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Management summary 
Value driven appointment scheduling 

The internal medicine outpatient clinic of Isala runs into its capacity borders and will cross these 

borders in the future if nothing changes in the organization of care. To deal with this problem the 

clinic wants to introduce value driven appointment scheduling at the internal medicine 

department. This research is about how the value-driven appointment scheduling method should 

look like, what the benefits are and how to implement the method. The focus of this research lies 

at the nephrology department, since this department treats a lot of chronic patients, this patient 

group is suitable for implementing the value-driven appointment scheduling method. 

We first want to know what the impact of introducing value-driven appointment scheduling is. 

As shown in Figure 1, based on data of 2022, we identified that 17% of the Neprhology-CKD 

patients and 7% of the Nephrology-NCKD patients can be treated in primary care Therefore, we 

did a data study in which we found answer to the question how big the potential of the proposed 

method is. This is done by looking in the data of 2022, an see how many patients an appointment 

at the nephrology department of Isala had, while there was no medical reason for the 

appointment, based on established criteria. The outcomes of the data analysis are shown in Figure 
1. In total, we say that only 57% of the appointments has a direct medical reason for appointment, 

for 25% the need for an appointment should be determined based on a patient file review, and 

18% of the appointment has no medical reason to take place. The results are presented in a 

dashboard. 

 

 

Figure 1: Outcomes of the data analysis. 
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The next step is to find out what the impact of the method is on the blueprints of the nephrologists. 

Therefore, we conducted a literature study to find the best way to optimize blueprint schedules, 

based on uncertain demands. From the literature study, we concluded that we should formulate a 

stochastic Mixed Integer Linear Program that has as output the optimal blueprint.  

Mathematical model 

To find the optimal blueprint, we formulated a Mixed Integer Linear Program. This is a 2-stage 

stochastic program. The first stage decision is the number of slots opened in the blueprint for each 

patient group and resource, and the second stage decisions are the number of overtime and idle 

time slots opened for each demand scenario. Input for this model are the demand distributions of 

the patient groups and the capacity of the resources, in this case the nephrologists. The model is 

able to deal with a maximum percentage of overtime and penalizes the overshoot of this 

percentage. Output of the model is the blueprint containing the number of slots opened for each 

patient group and resource, and the amount of overtime and idle time for each scenario. Sample 

Average Approximation has been applied to deal with the stochasticity of the model and creating 

a robust solution as possible. 

Experiments and results 

Various experiments have been executed test the model both on theoretical and practical side. 

Theoretical, we tested the model on the effect of certain parameter values. We calculated the Value 

of Stochastic Solution and the Expected Value of Perfect Information. We also tested the effect of 

the maximum percentage of overtime on the blueprint and amount of over- and idle time. On the 

practical side, we saw that the introduced method has an effect on the amount of overtime and 

needed number of slots for each patient type, compared to the current situation. Furthermore, we 

saw that the model functions as expected when adding weights to the objective, in which we 

balance the amount of overtime and idle time. Finally, we tested the model for different increased 

demand scenarios. In this experiment, we saw that the nephrologists can handle up to an increase 

of 20% of demand with the value-driven appointment scheduling method, while currently they 

are running into the capacity borders.  

Conclusion and discussion 

The contribution of this research is twofold. First, we showed that there is a large potential for 

introducing value-driven appointment scheduling, by creating a data dashboard, we showed that 

only 57% of the appointments at the nephrology department have a direct medical reason for it. 

So, if we prevent the other appointments from taking place by introducing criteria-based 

appointment scheduling, we increase the capacity significantly. Second, we showed that we use a 

stochastic MILP to create the optimal blueprint for the nephrology department. We also see that 

the value-driven appointment scheduling method leads to a decrease in the needed number of 

slots in the blueprint, and in the amount of overtime.  

 

We recommend Isala to start implement the value-driven appointment scheduling method, but 

also to investigate the patient perspective of this method. In this research, we only looked at the 

medical criteria for needing an appointment, but it is strongly recommended to also do research 

on what the patient perspective of this method is and what the influence of a patient-initiated 

appointment is.   
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1. Introduction 
This chapter discusses the problem context and research plan of this project, conducted at Isala. 

In this chapter, a first introduction to the project is given. In Section 1.1, the background is 

discussed, in Section 1.2 the problem context is given and in Section 1.3, the research plan is given. 

1.1 Background  
This research is conducted at the internal medicine department of Isala Hospitals. For the 
remainder of this research, we will refer to the Isala hospital group as ‘Isala’. Isala is a large 
regional hospital, with five locations in Zwolle, Meppel, Steenwijk, Kampen, and Heerde. Isala has 
around 7000 employees, 1250 available beds, and a yearly turnover of around 824 million euros 
[1]. 

