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Management summary 
Problem definition 

This research is performed at the internal medicine department of Isala Clinics in Zwolle (Isala), with 

a special focus on the diabetes center in Zwolle. The diabetes center treats diabetes people of all 

ages with diabetes. These patients have an annual multidisciplinary checkup, called the IDEAAL 

checkup. Currently the department finds themselves in a situation where it is too hard to plan 

IDEAAL checkups for every patient on one day respectively. Therefore, we formulate the following 

research question: How can the number of scheduled hospital days for the IDEAAL checkup per 

individual patient be minimized without increasing the overtime for staff and while minimizing the 

waiting time between appointments? In the current situation the planners do not plan every 

element (appointment) of the checkup, resulting in partly scheduled IDEAAL checkups. Also, these 

different appointments are not planned on a single day, resulting in more pressure on the logistics of 

the hospital and calendars of patients. The reason for not planning complete IDEAAL checkups on a 

single day finds its roots in the low availability of caregivers and the need for rescheduling a complex 

combination of appointments after a potential cancellation. Both of these problems are influenced 

by the booking horizon, which thus became the focus of this research. 

We start by determining how well the current situation performs, in which we found that 0.4% of 

the IDEAAL checkups got carried out entirely in a single day. This is mostly caused by the planners 

not being instructed to plan complete IDEAAL checkups nor them being instructed to plan them on a 

single day. All based on the presumption of IDEAAL checkups being impossible to plan on a single 

day. 

Solution Design and Evaluation 

We design a solution approach for the analyzed problem. We formulated a discrete event simulation 

(DES) to test different booking horizons and see how changing this booking horizon impacts the 

potential to plan complete IDEAAL checkups in a single day. To first proof planning IDEAAL checkups 

in a single day is possible, a mathematical model has been developed. Thereafter, by using the DES 

we can give a more specific advice, related to the focus of this research, the booking horizon. The 

DES contains several heuristics, to approach reality as much as possible. Examples of the use of 

these heuristics are: finding appointment dates, sequencing appointments and changing availability. 

The Key Performance Indicators (KPIs) used to measure results from the DES are: “Fraction of single 

day checkups”, “Fraction of not scheduled patients”, “Throughput time of patients” and “Delta 

weeks”. With the first KPI “fraction of single day checkups” being the most important measure to 

take into account. 

Results 

We executed a base case analysis of the diabetes department in which the instruction for the 

planners would be changed to: try to plan as many complete IDEAAL checkups on a single day as 

possible. The results of this base case experiments were not in line with the expectations of Isala. In 

these results we see that taking a booking horizon of twelve weeks is optimal and results in an 

average of 88.5% patients scheduled on a single day. From this we conclude that it is possible to 

plan most IDEAAL checkups on a single day. By varying the demand rate, cancellation rate, 

availability of caregivers and assignment of preferred caregivers we found that the results found 

from the base case are robust. Less impactful changes like increasing or decreasing the cancellation 

rates, having a small (7.8%) demand increase or equalizing the demand rate over the year, still 

resulted in twelve weeks being optimal with a single day fraction of 88.6%, 88.6%, 89.1% and 

88.4% respectively. Only extreme changes to the settings would change the single day fraction, the 
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twelve-week optimal booking horizon would remain the same. We also analyzed extreme settings in 

which cancellation rates and patients outside IDEAAL checkups, fair workloads, smart pairing of 

caregivers and an extreme demand increase. These experiments resulted in single day checkup 

fractions of 99.8%, 91.7%, 95.2% and 84.3% respectively. The results of the experiments show that 

it is possible to start planning IDEAAL checkups on a single day and that there is still room for 

improvement aside from ‘simply’ starting to instruct planner to plan on a single day. We see small 

differences between experimental results, but although these difference are small, they are 

statistical significantly different. 

A drawback with regards to the results is for the employees to work with changes. People, with a 

health care background, are taught to work in a risk-averse manner. They learn to first thoroughly 

test before implementing. This makes it harder for them to implement and accept changes 

suggested to their work. 

The large difference between the results of the experiments and the current situation is explained 

by the work instruction for planners and Covid regulations. Due to Covid regulations, Isala stopped 

planning IDEAAL checkups on a single day in 2020. After ending the Covid regulations, Isala did not 

adjust the work instruction accordingly. Resulting in planners still planning IDEAAL checkups on 

multiple days and leaving out some appointments. Instructing planners to plan appointments spread 

over multiple days directly explains the low single day checkup fractions in the current situation. 

Practical contribution 

The practical contribution of this research is that the diabetes center in Isala can almost half the 

visiting days for IDEAAL checkups (from 0.4% checkups on a single day to 88.5% on a single day) of 

patients. In the current situation the researched patient group has a total of 1112 hospital visits (=

0.996 ∙ 557 ∙ 2 + 0.004 ∙ 557). When comparing this to the base case, where the patient group has 

a total of 621 hospital visits (= 0.885 ∙ 557 ∙ 2 + 0.115 ∙ 557), we reduced the number of hospital 

visits by 44% (= 1 −
621

1112
).  Changing the work instructions greatly reduces the pressure on patient 

calendars and hospital logistics created by IDEAAL checkups. 

If Isala would implement the changes to combinations of caregivers, number of hospital visits will be 

reduced to 48% (=
(0.952 ∙ 557 ∙ 2 + 0.048 ∙ 557)

1112
). The fact that the department can simply start steering 

on the reductions by changing instructions for planners makes it easily implementable. 

Scientific contribution 

We show that a large complex problem can be split into multiple smaller and more solvable 

problems. Approaching problems in such a matter, makes it possible for future researchers to tackle 

greater and more complex problems than before. Also, our DES and its heuristics give us insight in 

how gaps in knowledge and/or data can be overcome. An example would be the way we overcame 

the lack of data on availability. By categorizing small portions of data, we created fewer portions 

with more data. This made us able to still analyze the data and gain valid data from a small database. 

We also showed that a complex and hard to solve problem for a mathematical model can still be 

solved by implementing a DES. 

We combined the results of an mathematical model into a DES by using heuristics to approach the 

results found by the mathematical model. This thesis shows how multiple advanced solution 

approaches can be combined into one and these can be adjusted so they complement each other 

and make the results of both more valid. To the author’s knowledge, no solution approaches are 

found in the literature that compare exactly to the approach proposed in this thesis. Few 

approaches are close, but applied on less complex circumstances.   
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1 Introduction 
This chapter introduces Isala, as the problem owner. Here we identify the problem experienced by 

Isala. In the current situation they find it impossible to plan IDEAAL checkups in one day. Finally, we 

describe the research plan to find a solution to improve the current situation. 

1.1 Problem definition 
This research took place at Isala Clinics in Zwolle, as a graduation assignment of the master program 

Industrial Engineering & Management of the University of Twente. 

1.1.1 Hospital description. 
This research is conducted at the internal medicine department of Isala Clinics in Zwolle, with a 

special focus on the diabetes centrum in Zwolle. Further references to Isala Clinics in Zwolle will be 

mentioned as Isala. Isala has five locations situated in Zwolle, Meppel, Steenwijk, Kampen and 

Heerde. It has about 7,000 employees, 1,250 beds and a yearly turnover of about 824 million euros 

(Isala, n.d.). 

The diabetes center at Isala is one of the largest diabetes centers of the Netherlands and treats 

people of all ages with diabetes. The treatment team is located at a single location to be able to 

deliver the correct customized care, where pediatricians and internists work alongside. Having the 

diabetes nurses, podiatrists, and dieticians at the same department makes it easy for specialists to 

discuss cases (Isala, n.d.).  

1.1.2 Problem description 
The diabetes center at Isala aims to deliver value-driven care. According to Porter & Lee (2013) five 
steps to achieve value-driven care, are: forming a multidisciplinary team, optimizing care pathways 
within the care chain, defining outcome measures, learning and improving at three levels, and 
measuring costs and making payment agreements per care chain based on quality. 
 
This study will focus on the second step, “optimizing care pathways within the care chain”, because 

that is the expertise of the researcher. More specifically, this means re-evaluating the planning 

process and finding a way to decrease the number of hospital visits for patients. Children and young 

adults with diabetes type 1 visit the hospital annually for the Isala Diabetes Extensive Annual All-in 

Loop (IDEAAL) checkup during their birth month. The IDEAAL checkup is a multistage checkup, 

consisting of several disciplines. First, blood and urine samples are sent to the lab. Thereafter the 

blood pressure of the patient will be measured. This could be followed by routine questions about 

the patient's quality of life and satisfaction involving the delivered care and reading out the devices. 

Thereafter, the patient has an appointment with the diabetes nurse and is required to have a retina 

photo taken if needed. Once this is done, the patient also visits a podiatrist and/or a dietician 

depending on their diagnosis. Finally, the patient visits the internist or pediatrician to discuss all the 

results of the yearly checkup. Figure 1 provides a visual overview of this multistage checkup. 
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Figure 1 IDEAAL checkup 

Figure 1 contains four directional questions, influencing the care pathway of a patient. The first 

question is “Homework finished?”, checking whether patients filled out the questionnaire and read 

out their devices at home or if that still has to be done at the hospital. The second question “Retina 

photo?” refers to whether the patient needs to have a retina photo taken. Depending on the patient 

this photo is either never, yearly, once every other year or once every three years taken. This photo 

will be evaluated by an eye doctor and in the future possibly by an AI. At the time of planning the 

IDEAAL checkup, it is known whether the patient needs a retina photo taken or not. The third 

directional question is “indication dietician?”, where it is checked whether the patient has an 

indication for a dietician. The last question is “Sims Classification ≥2?”, which is determined by the 

diabetes nurse during the prior IDEAAL checkup. The Sims classification is a model developed to 

indicate the stage of the foot issues of a diabetes patient and determine the necessary care. The 

higher the classification the bigger the risk of foot wounds to arise (voetencentrum wender, 2023). 

Note that there is a minimum fixed time period of two weeks for evaluation of the retina photo at 

Isala. This time period cannot be reduced and is considered fixed in the optimization of the planning. 

1.1.3 Action problem 
The action problem is the problem as identified by Isala. In general terms, the action problem can be 

described as a situation that is not as it is desired to be (Heerkens & Van Winden, 2021). In the 

current situation, it is not possible to complete the IDEAAL checkup for all patients in a single day, 

which means that the patient has to visit the hospital multiple times. This is an undesirable situation 

for both the patient and the caregiver, in this case Isala. For patients, visiting the hospital multiple 

times results in more absenteeism from work, more travel time and higher costs. Isala benefits in 

form of pressure release on the hospital facilities in case patients limit their visits. 
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1.1.4 Problem identification 
In order to understand the root cause of the action problem, a problem cluster is created. This 

problem cluster is depicted in Appendix A: Problem cluster. The problem cluster was established 

based on discussions with stakeholders in the process. Based on the previously described action 

problem, the problem cluster was further developed. 

This problem cluster shows that the action problem has multiple connected causes. The staff 

working on the IDEAAL checkup have extremely full agendas, and combining this with appointments 

taking more time than planned makes it currently impossible for the planners to manually schedule 

the IDEAAL checkup in one day for every patient. To receive results of the lab research in time, every 

lab research is set to a rush order to ensure the results arrive in time, making the planning process 

for the planners more complex. One more thing making the planner having to schedule multiple 

days are no-show patients. But to keep the research focused, it is chosen to leave the no-show 

patients out of scope. 

A possible root cause that is left out of scope is the evaluation of the retina photos by the eye 

doctor. According to internists these results are not essential for the IDEAAL checkup on the day 

itself. Leaving the root causes “shifting booking horizons” and “incorrect and incomplete planning 

rules” as the main focus for this research. As a result of these two root causes there is not a 

standardized planning method, every patient is manually planned into the agendas of the different 

staff by the planners. The requisite for the planners is to make sure that the lab appointment is the 

first appointment and the appointment with the internist or pediatrician the last appointment, this 

planning process not optimized. 

In despite of a standardized planning method for how the appointments are placed in the calendars, 

the booking horizon is also not standardized. The booking horizon is the time between planning of 

an appointment and the date of the appointment itself. Varying booking horizons have different 

impacts on the plannability of an appointment and should therefore also be considered when finding 

an optimal standardized planning method. 

1.2 Research plan 
1.2.1 Research objective & Scope 
The aim of this research is to find a way to maximize the number of patients that can be scheduled 

for the IDEAAL checkup in a single day, without requiring the staff to work extra overtime and by 

minimizing waiting times between appointments. This objective contributes to the goal of Isala to 

optimize care pathways within the care chain.  

The research will be conducted at the diabetes center of Isala. To limit scope, it will solely focus on 

patients with diabetes type 1, between 0-26 years old. This is a patient group that participates in the 

IDEAAL checkup. However, that, the solution approach will be kept generic in order to maintain 

applicability. The research is conducted in approximately half a year.  

This problem is considered complex due to the following:  

- We are dealing with a multistage problem where multiple calendars and availabilities play a 

role.  

- The duration of appointments is stochastic, but to fit it to different agendas the durations 

can be assumed to be deterministic.  

- There are multiple unique care pathways that patients take, which can alter depending on 

the patient going through the care pathway. 
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To the authors’ knowledge no literature is available on a planning problem with all these issues 

combined, making this an assumed valuable contribution to the established literature. 

1.2.2 Research Design 
This section lists the research questions, which will form the structure of this research. All research 

questions will relate to the main research question: 

How can the number of scheduled hospital days for the IDEAAL checkup per individual patient be 

minimized without increasing the overtime for staff and while minimizing the waiting time between 

appointments? 

The sub-questions together will result in an answer to the main question and will be based on the 
following structure: current situation description, literature review, solution design, solution 
evaluation and recommendations. 
 

1. How are the IDEAAL checkups currently planned and how does it perform? 
This sub question will describe the current situation both in text and numbers. It will 
describe how the planning is currently made and how it performs. The performance of the 
planning will be based on “Number of single day IDEAAL checkups”. The goal of this research 
question is to get a good grasp on how the IDEAAL checkups are currently planned. The staff 
involved will be interviewed and the past data, generated by Isala, will be reviewed. A final 
goal of this part is to identify potential bottlenecks in the process. 

2. How are optimal booking horizons found according to the literature? 
A systematic literature review will be conducted to find out what types of solutions have 
been found in the literature for similar problems and how this solution could help in finding 
a solution for the diabetes center of Isala. This part will also determine which method is 
going to be used to solve the issues at hand. 

3. How to find the optimal planning approach for the IDEAAL checkups? 
The method to solve the IDEAAL checkup planning problem will be developed. A simulation 
optimization approach will be used to determine an optimal IDEAAL checkup booking 
horizon and a mathematical model will be developed to optimize the blueprint planning. 

4. How does this new planning approach impact the planning of the IDEAAL checkup? 
An extensive sensitivity analysis will be carried out in which the newly developed planning 
method will be tested. The current situation will function as a benchmark to show whether 
and how the newly developed method is better than the current situation. The new planning 
method will also be tested for changing circumstances such as an in- or decrease in patients 
or hiring/leaving staff.  

5. What are the recommendations that can be given to Isala with regards to planning of the 
IDEAAL checkup and how can a solution be implemented? 
An implementation plan will be formulated, accompanied by the conclusions that can be 
drawn from the results and recommendation for the future. 
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2 Current Situation 
The sub-question “How are the IDEAAL checkups currently planned and how does it perform?” is 

elaborated and reflected upon the current situation regarding the IDEAAL checkup by the following 

section. The goal of this section is to describe the way patients are currently planned, and how this 

method performs. This chapter demonstrates why Isala needs a new way of planning and will give a 

benchmark to compare solution results with. 

2.1 Description of diabetes department 
2.1.1 Aim of the department 
The diabetes department only treats patients with diabetes. They treat patients that experience 

inconveniences as a result of them being a diabetic. Since diabetes is a chronic disease, diabetic 

patients also receive their regular checkups at the diabetes department.  

The diabetes department in Isala is aiming to improve the quality of care. To accomplish this to the 

best of their abilities the department is implementing the steps of “value driven care”. Optimizing 

the IDEAAL checkup planning is one of the examples of this. Optimizing the planning of IDEAAL 

checkups contributes to the goal of optimizing care pathways within the care chain. 

2.1.2 Care pathways 
As the IDEAAL checkup has a flexible care pathway, there are different pathways a patient could take 

to do their checkup. The entire care pathway with, including all their possible branches, is shown in 

Figure 1. From this figure we can deduce the “standard care pathway”, which every patient has to 

follow in order to have undergone a complete IDEAAL checkup. 

The standard care pathway consists of the following planned appointments: Laboratory research, a 

blood pressure test, consultation with a diabetes nurse and a consultation with an internist. 

Important to note is that for every IDEAAL checkup the laboratory research always has to be 

scheduled first and the consultation with an internist last. The other appointments do not have a 

fixed sequence. 

An IDEAAL checkup has three variable appointments, namely: a retina photo, consultation with a 

dietitian, and consultation with a podiatrist. These appointments all occur independent of each 

other. At the end of every IDEAAL checkup the internist determines the care pathway the patient 

will undergo the following year. Which consists of the standard care pathway, plus any, all or none 

of the variable appointments. 

