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Management Summary 
 

Thales, a high advanced radar company, operates with the help of its complex supply chain. They face 

unique challenges due to being a high mix and low volume industry. For their warehouse this essentially 

means that for producing a single product, many different components are required since there is almost no 

standardization in the parts used over all product classes. Over the past few years Thales stock value has 

been increasing substantially. One notable reason for this is the increase in the demand for their products. 

Other reasons exist, like minimum order quantities, however a notable outcome of this stock increase is the 

accumulation of dead and excess stock within their warehouses. Overall Thales is looking for ways to 

reduce stock since the increase in stock value has become significant and this is not sustainable in the long 

term. 

 

Currently Thales relies on the Material Requirements Planning (MRP) system to procure its parts. However, 

while using MRP where procurement and demand should be in balance, a lot of excess stock has entered 

the system. This suggests a potential gap in the implementation of inventory policies. Looking at the data 

it is shown that only a small percentage of all items are monitored and procured using some sort of inventory 

policy. Hence, this Thesis focuses on creating a more tailored made approach given Thales’ complex supply 

chain and inventory situation. To address these challenges, a mathematical model is designed to integrate 

a many different classification methods, inventory policies and other input factors to ensure the complexity 

of Thales is served. The goal of this model is to show that through experiments a significant stock reduction 

can be realized while maintaining stockout probabilities. The latter is very important since Thales demand 

has risen substantially and production schedules and thus the availability of parts is of most importance. 

 

To couple observe how the inventory policies perform first demand data is linked to statistical distributions. 

The unpredictability of Thales item demand can not be linked to a single distribution. Hence all items are 

tested for different statistical distributions. These distributions are tested through the chi-square test to 

ensure that the demand patterns are validated. Furthermore various methods of ABC classification are 

considered. The classifications range from simple, like the annual dollar volume, to more advanced multi 

criteria inventory classification. The latter shows promise as it can include both qualitative and quantitative 

input data. Lastly, different inventory models are included namely, the (R, s, S) system, Lot-for-Lot, Just 

in Time and Base stock. Thales environment is modeled and the baseline of the model uses none of the 

included classification and inventory models.  

 

Experimental simulations are conducted using the mathematical model shows positive results. The potential 

stock value savings are substantial and can lead to almost 8 million. Note that these stock value savings are 

achieved without tanking the stockout probabilities. Hence, it is shown savings can be realized while 

maintain operational efficiency. Furthermore, different classification methods can significantly impact the 

inventory costs, stockout probability and class sizes. Thales current method of solely looking at item price 

is sub optimal.  
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Figure 33- Comparison between classification methods 

 

It is shown in figure 33 that all other classification methods lead to cost reduction. that other methods are 

more fruitful. Moreover, an alternative to traditional methods like annual dollar volume is explored. The 

MCIC shows a potential more nuanced approach to the classification problem. Alternative metrics like ‘on 

stock date’ and ‘risk’ are incorporated into the classification method and more strategic results are possible. 

While multi criteria inventory classification offers strategic flexibility, the traditional method ADV still 

outperforms it. By understanding and optimizing these elements, Thales can realize even more cost savings. 

 

Looking at the data some insights of the mathematical model can be summarized. The model hints at 

reducing inventories for all subclasses for the B and C item classes. In the contrary, due to stockout 

probability of the items within the fast-moving A sub-class the model suggests to increase the stock of these 

items. Furthermore, the experiments show that the base stock inventory policy increases savings within the 

B and C class. In addition, the L4L and JIT inventory policies also increase savings for the slow-moving A 

class.  

 
Figure 31- Comparison of holding costs between baseline and mathematical model 

 

Looking at figure 31, a potential reduction in holding costs of around 11% can be realized. The total holding 

cost reduction can lead to €7.8 million euros. Furthermore, the performance of the KPI’s increases as the 

model facilitates a more efficient stocking situation. In the figures 35 and 36, the Days inventory 

Outstanding and Inventory turn over ratio both increase in performance. The DIO decreases due to the fact 

that less stock is required and the ITR increases due to more efficient warehouse and the eradication of dead 

stock. 

  

  

   

   

   

   

   

   

   

 

 

 

 

 

 

 

 

 

 

                       

      

                         

       

       

          

                                   

                                                            

   

           

            

            

            

            

            

            

   

                   

             



 

iv 

 

 

Figure 35- Performance of DIO            Figure 36 – Performance ITR 

 

This thesis shows solutions to the inventory challenges faced by Thales. As Thales inventory increases the 

urgency to create a more balanced and efficient inventory system increases as well, as the capacity of the 

warehouse is not infinite. During the high times of business, the implications of increasing inventory costs 

might seem trivial, but in tight business circumstances, they can escalate into substantial pains for 

management. Hence, affecting the financial stability and health of the whole organization.  

Within Thales inventory, multiple critical findings are present indicating improvements are possible.  

Among these critical findings were the substantial amount of dead stock and excess stock. Overall, by 

addressing Thales complex inventory situation with a mathematical model and a pragmatic approach 

through experiments, Thales’ diverse inventory landscape can be incorporated, and big improvements can 

be realized. 

 

Besides the improvements within inventory, the developed model serves as a potential tool for inventory 

managers and decision makers. It increases the visibility of existing inventory problems and by tweaking 

its configuration and strategies, solutions can be found. The model hints at improvements that should be 

made to further enhance the current inventory situation. It does this by showing that almost €8 million can 

be saved in stock value without reducing stockout probabilities. Within the thesis it is indicated how these 

improvements can be realized. If used well, Thales can take a step towards a more organized inventory 

structure, and possibly ensuring a healthier bottom line. Concluding, this thesis shows the way towards less 

inventory costs and a more resilient management system.  
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Chapter 1 - Introduction 
In this chapter a general introduction of Thales is given in section 1.1. Afterwards in section 1.2 the main 

problem is shown. Then in section 1.3 the problem statement and its core problems are analyzed. Through 

section 1.4 to 1.6 the research objective, scope and approach are explained and lastly in section 1.7 the 

deliverables are discussed. 

1.1 Company Description 
Thales, formerly Thomson-CSF, is an aviation, weapon manufacturing and information technology 

company. Market leader in sensor technology. Thales Hengelo, one of many locations in the world, 

specifically focusses on Naval Technology. They specialize in radar systems for ships for foreign 

governments and are known for their state-of-the-art radar/IR systems. Hollandse Signaal BV. was bought 

by Thales in 1990 and is currently their Hengelo Location. With over 1500 employees working and a yearly 

revenue nearing 1 billion, it is one of Thales’ biggest locations. 

1.2 Problem Context 
Compared to former years, the number of sales orders is increasing significantly. Due to the increasing 

number of sales, Thales’ main focus is to keep up with customer order delivery dates. To be able to meet 

rising demand, production is increased. A side effect of this is a rise in inventory levels (WIP, finished 

goods) and this is starting to become problematic. At the start of 2022, as shown in figure 1, total stock 

value surpassed 130 million and in May 2022 stock value nears 180 million.  

  

Figure 1 - Inventory value March 2021 to January 2022 

High inventory levels impact profit cash flows. For example, high inventory values are associated with high 

depreciation costs. While in times of economic success, these costs can be overlooked. However, in 

economic downturn high inventory costs could hurt the company significantly. To reduce future inventory 

costs and lowering the probability of stock levels becoming a burden, Thales is looking for a way to reduce 

inventory positions and ultimately positively impact the inventory KPI’s: Inventory turnover ratio (ITR) 

and Days inventory on hand (DIO). Thales’ long-term targets for these KPI’s are ITR > 2.5 and DIO < 400 

days. 

Thales Hengelo has an intricate inventory system. Its production process is high mix/low volume with many 

different product lines. However, product parts are not confined to single product lines, some parts are used 

in different products while other parts are only used in one. Hence, standardization of inventory polices is 

hard due to diversification. To create at least some standardization, all parts are divided into three main 

categories: Work in progress, stock build and common stock, the latter can be divided into two categories. 

             

             

             

             

             

Inventory Value
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- Work in progress stock (WIP) 

WIP contains all items that are allocated to a sales order number. This means that all these items are reserved 

for a specific customer/project, also called hard pegging. WIP stock is demand driven, meaning that if 

product X is ordered, all parts within product X are then ordered and eventually kept in stock. Thus, WIP 

has a one-on-one relation with demand. This means that the parts are already paid for by the customer and 

therefore do not accommodate financial risk. As can be seen in Figure 2, WIP accommodates for around 

60% of total stock value. 

- Stock Build 

Just as WIP, stock build is allocated to sales order/project numbers. The difference between stock build and 

WIP is that stock build is not specifically related to customers, it is linked to a specific location instead. 

Some locations within Thales’ warehouse are reserved for specific projects. For example, a newly 

introduced product, without a yet streamlined production process, has all its parts on the same location to 

improve its production process. 

- Common Stock 

Common stock items are freely available within Thales. These items are not linked to a location or 

project/sales order number. Within Thales this is also called soft pegging. Soft-pegged items range from 

small screws to big, printed circuit boards. When necessary, planners can reserve these items from the free 

(common stock), to projects and its customers. Once reserved, in other words hard-pegging, these items are 

not freely available anymore. Finally, common stock can be subdivided into two subcategories: 

• Active Stock 

Free/readily available stock. 

• Strategic Stock 

Some Thales products have a life cycle of over 25 years. Thales has service agreements that ensure that 

during its systems lifecycle it can be maintained and repaired when necessary. Some parts can not be 

bought after for example 5 years. If this is the case, extra stock is bought to reduce the probability of 

stockout. 

 

 

 

 Figure 2 – Overview of stock categories with stock value Figure 2 – Overview of stock categories with stock value 



 

3 

 

1.3 Problem description 
 

Stock value is increasing as shown in figure 1. Besides increasing sales orders and customer demand, other 

reasons exist that increase stock levels. For example, Thales must comply with minimum order quantities 

(MOQs) set by its suppliers. Often, Thales only needs 1 or 2 specific screws for production, while suppliers 

only sell them per 1000, resulting in excessive stock. Over estimation of demand is another reason of 

increasing stock.  In these cases, more parts are purchased than necessary, or more parts are baselessly 

reserved to avoid stockout. In some cases, items are ordered early to ensure production can begin on time 

while contract negotiations are not finished yet. This is called ‘for release’ or ‘Bids’. Now and then these 

contracts are lost and thus items are ordered without customer demand, again resulting in excessive stock. 

Not only purchasing excess stock is linked to the rising stock value, but some policies that promote this 

behavior are in place deliberately. For example, Thales stays competitive due to its strong R&D of new 

radar systems. It happens that parts are purchased for testing and eventually not included in the final 

product. It is unclear what happens to these items since they are not linked to a specific customer project or 

project location. Furthermore, due to continuous improvement of Thales’ product roster, new versions of 

the same product are introduced. These are called ‘Engineering changes’ and ensure that the bill of material 

is slightly altered to accommodate for the newest technology. These changes can occur after parts are 

already ordered or build. In these cases, items are kept in stock.  

In all these cases amount of inventory is increased, and this happens every day. In addition, due to the nature 

of Thales’ ERP system, items in stock are linked to projects or sales order numbers, if linked at all. When 

items are not linked, it is very hard to backtrack why a specific item is in stock. And because Thales’ current 

focus is to increase production and deliver products, people are very hesitant to throw items away when 

they are unsure if it is important or not, or worse keep procuring more items since they think current stock 

levels are necessary for future demand. The costs associated to production being halted due to parts not 

supplied are significantly higher compared to higher inventory costs. Hence, within Thales there exists a 

culture that prefers to keep items in stock ‘just to be save’. Once a year however, towards the end of the 

year, there exists a general scrapping procedure. Items that have no demand and have not been used in the 

last 5 years are up for inspection. However only a small portion of items that are up for inspection are 

scrapped. This has many reasons: items becoming soon obsolete, uncertainty of item usage, uncertainty of 

demand stochasticity, uncertainty of ERP data. Ultimately, due to information uncertainty there is not a lot 

of confidence and to be safe items are kept in stock. The latter results in ever increasing stock levels.  

Other, yet smaller reasons for the increasing stock levels are for example unoptimized economic order 

quantities, better purchasing prices while buying in bulk, risk averse behavior of spare item purchasing 

policies and excessive strategic stock by the obsolescence department due to the so called ‘last time buys’ 

(LTB). LTB are where items are bought, sometimes in excessive quantities, one last time before the item 

becomes obsolete. Finally, with over 1500 Thales employees interfering at some degree with inventory 

levels, one can find countless of issues. To avoid unnecessary complexity, only high-level structural reasons 

are considered. These issues are put together in a problem cluster in figure 3 to help identify the core 

problem. 
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Figure 3 - Problem cluster 

It is important to know which problems are solvable within the scope of this thesis and which are not. 

Looking at figure 3, multiple potential core problems can be identified. Using the definition of a core 

problem: A problem is only considered a core problem if it can be solved, (Heerkens et al., 2012). Multiple 

problems are ignored. For example, MOQs are put in place by suppliers hence Thales cannot influence 

these. The same is true for demand uncertainty, while Thales could improve demand forecasting, there will 

always be some form of uncertainty. Furthermore R&D procurement and engineering changes are necessary 

for Thales to maintain a competitive advantage. These can be considered as the cost of doing business. 

These problems would probably be less of an issue if Thales would increase its ERP data quality. For 

example, if unused R&D equipment is listed somewhere it is easier to backtrack for which reasons certain 

items are kept stock and thus can be more easily scrapped. Better ERP data quality is something Thales can 

implement themselves and although strongly recommended, not something this thesis can achieve. 

Core problem 

The biggest gains can be gained by improving Thales’ current inventory policies and scrapping procedures. 

In the current scrapping policy, only items that have no demand and have no utilization in the last 5 years 

are considered. This so called ‘dead stock’ amounts to only 5,8% of total stock value, excluding strategic 

stock. Additionally, due to risk averse scrapping only a small fraction of this 5,8% is actually scrapped. 