The internal medicine department employs 37 internists, which makes it one of the largest 
internal medicine departments in the Netherlands. The department is built up out of two sub-
departments, general internal medicine and oncology/hematology. General internal medicine has 
the following focus areas:  

- Acute medicine 
- Endocrinology/diabetes 
- Infection diseases 
- Elderly medicine 
- Nephrology 
- Vascular medicine 

As the name suggests, the focus areas of the oncology/hematology sub-department are patients 
with oncology and hematology-related diseases. Besides patients with diseases related to one of 
the focus areas, the internal medicine department also treats patients with diseases related to 
general internal medicine.  

1.1.1 Research Motivation 
In this subsection, the motivation for this research is described. According to the Integral Care 
Agreement, the accessibility of care in the Netherlands is under pressure [2]. The number of 
people with chronic diseases and multiple diseases at the same time will increase. In addition, the 
number of elderly people compared to the number of working citizens increases. This will cause 
a fast increase in the need for care [2]. In line with the integral care agreement, the Internal 
Medicine outpatient clinic of Isala runs into its capacity limits. Therefore, the way care is planned 
at the Isala outpatient clinic needs to be changed. An important aspect of this change is the switch 
to value-driven care, provided by the internal medicine outpatient clinic. Value-driven care is a 
more and more used concept in healthcare. Porter [3]described the need to switch from 
traditional care to value-driven care, where value is defined as achieving the best outcomes at the 
lowest costs. Currently, healthcare is not focused on efficiency. But with the rise of people needing 
care and lack of capacity, the healthcare sector has steps to make regarding efficiency. Value-
driven care is a key concept in making healthcare more efficient. Research should be done on how 
to arrange and design this value-driven care. 
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1.2 Problem context 
In this section, the problem context of this research will be described. First, we will describe the 
action problem. Second, we will describe the problem identification. Third, the core problem is 
given and last, the research goal is explained. 

1.2.1 Action problem 
In this subsection, the action problem of this research will be described. As said, the internal 
medicine outpatient clinic of Isala runs into its capacity borders and will cross these borders in 
the future if nothing changes in the organization of care. As described in Heerkens & Van Winden 
[4], anything or any situation that is not how you want it to be is an action problem. It is the 
discrepancy between norm and reality, as perceived by the problem owner. In this case, the 
problem owner is the management of the internal medicine department within Isala. The norm is 
that there is enough capacity to treat all patients coming to the outpatient internal medicine clinic, 
but the reality is that this capacity is not there. 

1.2.2 Problem identification 
To identify and understand the causes of the action problem, a problem cluster is made. The 
problem cluster is shown in Figure 2. Input for this problem cluster is an observation study, which 
consisted of interviews and follow-along sessions with internists, secretaries, and planners at the 
internal medicine outpatient clinic. These sessions gave an introduction to the current way of 
working and how things go at the outpatient clinic. 

  

Figure 2: Problem cluster of the assignment at the internal medicine department of Isala. 
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When we look at the action problem 'There is not enough capacity at the outpatient clinic of the 
internal medicine department’, this problem is caused by more patient appointments being 
planned than the internists can handle, according to their norm. If an internist works full time, 
their norm states that they should have 17 consultation hours per week, besides other tasks. When 
looking at the actual hours spent on consulting, compared to what the norm states, almost every 
internist spends more time on consulting than his or her norm states. 

This problem is caused by multiple other problems. First, the norm for the number of consulting 
hours is based on the numbers of previous years and not on the number of consulting hours in 
reality. This problem is currently solved by a capacity test that is done by the Center of 
Improvement and Innovation of the hospital. Second, the workload division between the different 
internists differs significantly. This is mainly caused by the fact that the division of patients within 
the focus group of internal medicine is not equal. Another student is currently doing research into 
this problem. Of course, every internist has his or her style and way of working when doing a 
consultation hour. This also means every internist has another workload, based on the way of 
working he or she has. Third, the problem of having more patient appointments than the internists 
can handle is also caused by a significant part of patients visiting an internist without a specific 
reason. During the observation study, it became clear that several appointments with a specialist 
only consisted of the patient saying that everything went well, and the specialist saying that all 
blood- and urine values are correct. Therefore, these consults do not add medical value to the 
treatment of the patient and could be done in another way, or not at all.  

The above-described problem has two main causes. One of them is that some internists have 
patients they treat, who do not need that much treatment, but these patients are still in the patient 
register of this internist because they are relatively ‘easy to treat’. These patients are in some way 
used to save time, which can be spent on a patient who needs more than the scheduled time for 
the consult. This is not ideal and should be prevented, but the processes are organized in such a 
way that it is needed apparently. The other cause is that the care paths of patients follow a static 
design and format. Right now, four types of appointments exist. These types of appointments, with 
their corresponding duration, are shown in Table 1.  

