected features considered at each split (m), and 

2. The minimum number of observations available for nodes to be split (n). 

Thereby, m, the number of features considered at each split, ranged from 2 to 𝑀 = 12 as this 

was the maximum number of features in the dataset.21 It is an important hyperparameter to 

consider when building Random Forest models, since it controls for diversity in the trees. 

Smaller values of m can hereby reduce overfitting and improve generalization, but larger m-

values lead to more powerful individual trees. Regarding n, the minimum number of 

observations needed for nodes to split, it ranged from 1 to 5 in the grid search hyperparameter 

tuning performed. It is also important to consider as it controls for how deep the trees in the 

model can grow and thus also mitigates overfitting. (Breiman, 2001) 

Lastly regarding Random Forests, VIMs are obtained from the models. During hyperparameter 

tuning, only the 𝑀𝐷𝐼 is extracted from the 10-fold cross-validation results of the model with 

the selected hyperparameters. Hence, to obtain both VIMs as described in Equations (12) and 

(13), the final model with the optimized hyperparameters is run again to compute 𝑃𝐷𝐼 

importance measures. All performance metrics (𝑀𝑆𝐸, 𝑂𝑂𝐵 𝑅2, 𝑀𝐴𝐸) given with the outputs 

of the Random Forest models in Sections 5 and 6 are thus computed as the average across both 

10-fold cross-validations of the respective model.  

In the following section, descriptive statistics of the data used for analyses are given as part of 

the preliminary analyses. There, it is elaborated on the data, before the results of the model 

implementations described before are presented in Section 5. 

 
21 M = 12 in this research since there are 12 explanatory variables in the dataset. 
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4.4. Preliminary analyses 

 

Figure 3: Commodity price co-movement in the sample period 

Figure 3 depicts co-movement throughout the sample period measured by both average Pearson 

correlations and average Gerber statistics as outlined in Section 4.3. There, it can already be 

seen that in the considered time frame, co-movement spiked from late 2007 to early 2009, 

coinciding with the global financial crisis. In the following year up to the end of 2012, co-

movement remained relatively high compared to values prior to the spike. Here it is noteworthy 

however, that co-movement directly after the spike in early 2009 dropped sharply to values 

around zero for both Pearson and Gerber. In the second half of the sample period, or subsample 

two, co-movement generally showed lower values than in the first half of the sample period. 

Nonetheless, there were several noteworthy periods of relatively high co-movement: In 2015 

to 2016 co-movement rose before falling back to values comparable to those of 2013 to 2014, 

and in late 2019 co-movement spiked again, coinciding with the Covid-19 outbreak. In the 

years following this, co-movement levels had risen and fallen repeatedly until the end of the 

sample period. 
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Table 2 contains the descriptive statistics of the full sample data used in the analysis as well as 

the co-movement measures in subsamples 1 and 2. Predictor variables are named according to 

Table 1, while “Pearson” and “Gerber” refer to full sample co-movement measures of all 20 

commodities. “Pearson HC” and “Gerber HC” refer to those of only hard commodities 

throughout the full sample period, while “Pearson SC” and “Gerber SC” refer to those of only 

soft commodities. Similarly, “Pearson 1” and “Gerber 1” refer to the first subsample co-

movement measures of all 20 commodities and “Pearson 2” and “Gerber 2” to those of the 

second subsample. Full descriptive statistics of predictor variables in the two subsamples as 

well as those of commodity prices used for measuring co-movement can be found in Appendix 

B2: Full descriptive statistics, along with histograms of all data used in the analyses. 

In the table above, skewness and excess kurtosis values are depicted to give further insights 

into the distribution of Pearson correlations, Gerber statistics, and its determining variables. 

Regarding skewness for the full sample as well as hard and soft commodities, the co-movement 

measure distributions are approximately symmetric as values are close to zero. In the two 

subsamples however, the respective values for both measures are substantially higher, and their 

distributions are hence moderately skewed to the right. Regarding kurtosis, the distributions of 

the co-movement measures differ more: The full sample co-movement and that of soft 

commodities hereby show leptokurtic distributions (although this is less pronounced when only 

considering soft commodities). Hard commodities and subsample two on the other hand show 

platykurtic distributions, suggesting less extreme data points. In subsample one, both kurtosis 

values are close to zero and hence do their distribution have similar kurtoses to normal 

distributions. Lastly, do the descriptive statistics of several predictor variables indicate extreme 

values or distributions for some variables. Most notably, seem GDP, IP, SP500 Var, and BCI 

Table 2: Descriptive statistics 

Variables Mean SD Min Max Range Skewness Kurtosis 

Pearson 0.116 0.106 -0.029 0.526 0.554 0.116 0.796 

Gerber 0.114 0.105 -0.031 0.491 0.522 0.114 0.810 

Pearson HC 0.149 0.125 -0.088 0.474 0.563 0.149 -0.587 

Gerber HC 0.153 0.116 -0.095 0.475 0.570 0.153 -0.306 

Pearson SC 0.140 0.154 -0.084 0.612 0.696 0.140 0.310 

Gerber SC 0.128 0.147 -0.073 0.544 0.617 0.128 0.186 

GDP 1.85% 8.02% -77.00% 45.99% 122.99% -3.848 49.212 

IP 0.05% 1.33% -14.37% 6.30% 20.66% -5.396 60.918 

PPI 0.26% 1.28% -5.48% 3.16% 8.64% -0.890 2.952 

TBill 13w 1.08% 1.62% -0.88% 5.62% 6.50% 1.091 0.096 

TBill 10y 2.65% 1.17% 0.12% 5.55% 5.43% 0.225 -0.564 

Energy Index 0.22% 7.49% -43.68% 26.73% 70.41% -0.735 5.222 

USD Index 0.07% 2.23% -6.82% 7.50% 14.31% 0.092 0.718 

EUR/USD 1.245 0.127 0.980 1.577 0.597 0.347 -0.521 

CNY/USD 0.146 0.013 0.121 0.165 0.044 -0.697 -0.556 

SP500 Var 0.01% 0.03% 0.00% 0.34% 0.34% 6.765 54.437 

BCI Var 0.01% 0.01% 0.00% 0.08% 0.08% 2.929 11.530 

CPI 0.21% 0.41% -1.92% 1.37% 3.29% -0.598 3.065 

       n = 231 

Pearson 1 0.151 0.119 -0.026 0.526 0.552 0.755 0.002 

Gerber 1 0.141 0.119 -0.031 0.491 0.522 0.824 0.064 

             n = 116 

Pearson 2 0.081 0.078 -0.029 0.270 0.299 0.655 -0.651 

Gerber 2 0.087 0.080 -0.020 0.258 0.278 0.404 -1.100 

       n = 115 
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Var far from normally distributed when looking at their skewness and kurtosis values (this also 

applies to the Energy Index, PPI, and CPI although to a lesser extent). Moreover, do the Energy 

Index and GDP show rather extreme values as minimums and maximums. Especially their 

minimums are exceptionally low, with -43.68% and -77% respectively. These minimums are 

both coinciding with the Covid-19 pandemic as they are recorded for 31st March 2020.  

In Table 2, it can also be seen that the means of both Pearson correlations and Gerber statistics 

differ between subsample one and subsample two. For the full sample period, both means lie 

around 11.5%, while the first subsample shows mean co-movement measures of around 14%-

15%. In the second subsample however, the respective means are between 8% and 9%. 

Moreover, it is noteworthy that the co-movement measures only considering either hard or soft 

commodities show higher means than those considering all commodities. Regarding hard 

commodities, the means are around 15% while for soft commodities they are slightly lower at 

14% and 12.8% respectively for Pearson correlations and Gerber statistics. Moreover, do the 

standard deviations of the co-movement measures differ between the full sample, subsamples, 

and hard and soft commodities. Thereby, co-movement measures of soft commodities show 

the highest standard deviations, followed by hard commodities and subsample one. The 

standard deviations of co-movement measures considered in subsample 2 consequently lie 

below those of the full sample period. 

This difference in co-movement levels is elaborated on at the start of the results in the following 

Section 5. There formal tests on the normality of Pearson correlations and Gerber statistics for 

the samples and commodity selections are given in Table 3, along with tests for differences in 

means. From here on, in the tables summarizing the results, all significances at the 1% level 

are denoted with ***, at the 5% level with **, and at the 10% level with *. 
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5. Results 
In the descriptive statistics given in Table 2, it can already be seen that the mean values of the 

two co-movement measures considered in this research differ in subsamples 1 and 2. To test 

this statistically, Wilcoxon rank-sum tests were used. Since the data cannot be assumed to be 

normally distributed based on the outcomes of the Shapiro-Wilk tests in Table 3, Wilcoxon 

rank-sum tests were chosen as they do not assume normality. Table 3 hence presents the results 

of the tests for structural changes in the co-movement 

measures in the two given subsamples, as part of the 

research for Sub-question 5. There can be seen that 

both p-values lie below the significance level of 1%. 

Hence, do the tests indicate a statistically significant 

difference in the co-movement levels in the two 

periods. The same holds true for the Wilcoxon rank-

sum tests of hard and soft commodities, but only at 

10% significance when considering Pearson 

correlations. These differences in co-movement levels 

should be kept in mind when interpreting the results 

and performance of the respective models presented in 

the rest of the section.  

Table 3: Preliminary tests  

Tests Variable W 

S
h

ap
ir

o
-W

il
k

 t
es

ts
 

Pearson 0.922*** 

Gerber 0.927*** 

Pearson HC 0.984** 

Pearson SC 0.927*** 

Gerber HC 0.985** 

Gerber SC 0.911*** 

Pearson 1 0.943*** 

Pearson 2 0.928*** 

Gerber 1 0.933*** 

Gerber 2 0.929*** 

 Test W 

W
il

co
x

o
n

 

ra
n
k

-s
u

m
 

te
st

 

Pearson Subsamples 9080*** 

Gerber Subsamples 8303*** 

Pearson HC vs SC 29090* 

Gerber HC vs SC 31436*** 

Table 4: Multiple regression results 

Panel A: Pearson 

 Full model Hard commodities Soft commodities Subsample 1 Subsample 2 
Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 
(Intercept) -0.158   -0.446 *** -0.160   -0.519 ** 0.331   
GDP 0.028   0.148   -0.066   -0.618 * 0.024   

IP -0.373   -0.272   -1.338   -1.464   -0.120   

PPI -1.239   -0.853   -1.493   -0.565   -1.066   

TBill 13w 0.637   3.916 *** 0.663   0.485   -0.194   

TBill 10y -4.175 *** -5.748 *** -3.461 * -0.806   -3.920 ** 

Energy Index -0.016   0.115   -0.122   -0.024   -0.030   

USD Index 0.046   0.630 * -0.677   0.268   -0.480   

EUR/USD 0.374 *** 0.475 *** 0.402 *** 0.272 ** -0.058   

CNY/USD -0.969   0.478   -1.106   2.004   -0.780   

SP500 Var -16.188   23.764   -96.748 * 22.828   -18.841   

BCI Var 565.798 *** 410.997 *** 643.776 *** 371.541 *** 336.619 *** 

CPI -1.011   -2.138   -1.522   2.744   -3.594   

Multiple R2 0.4264  0.2877  0.2360  0.5415  0.2939  

Adj. R2 0.3949  0.2485  0.1940  0.4881  0.2108  

Panel B: Gerber 
 Full model Hard commodities Soft commodities Subsample 1 Subsample 2 
Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 
(Intercept) 0.081   0.023   -0.110   -0.675 *** 0.062   
GDP 0.038   0.252 * -0.075   -0.448   0.030   

IP -0.707   -0.557   -1.290   -1.807   -0.275   

PPI -0.390   -0.929   0.960   0.248   0.409   

TBill 13w -1.335 ** -0.976   0.258   -2.766 *** 1.678   

TBill 10y -1.112   0.895   -4.486 *** 6.218 *** -6.030 *** 

Energy Index 0.013   0.046   -0.081   -0.007   -0.003   

USD Index -0.088   0.216   -0.466   0.279   -0.677 * 

EUR/USD 0.182 *** 0.028   0.439 *** 0.225 * -0.420 *** 

CNY/USD -1.361 * 0.115   -1.510   2.188   4.065 ** 

SP500 Var 13.548   33.602   -42.909   116.090 ** 2.761   

BCI Var 425.468 *** 436.095 *** 450.258 *** 78.943   209.184 * 

CPI 1.382   5.698 * -6.398 * 9.636 ** -7.943 ** 

Multiple R2 0.3136  0.2132  0.2296  0.5036  0.4062  

Adj. R2 0.2758  0.1699  0.1872  0.4458  0.3363  
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Firstly, the results of the multiple regression models are presented in Table 4, where Panel A 

shows the results of Pearson and Panel B those of Gerber as the dependent variable. There can 

be seen that the independent variables show different levels of significance depending on the 

sample of the model considered. Hereby, some variables show significance in close to all 

models considered, while others are only significant in a few or even one model. Most notable, 

does the monthly variance of the Bloomberg Commodity Index show positive effects at the 1% 

significance level for both co-movement measures in all models except for the subsamples of 

Gerber. There, it shows significance at the 10% level in the second subsample but none in the 

first. Moreover, does the EUR/USD foreign exchange rate show significant effects in most 

models considered. For Pearson in the second subsample no significance is seen and only 

significance at the 5% level is observed in the first subsample. For Gerber, no significance is 

seen for the model predicting the co-movement of hard commodity prices, and only a 10% 

significance in the first subsample model. All other estimates are significant at the 1% level 

and, moreover, all positive except for the second subsample of Gerber. Additionally, can be 

seen that 10-year U.S. treasury bill yields show highly significant effects for some models. For 

instance, it shows significance at the 1% level in the full model and hard-commodity model for 

Pearson, while showing none for Gerber in the respective models. For the remaining soft-

commodity model and both subsample models, it shows significance at 1% for Gerber, but not 

for Pearson (only 5% for subsample 2 and 10% for the soft-commodity model). Thereby, all 

coefficient estimates are negative except for the first subsample model of Gerber. Lastly, it is 

notable that both 13-week U.S. treasury bill yields and the constant in the regression show 

significant effects at the 1% level in two cases. All other variables considered do not qualify 

for that significance level. 

 

Table 5: VAR model results 
Panel A: Pearson 

 Full model Hard commodities Soft commodities Subsample 1 Subsample 2 

Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 

Pearson.l1 0.743 *** 0.666 *** 0.822 *** 0.482 *** 0.858 *** 
GDP.l1 0.011   0.195   -0.238   -0.145   0.055   

IP.l1 0.099   -0.767   1.206   -2.528 ** 1.557 *** 

PPI.l1 0.909   1.283   0.291   1.382   1.214   

TBill 13w.l1 0.494   3.348   3.790   -3.091   -2.750   

TBill 10y.l1 -4.800 ** -6.268 * -2.715   -0.552   -3.651   

Energy Index.l1 -0.030   0.090   -0.093   -0.032   -0.050   

USD Index.l1 0.089   0.233   0.176   -0.391   0.490 * 

EUR/USD.l1 0.594   0.462   0.219   1.619 ** -0.178   

CNY/USD.l1 2.400   7.808 * -3.057   -9.605   -0.971   

SP500 Var.l1 -1.277   -7.419   -2.517   -60.679   68.837 * 

BCI Var.l1 110.897   143.054   24.171   224.716 * 6.549   

CPI.l1 -7.487 ** -8.551   -0.188   -9.096   -10.186 * 

Pearson.l2 -0.038   -0.031   -0.067   0.098   -0.249 ** 

GDP.l2 -0.071   -0.027   -0.020   -0.218   -0.168   

IP.l2 0.291   0.016   0.059   -0.913   0.319   

PPI.l2 -1.358 ** -0.377   -2.575 *** 0.009   -1.566 * 

TBill 13w.l2 -0.422   -2.039   -4.091   3.070   2.653   

TBill 10y.l2 3.322   4.156   2.049   0.375   1.883   

Energy Index.l2 -0.076   -0.020   -0.088   -0.262 * 0.047   

USD Index.l2 -0.987   -0.554   -0.556   -2.963 ** 0.562   

EUR/USD.l2 -0.473   -0.303   -0.117   -1.660 ** 0.099   

CNY/USD.l2 -2.891   -7.820 * 2.487   11.155   0.588   

SP500 Var.l2 1.761   16.375   7.802   37.792   18.322   

BCI Var.l2 34.982   2.380   35.125   -47.390   -78.157   

CPI.l2 7.175 ** 3.682   5.190   8.270   5.991   

const -0.019   -0.111   0.005   -0.110   0.220   

Multiple R2 0.7184  0.5879  0.7415  0.7722  0.7489  
Adj. R2 0.6822  0.5349  0.7082  0.7041  0.6730  
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Table 5 presents the results of the reduced form VAR models for the considered samples and 

co-movement measures. l1 hereby refers to first lags of the respective variable, while l2 refers 

to second lags. There, the results are a lot more mixed compared to the multiple regression 

models. Nonetheless, do the first lags of the respective co-movement measures show positive, 

significant effects at the 1% level for all models. This significance however does not hold for 

the second lags, where only the soft-commodity model of Gerber shows significance at 1%, 

and the second subsample model of Pearson at the 5% level, but with both coefficients being 

negative.  

The other variables considered in the models do not yield consistent results like this for neither 

lag. They do not show statistically significant effects across all or close to all models, at least 

not when considering models of both co-movement measures. Still, there are several 

noteworthy cases. Firstly, regarding the full model of Pearson in Panel A, CPI shows significant 

effects at 5% for both the first and second lag. This significance however is not supported by 

the other models22, and moreover do the coefficients of the full model show negative effects in 

the first lag and positive in the second. Furthermore, do first-lag 10-year U.S. treasury bills and 

second-lag PPI show significant negative effects at the 5% level. For 10-year U.S. treasury bills 

this effect might be driven by hard commodities, since the respective model shows negative 

effects at 10% significance, while for PPI this effect might be driven by soft commodities where 

a negative effect at 1% significance can be seen. In addition, does the second subsample model 

of Pearson show positive effects of industrial production at the 1% level. 

Regarding the equations of the VAR models predicting Gerber in Panel B, the effects of certain 

variables are more consistent compared to the Pearson equations. Here, the EUR/USD foreign 

exchange rate shows significant effects in both lags in the full model, although positive in the 

 
22 Only the Pearson model of subsample 2 shows negative, significant effects at the 10% significance level. 

Panel B: Gerber 

 Full model Hard commodities Soft commodities Subsample 1 Subsample 2 

Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 

Gerber.l1 0.915 *** 0.787 *** 1.027 *** 0.691 *** 0.974 *** 
GDP.l1 -0.013   0.106   -0.111   0.188   0.035   

IP.l1 -0.437   -0.631   -0.654   -3.604 *** 0.736   

PPI.l1 0.426   0.306   -0.480   0.985   0.984   

TBill 13w.l1 -2.195   -2.680   -1.523   -11.236 *** 3.098   

TBill 10y.l1 -0.515   -1.316   1.012   4.994 * -4.304   

EnergyIndex.l1 -0.047   -0.009   -0.011   -0.389 *** 0.079   

USD Index.l1 0.013   0.093   0.218   -0.553 ** 0.096   

EUR/USD.l1 1.263 *** 1.034 * 0.973 * 1.435 ** 1.217   

CNY/USD.l1 0.763   1.329   -2.921   -13.050   1.202   

SP500 Var.l1 -29.903   -15.216   -71.090 ** -73.430 * 57.867 * 

BCI Var.l1 104.544 * 120.164   117.514   162.928 * -66.253   

CPI.l1 -2.839   -4.607   1.001   -7.774   -3.503   

Gerber.l2 -0.094   -0.049   -0.184 *** -0.025   -0.193   

GDP.l2 0.035   -0.008   0.076   -0.380   -0.046   

IP.l2 0.030   -0.235   0.228   -0.879   0.282   

PPI.l2 -0.425   0.072   -0.764   0.744   -0.684   

TBill 13w.l2 2.004   2.834   1.267   9.925 *** -2.745   

TBill 10y.l2 0.098   0.952   -1.888   -1.612   3.954   

EnergyIndex.l2 -0.068   -0.067   -0.036   -0.288 ** -0.026   

USD Index.l2 -1.909 *** -1.353   -1.503 * -2.318 ** -1.748   

EUR/USD.l2 -1.214 *** -1.005 * -0.875 * -1.500 *** -1.348 * 

CNY/USD.l2 -0.926   -1.301   2.566   14.954   -0.017   

SP500 Var.l2 11.272   -16.456   56.384 ** 49.984   26.447   

BCI Var.l2 -4.427   5.371   -44.595   -143.280   24.048   

CPI.l2 4.087   5.113   2.733   10.887 ** 1.591   

const -0.014   -0.004   -0.033   -0.234   -0.007   

Multiple R2 0.7960  0.6307  0.8423  0.8579  0.7961  
Adj. R2 0.7698  0.5832  0.8220  0.8154  0.7344  
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first lag and negative in the second. This is supported by positive effects of the first lag at 10% 

significance in both hard and soft commodity models, and at 5% in the first subsample. For the 

second lag, the results are supported by all other models with the first subsample model 

showing significance at 1% and all other models at 10%. Furthermore, it is notable that the 

U.S. Dollar index’s second lag shows negative effects at the 1% level in the full model, which 

however is only supported by a 5% significance in subsample 1 and a 10% significance in the 

soft-commodity model. Lastly, compared to the other reduced VAR models of Gerber, the 

model of the first subsample shows significant effects for substantially more variables than all 

other models. Thereby, all variables except for GDP, PPI, and the CNY/USD exchange rate 

show effects significant at least at the 10% level. Moreover, does the model yield the highest 

multiple and adjusted R2 values of all VAR models. Also, in the VAR models predicting 

Pearson, the subsample 1 model achieved slightly higher R2 values than the subsample 2 model. 

Recalling from the results of Table 2 and Table 3 that co-movement levels in the first subsample 

were higher than in the second, this could indicate that co-movement is easier to predict when 

its level is higher. 