Thales does have some current Inventory policies. Due to its engineer-to-order business, stock policies are 

mainly based on what is already in pipeline or committed. Furthermore, not all finished goods translate to 

sub system or item forecast. Not knowing how much of an item needs to be in stock to avoid stockouts, 

makes scrapping items scary. Hence, improving Thales’ inventory management capabilities improves 
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inventory transparency and boosts confidence to scrap items or procure less when inventory positions are 

too high. Currently, there is a big mountain of excessive stock but no data that shows what is excess and 

what is not. By improving Inventory policies, this becomes clearer and excess stock can be reduced by 

scrapping or selling. Ultimately, Thales should use better strategies for their purchasing policies. Overall, 

the core problem this thesis tackles, is to improve inventory management and provide more transparency 

into its stock levels by doing so. 

1.4 Research Objective 
The main objective of this thesis is to improve Thales’ current inventory policies. By improving this, more 

items can be confidently scrapped which results in less excessive stock and ultimately reduces inventory 

levels in the long term. Since Thales current culture towards inventory, it is also important that it boosts 

inventory transparency. Due to Thales’ high-mix, low-volume and engineer-to-order business, a one size 

fits all inventory policy will not be enough. Good segmentation and categorization of items is necessary to 

ensure the right decisions are made. It does not make sense to reduce stock for items that are still in pilot 

period (very new technological items), chances are they will be used in the next few years. On the other 

hand, items that are in stock for 10 years and still without demand, should probably be scrapped. Ultimately 

the objective of this thesis is twofold: 

- Improve inventory methods and increase inventory management 

- Show necessity of items in stock more clearly 

Reality to norm 

The preferred situation that this thesis achieves is described as follows: Thales knows when items are 

excessively in stock based on item policies. Currently 81% of items make us of their MRP planned policy 

(shown in chapter 2), which does not a good enough job to keep stock levels stable. The goal of this thesis 

is that all items get a fitting inventory policy assigned to counteract excess stock. When this is the case, 

Inventory managers can decide to scrap or resell excess items. Reaching this new norm requires a model 

that indicates what the inventory position should be for all items in scope. This inventory position number 

is calculated based on forecast methods inventory parameters and KPI’s as service level targets, overall 

days on hand or turnover ratio. More extra parameters exist and will be explored further in this thesis. To 

ensure the model reflects Thales’ business as appropriate as possible, parameters should be able to be 

changed by decision makers based on their preferences.  

1.5 Research Scope 
As described in section 1.3, hard-pegged items are allocated to single projects. Hence, these items need to 

be kept in stock if the project is still in progress. All hard-pegged items are one on one accounted for through 

demand, meaning that all items are used and often not left in stock when the project is finished. Items that 

are left in stock go from hard-pegged to soft-pegged, as the project no longer exists. Because of the nature 

of hard-pegged items, they are out of scope of this thesis. Hence, only soft-pegged items are included in the 

model. This means that Work in progress and Stock build items are out of scope, only common stock is 

considered.  

Common stock can be subdivided into active and strategic stock. Strategic stock is in stock for specific 

reasons, it is not considered as excess stock or waste. This is why strategic stock is out of scope, and active 

stock is within the scope. 
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1.6 Research Approach & Research Questions 
This research is done through different phases with accompanying research questions. The research is done 

in the order of the phases 1 to 5. All steps are done to answer the following main research question:  

 

What inventory policies should be implemented to improve inventory management for all Thales 

common stock items? 

 

I. Analysis of current inventory, current inventory methods, Thales’ current performance 

and classification of inventory 

To obtain a complete picture of the current situation, all in scope items should be evaluated. It 

is useful to investigate what and where items are in inventory, what procedures exist and impact 

the situation constantly. Therefore, the following sub-research questions should be answered. 

1. How much items are in stock? What is the nature of these items regarding size, value, 

demand, days in inventory? 

2. When do items get sold or scraped? What items are not considered and why? 

3. What is the performance of Thales’ inventory regarding the main KPI’s? 

 

II. KPI dimension analysis, Inventory Strategies, Strife value implementation 

In the second phase all the characteristics of the current situation are known. Hence, the current 

performance can be substantiated by using literature and the outcome of the first phase. This 

can later be used to build and evaluate the model. In addition, multiple inventory strategies or 

methodologies from literature are evaluated to find the best fit for Thales.  

1. What statistical distributions fit current demand patters? What inventory strategies fit 

these demand patterns? 

2. How can inventory management be improved? 

3. What item classification exist? Which would be beneficial for Thales? 

4. What inventory policies or strategies exist? Which are applicable to Thales? Would 

these policies benefit Thales? 

 

III. Applying chosen solution approaches 

In this phase multiple inventory policies are evaluated, and its effect is analyzed. Besides 

analyzing the impact of these improvements, it is also important to validate the solutions 

themselves. Based on these findings, recommendations and the proposed inventory methods 

can be implemented. 

4. How do proposed policies impact the performance of Thales inventory? How much do 

KPI’s improve? What other changes happen next to KPI changes?  

5. What settings/methods lead to the biggest increase in performance or reduction in 

inventory? 

 

IV. Implementation of the new plan 

The final phase of this research is to provide recommendations on how this model should be 

implemented. It should show how the model works and how inputs and outputs should be 

interpreted.  
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1.7 Deliverables 
To ensure Thales can make use of this research, alongside this thesis other deliverables are given.  

This thesis outlines the new proposed inventory policies, as well as how they are implemented in Thales 

current situation. Currently, Thales makes use of a lot of Excel data files. Besides this Thesis, a macro 

enabled excel file is created. This excel file ensures that Thales can load in its data and after calculations 

are made an overview is created of all current items in stock. This overview shows the current stock levels, 

expected demand (calculated and from ERP), recommended inventory policy, policy parameters and lastly 

it points out whether a SKU stock level is within acceptable bounds given the inventory policy. This last 

point ensures Thales has a good understanding of why or when a stock is too low or too high. 

In the appendix E, instructions can be found that show how this Excel tool works. 
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Chapter 2 – Analyzing the current situation 
In this chapter the current situation in regard to the items in stock is analyzed. First the characterization of 

items is discussed in section 2.1. Afterwards multiple policies and current practices are discussed and 

elaborated on in section 2.2. Furthermore, demand specifics of these stock keeping units is analyzed in 

section 2.3. Section 2.4 shows the current depreciation of items as financial risk and section 2.5 shows the 

KPI performance of the Thales stock. Lastly, 2.6 concludes this chapter. 

2.1 Item Characteristics 
There are currently over 23 thousand different items in stock. Ranging from bolts and screws to big 

assembled parts. To distinguish the items. Items are sectioned by the terms active, strategic (also called 

obsolete) stock, dead and not dead. Thales is worried that a lot of stock is dead stock. Healthy stock policies 

ensure that overall stock cost and stockout probabilities are minimized. Dead stock costs Thales money, 

either by taking up valuable warehouse space, or by extra handling costs without return. Dead stock is stock 

that does not pull its weight and will pull the business down in the long-term. (Kakarlamudi, 2018) There 

are different types of dead stock. Excess stock is one example where too much stock is procured and after 

order is finished excess stock stays in inventory. However, stock that sits around for a long time does not 

have to be bad. In Thales case a significant part of un-moving stock is strategic stock (items that are 

obsolete). To get better insight into what items cause problems and which are necessary for business, Thales 

uses 2 categories: 

- Dead and not Dead: Dead stock are items that are without demand and no usage in the last 5 years 

and not dead items are when this is not the case. 

- Strategic and Active: Strategic items are unavailable for purchase on international markets and 

active items are readily available for purchase.  

 

 

Figure 4 – Distribution of items in stock (Common Stock) 

According to the 2 categories, the distribution of items is shown in figure 4. The worst category is active & 

dead stock, as this stock does not move and is readily available on the market, hence if currently necessary 

one could simply procure it. This category accounts for almost €3 million of total stock value. In the contrast 

to the latter category, active & not dead accounts for the majority of stock value and 1/4th is strategic stock. 

Note however that within figure 4 does not tell the whole story. While 65% (€26 Million) is active stock, 

due to Thales definitions excess stock is included. When an item has not been used for the last 4 years and 

has no demand, it is still considered active while in fact all that it could be excess items left over from a 

transaction 4 years ago.  

10,83%

6,78%

17,19%
65,21%

Strategic & Dead Active & Dead

Strategic & not Dead Active & not Dead
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To obtain more insight into the nature of items in stock, Thales does use some form of classical ABC 

classification. While classical methods from (Teunter et al. 2009) rank SKUs based on their value and 

revenue Thales just considers inventory value only, since for many items relevant revenue data is missing. 

Based on the ranking, the items are divided according to the Pareto distribution 80%, 15%, 5%. 

Table 1 – ABC Classification of items in stock 

Classification Percentage of 

total value 

A 80% 

B 15% 

C 5% 

 

The distribution results in the following cumulative distribution of inventory value. 

 

Figure 5 – ABC classification cumulative distribution 

Due to the chosen subsets of items the characteristics of these classes are shown in table 2. 

Table 2 –Summary ABC Classification 

Classification A B C 

Max Value €3.200.000 €12.000 €2000 

Min Value €12.000 €2.000 €0 

#items (%) 6.2% 19.2% 74.5% 

When looking at the summary, the number of items in Class A is relatively small. This can be explained 

due to the nature of Thales’ products that are sold. Products often have only a few high value sub parts, and 

this is represented in its stock. It would be interesting to see if a high percentage of these A parts are 

considered ‘dead’. On the other hand, the majority of items are C items. One could ask the question if this 

amount of C items is necessary for business or that a lot of these items are ‘leftover’ or excess. In the next 

section, more insight is given into the item sets. 
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2.1.1 Dead stock 

Using the ABC classification, the characteristics of the items in stock are further explored. The most 

interesting category is dead stock, since these assets do not convert to revenue. Dead stock amounts up to 

17% of total stock. To improve inventory turnover ratio, eradication of dead stock is one of the first logical 

improvement areas. 

Figure 6 shows the distribution of dead common stock according the ABC classification. To further 

elaborate on dead stock, figure 7 shows the composition of dead stock in regards to strategic and active 

stock. First, the B-item class looks to be the biggest contributor regarding inventory value. Oddly A items 

are a significant part of total dead items. These items cost thousands of euros. A-items contain items like 

circuit boards. Are these expensive items still usable after being on the shelf for 5 years? Furthermore, in 

figure 7, the majority of ‘dead’ items are still active. Hence, they do not need to be kept in stock as they are 

still available to be bought. Reselling or scrapping of these items could lead to reduction in inventory value. 

2.1.2 Not dead stock 

While dead stock logically would be the biggest negative contributor to inventory KPI’s. ‘Not dead’ stock 

is not without fault. As mentioned, Thales ‘best’ subclass (not dead & active) does contain excess items 

and in theory it is still possible the majority of these items are left unused for years.  

Figure 8 shows the distribution of active common stock. In comparison to dead stock, the difference 

between A and B items is less. However, in both cases, even when A items are far more expensive, B items 

are the majority of stock value in common stock. Interestingly to note however, is that in contrast to dead 
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strategic stock, the majority of not dead strategic stock are A items. That A item segment is more 

represented in not dead stock is interesting. This is could intuitively be explained that there is more attention 

for A items and thus less likely to be left on the shelf for too long. 

 

Figure 10 - Active (not-dead) inventory, years not used. 

While not dead stock is ‘in use’ according to the definitions set by Thales. Figure 10 shows that around 

63% across the three item classes is recently used. A connection can be seen between importance of item 

class and steepness of the no usage curve. High value A items are more likely to have recent usage and are 

less likely to be unused for a longer time period. While figure 10 is based on not dead active inventory, it 

is interesting that around 25% of B and C items have not been used in the last 2 years. It is even a bit odd 

with the knowledge that most items have a lead time of less than a year. In these cases, one could choose 

to resell these items and when demand rises, more can be bought.  

2.1.3 Excess stock 

In the previous section, the usage of active un dead stock is discussed. Usage alone does not tell the 

complete story as items that are used may still be plentiful in stock. 

 

Figure 10 – Active stock build-up (excluding strategic stock) 

0 years 1 year 2 years 3 years 4 years 5 years

A 68% 29% 14% 10% 6% 5%

B 63% 36% 24% 13% 7% 2%

C 58% 41% 26% 17% 10% 4%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Number of years no usage

  

          

          

          

          

           

           

A B C

Active Common Excess stock

Not Excess Excess



 

12 

 

Figure 10 shows us the amount of excess stock in regards to total stock of figure 8. Note that excess stock 

is calculated as follows: 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑆𝑡𝑜𝑐𝑘 𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑎𝑥((𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 − 𝐷𝑒𝑚𝑎𝑛𝑑) ∗ 𝑝𝑖𝑒𝑐𝑒 𝑝𝑟𝑖𝑐𝑒, 0) 

Looking at figure 10, it becomes clear that for B and C items, more than 50% of stock is excess. It is 

impossible for Thales to completely remove excess stock coming in. Things like MOQ’s and Engineering 

Changes are the cost of doing business. However, having over €12 million excess stock can negatively 

impact inventory performance. In Thales’ situation excess stock is not 100% bad. In the way excess stock 

is currently calculated, it includes safety stock. While Thales lacks inventory policies that calculate safety 

stocks for a lot of items, moreover in section 2.2, extra safety stock reduces the probability of stockout. 

However, how much safety stock is required is currently not calculated for the majority of SKUs. 

2.1.4 Probability of demand of ‘dead’ inventory 

As the Thales’ prescription of dead demand dictates: No future demand and no demand in the last 5 years. 

Using this definition, a lot of inventory is assigned this label. In most cases items that are not used for 5 

years do not have and will not have new demand. To find the probability of future demand given demand 

in the past, demand behavior is analyzed. It is interesting to see whether the 5-year ‘dead’ period is 

appropriate to say something about future demand. For example, it could be that items that are not used in 

the last 3 years, will not have any future demand. Due to the big emphasis on R&D, parts are replaced often. 

Hence, the longer an item is unused, increases the probability that it has been interchanged, and thus future 

demand of this item will decrease. Because the probability of years unused and demand are dependent 

Bayes’ Theorem is a suitable method to calculate the relation between usage and demand. 