2.1.3 Appointments and their specialists 
Since the IDEAAL checkup is a multidisciplinary appointment combination, there are a couple of 

different specialists involved. The most noteworthy are the internist, pediatrician and diabetes 

nurse. These specialists are always included in every IDEAAL checkup, carrying out the appointments 

of the standard care pathway. Whether the patient sees a pediatrician or internist is based on age, 

once the patient becomes an adult they will switch away from the pediatrician to an internist. 

In Table 1 an overview of all appointments and their specialists is given. The percentage given in the 

frequency column are the fraction of IDEAAL checkups that contain the appointment. The numbers 

are retrieved by analyzing the current situation. Since the podiatric consult is not yet included in the 

IDEAAL checkup, no frequency is known. Despite the results of the current situation, the standard 
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care pathway appointments are given a frequency of 100%. In the desired situation these 

appointments should be part of every IDEAAL checkup. 

 

2.1.4 Current planning strategy 
Currently all appointments are planned manually by planners. The diabetes department has its own 

team of planners that focus on planning appointments on the diabetes department only. Not all 

young adult type 1 diabetes are currently included in the IDEAAL checkup.  

The planners are planning IDEAAL checkups both on long-term and short-term. The long-term 

planning is done according to the following steps: 

1. Pick from the list of “need to plan patients”; 

Patients that require an appoint will automatically be placed on this list by HiX. The planners 

can open this list and work through it, planning appointments. 

2. Check the prescribed appointments; 

The doctor creates an order at the end of their appointment, which includes the desired 

appointments for next year’s IDEAAL checkup.  

3. Combination of the prescribed appointments; 

The planner creates an appointment combination, including all prescribed appointments 

from the doctor’s order. This appointment combination is seen as one appointment.  

4. HiX checks availability in the calendar; 

The planner gives a time period for HiX to search in. HiX checks for the availability in the 

calendars of the service providers to find timeslots where the appointment can be 

scheduled. This system looks for timeslots in the IDEAAL raster. The planner chooses one of 

the available slots, if there is no time slot available one more step will be taken. 

5. Manual planning of the combination. 

If the system is not able to find a date for the combination of appointments, the planner 

looks for a way to plan the combination anyways. This for example can be done by 

overwriting freed blocks for certain appointment types, by looking in another time period or 

planning the appointment over more than one day. 

Now the appointment combination is planned in the agenda of all caregivers and also the patient 

will be informed automatically. This results almost always in an IDEAAL checkup planned on one day. 

The short-term planning is where it becomes more complicated for the planners. There are several 

reasons for changes in the IDEAAL checkups. These reasons will be discussed in Section 2.2.3. In the 

short-term, planning all appointments is a lot harder to accomplish than when planning further 

ahead. Almost all calendars, especially those of the doctors, are completely filled up. This forces the 

planners to improvise, there are no standardized planning rules for planning on the short-term. 

Appointment Caregiver Department Why Current frequency  Input frequency

Lab Lab worker Laboratory To check health values 90.0%  Yearly (100%)

Bloodpressure Doctor assistant Diabetes To check bloodpressure 81.7%  Yearly (100%)

Nurse consult Diabetes nurse Diabetes Check current health status 37.5%  Yearly (100%)

Retina photo Doctor assistant Diabetes Check the eyes 45.6%  Health dependent (45.6%)

Dietician consult Dietician Diabetes Education on carb counting and carb/insuline ratio 2.4%  Health dependent (2.4%)

Podiatric consult Podiatrist Diabetes Patient is in care profile 1 or higher 0.0%  Health dependent 0.0%)

Doctor Internist/pediatrician Diabetes Discuss the results of prior appointments 91.4%  Yearly (100%)

Table 1 Overview of appointments and their specialists 
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2.2 Current performance 
To describe the current situation, the data has to be reviewed. This chapter will show how the 

current situation is described based on the relevant Key Performance Indicators (KPIs). This started 

by ensuring the privacy protection of patients, followed by preparing the data and finally the most 

important findings are visualized. The method used to retrieve all the data can be found in Appendix 

E: Data retrieval. 

We retrieved data from 629 patients, age 0-26, that visited Isala between January 1st 2020 and 

December 31st 2022 for one or more appointments. Not every IDEAAL checkup in the past included 

the entire standard care pathway and not every appointment retrieved from the data is part of an 

IDEAAL checkup. Therefore, we decided to divide them into five different categories. These 

categories are demonstrated in Table 2. 

Table 2 Categories of combination appointments 

 

As their category description shows, the categories “No” and “Unlikely” are not IDEAAL checkup. 

Therefore, these appointment combinations are not included when defining the numbers, shown in 

Section 2.2.2. We still have these categories in the data, because finding the actual IDEAAL 

combinations had go step by step. The categorizing is done based on the logic shown in Appendix B: 

Categorizing logic. 

Another part of the preparation is defining the KPIs on which the results will be analyzed. These KPIs 

are: 

- Fraction of IDEAAL checkups carried out in one single day; 

This is the most important indicator, since goal of this research is to maximize the number of 

IDEAAL checkups carried out in one day and to find out whether this is a realistic goal to set 

for the Department. This KPI will give us insight into exactly this aspect. 

- Fraction of not scheduled patients; 

For every patient we expect to find an appointment date. But sometimes this will be 

impossible. This KPI will give us insight into the plannability of the patients for set 

circumstances. It will give an indication for the effectiveness of the chosen planning strategy 

or method. It will also notify us if we need to figure out other reasons why the planning 

strategy or method does not work as intended. 

- Throughput time per patient; 

When it is possible to plan a patient in one day, it is desirable for the patient to be in the 

hospital for as short as possible. Thus, a low throughput time would be good. Although this 

is not the main objective of the research. When an IDEAAL checkup is split up, the 

throughput time will not be taken into account, because the time between appointment 

days does not have to be optimized. 

- Time between expected and realized schedule weeks (delta weeks) 

Every patient has an expected appointment week, which is a random week in their birth 

month. It is possible the patient will be scheduled in a different week as a result of the 

Combination of appointments in a period of six weeks

Complete IDEAAL check-up that contains at the entire standard care pathway

Mediocre IDEAAL check-up that lacks one of the standard care pathway appointments

Bad IDEAAL check-up that lacks at least two of the standard care pathway appointments

No Not an IDEAAL check-up

Unlikely Very unlikely to be an IDEAAL check-up
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caregivers’ availabilities or as a result of rescheduling due to the cancellation of their 

checkup. This KPI should give insight in the ease of planning for IDEAAL checkups. We will 

refer to this KPI as the Delta Weeks. 

 

2.2.1 Availability results 
Since the IDEAAL checkup is planned in both a long time in advance and on the short term, it is 

relevant and interesting to analyze the availabilities of the different care givers in the process. 

The data is gathered through a period from week 34 – 40 in 2023. Every week the data availability of 

the caregivers is monitored for up to sixteen weeks in advance. A maximum horizon of sixteen weeks 

was chosen, because availability data for 2024 was not available at the time of data gathering and 

sixteen weeks should be sufficient for testing a wide variety of booking horizons.  

Since we only recorded data for seven weeks, every caregiver has seven data points available per 

horizon length. One data point is “the fraction of expected outpatient clinic time still available for a 

caregiver weeks in advance, where 𝑐𝑎𝑟𝑒𝑔𝑖𝑣𝑒𝑟 𝑤𝑒𝑒𝑘𝑠 =  {1, . . . ,16}”. Due to this issue with limited 

data, we categorized the calendars of the caregivers into three groups. The three groups are “slow 

filling calendars”, “average filling calendars” and “fast filling calendars”. 

Caregivers are assigned to one of these groups, based on their average filled fraction over the 

sixteen weeks period. To clarify this: The average availability of the seven data points per week is 

taken, giving every caregiver sixteen averages, one for each week in advance. If every average 

availability fraction is greater than 0.5, we consider the caregiver part of the “slow filling calendars” 

group. If every average availability fraction is smaller than 0.3, we consider the caregiver part of the 

“fast filling calendars” group. The rest of the patients are part of the “average filling calendars” 

group. This resulted in nine caregivers in the Slow group, nineteen caregivers in the Average group 

and six caregivers in the Fast group. 

The data for all caregivers in a group are combined to and fitted to the most suitable probability 

distribution. This probability distribution will generate the fraction of time available for every 

caregiver in the group. In Appendix F: Distribution fit, we give a visual representation how the 

different weeks per category are fitted. From these we found that for most weeks the normal 

distribution was the best fit according to test statistics. The few weeks where the normal distribution 

was not the best fit according to the test statistics, the results were very close. Therefore, to stay 

consistent, we decided to take a normal distribution for every week. Choosing a normal distribution 

also makes analyzing results the most straight forward. 

2.2.2 IDEAAL planning results 
Categorizing was the last step before the data could be visualized. The most important statistic from 

the current situation is how often an IDEAAL checkup is actually is carried out in one day. These 

results are shown in Table 3. As shown in Table 2 the categories Complete, Mediocre and Bad are 

the three categories that actually were IDEAAL checkups carried out. 
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Table 3 Performance current situation 

 

The percentages shown in this table are the fraction of the number of IDEAAL checkups over a 

period of 3.5 years. Since January 2020 Isala has carried out 491 IDEAAL checkups for 257 unique 

patients. Of these 491 checkups 92 checkups are fully carried out and two of those were on one 

day. There were 330 checkups that lacked one standard care pathway appointment and 69 

checkups that lacked at least two standard care pathway appointments. 

At the start of the corona crisis the planners had to stop planning laboratory appointments on the 

same day as the IDEAAL checkup. These appointments could probably still have been planned on 

one day, but the planners had the assignment to plan the laboratory appointment on another day. 

This was because of the restriction surrounding the corona crisis. In a normal time period this 

measure should not have been taken by the hospital. The appointment with the diabetes nurse is 

not yet considered part of the standard care pathway. Currently the diabetes nurse is only included 

if the internist gives an order to include that appointment. 

With this in mind we can say that 14.1% of the appointments are not planned as intended. With 

appointments “planned as intended” we mean that the appointments are planned in the way the 

planners were instructed to plan. But those instruction do not meet the criteria the department 

wants to work towards. Since it depends on the order of the internist, it is assumed that the 

remaining part (85.9%) of the appointments is planned as intended. 

2.2.3 Problem identification 
As described in Section 2.1.4 most IDEAAL checkups can effectively be planned on one day. As long 

as the long-term planning is unchanged. But as the data from the current situation implies, which is 

shown in Section 2.2.1, this long-term planning almost never holds up. Almost none of the IDEAAL 

checkups actually are carried out in one day, despite (almost) all of them being planned on one day. 

There are several reasons for an appointment to change after it being set by the long-term planning. 

When an appointment has to be canceled, the IDEAAL combination ends up in a buffer list. This 

buffer list is overseen by the planners, who will have to reschedule any appointment or combination 

of appointments that end up on this buffer list manually. Reasons for as of why appointments end 

up on this buffer list are derived from the Isala database, but no data on fractions of these reasons 

are available. The reasons for an appointment to end up on the buffer list are: 

- Day off by the caregiver; 

A day off can be requested until three months in advance. 

- Holiday; 

Doctors have to request their holidays at least six months in advance and diabetes nurse at 

least three months in advance. 

- Sickness of a caregiver; 

Count Percentage Total

One day 2 0.4%

Other lab/fundus day 13 2.6%

Multiple days 77 15.7%

One day 13 2.6%

Multiple days 317 64.6%

One day 27 5.5%

Multiple days 42 8.6%

Mediocre 67.2%

Bad 14.1%

IDEAAL checkup

Complete 18.7%
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When a caregiver is ill, or absent due to personal reasons their whole calendar must be 

scraped and rescheduled. 

- Raster changes; 

New rasters replacing or overwriting rasters containing appointments. 

- Work shift changes; 

There are different types and locations for the work shifts of the caregivers. The type of shift 

or location of the shift can change until three months in advance. 

- Caregivers swapping shifts; 

This can be done any time by caregivers. By swapping shifts they do not take over the 

patients of the one they switched with. The planners have to reschedule patients, to make 

sure the patients and their care givers see their own patients. This is for comfort of the 

patient and to make that caregivers do not need to read-up on every patient they see. 

- Patient cancellations; 

Some patients call the hospital prior to their appointment to notify the hospital that they are 

unable to show up. The appointments that are canceled by the patient more than 24 hours 

before the appointment is considered to be patient cancellations. 

- No-show patient 

This can occur because of a wide variety of personal reasons, on which the hospital has no 

influence. No-shows are patients that are either canceled within 24 hours of the 

appointment or do not show up unannounced. 

Another issue that arose from the data is that only 0.4% of the IDEAAL checkups is actually fully 

carried out. The majority of checkups lacks at least one appointment. This is due to the fact that up 

until now the planners work under the instructions of planning three, instead of all four of the 

standard care pathway appointments. The IDEAAL checkup with a diabetes nurse is in the current 

situation not considered part of the standard care pathway. 

If we include the IDEAAL checkups that are not carried out correctly, it can be seen that 8.5% of the 

appointments are carried out on one day. This means that 8.5% of the patients that came in for an 

IDEAAL checkup only needed to visited the hospital one day. 

2.2.4 Mutation of appointments 
When an appointment is canceled, it will be mutated in the system. The number of mutations for all 

appointment in the IDEAAL check-ups have been analyzed from 2019-2023. Table 4 shows the 

resulting mutation rates. 

Table 4 Mutation rates for IDEAAL appointments in 2019-2023 

 

In Table 4 we see that the fraction of appointments that needed at least one mutation is evenly 

distributed, aside from the positive outlier in 2019. On average 31.7% of the IDEAAL appointments 

needed rescheduling for this five-year period. In Appendix E: Data retrieval the method for retrieving 

and calculating these mutation fractions is described. 

Year Appointments Mutated Fraction >1 Mutation Fraction

2019 1359 227 0.167 17 0.013

2020 823 313 0.380 22 0.027

2021 528 179 0.339 18 0.034

2022 480 226 0.471 36 0.075

2023 518 229 0.442 39 0.075

Average 742 235 0.317 26 0.036
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The two most right columns of Table 4 give insight in the appointments that underwent more than 

one mutation. We see that on average 3.6% of the IDEAAL appointments needed rescheduling more 

than once. We note that the data for 2023 is for the period from January until July, as no more data 

was available at the time of the research. The number of appointments over the years is notable. We 

see that after 2019 the number of IDEAAL appointment became much lower than in 2019. This is a 

result of changes made by Isala to comply with the Covid regulations from 2020 onward. We see an 

increase in IDEAAL appointments in 2023, as the Covid regulations are being lifted.  

2.3 Conclusion 
In Section 2.1.4 the planning method is described. The planning is done on two levels, long-term and 

short-term. Long-term planning mostly follows the desired conditions and goes according a 

structured method. The short-term planning has to be done manually by the planner, working 

around full calendars of the different caregivers. 

The number of IDEAAL checkups carried out in one day is extremely low. In the current situation only 

8.5% of the checkups are fully carried out in one day, meaning that currently the planning performs 

very poorly. As Section 2.2.3 suggests, the most likely reasons behind these low number are the 

agreed planning method for planners to plan a standard care pathway without the diabetes nurse. 

There was a time that they had to plan retina and/or laboratory appointments at least two weeks 

prior to the rest of the appointments. Both making it impossible for full IDEAAL checkups to occur in 

one day. This is due to the short-term planning being extremely hard to optimize for the planners 

manually. 

Furthermore, the mutation rates shown in Section 2.2.4 tell us that the planners indeed often have 

to reschedule IDEAAL check-ups, since 31.7% of the appointments needed rescheduling. If at least 

one appointment from the checkup is cancelled, the complete checkup needs rescheduling for it to 

still be scheduled in one day. There is not really data on the difference between the expected 

appointment date and the actual appointment date. But with such high mutation rates it is likely 

that the hospital does not perform well on this aspect.  
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3 Literature 
In this chapter literature related to finding an optimal booking horizon will be discussed. The goal of 

this chapter is to describe the problem type, according to the literature. This chapter will also 

provide insight in how similar problems have been solved in the past, whether those approaches are 

suitable for the problem of this research and how this research will contribute insights to the 

established literature. This chapter will answer the sub question: “How are optimal booking horizons 

found according to the literature?”. The scope of the literature review is focused on the papers 

written in the health care sector. 

3.1 Booking horizon 
This section will describe booking horizons and why and how these are used to optimize scheduling 

in outpatient clinics. 

3.1.1 Definition 
The booking horizon determines how much time in advance an appointment can be planned, and is 

an input parameter to an appointment system (Leeftink et al., 2021). When the booking horizon is 

determined, there is no information on actual patient arrivals, as typically only historical data on the 

patient population is known. Therefore, the booking horizon optimization problem is considered at 

the tactical level of control (Hans et al., 2012). The booking horizon is the number of business days 

from the current date to the date of the latest available appointment slot (Leeftink et al., 2021). 

The relationship between scheduling interval and the cancellation rates is well-studied. The 

scheduling interval is in the literature also referred to as lead time, planning horizon, appointment 

age or appointment intervals. This is expressed as the number of business days from the creation of 

the appointment to the date the appointment is scheduled for (Leeftink et al., 2021). 