Table 6: VARX models results Pearson 

 Full model Hard Commodities Soft Commodities Subsample 1 Subsample 2 

Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 

Pearson.l1 0.705 *** 
0.641 *** 

0.772 *** 
0.546 *** 

0.827 *** 
CPI.l1 -4.302   -7.565   4.314   -7.429   -12.301 * 
Pearson.l2 -0.041   -0.004   -0.040   0.057   -0.291 ** 
CPI.l2 0.740   -1.730   -1.787   3.449   4.186   

const -0.035   -0.127   0.003   -0.050   0.019   

GDP -0.075   0.079   -0.241   0.016   -0.266   

IP -0.369   -0.970   0.095   -1.180   -0.329   

PPI -0.372   -0.190   -0.553   -0.249   0.530   

TBill 13w 2.754   4.200   0.997   0.613   4.307   

TBill 10y -2.725   -2.490   -2.561   -0.221   -3.797   

Energy Index 0.016   0.205 ** 
-0.078   0.024   -0.075   

USD Index -0.034   0.519 * 
-0.634 ** 

-0.260   -0.134   

EUR/USD -0.681   -0.904   -0.765   0.172   -0.747   

CNY/USD 0.543   5.051   -0.949   1.064   0.097   

SP500 Var -20.907   -7.681   -43.444   -61.830   -19.841   

BCI Var 339.794 *** 
250.650 ** 

421.647 *** 
426.290 *** 

170.977   

GDP.l1 0.183   0.195   0.108   -0.036   0.603 * 
GDP.l2 -0.196   -0.088   -0.223   -0.164   -0.479 ** 
IP.l1 -0.407   -0.990   0.398   -2.666 ** 

0.283   

IP.l2 0.389   0.178   0.233   -0.954   0.209   

PPI.l1 0.885   0.923   0.540   1.843   1.035   

PPI.l2 -0.176   0.807   -1.522   0.658   -0.516   

TBill 13w.l1 -2.600   -1.946   3.417   -2.759   -10.272   

TBill 13w.l2 0.163   -0.495   -4.680   2.344   6.748   

TBill 10y.l1 0.663   -1.639   2.759   0.938   1.565   

TBill 10y.l2 0.218   1.247   -0.806   -1.337   -0.603   

Energy Index.l1 -0.106   0.073   -0.175   -0.164   -0.112   

Energy Index.l2 -0.109   -0.048   -0.113   -0.238   -0.014   

USD Index.l1 1.067   1.516   1.218   -0.731   1.456   

USD Index.l2 -0.807   -0.456   -0.154   -2.936 ** 
0.431   

EUR/USD.l1 1.261 ** 
1.369   0.839   1.525 * 

0.540   

EUR/USD.l2 -0.464   -0.282   -0.015   -1.794 *** 
0.189   

CNY/USD.l1 -0.150   0.215   -4.519   -17.819   -0.951   

CNY/USD.l2 -0.704   -5.264   5.227   18.363   1.433  
SP500 Var.l1 -17.108  -32.871  -6.210  -58.776  80.955 ** 
SP500 Var.l2 -4.287  10.898  9.433  43.935  -18.736  
BCI Var.l1 38.451  125.778  -94.752  76.372  37.520  
BCI Var.l2 -58.141  -113.811  -73.403  -155.262  -73.403  
Multiple R2 0.7664  0.6339  0.7764   0.8209   0.7815  

Adj. R2 0.7211  0.5629  0.7331  0.7338  0.6736  
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In Table 6 and Table 7 the outcomes of the VARX models are depicted. There, the first lags of 

the respective co-movement measure considered show significant positive effects at 1% 

significance. Their second lags, however, do mostly not show significant effects. Exceptions 

here are the second lags in subsample two, with the Pearson model’s estimate being negative 

at 5% and Gerber’s estimate negatively significant at 10%. Also, the estimate of the soft-

commodity model of Gerber is negatively significant at 5%. The inconsistency of significances 

of the remaining variables across models that was seen in the reduced VAR models mostly 

holds true for the VARX models as well, although there are two noteworthy exceptions: Firstly, 

the current values of the Bloomberg Commodity Index have significant positive effects for all 

models but the two models of subsample 2. These effects are significant at the 1% level for the 

full and subsample 1 models of Pearson and Gerber, and the soft-commodity model of Pearson. 

The hard-commodity models and the soft-commodity model of Gerber only show significant 

effects at a 5% significance level. Regarding the VARX models of Pearson, there are no other 

variables that show significant effects at the 1% level for the full models, and only the effect 

of the first lag of the EUR/USD exchange rate is positive and significant at a 5% level. This is 

somewhat supported by a 10% significance in the first subsample model, however, does its 

second lag show negative effects at 1% significance in the same sample. 

In the VARX models of Gerber in Table 7, there are more variables showing significance. 

Here, the first lag of EUR/USD is significantly positive at 1% in the full model and positively 

significant at least at the 10% level for all remaining models. Its second lag, however, is 

Table 7: VARX model results Gerber 

 Full model Hard Commodities Soft Commodities Subsample 1 Subsample 2 
Variable Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. 

Gerber.l1 0.850 *** 
0.752 *** 

0.976 *** 
0.650 *** 

1.020 *** 
CPI.l1 -1.799   -2.094   -0.040   -5.234   -5.071   

Gerber.l2 -0.059   -0.024   -0.163 ** 
0.028   -0.251 * 

CPI.l2 1.348   0.626   1.562   7.937 * 
2.087   

const -0.029   -0.052   -0.047   -0.236   -0.126   

GDP -0.189   -0.087   -0.279   0.207   0.002   

IP -0.602   -1.196   -0.203   -2.240 ** 
-0.170   

PPI 0.345   -0.308   1.170 * 
0.292   1.895 ** 

TBill 13w 0.458   -4.143   3.161   -3.778   7.043 ** 
TBill 10y -1.526   2.172   -3.035   2.509   -4.865   

Energy Index -0.029   0.039   -0.127 * 
-0.129   -0.094   

USD Index -0.163   0.138   -0.366 * 
-0.297   -0.314   

EUR/USD -0.676 * 
-0.765   -0.387   -0.343   -1.070   

CNY/USD -1.163   0.138   -1.389   -3.027   0.036   

SP500 Var -4.682   -14.080   -3.474   -29.236   25.562   

BCI Var 180.257 *** 
214.540 ** 

166.669 ** 
249.841 *** 

85.371   

GDP.l1 0.409 * 
0.446   0.414   0.115   0.087   

GDP.l2 -0.192   -0.182   -0.223   -0.292   -0.066   

IP.l1 -1.496 ** 
-1.587 * 

-1.841 ** 
-3.781 *** 

0.483   

IP.l2 0.073   -0.204   0.338   -0.501   -0.229   

PPI.l1 0.623   0.794   -0.374   1.512 * 
0.040   

PPI.l2 0.214   1.133   -0.408   0.956   -0.865   

TBill 13w.l1 -3.381   1.658   -5.853   -6.188   -4.310   

TBill 13w.l2 2.647   2.676   2.378   8.609 ** 
-1.896   

TBill 10y.l1 2.942   -1.737   5.622   4.258   0.897   

TBill 10y.l2 -1.389   -0.621   -2.824   -2.739   3.759   

Energy Index.l1 -0.118 * 
-0.091   -0.093   -0.494 *** 

0.084   

Energy Index.l2 -0.081   -0.076   -0.052   -0.251 ** 
-0.034   

USD Index.l1 1.013   1.214   0.799   -0.056   1.609   

USD Index.l2 -1.661 ** 
-0.874   -1.484 * 

-1.957 ** 
-1.459   

EUR/USD.l1 1.813 *** 
1.574 * 

1.357 ** 
1.565 ** 

1.966 * 
EUR/USD.l2 -1.118 *** 

-0.779   -0.920 * 
-1.376 ** 

-1.053   

CNY/USD.l1 -0.254   -1.497   -2.954   -15.549   -0.045   

CNY/USD.l2 1.535   1.657   4.400   21.094 ** 
2.121   

SP500 Var.l1 -24.562   -21.755   -54.945 * 
-60.014   56.987 * 

SP500 Var.l2 14.849   5.031   47.701 * 
56.762   -8.413   

BCI Var.l1 34.452   45.849   40.490   53.551   -54.894   

BCI Var.l2 -84.171   -111.329   -102.644   -229.035 ** 
7.813   

Multiple R2 0.8266   0.6654   0.8613   0.8932   0.8304  

Adj. R2 0.7930  0.6006  0.8345  0.8412  0.7467  
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negatively significant at 1% in the full model which is supported by the respective first 

subsample and soft-commodity models. This switch in signs of the coefficient from the first 

lag to the second lag, might indicate that there is a short-term reversal of the effect. Moreover, 

its current values show negative effects at 10% significance, but only for the full model, which 

could indicate that changes in the EUR/USD rate take some time before they start to affect co-

movement levels. Furthermore, does the first lag of industrial production have negative effects 

at 5% significance in the full model of Gerber. This extends to the respective hard-commodity 

(10%), soft-commodity (5%) and subsample one (1%) models. In the first subsample model, 

industrial production’s current values also show negative significant effects at 5%. 

Furthermore, does the second lag of the U.S. Dollar index show negative coefficients at 5% 

significance for the full and subsample 1 models of Gerber, and at 10% significance for the 

soft-commodity model. Other than that, only the first lags of GDP and the U.S. Energy price 

return index show negative effects at 10% significance, which however, is only supported by 

a 1% significance in the first subsample model for the latter. Lastly regarding the VARX 

models, comparably more variables (and their lagged values) show significance in the first 

subsample model of Gerber and, although to a lesser extent, the soft-commodity model of 

Gerber. For the models predicting Pearson however, this does not hold true. Yet, did first 

subsample models (with higher co-movement levels) once again achieve higher R2 values than 

subsample 2 models, and soft-commodity models higher R2 values than hard-commodity 

models for both Pearson and Gerber. 
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Table 8: Random Forest results 

Panel A: Variable Importance 

 Pearson Gerber 

 Full Model Hard Commodity Soft Commodity Subsample 1 Subsample 2 Full Model Hard Commodity Soft Commodity Subsample 1 Subsample 2 

Variable MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI MDI PDI 

GDP 0.19472 0.00060 0.33018 0.00106 0.67847 0.00283 0.18244 0.00125 0.04799 0.0002 0.22625 0.00100 0.17900 0.00038 0.60752 0.00264 0.20828 0.00178 0.02909 0.00006 

IP 0.15568 0.00032 0.18247 0.00018 0.40626 0.0010 0.17792 0.00038 0.03499 0.00015 0.12133 0.00031 0.19375 0.00008 0.51804 0.00142 0.19825 0.00061 0.01740 0.00003 

PPI 0.15747 0.00040 0.18817 0.00030 0.26649 0.00063 0.02588 0.00005 0.05270 0.00018 0.13094 0.00038 0.22361 0.00058 0.31158 0.00094 0.12552 0.00081 0.04110 0.00036 

TBill 13w 0.19777 0.00271 0.28480 0.00155 0.31734 0.0012 0.13141 0.00209 0.03180 0.00016 0.21778 0.00255 0.22307 0.00065 0.28147 0.00176 0.13387 0.00132 0.02766 0.00034 

TBill 10y 0.16251 0.00105 0.26637 0.00110 0.23630 0.00077 0.02340 0.00007 0.15039 0.00209 0.15470 0.00109 0.27893 0.00169 0.23230 0.0015 0.07720 0.00089 0.18727 0.00397 

Energy Index 0.09629 0.00004 0.15412 -0.00012 0.23769 0.00013 0.02627 0.00010 0.03744 -0.0001 0.06839 0.00000 0.12285 -0.00002 0.19717 
-

0.00005 
0.05000 -0.00003 0.02456 0.00000 

USD Index 0.09627 0.00001 0.13872 -0.00012 0.33979 0.00052 0.03810 0.00004 0.02735 -0.00014 0.09067 0.00000 0.15131 -0.00013 0.31730 0.00054 0.05193 0.00002 0.02485 0.00001 

EUR/USD 0.49604 0.00371 0.71594 0.00441 0.97083 0.00521 0.10423 0.00062 0.04815 0.00036 0.55474 0.00335 0.31757 0.00128 1.12482 0.00774 0.23013 0.00211 0.07777 0.00096 

CNY/USD 0.20858 0.00204 0.31989 0.00206 0.54685 0.00338 0.61338 0.01409 0.07468 0.00075 0.20657 0.0019 0.26206 0.00167 0.35784 0.00219 0.22525 0.00408 0.04010 0.00039 

SP500 Var 0.19312 0.00074 0.45752 0.00135 0.31903 0.00105 0.12146 0.00057 0.03136 0.00004 0.18012 0.00058 0.32502 0.00061 0.24709 0.00048 0.11840 0.00029 0.02599 0.00014 

BCI Var 0.52479 0.00231 0.30947 0.00054 0.85184 0.00299 0.10918 0.00056 0.10477 0.00058 0.39634 0.00152 0.53515 0.00239 0.38329 0.00117 0.12266 0.00077 0.16670 0.00214 

CPI 0.10468 0.00021 0.17661 0.00024 0.26619 0.00053 0.04210 0.00017 0.04486 0.00027 0.13649 0.00024 0.21649 0.00033 0.25464 0.00055 0.10410 0.00035 0.03878 0.00026 

 

Panel B: Model performance and Hyperparameters 

Performance Metric Pearson Gerber 
 Full Hard C. Soft C. First Second Full Hard C. Soft C. First Second 

Mean RMSE 0.0755 0.102 0.1262 0.0708 0.066 0.0731 0.0995 0.1131 0.0834 0.057 

Mean R2 (OOB) 0.5137 0.3343 0.3377 0.6462 0.3243 0.5167 0.2723 0.4178 0.6039 0.5353 

Mean MAE 0.0614 0.084 0.0989 0.0581 0.0552 0.0578 0.0791 0.0911 0.0641 0.0471 

𝑚 12 11 10 12 11 11 5 6 5 11 

𝑛 1 4 1 2 1 4 3 4 1 4 

Notes: Performance metrics are given as means across all samples of the two 10-fold cross-validations of the final models. 
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Table 8 presents the results of the Random Forest regression models. Panel A gives VIMs as 

discussed in Sections 3.5 and 4.4, while Panel B shows performance measures as well as the 

selected hyperparameters for each respective model. The 𝑀𝐷𝐼 and 𝑃𝐷𝐼 values of Panel A are 

hereby individually formatted to be shown in green for the highest value in each respective 

model, and in white for the lowest value. The performance metrics on the other hand are 

formatted in red for the worst (highest RMSE and MAE, lowest R2 (OOB)) and green for the best 

performance metric across all Random Forest models considered. Regarding the VIMs, the 

EUR/USD foreign exchange rate shows high importance scores across most models. 

Exceptions hereby are the subsample 1 and 2 models of Pearson and subsample 2 model of 

Gerber, where only relatively low scores are observed. Moreover, only moderate scores are 

seen in the subsample 1 model of Gerber, and the hard-commodity models of Gerber shows a 

high 𝑀𝐷𝐼 but only moderate 𝑃𝐷𝐼. Otherwise, these observations hold true for both 𝑀𝐷𝐼 and 

𝑃𝐷𝐼. In both subsample 1 models however, CNY/USD showed exceptionally high values 

compared to its VIMs in the other models. For Pearson, the subsample 1 model shows by far 

the highest VIMs for CNY/USD compared to all other predictors, while for Gerber also 

EUR/USD, GDP, and IP showed relatively high values. In the Random Forest models of 

subsample 2 on the other hand, 10-year T-Bills showed the highest 𝑀𝐷𝐼 and 𝑃𝐷𝐼 values. In all 

other models, however, its VIMs were moderate at most. Furthermore, did the monthly 

variance of the Bloomberg Commodity Index show relatively high values in certain models: In 

the hard-commodity model of Gerber, it showed the highest values for both VIMs and in the 

full model of Pearson the highest 𝑀𝐷𝐼. Moreover, did both subsample 2 models, the full model 

of Gerber, and the soft-commodity model of Pearson show the second highest 𝑀𝐷𝐼 for the 

monthly variance of the Bloomberg Commodity Index. Regarding the other predictor variables 

included in the models, both the U.S. Energy Price Return Index and U.S. Dollar Index showed 

extremely low VIMs across all models compared to the other variables. The monthly CPI 

growth and PPI growth have slightly higher VIMs, while the VIMs of GDP growth, the 

monthly variance of the S&P 500, and 13-week T-Bill returns show low to moderate values. 

In Panel B performance metrics of the models are given, and it is evident that the subsample 2 

models performed best considering RMSE and MAE. Regarding the R2 (OOB) statistics, the first 

subsample models performed best. Additionally, can be said that considering all metrics, the 

full models performed moderately, while the hard and soft commodity model of both Pearson 

and Gerber performed worst. Moreover, it is noteworthy that on average the Pearson models 

selected higher values for 𝑚 and lower values for 𝑛 than the Gerber models during 

hyperparameter tuning. Nonetheless, did the models perform comparably in each considered 

sample across co-movement measures considered. 

5.1. Validation 

In Tables Table 4 to Table 8 the results of 40 models in total are presented. Regarding the linear 

models, one can see that several assumptions of multiple regressions, VAR, and VARX models 

are violated when looking at the variables’ histograms in Appendix B2: Full descriptive 

statistics as well as the normality tests of Table 3: Preliminary tests. Random Forest regression 

models on the other hand are less reliant on assumptions like normality and are 10-fold cross-

validated twice to obtain reliable performance metrics and VIMs. This cross-validation yields 

not only reliable results less prone to the random mechanics of the model, but also makes them 

reproduceable.  
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Nonetheless, are the results of both linear as well as non-linear models validated by comparing 

them to the results of similar models considering different samples or variables. More precisely, 

the results are validated across three dimensions: Firstly, the sample (or time) period included 

in the model is used to validate results by comparing results across the full sample, first 

subsample, and second subsample. Secondly, the selection of commodities upon which co-

movement measures are computed serves similar purposes, as results are validated and 

compared across all 20 commodities, only hard commodities, and only soft commodities. 

Lastly, there are two distinct co-movement measures used as dependent or target variables in 

the models: Pearson correlations and Gerber statistics. These, although based on different 

calculations, measure essentially the same phenomenon. Hence, can results of different models 

(of e.g., the same sample) be validated by comparing significances or effects between models 

predicting Pearson and Gerber. 

By comparing the effects of predictor variables across these three dimensions, they can be 

deemed validated to at least some extent if their effects hold across different types of models, 

samples, and co-movement measures. Similarly, model performance measures are validated 

across these dimensions. This approach is generally in line with previous literature on the topic, 

with for instance Zaremba et al. (2021) using different co-movement measures and subsamples 

for validation, and Alquist et al. (2020) comparing the results of different selections (or pairs) 

of commodities. Despite this, are there recommendations for further research on the validation 

of the results presented here given throughout the following sections, which discuss these 

results, and Section 7.3 which summarizes the recommendations. 

  



42 

 

6. Discussion 
Crucial for a thorough interpretation of the findings presented in Section 5 is the performance 

of the considered models. Table 9 below summarizes two key performance metrics for all 

models considered and compares them across models: 𝑀𝑆𝐸s and 𝑅2. 

Thereby, the values are formatted as follows: In green for the highest 𝑅2 value and the lowest 

𝑀𝑆𝐸, and in red for the lowest 𝑅2 value and highest 𝑀𝑆𝐸 across all models considered. 

Thereby, both linear and non-linear regression models are given, which makes a direct 

comparison harder. Hence, should the 𝑅2 values be interpreted with caution as they are multiple 

𝑅2 for linear models and OOB 𝑅2 for Random Forest regressions (See Section 4.3). As a more 

general performance metric applicable to various types of models, 𝑀𝑆𝐸 is given. 

In Table 9 can be seen, that on average, considering both performance metrics, the VAR and 

VARX models outperformed both multiple regression models and Random Forest models. 

Thereby, multiple regressions performed the worst, with 𝑅2 values as low as 0.21 and 𝑀𝑆𝐸s 

as high as 0.018. Thereby is notable that the soft and hard commodity models performed worst 

overall, while subsample 1 models showed moderate performance. Moreover, did the 

subsample 2 models achieve the lowest 𝑀𝑆𝐸 for multiple regression models considering each 

respective co-movement measure. The highest 𝑅2 value however is observed for the respective 

subsample 1 models. The same observation about performance on different samples holds true 

for the Random Forest models as well, which outperformed multiple regression models in 

almost all cases. Solely in the subsample 2 model considering Pearson did the multiple 

regression model show a lower 𝑀𝑆𝐸 than the Random Forest regression. Compared to the 

VAR and VARX models however, both multiple regressions and Random Forest models 

performed rather poorly. Across all models considering each respective sample and co-

movement measure, the 𝑀𝑆𝐸s of VAR and VARX models were substantially lower and 𝑅2 

values substantially higher than those of the other models presented. Thereby, VARX models 

achieved even better performance metrics than VAR models in all cases. The best observed 

𝑀𝑆𝐸 of 0.01 was recorded for the VARX subsample 2 model of Gerber, while the best 𝑅2 

value is seen for the VARX subsample 1 model of Gerber. Nonetheless, did the VAR and 

VARX models also perform worse on the hard commodity models compared to models of other 

Table 9: Performance comparison of all models  

 Model VAR VARX Multiple Regression Random Forest 

 

 MSE Mult. R2 MSE Mult. R2 MSE Mult. R2 
MSE R2 

(OBB) 

P
e
a
r
so

n
 

Full Model 0.00320 0.7184 0.00265 0.7664 0.00646 0.4264 0.0057 0.5137 

Hard Commodities 0.00644 0.5879 0.00573 0.6339 0.01105 0.2877 0.0104 0.3343 

Soft Commodities 0.00615 0.7415 0.00532 0.7764 0.01807 0.2360 0.01593 0.3377 

Subsample 1 0.00321 0.7722 0.00252 0.8209 0.00641 0.5415 0.00501 0.6462 

Subsample 2 0.00154 0.7489 0.00134 0.7815 0.00427 0.2939 0.00436 0.3243 

G
er

b
er

 

Full Model 0.00224 0.7960 0.00191 0.8266 0.00751 0.3136 0.00534 0.5167 

Hard Commodities 0.00494 0.6307 0.00447 0.6654 0.01047 0.2132 0.00990 0.2723 

Soft Commodities 0.00340 0.8423 0.00299 0.8613 0.01656 0.2296 0.01279 0.4178 

Subsample 1 0.00204 0.8579 0.00153 0.8932 0.00701 0.5036 0.00696 0.6039 

Subsample 2 0.00129 0.7961 0.00107 0.8304 0.00371 0.4062 0.00325 0.5353 
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samples, similarly to multiple regressions and Random Forest models. The respective soft 

commodity models however yielded the second worst 𝑀𝑆𝐸s across VAR or VARX models 

but rather high 𝑅2 values. 

Concluding this, the model performance comparison can be summarized as follows: Overall, 

VARX models performed the best, closely followed by VAR models. Multiple regressions 

performed the worst overall, while Random Forest regressions performed slightly better. 

Across all types of models, the hard commodity co-movement models performed comparably 

poorly, with soft commodity models performing even worse for multiple regressions and 

Random Forests but better than hard commodity VAR and VARX models. Regarding the co-

movement measure predicted, the respective VAR and VARX models of the Gerber statistic 

outperformed those of Pearson correlations, while for multiple regressions and Random Forests 

the picture is less clear. 

By establishing which models achieved the best results, the research questions formulated in 

Section 1.1 above can be answered more meaningfully using the findings of Section 5. Firstly, 

tests for difference in means between the two subsamples are performed. They show that there 

are statistically significant differences between mean co-movement levels in the two 

subsamples for both average Pearson correlations and average Gerber statistics. Furthermore, 

it was shown that on average, subsample 1 showed substantially higher levels of co-movement 

than subsample 2. These findings are further supported by the preliminary analyses of Section 

4.4, in particular Figure 3: Commodity price co-movement in the sample period and Table 2. 

Resulting from this, we can answer Sub-question 5, since the evidence suggests that there is a 

significant structural change in levels of commodity price co-movement during the considered 

sample period.  

Following this, the results of all models implemented in this research are given. Using this in 

combination with the model performance comparison above, Sub-questions 1 to 4 can be 

answered. To recall, Sub-question 1 addressed whether there is evidence of significant 

macroeconomic factors acting as determinants of commodity price co-movement in the sample 

period. Sub-questions 1a and 1b broke this down further into significant effects of direct and 

indirect factors respectively, as defined in Section 2.3. Regarding Sub-question 1, two aspects 

are important to consider: Firstly, that throughout all models, certain variables showed 

significant coefficients for linear models and comparably high VIMs for non-linear models, 

and secondly, that two of the four model types presented show relatively high adjusted 𝑅2 

values of about 0.723. Hence, can Sub-question 1 be answered as the results suggest that there 

is evidence of significant macroeconomic factors acting as determinants of commodity price 

co-movement. In Sub-question 1a, only the effects of proxies for supply and demand which 

were specified as direct factors are investigated. There, the results showed mixed findings, with 

most coefficients of supply and demand proxies not being significant across most models. 