P(D|𝑈) =
P(U|D)𝑃(𝐷)

P(U)
 

The probability of demand (D) is calculated given the usage (U) of the items in stock.  
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Figure 11 – Demand given usage   Figure 12 – Demand given non-usage 

   

In figure 11, the analysis shows that the probability increases of demand when an item has been used in the 

last 2 years. An item that is used once (for 1 year) has a lower probability on future demand than items that 

are used multiple years. Considering Thales’ long lead times this is logical, even 3 years of usage gives a 

higher probability of future usage. In figure 12 the probability of demand is given in regards to consecutive 

years of no usage. No usage in year 1 corresponds to a demand probability of 17%. This number lowers for 

the next 2 non-usage years and then stays stable. This indicates that the probability of demand is not changed 

when an item has not been used in the last 3 years than if it was not used in the last 5 years. Additionally, 

the probability of demand given 4 years of usage is lower than 3 years of usage (figure 11). Together, this 

indicates that the arbitrary 5-year period might be too long. A 3-year period indicates a similar promise of 

future demand and makes the group of dead stock bigger.  

2.2 Inventory Parameterization 
There are currently over 21 million items in stock. It is known that the value of inventory is increasing. 

From January to August total inventory value has risen by €14 million. 

 

Figure 13 - Total inventory value 
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2.2.1 Inventory Policies 

Current inventory policies are very basic. This makes it hard to check whether your stock levels are justified 

or not. When looking at the current situation only a few policies are found. The items in inventory can be 

subdivided into two main categories, MRP planned and inventory Min-Max policy. MRP planned means 

that the items are procured based on the internal MRP planning. Thus, these items are only procured when 

the product is currently in the production pipeline. This procurement policy happens for the vast majority 

of items as shown in figure 12. Note that the number of units MRP procured is equal to the demand, however 

this is not the case for items which contain a MOQ/EOQ or safety stock. In this case the number of units 

procured often exceeds the demand. So, items where EOQ/MOQ or safety stock calculations are used, are 

still MRP planned but use a different inventory policy.  

 

Figure 14 – MRP planning vs Inventory min-max policy 

Besides MRP planned, Min Max is another used policy. Inventory Min Max corresponds to one of the 

common inventory control systems. Min/Max can be seen as a (R, s, S) policy, moreover in chapter 3.  
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2.2.2 EOQ and Safety Stocks 

EOQ calculation are only done for fast movers, moreover in the next section. These items are often in 

multiple products. EOQ’s are calculated following traditional EOQ formula: 

𝑄 = √
2𝐷𝐾

ℎ
  

Where: 

Ordering costs K = €200 

Holding costs h = 0,2 

 

While most items follow the formula, exceptions are made. 

If MOQ > EOQ then the MOQ is used as the EOQ, furthermore, if the EOQ > average yearly demand, then 

the EOQ = yearly demand. 

 

Safety stocks are only calculated for a few items. In appendix A an overview of Thales’ current safety stock 

calculations is shown.  

 

2.2.3 Demand during lead time 

As Thales wants to reduce inventory value while not reducing stockout probability, demand during lead 

time plays a big role. However, some items are produced/demanded in such low volumes and occurrences 

that the need for stock is neglectable. Looking at MRP planned only, demand next year is known for these 

items. Still, a lot of items are kept in stock while the time before next demand < lead time. Meaning that 

for some items, the next time they are needed for production is in 2023. And with a lead time of less than 

100 days, there is still a lot of time for procurement processes to get them in stock on time. So, when looking 

at items that have no demand for the next 6 months and a lead time of less than 100, table 3 shows the 

resulting stock value. In theory, over €11 million could be procured later as these items are not needed yet 

and thus reducing current stock value significantly. 

Table 3 – Stock value of items that could be procured or made later 

No Demand and Lead time < 100 days Stock Value 

Make items €70.931 

Buy items €11.432.931 
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2.3 Demand Characteristics 
While Thales keeps track on the number of products it will sell in the coming years. They do not look at 

individual items. Thus, future demand is clear based on what is already in contract (MRP planned), no other 

methods are used to improve inventory policies like forecast based purchasing and safety stocks. Doing this 

does come with some challenges. Thales is a low-volume High-mix company. And their items in stock 

range from basic bolts to very complex expensive products. There is no single demand distribution that fits 

all items. In this section, all different demand characteristics found within Thales are discussed.  

According to (Boylan et al., 2008) a demand framework is given to categorize the different demand types. 

The framework is based on average demand size µ, interval between demand events and coefficient of 

variation σ/µ. 

Fast movers (demand during lead time > 10) 

- Fast moving: Regular demand/small inter-demand intervals (σ/µ < 0.5) 

- Erratic: Highly variable demand size (High σ/µ > 0.5) 

Slow movers (demand during lead time < 10) 

- Slow moving: Low average demand per period or low demand size  

- Intermittent demand: infrequent demand occurrences (σ/µ < 0.5) 

o Lumpy: intermittent demand with highly variable demand size (High σ/µ > 0.5) 

o Clumped: intermittent with constant demand 

 

As seen in figure 15, the division of fast and slow items is around 50/50. 

 

Figure 15 – Fast vs Slow moving items 

Figure 15 shows that most demand is relative predictable. Nearly 60% of total demand is predictable (σ/µ 

< 0.5). As mentioned in section 2.2.1, the majority of items do not use any inventory policy, this is odd 

since the biggest subgroup have fairly predictable demand patterns. 
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2.3.1 Erratic/Lumpy Demand 

Lumpy and Erratic demand is less plannable. Due to bigger variance of demand sizes, the demand during 

lead time is more unpredictable. To reduce the probability of stockout occurrences, bigger safety stocks 

need to be in place than with regular demand. Taking a look at the distribution of the coefficient of variation 

over all the items. 

 

Figure 16 – Coefficient of variation of demand sizes per item 

It becomes clear from figure 16 that while a lot of items have a coefficient of variation of over 0.5, only a 

few items are very unpredictable. In Appendix C, a few items are illustrated as an example as of how these 

items behave. Ultimately these items contain such high CV’s due to one or two big deviations. Possibly, 

these deviations could be filtered in a model. 

2.3.2 Intermittent Demand 

Intermittent demand amounts up to 29% of total demand. Intermittent demand is characterized as having 

infrequent demand occurrences, however what is infrequent? Due to relative long lead times (average lead 

time of all Thales items equals 97 days), demand is characterized as intermittent if and only if the average 

days between consecutive demand occurrences is ≥ 100 days. Note that this value could be altered in a 

model. Examples of intermittent demand are shown in Appendix D. For 16% of all intermittent items, the 

time interval between consecutive demand occurrences is bigger than their lead time. Similar to section 

2.2.3, stock value might be decreased through later procurement in these cases.  
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2.4 Financial risk 
Having items in stock for a long time ensures that items at some point are depreciated. Within Thales this 

is part of their financial risk. Based on a lot of specific characteristics, a risk percentage is given. The risk 

is based on things like depreciation, obsolescence, shelf life, intricate materials. Items that have assigned 

100% financial risk are fully depreciated and Thales reserved 100% of the cost on their balance sheet. The 

latter, meaning the item has fully been paid for since Thales assumes the item will not give any more returns. 

Considering this, it is interesting to see how much of current stock is ‘fully depreciated’.  

 

Figure 17 – Percentage of items that are depreciated 

Luckily as seen in figure 17, most items in stock are not depreciated. Oddly, almost a third of all common 

stock is 100% depreciated. The figure presented above is without Strategic stock. Hence, the stock above 

is still available on the market. Thus, when something is completely depreciated and still available, why is 

so much of it in stock? 

Table 4 – Stock value corresponding to financial risk 

Item 

Class 

Stock Value 

A €3,693,132.25 

B €4,683,833.43 

C €2,472,872.75 

Total €10,849,838.43 

 

As a result, table 4 shows the stock value corresponding with the financial risk. More than a quarter (27%) 

of total common stock is depreciated. Interesting to see that the sub class B contributes the most to the 

overall depreciated stock. 

  

42%

7%

50%

0%

10%

20%

30%

40%

50%

60%

100% 25% 0%

Depreciation %

Percentage



 

19 

 

2.5 KPI performance 
To give insight into the performance of the overall stock performance, Thales uses two main KPI’s, DIO 

and ITR. In figure 17 it is shown that although most stock is ordered fairly recently, still a large chunk of 

items have been sitting in stock for over 10 years.  

 

Figure 18 – Stock value by on latest stock date 

Having a lot of dead/idle stock ultimately has a negative impact on DIO and ITR. The DIO and ITR are 

calculated using the following formulas:  

Days inventory on hand = Average Inventory / (Cost of Goods Sold (COGS) / Days in period) 

Inventory Turnover Ratio = (Cost of Goods Sold (COGS) / Average inventory 

 

Figure 19 – DIO period 2020-2022                 Figure 20 – DIO period 2020-2022 

Looking at the two KPI’s, DIO is still worsening year on year. A possible reason could be the significant 

amount of excess and old items in stock. The ITR does improve compared to 2021, one of the reasons for 

this is that a new inventory manager started in 2022. As stated in chapter 1, a mathematical model will be 

developed that tries to improve inventory policy and improves KPI performance. Hence, these KPI’s will 

be used to verify when improvements are realized given the created model in this thesis. 
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2.6 Analysis Conclusion  
Ultimately, the number of items in stock can be improved upon. It is shown that around 1/5th of stock is 

dead or idle. For some item classes, like B-items, over half of its stock is excess stock and overall inventory 

value is increasing. Inventory performance has been deteriorated in the last few years, which results in 

millions of euros spending in depreciation. Other problems could arise due to increasing inventory like 

increasing inventory handling costs, increases warehouse utilization and worsens KPI’s.  

In chapter 1 some reasons are given for how inventory performance could worsen. Think of MOQ’s and 

LTBs. However, some assumptions made by Thales like the 5-year dead stock rule are counterproductive.  

For example, lowering this to 3 years, indicates that a lot more items are assigned ‘dead’. And it is a lot 

easier to scrap dead stock than active stock. Lastly, section 2.2 shows that while inventory performance 

worsens, only a small percentage of items actually have inventory strategies besides MRP planning. For 

example, as seen in section 2.3, a lot of items have very irregular demand and currently no policies exist 

within Thales to effectively deal with them. Overall, the stock policy is very reactive instead of predictive. 

Most items are purchased according to MRP planning. In theory, these items do not need forecasting, while 

the procurement is based on known order. Still, due to many different reasons, items are procured and left 

in stock unused, hence there is need for additional checks whether an item should be stocked or not. While 

current problems are not painfully felt on the financial balance, not improving the current situation could 

deteriorate the current situation and give new problems or bigger costs in the future.  
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Chapter 3 – Literature 
In this chapter different statistical distributions are discussed that can be linked to specific demand 

characteristics. In the second part, different item classifications are listed. After classification, it is important 

to know what to do with these classes regarding inventory control. Hence, in the last part of this chapter 

different inventory strategies are discusses as methods that improve item inventory control for specific 

classes. 

3.1 Demand Distributions 
To improve inventory policies, one must account of the unpredictability of demand. As demand is 

stochastic, statistical distributions help predict the incoming demand. The item demand characteristics over 

all different items within Thales’s stock differentiate a lot, one demand distribution does not fit all. Using 

the cumulative distribution functions (CDF) of demand during lead time is a standard method for inventory 

policies. To evaluate inventory policies, standard CDFs are often used. For example, normal and gamma 

are popular for fast-moving items. And Poisson, negative binomial and compound Poisson distributions are 

often used for slow-moving or intermittent items (Boylan, J.E, 2008). In practice however, fitting some of 

these probability distributions to actual demand patterns can give errors.  

 

3.1.1 Fast-Movers 

According to research, the normal probability distribution is often used to predict fast-moving demand in 

various industries. This distribution is particularly effective for forecasting demand for SKUs with a 

coefficient of variation around 1 and a lead time demand greater than 20 (Chopra & Meindl, 2015). 

However, one limitation of the normal distribution is that it allows for a probability of negative lead time 

demand, which is not physically possible. When this probability is too high, the Gamma distribution may 

be a more suitable choice as it accounts for the fact that negative demand is not possible (Axsäter, S. 2006) 

and tends to not result in lower safety stock estimates. Often the Coefficient of variation is used in literature 

to help choosing a distribution (Winston, 2004). Gamma distribution is mostly used when the CV > 0.5, 

while Normal probability works well when CV <0.5. 

 

On the other hand, in cases where demand is very high, the Gamma distribution may give an overly high 

probability of demand. In these situations, the lognormal distribution may be more appropriate as they are 

better equipped to model high demand accurately. 

 

3.1.2 Slow-Movers 

It has been shown that when lead time demand is lower than 20, the Poisson distribution performs better 

than the Normal distribution as a model for slow moving items. One reason for this is that the Poisson 

distribution is well-suited to modelling discrete data, hence low numbers, such as the number of units sold 

per month, while the Normal distribution assumes a continuous distribution of data. In addition, the Poisson 

distribution has the property of being skewed to the right, which is often observed in real-world demand 

data due to outliers. 

 

When the variance to mean ratio is less than 1, the Binomial distribution is a better choice for modelling 

demand data. This is because the Binomial distribution is specifically designed to model binary outcomes, 

such as the number of successes in a fixed number of trials. In this case, the mean and variance of the 

Binomial distribution are equal, making it well-suited to modelling data with a low variance to mean ratio 

(Ross, 2014). 

 

On the other hand, when the variance to mean ratio is greater than 1, the Negative Binomial distribution 

performs better as a model for demand data. The Negative Binomial distribution is a generalization of the 

Binomial distribution that allows for an additional parameter, which can be used to model overdispersion 
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in the data (Ross, 2014). In this case, the mean and variance of the Negative Binomial distribution are not 

equal, making it more suitable for modelling data with a high variance to mean ratio. 

 

3.1.3 Intermittent Demand 

Intermittent demand is characterized by fluctuations in demand over time, with periods of high demand 

followed by periods of low demand. The Poisson and compound Poisson distributions are well-suited for 

modeling intermittent demand patterns because they can capture the variability in demand over time and 

the likelihood of rare events. Intermittent demand forecasting first was talked about by John Croston in 

1972. It took 20 years for research to gain popularity, since faster item forecasting were much more popular. 

(Boylan et. Al 2021) 

 

The Poisson distribution is a discrete probability distribution that is often used to model the number of 

occurrences of a particular event over a given time period, such as the number of customer purchases of a 

product. The compound Poisson distribution is a continuous probability distribution that is derived from 

the Poisson distribution and is often used to model the number of occurrences of a particular event over a 

given time period, taking into account the variability in the rate at which the events occur (Adelson (1966). 