Table 1: Types of appointments within the Internal Medicine outpatient clinic 

Type  Scheduled time 
(minutes) 

Description 

New patient (NP) 30 Physical consult for the first visit of a patient 
to an internist, declarable 

Control patient (CP) 15 Physical consult for a patient being under 
the supervision of an internist, declarable 

Telephone consult long 
(TCLang) 

15 Phone consultation which is declarable at 
the health insurer 

Telephone consult short 
(TCKort) 

5 Phone consultation which is not declarable 
at the health insurer  

In Table 1, we see that three types of consultation can be declared at the health insurer. Notably, 
there is no option to have a video call with a patient, while this option is used in practice. In 
addition, the duration of consultations is fixed and is not based on certain criteria. This makes it 
hard to schedule an appointment based on the needs of a patient, and therefore it is likely that a 
patient gets the wrong type of appointment scheduled.  

As indicated earlier, patients follow a static care path when visiting the internal medicine 
outpatient clinic. The durations and frequency of appointments are fixed. Two causes of the 
problem that care paths are statically designed are that it is not known based on what criteria a 
patient should get a particular type of appointment and that it is not known how to plan dynamic 
care paths for patients within the outpatient clinic of internal medicine. We define the dynamic 
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care path as a care path that is not fixed in advance. Based on certain criteria, it can be determined 
whether a patient needs an appointment or not.  

1.2.3 Core problem 
In this subsection, the selection of the core problem is explained. According to Heerkens & Van 
Winden [4], a problem is a possible core problem if it has no cause by itself. As can be seen in the 
problem cluster (Figure 2), several problems exist which do not have a cause by itself. First, a 
possible core problem is that the norm is based on numbers from previous years, not on reality. 
The fact is that at the moment of writing, a capacity test is executed, in which the actual capacity, 
and with that the actual norm of appointment hours are determined. Second, several internists 
have patients they treat who are not needed, to spend less time on their consult. This is something 
that has to do with the organization of care within the outpatient clinic. Therefore, this problem 
is not taken into account in this research. Third, a possible core problem is that every internist has 
a different approach to how to consult. It is not up to the researchers to determine in which way 
an internist should do his or her consultation hours. Therefore, this problem is not taken into 
account in this research. Fourth, the division of patients within the focus groups of internal 
medicine is not equal. This could be a possible core problem. Another student is working on this 
problem, at the same time as this research is executed. Therefore, this problem is not the core 
problem of this research.  

The fifth and sixth possible core problems are that it is not known based on which criteria a patient 
should get a particular type of appointment and it is not known how to plan dynamic care paths 
for patients. These are problems that do not have a cause by themselves and have the potential to 
be solved within this research. Therefore, these problems are selected as core problems.  

1.2.4 Research goal 
As described in the research motivation, the outpatient clinic wants and needs to provide value-

driven care for its patients. Currently, not all care adds value to the care of the patient. This 

research is set up to find a way to switch from ‘a patient has an appointment, unless…’ to ‘a patient 

has no appointment, unless…’, to prevent patients from coming to the outpatient clinic without 

specific reason. The goal of this research is therefore to:  

Minimize the non-value-adding appointments for patients at the internal 
medicine outpatient clinic, while ensuring the quality of care. 

The road on how to reach this goal will be further described in the research plan.   
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1.3 Research plan 
In this section, the research plan of this research is discussed. First, we will describe and explain 

the research questions that should be answered. Second, the scope of this research will be 

discussed.  

1.3.1 Research questions 
In this subsection, the research questions and sub-research questions are discussed. For each 

question, it is explained why this question should be answered to find a solution to the core 

problems. 

The main research question of this research is:  

How can appointment planning at the internal medicine outpatient clinic 
become value-driven? 

To answer this question, the following research questions need to be answered:  

1. What does the current planning process at the outpatient clinic look like? 

To improve the planning process at the outpatient clinic, we first need to understand what the 
current processes within the clinic look like. Isala indicated that the current processes are static 
and that their wish is to have dynamic care paths based on medical criteria for the patients that 
can profit from this. Therefore, we need to know in what way the current process is a static care 
path. Furthermore, Isala wants to provide value-driven care. To work on this development, it is 
important to understand the term value-driven care and understand what the definition of value 
is.  

2. What is the potential effect of using health conditions to determine the type of 
appointment? 

a. Which health conditions should lead to a certain type of appointment? 
b. How many unnecessary appointments can be prevented based on these health 

conditions? 
The second research question will be answered to determine the potential of using certain health 
conditions to determine the type of appointment of a patient. To determine, we first need to know 
which values, for example, the kidney function, determine the type of appointment a patient gets. 
When we know these medical values, we look into data at which patients have had a physical 
appointment and had blood- or urine values that did not indicate to come to the outpatient clinic. 
This indicates how many appointments could be saved, theoretically.  

3. What information does the literature provide about optimal  outpatient clinic blueprint 
scheduling? 

a. What can we use regarding dynamic care paths? 
b. How can dynamic care paths be planned? 

A literature study will be performed to answer the second research question. This literature study 
will focus on outpatient clinic planning and what models are available to use. Also, this study 
investigated what dynamic care paths are and how they can be planned within the process. From 
this literature, a broader study can be executed to find models for dynamic patient planning at an 
outpatient clinic.  