However, there were some cases in which their coefficients showed significant effects on 

commodity price co-movement. For instance, regarding demand factors, did the first lag of 

industrial production growth in the full VARX model predicting Gerber statistics show 

significantly negative effects. Throughout the other VARX models predicting Gerber statistics, 

 
23 Only the full VAR model of Pearson showed an adjusted 𝑅2 value slightly below 0.7, while all other full VAR 

and VARX models showed 𝑅2 values above that. 
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it also showed negative effects at differing significance levels, except for the second subsample 

model. Otherwise, it only showed significance in some subsample VAR models and in one 

subsample VARX model for Pearson correlations. GDP growth on the other hand, with a few 

scattered exceptions, did not yield statistically significant coefficients. For supply factors, PPI 

and the U.S. Energy Price Return Index were investigated. The second lag of PPI did hereby 

show negative effects in the full and soft commodity VAR models predicting Pearson, but 

otherwise only scattered significant effects. Similarly, the Energy Index showed negative 

effects at 10% significance in the full VARX model predicting Gerber, but only scattered 

significances in the other models. In the Random Forest models, direct factors showed 

comparably low VIMs, with demand factors having slightly higher values, and in multiple 

regressions direct factors showed no significance. As a result of these conflicting findings, we 

cannot trust the effects of direct factor on commodity price co-movement we found to be valid. 

Therefore, Sub-question 1a is answered as there is no clear evidence of proxies for direct factors 

related to supply and demand significantly affecting commodity price co-movement. To 

answer Sub-question 1b, indirect factors were investigated. Thereby, both the EUR/USD 

foreign exchange rate and the monthly Bloomberg Commodity Index variance showed high 

significance across most models. Both variables showed highly significant effects in the 

multiple regressions and VARX models, while EUR/USD also showed significance in the VAR 

models of Gerber (where BCI variance only showed effects at 10% significance). For 

EUR/USD, these effects are consistent across most Random Forest models as well, but for BCI 

variance they only hold for some Random Forests. Furthermore, did both CPI growth and 10-

year U.S. T-Bill yields show significant effects in the VAR model of Pearson at a level of 5%. 

10-year T-Bill yields moreover show high VIMs in the subsample 2 Random Forest models. 

Concluding from this, Sub-question 1b is answered as the findings suggest indirect 

macroeconomic factors, in particular foreign exchange rates (EUR/USD) and commodity 

market uncertainty (BCI Var), to have significant effects on commodity price co-movement 

levels.  

To investigate Sub-question 2, the outcomes of the two subsample models are compared. This 

gives insights into how the effects of macroeconomic factors on commodity price co-

movement change over time by investigating both subsequent periods separately. In multiple 

regressions, the significance of many coefficients changed over time, with many only being 

significant in the first subsample and some exclusively in the second. In case of significance in 

both subsamples, the signs of the coefficients changed, except for the monthly BCI variance 

which showed positive effects throughout both periods. For the VAR and VARX models 

considering the two subsamples, the significance of most effects differs between the two 

periods as well. Again, in case of significant effects in both respective models, the sign of the 

coefficients’ changes.24 Hence, do these results suggest the effects of macroeconomic 

determinants on co-movement levels to change over time in the period considered. While the 

effects of various variables change either sign or significance, those of the two variables 

considered to be valid as determinants should be considered as most important. In the most 

precise models, their effects changed in significance and cannot be regarded to be statistically 

significant in both subsamples. Resulting from this, we can answer Sub-question 2 and state 

 
24 An exception hereby is the second lag of the EUR/USD rate in the relevant VAR and VARX models of Gerber 

statistics, where the signs did not change. However, did the coefficients of the subsample 2 models only show 

effects at 10% significance. 
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that the effects of determinants vary over time. Additionally, these effects are mostly significant 

in the first subsample with higher co-movement. Hence, is indicated that macroeconomic 

factors influence commodity price co-movement more when it is exceptionally high. 

To answer Sub-question 3, differences between the co-movement of hard and soft commodities 

were investigated. This can be split into three parts: co-movement levels, the proportion of 

excess co-movement that remains unexplained, and effects of macroeconomic predictors. In 

Table 3, Wilcoxon rank-sum tests show that the mean co-movement levels in subsamples 1 and 

2 are statistically different. Measured by Geber statistics, this is significant at the 1% level, but 

measured by Pearson correlations it is only significant at 10%. Table 2 furthermore shows 

descriptive statistics, where hard commodities showed higher levels of co-movement of price 

returns than soft commodities. For Gerber statistics, this is more pronounced than for Pearson 

correlations. Moreover, do the performance metrics in Table 9 show that co-movement for 

exclusively hard or soft commodities was harder to explain by the models applied. In VAR and 

VARX models, soft commodities showed lower 𝑀𝑆𝐸s and higher multiple 𝑅2 values than hard 

commodities. This is consistent with the adjusted 𝑅2 values of Section 5.25 Hence, were soft 

commodities predicted with more accuracy and show less excess co-movement based on the 

results presented earlier. Regarding the effects of macroeconomic predictor variables, there 

were some consistencies across hard and soft commodity models. For instance, did the monthly 

BCI variance show significant effects across relevant VARX models at 5% and multiple 

regression models a 1%. The EUR/USD exchange rate only showed this for multiple 

regressions of Pearson at a level of 1%, while all other consistencies were only significant at a 

10% significance level. Moreover, the hard and soft commodity models show several 

significant effects of certain variables that are not seen in the respective other soft or hard 

commodity model. The Random Forests also show some differences in VIMs of hard and soft 

commodity models, with this being more pronounced for models predicting Gerber statistics. 

Considering these three points of focus, we can answer Sub-question 3 and conclude that the 

findings suggest the magnitude of co-movements, the proportion of unexplained excess co-

movement, and the effects of macroeconomic factors to differ between hard and soft 

commodities. Moreover, does the co-movement of prices of exclusively hard or soft 

commodities seem to be harder to predict than that of various types of commodities. However, 

might the number of commodities considered in co-movement measures also have an influence 

on this. 

In Sub-question 4 it is examined whether novel co-movement measures and methodologies 

allow to predict commodity price co-movement more accurately, resulting in less excess co-

movement. Hence, is the performance of models applying Gerber statistics compared to that of 

models using Pearson correlations, and the performance of Random Forest models to 

traditional ones. Regarding Random Forest models, it can be seen in Table 9 that in terms of 

𝑀𝑆𝐸 values, both VAR and VARX models vastly outperform the Random Forest models that 

were applied. In fact, did Random Forest models show only slightly lower 𝑀𝑆𝐸 values than 

multiple regression models. In one case, the second subsample model of Pearson, the multiple 

regression even showed a better 𝑀𝑆𝐸. This also holds true when considering 𝑅2 values, 

however, with more differences between Random Forests and multiple regressions. These 𝑅2 

 
25 For the worse performing models, multiple regressions, and Random Forest regressions, this does not hold true. 

In the context of excess co-movement in this case, however, only the best performing models are considered. 



46 

 

values should be interpreted with caution, however, since they are not directly comparable. To 

recall: The performance measures of Random Forests were hereby collected on out-of-bag 

samples across the two 10-fold cross-validations. Hence, do they represent the performance of 

the Random Forests on unforeseen data with some confidence, but it was not split into separate 

training and test sets. Therefore, 𝑀𝑆𝐸s are the more general and reliable measure to assess this. 

Moreover, the Gerber statistic was used as a novel measure of asset price co-movement, which 

was said to be superior to Pearson correlations in several aspects according to past research 

(Algieri et al., 2021). Again, its performance compared to Pearson correlations can be seen in 

Table 9. There, VAR and VARX models predicting 6-month moving average pairwise Gerber 

statistics outperformed those predicting Pearson correlations in all cases. Multiple regressions 

showed rather mixed results, with Gerber statistics overall showing lower 𝑀𝑆𝐸 values but also 

lower 𝑅2 values. In Random Forests, the models predicting Gerber statistics outperformed 

those of Pearson correlations across both performance metrics, except for the first subsample 

models.26 Resulting from this, we can conclude two findings to answer Sub-question 4: Firstly, 

do the results suggest Gerber statistics to allow for better co-movement prediction accuracy, at 

least in the best performing models. Secondly, is there no evidence that the use of Random 

Forest regressions increases prediction accuracy. This, however, might this be due to the 

research’s limitations mentioned in the Section 7.2 and should encourage further research.  

  

 
26 The hard commodity Random Forest regressions also showed a higher OBB 𝑅2 for the Pearson model, but a 

lower 𝑀𝑆𝐸 for the Gerber model. 
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7. Conclusion 
To recall, the main research question of this thesis was formulated as follows: “How well can 

different types of co-movement measures and models with macroeconomic determinants as 

inputs explain commodity price co-movement between mid-2003 and early 2023?”  

To answer it based on the findings of Sub-questions 1-4, several aspects are considered. Firstly, 

did VARX models followed by VAR models explain commodity price co-movement best in 

terms of performance metrics. Random Forests on the other hand only achieved slightly better 

results than multiple regressions, which overall performed worst. Moreover, at least in the two 

best performing types of models, Gerber statistics showed an edge over Pearson correlations 

regarding model performance. Additionally, do the results suggest two key findings closely 

related to the research question: Overall, does the co-movement of exclusively hard and soft 

commodities seem to be harder to model than that of various commodities, at least with the 

models applied. Furthermore, did macroeconomic determinants generally show more effects 

in the subsample with higher co-movement, where models also achieved higher 𝑅2 values. This 

indicates that commodity price co-movement is easier to explain with macroeconomic 

variables and the considered methods when it is exceptionally high. 

7.1. Implications and contribution to the literature 

The contribution of this thesis to the existing literature on commodity price co-movement can 

be summarized as follows: Firstly, it gives further insights into the effects of macroeconomic 

variables on overall co-movement levels, adding to the findings of previous studies. Moreover, 

it employs the Gerber statistic and hence contributes to the growing body of literature on the 

application of this co-movement measure in the context of commodity prices. It does so 

especially, by relating its use to model performance and the usefulness of Gerber statistics in 

minimizing excess co-movement. Lastly, this thesis newly introduced Random Forest 

regressions to the concept of commodity price co-movement, giving novel insights into their 

applicability in this context. 

Regarding the determinants of commodity price co-movement investigated in this paper, it is 

notable that overall, variables classified as indirect factors in Section 2 showed more 

significance throughout the models considered. This adds to the findings of Alquist et al. 

(2020), who showed that most movements in commodity prices can be attributed to indirect 

factors. For interest rates, no relationship was detected in most models, which is in line with 

the research of for instance Ai et al. (2006) and de Nicola et al. (2016). The full sample VAR 

model predicting Pearson correlations, shows a significant, negative relationship between 10-

year Treasury bill yields and co-movement levels, which would add to the findings of Byrne et 

al. (2013) and Gruber and Vigfusson (2018). This relationship, however, cannot be validated 

across the other models considered (except for the full sample multiple regression of Pearson). 

Regarding exchange rates, we found statistically significant effects on co-movement level, 

especially for the EUR/USD exchange rate. This somewhat complements the findings of 

Poncela et al. (2014), who found increases in exchange rates to negatively impact commodity 

prices. Nonetheless, it is contrary to the results presented in Ai et al. (2006) and de Nicola et 

al. (2016) where little to no significant effects are seen. Lastly, for stock market uncertainty, 

no consistent significance across models is seen. This is contradicting the positive relationship 
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found by de Nicola et al. (2016). However, did commodity market uncertainty, as measured by 

monthly BCI variances, show significant, positive effects in many cases.  

Following the argumentation made in Ai et al. (2006), who concluded no excess co-movement 

to be present with adjusted 𝑅2 values between 0.864 and 0.912 in their equilibrium model, the 

same could be concluded for certain results of this research. Thereby is notable, however, that 

pairwise co-movement was investigated in Ai et al. (2006) and that additional tests were 

performed. Nonetheless, did the subsample 1 VARX model of Gerber statistics, for instance, 

achieve an 𝑅2 of 0.84 while the respective full model showed an 𝑅2 of 0.77. Hereby is 

considered that the included macroeconomic variables are far from exhaustive, and that real 

world limitations such as measurement error might make it impossible to predict commodity 

price co-movement with perfect accuracy. Regardless of the existence of excess co-movement, 

it was established that Gerber statistics showed superior model accuracy compared to Pearson 

correlations in the most relevant models. In demonstrating this, the research presented here 

provides a valuable contribution to the literature on commodity price co-movement and should 

encourage future research to apply Gerber statistics in this context. Adding to this, Random 

Forest regressions were applied to model commodity price co-movement for the first time in 

existing literature. These however, contrary to the use of Gerber statistics, did not increase 

prediction accuracy. Hence, this research does not indicate their usefulness in the given context, 

but further research and academic literature on the applicability of Random Forests to this topic 

is needed because of the limitations mentioned in Section 7.2. 

The results of this paper have several implications, both for future research and for professional 

investors. For future research, some implications were already mentioned as part of the 

contribution to literature. To recall: most notably, should academia consider the use of the 

Gerber statistic in future work on the topic of commodity price co-movement. Its performance 

should be further validated by comparing it to other co-movement measures like multiple 𝑅2, 

and by investigating the effects of altering Gerber thresholds. Moreover, the results on impacts 

of macroeconomic variables on commodity price co-movement presented here should be 

further validated. For instance, this could be done with additional robustness checks such as 

additional explanatory variables and a broader consideration of commodities. Moreover, it 

should be checked whether the results hold across different countries and not only the United 

States. Regarding VAR models and other time-series models, the results should be 

reinvestigated using more lags in larger datasets. More importantly, however, future research 

should reinvestigate the performance of Random Forest models using larger datasets, as they 

did not show to be effective in predicting commodity price co-movement according to the 

results presented earlier. Nonetheless, offer Random Forests a novel perspective on the topic 

and may provide certain benefits to linear models, e.g., since they are not reliant on as many 

data assumptions, which are oftentimes violated when dealing with financial data. Thus, should 

they be further considered and not excluded from future research on this topic.  

To professional investors, especially the insight of enhanced model performance when 

applying Gerber statistics as the measure of co-movement for commodities might prove 

beneficial. This can have implications on e.g., quantitative portfolio management strategies 

applied to commodities. Here is notable however, that Gerber statistics are already used by 
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certain institutional investors.27 Moreover, do the results on determinants of commodity price 

co-movement suggest further real-world implications for investors: When modeling co-

movement of commodity prices, two variables should be considered particularly. Firstly, the 

EUR/USD exchange rate, and secondly commodity market volatility. 

7.2. Limitations 

To highlight this research’s main limitations, residual analyses are given firstly, with other 

limitations being discussed consequently. Table 10 gives the results of the residual analyses, 

while additionally impulse response functions of the full sample VAR models are given in 

Appendix B4: Impulse response functions.  

 
27 McElhaney, A. (2022). A hedge fund manager reluctantly challenged - then collaborated with - Harry 

Markowitz. Institutional Investor. 

 https://www.institutionalinvestor.com/article/2bstnue49xqx5peulg2yo/culture/a-hedge-fund-manager-

 reluctantly-challenged-then-collaborated-with-harry-markowitz 

Table 10: Residual analyses 

Model Shapiro-Wilk Durbin-Watson Breusch-Pagan Ljung-Box 

P
ea

rs
o

n
 

F
u

ll
 

Multiple Regression 0.987** 0.711 21.033** 
 

VAR 0.937*** 
 

0.852  0.016  

VARX 0.958*** 
 

1.162  0.001  

Random Forest 0.992  
   

H
ar

d
 C

. Multiple Regression 0.991  0.768 11.626  
 

VAR 0.980*** 
 

0.001  0.046  

VARX 0.987** 
 

0.186  0.099  

Random Forest 0.994  
   

S
o

ft
 C

. Multiple Regression 0.991  0.768 11.626 
 

VAR 0.98*** 
 

0.001  0.046  

VARX 0.987** 
 

0.186  0.099  

Random Forest 0.994  
   

S
u

b
. 

1
 Multiple Regression 0.975** 0.804 14.112 

 

VAR 0.985  
 

1.740  0.018  

VARX 0.987  
 

0.144  0.060  

Random Forest 0.978* 
   

S
u

b
. 

2
 Multiple Regression 0.987  0.692 27.010*** 

 

VAR 0.960*** 
 

1.147  0.000  

VARX 0.968*** 
 

0.746  0.442  

Random Forest 0.987  
   

G
er

b
er

 

F
u

ll
 

Multiple Regression 0.980*** 0.471 34.621*** 
 

VAR 0.980*** 
 

9.593*** 0.049  

VARX 0.992  
 

7.593*** 0.006  

Random Forest 0.981*** 
   

H
ar

d
 C

. Multiple Regression 0.991  0.625 12.330  
 

VAR 0.994  
 

5.513** 0.007  

VARX 0.992  
 

0.337  0.077  

Random Forest 0.995  
   

S
o

ft
 C

. Multiple Regression 0.949*** 0.360 10.881  
 

VAR 0.984** 
 

6.344** 0.397  

VARX 0.983*** 
 

3.305* 0.507  

Random Forest 0.966*** 
   

S
u

b
. 

1
 Multiple Regression 0.994  0.684 21.883** 

 

VAR 0.995  
 

0.619  0.313  

VARX 0.992  
 

0.044  0.547  

Random Forest 0.982  
   

S
u

b
. 

2
 Multiple Regression 0.980* 0.530 13.642  

 

VAR 0.969*** 
 

2.542  0.194  

VARX 0.974** 
 

3.128* 0.062  

Random Forest 0.978* 
   

https://www.institutionalinvestor.com/article/2bstnue49xqx5peulg2yo/culture/a-hedge-fund-manager-%09reluctantly-challenged-then-collaborated-with-harry-markowitz
https://www.institutionalinvestor.com/article/2bstnue49xqx5peulg2yo/culture/a-hedge-fund-manager-%09reluctantly-challenged-then-collaborated-with-harry-markowitz
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In Table 10, Shapiro-Wilk tests to check for normality in the residuals are given for all models, 

and Durbin-Watson tests to check for autocorrelation in multiple regression models. For VAR 

and VARX models, Ljung-Box Q-tests were used to check for autocorrelation in the equations 

of interest. Moreover, Breusch-Pagen tests investigating heteroscedasticity are given for all 

linear models. Thereby, next to test statistics, applicable p-value significances are given as in 

Section 5. In the column depicting Shapiro-Wilk tests, many model residuals do not qualify to 

be considered normally distributed, as their p-values lie below the given significance levels. 

For the full models, only the Random Forest residuals show normality when predicting 

Pearson, while when predicting Gerber statistics only the VARX residuals do so. In the 

remaining Pearson models, VAR and VARX model residuals did not show normality, except 

for in subsample 1. For multiple regressions and Random Forests of Pearson, the inverse is 

true, however. The remaining models predicting Gerber statistics, on the other hand, did not 

show normally distributed residuals in soft commodity and subsample 2 models, but normally 

distributed residuals in the hard commodity and subsample 1 models, at least at 10% 

significance.28 

Moreover, Breusch-Pagan tests were applied to check for heteroscedasticity in all linear models 

presented. Considering Pearson correlation models, the VAR and VARX models can be 

considered to have homoscedastic residuals, while multiple regressions showed unequal 

variance in residuals in the full and subsample 2 models. For Gerber statistics, all linear models 

of the full sample showed heteroscedasticity in error terms at a 1% significance level. Also, 

across subsample 2 and hard and soft commodity models, VAR and VARX models showed 

heteroscedasticity in some cases. Multiple regressions on the other hand only showed this in 

subsample 1. Hence, do the findings indicate that, with regards to heteroscedasticity of 

residuals, Pearson correlations might have an edge over Gerber statistics when modelling 

commodity price co-movement. Lastly, to investigate autocorrelation, Durbin-Watson tests are 

used for multiple regressions and Ljung-Box Q-tests (Q-tests) for the equations of interest in 

VAR and VARX models. These tests indicate for multiple regressions, since all test statistics 

are smaller than 2, that there is positive autocorrelation present in all models. The Q-tests for 

autocorrelation applied to VAR and VARX models, however, do not suggest autocorrelation 

in residuals of the equation of interest in all models considered. Hence, should the results of 

the multiple regressions be interpreted carefully with regards to autocorrelation, since it can 

lead to biased estimated and standard errors, and can indicate the presence of spurious 

relationships between the variables (See e.g., Hayashi, 2011). The VAR and VARX models, 

however, do not seem to have this limitation. 

Additionally, to these tests, IRFs are given in Appendix B4: Impulse response functions for the 

full sample VAR models, to investigate the behavior of variables used as determinants of 

commodity price co-movement in VAR frameworks. They give further insights into the 

direction and duration of responses. There can be seen, considering both Pearson correlations 

and Gerber statistics, that several variables show persistent effects as their IRFs do not return 

to zero within the 10 periods shown. This can indicate that VAR(2) models like the ones used 

in this research might not consider enough lags to capture all relevant relationships between 

the macroeconomic variables and co-movement levels. The results of the Q-Tests, on the other 

 
28 Hereby is notable, that Random Forest models do not necessarily rely on normality in input variables nor 

residuals. This was still investigated, however, to get insights into the distribution of their residuals. 
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hand, do not suggest so as no autocorrelation is present. Here needs to be considered, that the 

lag number of 2 was determined using the AIC, but only values up to 6 were investigated as 

this is the time frame of the moving averages predicted. In larger datasets with moving averages 

of longer periods for instance, information criteria might thus suggest other lag numbers. 

This leads us to another crucial limitation of the research presented here: its data. Thereby must 

be noted firstly, that the overall dataset size is rather limited. Hence, do the models only have 

a rather small number of observations to be trained with. This has implications especially on 

Random Forest models, since they usually work with significantly larger datasets (See e.g., 

Breiman, 2001). In conjunction with the dataset size, the time horizon investigated in this study 

is rather limited as well. It encompasses almost the last 20 years, but commodity price co-

movement was shown to reach high levels prior to this in recent research (Zaremba et al., 2021) 

and those periods should also be considered for a more thorough analysis. Moreover, only a 

monthly data frequency is considered, because of the availability of data on macroeconomic 

factors. Daily data, however, might reveal additional relationships between the variables that 

are not seen when investigating commodity price co-movement on a monthly basis. This would 

also result in drastically more datapoints, which might enhance the performance of Random 

Forest applications to this context. Lastly, regarding data limitations, the variables used in this 

research must be mentioned. For co-movement, it is crucial to note that only 20 commodity 

price series were considered in the co-movement measures, and only 10 for co-movement of 

exclusively hard or soft commodities. Hence, could co-movement measures incorporating 

more commodities yield different results. Adding to this, must be noted that also the list of 

macroeconomic determinants considered here is far from exhaustive. There are several factors 

not considered in this research, such as for instance daily market liquidity (Zhang & Ding, 

2021; Zhang et al., 2019), and latent variables such as forecasts (Pindyck & Rotemberg, 1990). 

Regarding supply and demand factors, more precise estimates than simple proxies could be 

used as well. In past research, this was for instance done using inventory levels (Ai et al., 2006). 