Akin et al. (2013) considers three major groups in patient scheduling and capacity management: 

single-class patients with single resource, multi-class patients with single resource, and multi-class 

patients with multiple resources. The multi-class patients with multiple resources can be divided into 

two subgroups: systems with multiple resources used during a single patient visit and the systems 

with a single resource that is chosen from a set of resources based on the appointment type. The 

patient group considered for this research falls in the subgroup “systems with multiple resources 

used during a single patient visit”. 

3.1.2 Characteristics and predictors of cancellations 
Ever since the increasing focus on efficient healthcare operations, clinics started to evaluate their 

no-show and cancellation rates (Leeftink et al., 2021). Cancellations result amongst other things in 

reduced productivity and efficiency for hospitals. Furthermore, cancellations increase the waiting 

lists, by reducing the available appointments. Therefore, it reduces patient access to care (Davies et 

al., 2016). To be able to assess this reduction in access to care, it is important to not only take the 

amount, but also the timing of cancellations into account. By quantifying the cancellation behavior, 

the effects of interventions can be measured (Leeftink et al., 2021). 

Leeftink et all. (2021) considers patients that are rescheduled more than 24 hours in advance to be 

cancelled. For cancellations we have either patients that need rescheduling and patients that 

disappear from the system. In this research we consider cancellation to be appointment that need 

rescheduling, caused by the hospital.  
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When focusing on predictive studies, Bean and Talaga (1992) and Norris et al. (2014) found that the 

scheduling interval is the most significant predictor of patient non-attendance. Denney et al. (2019) 

use machine learning techniques to forecast no-show and cancellation behavior. They showed that 

the scheduling interval was the top feature for prediction both no-show and cancellations. According 

to Whittle et al. (2008) has a large effect on cancellation rates. Liu (2016) showed that adopting an 

optimal appointment scheduling window resulted in substantial efficiency gains. Patients that have a 

longer scheduling interval tend to have a higher probability of no-show and cancellation. However, 

when the scheduling interval becomes very long, these effects may fade out (Bean & Talaga, 1992). 

3.1.3 Minimizing the effect of cancellations 
There are several scheduling strategies that aim to minimize the adverse effect of cancellations, 

including overbooking, open access scheduling, panel sizing and reducing the booking horizon. As 

Section 3.1.2 describes, the booking horizon has the largest impact on cancellations. Therefore, the 

focus of this section will be mostly on the reducing booking horizon strategies. 

Both Leeftink et al. (2021) and Liu (2016) propose a queuing model to find an optimal booking 

horizon. Liu (2016) focusses on the no-show behavior of patients and developed an M/M/1/K 

queuing model that maximizes the long-run average net reward for providers, which depends on the 

rewards collected from patients served and the penalty paid for those who cannot be scheduled. 

Leeftink et al. (2021) proposes a way to improve efficiency of clinics by minimizing the impact of no-

shows and cancellations. An analytical model with balking and reneging is proposed, to determine 

the optimal booking horizon. Which is being verified through simulation experiments. Akin et all. 

(2013) proposes a discrete event simulation model to analyze the effects of allowing different 

appointment windows. They use capacity utilization, patient access and financial rewards as 

performance indicators. 

These works come closest to the proposed approach in this thesis. Due to the complicated nature of 

the system considered in this paper, we use simulation to analyze the effects of changing 

appointment windows for patients in the clinic, similar to Akin et al. (2013). 

3.2 Blueprint scheduling 
When finding an optimal booking horizon, a planning strategy still has to be determined. This section 

will describe what a blueprint planning is and how to develop a blueprint planning for a multi-

disciplinary multi-stage appointment combination.  

3.2.1 Definition 
According to Leeftink et al. (2020), multi-disciplinary planning can be considered at different 

hierarchical levels. In this research the focus is on capacity planning. Capacity planning specifies the 

results of capacity dimensioning decisions into a division of the resource capacity to patient groups 

or time slots (Hans et al., 2007). Blueprints are created in which resources are allocated to different 

tasks (Leeftink et al., 2020). 

A blueprint schedule in the healthcare environment is the amount of capacity on a set time that can 

be used for specific patient types in the operational planning (Leeftink et al., 2020). Zomer (2022) 

describes that there are different types of blueprints. This thesis considers “Slots filled with patients” 

as a blueprint planning. The objective of using a blueprint schedule for appointment planning is to 

combine appointments on one day (Dharmadhikari & Zhang, 2013) and to minimize waiting time on 

the day of the appointments (Liang et al., 2015). The blueprint can also prescribe what the best 

appointment hours are for caregivers (Liang et al., 2015). 
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3.2.2 Designing a blueprint 
Suitable methods to design blueprints are mathematical programming or heuristics, in combination 
with robust optimization or computer simulation to ensure robustness. Stochastic programming can 
also be used, which takes robustness to several scenarios into account (Leeftink et al., 2020). The 
preference of both the patients and hospital is often to combine several appointments on a day. In a 
blueprint, slots are kept open in order to plan combinations of appointments (Dharmadhikari & 
Zhang, 2013). 

Numerous studies used exact optimization methods to schedule appointments (Benzaid et al., 2020). 
Simulation and approximate methods, on the other hand, can handle large and complex systems 
with difficult constraints (Bouras et al., 2021). Most of these researches focus on the development of 
a blueprint planning to minimize for example makespan, workload of nurses, overtime or total 
excess workload (Bouras et al., 2021). 

Condotta & Shakhlevich (2014) proposes a mathematical programming approach to design a 
blueprint. They modeled the key stage of the scheduling process as a linear program and solved it 
using CPLEX solver. Their solution is based on the concept of a multi-level template schedule, with 
minimizing patients’ waiting times and nurses’ workload as main objectives. Hesaraki et al. (2019), 
developed an integer programming model using makespan suppression cost coefficients in the 
objective function. They developed a template planning to serve as a link between planning on a 
tactical level and online scheduling on an operational level. 

There are also examples of papers discussing approximation methods for scheduling problems. 
Bouras et al. (2021) presents a tabu search inspired algorithm to obtain a better solution especially 
suitable for large instances. Turkcan et al (2012) developed an operations planning and scheduling 
method for chemotherapy patients by minimizing the deviation from optimal treatment plans. They 
used a two-stage rolling horizon approach to solve the problems sequentially. An advantage of their 
heuristic is that it has a short computational time. 

The mathematical formulation of Bouras et al. (2021) comes closest to the approach we propose in 
this thesis. To develop a blueprint Bouras et al. (2021) minimizes their mathematical model on the 
makespan. The makespan is the time until the last operation is completed (Bouras et al., 2021). In 
this research we name this throughput time. Similar to our case, Bouras et al. (2021) has to use 
other methods to actually solve the entire instance of their problem due to complexity. They still 
formulated the mathematical model to determine the lower bound of their solution. 

3.3 Conclusion 
In this section the most suitable solution approach selection is described. This chapter also answers 
the sub question: “How are optimal booking horizons found according to the literature?” 

3.3.1 Relevance 
The approach proposed in Akin et al. (2013) comes closest to the approach of this paper. The focus 

of Akin et al. (2013) is on specifically finding an optimal booking horizon for different patient types 

within a clinic. This paper will go one step further and combine an optimal booking horizon with an 

optimized blueprint for a complex appointment combination. To the best of the authors knowledge 

there is no prior research on optimizing appointment scheduling on both appointment method and 

booking horizon.  

3.3.2 Approach 
The approach chosen for this will be a combination of the most suitable approaches found in the 

literature for finding an optimal booking horizon and determining an optimal blue print. As discussed 

in their respective sections, the most suitable approach for finding the optimal booking horizon will 
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be developing a discrete event simulation due to the complexity of the system. The most suitable 

approach for determining an optimized blueprint planning will be mathematical modeling. As the 

literature shows this is an appropriate way to minimize the makespan of the patients, which is the 

main objective set for blueprint scheduling in this system. 
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4 Solution approach 
In this chapter the third sub question will be answered, namely: “How to find the optimal planning 
approach for the IDEAAL checkups?”. The goal of this chapter is to describe how to get to a fitting 
solution for the current situation of Isala, based on mathematical modelling (Section 4.1) and 
discrete event simulation (Section 4.2).  

4.1 Mathematical modelling 
As discussed in Section 3.2.2 a mathematical model is a suitable approach to develop a blueprint 

planning. This chapter will describe the mathematical model developed for the problem at hand and 

describe what steps are to be taken with the mathematical model. 

4.1.1 Model overview 
In order to make an optimized blueprint planning, a model needs to be constructed. The objective of 

the model is to make sure that as many patients, needing the IDEAAL checkup, only needs to visit 

the hospital once to complete the checkup. The number of patients and the appointments needed 

for a complete IDEAAL checkup are known one year in advance. The objective is to minimize the 

throughput time of patients, meaning that the time a patient is present in the hospital, should be 

minimized. At the same time, a larger number of patients that visit the hospital multiple days, should 

be penalized. The model needs different parameters as input, which are inputs that can be changed 

when the situation at the hospital changes or to test different potential situation. Section 4.1.2 

Error! Reference source not found.gives an overview of the model on paper. 

4.1.2 Model definition 
Sets 

𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 (𝑝 = 1, … , 𝑃). 

𝐷𝑜𝑐𝑡𝑜𝑟𝑠 (𝑑𝑜𝑐 = 1, … , 𝐷𝑜𝑐). 

𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑛𝑢𝑟𝑠𝑒𝑠 (𝑑𝑛 = 1, … , 𝐷𝑛). 

𝑆𝑙𝑜𝑡𝑠 (𝑠 = 1, … , 𝑆). 

Parameters 

𝑃𝑟𝐷𝑜𝑐𝑝               𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑑 𝐷𝑜𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 

𝑃𝑟𝐷𝑛𝑝                 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑑 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑛𝑢𝑟𝑠𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 

𝐹𝑢𝑛𝑝                    1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑛𝑒𝑒𝑑𝑠 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑎 𝑟𝑒𝑡𝑖𝑛𝑎 𝑝ℎ𝑜𝑡𝑜 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡, 

                              0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐿𝑎𝑏𝑇𝑖𝑚𝑒             𝑇𝑖𝑚𝑒 𝑢𝑛𝑡𝑖𝑙 𝑙𝑎𝑏 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 

𝑃𝑜𝑙𝑖𝐷𝑜𝑐𝑑𝑜𝑐,𝑠       1 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑜𝑐𝑡𝑜𝑟 𝑑𝑜𝑐 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑛 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑃𝑜𝑙𝑖𝐷𝑛𝑑𝑛,𝑠          1 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑛𝑢𝑟𝑠𝑒 𝑑𝑛 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑛 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Variables 

𝑊𝑝,𝑑𝑜𝑐,𝑠                1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑏𝑦 𝑑𝑜𝑐𝑡𝑜𝑟 𝑑𝑜𝑐 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑍𝑝,𝑑𝑛,𝑠                   1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑏𝑦 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑛𝑢𝑟𝑠𝑒 𝑑𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐿𝑎𝑏𝑝,𝑠                   1 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑦 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝐴𝐵𝑝,𝑠                     1 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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𝑅𝑒𝑡𝑝,𝑠                   1 𝑖𝑓 𝑡ℎ𝑒 𝑅𝑒𝑡𝑖𝑛𝑎 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑜𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠, 

                               0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐶𝑚𝑎𝑥                     𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

Objective function 

min 𝐶𝑚𝑎𝑥 

Subject to 

∑ 𝑊𝑝,𝑑𝑜𝑐,𝑠 ≤ 1                                                                                ∀𝑑𝑜𝑐, 𝑠

𝑃

𝑝=1

           (1) 

∑ 𝑍𝑝,𝑑𝑛,𝑠 ≤ 1                                                                                   ∀𝑑𝑛, 𝑠             (2) 

𝑃

𝑝=1

 

∑ 𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠 = 1                                                                             ∀𝑝

𝑆

𝑠=1

                  (3) 

∑ 𝑍𝑝,𝑃𝑟𝐷𝑛,𝑠 = 1                                                                                ∀𝑝                  (4

𝑆

𝑠=1

) 

∑ ∑ 𝑍𝑝,𝑑𝑛,𝑠 = 1

𝐷𝑛

𝑑𝑛=1

                                                                          ∀𝑝

𝑆

𝑠=1

                  (5) 

∑ 𝐿𝑎𝑏𝑝,𝑠 = 1                                                                                    ∀𝑝                   (

𝑆

𝑠=1

6) 

∑ 𝐴𝐵𝑝,𝑠 = 1                                                                                      ∀𝑝                   (7)

𝑆

𝑠=1

 

∑ 𝑅𝑒𝑡𝑝,𝑠 ≤ 1                                                                                    ∀𝑝                   (8)

𝑆

𝑠=1

 

∑ 𝑅𝑒𝑡𝑝,𝑠 ≤ 1                                                                                    ∀𝑠

𝑃

𝑝=1

                   (9) 

𝐹𝑢𝑛𝑝 = ∑ 𝑅𝑒𝑡𝑝,𝑠 

𝑆

𝑠=1

                                                                           ∀𝑝                   (10) 

∑ 𝐿𝑎𝑏𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

+ 1 ≤ ∑ 𝐴𝐵𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

                                                  ∀𝑝                   (11) 

∑ 𝐴𝐵𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

+ 1 ≤ ∑ 𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠 ∙ 𝑠

𝑆

𝑠=1

                                          ∀𝑝                   (12)   

∑ 𝑅𝑒𝑡𝑝,𝑠 

𝑆

𝑠=1

∙ (∑ 𝐿𝑎𝑏𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

+ 1) ≤ ∑ 𝑅𝑒𝑡𝑝,𝑠 ∙ 𝑠 

𝑆

𝑠=1

                    ∀𝑝                   (13) 

∑ 𝑅𝑒𝑡𝑝,𝑠 ∙ 𝑠 + 1 ≤ ∑ 𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠 ∙ 𝑠

𝑆

𝑠=1

𝑆

𝑠=1

                                         ∀𝑝                   (14) 

∑ 𝐿𝑎𝑏𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

+ 1 ≤ ∑ 𝑍𝑝,𝑃𝑟𝐷𝑛,𝑠 ∙ 𝑠 

𝑆

𝑠=1

                                           ∀𝑝                   (15) 
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∑ 𝑍𝑝,𝑃𝑟𝐷𝑛,𝑠 ∙ 𝑠 + 1 ≤ ∑ 𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠 ∙ 𝑠

𝑆

𝑠=1

𝑆

𝑠=1

                                     ∀𝑝                   (16) 

∑(𝐿𝑎𝑏𝑝,𝑠 ∙ 𝑠)

𝑆

𝑠=1

+ 𝐿𝑎𝑏𝑇𝑖𝑚𝑒 + 1 ≤ ∑ 𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠 ∙ 𝑠

𝑆

𝑠=1

              ∀𝑝                   (17) 

𝐿𝑎𝑏𝑝,𝑠 + 𝐴𝐵𝑝,𝑠 +  𝑅𝑒𝑡𝑝,𝑠 +  𝑍𝑝,𝑃𝑟𝐷𝑛,𝑠 +  𝑊𝑝,𝑃𝑟𝐷𝑜𝑐,𝑠   ≤ 1      ∀p, s               (18)       

𝑃𝑜𝑙𝑖𝐷𝑜𝑐𝑑𝑜𝑐,𝑠  ≥  𝑊𝑝,𝑑𝑜𝑐,𝑠                                                                ∀p, doc, s      (19)  

𝑃𝑜𝑙𝑖𝐷𝑛𝑑𝑛,𝑠  ≥ 𝑍𝑝,𝑑𝑛𝑐,𝑠                                                                     ∀p, doc, s      (20) 

∑ ∑ 𝑊𝑝,𝑑𝑜𝑐,𝑠 ∙ 𝑠

𝐷𝑜𝑐

𝑑𝑜𝑐=1

𝑆

𝑠=1

− ∑ 𝐿𝑎𝑏𝑝,𝑠 ∙ 𝑠

𝑆

𝑠=1

+ 1 ≤ 𝐶𝑚𝑎𝑥                    ∀𝑝                  (21) 

𝐶𝑚𝑎𝑥 ∈  ℤ  

𝑊𝑝,𝑑𝑜𝑐,𝑠, 𝑍𝑝,𝑑𝑛,𝑠, 𝐿𝑎𝑏𝑝,𝑠, 𝐴𝐵𝑝,𝑠, 𝑅𝑒𝑡𝑝,𝑠 ∈ {0,1}  

 

4.1.3 Model description 
The mathematical model will optimize a blue print planning for IDEAAL checkup appointments by 

minimizing the throughput time (𝐶𝑚𝑎𝑥) of the patients. Constraints (1) and (2) ensure there will be 

only one patient per slot per doctor and one patient per slot per diabetes nurse, respectively. 