Compound is thus very suitable for stocks that have a high variability in demand sizes. 

 

3.1.4 Goodness of fit test 

The goodness of fit test is a statistical procedure used to evaluate the fit of a model to a set of observed 

data. This test allows researchers to determine whether the model accurately represents the underlying 

patterns in the data. One such procedure is the Chi-square test. The Chi-square test groups data in bins and 

compares the amount of observed bin data versus the expected bin data. Another option is the Kolmogorov-

Smirnov test. The advantage of this test is that it does not need bins, which does require less computations. 

However, the Kolmogorov does need the demand data to be continuous and thus it is not useful for slower 

moving demand or discrete demand data (syntetos et al., 2011). The test shows if a statistical distribution 

fits certain data with a confidence percentage. To calculate the Chi-square test the following formula is 

used: 

 

𝑋2 = ∑ (
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
)

𝑁

𝑖=1

 

 

Where 𝐸𝑖 is the expected count of a distribution and 𝑂𝑖 the observed count. 

 

While the goodness of fit test often works well, there are also some limitations to the goodness of fit test. 

For example, the chi-squared statistic is sensitive to the sample size and may not accurately reflect the fit 

of the model for smaller samples (Williams, 1950). Low sample size fits discrete distributions and due to 

the nature of slow movers the Poisson distribution is chosen for these demand types. Additionally, the 

goodness of fit test assumes that the observed data are independent and identically distributed, which may 

not always be the case in real-world situations. 

 

Overall, the goodness of fit test is a valuable tool for evaluating the fit of a model to a set of observed data. 

While it has some limitations, it can provide useful insights into the accuracy and reliability of a model and 

can help researchers to improve their predictions. 
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3.2 Classification 
As Thales’ items come in all shapes and sizes, a classification can be useful for efficient inventory 

management. Most widely used is the ABC classification (Teunter et al 2010). The ABC classification is a 

method of categorizing inventory items based on their relative importance and value to the business. This 

classification system typically divides inventory items into three categories: A items, which are the most 

valuable and important; B items, which are less valuable but still important; and C items, which are the 

least valuable and least important.  

 

While the most common approach is to rank the classes according to the so-called annual dollar volume. 

There are many practices in how SKU’s can be divided. The following additional criteria can be used to 

classify stock keeping units according to literature (Jiaxi Li et al, 2016; Teunter et al 2010) 

 

- Lead time (Items with long lead times are less responsive, hence can have an impact on production 

when its supply certainty is not reliable. Delays will be long and costly.) 

- Obsolescence (In high-tech industry, single parts can change quickly and thus obsolescence can 

have a big impact on availability) 

- Substitutability (Items that can easily be interchanged need less maintenance since when these items 

are out of stock, other items can be substituted) 

- Minim order quantity (MOQs can result in high inventory since demand and supply can be vastly 

different when MOQs are very high.) 

- Piece price (Obviously the impact of piece price on inventory value and company cash flows is 

great. High stocks of expensive SKU’s can hurt a company’s balance statement) 

 

To increase inventory classification performance more criteria can be added to better fit item segments. 

However, the main reason for adding and choosing criteria is to not complicate inventory management 

(Flores et al, 1992). One main criterion can be a result of multiple sub criteria. Eventually weights should 

be added to correctly prioritize the impact of each criterion.  

 

In addition to multiple criteria, classification can be effectively enhanced with the number of classes. 

Typically, researchers use 3 classes as ABC is most common. However, increasing the number of classes 

can lead to a reduction of overall inventory costs. (van Wingerden, 2016). Note, this does not work for all 

scenarios. When item characteristics are of high diversity and in big numbers, additional classes can capture 

the more specific needs of smaller sub classes. While high item differentiation can maybe be better captured 

with more classes, extra classes does complicate overall inventory management.  

 

In a paper from Flores (1992), multiple subclasses are created through matrices. In this case the classes AB, 

BC, AC, CA are created to increase inventory control. In other studies, the B class is eliminated since it is 

found to be unnecessary. In some cases, B items can be seen as cheap A or expensive C items. However, 

this only works when the item characteristics are similar. A items are expensive, unique, MRP scheduled.  

C items on the other hand are cheap, non-unique and offered by many suppliers. They are bought in bulk 

and its inventory can easily be controlled by simple Min/max or re-order-point policies. In high mix low 

volume companies more often than not, more classes increase complexity however since its products and 

SKUs are very different, they can capture the complexity of SKU’s better. 
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3.2.1 Classification Methods 

While the number of classes can improve overall inventory management and capture more complexity. 

Different methods exist as of how to classify the items into these classes. In this section, an overview is 

given on the different methods to classify SKUs. 

 

- Item price 

Thales currently classifies its SKUs according to their item price. This method is the least complex as it 

only accounts for one criterion. While this method emphasizes the most expensive items, as the most 

expensive items are ranked first, it has its shortcomings. In a complex environment, as is the case for Thales, 

there are more indicators like demand or lead time for ‘important items’ which this method does not include. 

 

- Annual dollar volume  

ADV is the most traditional used classifier. ADV is ranked by multiplying the number of SKUs demanded 

with the SKU price. This ensures that less expensive but more demanding SKUs are ranked higher. (Prakash 

et al. 2017) However, a shortcoming of this method is by multiplying these factors, it could lead to a bias 

for cheap items. Often, cheap items are demanded a lot more than expensive items. A C-item of 1 euro 

could be thousand times more demanded than 1 expensive item. This method could lead to this cheap item 

outranking the expensive items, while in practice this should not be the case. 

 

- Price/Demand 

To counteract the shortcoming of ADV, instead of multiplying the criteria, the ratio between the two can 

be calculated. The price demand ratio ensures that the bond between the two criteria is still observable while 

keeping expensive items still in more important classes.  

 

- Pareto analysis 

This method very common in a lot of industries. It uses the pareto principle, which states that a small 

number of items (usually around 20%) account for a large proportion of total value or revenue. In ABC 

classification, the top (80% of total value) makes up the A-class, 15% of value the B-class and lastly 5% of 

value the C-class. 

 

- Demand versus holding costs and lead time  

This method ranks SKUs higher according to the following formula (Zhang et al., 2001): 
D

ℎ2∗L
 

If the demand rate is larger or if the holding costs are smaller. Furthermore, in contrast to other methods 

the order quantity has no effect on the SKU rank while the lead time does. In businesses where order 

quantities are similar across SKU’s, this criterion can outperform other methods. 

 

- Price * MOQ/Demand 

This method elaborated on price/demand and adds the minimum order quantity into consideration. Since 

MOQs can disrupt inventory control, giving a bigger emphasize on items that have one, can improve overall 

inventory management.  

 

3.2.2 Multi criteria inventory classification (MCIC) 

In section 3.2.1, a list of the most used classification methods is given. Often these methods only take a few 

criteria into account. For complex environments this might not be sufficient. As the number of criteria 

increases, so does the need to use multi-criteria inventory classification methods to classify items. Gajpal 

et al. presents the analytical hierarchy process (AHP) as a method to incorporate multiply criteria into an 

ABC inventory classification. This method ensures quantitative as well as qualitative criteria can be 

implemented. In other literature a weighted linear optimization model is used to classify (Ramanathan, 

2006)). The proposed model uses a scalar score based on all the criteria to evaluate the performance of the 
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SKU. Some implementations of classification incorporate multiple classification methods. Vancheh et al. 

first used multiple criteria as ADV, lot cost and lead time ranking. Afterwards a technique called data 

envelopment analysis (DEA) is used to calculate criteria weights and thus eventually item scores. AHP and 

DEA can both make use of quantitative and qualitative data, which increases the performance of item 

classification since decision makers can input their qualitative input. Yet in this thesis, only quantitative 

data is considered. DEA also has a disadvantage; computational time increases significantly as the number 

of items increases, as for every item a decisions value yij is calculated (Hatefi et al., 2010). With thousands 

of items this takes a lot of computational effort to solve. 

 

As knowing the relative weights of each criterion is a major step into solving classification. A less 

computational expensive method could be more practical. Among several methods in literature Shannon’s 

entropy method is very popular (Zhao et al., 2010). This method includes the use of entropy. Entropy is 

widely used to compute uncertainties, from social sciences, physics but also in MCDM problems. In chapter 

4, the steps of Shannon’s entropy method are shown. In the contrary to a more overall method like DEA, 

using entropy only gives us criteria weights. Ranking items afterwards is a new problem. A lot of different 

MCDM methods exist, from AHP, ELECTRE to DEA and others. Given the amount of data TOPSIS is an 

effective approach (Van Harten, 2019). TOPSIS is based on the principle that the best solution has the 

shortest Euclidean distance from the ideal solution and the most negative the farthest. This can easily be 

calculated using the outcome from Shannon’s entropy. After ranking all items, classification is the last step. 

The steps of Shannon’s entropy (Zheng et al., 2017), are illustrated next: 

 

A multi-attribute problem is defined as a matrix with m items and n evaluation criteria. 

𝐷 = {

𝑋11 𝑋… 𝑋1𝑛

𝑋… 𝑋... 𝑋…

𝑋𝑚1 𝑋... 𝑋𝑚𝑛

}  

First matrix D is normalized: 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 ∀. i and j 

Step 2 computation of the entropy measure 

𝐸𝑗 = −𝑘 ∑ 𝑝𝑖𝑗
𝑚
𝑖=1 ln 𝑝𝑖𝑗  

Where, 

 𝑘 =
1

ln 𝑚
 

Step 3 Define the objective weight based on the entropy. 

𝑤𝑗 =
1− 𝐸𝑗

∑ (1− 𝐸𝑗)𝑛
𝑗=1

  

Step 4 calculate the general form of entropy weight if the decision maker assigns subjective weights sj. By 

considering sj, the previous formula transforms into the following: 

𝑤𝑗
∗ =

𝑠𝑗𝑤𝑗

∑ 𝑠𝑗𝑤𝑗
𝑛
𝑗=1
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Step 5 

Lastly, the overall score of items I is calculated using the comprehensive score value calculated by the 

following formula:  

𝑆𝑐𝑜𝑟𝑒𝑖 = ∑ 𝑤𝑗𝑝𝑖𝑗
𝐽
𝑗=1   

 

Furthermore, the overall score of the items is used to classify them into the classes A, B, C.  

 

3.3 Inventory Strategies 
After classification it becomes clear what items are more important than others. The next step is to decide 

what to do with these items and classes. Service level is the main performance indicated for inventory 

control. Often A-class items get the highest service level targets as they are critical for production and 

stockouts are most expensive. However, most of the surveyed works use the classification of items only to 

choose the demand forecasting model instead of the inventory control method (Roberto et al., 2011) 

 

As shown in section 3.2, most literature focusses on creating weights and classifying items for efficient 

inventory control, but not what inventory policies to link. In this section, a couple of inventory policies are 

discussed as they could provide a way of efficiently improving service levels or decreasing stockout 

probabilities while decreasing inventory costs for the item classes. 

 

3.3.1 To stock or not to stock 

Traditional inventory control methods often assume that stocking items is necessary. As stockouts can be 

costly for business, the far lower cost of holding inventory is often preferred. However, are storage costs 

always worth it, even when regarding a single unit? There are methods that focus procuring items only 

under demand, ensuring that the time a single unit needs to be kept in stock is minimal. (Johnson, 1962) 

illustrates 2 ideas: only storing items that are purchased upon demand and secondly stocking items to keep 

baseline stock levels. The latter is often justified for fast moving items, as demand frequency is high, and 

the holding costs are relatively low compared to the revenue. Slow moving items however, are more a 

predicament. In Tavares et al. (1983) a case is considered where slow-moving item demand follows a 

Poisson distribution. The model evaluates two options. Option 1: hold inventory and regular ordering costs. 

Option 2: eliminate holding costs and increase ordering costs as emergency purchasing is expected to 

increase. In this paper option 2 shows lower cost only when average demand is greater than the lower bound 

demand of its specific demand formulation. Other research suggest that a single item should be kept in 

inventory if its annual storage costs is greater than the expected annual shortage cost. Ultimately, there is 

no literature wide consensus on when to stock. Business characteristics and other practical specifics makes 

it impossible to create a one size fits all method. The correct decision is bound by implicit formulations of 

the business. 

 

3.3.2 Classic models 

Classical inventory models that are affiliated with high demand is a well-researched topic in operations 

management. These models can be divided into three main models. Continuous review, Periodic review, 

and Base Stock. Thales already uses a Min/Max inventory policy which corresponds well with the first two 

categories of the following methods (Chopra & Meindl, 2013) shown in table 5. 

Table 5 – Inventory control policies 

 Periodic review Continuous review 

Fixed replenishment quantity (R, s, nQ) (s, Q) 

Variable replenishment 

quantity 

(R, s, S) (s, S) 
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In general, inventory policies can be differentiated on two main axes. The review period and replenishment 

quantity. 

The variables given in table 5 are defined as follows. 

• Review period (R), the time between consecutive inventory position evaluations. 

• reorder level (s), when inventory position drops below s, inventory is replenished. 

• Integer (n), number of times lot size is ordered. 

• Lot size (Q), the number of products ordered in a replenishment order. In thales’ case often yearly 

demand. 

• Order-up-to-level (S), when replenishment order arrives, inventory position is replenished up to the 

inventory level S.  

o Thales’ Min Max policy is a (R, s, S) inventory policy where: 

• R = 1 week 

• s (Min) = demand during lead time + safety stock 

• S (Max) = s(min) + Q – undershoot  

Where standard demand characteristics (Chopra & Meindl, 2015) are calculated as follows: 

• Undershoot 𝑍 =
σ𝑟

2+𝑥𝑟
2

2𝑥𝑟
.  

• 𝑆𝑆 = 𝑘 ∗ √𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 ∗ σ𝐷
2

  

• K = safety factor 

• σ𝐷
2

 = variance of demand 

 

In practice periodic review is more often used as continuous review requires a well setup software systems 

that keep track of all SKU’s. This is not the case within Thales’ business, hence periodic review is more 

applicable. 