Lastly, another relevant limitation to this research’s results is the restricted amount of 

robustness checks performed here. There are the subsample models and models investigating 

only hard and soft commodities to validate the results of the full sample models to some extent, 

but additional robustness checks should be considered in further investigations of co-

movement. Some possible robustness checks for validation of the results are presented in the 

following section, along with other suggestions for further research. 

7.3. Future research 

Regarding robustness checks for additional validation of the results, several aspects are to be 

considered in future research. As mentioned earlier: More explanatory variables should be 

included in models of commodity price co-movement to reinvestigate effects of certain factors. 

Similarly, should co-movement of different or more extensive selections of commodities be 

investigated. Moreover, should longer time spans be considered in future work on the topic, 

perhaps with daily data frequency.  

Furthermore, are there several other suggestions for future research. Firstly, did the research 

presented in this thesis only focus on commodity prices in U.S. Dollar and macroeconomic 

variables in or directly related to the United States. Hence, should the findings robustness 

across different countries be considered in validations of future research. Moreover, should be 

investigated whether the co-movement of only hard and soft commodities is indeed harder to 
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predict than that of various types of commodities, since the research presented here suggests 

this. Adding to this, should commodities not only be classified into hard and soft commodities 

but rather into sectors to decompose this further and give insights into differences between 

commodity sectors.29 The research also suggests that when co-movement levels are high, 

macroeconomic variables show more significant effects. As a result, it should be examined 

whether this higher co-movement is indeed due to responses to macroeconomic variables 

unique to commodity markets, or whether it is because of broader market responses like 

contagion as the period coincides with the 2008 financial crisis. Most importantly, however, 

does this research hold two direct implications for further research: The superiority of Gerber 

statistics over Pearson correlations and the relatively bad performance of Random Forest 

regressions in the context of commodity price co-movement. For research on Gerber statistics, 

the threshold of the Gerber statistic might be adapted, as was indicated in Gerber et al. (2022). 

This could be done by considering a different fraction of the returns’ standard deviation or a 

different, more robust measure as the basis of the threshold. Regarding its comparison to 

traditional measures of co-movement, other metrics like multiple 𝑅2 should be investigated, as 

was done in e.g., Zaremba et al. (2021). Random Forest models on the other hand should be 

applied to larger datasets, and it should be evaluated in further research whether they offer 

benefits over linear models due to for instance less reliance on assumptions. 

7.4. Concluding remarks 

The research presented in this thesis aims to give insights into the applicability of various 

methods and co-movement measures in the context of commodity price co-movement. The 

findings show that commodity price co-movement can be explained rather well with 

macroeconomic determinants, depending on the methodology used. VAR and VARX models 

applying Gerber statistics thereby outperformed those applying Pearson correlations and 

showed the highest prediction accuracy overall, questioning the existence of excess co-

movement when drawing similar conclusions to past research. Random Forest models on the 

other hand, did not prove very effective in predicting common movements of commodity prices 

in this research. Across all models considered, the EUR/USD exchange rate seemed to be the 

most influential determinant, followed by commodity market uncertainty as measured by 

monthly commodity index variances.  

The main contribution of this thesis is the comparison of both traditional co-movement 

measures with novel ones, and established, linear models with non-linear machine learning 

algorithms. In doing so, this research provided a groundwork for further evaluation of 

methodologies to investigate commodity price co-movement. With more thorough 

comparisons of this and more complex applications of the best suited methods, the existence 

of excess co-movement as proposed more than 30 years ago by Pindyck and Rotemberg (1990), 

may soon be revisited more systematically. 

 

  

 
29 For instance, see Table 12. 
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Appendix A 

Appendix A1: Study selection process 

The database Semantic Scholar30 was used as the source of the academic papers initially 

searched for in Phase 1. There, it was searched for the search terms presented in the figure 

below under “search terms”, whereby must be noted that the first and second terms are the 

same except for the spelling of co-movement. Neither of the ways of spelling (“co-movement” 

and “comovement”) is correct or false and both are used in academic literature. Hence, do the 

search results differ and are relevant for both search terms, although some articles are shown 

in either case. The right-hand side of the figure depicts the number of articles found for each 

search term in the order they are being presented in. These numbers however may not be simply 

added up because of the duplicate articles that are not dependent on the spelling of co-

movement. To restrict the search results as part of Phases 2, 3, and 4, filters available on the 

Semantic Scholar´s website were used. Firstly, papers older than 2010 were filtered out in 

Phase 2, since the scope of this thesis is on recent years and since there were interesting 

developments in commodity price co-movements in recent years which are discussed in the 

literature review. Consequently, the database’s results were filtered by their study field in Phase 

3, whereby only papers within the study fields of business and economics were selected. As a 

final restriction based on the papers’ importance, all results with less than three citations were 

filtered out in Phase 4. This was done, since there was a too large number of potentially relevant 

papers to investigate effectively after the restriction of Phase 3. The restrictions of these 

selection phases resulted in 56, 75, and 50 search results for each of the search terms 

respectively, including a few duplicates. From there on, papers were selected based on the fit 

to the research of this 

thesis. Moreover, the 

remaining duplicates 

were excluded which 

resulted in 29 key 

articles to be considered 

for the literature review 

at the end of Phase 5. 

Additionally, several 

exceptions which are the 

product of snowballing 

and further searches 

were added to this 

selection in Phase 6. 

This resulted in a total of 

36 papers, although not 

all are directly cited. 

 

 
30 Semantic Scholar. (2023). A free, AI-powered research tool for scientific literature. 

 https://www.semanticscholar.org/  

Figure 4: Literature selection process 

https://www.semanticscholar.org/
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Appendix A2: Literature comparison 

Table 11: Overview of highly connected literature 

Article Main methods used Validation methods Dataset sizes Co-movement measure Commonly used variables Model fits 

Ai et al. (2006) Regression (OLS, 2SLS), 

'Equilibrium model', 

'Macro model' 

Cross-validation 

approach 

Q1/1957-

Q4/2002, 

quarterly 

Pearson's correlation, 

Spearman rank 

correlation 

Equilibrium model: U.S. prices, 

inventories, harvests/yields 

Macro model: IP, GDP, CPI, 3m T-

bills, Dollar index (FXR) 

Change in log price (Adj.R2):                             

Macro model (OLS): 0.016-0.108  

Equil. model (2SLS): 0.308-0.542 

Price levels (Adj.R2):     Macro: 0.58-0.719 

     Equil.: 0.864-0.912  

Algieri et al. (2021) CARML model, DCC 

model, (historical 

simulation) 

Brier (skill) score, 

Robustness checks 

(Gerber thresholds) 

N = 3500 Time-varying Gerber 

correlations 

(Recession phases identified by the 

National Bureau of Economic 

Research) 

Brier skill scores 

CARML: 0.22-3.245 

DCC: -0.512-4.242 

FHS:                 -3.201-1.152 

Alquist et al. (2020) Factor model, FAVAR Forecasting application, 

Robustness checks, 

Moment condition length 

Jan 1968 - Jan 

2013, monthly, 

(missing cases) 

Rolling R squared of 1-

year price changes 

Indirect common factor, Direct 

common factor, U.S. CPI, IP 

(OPEC production shocks, U.S. 

economic conditions) 

MSPE Ratios: 0.921-1.106 

Antwi et al. (2021) Empirical mode 

decomposition (EMD), 

Variational mode 

decomposition (VDM) 

 - N = 1277 - High frequency, low frequency and 

trend components 

 - 

Bakas and 

Triantafyllou (2020) 

VAR model Alternative volatility 

measures, alternative IRF 

decomposition, 

excluding observations 

Q1/1996-

Q1/2020 

- World pandemic uncertainty index 

(WPUI), World industrial production 

index (WIP), Geopolitical risk index 

(GPR) 

 - 

Baur (2003) Multinominal logit model, 

multivariate GARCH 

model 

Simulation study N = 389 Introduced in the paper  -  - 

Byrne et al. (2013) FAVAR, Panel methods 

(Panel analysis of 

nonstationary and 

idiosyncratic components, 

PANIC) 

Robustness checks 

(Alternative risk 

measures/GDP, 

additional explanatory 

variables) 

Time dimension 

T = 109 

cross sectional 

dimension = 24 

Correlation methodology 

of Ng (2006) 

U.S. CPI, real interest rate, risk (stock 

market uncertainty), demand (real U.S. 

GDP growth), supply shocks (real crude 

oil prices) 

R2 of real commodity prices and 

macroeconomic variables: 0.13 (real 

interest rates), 0.18 (risk), 0.07 (output 

growth), 0.02 (oil prices) 

Byrne et al. (2019) Dynamic Hierarchical 

Factor model, Time 

varying parameter 

FAVAR 

Alternative proxies as 

model variables 

Q1/1974-

Q3/2014 

Modeled by factors Demand (U.S. IP), interest rate (3m T-

bills), uncertainty (Variances of S&P 

GSCI, S&P 500), U.S. CPI 

Between 42.4% and 86.6% unexplained 

commodity price variance depending on 

sector 

Cai et al. (2019) three-dimensional 

continuous wavelet 

transform method, 

ARFIMA-FIGARCH, 

copula model 

Sub-sample and model 

comparison 

Jan 1991 - Dec 

2018, weekly 

Pearson correlation - - 
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Chien et al. (2021) Wavelet coherence 

method, wavelet-based 

Granger causality tests 

Sensitivity analysis 

wavelet-based Granger 

causality 

31st December 

2019 - 1st 

August 2020, 

daily 

Derived from Wavelet 

approach 

COVID-19 observations, oil and gold 

prices, US-EPU (news-based index), 

GPR (USA-geopolitical risk index), 

U.S. stock price index, FDI, gross 

domestic income, trade integration, 

emission intensity, exchange rates 

- 

Janzen and Smith 

(2012) 

SVAR model Robust standard errors, 

Wild bootstrap 

procedure, considering 

other commodities 

01/1968-

12/2011, 

monthly 

Price of crude oil to 

represent co-movement 

effects 

Global economic activity, current and 

expected supply and demand 

conditions, financial speculation 

(to observed cotton prices) 

- 

de Nicola et al. 

(2014) 

VAR, DCC models, 

rolling regression 

procedure, Structural 

break test, uniform spacing 

analysis 

Newley-West correction, 

BIC, alternative 

measures of returns 

01/1970–

05/2013, 

monthly 

Rolling unconditional 

correlations, Dynamic 

Conditional Correlations, 

Constant Conditional 

Correlations 

Standard deviation of S&P 500 returns, 

real interest rate, nominal prices of 

commodities 

- 

de Nicola et al. 

(2016)  

Unrestricted VAR model, 

Ng’s (2006) methodology, 

DCC models, Rolling 

regression approach of 

Tang and Xiong (2012) 

Standardized spacings 

variance ratio test 

statistic (SVR), 

breakpoint analysis, 

Uniform-spacings 

analysis 

520 monthly 

observations, 

subsamples 

Ng’s (2006) 

methodology, 

consideration of second 

mixed moments 

Trade-weighted U.S. Dollar index, 13w 

U.S. T-Bills, CPI, S&P 500 returns 

- 

Le Pen and Sévi 

(2017) 

Factor models, Principal 

components method, linear 

regression using factors 

Hansen’s (1982) J-test 02/1993-

11/2013, 

monthly 

(N=250) 

Conditional correlations 

(DCC) 

184 real and nominal macro variables 

from both emerging and developed 

countries,  

Component R2 ranging from 0.093 to 

0.3739, regression R2 from 0.0107 to 0.2858 

Pindyck and 

Rotemberg (1990) 

Instrumental variables 

regression, OLS 

regression, Latent variable 

models 

unrestricted 

contemporaneous 

covariance matrix 

01/1960-

12/1985, 

different 

frequencies 

R-squared values of 

regressions for excess co-

movement 

Various macroeconomic variables (IP, 

interest, inflation, etc.), latent variables 

R2 ranging from 0.09 to 0.39 (latent variable 

model), higher when including prices of 

other commodities 

Poncela et al. (2014) Dynamic factor model, 

FAVAR 

different Cholesky 

ordering of the variables 

in the VAR 

02/1992-

12/2012, 

monthly 

(Residual) factor 

correlations 

44 commodity prices, VIX, MSCI 

World, exchange rate, world IP, Energy 

index 

 

Zaremba et al. 

(2021) 

Pearson correlations, 

Gerber statistic, Multiple 

R2 

alternative estimation 

periods, prices in GBP 

instead of USD, 

including zero-return 

months, number of 

principal components R2 

01/1850-

05/2019 

Pearson correlations, 

Gerber statistic, Multiple 

R2 

Monthly commodity returns, Principal 

component of commodity returns 

- 

Zhang et al. (2019) Regression,  

Dick-Fuller tests for 

residuals 

- 01/2005-

12/2013 

Correlation matrices Spot and future prices of commodities, 

liquidity measures, CRB commodity 

index 

F-values of regressions 
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Appendix B 

Appendix B1: List of Commodity future continuations 

Table 12: Commodity Continuous Future price series 

Commodity 

Type 

Sector RIC Exchange Commodity Future Type Notes 

H
ar

d
 C

o
m

m
o
d

it
ie

s 

E
n

er
g

y
 

CLc1i NYMEX Light Sweet Crude Oil 

(WTI) 

Electronic Energy Future 

Continuation 1 

 

LCOc1ii ICE Brent Crude Oil Electronic Energy Future Price correction 

NGc1iii NYMEX Henry Hub Natural Gas Electronic Energy Future 
Continuation 1 

 

HOc1iv NYMEX NY Harbor ULSD Electronic Energy Future 

Continuation 1 

“Heating oil”; 

Price corrections 

B
as

e 
M

et
al

s HGc1v COMEX Copper Composite Commodity Future 
Continuation 1 

Price corrections 

SAFc3vi SHFE Aluminium Commodity Future Continuation 

3 

in CNY, 

converted to 

USD 

     

P
re

ci
o

u
s 

M
et

al
s 

GCc1vii COMEX Gold Composite Commodity Future 
Continuation 1 

 

SIc1viii COMEX Silver  Composite Commodity Future Price corrections 

PLc1ix NYMEX Platinum Electronic Commodity Future 

Continuation 1 

Imputation of 

missing values 
PAc1x NYMEX Palladium Electronic Commodity Future 

Continuation 1 

Imputation of 

missing values 

S
o

ft
 C

o
m

m
o
d

it
ie

s 

G
ra

in
s Wc1xi CBoT Wheat Composite Commodity Future 

Continuation 1 

 

Cc1xii CBoT Corn Composite Commodity Future  
 

O
il

se
ed

s Sc1xiii CBoT Soybeans Composite Commodity Future 
Continuation 1 

 

L
iv

es
to

ck
 

LCc1xiv CME Live Cattle Electronic Commodity Future 
Continuation 1 

 

LHc1xv CME Lean Hogs Electronic Commodity Future 

Continuation 1 

 

F
ib

re
s CTc2xvi ICE Cotton No. 2 Futures Electronic Commodity 

Future Continuation 2 

 

O
th

er
 s

o
ft

s 

SBc1xvii ICE Sugar No. 11 Futures Electronic Commodity 
Future Continuation 1 

 

KCc2xviii ICE Coffee C Futures Electronic Commodity 

Future Continuation 2 

“Coffee Arabica” 

CCc2xix ICE Cocoa Futures Electronic Commodity 

Future Continuation 2 

 

STFc1xx SGX TSR20 Rubber Commodity Future Continuation 

Month 1 
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Appendix B3: Information criteria results and RF learning curves 

Table 13: AIC (and BIC) results for VAR and VARX models 

  Sample Lag number 1 2 3 4 5 6 

V
A

R
 m

o
d

el
s P

ea
rs

o
n

 

All  AIC -140.79 -142.21 -142.14 -141.75 -141.67 -141.45 

 BIC -138.02 -136.88 -134.24 -131.29 -128.64 -125.86 

HC AIC -140.05 -141.38 -141.27 -140.87 -140.78 -140.56 

 BIC -137.28 -136.05 -133.38 -130.41 -127.76 -124.97 

SC AIC -140.02 -141.56 -141.38 -141.05 -140.96 -140.75 

 BIC -137.26 -136.23 -133.48 -130.59 -127.93 -125.15 

G
er

b
er

 

All  AIC -141.11 -142.51 -142.48 -142.14 -142.05 -141.83 

 BIC -138.35 -137.18 -134.58 -131.68 -129.03 -126.24 

HC AIC -140.27 -141.63 -141.50 -141.32 -141.22 -141.04 

 BIC -137.50 -136.30 -133.61 -130.86 -128.20 -125.45 

SC AIC -140.56 -142.07 -141.93 -141.62 -141.60 -141.30 

 BIC -137.80 -136.74 -134.04 -131.16 -128.57 -125.71 

V
A

R
X

 m
o

d
el

s P
ea

rs
o

n
 

All  AIC -140.79 -142.21 -142.14 -141.75 -141.67 -141.45 

 BIC -138.02 -136.88 -134.24 -131.29 -128.64 -125.86 

HC AIC -140.05 -141.38 -141.27 -140.87 -140.78 -140.56 

 BIC -137.28 -136.05 -133.38 -130.41 -127.76 -124.97 

SC AIC -140.02 -141.56 -141.38 -141.05 -140.96 -140.75 

 BIC -137.26 -136.23 -133.48 -130.59 -127.93 -125.15 

G
er

b
er

 

All  AIC -141.11 -142.51 -142.48 -142.14 -142.05 -141.83 

 BIC -138.35 -137.18 -134.58 -131.68 -129.03 -126.24 

HC AIC -140.27 -141.63 -141.50 -141.32 -141.22 -141.04 

 BIC -137.50 -136.30 -133.61 -130.86 -128.20 -125.45 

SC AIC -140.56 -142.07 -141.93 -141.62 -141.60 -141.30 

 BIC -137.80 -136.74 -134.04 -131.16 -128.57 -125.71 

 

Figure 5: Random Forest regression - Number of trees learning curves 
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Appendix B2: Full descriptive statistics 

Table 14: Descriptive statistics of subsamples 1 and 2 

Panel A: Subsample 1 

Variable Mean SD Min Max Range Skewness Kurtosis 

Pearson 0.151 0.119 -0.026 0.526 0.552 0.755 0.002 

Gerber 0.141 0.119 -0.031 0.491 0.522 0.824 0.064 

GDP 1.64% 3.11% -11.09% 7.25% 18.34% -1.544 3.398 

IP 0.07% 0.81% -4.48% 1.36% 5.84% -2.344 9.122 

PPI 0.33% 1.35% -5.48% 2.94% 8.42% -1.417 4.277 

TBill 13w 1.43% 1.87% -0.87% 5.62% 6.49% 0.770 -0.875 

TBill 10y 3.32% 1.06% 1.12% 5.55% 4.43% -0.116 -0.819 

Energy Index 0.68% 6.20% -18.65% 16.14% 34.80% -0.583 0.906 

USD Index -0.09% 2.53% -6.82% 7.50% 14.31% 0.271 0.663 

EUR/USD 1.332 0.094 1.179 1.577 0.399 0.653 -0.165 

CNY/USD 0.140 0.014 0.121 0.163 0.042 -0.079 -1.486 

SP500 Var 0.02% 0.03% 0.00% 0.24% 0.24% 4.662 24.927 

BCI Var 0.01% 0.01% 0.00% 0.08% 0.07% 2.680 9.374 

CPI 0.21% 0.45% -1.92% 1.22% 3.14% -1.121 3.713 

       N = 116 

Panel B: Subsample 2 

Variable Mean SD Min Max Range Skewness Kurtosis 

Pearson 0.081 0.078 -0.028 0.270 0.299 0.655 -0.651 

Gerber 0.087 0.079 -0.020 0.258 0.278 0.404 -1.100 

GDP 2.07% 10.95% -77.00% 45.99% 122.99% -3.055 27.377 

IP 0.03% 1.70% -14.37% 6.30% 20.66% -4.865 43.698 

PPI 0.20% 1.21% -4.02% 3.16% 7.18% -0.160 0.922 

TBill 13w 0.73% 1.25% -0.88% 4.68% 5.56% 1.198 1.037 

TBill 10y 1.97% 0.83% 0.12% 4.00% 3.88% -0.083 -0.518 

Energy Index -0.25% 8.60% -43.68% 26.73% 70.41% -0.677 5.304 

USD Index 0.22% 1.89% -5.13% 4.90% 10.03% -0.154 -0.095 

EUR/USD 1.157 0.090 0.980 1.387 0.407 0.952 0.528 

CNY/USD 0.152 0.007 0.137 0.165 0.028 0.033 -1.140 

SP500 Var 0.01% 0.03% 0.00% 0.34% 0.34% 9.010 87.715 

BCI Var 0.01% 0.01% 0.00% 0.05% 0.05% 3.218 13.032 

CPI 0.22% 0.37% -0.67% 1.37% 2.04% 0.408 0.604 

       N = 115 
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Table 15: Descriptive statistics of commodity price returns 

Commodity Mean SD Min Max Range Skewness Kurtosis 

LCOc1 0.23% 10.27% -79.15% 32.97% 112.12% -2.108 14.734 

CLc1 0.18% 11.12% -77.52% 62.78% 140.30% -0.963 13.078 

NGc1 -0.59% 14.85% -51.68% 48.52% 100.20% -0.129 1.418 

HOc1 0.32% 9.96% -38.04% 30.40% 68.44% -0.487 1.764 

HGc1 0.51% 7.56% -42.93% 28.82% 71.75% -0.712 4.949 

SAFc3 -0.03% 4.69% -14.38% 14.59% 28.97% 0.017 0.949 

GCc1 0.52% 4.81% -17.92% 14.03% 31.94% -0.193 0.599 

SIc1 0.49% 9.25% -32.58% 26.28% 58.86% -0.231 0.772 

PLc1 -0.04% 7.83% -60.64% 31.52% 92.16% -1.696 14.869 

PAc1 0.66% 10.26% -49.00% 46.63% 95.63% -0.644 4.824 

Wc1 0.14% 9.09% -29.19% 35.16% 64.35% 0.126 0.847 

Cc1 0.24% 8.94% -30.96% 26.32% 57.28% -0.325 0.749 

Sc1 0.16% 7.92% -39.90% 17.10% 57.00% -0.959 2.753 

LCc1 0.14% 6.17% -29.12% 33.13% 62.25% -0.433 6.245 

LHc1 -0.14% 10.92% -30.50% 32.03% 62.52% -0.108 0.207 

CTc2 -0.06% 8.27% -28.66% 20.03% 48.69% -0.425 0.415 

KCc2 0.22% 8.49% -25.57% 34.24% 59.81% 0.361 1.000 

CCc2 0.03% 7.75% -22.62% 21.29% 43.91% -0.123 -0.155 

SBc1 0.32% 9.12% -37.64% 26.98% 64.62% -0.251 1.638 

STFc1 -0.01% 8.27% -35.08% 21.98% 57.05% -0.449 1.333 

       N = 237 
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Figure 6: Full sample histograms 
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Figure 7: First subsample histograms 
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Figure 8: Subsample 2 Histograms 
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Figure 9: Commodity price return histograms 
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Appendix B4: Impulse response functions 

Figure 10: Impulse Response Functions VAR Pearson 
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Figure 11: Impulse response functions VAR Gerber 
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Appendix C: R code 
 
#   MSc BA Thesis - Financial management - University 
of Twente 
 
#   Title: Commodity price co-movement: Comparing 
models and correlation measures 
#   Appendix C: R codes 
#   Author: Luca Kozian 
#   Date: 24/09/2023 
 