Constraints (3), (4), (6) and (7) make every patient have exactly one appointment with their 

preferred doctor, preferred diabetes nurse, at the lab and a blood pressure appointment 

respectively. Constraint (5) prohibits the model from assigning patients to appointment slots for 

diabetes nurses that are not their preferred diabetes nurse. Constraint (8) ensure that every patient 

has not more than one retina photo taken. Constraint (9) ensures that not more than one patient is 

planned at the same slot, because there is only one retina photo machine. Constraint (10) if the 

retina photo is part of the IDEAAL checkup a patient will get a retina appointment. Constraints (11), 

(13) and (15) ensure that the Lab appointment is always the first appointment. Note here that 

constraint (13) has an extra summation on the left. This is because not every patient will have a 

retina photo taken. Constraints (12), (14) and (16) ensure that the doctor appointment is always the 

final appointment. Constraint (17) makes sure there are at least “LabTime” slots between the first 

and last appointment. Since the time it takes the lab to yield results is at most “LabTime” slots. 

Constraint (18) ensures that all appointments of one patient are on different slots. Constraints (19) 

and (20) ensure that only available slots for the doctors and diabetes nurses can have an 

appointment planned. Finally, constraint (21) calculates the throughput time of a patient and also 

prevents the model from planning more than one doctor for every patient. 

4.2 Discrete event simulation model 
We discuss to find the optimal booking horizon for IDEAAL checkups. The various booking horizons 
will be scored based on the KPIs, to determine which booking horizon would be the best fit for our 
situation. In this research the booking horizon is defined as the number of weeks from the current 
date to the date of the latest available appointment slot. A week consists of five business days and 
weekends will not be considered. 
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4.2.1 Simulation process logic 
A visual representation of the simulation process logic can be found in Appendix C: Process 

flowchart.  

This simulation model uses a list of all IDEAAL patients as input to determine how many patients 

need an appointment for any given week in a year. This patient list contains the following 

information per patient 

- Patient name 

The anonymized name of the patient. 

- Expected plan week 

A random week within the birth month of the patient, used by the simulation to check 

whether the patient needs scheduling. 

- Preferred doctor 

The anonymized name of the doctor that treats the patient and will carry out the doctor 

appointment. This is an internist for adults or a pediatrician for children. 

- Preferred nurse 

The anonymized name of the nurse that generally carries out the nurse appointments of the 

patient. For adults, this is a diabetes nurse and for children a child nurse. 

Based on that list, the patients will be planned on slots of their preferred caregivers at least a 

booking horizon in advance. We will experiment with the booking horizon over the different runs of 

the simulation model. 

Every week a number of regular patients will arrive to fill up the available slots of every care giver in 

the system. The purpose of these patients is to simulate the occupancy of the different caregivers’ 

schedules. After planning all appointments, the availability changes occur. As described in Chapter 2 

there are multiple reasons for changed availability. With a larger booking horizon, it will be more 

likely that the availability changes due to patient cancellations or caregiver unavailability. 

When the actual appointment day of the patient occurs, the patient goes to the hospital and 

undergoes their appointments. The IDEAAL patients will go through the appointments needed, 

corresponding to their individual checkup. In reality this is determined by the doctor after the 

previous IDEAAL checkup. In the simulation this included appointments are based on the 

probabilities from Table 1 i.e., 2.4% chance to have a diabetes appointment and 45.6% chance to 

have a retina photo. Every patient will always at least have the entire standard care pathway as a 

part of their checkup. The lab appointment is always the first appointment and the doctor 

appointment is always the last appointment. After undergoing their final appointment, patients go 

home and leave the system. 

4.2.2 Routing logic 
This section highlights some of the most prominent and  

One day appointment logic 

The appointment logic is different for regular patients and IDEAAL patients. As the focus of this 

research is on the IDEAAL patients, the appointment logic for these patients is improved and the 

appointment logic of regular patients will just follow a randomized first come first serve (FCFS) logic. 

This means that the appointment slot assigned to a regular patient is randomized within their 

appointment week. But the arrivals are FCFS in the sense that if the week is filled, no new patients 

can get an appointment in that particular week. We will elaborate further on filling the sub calendars 
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in Section 4.2.3. A sub calendar is defined as: “The calendar of the (preferred) caregiver that will 

carry out an appointment type”. In general, the FCFS method is being implemented for the IDEAAL 

patients as well, but with the following changes. 

A visual representation of the IDEAAL patients’ appointment logic can be found Appendix D: Logic 

flowchart. At the start of a week, the IDEAAL patients that need an appointment one booking 

horizon in the future will be scheduled. The IDEAAL patients get an appointment at the lab within 

the first hour of the morning or afternoon. The doctor appointment will be planned closest to the 

last appointment of the checkup. The other appointments are all planned in between the lab and 

doctor. In Section 4.2.6 we elaborate on how the sequence of the appointments is determined. 

If a patient cannot be planned in one day, following the previously described logic, the same logic 

will be applied to the next day. To determine how many days will be checked for available slots we 

introduce Checking Horizon. We define Checking Horizon as: “The maximum number of weeks from 

the original appointment date will be checked on their availability”. The simulation will keep looking 

for a day to schedule the entire checkup until a day is found where the patient can get all their 

appointments on one day with or until the Checking Horizons has expired. The Checking Horizon is 

set to four weeks, as this gives the best representation of reality. Currently planners look in the 

entire birth month of a patient to find an appointment date. A four week Checking Horizon will 

therefore give the best representation of reality. 

When no appointment date is found for the patient, the patient’s information will be stored in a 

separate table to remember it for calculating the “Fraction of not scheduled patients” 

Filling sub calendars 

All sub calendars will be followed by generating regular patients. These regular patients will be 

generated based on the likelihood that the caregiver’s sub calendar will be full at a given point in 

time. These patients will be planned in these sub calendars to make them decrease their availability. 

These regular patients will be generated following a probability distribution. This distribution is 

based on historical data of the availability of the caregivers in the diabetes department. An overview 

of the arrivals is discussed in Section 2.2.1. Here we described how every sub calendar is divided into 

one of three groups. Where every group has their own arrival distribution per week for 1- 16 weeks 

in advance. 

Since a normal distribution has been fitted on every week of all three group, the only distribution 

inputs we need are a mean and a standard deviation per week per group. An overview of these 

inputs is shown in the tables in Appendix F.2 Tables. Every Monday the simulation tries to fill all sub 

calendars based on a random fraction derived from one of these tables, based on which week it is 

trying to fill. For example, on Monday of week 1 the simulation will fill the sub calendars of a fast-

filling calendar of week 17 based on a random number drawn from a normal distribution with a 

mean of 0.75 and a standard deviation of 0.18. 

Before the simulation starts filling the sub calendar it will check the current fraction of slots that is 

occupied. The simulation will only generate regular patients until the sub calendar will be filled up to 

the fraction drawn from the distribution. If the current fraction is higher than the fraction drawn 

from the distribution, the simulation will not create any new regular patients. The filled fraction will 

than remain the same. 

Two-day appointment logic 

If all days of the Checking Horizon have been checked, but no appointment date is found, we will 
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split up the IDEAAL checkup in two separate checkup days. We then attempt to schedule the 

checkup spread over two days instead. 

The split of appointments will always be the same. The first day always includes the laboratory 

appointment, since this appointment always must be the first appointment. Also, the appointment 

with the nurse will be on the first day since this is, just as the doctor, the hardest to schedule since 

the patients has to be scheduled with their preferred nurse. The last appointment that will be 

included in the first day is the retina photo, if the IDEAAL checkup contains a retina photo. The retina 

photo has to be reviewed by the eye doctor; it makes sense to carry this out on the first day so that 

it is more likely that the results are known during the doctor appointment. 

The blood pressure will be measured on the appointment date of the doctor, as it will give the most 

recent and thus accurate results for the doctor to discuss with the patient. Also, if the checkup 

contains a dietician appointment, the dietician will be scheduled on the second day. This is to spread 

the number of appointments more evenly over the two appointment days, making the likelihood of 

the appointments finding a suitable spot more likely. Once an appointment date is found for the first 

day, we start looking for an appointment date for the second day. The starting date on which the 

simulations start looking for the second appointment is 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑑𝑎𝑦 +  1. Regular 

patient appointments will never be split over two days. Since they are not real patients, they never 

have more than one appointment. 

The Checking Horizon for both the first and second combination of appointments is twice as long as 

the Checking Horizon for the one-day appointment. We chose to take twice the Checking Horizon of 

the single day checkups, to increase the chance to find suitable dates for the first- and second day 

checkup. The maximum time in advance an appointment can be scheduled is sixteen weeks, 

therefore it is possible that no appointment date will be found in the simulation. The sixteen-week 

period is how far in advance the simulation fills the calendars of every caregiver. The simulation will 

never check a day that is more than 16 weeks in advance, counted from the current day in the 

simulation. 

Cancellation of appointments 

As the focus of this research is on the IDEAAL checkups, only IDEAAL appointments can be canceled 

in the simulation. 

To simulate the cancellation of IDEAAL checkups we use the probability of an appointment in the 

IDEAAL checkup being cancelled. Rodríguez-Garcia et al. (2016) found a function to fit the probability 

of a cancelation, based on the booking horizon. The different equations they found are shown in 

Table 5. IDEAAL checkups are always with established patients and since we want to reschedule the 

checkups, following the results of Rodriguez-Garcia et al. (2016) the logarithmic equation used in this 

research will be: 𝑌 = 0.0694 ∙ 𝑙𝑛(𝑥) + 0.0432.  
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Table 5 Characteristics of the best-fit function. Y is the cancelation probability and x are the booking horizon in weeks  
Source: (Rodríguez-García et al., 2016) 

 

At the time of scheduling the IDEAAL checkup, the probability check will be done. As described in 

Section 2.2.4 only 3.6% of the appointments in IDEAAL checkups get cancelled more than once. 

Therefore, we chose to only do a cancellation check at the first scheduling date. An appointment will 

never be cancelled after rescheduling in the simulation. If the checkup is not cancelled, the checkup 

will be carried out on the planned date. When the checkup gets cancelled, a cancellation date needs 

to be set. 

To determine a cancellation date, we must determine the cancellation interval. The cancellation 

interval is the number of business days from the creation of an appointment to the date the 

appointment is cancelled (Leeftink et al., 2021). 

Figure 2 shows a normalization of the scheduling intervals on the interval [0,1], with 0 being the 

date on which the appointment is created, and 1 the appointment date. The frequencies from the 

bimodal distributions will be used to determine the cancellation date. This way, for every 

appointment that will be cancelled, the simulation will immediately determine the cancellation date. 

At the cancellation date, we assume that the entire checkup will be rescheduled on the cancellation 

date. At the start of every day the simulation will check whether the cancellation date of any 

checkup has been reached. If that is the case, the checkup will then be rescheduled within a 

Checking Horizon from the initial appointment date according to the planning logic from both 

Section 4.2.2 and Section 4.2.4. Regular patients will never have their appointments cancelled. 

 

Figure 2 Probability of the timing of a cancellation for a given scheduling interval. Source: Leeftink et al., (2021) 
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Sequencing appointments within a checkup 

As we discussed in Section 1.1.4, the sequence in which the appointments are carried matters. The 

lab appointment always has to be the first appointment and the doctor appointment always has to 

be last. There have to be at least two hours in between the lab and doctor appointment, because it 

takes up to two hours for the lab to get results. 

To determine the sequence of appointments, we developed a heuristic within the simulation which 

is being called once a potential appointment day is found. A potential appointment day is defined as 

“A day in which at least one slot is available for every sub calendar included in the checkup”. 

The sequencing heuristics creates separate lists of available slots for every sub calendar during the 

potential appointment day in ascending sequence. Once creating the lists is done, the heuristic will 

start comparing the available slots of the doctor in descending sequence with the rest of the sub 

calendars in ascending sequence. This makes sure that, when no doctor slot is smaller than all the 

sub calendars, the check can immediately be cancelled. Furthermore, the heuristic makes sure that 

none of the sub calendars receive the same slot. 

If a suitable slot has been found for every sub calendar, the heuristic will first identify the sub 

calendar with the smallest available slot, meaning that it identifies which appointment will be 

carried out first. This is essential, to check whether the time between the first appointment and the 

doctor appointment is at least two hours to make sure the lab results will be available at the time a 

patient has their doctor appointment. 

To minimize the throughput time of the patient, as a final optimization, the heuristics starts looking 

for a doctor appointment slot that is closer to the second to last appointment, without making the 

difference between the first appointment and doctor appointment smaller than two hours. The 

doctor appointment will also always remain the last slot in the sequence. The doctor appointment 

slot that minimizes the throughput time will be chosen, after which the simulation will continue. 

If the heuristic is not able to find a sequence that meets the set conditions, the simulation will start 

looking for a new potential appointment date following the logic described in Section 4.2.2. 

4.2.3 Experimental design 
To determine the replication and warm-up period we used the hospital data as input. This means 

that the arriving patients, their preferred caregiver and their appointment week are not random, but 

known. The only randomized aspect is whether the patient will need a retina photo appointment 

and/or an appointment with the dietician. 

Replications 

The number of replications is determined based on the confidence interval of a KPI of choice. The 

KPI chosen to find the number of replications is “The fraction of IDEAAL checkups carried out in one 

day, during a one run time period”. We chose this, because maximizing the fraction of IDEAAL 

checkups carried out in one day is the most important goal for the hospital. The statistics calculated 

for this approach are shown in Appendix G: Number of Replications. The logic for this method is to 

perform replications until the width of the confidence interval, relative to the average, is sufficiently 

small. We decide to take a confidence interval of 95%, meaning that the maximum relative error has 

to be smaller than 0.05 for the simulation to yield valid results. The results shown in Appendix H 

show that only two replications are needed to make the simulation results valid. 

To find the results, shown in Appendix H, the simulation is run on the highest potential settings with 

regards to booking horizon. The booking horizon was set the fifteen weeks and the Checking Horizon 
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to four. For the run length, namely the number of days for one run, we chose 325 days. One year 

consists of 52 ∙ 5 = 260 days, the booking horizon consists of 15 ∙ 5 = 75 days and together this is a 

total of 260 + 75 = 335 days. For these settings we did twenty replications, of which the results are 

shown in Appendix G: Number of Replications.  

A reason so few replications are needed to make the results valid, is that it is relatively easy to plan 

the IDEAAL checkups on one day, which is also demonstrated in Section 5.1.1. As the IDEAAL check 

ups are such a small part of the calendars of the different caregivers, there are many different 

solution yielding an optimal outcome. Therefore a heuristic is likely to also find the optimal solution 

and thus does not need multiple replications to give a valid solution. Another reason would be that 

the input patient list is the same for every run, reducing the randomness in the input of the model. 

The simulation has a very low runtime per replication. Therefore, we chose to use ten replication per 

experiment despite two experiments already resulting in a valid answer. By using ten replications, 

the other test statistics, gained from the experiments, will also increase in validity. Since the run 

time is so low, runtime is not a constraining factor for this research. So, to increase the validity of the 

test statistics, we carry out ten replications per experiment. 

Warmup period 

The warmup period is determined with the MSER heuristic. To find the warmup period we ran the 

system once with the same settings as when we determined the number of replications. As output 

KPI we use a similar number. Since we now only have one run, we take “The number of IDEAAL 

checkups carried out in one day, per week” instead. We run the system for 335 days, which will 

result in 75 weeks (=
335

5
) with data points. 

These data points are used in the MSER heuristic and the results are shown in the table and graph 

from Appendix H: Warmup period. From the MSER heuristic we know that the warmup period is 

found by taking the period with the lowest MSER value minus one. Since week thirteen is the period 

with the lowest MSER, as shown in the table from Appendix H: Warmup period, the warmup period 

for the simulation is twelve weeks. 

We have to keep in mind that this is determined with the settings described before. When taking a 

smaller booking horizon, the warmup period will also decrease. As we will run the simulation for 

different settings, including smaller booking horizons, the warmup period can be different per 

experiment. Despite that, we chose to always take a warmup period of at twelve weeks for all 

experiments. Fifteen weeks will be the largest booking horizon, we will always take exactly the 

necessary or a larger booking horizon. Therefore, the result for every experiment will be equally 

valid and taking a constant warmup period will keep the experimentation consistent. 

Experimentation strategy 

As described before, the goal of the simulation is to find which planning decisions should be made 

with the IDEAAL checkups. Every experiment is going to determine an optimal booking horizon for 

the settings that are being tested. Since we will test a booking horizon of 1 - 15 weeks, every 

experimental setting described below will always be tested for all these booking horizons. 

We started by testing a base case scenario in which the instructions of the planners are changed to: 

try to plan as many complete IDEAAL checkups on a single day as possible. This will function as a 

base case to which every other experiment will be compared. 
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Every experiment will output the different KPIs per booking horizon described in Section 2.2. 

Afterwards the booking horizon that has the best KPI outcomes will the recommended booking 

horizon. The different experiments we conducted are the following. 

- Demand 

In the category of demand we will analyze two separate experiments. The first experiment will 

be “Equal demand distribution” and the second experiment will be “Increased demand”. We 

consider an equal demand distribution as: “Distributing the demand equally over the time 

period, depending on the expected availability of caregivers”. This means that the demand will 

be spread in such a way that vacation periods have a smaller demand and non-vacation periods 

a larger demand. As described in Section 1.1.2 the patient demand is currently distributed over 

the year by assigning the birth month of patients as their preferred appointment month. 