 

3.3.3 Just in time / L4L 

For expensive items other approaches might be fruitful in comparison to classic models. One of those is 

Just in time (JIT). Expensive A class items, which are tightly controlled, are a good fit for a JIT inventory 

policy. JIT ensures that replenishments are tightly correlated to the production process. Items are frequently 

replenished in small quantities. Advantages of this approach is that it requires less stock as items are tightly 

correlated with the production process and thus a lot of stock is not required. 

While this approach decreases inventory value and cost for high value items, it can only work under certain 

circumstances (K. Sing, 2013). Instead of normal supplier contracts, suppliers of these items need to be 

tightly collaborated with. External as well as internal activities need to be closely connected with the 

suppliers. In addition, suppliers need to be reliable in quality, deliverability, and delivery time. Suppliers 

often only consider such a kind of collaboration if this relationship can deliver a considerable fraction of 

total demand. It is assumed that JIT items do not require safety stock. This is in line with literature as JIT 

works through tight collaboration with suppliers and minimizing lead time variability. For modelling 

purposes reliable suppliers are assumed and lead time variability is set to zero.  While safety stock is 

assumed to be zero, lead time demand still exists. If JIT were approached as an R, s, S system, the reorder 

point of a JIT item is equal to the lead time demand (DL).  Some supplied items in the mathematical model 

have MOQ’s hence the item stock variation can be described as [DL, DL + MOQ]. In non-MOQ cases the 

stock range is set to [DL, DL + 1] to simulate the low volume, high frequency order behavior. 

https://en.wikipedia.org/wiki/Sigma
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If the requirements for close JIT collaboration is not met, or if it is impossible due to a lack of consistent 

raw materials, businesses can opt into a less intensive collaboration. One of such policy is called Lot-for-

Lot (L4L). The difference between JIT and L4L, is that while JIT is based on actual production schedules, 

L4L is based on the planned production horizon. L4L ensures that the quantity ordered is based on an 

amount of demand periods ahead. Hence, a bit more leeway is created. Note that both these policies are not 

suitable for cheap items, as the reduction in holding costs do not outweigh the increase in ordering costs 

and increase in stockout risk.  

 

3.3.4 Base stock 

While Continuous and periodic review is more suitable for items with high consistent demand, base stock 

could be applied to items with very low demand. Base stock ensures that when a mutation in stock is made, 

the same amount is immediately ordered to maintain a base stock level (Harris, 1913). This is applicable to 

items when often only one or a few items are ordered on the same time. 

 

As the idea of the base stock policy is to keep a constant base stock level of inventory, the parameters are 

set in such a way to reflect this behavior. The reorder point or “base stock” level is calculated similarly to 

(R, S, S): 

• Base stock = Safety stock + lead time demand.  

 

3.4 Literature Conclusion 
Improving inventory policies asks for an understanding of the demand characteristics. To effectively model 

demand, fitting the correct statistical distributions is a necessity. Specific distributions are more suitable to 

fast or slow-moving items. The Gamma distribution is favored when negative demand probabilities are 

high. And the Poisson distribution shows superior performance when lead time demand is lower than 20 

which captures the variability in intermittent demand patterns. After demand characteristics are clear, a 

good inventory management program prioritizes. Hence, classification is another important step. A lot of 

classification methodologies exist in literature, however for more complex inventory environments multi 

criteria classification can incorporate this complexity. The use of entropy in Shannon’s Entropy method is 

one approach that can yield beneficial outcomes in a less computationally demanding manner in a multi 

criteria classification problem. Lastly several inventory policies exist that control item stocks. In general, 

these seems to be a gap in literature regarding the linkage between these classification systems to specific 

inventory policies. Incorporating these classification methods to specific inventory policies can lead to 

advancements in improving service levels or mitigating stockout probabilities. Ultimately, demand 

forecasting/characterization models, classification and inventory policies can greatly enhance inventory 

management. 
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Chapter 4 – Inventory model 
In this chapter the inventory model workings are explained. From how everything is programmed to what 

decisions or assumptions are made to ensure it is working and fitting to the practical situation. In section 

4.1, a model overview is given. Section 4.2 elaborates on the demand data and distribution, furthermore 

section 4.3 discusses the input variables used within the model. As the inputs are discussed the Settings 

dashboard is shown in section 4.4. Lastly, the verification, validation and conclusion of the model are shown 

in section 4.5, 4.6 and 4.7 respectively. 

 

4.1 Model overview 
Thales’ information system is very complex. Thales makes use of a lot of different information sources. 

Their main source of information is the ERP system. However, taking information out of this system leads 

to an excel file. Thus, Thales has an excel file for everything which makes merging all the information not 

an easy task. In figure 20 an overview is given of all information flows. 

 

 

Figure 20 – The information and process flow from data inputs of this thesis to its outputs 

• Inventory Analysis 

The green squares indicate different excel data sources. First the inventory analysis incorporates 4 excel 

files. Inventory analysis ensures that stock levels, item risk, demand and other important attributes are 

combined. The item code is used as a unique key to merge all files.  

 

• Demand calculation Tool 

The item transaction files are multiple files where all transactions are registered. The transactions are sorted 

to their respective dates to get an overview of the item demand over the period 2019-2022. Afterwards the 

lead times from the inventory analysis is added to the correct items. After the demand is registered multiple 

calculations are done as calculating the average demand, standard deviation, correlation of variation.  
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• Classify items 

As the name suggests, all classification methods noted in Chapter 3 are implemented here. This part of the 

information flow is within the inventory management tool. However, since the classification step is before 

the inventory policies it is regarded as a separate database. Some classification methods make use of some 

demand characteristics as average or standard deviation hence item characteristics are a input for the 

classification.  

 

• Chi Square 

In this step the item characteristics and statistical distributions from literature are combined to link the 

distributions to the items using the chi square test, moreover in the next section (4.2).  

 

• Validation 

While the demand characteristics through CDF’s are used as input for the model. The CDF’s are also used 

for validation as the behavior of the CDF’s are known and thus the impact on the stock performance can be 

calculated. 

 

• Inventory management tool 

The inventory management tool incorporates all of the above. Based on the demand characteristics and 

classification specific inventory policies implemented. Moreover in section 4.4. 

 

4.2 Demand data and distribution 
As shown in chapter 2 the demand data is very diverse. Therefore, it is essential to validate the accuracy 

and reliability of demand data before making decisions based on it. Using the chi-squared test, the fit of the 

predicted statistical distribution is tested. By applying the chi squared test to the demand data, it can be 

ensured that the distributions or patterns identified are not due to chance but are indeed reliable.  

 

The hypothesis to be tested is that of the predicted statistical distribution. Where the chi square test is used 

to test whether the observed demand can be explained by the predicted (distribution) demand.  

For all items the demand data is divided into 9 bins based on its minimum and maximum value. Where the 

size of the bins is defined by bin size ={max(observation)-min(observation)}/9 bins. So for example if the 

bin size is equal to 10 then the observations between 0 and 10 are put in bin 1 and 10 to 20 in bin 2. After 

the observed demand is put in the corresponding bins, expected quantities according to the hypothesized 

distribution are put in bins as well. Finally, the bins are compared according to the chi square formula in 

chapter 3 given a critical probability of 0.05 and 8 degrees of freedom. The full code of this process can be 

found in Appendix H. When the test gives a probability lower than 0.05 the expected and observed 

quantities are too different and there exists significant evidence that they are not the same thus the predicted 

distribution is rejected. 

 

 
Figure 21 – Chi square test performance over all items 
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As shown in Figure 21, for around 40% of the items the hypothesized statistical distribution from chapter 

3 is not rejected. Hence, the hypothesized distribution significantly predicts the behavior of the demand 

data and can thus be used to model the demand. 

 

 
Table 6 – Acceptance ratio per statistical distribution 

Distribution Acceptance 

Ratio 

Normal 15,8% 

Poisson 42,4% 

Gamma 53,3% 

Negative 

Binomial 95,3% 

 

In table 6 the statistical distributions according to the literature are tested. Where the normal and gamma 

distribution are tested for fast movers, negative binomial for slow movers and Poisson for intermittent 

demand. Interesting to see is that the normal distribution is rejected most of the time. Looking at the data 

this is because most “normal” items have a relative low amount of datapoints. When limiting these 

calculations only to items with more than 5 datapoints the acceptance ratio of the normal distribution goes 

to 90%. The same happens for all the other distributions, when items of less than 5 datapoints are removed, 

the average acceptance ratios increase significantly (Table7). 
 

Table 7 – Acceptance ratio per statistical based on data with more than 5 datapoints. 

Distribution 

Data points 

>5 

Acceptance 

Ratio 

Normal 90,5% 

Poisson 77,0% 

Gamma 58,1% 

Negative 

Binomial 99,6% 

 

After finding all statistical distributions, the stockout probability can be calculated for these distributions. 

For example, the stockout probability can be calculated given a distribution and a reorder point of for 

example 10. The stockout probability is equal to the probability where the demand exceeds the available 

inventory in this case: P(X > 10). While these stockout probabilities are useful to compare the old and new 

situation for Thales, in reality stockouts do not occur, rather their production planning is changed to avoid 

stockouts. 

4.2.1 Demand exclusion criteria 

As seen in section 4.2, excluding parts of the demand data (number of observations less than 5), it has a big 

impact on the model. Thus, to avoid dramatic outliers that influence the outcome of the model 

unrealistically, two exclusion criteria are added to the model.  

 

Number of demand data points 

The number of datapoints corresponds to the number of demand observations in the data. Hence an item 

with 3 datapoints corresponds to a demand file with only 3 demand occurrences in the last 3 years. 
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Figure 22 – Number of demand datapoints per ite  (demand occurrences per item) 

In figure 22 the number of datapoints for the items where demand data is found is given. Immediately it 

becomes clear that only a small selection of all the items have considerable amount of demand 

occurrences/data points registered. When looking at the performance of items with low amount of 

datapoints, the performance becomes a lot worse. In figure 23 an example is given of unreliable demand 

data. Ultimately it is found that from around 5-10 datapoints, the performance stabilizes, and most outliers 

are gone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 23, this item has 5 datapoints/demand occurrences. When put in the inventory model 

this item has a lot of costs associated with it. This is because of safety stock calculations. Safety stock is 

calculated using lead time demand. In this specific case the lead time demand is very inflated due to one 

outlier, point 5 in figure 23. Since Thales has a very long average lead time of 100 days, this ensures that 

often a lot of safety stock is allocated. Items with more datapoints have a bigger chance to counteract a 

single outlier. Thus, a minimum number of data points is required to get reliable results. It is a tradeoff 

however, increasing the minimum number of data points results in less included items in the inventory 

model. When increasing the minimum requirement to 600 data points, only 3 items are included in the 

model. 
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Coefficient of variation 

The second exclusion criterium is the coefficient of variation. Often low amount of data points go hand in 

hand with high cv. Some items however have very irregular behavior, see Appendix C. This irregular 

demand leads to more risk and thus safety stock calculation allocate a lot of safety stock which negatively 

impacts the overall performance. In reality, this irregular behavior is due to human error or backtracking. 

Where backtracking means that once a year a correction is done in the ERP system, resulting into all the 

demand of a period is set on a single day. Both cases should be voided since it unrealistically influences the 

model. In section 4.4 the impact of excluding low and high cv’s is illustrated. 

 

4.2.2 Discount factor 

For some items there exists a big gap in their demand data. Mostly because the item has been used a lot a 

few years ago, however for some reason the last 2 years it has not been ordered. The inventory model 

calculates mean and standard deviations based on demand data. But it does not take this gap of no demand 

into account. To account for this, a discount factor is introduced as this can be an effective way to correct 

demand data in the future (or in this case, in the past) (Giraitis et al. 2012). The discount factor is used to 

adjust historical demand data to better reflect current conditions. This is because items that have not been 

demanded in the last few years should not be expected to have high mean demand. For example, take an 

item with an average demand of 50, 2 years prior and demand of 0, in 1 and 0 years prior. If the average 

demand of 50 is taken to calculate safety stock. The safety stocks are too high. To adjust the expected 

demand the discount factor is introduced through the formula below: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 ∗ 𝛽𝑡  

Where 𝛽 is the discount factor and t correspond to the demand data gap in years, hence Demand (old 

demand data) is adjusted to ensure demand characteristics are not inflated.  

4.3 Input variables 
The inventory model integrates demand characteristics, classification methods and inventory policies from 

literature. However, in Thales real-world situation other input variables have impact in the performance of 

the model. To ensure the model aligns with Thales’s specific circumstances input parameters have been 

incorporated. For example, holding costs have a big impact on the financial situation of items held in stock. 

In this section, the input parameters are discussed. Note that initial values are based on Thales’ situation, 

however for analysis purposes these values can be altered by decision makers to see the impact of these 

values. 

 

4.3.1 Safety Factor 

To calculate the safety stock a safety factor is used. Note that this safety factor is the same for all items and 

policies. For all items that currently use safety stock within Thales current policies, they do not differentiate 

with different safety factors. The impact of the safety factor is discussed in section 4.4. However, from 

theory it is known that increasing the safety factor will reduce the stockout probability while increasing 

stocking costs. By carefully balancing these factors, companies can normally optimize their inventory 

levels. However due to the nature of Thales business stockouts are different. Often when items are not 

available their planning pipeline is changed. While some safety margins are effective at lowering stockout 

or planning costs, without stockout data it is hard to calculate the optimal safety factors. This is why the 

model takes a single safety factor to calculate all safety stocks. Currently Thales uses a safety factor equal 

to 1.5 if safety stock is considered. The effects of this number and increasing or decreasing it are researched 

in chapter 5. 
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4.3.2 Holding cost 

Items in stock have costs associated with them. Direct costs like storage expenses or depreciation, but also 

indirect costs like opportunity cost of tying up capital in inventory. In Thales’ case it is estimated that once 

an item is in stock for over 6 years it is no longer profitable. Given that Thales has a lot of strategic and 

dead stock, holding costs are high. To account for these costs Thales currently has set the holding cost rate 

to 20% of item value per year. 