 
# Packages and data 
  { 
  library(psych) 
  library(broom) 
  library(flextable) 
  library(purrr) 
  library(dplyr) 
  library(vars) 
  library(urca) 
  library(caret) 
  library(readxl) 
  library(lmtest) 
  library(pdp) 
  library(ranger) 
  library(ggplot2) 
 
  MScBA_Data_R <- read_excel("C:/ INSERT PATH HERE 
/MScBA_Data_R.xlsx",  
                             col_types = c("date", 
"numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric")) 
   
  Commodiy_returns <- read_excel("C:/ INSERT PATH HERE 
/Commodiy_returns.xlsx") 
   
   
} 
   
# Multiple Regression 
  { 
  # All commodities 
   
   
  # Multiple Regression with Pearson as the dependent 
variable 
  regression_pearson <- lm(Pearson ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R) 

  summary(regression_pearson) 
   
  # Multiple Regression with Gerber as the dependent 
variable 
  regression_gerber <- lm(Gerber ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R) 
  summary(regression_gerber) 
   
   
   
  # Hard/Soft commodities 
   
   
  # Hard commodities 
   
  regression_pearson_hc <- lm(Pearson_HC ~ GDP + IP + 
PPI + `TBill_13w` + `TBill_10y` + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI, 
data = MScBA_Data_R) 
  summary(regression_pearson_hc) 
   
  regression_gerber_hc <- lm(Gerber_HC ~ GDP + IP + PPI 
+ `TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R) 
  summary(regression_gerber_hc) 
   
   
  # Soft commodities 
  regression_pearson_sc <- lm(Pearson_SC ~ GDP + IP + 
PPI + `TBill_13w` + `TBill_10y` + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI, 
data = MScBA_Data_R) 
  summary(regression_pearson_sc) 
   
  regression_gerber_sc <- lm(Gerber_SC ~ GDP + IP + PPI 
+ `TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R) 
  summary(regression_gerber_sc) 
   
   
   
  # Sub-sample multiple regressions 
   
   
  # Split the data based on Date 
  MScBA_Data_R$Date <- as.Date(MScBA_Data_R$Date, 
format = "%d/%m/%Y") 
  MScBA_Data_R_1 <- filter(MScBA_Data_R, Date <= 
as.Date("2013-07-31")) 
  MScBA_Data_R_2 <- filter(MScBA_Data_R, Date >= 
as.Date("2013-08-31")) 

   
  # Multiple Regression with Pearson as the dependent 
variable on data before 31/08/2013 
  regression_pearson_1 <- lm(Pearson ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R_1) 
  summary(regression_pearson_1) 
   
  # Multiple Regression with Pearson as the dependent 
variable on data after 31/08/2013 
  regression_pearson_2 <- lm(Pearson ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R_2) 
  summary(regression_pearson_2) 
   
  # Multiple Regression with Gerber as the dependent 
variable on data before 31/08/2013 
  regression_gerber_1 <- lm(Gerber ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R_1) 
  summary(regression_gerber_1) 
   
  # Multiple Regression with Gerber as the dependent 
variable on data after 31/08/2013 
  regression_gerber_2 <- lm(Gerber ~ GDP + IP + PPI + 
`TBill_13w` + `TBill_10y` + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI, data = 
MScBA_Data_R_2) 
  summary(regression_gerber_2) 
   
   
} 
 
# VAR 
  { 
  # Create separate data frames for each dependent 
variable 
  data_pearson <- MScBA_Data_R[, c("Pearson", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
  data_gerber <- MScBA_Data_R[, c("Gerber", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
   
  data_pearson_hc <- MScBA_Data_R[, c("Pearson_HC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
  data_gerber_hc <- MScBA_Data_R[, c("Gerber_HC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
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"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
   
  data_pearson_sc <- MScBA_Data_R[, c("Pearson_SC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
  data_gerber_sc <- MScBA_Data_R[, c("Gerber_SC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
   
  data_pearson_1 <- MScBA_Data_R_1[, c("Pearson", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
  data_pearson_2 <- MScBA_Data_R_2[, c("Pearson", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
   
  data_gerber_1 <- MScBA_Data_R_1[, c("Gerber", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
  data_gerber_2 <- MScBA_Data_R_2[, c("Gerber", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
   
  # Rename 'Pearson_HC' and 'Gerber_HC' to 'Pearson' 
and 'Gerber' in data_pearson_hc and data_gerber_hc 
  colnames(data_pearson_hc)[colnames(data_pearson_hc) 
== 'Pearson_HC'] <- 'Pearson' 
  colnames(data_gerber_hc)[colnames(data_gerber_hc) == 
'Gerber_HC'] <- 'Gerber' 
   
  # Rename 'Pearson_SC' and 'Gerber_SC' to 'Pearson' 
and 'Gerber' in data_pearson_sc and data_gerber_sc 
  colnames(data_pearson_sc)[colnames(data_pearson_sc) 
== 'Pearson_SC'] <- 'Pearson' 
  colnames(data_gerber_sc)[colnames(data_gerber_sc) == 
'Gerber_SC'] <- 'Gerber' 
   
   
  # All commodities 
   
  # Pearson 
   
  # Perform BIC-based lag selection for Pearson 
  bic_results_pearson <- VARselect(data_pearson, 
lag.max = 6, type = "const") 
  print(bic_results_pearson) 
   

  # Determine the optimal number of lags using BIC for 
Pearson 
  max_lag_pearson <- VARselect(data_pearson, lag.max = 
6, type = "const")$selection[1] 
  print(max_lag_pearson) 
   
  # Fit the VAR model for Pearson with the selected lag 
  var_model_pearson <- VAR(data_pearson, p = 
max_lag_pearson, type = "const") 
   
  # Summary of the VAR model for Pearson 
  summary(var_model_pearson)$var$"Pearson" 
   
   
   
  # Gerber 
   
  # Perform BIC-based lag selection for Gerber 
  bic_results_gerber <- VARselect(data_gerber, lag.max 
= 6, type = "const") 
  print(bic_results_gerber) 
   
  # Determine the optimal number of lags using BIC for 
Gerber 
  max_lag_gerber <- VARselect(data_gerber, lag.max = 6, 
type = "const")$selection[1] 
  print(max_lag_gerber) 
   
  # Fit the VAR model for Gerber with the selected lag 
  var_model_gerber <- VAR(data_gerber, p = 
max_lag_gerber, type = "const") 
   
  # Summary of the VAR model for Gerber 
  summary(var_model_gerber)$var$"Gerber" 
   
   
   
  # Hard commodities 
   
  # Pearson_HC 
   
  # Perform BIC-based lag selection for Pearson 
  bic_results_pearson_hc <- VARselect(data_pearson_hc, 
lag.max = 6, type = "const") 
  print(bic_results_pearson_hc) 
   
  # Determine the optimal number of lags using BIC for 
Pearson 
  max_lag_pearson_hc <- VARselect(data_pearson_hc, 
lag.max = 6, type = "const")$selection[1] 
  print(max_lag_pearson_hc) 
   
  # Fit the VAR model for Pearson with the selected lag 
  var_model_pearson_hc <- VAR(data_pearson_hc, p = 
max_lag_pearson_hc, type = "const") 

   
  # Summary of the VAR model for Pearson 
  summary(var_model_pearson_hc)$var$"Pearson" 
   
   
  # Gerber_HC 
   
  # Perform BIC-based lag selection for Gerber 
  bic_results_gerber_hc <- VARselect(data_gerber_hc, 
lag.max = 6, type = "const") 
  print(bic_results_gerber_hc) 
   
  # Determine the optimal number of lags using BIC for 
Gerber 
  max_lag_gerber_hc <- VARselect(data_gerber_hc, 
lag.max = 6, type = "const")$selection[1] 
  print(max_lag_gerber_hc) 
   
  # Fit the VAR model for Gerber with the selected lag 
  var_model_gerber_hc <- VAR(data_gerber_hc, p = 
max_lag_gerber_hc, type = "const") 
   
  # Summary of the VAR model for Gerber 
  summary(var_model_gerber_hc)$var$"Gerber" 
   
   
   
  # Soft commodities 
   
  # Pearson_SC 
   
  # Perform BIC-based lag selection for Pearson_SC 
  bic_results_pearson_sc <- VARselect(data_pearson_sc, 
lag.max = 6, type = "const") 
  print(bic_results_pearson_sc) 
   
  # Determine the optimal number of lags using BIC for 
Pearson 
  max_lag_pearson_sc <- VARselect(data_pearson_sc, 
lag.max = 6, type = "const")$selection[1] 
  print(max_lag_pearson_sc) 
   
  # Fit the VAR model for Pearson with the selected lag 
  var_model_pearson_sc <- VAR(data_pearson_sc, p = 
max_lag_pearson_sc, type = "const") 
   
  # Summary of the VAR model for Pearson 
  summary(var_model_pearson_sc)$var$"Pearson" 
   
   
  # Gerber_SC 
   
  # Perform BIC-based lag selection for Gerber 
  bic_results_gerber_sc <- VARselect(data_gerber_sc, 
lag.max = 6, type = "const") 
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  print(bic_results_gerber_sc) 
   
  # Determine the optimal number of lags using BIC for 
Gerber 
  max_lag_gerber_sc <- VARselect(data_gerber_sc, 
lag.max = 6, type = "const")$selection[1] 
  print(max_lag_gerber_sc) 
   
  # Fit the VAR model for Gerber with the selected lag 
  var_model_gerber_sc <- VAR(data_gerber_sc, p = 
max_lag_gerber_sc, type = "const") 
   
  # Summary of the VAR model for Gerber 
  summary(var_model_gerber_sc)$var$"Gerber" 
   
   
   
  # Sub samples 
   
  # Pearson subset 1 
  var_model_pearson_1 <- VAR(data_pearson_1, p = 
max_lag_pearson, type = "const") 
  # Summary of the VAR model for Pearson subset 1 
  summary(var_model_pearson_1)$var$"Pearson" 
   
  # Pearson subset 2 
  var_model_pearson_2 <- VAR(data_pearson_2, p = 
max_lag_pearson, type = "const") 
  # Summary of the VAR model for Pearson subset 2 
  summary(var_model_pearson_2)$var$"Pearson" 
   
  # Gerber subset 1 
  var_model_gerber_1 <- VAR(data_gerber_1, p = 
max_lag_gerber, type = "const") 
  # Summary of the VAR model for Gerber subset 1 
  summary(var_model_gerber_1)$var$"Gerber" 
   
  # Gerber subset 2 
  var_model_gerber_2 <- VAR(data_gerber_2, p = 
max_lag_gerber, type = "const") 
  # Summary of the VAR model for Gerber subset 2 
  summary(var_model_gerber_2)$var$"Gerber" 
   
   
} 
 
# VARX 
  { 
  # Define the exogenous variables list 
  exog_vars_list <- c("GDP", "IP", "PPI", "TBill_13w", 
"TBill_10y", "EnergyIndex", "USDIndex", "EURUSD", 
"CNYUSD", "SP500Var", "BCIVar") 
   
   
  # All commodities 

   
   
  # Pearson 
  { 
    # Perform BIC-based lag selection for Pearson with 
exogenous variables 
    bic_results_pearson_exog <- VARselect(data_pearson, 
lag.max = 6, type = "const") 
    print(bic_results_pearson_exog) 
    # Determine the optimal number of lags using BIC 
for Pearson with exogenous variables 
    max_lag_pearson_exog <- VARselect(data_pearson, 
lag.max = 6, type = "const")$selection[1] 
    print(max_lag_pearson_exog) 
     
    # Number of lags you want for each exogenous 
variable 
    n_lags_pearson <- max_lag_pearson_exog  # Change 
this to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_pearson <- exog_vars_list 
    all_exog_vars_pearson <- exog_vars_pearson  # 
Initialize with original exogenous variables 
    for (var in exog_vars_pearson) { 
      for (lag in 1:n_lags_pearson) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_pearson <- data_pearson %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_pearson <- 
c(all_exog_vars_pearson, new_var_name)  # Add the new 
lagged variable to the list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_pearson_exog <- VAR(data_pearson[, 
c("Pearson", "CPI")],  
                                  p = 
max_lag_pearson_exog,  
                                  type = "const",  
                                  exogen = 
data_pearson[, all_exog_vars_pearson]) 
    # Summary of the model 
    summary(var_model_pearson_exog) 
  } 
   
  # Gerber 
  { 
    # Perform BIC-based lag selection for Gerber with 
exogenous variables 
    bic_results_gerber_exog <- VARselect(data_gerber, 
lag.max = 6, type = "const") 
    print(bic_results_gerber_exog) 

    # Determine the optimal number of lags using BIC 
for Gerber with exogenous variables 
    max_lag_gerber_exog <- VARselect(data_gerber, 
lag.max = 6, type = "const")$selection[1] 
    print(max_lag_gerber_exog) 
     
    # Number of lags you want for each exogenous 
variable 
    n_lags_gerber <- max_lag_gerber_exog  # Change this 
to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_gerber <- exog_vars_list 
    all_exog_vars_gerber <- exog_vars_gerber  # 
Initialize with original exogenous variables 
    for (var in exog_vars_gerber) { 
      for (lag in 1:n_lags_gerber) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_gerber <- data_gerber %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_gerber <- c(all_exog_vars_gerber, 
new_var_name)  # Add the new lagged variable to the 
list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_gerber_exog <- VAR(data_gerber[, 
c("Gerber", "CPI")],  
                                 p = 
max_lag_gerber_exog,  
                                 type = "const",  
                                 exogen = data_gerber[, 
all_exog_vars_gerber]) 
    # Summary of the model 
    summary(var_model_gerber_exog) 
  } 
   
   
  # Hard commodities 
   
   
  # Pearson 
  { 
    # Perform BIC-based lag selection for Pearson with 
exogenous variables 
    bic_results_pearson_exog_hc <- 
VARselect(data_pearson_hc, lag.max = 6, type = "const") 
    print(bic_results_pearson_exog_hc) 
    # Determine the optimal number of lags using BIC 
for Pearson with exogenous variables 
    max_lag_pearson_exog_hc <- 
VARselect(data_pearson_hc, lag.max = 6, type = 
"const")$selection[1] 
    print(max_lag_pearson_exog_hc) 
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    # Number of lags you want for each exogenous 
variable 
    n_lags_pearson_hc <- max_lag_pearson_exog_hc  # 
Change this to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_pearson_hc <- exog_vars_list 
    all_exog_vars_pearson_hc <- exog_vars_pearson_hc  # 
Initialize with original exogenous variables 
    for (var in exog_vars_pearson_hc) { 
      for (lag in 1:n_lags_pearson_hc) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_pearson_hc <- data_pearson_hc %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_pearson_hc <- 
c(all_exog_vars_pearson_hc, new_var_name)  # Add the 
new lagged variable to the list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_pearson_exog_hc <- VAR(data_pearson_hc[, 
c("Pearson", "CPI")],  
                                     p = 
max_lag_pearson_exog_hc,  
                                     type = "const",  
                                     exogen = 
data_pearson_hc[, all_exog_vars_pearson_hc]) 
    # Summary of the model 
    summary(var_model_pearson_exog_hc) 
  } 
   
  # Gerber 
  { 
    # Perform BIC-based lag selection for Gerber with 
exogenous variables 
    bic_results_gerber_exog_hc <- 
VARselect(data_gerber_hc, lag.max = 6, type = "const") 
    print(bic_results_gerber_exog_hc) 
    # Determine the optimal number of lags using BIC 
for Gerber with exogenous variables 
    max_lag_gerber_exog_hc <- VARselect(data_gerber_hc, 
lag.max = 6, type = "const")$selection[1] 
    print(max_lag_gerber_exog_hc) 
     
    # Number of lags you want for each exogenous 
variable 
    n_lags_gerber_hc <- max_lag_gerber_exog_hc  # 
Change this to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_gerber_hc <- exog_vars_list 
    all_exog_vars_gerber_hc <- exog_vars_gerber_hc  # 
Initialize with original exogenous variables 
    for (var in exog_vars_gerber_hc) { 

      for (lag in 1:n_lags_gerber_hc) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_gerber_hc <- data_gerber_hc %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_gerber_hc <- 
c(all_exog_vars_gerber_hc, new_var_name)  # Add the new 
lagged variable to the list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_gerber_exog_hc <- VAR(data_gerber_hc[, 
c("Gerber", "CPI")],  
                                    p = 
max_lag_gerber_exog_hc,  
                                    type = "const",  
                                    exogen = 
data_gerber_hc[, all_exog_vars_gerber_hc]) 
    # Summary of the model 
    summary(var_model_gerber_exog_hc) 
  } 
   
   
  # Soft commodities 
   
  # Pearson 
  { 
    # Perform BIC-based lag selection for Pearson with 
exogenous variables 
    bic_results_pearson_exog_sc <- 
VARselect(data_pearson_sc, lag.max = 6, type = "const") 
    print(bic_results_pearson_exog_sc) 
    # Determine the optimal number of lags using BIC 
for Pearson with exogenous variables 
    max_lag_pearson_exog_sc <- 
VARselect(data_pearson_sc, lag.max = 6, type = 
"const")$selection[1] 
    print(max_lag_pearson_exog_sc) 
     
    # Number of lags you want for each exogenous 
variable 
    n_lags_pearson_sc <- max_lag_pearson_exog_sc  # 
Change this to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_pearson_sc <- exog_vars_list 
    all_exog_vars_pearson_sc <- exog_vars_pearson_sc  # 
Initialize with original exogenous variables 
    for (var in exog_vars_pearson_sc) { 
      for (lag in 1:n_lags_pearson_sc) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_pearson_sc <- data_pearson_sc %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 

        all_exog_vars_pearson_sc <- 
c(all_exog_vars_pearson_sc, new_var_name)  # Add the 
new lagged variable to the list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_pearson_exog_sc <- VAR(data_pearson_sc[, 
c("Pearson", "CPI")],  
                                     p = 
max_lag_pearson_exog_sc,  
                                     type = "const",  
                                     exogen = 
data_pearson_sc[, all_exog_vars_pearson_sc]) 
    # Summary of the model 
    summary(var_model_pearson_exog_sc) 
  } 
   
  # Gerber 
  { 
    # Perform BIC-based lag selection for Gerber with 
exogenous variables 
    bic_results_gerber_exog_sc <- 
VARselect(data_gerber_sc, lag.max = 6, type = "const") 
    print(bic_results_gerber_exog_sc) 
    # Determine the optimal number of lags using BIC 
for Gerber with exogenous variables 
    max_lag_gerber_exog_sc <- VARselect(data_gerber_sc, 
lag.max = 6, type = "const")$selection[1] 
    print(max_lag_gerber_exog_sc) 
     
    # Number of lags you want for each exogenous 
variable 
    n_lags_gerber_sc <- max_lag_gerber_exog_sc  # 
Change this to the number of lags you want 
    # Create lags for the exogenous variables 
    exog_vars_gerber_sc <- exog_vars_list 
    all_exog_vars_gerber_sc <- exog_vars_gerber_sc  # 
Initialize with original exogenous variables 
    for (var in exog_vars_gerber_sc) { 
      for (lag in 1:n_lags_gerber_sc) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_gerber_sc <- data_gerber_sc %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_gerber_sc <- 
c(all_exog_vars_gerber_sc, new_var_name)  # Add the new 
lagged variable to the list 
      } 
    } 
     
    # Fit the VAR model with original and lagged 
exogenous variables 
    var_model_gerber_exog_sc <- VAR(data_gerber_sc[, 
c("Gerber", "CPI")],  
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                                    p = 
max_lag_gerber_exog_sc,  
                                    type = "const",  
                                    exogen = 
data_gerber_sc[, all_exog_vars_gerber_sc]) 
    # Summary of the model 
    summary(var_model_gerber_exog_sc) 
  } 
   
   
  # Subsamples 
   
   
  # Pearson subsamples 
  { 
    # Create lags for the exogenous variables for 
Pearson: Split 1 
    all_exog_vars_pearson_1 <- exog_vars_list 
    for (var in exog_vars_list) { 
      for (lag in 1:max_lag_pearson_exog) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_pearson_1 <- data_pearson_1 %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_pearson_1 <- 
c(all_exog_vars_pearson_1, new_var_name) 
      } 
    } 
     
    # Create lags for the exogenous variables for 
Pearson: Split 2 
    all_exog_vars_pearson_2 <- exog_vars_list 
    for (var in exog_vars_list) { 
      for (lag in 1:max_lag_pearson_exog) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_pearson_2 <- data_pearson_2 %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_pearson_2 <- 
c(all_exog_vars_pearson_2, new_var_name) 
      } 
    } 
     
    # Run VAR models for Pearson: Split 1 and Split 2 
    var_model_pearson_exog_1 <- VAR(data_pearson_1[, 
c("Pearson", "CPI")], p = max_lag_pearson_exog, type = 
"const", exogen = data_pearson_1[, 
all_exog_vars_pearson_1]) 
    var_model_pearson_exog_2 <- VAR(data_pearson_2[, 
c("Pearson", "CPI")], p = max_lag_pearson_exog, type = 
"const", exogen = data_pearson_2[, 
all_exog_vars_pearson_2]) 
    summary(var_model_pearson_exog_1) 
    summary(var_model_pearson_exog_2) 
  } 
   
  # Gerber subsamples 

  { 
    # Create lags for the exogenous variables for 
Gerber: Split 1 
    all_exog_vars_gerber_1 <- exog_vars_list 
    for (var in exog_vars_list) { 
      for (lag in 1:max_lag_gerber_exog) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_gerber_1 <- data_gerber_1 %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_gerber_1 <- 
c(all_exog_vars_gerber_1, new_var_name) 
      } 
    } 
     
    # Create lags for the exogenous variables for 
Gerber: Split 2 
    all_exog_vars_gerber_2 <- exog_vars_list 
    for (var in exog_vars_list) { 
      for (lag in 1:max_lag_gerber_exog) { 
        new_var_name <- paste0(var, ".l", lag) 
        data_gerber_2 <- data_gerber_2 %>% 
mutate(!!new_var_name := lag(!!sym(var), n = lag)) 
        all_exog_vars_gerber_2 <- 
c(all_exog_vars_gerber_2, new_var_name) 
      } 
    } 
     
    # Run VAR models for Gerber: Split 1 and Split 2 
    var_model_gerber_exog_1 <- VAR(data_gerber_1[, 
c("Gerber", "CPI")], p = max_lag_gerber_exog, type = 
"const", exogen = data_gerber_1[, 
all_exog_vars_gerber_1]) 
    var_model_gerber_exog_2 <- VAR(data_gerber_2[, 
c("Gerber", "CPI")], p = max_lag_gerber_exog, type = 
"const", exogen = data_gerber_2[, 
all_exog_vars_gerber_2]) 
    summary(var_model_gerber_exog_1) 
    summary(var_model_gerber_exog_2) 
  } 
   
   
   
  # Restore data frames 
  { 
    data_pearson <- MScBA_Data_R[, c("Pearson", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
    data_gerber <- MScBA_Data_R[, c("Gerber", "GDP", 
"IP", "PPI", "TBill_13w", "TBill_10y", "EnergyIndex", 
"USDIndex", "EURUSD", "CNYUSD", "SP500Var", "BCIVar", 
"CPI")] 
    data_pearson_hc <- MScBA_Data_R[, c("Pearson_HC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 