4. How can we model the planning of dynamic care paths within the outpatient clinic? 
Dynamic care paths require a completely other way of planning than static care paths. Now, the 
outpatient clinic has static care paths, and therefore, the planners can plan patients for a relatively 
long period, say three months in advance. When transferring to dynamic care paths, where for 
example, a patient visits an internist based on the outcomes of a questionnaire two weeks before 
the appointment, the planners also know only two weeks before the appointment which patients 
they should schedule and which patients not. This requires another type of planning. A 
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mathematical model will be created which determines the best design and planning strategy for 
the new appointment planning. This model will test several ways of planning and for example, 
how many patients should be planned at one appointment slot. 

5. How can dynamic appointment planning be implemented at the internal medicine 
outpatient clinic? 

This question is answered to see how the new way of having appointments can be implemented 
in the internal medicine outpatient clinic of Isala Zwolle. This way of having appointments should 
be merged with the current way of having appointments, because several other types of patients 
that come to a certain internist exist, and these appointments are scheduled traditionally. 

6. What conclusions and recommendations can be drawn from this research? 
Finally, conclusions should be drawn, and recommendations should be made from this research. 
What can we advise the internal medicine outpatient clinic?  

1.3.2 Scope 
This research is conducted at the internal medicine department of the Isala Hospital. Within this 

department, several focus groups exist. The focus of this research is first on the nephrology group 

of the department. This focus group is at the moment of writing working on a new carepath for 

patients with chronic kidney injury in which this study can also be used. Besides that, every focus 

group within the internal medicine department treats different kinds of patients, which also 

require a different type of care. Therefore, we should first focus on one division, and when 

possible, expand the method found for this focus group to other focus groups. Nevertheless, we 

should keep in mind that this approach requires a generic solution type for all focus groups, to be 

able to expand.  
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2. Context analysis 
In this chapter, the context analysis for conducting the research will be given. The goal of this 

chapter is to answer the following research question: 

What is the potential effect of using health conditions to determine the type of appointment? 

This research question has two sub-research questions namely: “Which health conditions should 

lead to a certain type of appointment?” And “How many appointments can be prevented based on 

these health conditions?” By answering these questions, we see what the effect of criteria-based 

appointment scheduling can be on the nephrology department of Isala. 

2.1 Current planning method 
In this section, the current appointment planning method for patients in the internal medicine 

department at Isala is described. Based on a full-time contract, an internist should have seventeen 

consultation hours per week. Several ancillary activities are subtracted from these 17 hours, 

which results in ten to twelve consultation hours per specialist per week, based on a full-time 

contract. These ten to twelve hours are open for consultations with patients.  

Mainly four types of consultations are used for appointment planning. A New patient 

appointment, which takes half an hour and is meant for patients that visit an internist for the first 

time. Control patient appointment, which takes fifteen minutes and is meant for a follow-up 

appointment. A long phone consultation hour, which also takes fifteen minutes and is used parallel 

with a physical consultation hour, and a short phone consultation, which takes five minutes, and 

is meant to quickly discuss things with a patient, for example, the results of a blood test.  

Appointments are planned mostly by the secretaries of the sub-departments of the internal 

medicine department. Each specialist has a pre-defined weekly schedule where the types of 

appointments are pre-set to be scheduled. We will refer to this pre-defined schedule as the 

blueprint for the rest of this report. The ratio between each type of appointment is defined once 

defined in history, and all blueprints are built upon the historic determination. 

From interviews with planners and secretaries, it turned out that they try to stick to the blueprint, 

but in many cases, this is not doable. For example, it often happens that there are more patients 

for a follow-up appointment than patients coming for the first time. In that case, a slot for a new 

patient is filled up with two follow-up patients. 

Currently, the appointments are scheduled according to the first come first serve (FCFS) principle. 

When an appointment should be planned, the first available slot available at the right specialist is 

found and the appointment is placed in that time slot.  

The current planning method is not designed to deal with short-term or even walk-in-based 

appointment planning. Therefore, in this research, a planning method, based on literature is 

developed to deal with patients only having an appointment based on certain criteria. 

2.2 Chronic Kidney Disease 
The focus group for this research is the group with chronic kidney disease, treated by the 

nephrology section of the Internal medicine department. Chronic kidney disease (CKD) is defined 

as the presence of an abnormal kidney function (eGFR) and an abnormal marker of kidney disease, 

for at least three months [5]. An important marker is the albumin-creatinine ratio (ACR). 

Dependent on these markers and the eGFR, different risk categories exist. In Figure 3, the risk 

table is given for the eGFR and ACR values.  
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Figure 3: Chronic Kidney Disease risk table [6]   

In Figure 3, albuminuria stands for the ACR marker. We see that for the eGFR, six risk levels exist, 

and for the ACR three. The typicality of CKD is that disorders arise only when the kidneys have 

lost a big part of their function. This makes it important to measure and monitor people with CKD 

closely.  

2.2.1 Criteria for an Appointment 
In this subsection, we will discuss the medical criteria based on which to determine whether a 

consultation is needed or not. With these criteria, we look into data on how many consultations 

have taken place while there was no medical indication to have one.  