 

Figure 3 Demand per month 

Figure 3 shows the demand distribution over a year following that appointment logic. These 

results are not considered a fair distribution. Therefore, we looked into ways to smoothen the 

demand over the year. For simplicity in modelling, we decided to exclude vacation from the 

availability of caregivers. So, to get a fair distributed demand over a year, for the simulation, the 

demand per month or per week will be equalized. This means that the weekly demand will be 

10.7 patients (=
557

52
). Since it is impossible to treat decimal patients, 30% of the weeks have 

eleven patients to treat and 70% of the weeks have ten patients to treat, when equalizing the 

demand per week. 

Figure 4 gives an overview of how the demand over time changes when it is being equalized over 

the weeks. The green line shows the current demand per week, based on assigning random 

weeks within birth months to patients. The equalized demand shown in this figure will be used 

as input of the equalized demand experiment. 
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Figure 4 Comparison between equalized demand and real demand 

The second demand experiment “Increased demand” will be based on the increase in patients 

expected according to Rossing & Visee (2018). The expected increase in patient demand for 

2029, 2034 and 2039 are respectively 3.7%, 6.7% and 7.8% (Rossing & Visee, 2018). As these 

are very small increases in demand, we expect no difference in results between those future 

demands. We chose to take the 7.8% demand increase as an experiment, as this is the largest 

increase. We will also experiment with an extreme situation to see how the planning strategy 

will hold in an extreme case. This resulted in two experiments, the first one with 600 patients (=

557 ∙ 1.078), to simulate the expected demand increase. Secondly the demand will be doubled 

to 1114 patients (= 557 ∙ 2), to simulate an extreme setting. 

Increasing the demand results in new patients for which no birth month, preferred nurse or 

preferred doctor is known. For the demand increases we used the current data to determine 

how many of every preferred caregiver should be included among the newly created patients. 

The decision logic is described in Appendix I: Preferred caregiver logic. 

- Caregiver tuning 

Another interesting restriction for the current situation are the preferred caregivers for every 

patient. To deliver the best possible care, it makes sense to have a dedicated caregiver for any 

patient. That way the caregiver needs less or no time to prepare an appointment. Less time of 

the appointment will go towards getting to know each other. Also, the communication between 

caregiver and patients that are familiar with each other will be easier. 

But, for planning convenience this is a restriction that can result in harder to schedule patients 

and therefore worse performance of the planning strategy. That is why we came up with two 

ways to adjust the caregiver patient combinations to quantify the impact of this restriction. 

The first experiment will be “Every caregiver doing a fair amount of IDEAAL checkups”. The 

demand then will be distributed based on their expected available time. Some caregivers work 

more hours than others in the outpatient clinic, making them a more suitable caregiver to carry 

out IDEAAL checkups. 

The second experiment will be “Smart pairings of doctors and nurses”. Currently doctors and 

nurses are somewhat randomly paired to be the preferred caregivers of a patient. When a 

patient arrives as a new patient, the planners look for a nurse and a doctor that still have 

available calendar slots for new patients and those will be scheduled accordingly. By developing 

a smarter way to pair doctors and nurses that are assigned to deliver care for the patient, we can 
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test whether this improves the plannability of the IDEAAL checkups. For this experiment, we will 

be looking at doctors and nurses that are often expected to be available on the same day. 

- Cancellation and availability 

From our analysis of the current situation we concluded that the cancellations of appointments 

and the availability of the caregivers are the most prominent causes of the inability to plan 

IDEAAL checkups on one day. This set of experiments gives us insight whether this is actually the 

case. First, we will check whether excluding either and both cancellations and availability from 

the planning will impact the results.  

Afterwards we will also do a more thorough inspection of a changing cancellation rate on 

plannability of the IDEAAL checkups. The cancellations will be more thoroughly investigated 

since the data used to determine the cancellation rate is actually taken from literature research. 

If the data for cancellation will become known in the future for Isala it is useful to know whether 

the planning decisions for the IDEAAL checkups should change or that they would remain the 

same.  

We tested a doubled cancellation equation by increasing the variables in the equation found in 

the literature. This resulted in a new cancellation rate equation of 𝑌 = 0.1388 ∙ 𝑙𝑛(𝑥) + 0.0864. 

Changing the equation will result in different probabilities per booking horizon, the probabilities 

per booking horizon are visualized in Figure 5. 

The reason for increasing the cancellation rates is that we see that in the base case, an 

appointment scheduled fifteen weeks in advance only has a cancellation rate of 12.4% (=

0.0694 ∙ 𝑙𝑛(15) + 0.0432). This is much lower than the average mutation rate of 31.7% found 

in the data. To see if the cancellations have any impact, we also experimented with no 

cancellations. 

 

Figure 5 Cancellation probability per booking horizon for the base case and a doubled equation 

4.3 Conclusion 
We developed a mathematical model and an DES model. The mathematical is able to give an exact blueprint in 

a static time frame, where the DES model will be able to evaluate a move time horizon with changing 

randomized input value. We will be experimenting with both these models, where the focus of the DES model 

will be on finding an optimal booking horizon and the focus of the mathematical model to find an exact 

blueprint for the IDEAAL checkups. We will experiment with different demands, cancellation rates and 

caregiver assignments. And a base case study will be done in which the work instruction for the planners is 

changed to planning all appointments and try to plan them on a single day. 
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5 Results and analysis 
This section will answer the sub-question: “How does this new planning approach impact the 

planning of the IDEAAL checkup?”. Thereby a variety of changes on the panning method is 

elaborated based on the analysis of the results from the experiments described in Section 4.2.7. This 

chapter is split into a section for the mathematical model results (Section 5.1) and a section for the 

discrete event simulation model (Section 5.2). The section for the discrete event simulation model 

contains four sub sections, the first elaborates on the base case and the other three elaborate on the 

three experiments respectively. 

5.1 Mathematical model 
For the mathematical model we used the actual caregivers and their calendars as input over a time 

horizon of two weeks (one odd and one even week), the other inputs are shown in Table 6. 

Table 6 Input for the mathematical model 

 

We limited the time horizon so that the model would be able to run the system. We choose 22 

patients, because on average 22 patients arrive every two week period. And a two week period 

consists of 400 appointment slots (40 slots per day). There are 12 doctors and 16 nurses in Isala 

that carry out the IDEAAL checkups in scope of this research.  

5.1.1 Results 
The results of the mathematical model confirm the constatation of the planners that, when the 

IDEAAL checkup is planned months in advance, there is always more than enough room in the 

calendars of the caregivers to have every IDEAAL checkup be done in one day. When inputting the 

actual patient demand for a given week, with the availability of the caregivers during that week, the 

model can find multiple solutions in which every patient has the minimum throughput time, namely 

the time it takes for the lab to output its results. 

This is due to the fact that when the calendar is still empty, which is the case when an IDEAAL 

checkup is planned months in advance. The different caregivers have more than enough time 

available in their calendars to fit the IDEAAL patients. The total time any caregiver is seeing an 

IDEAAL patient is a very small fraction of their total available time. By analyzing the regular planning 

for caregivers, we found that all doctors combined have 489.5 slots available. There are 12.1 IDEAAL 

checkups (=
5571

462
 ) on average per week. This results in approximately  

12.1

489.5
≈ 2.5% of their 

outpatient clinic time spent on IDEAAL checkups. The planning issues will start to arise and increase 

once more and more appointment slots are occupied. To imitate the actual availability of the 

caregivers, a simulation model is made. This model can be used to find the ideal booking horizon for 

patients, while ensuring appropriate planning performance, meaning the moment in time with the 

 
1 The number of patients between 0 – 26 being treated for diabetes 
2 The number of working weeks for doctors at Isala after subtracting vacation 

Name Input Set

Patients P = 22 {p1, …, p22}

Doctors Doc = 12 {doc1, …, doc12}

Diabetes nurses Dn = 16 {n1, …, n16}

Slots S = 400 {1, …, 400}
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least chance for changes to the planning, but with still enough room in all calendars to plan the 

complete checkup in one day. 

5.2 Discrete event simulation model 
Throughout this chapter various figures will be shown with confidence intervals of the KPIs “single 

day fraction” and “not planned fraction”. These confidence intervals are a result of every experiment 

being run for ten replications; outputting ten unique outcomes plotted in the figures. For the “single 

day fraction” figures, the higher the results the better. For the “not planned fraction” figures, lower 

results are better. The difference between experiments can be verified by studying the p values, see 

Appendix J: Experimentation. When a p value is below 0.05 we can presume that the mean values 

are different with a probability of 95%. The experiment number, shown on the horizontal axis of the 

confidence interval figures, corresponds with the booking horizon i.e., experiment 1 (Exp 1) refers to 

a booking horizon of one week and Experiment 12 (Exp 12) refers to a booking horizon of twelve 

weeks. 

The other two KPIs, “Throughput time of patients” and “Delta Weeks” will be analyzed based on 

boxplots. The boxplots are derived by taking all data points per experiment into account. Based on 

the boxplots we can determine whether the mean and standard deviation of the experiments 

change over the different booking horizons. 

For the DES model we used the actual caregivers and their calendars as input over a time horizon of 

a year. We include all 557 patients, 100 slots per week (5 working days consisting of 40 slots each). 

There are 12 doctors and 16 nurses in Isala that carry out the IDEAAL checkups in scope of this 

research. To anonymize the input data the patients are {𝑝1, … , 𝑝557}, the doctors are 

{𝑑𝑜𝑐1, … , 𝑑𝑜𝑐12} and the nurses are {𝑛1, … 𝑛16}. 

5.2.1 Optimal booking horizon 
Prior to analyzing the various impact factors, the current situation was tested in order to check if it is 

possible to apply planning IDEAAL checkups on a single day at the diabetes department. Tests were 

performed via simulation. 

The test results shown in the figures throughout this section are for a booking horizon of 1-15 

weeks, where every booking horizon is analyzed on the fraction of patients that have a single day 

checkup, the fraction of total patients having no appointment, the throughput time per patient and 

the difference between the expected planned week and the realized plan week. 

Single day fraction 

As can be seen in Figure 6 the confidence intervals are close to one another and have small intervals. 

Only the result for a booking horizon of fifteen weeks is not close to the other results. This shows us 

that any booking horizon of 1 - 14 weeks will give about a similar result. However, there is a small 

upwards trend towards for the larger booking horizons, where a booking horizon of twelve and 

thirteen have a significant increase in contrast to the other booking horizons. This suggests that the 

impact of higher cancellation rates for these booking horizons is a bit smaller compared to the 

impact of availability. 

The results for Experiment 15 are (most likely) due to the maximum of sixteen weeks we set for 

patients to be scheduled in. Note that only data on the availability of up to sixteen weeks is 

available. This means that with a booking horizon of fifteen weeks, the simulation only has one week 

to plan the patients. As shown, this is clearly not enough to uphold the high single day fraction 

standards found for the other fourteen experiments. 
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Figure 6 Confidence interval of the single day fraction patients per booking per horizon (exp 01 – exp 15 translates to 
booking horizon 1 – 15) 

As can be read from Table 7, most experiment results are not significantly different. In contrary to 

the other experiments, the mean from Experiment 14 is significantly different from every other 

experiment. This suggests that the booking horizon has a significant impact on the results. As shown 

in Table 8, 1.11% of the patients are not scheduled when taking a booking horizon of fourteen 

weeks. This is higher compared to the booking horizons one up to thirteen. Note that a booking 

horizon of fourteen has a maximum Checking Horizon of two weeks, making it harder to find an 

appointment. 

Table 7 p values between experiments, based on the not scheduled fraction for the base case 

 

Not scheduled patients 

Figure 7 shows the results of the KPI “fraction of not scheduled patients”. This figure shows the same 

impact of the different booking horizons as the previous KPI. We can see that once again Experiment 

15 performs a lot worse than the other experiments. The result for a booking horizon of fifteen is an 

outlier to the rest of the experiments. This is most likely caused by the maximum of sixteen weeks 

we set to plan appointments. 

Not 

Scheduled
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15

Exp 01 0.467 0.243 0.098 0.03 0.022 0.022 0.04 0.022 0.054 0.467 0.015 0

Exp 02 0.618 0.247 0.056 0.035 0.035 0.08 0.035 0.122 1 0.006 0

Exp 03 0.418 0.069 0.033 0.033 0.11 0.033 0.19 0.618 0.004 0

Exp 04 0.33 0.191 0.191 0.466 0.191 0.647 0.247 0.003 0

Exp 05 0.697 0.697 0.749 0.697 0.568 0.056 0.002 0

Exp 06 1 0.451 1 0.335 0.035 0.002 0

Exp 07 0.451 1 0.335 0.035 0.002 0

Exp 10 0.451 0.777 0.08 0.002 0

Exp 11 0.335 0.035 0.002 0

Exp 12 0.122 0.002 0

Exp 13 0.006 0

Exp 14 0
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Figure 7 Confidence interval of the not scheduled patients fraction per booking per horizon (exp 01 – exp 15 translates to 
booking horizon 1 – 15) 

For Exp 1 up to 14 a more detailed analysis is performed by p value comparison. Table 7 gives an 

overview of the p values, where values lower than 0.05 are marked green. Experiments 8 and 9 are 

not taken into account in this overview, as every replication in their respective experiments yielded 

the same outcome i.e., zero patients not scheduled. Due to this there is no error in the results for 

these experiments and hence no p value. Table 8 shows the average results per experiment. 

Table 8: Mean of the single day fraction and not scheduled fraction per booking horizon per KPI for the base case 

 

Figure 6 Experiment 12 shows a small increased mean value. In Table 8 the booking horizon is also 

highlighted. With an average of 0.09%, Experiment 12 has one of the best performing booking 

horizons, when considering the fraction of not scheduled patients. On average for 0.5 patients (=

557 ∙ 0.0009) no appointment day was found. Hence for every other patient no appointment day 

was found. In contrary, the average fraction of patients that is planned on a single day is also the 

highest for Experiment 12. Table 9 shows us that this percentage is significantly different from all 

Booking Horizon One day Not scheduled

1 85.5% 0.36%

2 85.5% 0.25%

3 85.5% 0.20%

4 85.6% 0.13%

5 85.6% 0.05%

6 85.7% 0.04%

7 85.8% 0.04%

8 86.0% 0%

9 86.4% 0%

10 86.5% 0.07%

11 87.2% 0.04%

12 88.5% 0.09%

13 88.4% 0.25%

14 86.7% 1.11%

15 55.3% 70.4%
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other experiments, except for Experiment 13. Table 9 also shows us that most results of experiments 

from seven up to fifteen are significantly different to one another. 

 

Table 9 p values between experiments, based on the single day fraction for the base case 

 

Throughput time 

Furthermore, we analyzed the throughput time of the patients over the different experiments. An 

overview of these throughput times is shown in the boxplot in Figure 8. It shows that when 

increasing the booking horizon up to fourteen weeks, the throughput time of patients becomes 

more consistent, but the mean remains the same. This is because when we have a larger booking 

horizon, the caregivers will have more available slots in their calendars. Making it more likely that 

the throughput time can be minimized further. 

 

Figure 8 Boxplot of throughput time per patient over fifteen experiments when considering the base case 

Delta weeks 

The final KPI we take look at is the Delta Weeks, which is shown in the boxplots in Figure 9. From this 

figure we can conclude that a higher booking horizon is better. The standard deviation of Experiment 

13 and 14 are decreasing by a fair amount. This can be explained by the increase in not planned 

patients. In the lower booking horizons, the patients can have a larger Delta Week, as a result of a 

longer Checking Horizon. The patients that still find an appointment, but with a higher Delta Week, 

might not be scheduled when the booking horizon increases. Therefore, the Delta Weeks standard 

deviation decreases.  

Single 

Day
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15

Exp 01 1 0.451 0.571 0.18 0.095 0.003 0 0.001 0 0 0 0 0 0

Exp 02 0.356 0.532 0.159 0.082 0.002 0 0.001 0 0 0 0 0 0

Exp 03 0.202 0.063 0.033 0.001 0 0 0 0 0 0 0 0

Exp 04 0.389 0.221 0.007 0 0.001 0 0 0 0 0 0

Exp 05 0.712 0.06 0.002 0.002 0.001 0 0 0 0.001 0

Exp 06 0.127 0.005 0.002 0.001 0 0 0 0.001 0

Exp 07 0.102 0.011 0.004 0 0 0 0.002 0

Exp 08 0.084 0.033 0 0 0 0.012 0

Exp 09 0.665 0.002 0 0 0.272 0

Exp 10 0.006 0 0 0.477 0

Exp 11 0 0 0.062 0

Exp 12 0.832 0 0

Exp 13 0 0

Exp 14 0
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Figure 9 Boxplot of Delta Weeks per patient over fifteen experiments when considering the base case 

Conclusion 

Concluding from all this we can say that having a larger booking horizon in general will be better 

than a smaller booking horizon. From the perspective of this research, and ignoring the limitations, 

we could say that a booking horizon of twelve weeks is recommended. Overall, this booking horizon 

performs better in relation to the booking horizons. Note however, the difference in the results is 

small and hence taking a different booking horizon might have little impact. 