"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_gerber_hc <- MScBA_Data_R[, c("Gerber_HC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_pearson_sc <- MScBA_Data_R[, c("Pearson_SC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_gerber_sc <- MScBA_Data_R[, c("Gerber_SC", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_pearson_1 <- MScBA_Data_R_1[, c("Pearson", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_pearson_2 <- MScBA_Data_R_2[, c("Pearson", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_gerber_1 <- MScBA_Data_R_1[, c("Gerber", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    data_gerber_2 <- MScBA_Data_R_2[, c("Gerber", 
"GDP", "IP", "PPI", "TBill_13w", "TBill_10y", 
"EnergyIndex", "USDIndex", "EURUSD", "CNYUSD", 
"SP500Var", "BCIVar", "CPI")] 
    colnames(data_pearson_hc)[colnames(data_pearson_hc) 
== 'Pearson_HC'] <- 'Pearson' 
    colnames(data_gerber_hc)[colnames(data_gerber_hc) 
== 'Gerber_HC'] <- 'Gerber' 
    colnames(data_pearson_sc)[colnames(data_pearson_sc) 
== 'Pearson_SC'] <- 'Pearson' 
    colnames(data_gerber_sc)[colnames(data_gerber_sc) 
== 'Gerber_SC'] <- 'Gerber' 
  } 
} 
 
# Random Forest 
  { 
  # Set a random seed for reproducibility 
  set.seed(123) 
   
  # Define the control using a grid with 10 values of 
mtry 
  ctrl <- trainControl(method = "cv", number = 10) 
   
  # Define the grid to search for mtry and 
min.node.size 
  grid <- expand.grid(.mtry = 2:12, .splitrule = 
"variance", .min.node.size = 1:5) 
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  # Full sample 
   
   
  # Pearson 
  { 
    # Tune the random forest model for 'Pearson' 
    rf_model_Pearson <- caret::train(Pearson ~ GDP + IP 
+ PPI + TBill_13w + TBill_10y + EnergyIndex + USDIndex 
+ EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                     data = 
data_pearson, 
                                     method = "ranger", 
                                     trControl = ctrl, 
                                     tuneGrid = grid, 
                                     importance = 
"impurity") 
     
    # Define hyperparameters for Pearson 
    grid_pearson <- data.frame(.mtry = 
rf_model_Pearson$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Pearson$bestTune$min.node.size) 
     
    # Ger permutation importance measures                                
    rf_model_Pearson_ <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                      data = 
data_pearson, 
                                      method = 
"ranger", 
                                      trControl = ctrl, 
                                      tuneGrid = 
grid_pearson, 
                                      importance = 
"permutation") 
     
    # Print the model summary 
    print("Pearson") 
    print(rf_model_Pearson) 
    print(rf_model_Pearson_) 
    print(rf_model_Pearson$finalModel) 
    print(rf_model_Pearson_$finalModel) 
    rf_model_Pearson_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Pearson$finalModel$variable.importance), 
      Impurity = 
rf_model_Pearson$finalModel$variable.importance, 
      Permutation = 
rf_model_Pearson_$finalModel$variable.importance)) 
    print(rf_model_Pearson_importance) 
  } 

   
  # Gerber 
  { 
    # Tune the random forest model for 'Gerber' 
    rf_model_Gerber <- caret::train(Gerber ~ GDP + IP + 
PPI + TBill_13w + TBill_10y + EnergyIndex + USDIndex + 
EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                    data = data_gerber, 
                                    method = "ranger", 
                                    trControl = ctrl, 
                                    tuneGrid = grid, 
                                    importance = 
"impurity") 
     
    # Define hyperparameters for Gerber 
    grid_gerber <- data.frame(.mtry = 
rf_model_Gerber$bestTune$mtry, .splitrule = "variance", 
.min.node.size = 
rf_model_Gerber$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Gerber_ <- caret::train(Gerber ~ GDP + IP 
+ PPI + TBill_13w + TBill_10y + EnergyIndex + USDIndex 
+ EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                     data = 
data_gerber, 
                                     method = "ranger", 
                                     trControl = ctrl, 
                                     tuneGrid = 
grid_gerber, 
                                     importance = 
"permutation") 
     
    # Print the model summary 
    print("Gerber") 
    print(rf_model_Gerber) 
    print(rf_model_Gerber_) 
    print(rf_model_Gerber$finalModel) 
    print(rf_model_Gerber_$finalModel) 
    rf_model_Gerber_importance <- flextable(data.frame( 
      Variable = 
names(rf_model_Gerber$finalModel$variable.importance), 
      Impurity = 
rf_model_Gerber$finalModel$variable.importance, 
      Permutation = 
rf_model_Gerber_$finalModel$variable.importance)) 
    print(rf_model_Gerber_importance) 
  } 
   
   
   
  # Hard/Soft commodities 
   
   
  # Pearson_HC 

  { 
    # Tune the random forest model for 'Pearson_HC' 
    rf_model_Pearson_hc <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_pearson_hc, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid, 
                                        importance = 
"impurity") 
     
    # Define hyperparameters for Pearson_hc 
    grid_pearson_hc <- data.frame(.mtry = 
rf_model_Pearson_hc$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Pearson_hc$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Pearson_hc_ <- caret::train(Pearson ~ GDP 
+ IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                         data = 
data_pearson_hc, 
                                         method = 
"ranger", 
                                         trControl = 
ctrl, 
                                         tuneGrid = 
grid_pearson_hc, 
                                         importance = 
"permutation") 
     
    # Print the model summary 
    print("Pearson_HC") 
    print(rf_model_Pearson_hc) 
    print(rf_model_Pearson_hc_) 
    print(rf_model_Pearson_hc$finalModel) 
    print(rf_model_Pearson_hc_$finalModel) 
    rf_model_Pearson_hc_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Pearson_hc$finalModel$variable.importanc
e), 
      Impurity = 
rf_model_Pearson_hc$finalModel$variable.importance, 
      Permutation = 
rf_model_Pearson_hc_$finalModel$variable.importance)) 
    print(rf_model_Pearson_hc_importance) 
  } 
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  # Gerber_HC 
  { 
    # Tune the random forest model for 'Gerber_HC' 
    rf_model_Gerber_hc <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_gerber_hc, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = grid, 
                                       importance = 
"impurity") 
     
    # Define hyperparameters for Gerber_hc 
    grid_gerber_hc <- data.frame(.mtry = 
rf_model_Gerber_hc$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Gerber_hc$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Gerber_hc_ <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_gerber_hc, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid_gerber_hc, 
                                        importance = 
"permutation") 
     
    # Print the model summary 
    print("Gerber_HC") 
    print(rf_model_Gerber_hc) 
    print(rf_model_Gerber_hc_) 
    print(rf_model_Gerber_hc$finalModel) 
    print(rf_model_Gerber_hc_$finalModel) 
    rf_model_Gerber_hc_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Gerber_hc$finalModel$variable.importance
), 
      Impurity = 
rf_model_Gerber_hc$finalModel$variable.importance, 
      Permutation = 
rf_model_Gerber_hc_$finalModel$variable.importance)) 
    print(rf_model_Gerber_hc_importance) 
  } 
   

  # Pearson_SC 
  { 
    # Tune the random forest model for 'Pearson_SC' 
    rf_model_Pearson_sc <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_pearson_sc, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid, 
                                        importance = 
"impurity") 
     
    # Define hyperparameters for Pearson_sc 
    grid_pearson_sc <- data.frame(.mtry = 
rf_model_Pearson_sc$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Pearson_sc$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Pearson_sc_ <- caret::train(Pearson ~ GDP 
+ IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                         data = 
data_pearson_sc, 
                                         method = 
"ranger", 
                                         trControl = 
ctrl, 
                                         tuneGrid = 
grid_pearson_sc, 
                                         importance = 
"permutation") 
     
    # Print the model summary 
    print("Pearson_SC") 
    print(rf_model_Pearson_sc) 
    print(rf_model_Pearson_sc_) 
    print(rf_model_Pearson_sc$finalModel) 
    print(rf_model_Pearson_sc_$finalModel) 
    rf_model_Pearson_sc_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Pearson_sc$finalModel$variable.importanc
e), 
      Impurity = 
rf_model_Pearson_sc$finalModel$variable.importance, 
      Permutation = 
rf_model_Pearson_sc_$finalModel$variable.importance)) 
    print(rf_model_Pearson_sc_importance) 
  } 

   
  # Gerber_SC 
  { 
    # Tune the random forest model for 'Gerber_SC' 
    rf_model_Gerber_sc <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_gerber_sc, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = grid, 
                                       importance = 
"impurity") 
     
    # Define hyperparameters for Gerber_sc 
    grid_gerber_sc <- data.frame(.mtry = 
rf_model_Gerber_sc$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Gerber_sc$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Gerber_sc_ <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_gerber_sc, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid_gerber_sc, 
                                        importance = 
"permutation") 
     
    # Print the model summary 
    print("Gerber_SC") 
    print(rf_model_Gerber_sc) 
    print(rf_model_Gerber_sc_) 
    print(rf_model_Gerber_sc$finalModel) 
    print(rf_model_Gerber_sc_$finalModel) 
    rf_model_Gerber_sc_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Gerber_sc$finalModel$variable.importance
), 
      Impurity = 
rf_model_Gerber_sc$finalModel$variable.importance, 
      Permutation = 
rf_model_Gerber_sc_$finalModel$variable.importance)) 
    print(rf_model_Gerber_sc_importance) 
  } 
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  # Subsamples 
   
   
  # Pearson_1 
  { 
    # Tune the random forest model for 'Pearson_1' 
    rf_model_Pearson_1 <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_pearson_1, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = grid, 
                                       importance = 
"impurity") 
     
    # Define hyperparameters for Pearson_1 
    grid_pearson_1 <- data.frame(.mtry = 
rf_model_Pearson_1$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Pearson_1$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Pearson_1_ <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_pearson_1, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid_pearson_1, 
                                        importance = 
"permutation") 
     
    # Print the model summary 
    print("Pearson_1") 
    print(rf_model_Pearson_1) 
    print(rf_model_Pearson_1_) 
    print(rf_model_Pearson_1$finalModel) 
    print(rf_model_Pearson_1_$finalModel) 
    rf_model_Pearson_1_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Pearson_1$finalModel$variable.importance
), 

      Impurity = 
rf_model_Pearson_1$finalModel$variable.importance, 
      Permutation = 
rf_model_Pearson_1_$finalModel$variable.importance)) 
    print(rf_model_Pearson_1_importance) 
  } 
   
  # Gerber_1 
  { 
    # Tune the random forest model for 'Gerber_1' 
    rf_model_Gerber_1 <- caret::train(Gerber ~ GDP + IP 
+ PPI + TBill_13w + TBill_10y + EnergyIndex + USDIndex 
+ EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                      data = 
data_gerber_1, 
                                      method = 
"ranger", 
                                      trControl = ctrl, 
                                      tuneGrid = grid, 
                                      importance = 
"impurity") 
     
    # Define hyperparameters for Gerber_1 
    grid_gerber_1 <- data.frame(.mtry = 
rf_model_Gerber_1$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Gerber_1$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Gerber_1_ <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_gerber_1, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = 
grid_gerber_1, 
                                       importance = 
"permutation") 
     
    # Print the model summary 
    print("Gerber_1") 
    print(rf_model_Gerber_1) 
    print(rf_model_Gerber_1_) 
    print(rf_model_Gerber_1$finalModel) 
    print(rf_model_Gerber_1_$finalModel) 
    rf_model_Gerber_1_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Gerber_1$finalModel$variable.importance)
, 

      Impurity = 
rf_model_Gerber_1$finalModel$variable.importance, 
      Permutation = 
rf_model_Gerber_1_$finalModel$variable.importance)) 
    print(rf_model_Gerber_1_importance) 
  } 
   
  # Pearson_2 
  { 
    # Tune the random forest model for 'Pearson_2' 
    rf_model_Pearson_2 <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_pearson_2, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = grid, 
                                       importance = 
"impurity") 
     
    # Define hyperparameters for Pearson_2 
    grid_pearson_2 <- data.frame(.mtry = 
rf_model_Pearson_2$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Pearson_2$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Pearson_2_ <- caret::train(Pearson ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                        data = 
data_pearson_2, 
                                        method = 
"ranger", 
                                        trControl = 
ctrl, 
                                        tuneGrid = 
grid_pearson_2, 
                                        importance = 
"permutation") 
     
    # Print the model summary 
    print("Pearson_2") 
    print(rf_model_Pearson_2) 
    print(rf_model_Pearson_2_) 
    print(rf_model_Pearson_2$finalModel) 
    print(rf_model_Pearson_2_$finalModel) 
    rf_model_Pearson_2_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Pearson_2$finalModel$variable.importance
), 
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      Impurity = 
rf_model_Pearson_2$finalModel$variable.importance, 
      Permutation = 
rf_model_Pearson_2_$finalModel$variable.importance)) 
    print(rf_model_Pearson_2_importance) 
  } 
   
  # Gerber_2 
  { 
    # Tune the random forest model for 'Gerber_2' 
    rf_model_Gerber_2 <- caret::train(Gerber ~ GDP + IP 
+ PPI + TBill_13w + TBill_10y + EnergyIndex + USDIndex 
+ EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                      data = 
data_gerber_2, 
                                      method = 
"ranger", 
                                      trControl = ctrl, 
                                      tuneGrid = grid, 
                                      importance = 
"impurity") 
     
    # Define hyperparameters for Gerber_2 
    grid_gerber_2 <- data.frame(.mtry = 
rf_model_Gerber_2$bestTune$mtry, .splitrule = 
"variance", .min.node.size = 
rf_model_Gerber_2$bestTune$min.node.size) 
     
    # Get permutation importance measures                                
    rf_model_Gerber_2_ <- caret::train(Gerber ~ GDP + 
IP + PPI + TBill_13w + TBill_10y + EnergyIndex + 
USDIndex + EURUSD + CNYUSD + SP500Var + BCIVar + CPI,  
                                       data = 
data_gerber_2, 
                                       method = 
"ranger", 
                                       trControl = 
ctrl, 
                                       tuneGrid = 
grid_gerber_2, 
                                       importance = 
"permutation") 
     
    # Print the model summary 
    print("Gerber_2") 
    print(rf_model_Gerber_2) 
    print(rf_model_Gerber_2_) 
    print(rf_model_Gerber_2$finalModel) 
    print(rf_model_Gerber_2_$finalModel) 
    rf_model_Gerber_2_importance <- 
flextable(data.frame( 
      Variable = 
names(rf_model_Gerber_2$finalModel$variable.importance)
, 

      Impurity = 
rf_model_Gerber_2$finalModel$variable.importance, 
      Permutation = 
rf_model_Gerber_2_$finalModel$variable.importance)) 
    print(rf_model_Gerber_2_importance) 
  } 
   
} 
 
# Tables 
  { 
  # Multiple Regressions 
  { 
     
    # Extract coefficients and p-values from the models 
    lm_tidy_pearson <- tidy(regression_pearson) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_pearson_hc <- tidy(regression_pearson_hc) 
%>% dplyr::select(term, estimate, p.value) 
    lm_tidy_pearson_sc <- tidy(regression_pearson_sc) 
%>% dplyr::select(term, estimate, p.value) 
    lm_tidy_pearson_1 <- tidy(regression_pearson_1) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_pearson_2 <- tidy(regression_pearson_2) %>% 
dplyr::select(term, estimate, p.value) 
     
    lm_tidy_gerber <- tidy(regression_gerber) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_gerber_hc <- tidy(regression_gerber_hc) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_gerber_sc <- tidy(regression_gerber_sc) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_gerber_1 <- tidy(regression_gerber_1) %>% 
dplyr::select(term, estimate, p.value) 
    lm_tidy_gerber_2 <- tidy(regression_gerber_2) %>% 
dplyr::select(term, estimate, p.value) 
     
    # Merge data frames 
    lm_merged_pearson <- reduce(list(lm_tidy_pearson, 
lm_tidy_pearson_hc, lm_tidy_pearson_sc, 
lm_tidy_pearson_1, lm_tidy_pearson_2), full_join, by = 
"term") 
    lm_merged_gerber <- reduce(list(lm_tidy_gerber, 
lm_tidy_gerber_hc, lm_tidy_gerber_sc, lm_tidy_gerber_1, 
lm_tidy_gerber_2), full_join, by = "term") 
     
    # Rename columns for clarity 
    colnames(lm_merged_pearson) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 
    colnames(lm_merged_gerber) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 

     
    # Create flextables 
    lm_pearson_flextable <- 
flextable(lm_merged_pearson) 
    lm_gerber_flextable <- flextable(lm_merged_gerber) 
    print(lm_pearson_flextable) 
    print(lm_gerber_flextable) 
     
  } 
   
  # VAR models 
  {# Function to get tidy summary of VAR model for a 
specific dependent variable (e.g., Pearson, Gerber) 
    get_var_tidy <- function(var_model, dependent_var) 
{ 
      var_summary <- 
summary(var_model)$var[[dependent_var]] 
      data.frame( 
        term = rownames(var_summary$coef), 
        estimate = var_summary$coef[, 1], 
        std.error = var_summary$coef[, 2], 
        p.value = var_summary$coef[, 4] 
      ) 
    } 
     
    # Create tidy summaries for VAR models 
    var_tidy_pearson <- get_var_tidy(var_model_pearson, 
"Pearson") %>% dplyr::select(term, estimate, p.value) 
    var_tidy_pearson_hc <- 
get_var_tidy(var_model_pearson_hc, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_pearson_sc <- 
get_var_tidy(var_model_pearson_sc, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_pearson_1 <- 
get_var_tidy(var_model_pearson_1, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_pearson_2 <- 
get_var_tidy(var_model_pearson_2, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
     
    var_tidy_gerber <- get_var_tidy(var_model_gerber, 
"Gerber") %>% dplyr::select(term, estimate, p.value) 
    var_tidy_gerber_hc <- 
get_var_tidy(var_model_gerber_hc, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_gerber_sc <- 
get_var_tidy(var_model_gerber_sc, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_gerber_1 <- 
get_var_tidy(var_model_gerber_1, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_tidy_gerber_2 <- 
get_var_tidy(var_model_gerber_2, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
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    # Merge data frames for Pearson and Gerber 
    var_merged_pearson <- reduce(list(var_tidy_pearson, 
var_tidy_pearson_hc, var_tidy_pearson_sc, 
var_tidy_pearson_1, var_tidy_pearson_2), full_join, by 
= "term") 
    var_merged_gerber <- reduce(list(var_tidy_gerber, 
var_tidy_gerber_hc, var_tidy_gerber_sc, 
var_tidy_gerber_1, var_tidy_gerber_2), full_join, by = 
"term") 
     
    # Rename columns for clarity 
    colnames(var_merged_pearson) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 
    colnames(var_merged_gerber) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 
     
    # Create flextables 
    var_pearson_flextable <- 
flextable(var_merged_pearson) 
    var_gerber_flextable <- 
flextable(var_merged_gerber) 
     
    # Output the tables 
    print(var_merged_pearson) 
    print(var_pearson_flextable) 
     
    print(var_merged_gerber) 
    print(var_gerber_flextable) 
  } 
   
  # Recursive VAR models 
  {# Create tidy summaries for recursive VAR models 
    var_exog_tidy_pearson <- 
get_var_tidy(var_model_pearson_exog, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_pearson_hc <- 
get_var_tidy(var_model_pearson_exog_hc, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_pearson_sc <- 
get_var_tidy(var_model_pearson_exog_sc, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_pearson_1 <- 
get_var_tidy(var_model_pearson_exog_1, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_pearson_2 <- 
get_var_tidy(var_model_pearson_exog_2, "Pearson") %>% 
dplyr::select(term, estimate, p.value) 
     

    var_exog_tidy_gerber <- 
get_var_tidy(var_model_gerber_exog, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_gerber_hc <- 
get_var_tidy(var_model_gerber_exog_hc, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_gerber_sc <- 
get_var_tidy(var_model_gerber_exog_sc, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_gerber_1 <- 
get_var_tidy(var_model_gerber_exog_1, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
    var_exog_tidy_gerber_2 <- 
get_var_tidy(var_model_gerber_exog_2, "Gerber") %>% 
dplyr::select(term, estimate, p.value) 
     
    # Merge data frames for Pearson and Gerber 
    var_exog_merged_pearson <- 
reduce(list(var_exog_tidy_pearson, 
var_exog_tidy_pearson_hc, var_exog_tidy_pearson_sc, 
var_exog_tidy_pearson_1, var_exog_tidy_pearson_2), 
full_join, by = "term") 
    var_exog_merged_gerber <- 
reduce(list(var_exog_tidy_gerber, 
var_exog_tidy_gerber_hc, var_exog_tidy_gerber_sc, 
var_exog_tidy_gerber_1, var_exog_tidy_gerber_2), 
full_join, by = "term") 
     
    # Rename columns for clarity 
    colnames(var_exog_merged_pearson) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 
    colnames(var_exog_merged_gerber) <- c("Variable", 
"Estimate_Full", "P-Value_Full", "Estimate_HC", "P-
Value_HC", "Estimate_SC", "P-Value_SC", "Estimate_1", 
"P-Value_1", "Estimate_2", "P-Value_2") 
     