Together with nephrologists, the criteria that indicate the need for an appointment have been 

determined. For patients with CKD, the following indicators are important to keep track of: 

• eGFR 

• ACR 

• PCR 

• Blood pressure 

• Hemoglobin 

• Ferritin 

• Potassium 

• Calcium 
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• Phosphate 

• PTH 

• Sodium 

A distinction can be made between indicators based on which can be determined whether a 

patient suffers from CKD and values that can be affected by CKD. Indicators based on which can 

be determined whether a patient suffers from CKD are the eGFR, ACR, and PCR. eGFR stands for 

estimated glomerular filtration rate and is a measurement of how well your kidneys are working 

[7]. ACR stands for albumin-creatinine ratio. The ACR says something about the amount of 

albumin in the urine. Albumin is the most common type of protein in urine [8]. Persistently 

increased protein in the urine is the principal marker of kidney damage and acts as a sensitive 

marker for among others, CKD. Together with the ACR, PCR indicates the albuminuria categories 

in CKD, as shown in Figure 3. PCR stands for protein-creatinine ratio and indicates the amount of 

all proteins in urine. The PCR is also an important indicator for kidney diseases.  

The eGFR, ACR, and PCR give input to determine the kidney function of a patient. The table in 

Figure 3 indicates the kidney function of a patient and whether a patient should be seen by a 

nephrologist or that the patient can be treated by a General Practitioner (GP). 

If someone is diagnosed with CKD, this can affect several other functions of the human body. To 

keep track of the effects of CKD on the rest of the body of the patient, several other blood values 

are monitored while the patient is under the supervision of a medical specialist. These indicators 

are blood pressure, hemoglobin, ferritin, potassium, calcium, phosphate, PTH, and sodium. 

Besides these values, the eGFR, ACR, and PCR are monitored during the supervision of a medical 

specialist. The values of these indicators determine whether a patient needs consultation or not.  

Together with a nephrologist, the critical values of each of the indicators are determined. A 

distinction is made for values that indicate a check of the patient file, after which a nephrologist 

can decide to have a consultation with a patient, and values that directly indicate a consult is 

needed. 

The criteria mentioned above indicate whether it is needed for a patient to have an appointment 

with a specialist or not. The values of these criteria can be divided into groups. If a value does not 

indicate an appointment at all, it is in the green zone. If a value indicates to have a look at the 

patient file, it is in the yellow zone. If a value gives a direct reason to have an appointment, it is in 

the red zone. 

In Table 2, the values and indication in which zone they are given. This division is verified with 

one of the nephrologists and discussed and approved by the nephrologists working at Isala. 
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Table 2: Criteria values 

Criterium Green zone Yellow zone Red zone 
Progression eGFR <15% compared to 

previous measure 
- ≥15% compared to 

previous measure 
ACR <3,0 3-30 ≥30 
PCR <0,15 0,15-0,5 ≥0,5 
Syst. Blood pressure 101-130 131-140 ≥141 or ≤100 
Potassium 3,0-3,4 3,5-5,5 <3,0 or >5,5 
Calcium 2,20-2,65 2,10-2,19 <2,10 or >2,65 
Phosphate <1,50 1,50-1,80 >1,80 
PTH 7,0-35,0 <7,0 

>35,0 
- 

Bicarbonate ≥20 18-19,9 <18,0 
Natrium 135-145 130-134 <130 or >140 
Anemia Man: ≥8,5 

Woman: ≥8,5 
  

2.3 Data analysis 
In this section, the data analysis we made is described. First, we will describe how we got the data 

and what the data requirements are, second, we will describe how we transferred the data to make 

it usable for our analysis, and third, the actual data analysis will be discussed.  

2.3.1 Data export 
In this data analysis, we wanted to know which CKD patients had a consultation with a 

nephrologist or nursing specialist at the internal medicine department in 2022, while having no 

medical indication to have a consultation. To do so, we needed appointment and laboratory data, 

retrieved from the ERP system of Isala. Isala uses a data transfer program to transfer the data 

from the ERP into usable comma-separated values (CSV) files. In this program, a search string can 

be built up containing the requirements for the data needed. In our case, we needed data from 

patients diagnosed with CKD. This is specified in the data transfer program as patients who had 

at least two times an eGFR value lower than 60, or an ACR/PCR value that indicated for a 

consultation hour. We wanted to look at the year 2022 since this year is representative of other 

years and is not affected by for example COVID-related modifications in appointment types or 

appointments. Besides that, patients should have an eGFR measurement in 2022, otherwise, they 

probably do not have CKD. Also important to mention is that patients who do not want their data 

to be used in research are excluded from the search in this research, but since this percentage is 

really low (>0.1%), the effect on the outcomes of this research will be minimal. 

Next, we wanted to know how many appointments each type of patient had. Therefore, we 

included every appointment the patient had in the period from the first of January 2021 till now. 