4.3.3 Ordering cost 

Ordering costs refer to the expenses incurred by Thales when placing an order for materials. These costs 

can include various expenses like transportation costs or administrative costs. The economic order quantity 

(EOQ) considers holding costs and ordering costs. By minimizing the total cost of ordering and holding 

inventory, Thales can improve its overall inventory efficiency. While Thales does not have specific ordering 

costs per item, they do have some items where ordering costs are free and some items where ordering costs 

can go up to 100 euros or more. After analysis within Thales’ business, it is estimated that ordering costs 

between 10 to 50 euros is near practical situation. Note that the ordering costs can be changed by decision 

makers if it is too high or too low. 

4.4 Dashboard 
The inventory model has many settings. There are classification methods, inventory policies, input 

parameters and exclusion criteria. To accommodate all these inputs and enable testing of different input 

settings, a settings dashboard is created. Figure 24 shows this dashboard with red markings to elaborate.  

The red markings 1-11 are listed and explained below and yellow cells represent changeable input 

parameters. Note that the values within the yellow cells are examples and can be altered in later experiments 

in chapter 5: 

• 1 – Exclusion Criteria 

This is the exclusion criteria of the demand data. In figure 21 the value 10 means that only items with at 

least 10 demand occurrences are considered. The value 5 means that only demand with a CV of less than 5 

Figure 24 – overview settings dashboard inventory model with red indicators 
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is considered. Inventory (currently Common) is the stock type that is considered. As mentioned in Chapter 

2, Thales has different stock types. Currently only common stock is considered. However, decision makers 

could change this value to accommodate more stock types. Note that these values must be set to the 

preferred values before you load data into the model (number 9). 

• 2 – Discount Factor 

The discount factor that corrects demand data if gap years exist, see section 4.2. The discount factor should 

range from 0 to 1 as average demand of items with gap years should be reduced. Given one full year of no 

data, a discount factor of 0.8 means that the predicted average demand is reduced by 20%. 

• 3 – Classification method 

This is a list of all classification methods listed in chapter 3. Put an ‘x’ in one yellow cell on the right. This 

ensures that when clicking on button (number 10) this specific classification method is used to classify all 

the items. 

• 4 – MCIC 

When selecting this classification, the table (number 5) should also be filled in. Selecting MCIC as 

classification method enables the choice of criteria in the table below. 

• 5 – MCIC Criteria 

When MCIC is selected as classification method. The user can select one or more criteria which are 

considered during the MCIC calculation. To enable one criterion put an ‘x’ in one the yellow cells on the 

right For MCIC calculation see Chapter 3.2.2. 

• 6 – Inventory method table 

As the items are categorized by their class and demand specification, users can select an inventory policy 

per segment. The yellow cells should contain one of 4 inventory policies. When clicking on the button 

“calculate class and inventory” (number 10), the inventory policies are selected for the specific item 

category.  

• 7 – input parameters 

These are the input parameters as discussed in section 4.3. 

• 8 – MAN file date 

When loading Demand data, this date shows the latest date found within the demand data source file. This 

is used to calculate the number of years where no data is found and used to discount data (number 2).  

• 9 – Load data 

When clicking this button demand data and demand characteristics are loaded and combined. First the code 

asks the user to select a file where all demand parameters are found. Secondly, the code asks the user to 

select the demand data. These files are shown in figure 20 in section 4.1 as ‘Inventory analysis’ and 

‘Demand calculation Tool’ respectively.  
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• 10 – Calculate Class and inventory 

After clicking this button, the main code executes. First ensure all input parameters are filled before 

executing. First the class of all items is calculated based on numbers 4 and 5. Then using numbers 6 and 7 

the inventory characteristics are calculated. 

• 11 – Calculate Statistics 

This button executes the code that calculates the performance of the inventory system and publishes the 

outputs on another sheet. These outputs are used in chapter 5. 

4.5 Verification of the model 
Verifying the model ensures that the mathematical model is correctly implemented and thus the proposed 

inventory model behaves as expected.  

 

 

Figure 25 – Number of items in classes per classification method 

The model’s classification mechanisms effectively follow the Pareto principle. In all classification methods 

the A class is the smallest, as shown in figure 25 This is because only a small number of items amount to 

over 80% of the total scoring value within the classification method. A items are the most valuable, hence 

they should be managed most intensively. Note the method which includes de holding cost and lead time 

shows barely an A class. As Thales has only a few items with very high demand, while lead time is similar 

for all items (very long), it is expected that the A class would be tiny for this policy. 
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Figure 26 – Connection of safety stock to coefficient of correlation in demand 

Upon verifying the proposed inventory model it is observed that the model behaves as expected. When 

demand uncertainty rises, the model assigns more safety stock to account of this uncertainty. Figure 26 

shows that it increases more safety stock when CV increases. This increased allocation of safety stock 

contributes to the robustness of the system, guarding against potential stockouts. Interestingly, while the 

increased safety stock allocation for uncertain demand, the overall inventory level across all items is 

reduced by over 40%. This indicates that the model enhances efficiency in stock allocation and can reduce 

costs in a real-world inventory.  

4.6 Validation of the model 
The model accurately represents the real-world situation at Thales. Given that Thales is a high-mix, low-

volume business, it is crucial the model incorporates a very diverse range of products and items in stock 

and assign inventory efficiently to these items.  The validation of the model reveals that the model is able 

to represent Thales’ operations. Particularly, the model predicts the possibility of the significant reduction 

in stocks. This outcome aligns with the observations made in chapter 2, the existence of a lot of excess 

stock, and it is also in line with literature. Thales had no inventory policies and literature emphasizes that 

effective inventory management necessitates the implementation of inventory policies to optimize stock 

levels.  

However, while stock reductions are cost effective, avoiding stockouts is equally important. Striking this 

delicate balance is a complex task. Interestingly, while the model overall makes big stock cuts for classes 

B and C, in some cases it suggests increasing stock levels for some A items than Thales currently has in 

stock. This outcome validates the model’s realistic representation of Thales’ operations as it shows diverse 

solutions to the diverse products and items. 

4.7 Model Conclusion 
This chapter shows the workings of the mathematical model. The demand data’s diverse nature is tested 

using a chi-squared test. Hence the predicted statistical distributions are accurately linked to the demand. 

Additional input parameters are integrated to adjust the model which offers decision makers the ability to 

alter these variables for impact analysis. Furthermore, the model demonstrates that it can make a balance 

between reducing stock levels while increasing stock if the demand irregularity calls for it. In conclusion, 

the model efficiently merges demand characteristics, classification methods and inventory policies, 

validating that the model can create a tailor-made solution for Thales unique real-world situation.  
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Chapter 5 – Results 
In this chapter the results are shown and elaborated on. First the performance of the model is discussed in 

reference to the old situation. Furthermore, the classification and inventory policies are compared and in 

section 5.2 different inputs are discussed. In section 5.3 a small selection of items are shown in more detail 

to look at the behavior of the model. In section 5.4 the overall impact of the model is shown as well as its 

impact on several KPI’s. In section 5.5 a sensitivity analysis is done to evaluate the input parameters. Lastly, 

section 5.6 summarizes the results. 

 

5.1 Performance and experiments 
As mentioned in section 3.3.1, stocking items is always a tradeoff between either reducing holding costs or 

reducing stockout probability. Hence, to show the performance of the model the two KPI’s; total holding 

costs and average stockout probability are compared. Additionally, as shown in chapter 2 currently Thales 

does not use inventory policies, except for a small number of items, and Thales does not keep track of 

stockout probabilities as mentioned in chapter 1. If items are not in stock in time, they make changes in 

their production schedule instead of registering a stockout. To effectively compare these two situations a 

baseline scenario is setup and used to compare the model to.  

 

The baseline scenario is created by using a couple of assumptions regarding reality: 

- A snapshot is made of current stock levels within Thales’ supply chain and these stock levels are 

used to compare the financial difference and stockout probability between using an inventory policy 

or not. 

- The classification of items, as is Thales’ reality, is done by solely looking at the item price. Thus, A 

items are the most expensive items, B less expensive and C items the cheapest items. 

- Other input variables as discussed in chapter 4.3: safety factors, holding costs, ordering costs, 

discount factors, Minimum data points and max cv are equalized through the different experiments. 

Note that holding costs are known and set to be 0.2. The other variables, safety factor, ordering cost 

and discount factor, minimum data points and max cv are set somewhat arbitrarily to 1.5, 10, 1, 10, 

and 5 respectively. The impact of these input variables is on the other hand shown in the sensitivity 

analysis in chapter 5.5. Note that as decision makers get a better understanding of these variables, 

they can change these in the model settings. 

 

Baseline scenario performance 

The total stock investments of the baseline scenario are equal to €74 million. The average stockout 

probability is equal to 20,66%. The classification of the baseline scenario is shown in table 8.  

 
Table 8 – Distribution classes and demand 

Class Fast 

Movers 

Slow 

Movers 

Intermittent 

Demand 

A 4% 5% 1% 

B 5% 9% 2% 

C 31% 37% 8% 
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When looking at the classes it is interesting to compare the stockout probabilities. As shown in figure 27, 

it becomes clear that A-items have a significantly worse stockout probability. One explanation for this is 

that the snapshot of item stock levels is taken at a random moment in time within the replenishment cycles 

of these items. This random moment does not take the pipeline of ordered items into account and since on 

average more expensive items are more tightly controlled with less excess stock, see section 2.1.3, it is 

intuitive that the stockout probability would be higher. In the contrary, cheaper items are stocked more in 

bulk/excess than expensive items because cheap items have more often certain procurement agreements 

like MOQ’s, and the stocking costs of excess stock is cheap which results overall in lower stockout 

probability. 

 

 

 

 

 

 

 

 

 

To check the effect of inventory policies, the baseline scenario is adjusted and a new scenario is created by 

assuming that all items use the same inventory policy (R, s, S) based on the items respective parameters 

like for example lead time. The (R, s, S) policy is chosen since it is the only policy that in reality can works 

somewhat practical for all demand characteristics. Just-in-time for example is not practical for low-cost C-

items like screws. It is too expensive to create a tightly controlled, very reliable supply chain for such cheap 

items.   

 

Figure 28 – Stockout per class with all items using (R, s, S) 

In the adjusted baseline scenario, a lot of things change by implementing the (R, s, S) policy for all items. 

First, the total stock cost increase with 12% to €83 million. However, the average stockout probability drops 

to only 12%, which is a 42% decrease.  This is logical since the (R, s, S) policy increases the amount of 

   

   

   

   

   

   

   

   

   

   

                              

  

  

   

   

   

   

   

   

   

   

                              

Figure 27 – Stockout probabilities per class baseline scenario 
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safety stock to account for the variability of demand during the lead time. Additionally, figure 28 shows 

that the difference in stockout probability between classes is very small. This can intuitively be explained 

by the fact that all items use the same inventory policy and safety stock calculations. The small difference 

between classes can be explained by the different configurations within the class regarding fast, slow and 

intermittent demand. For example, the C class has the biggest percentage of items which are intermittent 

items with less predictable demand and on average have higher stockout probabilities.  

 

Figure 29 – Holding costs per class 

Looking at figure 29, overall holding costs increase due to the more holistic approach which accounts for 

variability and replenishments cycles. While the baseline is mere a snapshot, void of the order pipeline 

which deflates the average stock over all items, still a cost reduction is observed within the C-Class despite 

the variability considerations and the inclusive approach towards replenishment cycles. This indicates that 

overall, Thales C-class stock levels high. 

As Thales has a wide range of items with different characteristics in demand, one can imagine that the same 

policy for all items might be suboptimal. In the next section the different classification methods, inventory 

policies and configurations are explored. 

5.1.1 – Inventory method Performance 

Starting from the adjusted scenario with only (R, s, S), several changes can be implemented. The periodic 

review policy is suitable for constant high demand. For items with low or intermittent demand base stock 

might be more suited. The advantage of using base stock instead of (R, s, S) is that the average stock 

decreases without a reduction in stockout probability.  In figure 30, the results of adding the base stock 

policy for all slow and intermittent items to the model is shown. 
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Figure 30 – Holding cost per class with (R, s, S) and Base stock 

Figure 30 reveals that the transition to these inventory policies results in a significant reduction in holding 

costs compared to the previous scenario. While holding costs decrease the same level of stockout 

probability is maintained. This model results in a total holding cost of approximately €72 million. It offers 

a cost improvement of €2.4 million, which is a 11% enhancement. 

The transition to a Just-In-Time or a Lot-for-Lot policy is suitable for tightly controlled A items, especially 

when these items are slow movers, or their demand follows intermittent behavior. Due to the intensity of 

resources required for a JIT/L4L management, it is mostly only practical for solely A class items. 

 

Figure 31 – Holding cost per class with (R, s, S), Base stock and JIT 

Figure 31 highlights a total improvement of €2.9 million, which is an increase compared to the previous 

scenario with a total improvement of €2.4 million. However, in this scenario the stockout probability rises 

to 11.3%. For situations where JIT proves too demanding, L4L is a feasible alternative. L4L does potentially 

result in an increase of stock levels due to the inclusion of multiple planned horizons. Choosing for L4L 

results in a total cost improvement of €2.7 million. It becomes clear that the biggest cost reductions are 

achievable by managing fast-moving A class items more efficiently. If Thales can fortify its suppliers’ 

relationships for these items, less stock can be achieved.  
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Figure 32 – Holding cost per class with (R, s, S), Base stock, JIT and L4L 

Utilizing the L4L inventory policy for the fast-moving A class, in contrast to only implementing L4L for 

slow and intermittent items, yields substantial cost reductions in stock value. A total of cost reduction of 

€7.8 million is observed.  The breakdown of the improvements is shown in table 9. 

Table 9 – Improvement per class and demand type 

CLASS FAST MOVERS SLOW MOVERS INTERMITTENT 

A  €             -446.593   €            1.523.653   €           57.500  

B  €             -566.317   €            1.326.492   €           18.753  

C  €           4.632.431   €            1.163.267   €           56.167  

The data shows that the most significant gains can be obtained in the C-class. This suggests that Thales’ 

current stock levels are excessively high, which underscores the observation made in chapter 2. In contrast 

to lowering inventory for C-class, the model indicates an increase in stock levels for fast moving A and B 

items to attain for the stockout probability. 

5.1.2 – Classification Performance 

The classification method can have a big impact on the total inventory costs. Currently Thales creates its 

classes solely based on item price. The last configuration of inventory policies from the previous chapter is 

used to compare the effects of classification. 