We cannot be sure whether a fourteen-week booking horizon is actually worse than a smaller 

booking horizon. Just as a fifteen-week booking horizon, they are hindered by a smaller Checking 

Horizon to give sensible outcomes. 

5.2.2 Demand 
We changed the demand distribution and increased the demand. The booking horizon of fifteen 

weeks (Exp 15) is excluded from these experiments. We will be executing the same analysis for these 

different settings as we did for the base case. We will analyze the impact of one up to fourteen week 

booking horizon for an equal demand distribution, an expected demand increase and an extreme 

increase in demand. 

Equal demand Distribution 

Single day fraction 

As can be seen in Figure 10 the confidence intervals are close to one another and have small 

intervals. Only the result for a booking horizon of fifteen weeks is not close to the other results. This 

shows us that any booking horizon of 1 - 14 weeks will give about a similar result. However, there is 

a small upwards trend towards for the larger booking horizons, where a booking horizon of twelve 

and thirteen have a significant increase in contrast to the other booking horizons. This suggests that 

the impact of higher cancellation rates for these booking horizons is a bit smaller compared to the 

impact of availability. 
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Figure 10 Confidence interval of the single day fraction patients per booking per horizon for equalized demand (exp 01 – exp 
14 translates to booking horizon 01 – 14) 

Not scheduled fraction 

Figure 11 shows the results of the KPI “fraction of not scheduled patients”. This figure shows the 

same impact of the different booking horizons as the previous KPI. A booking horizon of four up to 

eleven weeks give the best results in terms of not scheduled patients, as the lower this fraction the 

better the booking horizon. 

 

Figure 11 Confidence interval of the not scheduled patients fraction per booking per horizon (exp 01 – exp 14 translates to 
booking horizon 01 – 14) 

Table 10 gives an overview of the p values, where values lower than 0.05 are marked green. 

Experiments 7 and 11 are not taken into account in this overview, as every replication in their 

respective experiments yielded the same outcome i.e., zero patients not scheduled. Due to this 
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there is no error in the results for these experiments and hence no p value. Table 8 shows the 

average results per experiment. 

Table 10 p values between experiments, based on the not scheduled fraction for an equalized demand 

 

As can be read from Table 10, most experiment results of booking horizon four up to eleven are not 

significantly different from one another. The mean from Experiment 14 is significantly different from 

every other experiment. This suggests that the booking horizon has a significant impact on the 

results. As shown in Table 11, 0.97% of the patients are not scheduled when taking a booking 

horizon of fourteen weeks. This is higher compared to the booking horizons one up to thirteen. Note 

that a booking horizon of fourteen has a maximum Checking Horizon of two weeks, making it harder 

to find an appointment. 

Table 11 Mean of the single day fraction and not scheduled fraction per booking per KPI for equalized demand 

 

Throughput time 

Furthermore, we analyzed the throughput time of the patients over the different experiments. An 

overview of these throughput times is shown in the boxplot in Table 13. It shows that when 

increasing the booking horizon, the throughput time of patients becomes more consistent, but the 

mean remains the same. 

Not 

scheduled
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 08 Exp 09 Exp 10 Exp 12 Exp 13 Exp 14

Exp 01 0.743 0.688 0.003 0.003 0.005 0.003 0.003 0.005 0.04 0.869 0.008

Exp 02 1 0.038 0.038 0.062 0.038 0.048 0.062 0.203 0.624 0.008

Exp 03 0.008 0.008 0.016 0.008 0.01 0.016 0.103 0.519 0.005

Exp 04 1 0.412 1 0.557 0.412 0.089 0 0

Exp 05 0.412 1 0.557 0.412 0.089 0 0

Exp 06 0.412 0.697 1 0.25 0 0

Exp 08 0.557 0.412 0.089 0 0

Exp 09 0.697 0.144 0 0

Exp 10 0.25 0 0

Exp 12 0.005 0.001

Exp 13 0.008

Booking Horizon One day Not scheduled

1 85.6% 0.39%

2 85.5% 0.34%

3 85.6% 0.34%

4 85.6% 0.02%

5 85.7% 0.02%

6 85.6% 0.05%

7 85.9% 0%

8 85.9% 0.02%

9 86.2% 0.04%

10 86.3% 0.05%

11 87.2% 0%

12 88.4% 0.14%

13 88.2% 0.41%

14 87.0% 0.97%
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Figure 12 Boxplot of throughput time per patient over fourteen experiments when considering an equalized demand 

Delta weeks 

The final KPI we take look at is the Delta Weeks, which is shown in the boxplots in Table 14. From 

this figure we can conclude that a higher booking horizon is better. The standard deviation of 

Experiment 14 is lower than the other experiments. This can be explained by the increase in not 

planned patients. In the lower booking horizons, the patients can have a larger Delta Week, as a 

result of a longer Checking Horizon. The patients that still find an appointment, but with a higher 

Delta Week, might not be scheduled when the booking horizon increases. Therefore, the Delta 

Weeks standard deviation decreases. 

 

Figure 13 Boxplot of Delta Weeks per patient over fourteen experiments when considering an equalized demand 

Conclusion 

Equalizing the demand over the year has no impact on the outcomes of the experiments, compared 

to the base case. This is explained by the small impact of the IDEAAL checkups on the individual sub 

calendars discussed in Section 4.1.3.  
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Increased demand 

Two different amounts of increase in demands are used in this section, an increase of 7.8% and an 

increase of 100%. Where 7.8% is the expected increase in demand and 100% an extreme increase 

in demand. The expected increase in demand did not impact the plannability of the IDEAAL checkups 

at all, the results of these experiments can be found in J.1 Expected demand increase. This is 

because the increase was so small that the demand rate did not yet reach a critical level in which it 

starts significantly impacting the sub calendars. 

Extreme demand increase 

To test what happens when the demand will impact the sub calendars, we experimented with an 

extreme increase of the demand. This extreme increase gave some interesting insights in the 

performance of the planning of IDEAAL checkups over the different booking horizons. 

Single day fraction 

In Figure 14 we observe that an extreme increase in demand strongly impacts the results of the 

simulation. The system is way less stable, as the confidence intervals vary a lot more than with the 

actual demand rate. When evaluating the results in Figure 14, we conclude that a booking horizon of 

twelve weeks, perform significantly better than any other booking horizon. The p values to proof the 

significance are shown in J.2.1 p values. 

 

Figure 14 Confidence interval of the single day fraction patients per booking per horizon with an extreme demand (exp 01 – 
exp 14 translates to booking horizon 01 – 14) 

Not scheduled fraction 

Figure 15 leads us to a similar conclusion as Figure 14 did. We observe that the fraction not 

scheduled patients is significantly lower when choosing a booking horizon of twelve weeks. For both 

KPIs it is still hard to compare Experiment 12 with Experiment 13 and 14, for the same reasons 

mentioned earlier. Experiments 13 and 14 are more limited by the 16 weeks maximum planning 

horizon. 
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Figure 15 Confidence interval of the not scheduled patients fraction per booking per horizon with an extreme demand (exp 
01 – exp 14 translates to booking horizon 01 – 14) 

Throughput time 

The boxplot in Figure 16 shows that for the Throughput time we cannot statistically say that there is 

a difference between any of the experiments. We only see somewhat of a decline in average 

throughput time for a higher booking horizon and the throughput time becoming somewhat more 

consistent.  

 

Figure 16 Boxplot of throughput time per patient over fourteen experiments when considering an extreme demand increase 

Delta weeks 

The boxplot in Figure 17, shows that for the Delta weeks we cannot statistically say that there is a 

difference between any of Experiment 3 up to 13. The Delta weeks of a booking horizon of one and 

two weeks is both 0, meaning that every scheduled appointment, is scheduled in the expected 

appointment week. As Table 12 shows, the not scheduled fraction of these booking horizons are 

47.0% and 46.8% respectively, heavily influencing the results shown in this table. Half of the 

appointments did not find an appointment at all. 
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Figure 17 Boxplot of delta weeks per patient over fourteen experiments when considering an extreme demand increase 

Conclusion 

Table 12 gives an overview with the means of the results shown in Figure 14 and Figure 15. Both the 

mean for the one-day fraction and not scheduled fraction score best when planning with a booking 

horizon of twelve weeks. We can say that a booking horizon of twelve weeks is the best booking 

horizon with an extreme demand of IDEAAL patients, as there is a significant difference when 

considering the KPIs shown in Table 12.  

Table 12 Mean of the single day fraction and not scheduled fraction per booking per KPI with an extreme demand 

 

5.2.3 Cancellation rates 
We changed the cancellation rates of appointments and availability setting of the caregivers. The 

booking horizon of fifteen weeks is excluded from these experiments. The first experimentations are 

with the exclusion of cancellations and the exclusion of other patients. Furthermore, we 

experimented with the cancellation rate, to determine the impact of cancellations. 

Excluding cancellations and availability 

Single day fraction / not scheduled patients 

Excluding cancellations and availability results in constant KPI values for Experiments 1 to 13. Since 

there are no difference, we do not need to determine either the p values nor the confidence 

Booking Horizon One day Not scheduled

1 54.8% 47.0%

2 54.6% 46.8%

3 65.8% 25.4%

4 65.4% 26.2%

5 65.2% 26.3%

6 65.1% 26.2%

7 66.6% 23.2%

8 54.4% 35.9%

9 53.9% 37.1%

10 53.0% 39.3%

11 60.6% 33.0%

12 84.3% 6.97%

13 80.5% 13.0%

14 73.6% 26.9%
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interval. In Table 13 the results mean fraction of the single day checkups and the mean fraction of 

not scheduled patients. 

Table 13 Mean of the single day fraction and not scheduled fraction per booking per KPI when excluding cancellations and 
availability 

 

We observe that almost every patient (99.8%) now finds an appointment on a single day and every 

patient will be planned (0% not scheduled). This is notable, we would expect that every patient now 

finds a date on which their IDEAAL checkup can be carried out in one single day. But since that is not 

the case, we will take a further look at the patients that did not find such a day to find the cause. 

Table 14 contains an overview of the patients that got a split-up checkup when considering a 

booking horizon of fourteen weeks. 

Table 14 Patients that did not get a single day checkup when excluding cancellations and availability

 

There are no days on which both doc4 and n9 work in the outpatient clinic at the same time. Doc5 

and n15 only have one day every two weeks in which both of them work half a day in the outpatient 

clinic. Due to a lack of available outpatient clinic working days among the preferred caregivers, it is 

not possible to schedule patients for a single day. This explains the single day fractions being 99.8% 

and 99.2% instead of 100%. 

Changing the cancellation rate 

As described in Section 4.2.7 we experimented by doubling the cancellation rate and only excluding 

the cancellations. Appendices J.4 No Cancellations and J.5 Doubled Cancellation Rate contain all 

statistics about these experiments. From these statistics we can see that both increasing and 

excluding the cancellation rates has close to no impact on outcome of the experiments. From that 

we conclude that the cancellation rate does not or barely impact the plannability of the IDEAAL 

checkups. As a result, we conclude that the availability of the caregivers is the main issue. As shown 

in the experiments, where we excluded the availability as well as the cancellations, almost every 

patient got their checkup planned on one single day. the “Caregiver Tuning” experiments will be 

used to further investigate if it is possible to reduce impact of the availability of caregivers on the 

fraction of single day checkups. 

Booking Horizon One day Not scheduled

1 99.8% 0%

2 99.8% 0%

3 99.8% 0%

4 99.8% 0%

5 99.8% 0%

6 99.8% 0%

7 99.8% 0%

8 99.8% 0%

9 99.8% 0%

10 99.8% 0%

11 99.8% 0%

12 99.8% 0%

13 99.8% 0%

14 99.2% 0%

Patient First day Second day Initial Week First week Second week Preferred doctor Preferred Nurse

p094 Monday Tuesday 25 25 25 doc4 n9

p420 Monday Tuesday 39 39 39 doc5 n15

p490 Monday Tuesday 39 39 39 doc5 n15

p561 Monday Tuesday 39 39 39 doc5 n15
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5.2.4 Caregiver tuning 
We spread the demand in a fair way over the caregivers and determine smart pairings of preferred 

caregivers. The booking horizon of fifteen weeks is excluded from these experiments. 

Fair workload 

In Appendix J.6.1 Workload distribution we describe how the workload is distributed over the 

caregivers. Distributing the demand in such a way resulted some interesting changes in the KPI 

outcomes.  

Single day fraction 

In Figure 18 the confidence intervals of the single day fraction per experiment are shown. The lower- 

and upper bounds of these fraction are noticeably higher than the results from the base case, shown 

in Figure 6. We observe the same impact of booking horizons on the single day fraction as in the 

base case, where the higher the booking horizon, the better the single day fraction becomes. Up 

until a booking horizon of twelve weeks. These results lead us to the conclusion, that a booking 

horizon of twelve weeks yields the best single day fraction results when planning the IDEAAL 

checkups. 

 

Figure 18 Confidence interval of the single day fraction per booking per horizon with a fair workload (exp 01 – exp 14 
translates to booking horizon 01 – 14) 

Similar to the conclusion in Section 5.2.1, in reality a booking horizon of more than twelve weeks 

might be superior. But with the limitations of the simulation model, we can say that a booking 

horizon of twelve weeks has a significantly better single day fraction compared to all other booking 

horizons except a booking horizon of thirteen weeks. J.6.2 p values shows us that the p value 

compared to most other booking horizons is smaller than 0.05, proving this significant difference. 

Only the p value of the results between Experiment 12 and 13 is higher than 0.05 (0.069), indicating 

that we cannot say that the difference between these experiments is statistically significant. 

 

Not scheduled fraction 

When analyzing the results in Figure 19, we observe that increasing the booking horizon up until ten 

weeks, lowers the standard deviation of the not scheduled patients and with a booking horizon of 
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more than ten weeks this standard deviation increases again. J.6.2 p values, shows that the results 

from Experiment 10 are significantly different from any other Experiment with all p values being 

zero. This suggests that a booking horizon of ten weeks would be the best fit when considering a fair 

workload. 

 

Figure 19 Confidence interval of the not scheduled patients fraction per booking per horizon with a fair workload (exp 01 – 
exp 14 translates to booking horizon 01 – 14) 

Throughput time 

Considering the results of the throughput time per experiment, we can merely conclude that taking 

a booking horizon of five weeks or more will not impact the throughput time of patients. As we see 

in Figure 20, the standard deviation of the throughput time for more than four weeks stays almost 

the same. Therefore, we can conclude that based on the throughput time any booking horizon 

higher than four weeks performs similar.  

 

Figure 20 Boxplot of throughput time per patient over fourteen experiments when considering a fair workload 

The boxplot for the delta weeks of a fair workload is shown in J.6.3 Delta weeks. This figure shows 

that there is close to no difference in the delta weeks between the experiments. 
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Conclusion 

Concluding the results of the second day fair workload experiments, we can say that either a 

booking horizon of twelve weeks or ten weeks is the best booking horizon when considering a fair 

workload. Since the fraction of patients scheduled on one day is the most important indicator, we 

would advise a booking horizon of twelve weeks. In reality patients will be scheduled no matter 

what, where in this simulation we are limited to a sixteen-week period for which availability is 

known. It is fair to assume that every patient will always be scheduled in reality, no matter what. 

Smart pairings 

In Appendix J.7.1 Smart pairing logic we describe how the caregiver are paired. Pairing caregivers 

some interesting changes in the KPI outcomes. 

Single day fraction 

In Figure 21 the confidence intervals of the single day fraction per experiment are shown. The lower- 

and upper bounds of these fraction are noticeably higher than the results from the base case, shown 

in Figure 6. We observe the same impact of booking horizons on the single day fraction as in the 

base case and fair workload distribution. A longer booking horizon results in a better single day 

fraction, up until a booking horizon of twelve weeks. These results lead us to the conclusion, that a 

booking horizon of twelve weeks yields the best single day fraction results when planning the 

IDEAAL checkups. 

 

Figure 21 Confidence interval of the single day fraction per booking per horizon with smart pairings (exp 01 – exp 14 
translates to booking horizon 01 – 14) 

Similar to the conclusion to the fair workload distribution experiments, in reality, a booking horizon 

of more than twelve weeks might be superior. But with the limitations of the simulation model, we 

can say that a booking horizon of twelve weeks has a significantly better single day fraction 

compared to all other booking horizons except a booking horizon of thirteen weeks. J.7.2 p values 

shows us that the p value compared to most other booking horizons is smaller than 0.05, which 

proves the difference is significant. Only the p value of the results between Experiment 12 and 13 is 

higher than 0.05 (0.873), indicating that we cannot say that the difference between these 

experiments is statistically significant. 
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Not scheduled fraction 

When analyzing the results in Figure 22 we observe that a booking horizon of five or seven weeks 

performs best. J.7.2 p values, shows that the results from these experiments are not significantly 

different from the other experiment. These p values proof that there is no statistical difference 

between most experiments with regards the fraction of not scheduled patients. Only a booking 

horizon of one week and a booking horizon of fourteen weeks are significantly different from all 

other experiments. A booking horizon of thirteen weeks is significantly different to most other 

experiments. But as we can see in Figure 20, a booking horizon of one week, thirteen weeks and 

fourteen weeks perform significantly worse than the other experiments. Therefore, we can conclude 

that there is no significant difference between choosing any booking horizon of two to twelve 

weeks, when considering the fraction of not scheduled patients. 