Later, we filtered on 2022, to only use the appointments in this year. For each indicator, we want 

to know all measurement values of all patients included in the data. Each measurement is valid 

for one year, so, therefore, every measurement from the first of January 2021 is included in the 

data. For the eGFR, we even needed more data than from this date. This is because a 25% decrease 

in eGFR over the last five years is also an indication for an appointment. Therefore, the eGFR 

measurement values from the first of January 2017 are included in the data set.  

With this data set, we have information about how many and which type of appointments each 

patient had, and all required medical values known from these patients.  
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2.3.2 Data transformation 
The data that comes out of the data transfer program of Isala cannot directly be used for our data 

analysis, since not all medical data is linked to the appointments. We first needed to transform 

several parts of the data to be able to make the analysis. The most important transformation was 

to link the most recent measurement values to each appointment. This is needed to determine 

whether a consultation should have taken place, the most recent data based on which decision can 

be made should be known. To do so, a Visual Basic (VBA) script has been written to link the most 

recent measurement values to the appointments. Furthermore, the progression of the eGFR value 

should be monitored. Therefore, it has been calculated whether the eGFR has decreased by more 

than 15%, compared to the previous measurement, and thus indicates to have a consultation. Also, 

the albuminuria classification has to be determined. To do so, the values of the ACR and PCR are 

combined to determine the albuminuria classification the patient had at the moment of the 

appointment.  

With these data transformations, the dashboard can be made. The dashboard will be discussed in 

the next section.  

2.3.3 Data loading 
With the data retrieved from the data transfer program, the data can be loaded into a dashboard 

to analyze the number of appointments that are taking place while having no specific reason for 

it. The dashboard can be seen in Figure 4. 

 

Figure 4: Data dashboard to see the potential of other planning techniques 

In Figure 4, the dashboard can be seen. In the top left corner, we filter the data by year, in this 

case, we selected the year 2022. Below the year filter, the filter for the eGFR and ACR, and PCR 

(AKR and EKR in Dutch) are shown. For each filter, the categorized values can be selected. Below 

are the filters for eGFR, ACR, and PCR, the filters for the rest of the measurement values can be 

applied. In the center bottom, the type of DBC can be selected. DBC stands for Diagnose behandel 
combinatie or Diagnosis treatment combination. This is a classification of the diagnosis and 

treatment a patient's care fits in. Based on a DBC, the health insurer pays an amount of money for 

the care of the patient to the hospital. Three groups of DBCs can be separated. Patients with CKD 

(Nefro-CKD), patients with nephrology-related diseases, except CKD (Nefro-Overig), and patients 
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with a disease not specifically for the nephrology specialism, like common internal medicine-

related diseases. In the table called 'CKD classificatie', the same groups as in Figure 3 can be 

identified. Based on this table, the patients that had an appointment in secondary care, while 

having a CKD indication to be treated in primary care can be filtered out.  

At the top, four numbers can be identified. The most left number, titled 'Aantal afspraken 

gebaseerd op filters' represents the number of appointments that took place, based on all filters 

used on the left of the dashboard. Next to that, the 'gemiddelde duur afspraak' calculated the 

average length of an appointment. The total number of appointments, based on the filters of the 

CKD classification table can be seen at the top right corner of the dashboard. This number shows 

the number of appointments based on the CKD risk classification filter. Finally, the number titled 

'totaal aantal afspraken' represents the total number of appointments. This number is the total 

number of appointments that took place within the selected period. 

2.3.4 Analysis of the Dashboard 
In this section, the outcomes of the dashboard will be analyzed. To do so, different filter 

combinations have been applied to select the right group of patients. The outcomes from the 

dashboard are put in Figure 5, to get an overview of the division of patients having an appointment 

while having no medical indication for it. 
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Figure 5: The division of appointments 

 

In Figure 5, one can see that the total number of patients is split up into three groups, based on 

their DBC:  

• Nephrology-CKD 

• Nephrology-non-CKD 

• Other non-nephrology-related appointment 

Starting with the third group, this group is left out of the analysis. Since these patients visited a 

nephrologist without nephrology-related reasons, it is unknown whether their appointment took 
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place with valid medical reasons or not. A closer look has been taken at the patients with CKD, and 

the patients with other nephrology-related diseases. Patients with CKD can be divided into 

patients allowed to be treated in primary care and patients who should be treated in secondary 

care. This is based on their eGFR and ACR values, and with Figure 3 their risk can be determined. 

It turns out that 578 of the 3456 appointments (17%) took place while a patient can be treated in 

primary care. 

The second group should be treated in secondary care. For this group, we examined whether the 

medical criteria indicated for a patient file review or an appointment. 226 of the 3090 

appointments (7%) took place while the criteria did not indicate it. When looking at the group 

that had a medical indication for an appointment, a distinction can be made between 

appointments where all criteria were in the yellow zone and appointments where at least one 

value was in the red zone. At 755 out of the 2728 (28%) appointments, all criteria values were in 

the yellow zone, which means 2181 of the 2864 appointments (72%) took place with at least one 

value directly indicating an appointment. 