 

Figure 33 – Performance of classification methods, cost versus stockout probability 

As illustrated in figure 33, using item price as the main classification method does not necessarily maximize 

cost improvements. Annual dollar volume shows the biggest improvements in cost. However, this comes 
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with contrast that stockout probability marginally elevates when this metric is chosen. The other 

classification methods show less desirable outcomes in costs. Interestingly however the fourth classification 

shows a decrease in stockout probability which can indicate that this is an interesting choice if Thales wants 

to aim for less scheduling.  

 

MCIC 

7 different criteria have been created. To check their individual performance, the criteria are compared. 

Figure 34 shows the performance of the individual criteria given the MCIC calculations. 

 

Figure 34 – Performance of MCIC with only one criterion 

The effect of classification criteria in MCIC can substantially affect cost behavior. Given these Thales 

specific criteria, both lead time and on-stock date show to be very influential determinants. Their 

performance separately shows the biggest cost improvements. While the correlation between different 

criteria and its effect on cost is complicated, looking at these findings, it suggests that these criteria can be 

beneficial to a possible MCIC configuration. Note that leveraging these criteria an impressive holding cost 

reduction of €9 million can be realized. However, both these criteria show a significant increase of stockout 

probabilities. A deeper dive into the results of this classification shows another weakness of using only one 

criterion. In both these cases the A class is disproportionately big as it contains over 60% of all items. Such 

a classification is not practically viable for Thales’s operations as the whole goal of the classification is to 

divide the intensity of inventory management effectively. After some experimentation adding the price 

criterion a more nuanced outcome is realized. Its inclusion not only refines cost and stockout probabilities 

it also ensures that the distribution of items over the item classes are practically represented.  
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After experimenting table 10 shows three promising configurations of the MCIC algorithm. 

Table 10 - configuration of MCIC 

Configuration 1 2 3 

On stock date x x x 

Risk 
  

x 

Excess stock 
   

Future known 

demand 

   

Price x x x 

Lead Time x x x 

Demand   x x 

P-Stockout 15% 14% 19% 

Cost improvement 

(Million) 

€8,3 €5,1 €7,2 

 

The ‘on stock date’ has shown to be an important criterion to differentiate between inventory classes. It is 

evident that items which have remained in stock for a long time often are C-class items, irrespective of their 

high costs. Meanwhile, the demand criterion leads to a decline in stockout probability. This can logically 

be explained since this criterion ensures that more stock is reserved for items with higher demand. A 

comparison between configurations 1 and 2 from table 10 shows this trend. A 1%-point reduction in 

stockout probability is achieved by an additional expenditure of €3.2 million. Furthermore, a focus on the 

“risk” criterion, which considers depreciation, enhances stock cost improvements. The advantage of 

configuration 3 is offset by a big increase in stockout probability. While the MCIC algorithm allows for 

more strategic inventory decisions, looking at the previous section its effectiveness is somewhat less than 

the traditional classification method annual dollar volume.  

5.2 Item analysis 
In the previous section it is shown that stock cost improvements can be realized while at the same time 

stockout probabilities can decrease. Combining the most promising classification (ADV) and inventory 

methods of the previous scenario the following tables gives the result. 

Table 11 – Cost improvement per class and Inventory policy 

CLASS A B C 

(R, S, S)  €                         -     €            772.640   €            3.301.995  

JIT  €          1.342.927   €                        -     €                           -    

L4L  €        -4.414.214   €                        -     €                           -    

BASE 

STOCK 

 €                         -     €        1.535.112   €            3.163.439  

DEAD  €                43.133   €        1.198.657   €            1.394.578  

 

To attain the stockout probability, the model adds more stock to the fast-moving A class. Which in this 

scenario incorporates the L4L policy. As mentioned above, the C-class includes a lot of excessive stock as 

the model suggests. Hence, the most substantial cost improvements are visible in the C-class. This 

observation aligns with earlier sections. Note that in chapter 2 it is shown that a substantial amount of stock 

is within the category dead stock. The model assumes to eradicate all non-strategic dead stock, (not 
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obsolete). Even while this category was to be thought of as substantial, even bigger improvements are made 

in the active stock categories, the latter illustrates the model’s effectiveness. 

5.3 – KPI Impact 
Looking at the main KPI’s from chapter 2. If the improved baseline situation based on section 5.1.1 and 

5.1.2 (see Appendix E) is used, the KPI’s are improved as seen in figures 35 and 36. 

When looking at the KPI’s mentioned in chapter 2, and adopting the refined baseline situation, 

improvements are shown in the figures above. A significant increase is shown in both figures. It is worth 

noting that part of the improvement stems from the model’s strategy to erase all non-strategic ‘dead’ items. 

Which could mean that this is the sole reason both KPI’s improve. However, when this category of stock 

is set aside and not factored into the KPI evaluation, the metrics for DIO and ITR are 192 and 2 respectively. 

This indicates that even when dead inventory is excluded, the models strategy yields improved KPI’s.  

5.4 – Sensitivity Analysis 
Besides the configuration of the classification and inventory policies, other input parameters exist. These 

parameters can be changed by decision makers. However, to get insight into the effects of these 

parameters a sensitivity analysis is done. 

Table 12 - sensitivity analysis of input values 

 

SAFETY 

FACTOR 

ORDERING 

COST 

HOLDING 

COST 

DISCOUNT 

FACTOR 

DATA 

POINTS 

CV STOCK VALUE 

REDUCTION 

CHANGE 

% 

1,5 10 0,2 0,5 10 5 € 11.133.880,20 0% 

1,5 10 0,2 0,5 100 5 € 8.225.662,26 -26% 

1,5 10 0,2 0,5 1 5 -€ 1.076.270,26 -110% 

0 10 0,2 0,5 10 5 € 12.310.199,50 11% 

3 10 0,2 0,5 10 5 € 8.114.559,78 -27% 

1,5 0,01 0,2 0,5 10 5 € 9.833.256,15 -12% 

1,5 100 0,2 0,5 10 5 € 5.975.704,77 -46% 

1,5 10 0,2 0,01 10 5 € 8.689.084,76 -22% 

1,5 10 0,2 100 10 5 € 8.692.776,24 -22% 

1,5 10 0,2 0,5 10 10 € 11.205.570,32 1% 

1,5 10 0,2 0,5 10 1 € 8.223.282,02 -26% 

1,5 10 0,5 0,5 10 5 € 11.531.869,71 4% 

1,5 10 1 0,5 10 5 € 13.738.846,83 23% 

   

   

   

 

   

   

   

   

                 

   

   

   

   

   

   

   

   

                 

   

Figure 35 – Days inventory Outstanding Figure 36 – Inventory turnover ratio 
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To identify the most significant factors and to determine how changes in these factors impact the inventory 

performance a sensitivity analysis is done. Note the stock value reduction mentioned in table 12 is the 

reduction of the amount of stock compared to a situation with and without inventory policies. Hence, the 

difference between Thales’ current situation and the situation when the model is used. 

 

The sensitivity analysis shows that the safety factor has a significant impact on profitability. When there is 

no safety factor, the profit increases by 11%, which makes sense since a lower safety factor implies less 

safety stock. However, increasing the safety factor from 1.5 to 3 results in a big decrease in profit due to 

the purchase of more safety stock. Increasing the holding cost ensures less stock and thus a bigger stock 

value reduction. Increasing holding costs means Q decreases and ultimately results in less stock. The 

discount does not have much effect on profit, although increasing the discount factor by a factor of 100 

leads to a decrease in profit due to the higher value given to historical data and thus resulting in more stock.  

Moreover, the number of data points has a significant impact on the results, as items with only one data 

point can lead to high deviations and very high safety stocks, which decreases the profit. Finally, the CV 

exclusion increase does not have a significant impact, probably because not many items have a CV 

exclusion of higher than 5 in the starting experiment. However, reducing the CV exclusion actually leads 

to a relative negative result. This might be because many “profitable” items are excluded and thus less 

reduction is realized for these stocks. 

 

5.5 Results Conclusion 
This chapter illustrates the results of the model regarding its configuration of inputs and in comparison, to 

Thales’s baseline scenario. This chapter identified that holding costs could be reduced by using different 

classifications and inventory policies. A significant 11% improvement in costs are realized when specific 

inventory policies are implemented. In this scenario, an emphasis is placed on the benefits of utilizing JIT 

and L4L for A-class items. Still, it must be acknowledged that both these methods require significant 

organizational effort and to choose which is a matter of practical tradeoffs within Thales.  

Furthermore, different classification methods can significantly impact the inventory costs, stockout 

probability and class sizes. Thales current method of solely looking at item price, it is shown that other 

methods are more fruitful. Moreover, an alternative to traditional methods like annual dollar volume is 

explored. The MCIC shows a potential more nuanced approach to the classification problem. Alternative 

metrics like ‘on stock date’ and ‘risk’ are incorporated into the classification method and more strategic 

results are possible. While multi criteria inventory classification offers strategic flexibility, the traditional 

method ADV still outperforms it. By understanding and optimizing these elements, Thales can realize 

substantial cost savings, improve stockout probabilities. 
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Chapter 6 – Conclusion & Recomendations 
This section discusses the conclusion of this Thesis in the first section, 6.1. It continues with the 

recommendations the author gives to Thales in section 6.2. Furthermore, the evaluation and discussion is 

stated in section 6.3 and lastly in the sections 6.4 and 6.5 the contribution to theory, practice and future 

research are discussed. 

 

6.1 – Conclusion 
This thesis shows solutions to the inventory challenges faced by Thales. As Thales inventory increases the 

urgency to create a more balanced and efficient inventory system increases as well, as the capacity of the 

warehouse is not infinite. During the high times of business, the implications of increasing inventory costs 

might seem trivial, but in tight business circumstances, they can escalate into substantial pains for 

management. Hence, affecting the financial stability and health of the whole organization.  

Within Thales inventory, multiple critical findings are present indicating improvements are possible. 

Among these critical findings were the substantial amount of dead stock and excess stock. In addition, this 

Thesis showed that Thales inventory management policies are barely present.  

 

This thesis addresses these problems by introducing a pragmatic model that incorporates Thales diverse 

roster of products in stock. The practical model incorporates multiple theoretical inventory policies and 

classifications. By doing so it showed considerable reductions in stock levels, especially within the C-class. 

These reductions are possible without compromising on stockout probabilities. In addition, the model shows 

that by with implementing these theoretical methods, significant yields can be realized within the items 

which demand is categorized as slow-moving and intermittent demand. Hence, the model shows that these 

classification and inventory methods foster balanced and efficient inventory management.  

 

Besides the improvements shown in Chapter 5, the developed model serves as a potential tool for inventory 

managers and decision makers. It increases the visibility of existing inventory problems and by tweaking 

its configuration, strategies and solutions can be found. The model hints at improvements that should be 

made to further enhance the current inventory situation. It does this by showing that over €8 million can be 

saved in stock value without reducing stockout probabilities. It also showed that the two main KPIs 

improve, and this thesis indicates how these improvements can be realized. If used well, Thales can take a 

step towards a more organized inventory structure, and possibly ensuring a healthier bottom line. Thus, this 

thesis shows the way towards less inventory costs and a more resilient management system.  

 

6.2 – Recommendations 

Excessive Stock 

The inventory model reveals in every configuration that the C-class is overstocked. Despite their low cost 

and stocking them in large quantities without incurring significant expenses, the current strategy seems 

suboptimal. While a single type of item in the C-class is insignificant in costs, looking at the whole class a 

lot of excessive stock does become a problem. The model outcomes consistently suggest substantial savings 

through the reduction of these items in stock. These savings can be made reality without a reduction of 

stockout probabilities. This implies that Thales could maintain service levels while reducing holding costs, 

thereby optimizing the inventory resource efficiency. While this counts for the other classes as well as the 

C-class, implementing inventory policies to this class would be beneficial to creating a more balanced and 

cost-effective inventory system. 

Financial Risk 

The current presence of items with 100% risk, signifies that these items are already undergone depreciation. 

Hence, Thales has already absorbed the costs associated with these parts. Often, these parts are within the 
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dead inventory class. Hence, these items serve no active role in production or supply chain. A policy that 

eliminates these fully depreciated items could be beneficial to inventory costs. There is simply no benefit 

in retaining these items in stock, where they perpetually incur additional holding costs. In addition, most of 

the time these items are not obsolete and readily available on the market. Scrapping these items won’t 

hinder Thales’ ability to procure them when demand increases. Hence, this proposed policy could increase 

warehouse effectiveness and reduce overall stock costs.  

 

Dead inventory 

In Thales’ current inventory system, dead inventory, which are defined as items which have no demand in 

the past 5 years, consumes warehouse resources and negatively impacts KPIs. Furthermore, it has been 

observed that the demand probability for stock that has been on the shelf for at least 3 years is the same as 

5-year-old inventory. Hence, it is recommended that the criteria for categorizing inventory as “dead” should 

be revised to 3 from 5 years. This change statistically does not impact future demand prospects and it 

increases the visibility of the issue. Given that the dead inventory class would increase by comparison and 

could pave the way for further optimization strategies. Given the analysis of this thesis, it is recommended 

that dead inventory is erased as much as possible. A lot of costs can be eradicated by removing dead 

inventory as these items only cost warehouse recourses, do not contribute to turnover and since they are not 

obsolete if Thales requires these items after they are scrapped, one can simply procure them from the 

market. It would also be advised that Thales looks to sell these parts, while they do not add value for Thales, 

they can still be a value to other companies. It would be interesting to look for ways to sell dead inventory.  

 

6.3 – Evaluation & Discussion 
Due to the poor quality of Thales data, it was necessary to make assumptions. Due to the absence of real-

time data on inventory positions, only demand data was recorded, the utilization of a snapshot of current 

inventory positions became the pragmatic approach. While being a practical solution, it does mark a 

limitation in the study. The snapshot approach ensures that the analysis of inventory is based on an arbitrary 

point within the order replenishment cycle, potentially influencing the accuracy of the findings. The 

baseline scenario, resulting from the snapshot approach, enables the comparison of model outcomes to the 

real-world scenario. Hence, improvements identified by the model can be translated into the real-world 

scenario. Using methodologies like a simulation study or real-time forecasting in the real world, would 

increase the reliability of the result. However, these methodologies only work if data quality is enhanced, 

and more data is available to train/compare the outcomes of these methodologies with.  