 

Figure 22 Confidence interval of the not planned fraction per booking per horizon with smart pairings (exp 01 – exp 14 
translates to booking horizon 01 – 14) 

Throughput time 

Considering the results of the throughput time per experiment, we can merely conclude that taking 

a booking horizon of seven weeks or more will not impact the throughput time of patients. As we 

see in Figure 23, the standard deviation of the throughput time for more than six weeks stays almost 

the same. Therefore, we can conclude that based on the throughput time any booking horizon 

higher than six weeks performs similar. 
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Figure 23 Boxplot of throughput time per patient over fourteen experiments when considering smart pairings of caregivers 

The boxplot for the delta weeks of a fair workload is shown in J.7.3 Delta weeks. This figure shows 

that there is close to no difference in the delta weeks between the experiments. 

Conclusion 

Concluding the results of the smart pairing experiments, we can say that a booking horizon of twelve 

weeks when considering smart pairings of caregivers. Since the fraction of patients scheduled on one 

day is the most important indicator, we would advise a booking horizon of twelve weeks. In reality 

patients will be scheduled no matter what, where in this simulation we are limited to a sixteen-week 

period for which availability is known. Therefore, a higher booking horizon might still be better in 

reality. 

5.3 Conclusion 
From the results of the mathematical model we conclude that there are many different solutions 

giving an equally good result. From that we can conclude that a heuristic is very likely to also always 

find the optimal solution. This is also confirmed by the throughput times being so consistent over 

the different experiments and booking horizons. 

The overall best choice to make is changing the work instructions to have the planners always try 

and plan all appointments of an IDEAAL checkup on a single day. Then start planning twelve weeks in 

advance, as this yields the highest single day fraction regardless of the experiments. From this we 

can conclude that making both these discissions results in robust planning rules, that will give a 

constant and good performing planning.  
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6 Conclusion and Discussion 
This chapter shows the conclusions of our research (Section 6.1) and argues the limitations of our 

study and suggests further research directions (Section 6.2). 

6.1 Conclusion 
In Chapter 1, we formulated the following research question: How can the number of scheduled 

hospital days for the IDEAAL checkup per individual patient be minimized without increasing the 

overtime for staff and while minimizing the waiting time between appointments? 

We analyzed the current situation of Isala and their problems, and concluded that there were three 

essential causes of the planning problems: 

1. Wrong work instructions 

2. Cancellation and rescheduling of appointments 

3. Availability of the caregivers 

Since the last two of these issues are influenced by the booking horizon, we investigated the impact 

of the booking horizon on the plannability of the IDEAAL checkups. For the measuring method, we 

designed a discrete event simulation that measures the impact of varying booking horizons. This 

discrete event simulation showed us that planning patients on a single day, which is the minimum 

number of scheduled hospital days, is already possible for 88.5% of the patients in the current 

situation, when changing the work instructions. Our experiments show us that the planning method 

is very robust, as most experiments did not cause large changes in the fraction of patients that could 

be scheduled on a single day. Our experiments did show that there is still room for improvement on 

the current situation. By assigning patients to caregivers based on their working hours in the 

outpatient clinic, we will be able to plan up to 92.5% of the patients on a single day, when choosing 

a booking horizon of twelve weeks. By making smart pairings for nurses and doctors we can even 

improve this number up to 95.2% of the patients when we choose a booking horizon of twelve 

weeks. As expected, we can both see in our experimentation and base case that the booking horizon 

impacts the number of scheduled hospital days for IDEAAL patients. Although we can also see that 

this impact is relatively small, as the lowest percentage in the base case is 85.5%. From this we can 

conclude that the booking horizon does not need to be followed extremely strict, but when 

optimizing the chance for a patient to have a minimal number of hospital days it is advised to choose 

plan with a booking horizon of twelve weeks. Even an extreme increase in demand does not impact 

the percentage of patients with all appointments on a single day, proving the robustness of their 

current planning method. As long as the appointments are scheduled with a booking horizon of 

twelve weeks, the diabetes department can achieve a percentage of 84.4% patients planned on one 

single day. We can therefore conclude that when the diabetes department sticks with the current 

method of assigning caregivers and planning the patients, they should be able to plan 88.5% of the 

patients in one day. Since we are limited to a maximum of sixteen weeks in which we can actually 

plan patients, we are not able to give a conclusive answer on which booking horizon is the best. The 

best booking horizon might be higher than fourteen weeks. If we consider our research scope, we 

advise the department to adjust the instruction for planners and start planning the IDEAAL checkups 

on one day. At the same time it is advised to try and always plan with a booking horizon of twelve 

weeks, as this maximizes the chance for the patient to have their checkup carried out in one single 

day. 
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6.2 Discussion 
Notable results 
Notable are the resulting boxplots for the throughput time and the delta weeks for all executed 

experiments, with the delta weeks being the most notable. Regardless of the experimental settings, 

the average delta weeks for any booking horizon is below one, which means that practically every 

patient can be scheduled in the week we initially tried to plan them. This implies that planning the 

IDEAAL checkups is relatively easy and is not complicated at all. If the complexity with multiple sub 

calendars, availabilities and cancellations had more of an impact, we would see more variation in 

these numbers, which is not the case. It is possible that this is caused by the model, not really 

representing the complexity of the different calendars correctly. Currently a caregiver is categorized 

in one of three groups of availability. Where in reality, within these groups, there is still a lot of 

variety in availability. Since the sub calendars now all fill according only one of three distributions, 

the variation in availability is not entirely exact represented. This will most likely result in similar 

availabilities over the weeks for the different caregivers, making it more likely for patient to have get 

an entire checkup planned on one day. Another aspect that influenced this constant result in delta 

weeks is the expected weeks being randomized over the month of birth. By doing this, the IDEAAL 

checkups are even more equally spread over the year, making it even more likely for them to be 

scheduled in a single day. 

This directly correlates with the next point of discussion, being the bias in the found data for 

availability. We now based the availability of the caregivers merely on their availability in the period 

from week 34-40. Which does not represent their actual availability over an entire year. 

Other notable results are that no matter the experiments over booking horizons nor other variations 

in inputs we see that more than 80% of the patients always can be planned in one day. This is a 

noteworthy conclusion, as the diabetes department used to be under the impression that planning 

these complex checkups on one day was practically impossible. We think this is not the case because 

the IDEAAL checkups take up such a small portion of the different sub calendars. As the IDEAAL 

checkups make up such a small portion of the sub calendars, they are hardly impacted by the 

availability of the caregivers. As shown in the experimentation section, we see that the cancellations 

have such a small impact on the plannability that they can almost be negated. Since the IDEAAL 

checkup has such a small impact on the availability of the caregivers, they do not form as much of a 

problem as the diabetes department initially thought.  

Equalizing the demand did not impact the results over the booking horizons compared to the base 

case. As we explained in Section 5.2.2, this has to do with the small impact of the IDEAAL checkups 

on the sub calendars. As demonstrated in other experiments, changing factors outside the IDEAAL 

checkups, like the availability, did have an impact on the results. Just like extremer cases like 

doubling the demand of IDEAAL checkups. Equalizing the demand can still have a more significant 

impact on the results, but then we will have to combine it with an experiment like doubling the 

demand. In that situation, you would have the quantity of IDEAAL checkups impact the plannability 

of checkups, making it a more suitable circumstance for equalizing demand to have an impact on the 

results. Since the total number of patients (not limiting the scope with only Type I, and age 0 -26 

patients) that go through IDEAAL checkups is much closer to 1500 in reality, equalizing demand 

could be a beneficial approach for the diabetes department. 
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Assumptions and limitations 
We did not include absence of caregiver due to vacation, conferences or other obligations during a 

year. In the discrete event simulations, it is now assumed that the base availability of every even 

week is always the same and the base availability of every odd week is also always the same.  This is 

somewhat taken into account with the cancellation rates, as appointments can be cancelled due to 

these reasons. But we never clear the entire calendar of a caregiver for any period as a result of 

vacation. This could impact the fraction of patients that are planned on one day, but we do not think 

this will be a significant impact. This could have a significant impact on the delta weeks KPI, as there 

will be less availability over the year for the caregivers, making it not as likely that checkups are 

planned in the expected week. 

For the current model, cancellations of regular patients are not included. In reality, patients outside 

the IDEAAL checkup also cancel their appointments. This could in practice result in more availability 

for IDEAAL checkups, as a cancelled appointment frees up an appointment slot for an IDEAAL 

checkup. For example, a patient that is scheduled over multiple days, could get their appointments 

moved to one single day if another patient cancels their appointment, freeing a slot needed for that 

patient to have their checkup carried out in one day. 

For the sake of simplicity, we chose to have the split in appointments always be a two-day split and 

this split is always the same. In reality we could a schedule all but the one bottlenecking 

appointment on one day, or distribute the appointments over more than two days. The first option 

could result in more IDEAAL checkups carried out in one day, when combined with cancellations of 

regular patients. As it is easier to fit one appointment than three appointments on a day at later 

moment in time. The second option will most likely make the fraction of not scheduled patients even 

lower than the fractions are now in the different experiments. Making the splitting of appointments 

more flexible would also give a better representation of reality than the current model. 

Currently, when a checkup is planned over two days the second appointment can be planned the 

following day. It is interesting to see results of forcing at least two weeks between the first and 

second appointment. These two weeks guarantee that the retina photos are always analyzed before 

the doctor’s appointment. For the current model this was not realistic to implement as a result of 

the limited data on availability. We limited the model to not plan further than sixteen weeks in 

advance. This limitation makes splitting an appointment for higher booking horizons a lot less likely, 

as we will “run out of weeks to plan in”. With more elaborate data we could also implement this and 

experiment with it. 

Another limitation of the model is that patients are only scheduled from their expected week into 

the future. So, if for a patient their expected plan week is 36, they can only be planned in weeks 

36, 37, .. etcetera. In reality a patient does not have one exact week in which they are planned, but 

they are attempted to be scheduled in their month of birth. To prevent IDEAAL checkups to always 

be planned in the same weeks, which would be the case when using the first week of a month, we 

randomized the expected plan week over the patient’s month of birth. This results in a deviation 

from reality as a patient with the last week of a month as their expected plan week is now more 

likely to be planned in the month after their birth than in the month of birth. 

Initially we saw a possibility to experiment with dedicated caregivers for IDEAAL checkups. This 

would mean that only a select group of caregivers would carry out IDEAAL checkups and this group 

would be selected based on whether with their calendars it would make sense to carry out these 

checkups. But with the way the simulation is model has been structured, results from experimenting 

with this will not be realistic. In reality availability will be tweaked for such an assignment and as we 
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have no data on how the availability of the chosen caregivers would change, we cannot make a 

realistic estimation of how results of this choice will turn out.  

Relation to literature 
As stated in Section 3.3.1, the approach proposed in Akin et al. (2013) comes closest to the approach 

of this paper. Akin et al. (2013) finds that an appointment window (booking horizon) of twelve 

weeks is for established patients is optimal. As IDEAAL checkups are only carried out with 

established patients, this booking horizon would also apply to the IDEAAL checkups. We also 

concluded that twelve weeks is the optimal booking horizon according to our experimentation. This 

strengthens the validity of the results and therefore the conclusion drawn from this research that a 

booking horizon of twelve weeks is the optimal booking horizon. 

Future research 
Something interesting for the diabetes department to look at next is the necessity of the IDEAAL 

checkups, or other regular checkups for diabetes patients. Most of the patients currently have a 

standard half year and a standard annual checkup in the hospital. Research could be done whether it 

is even necessary for patients to come to the hospital this often. As described before, the IDEAAL 

checkups is best scheduled in one day to relieve the pressure on the hospital logistics and planning 

of patients. By reevaluating the necessity of these checkups, they might conclude that fewer 

checkups are needed, relieving the pressure on the hospital logistics and planning of patients even 

more. 

Another thing to consider is extending the scope of the research. For now, the research was limited 

to a portion of the IDEAAL checkups. This smaller portion was chosen, because these patients have 

very similar care pathways, without a lot of variety. Also, the syndrome of these patients is very 

similar, making the patients relatively interchangeable and therefore easier to research. It will be 

interesting for the hospital to take a look at all patients with diabetes, to extend to finding from this 

research. They could research how similar these out-of-scope patients are to the researched patient 

group to determine how applicable the findings from this research are on the out-of-scope patients. 

When it turns out these patients are too different, they can try and find a way adjust the results and 

method of this research in such a way that they can also optimize the planning of these patients. As 

the total number of patients going through IDEAAL checkups is around 1500, we analyzed ≈

38% (=
1500

572
) of the patients with IDEAAL checkups in Isala. 

The current method of caregivers is based on simple logic steps developed in this research. Although 

the optimal combination of caregivers can be found in far more exact mathematical methods. 

Therefore, it can be interesting to see what the optimal combination of caregivers would be and see 

how this perfect combination would perform. It could also be researched how the basic availability 

should look like to create perfect caregiver combinations. Sometimes small changes in basic 

availability can lead to great improvements in planning optimization for any department. 

The final and more basic recommendation is for Isala as whole. It would be beneficial to look into 

how data is stored and how this can be optimized to have better and more data available. This 

would make researching different aspects of the hospital much easier and realistic, giving far more 

reliable results. As we also encountered in this research, data on cancellations and availability of the 

caregivers is hard to extract. Making data like this more obtainable would be a great step in the right 

direction for Isala to modernize and improve as a hospital. 
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A follow-up to this research could be to implement simulation optimization. For the current question 

and scope the mathematical model is not needed to find the optimal solution. As we found in the 

results of the mathematical model, there are numerous solutions that yield the same objective 

value. This means that, for the current question, a heuristic can consistently find an optimal solution 

that perform just as good as any other solution. When extending or changing the scope the problem 

become more complex making it harder to find the optimal solution. When this will be the case, 

simulation optimization could be a suitable approach to find the optimal solution regardless of the 

complexity. In that case the mathematical model would be implemented into the simulation, instead 

of heuristics, resulting in a simulation optimization approach.  
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Appendix A: Problem cluster 
The orange block indicates the consequence of the action problem. The white blocks represent 

intermediate causes that contribute to the action problem. The grey blocks are core problems that 

are outside the scope, and the green block is the root cause where this research will focus on. 
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Appendix B: Categorizing logic 
A list of combination appointments is categorized based on the following logic. Note, SCP stands for 

Standard Care Pathway. 

 



1 

Appendix C: Process flowchart 
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Appendix D: Logic flowchart  
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Appendix E: Data retrieval 
E.1 Privacy protection 
To extract data from HiX, data first has to be anonymized. The appointments extracted from HiX are 

real appointments, from real patients. To protect the privacy of these patient the appointments are 

made untraceable back to the patient by hiding the date of birth and encrypting the patient ID. This 

way the patient can still be retraced by the hospital itself, but not by others. The extraction of data is 

done by using CTCUE. This program is able to extract most data from HiX and will encrypt the privacy 

sensitive parts. 

Preparation 

There is no indicator in HiX that allows one to always know for sure if an appointment is part of an 

IDEAAL checkup. This makes it complicated to find out which appointments a patient had, actually 

were part of an IDEAAL checkup. To still find data on the current situation, with regards to the 

IDEAAL checkup, some assumptions had to be made and with a detour still reliable description of the 

current situation can be given. 

Finding the IDEAAL checkups, carried out in the past, started by setting appropriate CTCUE criteria. 

These criteria dictate for which group of patients and what data will be extracted. In CTCUE only 

diabetes type 1 patients of the age between 0 and 26 are included. From them the appointment 

data is extracted based on appointment codes, for: internist consultation, retina photos, blood 

pressure, diabetes nurse, laboratory and the dietician. 

This resulted in a long list of appointments. All appointments within a time period of six weeks (42 

days), are bundled together. Those bundles are considered possible combination appointments and 

thus possible IDEAAL checkups. 

Mutation data 

For the mutation data, the years 2019 – 2023 have been analyzed. Particularly the appointments 

from these years which have been a part of the IDEAAL check-up. From HiX a list of all appointments 

is generated and of every appointment the number of mutations is noted. 

Some appointments have been rescheduled more than once. Every rescheduled appointment will be 

considered as a new appointment, meaning that if for example an appointment is rescheduled 

twice, this appointment contributes three appointments towards the total appointment count and 

two times towards the mutations count. The total results over the years are shown in Table 4.  
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Appendix F: Distribution fit 
This appendix is split up into two separate sections. The first section, Graphs, contains the 

visualization of fitting different distribution on the different weeks per group. The second section, 

Tables, contains an overview of the standard deviation and mean corresponding to the distribution 

chosen per week per group. 