2.4 Conclusions 
In this chapter, our main goal is to investigate what the potential is of implementing criteria-based 

appointment scheduling. In total, 4784 appointments took place in 2022 among nephrology 

patients. If the appointments without medical indication of all groups are added, it can be 

concluded that 904 (19%) appointments took place while there was no medical indication at all. 

On top of that, if all values in the yellow zone are added, it can be concluded that 1186 

appointments (25%) took place while at least one value is in the yellow zone, and the others are 

in the green zone. For these appointments, the patient file should be inspected, after which can be 

determined whether an appointment is needed or not, or a digital appointment can take place. 

Finally, only 2781 of the 4784 (57%) appointments had a direct medical indication to have an 

appointment. This means that there is a large potential to improve the value-based planning 

approach, given the large portion of appointments that take place without medical indication for 

it.  
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3. Literature review 
In this chapter, the literature review performed will be discussed. In the literature review, we 

answer the following question:  

   What information does the literature provide about outpatient clinic 
blueprint scheduling? 

This will be done by first looking at where this research is placed in the framework of Hans et al. 

[9]. After that, existing literature on blueprint scheduling will be discussed. In the last section, 

literature on stochastic modeling related to healthcare is discussed.  

3.1 Positioning of this research 
In this section, the positioning of this research in the field of OR in healthcare will be discussed. 

An important framework in this concept is the work of Hans et al. [9], who propose a generic 

framework for health care planning and control.  

The framework consists of two parts; the managerial areas are the columns of the framework, and 

the hierarchical decompositions form the rows of the figure. The framework can be seen in Figure 

6. 

 

Figure 6: Framework for healthcare planning and control (derived from [9]) 

When taking a look at this research, and where to put it in the framework, this research fits in the 

resource planning area of management. This research concerns the capacity planning of the 

internists and nursing specialists of the internal medicine department at Isala. When looking at 

the hierarchical level of the framework, this research can be placed on the tactical level. This is 

because this research focuses on creating a blueprint schedule for the caregivers of the internal 

medicine department.  
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3.2 Increasing variability? 
The goal of this research is to implement a value driven appointment scheduling method, by 

adding an extra step in the appointment scheduling process, namely the check whether an 

appointment is needed or not. This will probably increase the variability in patient demand. The 

question is how to deal with this variability. Therefore, we search for literature that describes this 

and can give us a direction for how to deal with this.  

In the field of operations research, many analytical studies have been executed finding the optimal 

algorithm for appointment scheduling [10][11]. In these studies, the main source of variability is 

mostly the length of the appointment. Other sources of variability are the number of patients to 

be scheduled, presence of a medical specialist and breakdown of equipment[12] 

Hopp and Spearman [13] are suggesting that after reducing variability by minimizing no-shows 

and last-minute cancellations, variability can be counterbalanced by the flexibility of patients and 

resources. Their idea is to reduce the effects of variability by adapting to the idea that patient 

demand might be flexible, and therefore also the capacity of resources should be flexible. For 

example, a medical specialist can spend unanticipated idle time by doing administrative work or 

other pending tasks. Implementing flexible production is also adapted by Toyota and other 

manufacturing facilities [14], [15]. 

Kuiper et al. [16] did a multiple case study in which they tested to work with more loose schedules. 

In Figure 7, we can see the models tested in the study. Most outpatient clinics work with the 

baseline scenario, in which the slots are planned tight, and all non-scheduled tasks have to be done 

outside the appointment hours.  

 

Figure 7: models tested by Kuiper et al.[16] 

The most interesting model of Kuiper et al. [16] is S2, where the slots are planned more loose, and 

the idle time is used for substitute tasks. This is most applicable to our case, where we also have 

to deal with fluctuations in patient demand.  
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3.3 Blueprint scheduling 
One of the goals of this research is to create an optimal blueprint schedule for the internists and 

nursing specialists of the internal medicine department of Isala. Therefore, a literature review has 

been done on the research done earlier on blueprint scheduling, especially in outpatient clinics, 

and with different patient types. This is done by first analysing the different types of blueprint 

there are available. When these are identified, we dive deeper into the most suitable blueprint for 

this study, to find out what the optimal way of blueprint scheduling for this research is. A 

technique that has been used for this is the snowballing technique. The outcomes of this review 

will be discussed in this subsection.  

Healthcare planning and control is becoming increasingly popular since expenditures are rising 

and therefore healthcare organizations are forced to organize their processes more efficiently and 

effectively [9]. This also causes an increased interest in blueprint scheduling.  

3.3.1 Types of Blueprints 
In literature, different types of blueprints are discussed. The difference is mostly caused by the 

level of detail within the description of the blueprint.  