    # Create flextables 
    var_exog_pearson_flextable <- 
flextable(var_exog_merged_pearson) 
    var_exog_gerber_flextable <- 
flextable(var_exog_merged_gerber) 
    set_flextable_defaults(digits = 3) 
    # Output the tables 
    print(var_exog_merged_pearson) 
    print(var_exog_pearson_flextable) 
     
    print(var_exog_merged_gerber) 
    print(var_exog_gerber_flextable) 
  } 
   
  # MSE for linear models 
  { 
    # Calculate MSE for VAR models 

    MSE_pearson <- 
mean(residuals(var_model_pearson$var$"Pearson")^2) 
    MSE_gerber <- 
mean(residuals(var_model_gerber$var$"Gerber")^2) 
    MSE_pearson_1 <- 
mean(residuals(var_model_pearson_1$var$"Pearson")^2) 
    MSE_gerber_1 <- 
mean(residuals(var_model_gerber_1$var$"Gerber")^2) 
    MSE_pearson_2 <- 
mean(residuals(var_model_pearson_2$var$"Pearson")^2) 
    MSE_gerber_2 <- 
mean(residuals(var_model_gerber_2$var$"Gerber")^2) 
    MSE_pearson_hc <- 
mean(residuals(var_model_pearson_hc$var$"Pearson")^2) 
    MSE_gerber_hc <- 
mean(residuals(var_model_gerber_hc$var$"Gerber")^2) 
    MSE_pearson_sc <- 
mean(residuals(var_model_pearson_sc$var$"Pearson")^2) 
    MSE_gerber_sc <- 
mean(residuals(var_model_gerber_sc$var$"Gerber")^2) 
     
    mse_var <- flextable(data.frame( 
      Model = c("var_model_pearson", 
"var_model_pearson_hc", "var_model_pearson_sc", 
                "var_model_pearson_1", 
"var_model_pearson_2", 
                "var_model_gerber", 
"var_model_gerber_hc", "var_model_gerber_sc", 
                "var_model_gerber_1", 
"var_model_gerber_2"), 
      MSE = c(MSE_pearson, MSE_pearson_hc, 
MSE_pearson_sc,  
              MSE_pearson_1, MSE_pearson_2,  
              MSE_gerber, MSE_gerber_hc, MSE_gerber_sc, 
              MSE_gerber_1, MSE_gerber_2) 
    )) 
     
    mse_var 
     
     
    # Calculate MSE for recursive VAR models 
    MSE_pearson_exog <- 
mean(residuals(var_model_pearson_exog$var$"Pearson")^2) 
    MSE_gerber_exog <- 
mean(residuals(var_model_gerber_exog$var$"Gerber")^2) 
    MSE_pearson_exog_1 <- 
mean(residuals(var_model_pearson_exog_1$var$"Pearson")^
2) 
    MSE_gerber_exog_1 <- 
mean(residuals(var_model_gerber_exog_1$var$"Gerber")^2) 
    MSE_pearson_exog_2 <- 
mean(residuals(var_model_pearson_exog_2$var$"Pearson")^
2) 
    MSE_gerber_exog_2 <- 
mean(residuals(var_model_gerber_exog_2$var$"Gerber")^2) 
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    MSE_pearson_exog_hc <- 
mean(residuals(var_model_pearson_exog_hc$var$"Pearson")
^2) 
    MSE_gerber_exog_hc <- 
mean(residuals(var_model_gerber_exog_hc$var$"Gerber")^2
) 
    MSE_pearson_exog_sc <- 
mean(residuals(var_model_pearson_exog_sc$var$"Pearson")
^2) 
    MSE_gerber_exog_sc <- 
mean(residuals(var_model_gerber_exog_sc$var$"Gerber")^2
) 
     
    mse_var_exog <- flextable(data.frame( 
      Model = c("var_model_pearson_exog", 
"var_model_pearson_exog_hc", 
"var_model_pearson_exog_sc", 
                "var_model_pearson_exog_1", 
"var_model_pearson_exog_2", 
                "var_model_gerber_exog", 
"var_model_gerber_exog_hc", "var_model_gerber_exog_sc", 
                "var_model_gerber_exog_1", 
"var_model_gerber_exog_2"), 
      MSE = c(MSE_pearson_exog, MSE_pearson_exog_hc, 
MSE_pearson_exog_sc, 
              MSE_pearson_exog_1, MSE_pearson_exog_2, 
              MSE_gerber_exog, MSE_gerber_exog_hc, 
MSE_gerber_exog_sc, 
              MSE_gerber_exog_1, MSE_gerber_exog_2) 
    )) 
     
    mse_var_exog 
     
     
    # Calculate MSE for regression models 
    MSE_lm_pearson <- 
mean(residuals(regression_pearson)^2) 
    MSE_lm_gerber <- 
mean(residuals(regression_gerber)^2) 
    MSE_lm_pearson_hc <- 
mean(residuals(regression_pearson_hc)^2) 
    MSE_lm_gerber_hc <- 
mean(residuals(regression_gerber_hc)^2) 
    MSE_lm_pearson_sc <- 
mean(residuals(regression_pearson_sc)^2) 
    MSE_lm_gerber_sc <- 
mean(residuals(regression_gerber_sc)^2) 
    MSE_lm_pearson_1 <- 
mean(residuals(regression_pearson_1)^2) 
    MSE_lm_gerber_1 <- 
mean(residuals(regression_gerber_1)^2) 
    MSE_lm_pearson_2 <- 
mean(residuals(regression_pearson_2)^2) 
    MSE_lm_gerber_2 <- 
mean(residuals(regression_gerber_2)^2) 

     
    mse_lm <- flextable(data.frame( 
      Model = c("lm_pearson", "lm_pearson_hc", 
"lm_pearson_sc", "lm_pearson_1", "lm_pearson_2", 
                "lm_gerber", "lm_gerber_hc", 
"lm_gerber_sc", "lm_gerber_1", "lm_gerber_2"), 
      MSE = c(MSE_lm_pearson, MSE_lm_pearson_hc, 
MSE_lm_pearson_sc, MSE_lm_pearson_1, MSE_lm_pearson_2, 
              MSE_lm_gerber, MSE_lm_gerber_hc, 
MSE_lm_gerber_sc, MSE_lm_gerber_1, MSE_lm_gerber_2) 
    )) 
     
    mse_lm 
  } 
   
  # Random Forest models 
  { 
    # Performance overview 
     
     
    # Initialize a dataframe with Pearson model results 
    final_df <- data.frame( 
      "Performance Measure" = c("Mean_RMSE", 
"Mean_Rsquared", "Mean_MAE"), 
      Pearson = c( 
        mean(mean(rf_model_Pearson_$resample$RMSE), 
mean(rf_model_Pearson$resample$RMSE)), 
        mean(mean(rf_model_Pearson_$resample$Rsquared), 
mean(rf_model_Pearson$resample$Rsquared)), 
        mean(mean(rf_model_Pearson_$resample$MAE), 
mean(rf_model_Pearson$resample$MAE)) 
      ) 
    ) 
     
    # Manually add Pearson_hc model results as a new 
column 
    final_df$Pearson_hc <- c( 
      mean(mean(rf_model_Pearson_hc_$resample$RMSE), 
mean(rf_model_Pearson_hc$resample$RMSE)), 
      
mean(mean(rf_model_Pearson_hc_$resample$Rsquared), 
mean(rf_model_Pearson_hc$resample$Rsquared)), 
      mean(mean(rf_model_Pearson_hc_$resample$MAE), 
mean(rf_model_Pearson_hc$resample$MAE)) 
    ) 
     
    # Manually add Pearson_sc model results as a new 
column 
    final_df$Pearson_sc <- c( 
      mean(mean(rf_model_Pearson_sc_$resample$RMSE), 
mean(rf_model_Pearson_sc$resample$RMSE)), 
      
mean(mean(rf_model_Pearson_sc_$resample$Rsquared), 
mean(rf_model_Pearson_sc$resample$Rsquared)), 

      mean(mean(rf_model_Pearson_sc_$resample$MAE), 
mean(rf_model_Pearson_sc$resample$MAE)) 
    ) 
     
    # Manually add Pearson_1 model results as a new 
column 
    final_df$Pearson_1 <- c( 
      mean(mean(rf_model_Pearson_1_$resample$RMSE), 
mean(rf_model_Pearson_1$resample$RMSE)), 
      mean(mean(rf_model_Pearson_1_$resample$Rsquared), 
mean(rf_model_Pearson_1$resample$Rsquared)), 
      mean(mean(rf_model_Pearson_1_$resample$MAE), 
mean(rf_model_Pearson_1$resample$MAE)) 
    ) 
     
    # Manually add Pearson_2 model results as a new 
column 
    final_df$Pearson_2 <- c( 
      mean(mean(rf_model_Pearson_2_$resample$RMSE), 
mean(rf_model_Pearson_2$resample$RMSE)), 
      mean(mean(rf_model_Pearson_2_$resample$Rsquared), 
mean(rf_model_Pearson_2$resample$Rsquared)), 
      mean(mean(rf_model_Pearson_2_$resample$MAE), 
mean(rf_model_Pearson_2$resample$MAE)) 
    ) 
     
    # Manually add Gerber model results as a new column 
    final_df$Gerber <- c( 
      mean(mean(rf_model_Gerber_$resample$RMSE), 
mean(rf_model_Gerber$resample$RMSE)), 
      mean(mean(rf_model_Gerber_$resample$Rsquared), 
mean(rf_model_Gerber$resample$Rsquared)), 
      mean(mean(rf_model_Gerber_$resample$MAE), 
mean(rf_model_Gerber$resample$MAE)) 
    ) 
     
    # Manually add Gerber_hc model results as a new 
column 
    final_df$Gerber_hc <- c( 
      mean(mean(rf_model_Gerber_hc_$resample$RMSE), 
mean(rf_model_Gerber_hc$resample$RMSE)), 
      mean(mean(rf_model_Gerber_hc_$resample$Rsquared), 
mean(rf_model_Gerber_hc$resample$Rsquared)), 
      mean(mean(rf_model_Gerber_hc_$resample$MAE), 
mean(rf_model_Gerber_hc$resample$MAE)) 
    ) 
     
    # Manually add Gerber_sc model results as a new 
column 
    final_df$Gerber_sc <- c( 
      mean(mean(rf_model_Gerber_sc_$resample$RMSE), 
mean(rf_model_Gerber_sc$resample$RMSE)), 
      mean(mean(rf_model_Gerber_sc_$resample$Rsquared), 
mean(rf_model_Gerber_sc$resample$Rsquared)), 
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      mean(mean(rf_model_Gerber_sc_$resample$MAE), 
mean(rf_model_Gerber_sc$resample$MAE)) 
    ) 
     
    # Manually add Gerber_1 model results as a new 
column 
    final_df$Gerber_1 <- c( 
      mean(mean(rf_model_Gerber_1_$resample$RMSE), 
mean(rf_model_Gerber_1$resample$RMSE)), 
      mean(mean(rf_model_Gerber_1_$resample$Rsquared), 
mean(rf_model_Gerber_1$resample$Rsquared)), 
      mean(mean(rf_model_Gerber_1_$resample$MAE), 
mean(rf_model_Gerber_1$resample$MAE)) 
    ) 
     
    # Manually add Gerber_2 model results as a new 
column 
    final_df$Gerber_2 <- c( 
      mean(mean(rf_model_Gerber_2_$resample$RMSE), 
mean(rf_model_Gerber_2$resample$RMSE)), 
      mean(mean(rf_model_Gerber_2_$resample$Rsquared), 
mean(rf_model_Gerber_2$resample$Rsquared)), 
      mean(mean(rf_model_Gerber_2_$resample$MAE), 
mean(rf_model_Gerber_2$resample$MAE)) 
    ) 
     
    # Print the final data frame 
    print(flextable(final_df)) 
  } 
  { 
    print(rf_model_Pearson_importance) 
    print(rf_model_Pearson_hc_importance) 
    print(rf_model_Pearson_sc_importance) 
    print(rf_model_Pearson_1_importance) 
    print(rf_model_Pearson_2_importance) 
    print(rf_model_Gerber_importance) 
    print(rf_model_Gerber_hc_importance) 
    print(rf_model_Gerber_sc_importance) 
    print(rf_model_Gerber_1_importance) 
    print(rf_model_Gerber_2_importance) 
  } 
} 
   
# Descriptive statistics and preliminary tests 
  {  
    # Descriptives 
    { 
      descriptives <- flextable(cbind(VariableNames = 
row.names(describe(MScBA_Data_R)), 
describe(MScBA_Data_R))) 
      descriptives 
       
      descriptives1 <- flextable(cbind(VariableNames = 
row.names(describe(MScBA_Data_R_1)), 
describe(MScBA_Data_R_1))) 

      descriptives1 
       
      descriptives2 <- flextable(cbind(VariableNames = 
row.names(describe(MScBA_Data_R_2)), 
describe(MScBA_Data_R_2))) 
      descriptives2 
       
      descriptivesCR <- flextable(cbind(VariableNames = 
row.names(describe(Commodiy_returns)), 
describe(Commodiy_returns))) 
      descriptivesCR 
       
      # Histograms 
      breaks <- 30 
       
      for(variable in names(MScBA_Data_R)[-1]) { 
        # Create a histogram for each variable 
        hist(MScBA_Data_R[[variable]], breaks = breaks, 
main=paste("Histogram of", variable), xlab=variable) 
      } 
      for(variable in names(MScBA_Data_R_1)[-1]) { 
        # Create a histogram for each variable 
        hist(MScBA_Data_R_1[[variable]], breaks = 
breaks, main=paste("Histogram of", variable), 
xlab=variable) 
      } 
      for(variable in names(MScBA_Data_R_2)[-1]) { 
        # Create a histogram for each variable 
        hist(MScBA_Data_R_2[[variable]], breaks = 
breaks, main=paste("Histogram of", variable), 
xlab=variable) 
      } 
      for(variable in names(Commodiy_returns)[-1]) { 
        # Create a histogram for each variable 
        hist(Commodiy_returns[[variable]], breaks = 
breaks, main=paste("Histogram of", variable), 
xlab=variable) 
      } 
       
    } 
     
    # Normality tests 
    { 
      # Function to perform Shapiro-Wilk test for 
normality 
      test_normality <- function(data, var_name) { 
        shapiro_test <- shapiro.test(data[[var_name]]) 
        list( 
          Variable = var_name, 
          W = shapiro_test$statistic, 
          p_value = shapiro_test$p.value 
        ) 
      } 
       
      # Variables of interest in MScBA_Data R 

      variables <- c("Pearson", "Gerber", "Pearson_HC", 
"Pearson_SC", "Gerber_HC", "Gerber_SC") 
       
      # Perform tests of normality on the variables 
      results <- lapply(variables, function(var) 
test_normality(MScBA_Data_R, var)) 
       
      # Perform tests of normality on subsamples 
      results_pearson_1 <- 
test_normality(data_pearson_1, "Pearson") 
      results_pearson_2 <- 
test_normality(data_pearson_2, "Pearson") 
      results_gerber_1 <- test_normality(data_gerber_1, 
"Gerber") 
      results_gerber_2 <- test_normality(data_gerber_2, 
"Gerber") 
       
      # Combine all results 
      all_results <- c(results, list(results_pearson_1, 
results_pearson_2, results_gerber_1, results_gerber_2)) 
       
      # Convert to a data frame 
      df_results <- do.call(rbind, lapply(all_results, 
as.data.frame)) 
       
      # Display the outcomes in a flextable 
      flextable(df_results) 
    } 
     
    # Difference in means tests 
    { 
      # Subsamples 
      wilcox_test_pearson <- 
wilcox.test(data_pearson_1$Pearson, 
data_pearson_2$Pearson) 
      wilcox_test_gerber <- 
wilcox.test(data_gerber_1$Gerber, data_gerber_2$Gerber) 
      wilcox_test_pearson_HC_SC <- 
wilcox.test(MScBA_Data_R$Pearson_HC, 
MScBA_Data_R$Pearson_SC) 
      wilcox_test_gerber_HC_SC <- 
wilcox.test(MScBA_Data_R$Gerber_HC, 
MScBA_Data_R$Gerber_SC) 
       
      # Create a data frame with the results 
      results_df <- data.frame( 
        Test = c("Pearson Subsamples", "Gerber 
Subsamples", "Pearson HC vs SC", "Gerber HC vs SC"), 
        W_statistic = c(wilcox_test_pearson$statistic, 
wilcox_test_gerber$statistic, 
wilcox_test_pearson_HC_SC$statistic, 
wilcox_test_gerber_HC_SC$statistic), 
        p_value = c(wilcox_test_pearson$p.value, 
wilcox_test_gerber$p.value, 
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wilcox_test_pearson_HC_SC$p.value, 
wilcox_test_gerber_HC_SC$p.value) 
      ) 
       
      # Display the results in a flextable 
      flextable(results_df) 
       
    } 
     
    # Other 
    { 
      # AIC results 
      combined_results <- 
rbind(bic_results_gerber$criteria,  
                                
bic_results_gerber_exog$criteria,  
                                
bic_results_gerber_hc$criteria,  
                                
bic_results_gerber_exog_hc$criteria, 
                                
bic_results_gerber_sc$criteria,  
                                
bic_results_gerber_exog_sc$criteria, 
                                
bic_results_pearson$criteria,  
                                
bic_results_pearson_exog$criteria, 
                                
bic_results_pearson_hc$criteria,  
                                
bic_results_pearson_exog_hc$criteria, 
                                
bic_results_pearson_sc$criteria,  
                                
bic_results_pearson_exog_sc$criteria 
                                ) 
       
      print(flextable(as.data.frame(combined_results))) 
      # RF learning curve 
       
       
       
    } 
     
    # Learning curves 
    { 
      # Pearson learning curve 
      { 
        # Assuming 'data_pearson' is your dataset with 
the appropriate structure 
        # Define the formula for the model 
        formula <- Pearson ~ GDP + IP + PPI + TBill_13w 
+ TBill_10y + EnergyIndex + USDIndex + EURUSD + CNYUSD 
+ SP500Var + BCIVar + CPI 

         
        # Define a sequence of 'ntree' values for the 
learning curve 
        ntree_values <- seq(50, 700, by = 50) 
         
        # Initialize a data frame to store the results 
        learning_curve_results <- data.frame(ntree = 
integer(), Avg_RMSE = numeric()) 
         
        # Loop over 'ntree' values 
        for (ntree in ntree_values) { 
          rmse_values <- numeric(5) # To store RMSE 
values for each run 
           
          # Run the model 5 times for each 'ntree' 
value 
          for (run in 1:5) { 
            set.seed(run) # Set a seed for 
reproducibility 
             
            # Fit the random forest model 
            model <- ranger( 
              formula, 
              data = data_pearson, 
              num.trees = ntree, 
              mtry = floor(sqrt(12)), # mtry as the 
square root of the number of predictors 
              min.node.size = 3, # minimum node size 
              importance = 'impurity', 
              seed = run # Ensure reproducibility of 
the random process within ranger 
            ) 
             
            # Calculate the OOB RMSE from the model 
            oob_rmse <- sqrt(model$prediction.error) 
             
            # Store the RMSE value 
            rmse_values[run] <- oob_rmse 
          } 
           
          # Calculate the average RMSE for the current 
'ntree' value 
          avg_rmse <- mean(rmse_values) 
           
          # Add the results to our data frame 
          learning_curve_results <- 
rbind(learning_curve_results, data.frame(ntree = ntree, 
Avg_RMSE = avg_rmse)) 
        } 
         
        # Plot the learning curve using ggplot2 
        ggplot(learning_curve_results, aes(x = ntree, y 
= Avg_RMSE)) + 
          geom_line() + 
          geom_point() + 

          xlab("Number of Trees (ntree)") + 
          ylab("Average OOB RMSE") + 
          ggtitle("Learning Curve for Random Forest 
Regression on Pearson") 
      } 
       
      # Gerber learning curve 
      { 
        # Assuming 'data_pearson' is your dataset with 
the appropriate structure 
        # Define the formula for the model 
        formula <- Gerber ~ GDP + IP + PPI + TBill_13w 
+ TBill_10y + EnergyIndex + USDIndex + EURUSD + CNYUSD 
+ SP500Var + BCIVar + CPI 
         
        # Define a sequence of 'ntree' values for the 
learning curve 
        ntree_values <- seq(50, 700, by = 50) 
         
        # Initialize a data frame to store the results 
        learning_curve_results <- data.frame(ntree = 
integer(), Avg_RMSE = numeric()) 
         
        # Loop over 'ntree' values 
        for (ntree in ntree_values) { 
          rmse_values <- numeric(5) # To store RMSE 
values for each run 
           
          # Run the model 5 times for each 'ntree' 
value 
          for (run in 1:5) { 
            set.seed(run) # Set a seed for 
reproducibility 
             
            # Fit the random forest model 
            model <- ranger( 
              formula, 
              data = data_gerber, 
              num.trees = ntree, 
              mtry = floor(sqrt(12)), # mtry as the 
square root of the number of predictors 
              min.node.size = 3, # minimum node size 
              importance = 'impurity', 
              seed = run # Ensure reproducibility of 
the random process within ranger 
            ) 
             
            # Calculate the OOB RMSE from the model 
            oob_rmse <- sqrt(model$prediction.error) 
             
            # Store the RMSE value 
            rmse_values[run] <- oob_rmse 
          } 
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          # Calculate the average RMSE for the current 
'ntree' value 
          avg_rmse <- mean(rmse_values) 
           
          # Add the results to our data frame 
          learning_curve_results <- 
rbind(learning_curve_results, data.frame(ntree = ntree, 
Avg_RMSE = avg_rmse)) 
        } 
         
        # Plot the learning curve using ggplot2 
        ggplot(learning_curve_results, aes(x = ntree, y 
= Avg_RMSE)) + 
          geom_line() + 
          geom_point() + 
          xlab("Number of Trees (ntree)") + 
          ylab("Average OOB RMSE") + 
          ggtitle("Learning Curve for Random Forest 
Regression on Gerber") 
      } 
    } 
     
  } 
   
# Residual analysis 
  { 
  # Pearson 
  { 
    # Table 
    { 
      # Extract residuals from each model 
      resid_regression_pearson <- 
residuals(regression_pearson) 
      resid_var_pearson <- 
residuals(var_model_pearson)[, 1]  # First equation 
      resid_varx_pearson <- 
residuals(var_model_pearson_exog)[, 1]  # First 
equation 
      resid_rf_pearson <- 
rf_model_Pearson$trainingData$.outcome - 
rf_model_Pearson$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_pearson <- 
shapiro.test(resid_regression_pearson) 
      shapiro_var_pearson <- 
shapiro.test(resid_var_pearson) 
      shapiro_varx_pearson <- 
shapiro.test(resid_varx_pearson) 
      shapiro_rf_pearson <- 
shapiro.test(resid_rf_pearson) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 

      dw_regression_pearson <- 
dwtest(regression_pearson) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_pearson <- 
bptest(regression_pearson) 
      bp_var_pearson <- bptest(resid_var_pearson ~ 
fitted(var_model_pearson)[, 1]) 
      bp_varx_pearson <- bptest(resid_varx_pearson ~ 
fitted(var_model_pearson_exog)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_pearson <- Box.test(resid_var_pearson, 
type = "Ljung-Box") 
      lb_varx_pearson <- Box.test(resid_varx_pearson, 
type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_pearson <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_pearson$statistic, 
shapiro_var_pearson$statistic, 
shapiro_varx_pearson$statistic, 
shapiro_rf_pearson$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_pearson$p.value, 
shapiro_var_pearson$p.value, 
shapiro_varx_pearson$p.value, 
shapiro_rf_pearson$p.value), 
        DW_Statistic = 
c(dw_regression_pearson$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_pearson$statistic, 
bp_var_pearson$statistic, bp_varx_pearson$statistic, 
NA), 
        BP_P_Value = c(bp_regression_pearson$p.value, 
bp_var_pearson$p.value, bp_varx_pearson$p.value, NA), 
        LB_Statistic = c(NA, lb_var_pearson$statistic, 
lb_varx_pearson$statistic, NA), 
        LB_P_Value = c(NA, lb_var_pearson$p.value, 
lb_varx_pearson$p.value, NA), 
      ) 
       
      flextable(resid_pearson) 
    } 
     
    # VAR IRFs 
    { 
      # List of predictor variables in the VAR model 
      predictors <- colnames(var_model_pearson$y) 

      # Create an empty list to store IRF data for each 
predictor 
      irf_list <- list() 
       
      # Loop through predictors and generate IRFs 
      for (pred in predictors) { 
        irf_data <- irf(var_model_pearson, impulse = 
pred, response = "Pearson", n.ahead = 10, ortho = TRUE) 
        irf_list[[pred]] <- irf_data 
      } 
       
      # Plot IRFs 
      par(mfrow = c(ceiling(length(predictors)/4), 2)) 
      for (pred in predictors) { 
        plot(irf_list[[pred]],  
             xlab = "Periods", ylab = "Response", 
             main = paste("IRF of Pearson to", pred), 
col = "blue") 
      } 
    } 
     