F.1 Graphs 
F.1.1 Slow weeks visual fit 
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F.1.2 Average fast weeks visual fit 
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F.1.3 Fast weeks visual fit 
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F.2 Tables 
  

Slow weeks

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean 0.43 0.38 0.39 0.37 0.39 0.39 0.34 0.32 0.29 0.32 0.33 0.27 0.43 0.45 0.26 0.12

Standard deviation 0.26 0.21 0.27 0.27 0.27 0.27 0.30 0.29 0.32 0.36 0.31 0.29 0.29 0.27 0.34 0.14

Average weeks

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean 0.89 0.87 0.80 0.76 0.71 0.65 0.60 0.52 0.48 0.47 0.48 0.48 0.50 0.59 0.54 0.49

Standard deviation 0.18 0.18 0.21 0.25 0.28 0.27 0.27 0.32 0.31 0.27 0.30 0.28 0.31 0.24 0.31 0.31

Fast weeks

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean 0.95 0.96 0.93 0.90 0.87 0.81 0.82 0.80 0.80 0.78 0.78 0.79 0.81 0.82 0.81 0.75

Standard deviation 0.10 0.08 0.10 0.12 0.14 0.18 0.19 0.19 0.20 0.18 0.23 0.25 0.19 0.17 0.17 0.18
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Appendix G: Number of Replications 
The number of replications is sufficient as soon as the maximum relative error is smaller than 0.05, 

since we take a confidence interval of 95%. 

 

  

Reps One day Count Mean Var Tvalue CIHW Error Sufficient Reps

1 0.560

2 0.560 0.560 0 12.71 0.000 0.00 YES

3 0.549 0.557 0 4.30 0.015 0.03 YES

4 0.562 0.558 0 3.18 0.009 0.02 YES

5 0.555 0.557 0 2.78 0.006 0.01 YES

6 0.546 0.555 0 2.57 0.007 0.01 YES

7 0.553 0.555 0 2.45 0.006 0.01 YES

8 0.544 0.554 0 2.36 0.006 0.01 YES

9 0.539 0.552 0 2.31 0.006 0.01 YES

10 0.564 0.553 0 2.26 0.006 0.01 YES

11 0.576 0.555 0 2.23 0.007 0.01 YES

12 0.564 0.556 0 2.20 0.007 0.01 YES

13 0.575 0.557 0 2.18 0.007 0.01 YES

14 0.587 0.560 0 2.16 0.008 0.01 YES

15 0.535 0.558 0 2.14 0.008 0.01 YES

16 0.564 0.558 0 2.13 0.007 0.01 YES

17 0.583 0.560 0 2.12 0.008 0.01 YES

18 0.548 0.559 0 2.11 0.007 0.01 YES

19 0.562 0.559 0 2.10 0.007 0.01 YES

20 0.540 0.558 0 2.09 0.01 0.01 YES
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Appendix H: Warmup period 
The first section of this appendix gives a table that contains the MSER values per week of the 

experimental run to find the warmup period. The second section gives a visual representation 

corresponding to the table. 

H.1 MSER heuristic Table 

 

 

H.2 MSER heuristic graph 

 

  

Week Data MSER Value

1 0 0.0030

2 0 0.0030

3 0 0.0030

4 0 0.0030

5 0 0.0030

6 0 0.0029

7 0 0.0029

8 0 0.0029

9 0 0.0028

10 0 0.0027

11 0 0.0026

12 0 0.0025

13 6 0.0024

14 6 0.0025

15 0 0.0026

16 11 0.0027

17 0 0.0027

18 11 0.0029

19 0 0.0027

20 16 0.0028
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Appendix I: Preferred caregiver logic 
This appendix contains the logic used to determine the preferred caregiver for newly created 

patients in the demand experiments. 

The logic for the experiment on the expected demand increase is as follows: first the number of 

patients treated per caregiver was determined. This number is divided by the total number of 

patients in the current situation and that fraction is then multiplied by the difference in patients 

between the new situation and current situation. An example to demonstrate this: Doc10 treats 82 

patients in the current situation, therefore this doctor treats a fraction of 
82

557
= 0.147 of the current 

situation’s patients. Multiply this by the difference in patients with the experiment, for the first 

experiment 600 − 557 = 43 patients, gives us 0.147 ∙ 43 = 6.33 patients. In this experiment at 

least six of the newly created patients will be treated by Doc10. 

After that we are still left with a couple of patients without a preferred nurse and/or preferred 

doctor. So, we take the fractions left per caregiver and use that as a probability for that doctor to 

treat one more patient. Taking the same example: three patients are treated by Doc10, and of every 

other patient that still has no preferred doctor assigned will have a 6.33 − 6 =  0.33 patients will 

have Doc10 as their preferred doctor. By summing all the leftover fractions of every doctor, we will 

find the number of patients without a preferred doctor. For every leftover patient a random doctor 

will be drawn based on these probabilities. The exact same method will be used to find the preferred 

nurses for every newly added patient. 

The logic for the experiment on an extreme demand increase is much more straight forward. The 

existing patients are duplicated to form the new patients.  
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Appendix J: Experimentation 
J.1 Expected demand increase 
J.1.1 One Day 
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J.1.2 Not Scheduled 

 

J.1.3 Throughput time 
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J.1.4 Delta Weeks 
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J.2 Extreme demand increase 
J.2.1 p values 
One day fraction 

 

Not scheduled fraction 

  

Single 

Day
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.527 0 0 0 0 0 0.141 0.003 0 0 0 0 0

Exp 02 0 0 0 0 0 0.221 0.001 0 0 0 0 0

Exp 03 0.137 0.025 0.069 0.175 0 0 0 0 0 0 0

Exp 04 0.57 0.459 0.057 0 0 0 0 0 0 0

Exp 05 0.74 0.03 0 0 0 0 0 0 0

Exp 06 0.028 0 0 0 0 0 0 0

Exp 07 0 0 0 0 0 0 0

Exp 08 0.01 0 0 0 0 0

Exp 09 0 0 0 0 0

Exp 10 0 0 0 0

Exp 11 0 0 0

Exp 12 0 0

Exp 13 0

Not 

Scheduled
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.664 0 0 0 0 0 0 0 0 0 0 0 0

Exp 02 0 0 0 0 0 0 0 0 0 0 0 0

Exp 03 0.017 0.023 0.19 0.016 0 0 0 0 0 0 0.052

Exp 04 0.763 0.951 0.003 0 0 0 0 0 0 0.332

Exp 05 0.794 0.002 0 0 0 0 0 0 0.434

Exp 06 0.005 0 0 0 0 0 0 0.381

Exp 07 0 0 0 0 0 0 0.002

Exp 08 0.016 0 0 0 0 0

Exp 09 0 0 0 0 0

Exp 10 0 0 0 0

Exp 11 0 0 0

Exp 12 0 0

Exp 13 0
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J.3 No cancellations and empty calendars 
J.3.1 One Day 

 

J.3.2 Not Scheduled 
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J.3.3 Throughput time 

 

J.3.4 Delta weeks 
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J.4 No Cancellations 
J.4.1 One Day 

 

J.4.2 Not Scheduled 
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J.4.3 Throughput time 

 

J.4.3 Delta weeks 
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J.5 Doubled Cancellation Rate 
J.5.1 One Day 

 

J.5.2 Not Scheduled 
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J.5.3 Throughput time 

 

J.5.4 Delta weeks 
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J.6 Fair Workloads 
J.6.1 Workload distribution 
To determine the distribution of patients based on workload, we first determined the total number 

of slots every caregiver works in a two-week period. We choose a two-week period, because most 

caregiver have a different base availability in the even weeks and odd weeks. Based on that we 

determined the number of patients every caregiver has to help, with the formula: 
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑙𝑜𝑡 𝑐𝑎𝑟𝑒𝑔𝑖𝑣𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑙𝑜𝑡𝑠 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑐𝑎𝑟𝑒𝑔𝑖𝑣𝑒𝑟
∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠. Where 

the nurses and the doctors are calculated separately and the number of patients is 557. This number 

is rounded down, which results in a total number of patients over all doctors and nurses respectively 

to be lower than 557. The missing patients are assigned based on the decimal number for every 

caregiver. A caregiver with a higher decimal number is more likely to end up with an extra patient 

than a caregiver with a lower decimal number. 

After determining the number of patients per caregiver, they are all randomly assigned to patients, 

to give us a new input list of patients with their preferred doctor and nurse. The expected plan week 

per patient remained the same. 

J.6.2 p values 
J.7.2.1 One day fraction

 

J.7.2.2 Not scheduled fraction 

 

Single 

Day
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.29 0.122 0.49 0.896 0.083 0.015 0 0.002 0 0 0 0 0

Exp 02 0.314 0.742 0.128 0.002 0.001 0 0 0 0 0 0 0.001

Exp 03 0.328 0.021 0.001 0 0 0 0 0 0 0 0.001

Exp 04 0.437 0.01 0.002 0 0.001 0 0 0 0 0

Exp 05 0.02 0.005 0 0.001 0 0 0 0 0

Exp 06 0.255 0.003 0.029 0 0 0 0 0

Exp 07 0.025 0.208 0.001 0 0 0 0

Exp 08 0.298 0.282 0 0 0 0

Exp 09 0.035 0 0 0 0

Exp 10 0 0 0 0

Exp 11 0.02 0.658 0

Exp 12 0.069 0

Exp 13 0

Not 

Scheduled
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.091 0.019 0.005 0.017 0.019 0.006 0.005 0.005 0.004 0.006 0.025 0.156 0.346

Exp 02 0.225 0.016 0.186 0.237 0.024 0.016 0.016 0.011 0.03 0.314 0.41 0

Exp 03 0.124 1 1 0.194 0.119 0.124 0.073 0.254 0.618 0.013 0

Exp 04 0.047 0.146 0.526 1 1 0.412 0.433 0.002 0 0

Exp 05 1 0.092 0.043 0.047 0.021 0.146 0.532 0.002 0

Exp 06 0.22 0.141 0.146 0.09 0.28 0.636 0.018 0

Exp 07 0.471 0.526 0.127 0.795 0.006 0 0

Exp 08 1 0.29 0.395 0.002 0 0

Exp 09 0.412 0.433 0.002 0 0

Exp 10 0.148 0.001 0 0

Exp 11 0.016 0 0

Exp 12 0.002 0

Exp 13 0



80 
 

J.6.3 Delta weeks 
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J.7 Smart Pairing of Caregivers 
J.7.1 Smart pairing logic 
To determine which caregivers are a good pair, a matrix is made based on the number of available 

slots. To first explain this matrix, we calculated the number of slots a nurse and a doctor have in 

common over a two weeks period (ten days in total). When both the nurse and the doctor have at 

least one available slot on the same day, the number of slots the nurse and the doctor have available 

on that specific day are summed. When only one of the caregivers is available at any given day, this 

count is set to zero, as they must both have at least one available slot. 

By summing all numbers in this matrix, we got a total overall score of 20092. Based on this total 

score we can calculate the minimum score needed per patients, which is 
20092

557
= 36.1. Thereafter 

we divided every score in the first matrix by 36.1 to create a second matrix that gives us the number 

of patients that get treated by any given combination of caregivers. This resulted in the following 

matrix: 

 

Just like when determining the number of patients per caregiver with the fair workload experiments, 

we rounded these numbers down to get a first input of all patients and their caregiver combination. 

Afterwards we assigned caregiver combinations to the remaining patients, based on the decimal 

numbers. Where a larger decimal number is more likely to have the patient be treated by that 

specific combination of caregivers. So, for example number of patients treated by the combination 

of doc1 and n1 is increased from zero to one, before the combination of doc1 and n2 would be 

increased from two to three. Because 0.9 has a larger decimal number (9) than 2.2 does (2). 

J.7.2 p values 
J.8.2.1 One day fraction 

 

Patients per 

caregiver N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N27 N15 N16

Doc1 0.9 2.2 4.4 2.2 1.7 4.0 2.2 1.7 1.1 1.7 0.0 0.0 2.3 2.9 2.8 0.9

Doc2 3.4 4.3 1.1 4.3 2.8 3.0 3.2 2.8 2.1 2.3 3.0 1.2 4.2 1.0 2.0 3.3

Doc3 3.1 3.6 2.6 3.6 4.2 2.7 3.9 4.2 3.1 1.6 2.5 0.8 3.5 2.4 3.1 4.0

Doc4 2.0 2.2 2.0 2.2 2.6 3.9 1.2 2.7 0.0 3.0 1.2 1.2 2.2 1.8 1.7 2.2

Doc5 2.3 2.7 2.1 2.7 1.9 1.3 4.4 1.9 3.2 2.6 2.6 1.3 2.6 2.0 1.4 4.5

Doc6 1.9 4.5 4.1 4.5 2.5 3.5 5.5 2.5 3.7 1.9 2.6 0.9 4.5 2.9 3.0 3.8

Doc7 3.9 3.5 4.1 3.5 5.4 4.0 3.8 5.4 3.0 3.0 2.5 0.8 3.4 3.7 3.7 4.7

Doc8 3.4 2.9 5.9 2.9 4.4 4.0 5.1 4.4 4.2 4.0 1.9 0.9 2.9 4.5 3.9 5.4

Doc9 1.8 3.3 2.0 3.3 3.0 2.2 3.6 3.0 2.7 1.9 3.1 0.9 3.2 1.8 2.2 3.7

Doc10 3.6 4.9 3.8 4.9 4.4 6.3 2.8 4.5 0.9 4.4 2.6 0.9 4.8 3.5 3.9 3.2

Doc11 4.0 3.8 2.3 3.8 3.9 3.7 3.0 3.9 2.1 2.8 3.0 0.9 3.7 2.2 2.7 3.1

Doc12 1.4 2.5 5.5 2.5 2.5 5.1 2.5 2.6 1.2 2.6 0.0 0.0 2.6 3.8 3.9 1.3

Single 

Day
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 09 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.628 0.471 0.471 0.039 0.14 0.039 0.005 0 0 0 0 0 0.087

Exp 02 0.268 0.268 0.024 0.086 0.031 0.004 0 0 0 0 0 0.079

Exp 03 1 0.119 0.349 0.066 0.008 0 0 0 0 0 0.104

Exp 04 0.119 0.349 0.066 0.008 0 0 0 0 0 0.104

Exp 05 0.556 0.327 0.07 0.003 0 0 0 0 0.192

Exp 06 0.182 0.031 0.001 0 0 0 0 0.149

Exp 07 0.529 0.085 0.001 0 0 0 0.374

Exp 08 0.223 0.002 0 0 0 0.545

Exp 09 0.014 0 0 0 0.959

Exp 10 0.056 0 0 0.188

Exp 11 0 0 0.021

Exp 12 0.873 0

Exp 13 0
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J.8.2.2 Not planned fraction 

 

J.7.3 Delta weeks 

 

  

Not 

Scheduled
Exp 02 Exp 03 Exp 04 Exp 05 Exp 06 Exp 07 Exp 08 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14

Exp 01 0.014 0.006 0.004 0.002 0.008 0.001 0.001 0.002 0.001 0.003 0.136 0.005

Exp 02 0.414 0.255 0.095 0.535 0.016 0.007 0.068 0.034 0.196 0.268 0

Exp 03 1 0.668 0.861 0.363 0.253 0.652 0.497 0.838 0.115 0

Exp 04 0.53 0.829 0.142 0.061 0.477 0.281 0.777 0.068 0

Exp 05 0.519 0.451 0.239 1 0.715 0.777 0.033 0

Exp 06 0.256 0.172 0.497 0.365 0.682 0.152 0

Exp 07 0.557 0.356 0.628 0.335 0.013 0

Exp 08 0.138 0.29 0.19 0.009 0

Exp 10 0.66 0.755 0.029 0

Exp 11 0.528 0.02 0

Exp 12 0.054 0

Exp 13 0.001
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Appendix K: Isala cancellation data analysis 
After finishing the experimental phase of this thesis, the Isala data about cancellations in the 

diabetes department was uncovered. A set of 211,755 appointments, carried out since 2016 was 

provided. For every appointment the initial plan date, the initial appointment date, the mutation 

date and the new appointment date are known. This data set can provide several insights in the 

cancellation rates over the booking horizon, specifically for the diabetes department in Isala. 

By analyzing the data we found a trendline following the logarithmic equation 𝑌 = 0.0999𝑙𝑛(𝑥) −

0.0009, with 𝑅² =  0.9041. In general an 𝑅² of above 0.7 is considered a high level of correlation. 

So, we can conclude that the 𝑅² shows us that this equation has a high correlation to the data. To 

visualize the probabilities resulting from this equation, compared to equations used in this research, 

we provided the following graph. Note, we took max(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛; 0) for the equation from the data, 

because a negative probability is impossible. This only changes the probability for week one (from 

−0.0009 to 0). 

 

From this graph we derive that the experimented +100%-case is closer to the actual cancellation rate 

than the equation from the base case. Therefore we can conclude that the results from the doubled 

cancellation rate experiments are a more valid representation of the situation in Isala. As we 

described in Chapter 5 Results and analysis, the difference in single day fraction between doubled 

cancellation rate and the base case cancellation rate is extremely small (88.6% and 88.5% 

respectively). By finding these numbers, we strengthen the validity of the conclusion that the 

cancellation rate in the diabetes department has a negligible impact on the plannability of the 

IDEAAL checkups. As the cancellation rates are so close, there is no need for extra experimentation 

to analyze changes in results. 

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
ab

ili
ty

Week

Base +100% Isala log (16weeks)