Moreover, the evaluation in the thesis predominantly centered on only two dimensions: holding costs and 

stockout probabilities. Hence, offering a somewhat simplified perspective of the complex reality. In a real-

world scenario, inventory management incorporates a broader spectrum of costs. Due to the lack of data, 

these costs were not available. For example, Thales does reschedule when a stockout occurs. The financial 

repercussions of these stockouts or replanning is unknown and additionally, there is no data if these 

stockouts have occurred at all. Given the lack of data a more simplistic analytical view is chosen to avoid 

over-complication and excessive assumption building.  

It is important to note that even without comprehensive data, the chosen KPIs over the two dimensions 

remain central to formulating inventory management strategies. A well-balanced inventory management 

system makes the tradeoff between stocking costs and stockout probabilities and in turn service levels. 

While this thesis shows potential improvements and increases the visibility of some current problems, it 

does not delve deeper into the potential effects of these cost reductions. Especially when regarding 
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inventory policies like JIT. The cost reduction from less stock is not compared to the increase in inventory 

management costs due to the requirement of a lot more organizational effort to allow for the JIT inventory 

policy. Thus, while this thesis paves the way for substantial advancements in inventory costs, this thesis 

alone does not pretend to solve all problems as it does not fully incorporate the complex real-world situation 

of Thales. A more expansive study is required to fully grasp the multifaceted dynamic inventory of Thales. 

6.4 – Contribution to Theory and Practice 
This thesis contributes to both theoretical and practical applications in the realm of inventory management. 

It shows the integration of diverse inventory policies and classification methods can create substantial 

enhancements in managing inventories in the context of high mix low volume businesses. 

On the theoretical front, this thesis shows how various theoretical models can create fruitful outcomes, 

adding to the understanding and broadening of the inventory management theories. Furthermore, this thesis 

shows that traditional methods like annual dollar volume retain their efficacy. More complex methods like 

MCIC do not outperform traditional methods in few key performance indicators. However, this thesis also 

shows that MCIC does not lag far behind in terms of performance and in fact, it introduces a pragmatic 

dimension to classification. The latter potentially facilitates more nuance in classification and creates 

strategic levers for decision makers.  

In practice, the model functions as a versatile tool. It enables decision makers to strategize through their 

inventory cost saving journey. This Thesis shows that even within a complex and dynamic business 

environment, utilizing a combination of strategies and classes, one can create a more balanced and cost-

effective inventory environment. The thesis shows the effectiveness of traditional methods but to a greater 

extent, also shows the effectiveness of more nuanced inventory control through MCIC. This dual 

contribution to theory and practice indicates an interesting trajectory for both the scientific and practical 

fields of inventory management.  

6.5 – Future Research 
While the current findings offer valuable insights into Thales’ inventory management, future research can 

provide more insights or improvements can be added to the model to enhance its performance. One 

promising avenue could involve adding algorithms like Nearest Neighbor to navigate through all the 

possible configurations of the model to optimize the outcome. Another advanced technique worth 

considering is goal programming. As the model shows improvements among multiple dimensions, goal 

programming provides a solution into multi-objective optimization. Furthermore, expanding on the 

inventory and classification policies might also yield better model performance. For example, one can study 

the effects of increasing the number of classes as Thales’s inventory is very complex. Or more tailored 

inventory strategies can be included to incorporate this complex environment.  
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Appendix A – Thales Safety Stock Calculations 
Safety Stocks are calculated using an 8-step plan. 

 

1. Calculate 

weighted 

year demand 

using usage 

𝑤𝑒𝑖𝑔𝑡𝑒𝑑 𝑦𝑒𝑎𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 =
2 ∗ 𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−1 + 2 ∗ 𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−2 + 𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−3

5
 

2. Calculate 

stdev 

𝑠𝑡𝑑𝑒𝑣

=
2 ∗ (𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−1 − 𝑔𝑒𝑤𝑗𝑣𝑏)2 + 2 ∗ (𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−2 − 𝑔𝑒𝑤𝑗𝑣𝑏)2 + (𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−3 − 𝑔𝑒𝑤𝑗𝑣𝑏)2

5
 

3. Variance 

calculation 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝑠𝑡𝑑

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑦𝑒𝑎𝑟 𝑑𝑒𝑚𝑎𝑛𝑑
, if DIV/0 then 0 

4. Calculate 

InputOSG 

𝐼𝑛𝑝𝑢𝑡𝑂𝑆𝐺 − 𝑙𝑜𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑦𝑒𝑎𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 

𝐼𝑛𝑝𝑢𝑡𝑂𝑆𝐺 − 𝑚𝑒𝑑𝑖𝑢𝑚 = 𝑗𝑣𝑏ℎ𝑢𝑖𝑑𝑖𝑔−1 

𝐼𝑛𝑝𝑢𝑡𝑂𝑆𝐺 − ℎ𝑖𝑔ℎ = 𝐷𝑒𝑚𝑎𝑛𝑑𝑂 

5. Choose 

InputOSG 

Variance < 0,3 = InputOSG – low 

Variance 0,3 < 1 = InputOSG – medium 

Variance > 1 = InputOSG – high 

6. Calculate 

safety stock 𝑆𝑆 =
𝐼𝑛𝑝𝑢𝑡𝑂𝑆𝐺 ∗ 𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒(𝑑𝑎𝑦𝑠)

260
 

if LT = 0: 𝑆𝑆 = 0,2 ∗ 𝐼𝑛𝑝𝑢𝑡𝑂𝑆𝐺 

7. SS → 0 In some cases SS needs to be 0 

1. If demand O = 0 

2. If current IP > demand O+T 

8. Round safety 

stock 

Based on the depreciated price ranges given by suppliers, safetystock needs to be round 

upwards. 
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Appendix B – Inventory policies as modelled in the system 
The inventory policies discussed in chapter 3 are implemented in the inventory model. Note that the 

inventory policies are only implemented for items with existing demand data. For example, dead items have 

no demand data and as such their mean and variance cannot be calculated.  

 

Since base stock is only used for low demand items like intermittent demand or slow movers. The behavior 

of base stock is very particular as single items are ordered when item stock mutations happen, thus item 

stocks for this policy range from [Base stock, Base stock + MOQ] in case of MOQ’s, otherwise [Base stock, 

Base stock + 1].  

 

Lot for lot is modelled like JIT. Due to the tightly controlled environment safety stock is assumed to be 

zero. Furthermore, the minimum stock is equal to lead time demand. However, in contrast to JIT, L4L 

orders up to a multiple of a planned forecast horizon. The default is set to 100 days, as this is roughly one 

average lead time demand. Lot sizes are higher for L4L than JIT, so the L4L stock ranges are given by: 

• [DL, DL + MOQ], in case MOQ > 2 * DL,  

• [DL, 2*DL]. 
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Appendix C – Examples of Highly irregular demand 

 

Demand of Item 032204203031.. 

 

Demand of item 352250041176.. 

 

Demand of item 122210398256.. 
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Appendix D – Examples of Intermittent Demand 
 

 

Demand of item 352259902881.. 

 

Demand of item 352250054694.. 

 

 

 

 



 

57 

 

 

Appendix E – Improved Baseline configuration of the model 

 

Figure 35 – A snapshot of the configuration of the improved baseline  
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Appendix G – Model explanation  

 

Figure 36  – settings dashboard of model 

The model works in 4 steps. 

Step 1: Set input parameters. It is important all the yellow cells (except the cells from the Classification 

method or MCIC criteria) are filled in. For the classification yellow cells only one yellow cell must be filled 

with an x. This indicates that this specific classification method is used. If MCIC is chosen then the end 

user must fill in what criteria should be taken into account by the MCIC, this is done below the first set of 

“x” selected cells. 

Step 2: when all input variables are set, the button Load data should be clicked. 2 popups will come up. 

Since the data is combined from several sheets, first the system asks the end user to select the MAN65 excel 

sheet. Secondly the demand characteristics sheet needs to be selected after the second popup.  

Step 3: After the data is combined and filled it is time to calculate inventory performance. This is done 

through the second button called “Calculate Class and Inventory”. Make sure a classification method is 

selected as mentioned in step 1. 

Step 4: After all calculations for all items are done, the final step is to calculate the performance. This can 

be done with the last button called “Calculate Statistics”. This button will update all performance indicators 

in the sheet “Results”. If the end user wants to check the performance with a different setup, change the 

yellow cells and go back to step 2. 
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Appendix H – Chi Squared code 
Sub Chi_Square(observed() As Double, PDF As String, mean As Double, stdev As Double, prob As 

Double, cv As Double) 

'Take the demand data and calculate the viability of the PDF 

Dim p As Double, count As Long, i As Long, expected() As Double, min As Double, max As Double, j As 

Long 

Dim crit_prob As Double, alfa As Double, buckets As Long, bucketi() As Double, bucketj() As Double, 

step As Double, bucketO() 

Dim BucketE(), chi As Double, a As Double, b As Double, r As Long, prob_gamma As Double, niet As 

Long 

 

count = UBound(observed) 

ReDim expected(1 To count) 

buckets = 9 

ReDim bucketi(1 To buckets) 

ReDim bucketj(1 To buckets) 

ReDim bucket(1 To buckets) 

ReDim bucketO(1 To buckets) 

ReDim BucketE(1 To buckets) 

If cv > 5 Or stdev = 0 Then 

    Exit Sub 

End If 

'create the observerd data 

'initialize 

min = Application.WorksheetFunction.min(observed()) 

max = Application.WorksheetFunction.max(observed()) 

alfa = 0.05 

step = (max - min) / buckets 

'Some distributions cant handle 0 as minimum 

If min = 0 Then 

    min = 0.001 

End If 

 

prob = 0 

prob_gamma = 0 

 

For i = 1 To buckets 

    bucketi(i) = min + step * (i - 1) 

    bucketj(i) = min + step * i 

Next i 

 

    For i = 1 To count 

        For j = 1 To buckets 

            If observed(i) >= bucketi(j) And observed(i) < bucketj(j) Then 

                bucketO(j) = bucketO(j) + 1 

            End If 

        Next j 

    Next i 
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    For i = 1 To buckets 

        bucketO(i) = bucketO(i) / count 'set the data 

    Next i 

 

 

'Normal 

If PDF = "Normal" Then 

    'make observations according to statistical distribution 

    For i = 1 To buckets 

        BucketE(i) = Application.WorksheetFunction.Norm_Dist(bucketj(i), mean, stdev, True) - 

Application.WorksheetFunction.Norm_Dist(bucketi(i), mean, stdev, True) 

    Next i 

End If 

 

'Negative Binomial 

If PDF = "Negative Binomial" Then 

    r = (mean / stdev) ^ 2 

    p = mean / (mean + (stdev ^ 2)) 

    If r = 0 Then 

        r = 1 

    End If 

    'make observations according to statistical distribution 

    For i = 1 To buckets 

       BucketE(i) = Application.WorksheetFunction.NegBinom_Dist(bucketj(i), r, p, True) - 

Application.WorksheetFunction.NegBinom_Dist(bucketi(i), r, p, True) 

    Next i 

End If 

 

'Poisson 

If PDF = "Poisson" Then 

    'make observations according to statistical distribution 

    For i = 1 To buckets 

       BucketE(i) = Application.WorksheetFunction.Poisson_Dist(bucketj(i), mean, True) - 

Application.WorksheetFunction.Poisson_Dist(bucketi(i), mean, True) 

    Next i 

End If 

 

'Compound Poisson 

 

'Gamma/Lognormal 'Wss gnw gamma doen 

If PDF = "Gamma/LogNormal" Then 

    'Gamma 

    a = (mean ^ 2) / (stdev ^ 2) 

    b = mean / (stdev ^ 2) 

    'make observations according to statistical distribution 

    For i = 1 To buckets 

        BucketE(i) = Application.WorksheetFunction.Gamma_Dist(bucketj(i), a, b, True) - 

Application.WorksheetFunction.Gamma_Dist(bucketi(i), a, b, True) 

    Next i 

niet = 0 
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chi = 0 

'check how many expected buckets are 0 

For i = 1 To buckets 

    If BucketE(i) = 0 Then 

        niet = niet + 1 

    End If 

Next i 

 

'Chi squared for gamma 

For i = 1 To buckets - niet 

    If BucketE(i) <> 0 Then 

        chi = chi + ((bucketO(i) - BucketE(i)) ^ 2) / BucketE(i) 

    End If 

Next i 

If buckets - niet > 1 Then 

    p = Application.WorksheetFunction.ChiSq_Inv_RT(alfa, buckets - 1 - niet) 

    prob_gamma = Application.WorksheetFunction.ChiSq_Dist_RT(chi, buckets - 1 - niet) 'prob moet groter 

zijn dan 0.05 oftewel alfa om te laten zien dat ze hetzelfde zijn 

End If 

 

    'Lognormal 

    'make observations according to statistical distribution 

    For i = 1 To buckets 

        BucketE(i) = Application.WorksheetFunction.LogNorm_Dist(bucketj(i), mean, stdev, True) - 

Application.WorksheetFunction.LogNorm_Dist(bucketi(i), mean, stdev, True) 

    Next i 

End If 

 

 

 

 

'Goodness of fit test 

 

 

    'Calculate 

 

niet = 0 

chi = 0 

'check how many expected buckets are 0 

For i = 1 To buckets 

    If BucketE(i) = 0 Then 

        niet = niet + 1 

    End If 

Next i 

 

'Chi squared for gamma 

For i = 1 To buckets - niet 

    If BucketE(i) <> 0 Then 

        chi = chi + ((bucketO(i) - BucketE(i)) ^ 2) / BucketE(i) 

    End If 
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Next i 

If buckets - niet > 1 Then 

    p = Application.WorksheetFunction.ChiSq_Inv_RT(alfa, buckets - 1 - niet) 

    prob = Application.WorksheetFunction.ChiSq_Dist_RT(chi, buckets - 1 - niet) 'prob moet groter zijn 

dan 0.05 oftewel alfa om te laten zien dat ze hetzelfde zijn 

End If 

If prob > prob_gamma Then 

    prob = prob 

Else 

    prob = prob_gamma 

End If 

 

End Sub 