  # Gerber 
  { 
    #Table 
    { 
      # Extract residuals from each model 
      resid_regression_gerber <- 
residuals(regression_gerber) 
      resid_var_gerber <- residuals(var_model_gerber)[, 
1]  # First equation 
      resid_varx_gerber <- 
residuals(var_model_gerber_exog)[, 1]  # First equation 
      resid_rf_gerber <- 
rf_model_Gerber$trainingData$.outcome - 
rf_model_Gerber$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_gerber <- 
shapiro.test(resid_regression_gerber) 
      shapiro_var_gerber <- 
shapiro.test(resid_var_gerber) 
      shapiro_varx_gerber <- 
shapiro.test(resid_varx_gerber) 
      shapiro_rf_gerber <- 
shapiro.test(resid_rf_gerber) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_gerber <- dwtest(regression_gerber) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_gerber <- bptest(regression_gerber) 
      bp_var_gerber <- bptest(resid_var_gerber ~ 
fitted(var_model_gerber)[, 1]) 
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      bp_varx_gerber <- bptest(resid_varx_gerber ~ 
fitted(var_model_gerber_exog)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_gerber <- Box.test(resid_var_gerber, type 
= "Ljung-Box") 
      lb_varx_gerber <- Box.test(resid_varx_gerber, 
type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_gerber <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_gerber$statistic, 
shapiro_var_gerber$statistic, 
shapiro_varx_gerber$statistic, 
shapiro_rf_gerber$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_gerber$p.value, 
shapiro_var_gerber$p.value, 
shapiro_varx_gerber$p.value, 
shapiro_rf_gerber$p.value), 
        DW_Statistic = 
c(dw_regression_gerber$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_gerber$statistic, 
bp_var_gerber$statistic, bp_varx_gerber$statistic, NA), 
        BP_P_Value = c(bp_regression_gerber$p.value, 
bp_var_gerber$p.value, bp_varx_gerber$p.value, NA), 
        LB_Statistic = c(NA, lb_var_gerber$statistic, 
lb_varx_gerber$statistic, NA), 
        LB_P_Value = c(NA, lb_var_gerber$p.value, 
lb_varx_gerber$p.value, NA) 
      ) 
       
      flextable(resid_gerber) 
    } 
    # VAR IRFs 
    { 
      # List of predictor variables in the VAR model 
      predictors <- colnames(var_model_gerber$y) 
      # Create an empty list to store IRF data for each 
predictor 
      irf_list <- list() 
       
      # Loop through predictors and generate IRFs 
      for (pred in predictors) { 
        irf_data <- irf(var_model_gerber, impulse = 
pred, response = "Gerber", n.ahead = 10, ortho = TRUE) 
        irf_list[[pred]] <- irf_data 
      } 
       
      # Plot IRFs 

      par(mfrow = c(ceiling(length(predictors)/4), 2)) 
      for (pred in predictors) { 
        plot(irf_list[[pred]],  
             xlab = "Periods", ylab = "Response", 
             main = paste("IRF of Gerber to", pred), 
col = "blue") 
      } 
    } 
     
  # 1, 2, HC and SC models 
  { 
    # 1 
    { 
      # Extract residuals from each model 
      resid_regression_pearson_1 <- 
residuals(regression_pearson_1) 
      resid_var_pearson_1 <- 
residuals(var_model_pearson_1)[, 1]  # First equation 
      resid_varx_pearson_1 <- 
residuals(var_model_pearson_exog_1)[, 1]  # First 
equation 
      resid_rf_pearson_1 <- 
rf_model_Pearson_1$trainingData$.outcome - 
rf_model_Pearson_1$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_pearson_1 <- 
shapiro.test(resid_regression_pearson_1) 
      shapiro_var_pearson_1 <- 
shapiro.test(resid_var_pearson_1) 
      shapiro_varx_pearson_1 <- 
shapiro.test(resid_varx_pearson_1) 
      shapiro_rf_pearson_1 <- 
shapiro.test(resid_rf_pearson_1) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_pearson_1 <- 
dwtest(regression_pearson_1) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_pearson_1 <- 
bptest(regression_pearson_1) 
      bp_var_pearson_1 <- bptest(resid_var_pearson_1 ~ 
fitted(var_model_pearson_1)[, 1]) 
      bp_varx_pearson_1 <- bptest(resid_varx_pearson_1 
~ fitted(var_model_pearson_exog_1)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_pearson_1 <- Box.test(resid_var_pearson_1, 
type = "Ljung-Box") 
      lb_varx_pearson_1 <- 
Box.test(resid_varx_pearson_1, type = "Ljung-Box") 

       
      # Summarize results in a flextable 
      resid_pearson_1 <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_pearson_1$statistic, 
shapiro_var_pearson_1$statistic, 
shapiro_varx_pearson_1$statistic, 
shapiro_rf_pearson_1$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_pearson_1$p.value, 
shapiro_var_pearson_1$p.value, 
shapiro_varx_pearson_1$p.value, 
shapiro_rf_pearson_1$p.value), 
        DW_Statistic = 
c(dw_regression_pearson_1$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_pearson_1$statistic, 
bp_var_pearson_1$statistic, 
bp_varx_pearson_1$statistic, NA), 
        BP_P_Value = c(bp_regression_pearson_1$p.value, 
bp_var_pearson_1$p.value, bp_varx_pearson_1$p.value, 
NA), 
        LB_Statistic = c(NA, 
lb_var_pearson_1$statistic, 
lb_varx_pearson_1$statistic, NA), 
        LB_P_Value = c(NA, lb_var_pearson_1$p.value, 
lb_varx_pearson_1$p.value, NA) 
      ) 
       
      flextable(resid_pearson_1) 
    } 
    { 
      # Extract residuals from each model 
      resid_regression_gerber_1 <- 
residuals(regression_gerber_1) 
      resid_var_gerber_1 <- 
residuals(var_model_gerber_1)[, 1]  # First equation 
      resid_varx_gerber_1 <- 
residuals(var_model_gerber_exog_1)[, 1]  # First 
equation 
      resid_rf_gerber_1 <- 
rf_model_Gerber_1$trainingData$.outcome - 
rf_model_Gerber_1$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_gerber_1 <- 
shapiro.test(resid_regression_gerber_1) 
      shapiro_var_gerber_1 <- 
shapiro.test(resid_var_gerber_1) 
      shapiro_varx_gerber_1 <- 
shapiro.test(resid_varx_gerber_1) 
      shapiro_rf_gerber_1 <- 
shapiro.test(resid_rf_gerber_1) 
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      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_gerber_1 <- 
dwtest(regression_gerber_1) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_gerber_1 <- 
bptest(regression_gerber_1) 
      bp_var_gerber_1 <- bptest(resid_var_gerber_1 ~ 
fitted(var_model_gerber_1)[, 1]) 
      bp_varx_gerber_1 <- bptest(resid_varx_gerber_1 ~ 
fitted(var_model_gerber_exog_1)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_gerber_1 <- Box.test(resid_var_gerber_1, 
type = "Ljung-Box") 
      lb_varx_gerber_1 <- Box.test(resid_varx_gerber_1, 
type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_gerber_1 <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_gerber_1$statistic, 
shapiro_var_gerber_1$statistic, 
shapiro_varx_gerber_1$statistic, 
shapiro_rf_gerber_1$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_gerber_1$p.value, 
shapiro_var_gerber_1$p.value, 
shapiro_varx_gerber_1$p.value, 
shapiro_rf_gerber_1$p.value), 
        DW_Statistic = 
c(dw_regression_gerber_1$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_gerber_1$statistic, 
bp_var_gerber_1$statistic, bp_varx_gerber_1$statistic, 
NA), 
        BP_P_Value = c(bp_regression_gerber_1$p.value, 
bp_var_gerber_1$p.value, bp_varx_gerber_1$p.value, NA), 
        LB_Statistic = c(NA, lb_var_gerber_1$statistic, 
lb_varx_gerber_1$statistic, NA), 
        LB_P_Value = c(NA, lb_var_gerber_1$p.value, 
lb_varx_gerber_1$p.value, NA) 
      ) 
       
      flextable(resid_gerber_1) 
    } 
    # 2 
    { 
      # Extract residuals from each model 

      resid_regression_pearson_2 <- 
residuals(regression_pearson_2) 
      resid_var_pearson_2 <- 
residuals(var_model_pearson_2)[, 1]  # First equation 
      resid_varx_pearson_2 <- 
residuals(var_model_pearson_exog_2)[, 1]  # First 
equation 
      resid_rf_pearson_2 <- 
rf_model_Pearson_2$trainingData$.outcome - 
rf_model_Pearson_2$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_pearson_2 <- 
shapiro.test(resid_regression_pearson_2) 
      shapiro_var_pearson_2 <- 
shapiro.test(resid_var_pearson_2) 
      shapiro_varx_pearson_2 <- 
shapiro.test(resid_varx_pearson_2) 
      shapiro_rf_pearson_2 <- 
shapiro.test(resid_rf_pearson_2) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_pearson_2 <- 
dwtest(regression_pearson_2) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_pearson_2 <- 
bptest(regression_pearson_2) 
      bp_var_pearson_2 <- bptest(resid_var_pearson_2 ~ 
fitted(var_model_pearson_2)[, 1]) 
      bp_varx_pearson_2 <- bptest(resid_varx_pearson_2 
~ fitted(var_model_pearson_exog_2)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_pearson_2 <- Box.test(resid_var_pearson_2, 
type = "Ljung-Box") 
      lb_varx_pearson_2 <- 
Box.test(resid_varx_pearson_2, type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_pearson_2 <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_pearson_2$statistic, 
shapiro_var_pearson_2$statistic, 
shapiro_varx_pearson_2$statistic, 
shapiro_rf_pearson_2$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_pearson_2$p.value, 
shapiro_var_pearson_2$p.value, 

shapiro_varx_pearson_2$p.value, 
shapiro_rf_pearson_2$p.value), 
        DW_Statistic = 
c(dw_regression_pearson_2$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_pearson_2$statistic, 
bp_var_pearson_2$statistic, 
bp_varx_pearson_2$statistic, NA), 
        BP_P_Value = c(bp_regression_pearson_2$p.value, 
bp_var_pearson_2$p.value, bp_varx_pearson_2$p.value, 
NA), 
        LB_Statistic = c(NA, 
lb_var_pearson_2$statistic, 
lb_varx_pearson_2$statistic, NA), 
        LB_P_Value = c(NA, lb_var_pearson_2$p.value, 
lb_varx_pearson_2$p.value, NA) 
      ) 
       
      flextable(resid_pearson_2) 
    } 
    { 
      # Extract residuals from each model 
      resid_regression_gerber_2 <- 
residuals(regression_gerber_2) 
      resid_var_gerber_2 <- 
residuals(var_model_gerber_2)[, 1]  # First equation 
      resid_varx_gerber_2 <- 
residuals(var_model_gerber_exog_2)[, 1]  # First 
equation 
      resid_rf_gerber_2 <- 
rf_model_Gerber_2$trainingData$.outcome - 
rf_model_Gerber_2$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_gerber_2 <- 
shapiro.test(resid_regression_gerber_2) 
      shapiro_var_gerber_2 <- 
shapiro.test(resid_var_gerber_2) 
      shapiro_varx_gerber_2 <- 
shapiro.test(resid_varx_gerber_2) 
      shapiro_rf_gerber_2 <- 
shapiro.test(resid_rf_gerber_2) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_gerber_2 <- 
dwtest(regression_gerber_2) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_gerber_2 <- 
bptest(regression_gerber_2) 
      bp_var_gerber_2 <- bptest(resid_var_gerber_2 ~ 
fitted(var_model_gerber_2)[, 1]) 



 

92 

 

      bp_varx_gerber_2 <- bptest(resid_varx_gerber_2 ~ 
fitted(var_model_gerber_exog_2)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_gerber_2 <- Box.test(resid_var_gerber_2, 
type = "Ljung-Box") 
      lb_varx_gerber_2 <- Box.test(resid_varx_gerber_2, 
type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_gerber_2 <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_gerber_2$statistic, 
shapiro_var_gerber_2$statistic, 
shapiro_varx_gerber_2$statistic, 
shapiro_rf_gerber_2$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_gerber_2$p.value, 
shapiro_var_gerber_2$p.value, 
shapiro_varx_gerber_2$p.value, 
shapiro_rf_gerber_2$p.value), 
        DW_Statistic = 
c(dw_regression_gerber_2$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_gerber_2$statistic, 
bp_var_gerber_2$statistic, bp_varx_gerber_2$statistic, 
NA), 
        BP_P_Value = c(bp_regression_gerber_2$p.value, 
bp_var_gerber_2$p.value, bp_varx_gerber_2$p.value, NA), 
        LB_Statistic = c(NA, lb_var_gerber_2$statistic, 
lb_varx_gerber_2$statistic, NA), 
        LB_P_Value = c(NA, lb_var_gerber_2$p.value, 
lb_varx_gerber_2$p.value, NA) 
      ) 
       
      flextable(resid_gerber_2) 
    } 
    # HC 
    { 
      # Extract residuals from each model 
      resid_regression_pearson_hc <- 
residuals(regression_pearson_hc) 
      resid_var_pearson_hc <- 
residuals(var_model_pearson_hc)[, 1]  # First equation 
      resid_varx_pearson_hc <- 
residuals(var_model_pearson_exog_hc)[, 1]  # First 
equation 
      resid_rf_pearson_hc <- 
rf_model_Pearson_hc$trainingData$.outcome - 
rf_model_Pearson_hc$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 

      shapiro_regression_pearson_hc <- 
shapiro.test(resid_regression_pearson_hc) 
      shapiro_var_pearson_hc <- 
shapiro.test(resid_var_pearson_hc) 
      shapiro_varx_pearson_hc <- 
shapiro.test(resid_varx_pearson_hc) 
      shapiro_rf_pearson_hc <- 
shapiro.test(resid_rf_pearson_hc) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_pearson_hc <- 
dwtest(regression_pearson_hc) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_pearson_hc <- 
bptest(regression_pearson_hc) 
      bp_var_pearson_hc <- bptest(resid_var_pearson_hc 
~ fitted(var_model_pearson_hc)[, 1]) 
      bp_varx_pearson_hc <- 
bptest(resid_varx_pearson_hc ~ 
fitted(var_model_pearson_exog_hc)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_pearson_hc <- 
Box.test(resid_var_pearson_hc, type = "Ljung-Box") 
      lb_varx_pearson_hc <- 
Box.test(resid_varx_pearson_hc, type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_pearson_hc <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_pearson_hc$statistic, 
shapiro_var_pearson_hc$statistic, 
shapiro_varx_pearson_hc$statistic, 
shapiro_rf_pearson_hc$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_pearson_hc$p.value, 
shapiro_var_pearson_hc$p.value, 
shapiro_varx_pearson_hc$p.value, 
shapiro_rf_pearson_hc$p.value), 
        DW_Statistic = 
c(dw_regression_pearson_hc$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_pearson_hc$statistic, 
bp_var_pearson_hc$statistic, 
bp_varx_pearson_hc$statistic, NA), 
        BP_P_Value = 
c(bp_regression_pearson_hc$p.value, 
bp_var_pearson_hc$p.value, bp_varx_pearson_hc$p.value, 
NA), 

        LB_Statistic = c(NA, 
lb_var_pearson_hc$statistic, 
lb_varx_pearson_hc$statistic, NA), 
        LB_P_Value = c(NA, lb_var_pearson_hc$p.value, 
lb_varx_pearson_hc$p.value, NA) 
      ) 
       
      flextable(resid_pearson_hc) 
    } 
    { 
      # Extract residuals from each model 
      resid_regression_gerber_hc <- 
residuals(regression_gerber_hc) 
      resid_var_gerber_hc <- 
residuals(var_model_gerber_hc)[, 1]  # First equation 
      resid_varx_gerber_hc <- 
residuals(var_model_gerber_exog_hc)[, 1]  # First 
equation 
      resid_rf_gerber_hc <- 
rf_model_Gerber_hc$trainingData$.outcome - 
rf_model_Gerber_hc$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_gerber_hc <- 
shapiro.test(resid_regression_gerber_hc) 
      shapiro_var_gerber_hc <- 
shapiro.test(resid_var_gerber_hc) 
      shapiro_varx_gerber_hc <- 
shapiro.test(resid_varx_gerber_hc) 
      shapiro_rf_gerber_hc <- 
shapiro.test(resid_rf_gerber_hc) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_gerber_hc <- 
dwtest(regression_gerber_hc) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_gerber_hc <- 
bptest(regression_gerber_hc) 
      bp_var_gerber_hc <- bptest(resid_var_gerber_hc ~ 
fitted(var_model_gerber_hc)[, 1]) 
      bp_varx_gerber_hc <- bptest(resid_varx_gerber_hc 
~ fitted(var_model_gerber_exog_hc)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_gerber_hc <- Box.test(resid_var_gerber_hc, 
type = "Ljung-Box") 
      lb_varx_gerber_hc <- 
Box.test(resid_varx_gerber_hc, type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_gerber_hc <- data.frame( 
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        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_gerber_hc$statistic, 
shapiro_var_gerber_hc$statistic, 
shapiro_varx_gerber_hc$statistic, 
shapiro_rf_gerber_hc$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_gerber_hc$p.value, 
shapiro_var_gerber_hc$p.value, 
shapiro_varx_gerber_hc$p.value, 
shapiro_rf_gerber_hc$p.value), 
        DW_Statistic = 
c(dw_regression_gerber_hc$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_gerber_hc$statistic, 
bp_var_gerber_hc$statistic, 
bp_varx_gerber_hc$statistic, NA), 
        BP_P_Value = c(bp_regression_gerber_hc$p.value, 
bp_var_gerber_hc$p.value, bp_varx_gerber_hc$p.value, 
NA), 
        LB_Statistic = c(NA, 
lb_var_gerber_hc$statistic, 
lb_varx_gerber_hc$statistic, NA), 
        LB_P_Value = c(NA, lb_var_gerber_hc$p.value, 
lb_varx_gerber_hc$p.value, NA) 
      ) 
       
      flextable(resid_gerber_hc) 
    } 
    # SC 
    { 
      # Extract residuals from each model 
      resid_regression_pearson_sc <- 
residuals(regression_pearson_sc) 
      resid_var_pearson_sc <- 
residuals(var_model_pearson_sc)[, 1]  # First equation 
      resid_varx_pearson_sc <- 
residuals(var_model_pearson_exog_sc)[, 1]  # First 
equation 
      resid_rf_pearson_sc <- 
rf_model_Pearson_sc$trainingData$.outcome - 
rf_model_Pearson_sc$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_pearson_sc <- 
shapiro.test(resid_regression_pearson_sc) 
      shapiro_var_pearson_sc <- 
shapiro.test(resid_var_pearson_sc) 
      shapiro_varx_pearson_sc <- 
shapiro.test(resid_varx_pearson_sc) 
      shapiro_rf_pearson_sc <- 
shapiro.test(resid_rf_pearson_sc) 
       

      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_pearson_sc <- 
dwtest(regression_pearson_sc) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_pearson_sc <- 
bptest(regression_pearson_sc) 
      bp_var_pearson_sc <- bptest(resid_var_pearson_sc 
~ fitted(var_model_pearson_sc)[, 1]) 
      bp_varx_pearson_sc <- 
bptest(resid_varx_pearson_sc ~ 
fitted(var_model_pearson_exog_sc)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_pearson_sc <- 
Box.test(resid_var_pearson_sc, type = "Ljung-Box") 
      lb_varx_pearson_sc <- 
Box.test(resid_varx_pearson_sc, type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_pearson_sc <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_pearson_sc$statistic, 
shapiro_var_pearson_sc$statistic, 
shapiro_varx_pearson_sc$statistic, 
shapiro_rf_pearson_sc$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_pearson_sc$p.value, 
shapiro_var_pearson_sc$p.value, 
shapiro_varx_pearson_sc$p.value, 
shapiro_rf_pearson_sc$p.value), 
        DW_Statistic = 
c(dw_regression_pearson_sc$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_pearson_sc$statistic, 
bp_var_pearson_sc$statistic, 
bp_varx_pearson_sc$statistic, NA), 
        BP_P_Value = 
c(bp_regression_pearson_sc$p.value, 
bp_var_pearson_sc$p.value, bp_varx_pearson_sc$p.value, 
NA), 
        LB_Statistic = c(NA, 
lb_var_pearson_sc$statistic, 
lb_varx_pearson_sc$statistic, NA), 
        LB_P_Value = c(NA, lb_var_pearson_sc$p.value, 
lb_varx_pearson_sc$p.value, NA) 
      ) 
       
      flextable(resid_pearson_sc) 
    } 

    { 
      # Extract residuals from each model 
      resid_regression_gerber_sc <- 
residuals(regression_gerber_sc) 
      resid_var_gerber_sc <- 
residuals(var_model_gerber_sc)[, 1]  # First equation 
      resid_varx_gerber_sc <- 
residuals(var_model_gerber_exog_sc)[, 1]  # First 
equation 
      resid_rf_gerber_sc <- 
rf_model_Gerber_sc$trainingData$.outcome - 
rf_model_Gerber_sc$finalModel$predictions 
       
      # Perform Shapiro-Wilk test for normality 
      shapiro_regression_gerber_sc <- 
shapiro.test(resid_regression_gerber_sc) 
      shapiro_var_gerber_sc <- 
shapiro.test(resid_var_gerber_sc) 
      shapiro_varx_gerber_sc <- 
shapiro.test(resid_varx_gerber_sc) 
      shapiro_rf_gerber_sc <- 
shapiro.test(resid_rf_gerber_sc) 
       
      # Perform Durbin-Watson test for autocorrelation 
(for regression model) 
      dw_regression_gerber_sc <- 
dwtest(regression_gerber_sc) 
       
      # Perform Breusch-Pagan test for 
heteroscedasticity for all models 
      bp_regression_gerber_sc <- 
bptest(regression_gerber_sc) 
      bp_var_gerber_sc <- bptest(resid_var_gerber_sc ~ 
fitted(var_model_gerber_sc)[, 1]) 
      bp_varx_gerber_sc <- bptest(resid_varx_gerber_sc 
~ fitted(var_model_gerber_exog_sc)[, 1]) 
       
      # Perform Ljung-Box test for autocorrelation (for 
VAR and VARX) 
      lb_var_gerber_sc <- Box.test(resid_var_gerber_sc, 
type = "Ljung-Box") 
      lb_varx_gerber_sc <- 
Box.test(resid_varx_gerber_sc, type = "Ljung-Box") 
       
      # Summarize results in a flextable 
      resid_gerber_sc <- data.frame( 
        Model = c("Multiple Regression", "VAR", "VARX", 
"Random Forest"), 
        Shapiro_W = 
c(shapiro_regression_gerber_sc$statistic, 
shapiro_var_gerber_sc$statistic, 
shapiro_varx_gerber_sc$statistic, 
shapiro_rf_gerber_sc$statistic), 
        Shapiro_P_Value = 
c(shapiro_regression_gerber_sc$p.value, 
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shapiro_var_gerber_sc$p.value, 
shapiro_varx_gerber_sc$p.value, 
shapiro_rf_gerber_sc$p.value), 
        DW_Statistic = 
c(dw_regression_gerber_sc$statistic, NA, NA, NA), 
        BP_Statistic = 
c(bp_regression_gerber_sc$statistic, 
bp_var_gerber_sc$statistic, 
bp_varx_gerber_sc$statistic, NA), 
        BP_P_Value = c(bp_regression_gerber_sc$p.value, 
bp_var_gerber_sc$p.value, bp_varx_gerber_sc$p.value, 
NA), 
        LB_Statistic = c(NA, 
lb_var_gerber_sc$statistic, 
lb_varx_gerber_sc$statistic, NA), 
        LB_P_Value = c(NA, lb_var_gerber_sc$p.value, 
lb_varx_gerber_sc$p.value, NA) 
      ) 
       
      flextable(resid_gerber_sc) 
    } 
  } 
   

} 
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