Zomer [17] introduced a framework for blueprint classification. This framework consists of two 

dimensions. The first dimension is the level of detail of the blueprint. This aspect is important for 

choosing a blueprint since it has a major impact on the way of working [17]. The subcategories 

used in the framework are listed below: 

• Percentages for patient types: This blueprint has the lowest level of detail. The blueprint 

only consists of the percentage of capacity assigned to a certain patient type.  

• Block scheduling: The blueprint consists of blocks of patient types, with a start- and end 
time. 

• Block scheduling with a number of patients: This blueprint also consists of blocks with 

patient types, but the number of patients to treat in each block is fixed. 

• Slots filled with appointment types: The blueprint consists of slots with a start and end 
time and a specific patient type assigned to the slot. This is the most detailed blueprint.  

The second dimension of the framework consists of the KPIs of a blueprint[17]. This means each 

blueprint is generated to have optimal values for a certain KPI. The KPIs discussed in Table 3 are 

used for the framework of Zomer. The framework is shown in Figure 8.  
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Figure 8: Blueprint framework, derived from [17] 

In Figure 8, one can see that most research on blueprints has been done on the level of detail of 

block scheduling. Little research has been done on the ‘percentage of patient types’ blueprints. 

And on the ‘Block scheduling with a number of patients’ type of blueprints. More research has 

been done on the ‘Slots filled with service types’ type of blueprint and on applying different 

appointment rules. This research focuses on determining an amount of slots to open for a certain 

patient type, a more detailed type of the percentage of patient types blueprint discussed in Hulshof 

et al. [18] and Aslani et al. [19].  

Hulshof et al. [18] made a model to determine the percentages of patient types the blueprint 

should consist of. The method they used is a Mixed Integer Linear Program (MILP), which is solved 

in AIMMS. The objective of this model is to minimize the number of patients waiting in a queue. 

Aslani et al. [19] developed a robust optimization model to create a blueprint that divides the 

patient groups over the blueprint.  Aslani et al. [19] created a robust optimization model, not using 

demand distributions to base the optimal decision on. This is not possible for the problem of this 

thesis, since we want to create a model to use for the future, not knowing what the exact patient 

demand will be.  

Nguyen et al.[20] wrote an extension to a previous paper[21], to include demand uncertainty by 

formulating a stochastic linear optimisation model. In this paper, they also used chance 

constraints to deal with uncertain parameters. A chance constraint makes sure that a certain 

probability is lower than a fixed value [20]. This can also be used for the model we create, since 

we want to ensure the overtime to be lower than a certain percentage. They first develop a 

deterministic model that finds the required capacity over a finite horizon, and use a stochastic 

model to prove the approximation of the deterministic model is reasonable.  

A similar approach is used by Leeftink et al. [22]. They design a blueprint schedule for a multi 

disciplinary clinic with open access, where all appointment schedules are jointly optimized. To do 
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so, they first solve a deterministic model, after which stochasticity is introduced using the Sample 

Average Approximation method to make the solution more robust.  

From Figure 8 and literature we found, we see that little research has been done on the percentage 

of patient types within a blueprint, using a stochastic model to deal with demand uncertainty. And 
the research that has been done does not fit the problems that occurred within Isala. Therefore, 

we combine the methods found in literature to provide a blueprint scheduling method, optimal 

for the problem at the Internal medicine department of Isala.  

3.3.2 Blueprint KPIs 
Several KPIs are commonly used in literature for designing blueprints. The most important KPIs 

are access time, waiting time, utilization, and overtime. An overview of these KPIs with their 

description is given in Table 3 [23]. 

Table 3: Blueprint KPIs 

KPI Description 

Access time The time during which a patient is waiting for his/her 
appointment at home. [23] 

Waiting time The time during which a patient is waiting for his/her 
appointment at the day of appointment in the hospital [23] 

Idle time The occupancy of the resources (mostly caregivers)[24] 
Overtime The time caregivers have to work outside regular hours[24] 

 

3.4 Conclusion 
In this chapter, we want to find relevant literature to answer the following research question: 

   What information does the literature provide about optimal  outpatient clinic 
blueprint scheduling? 

To answer this question, we first positioned this paper in the framework of [9], after that, we 

identified the different types of blueprints, and then used the snowballing technique to find more 

in depth information about optimal blueprint scheduling that fits this research most. Finally, we 

identified the most important KPIs optimize the blueprint on. From this literature review, we 

conclude that we are going to use a stochastic optimization model to find the optimal blueprint 

for the nephrology department of Isala, optimizing both the amount of overtime and idle time.  
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4. Modelling technique 
In this chapter, the stochastic model to find the optimal blueprint we created will be explained. 

This will be done to answer the following research question:  

How can we model the planning of dynamic care paths within the outpatient 
clinic? 

The answer to this question will lead to a blueprint schedule for the internists of the internal 

medicine department of Isala. First, the assumptions made will be described. Second, the 

mathematical model is formulated. Third, the solution approach is discussed, after which we will 

explain how to formulate a blueprint from the model output. Finally, the conclusion of this chapter 

is given. 

4.1 Model description 
In this section, the model created is described in detail. The goal of this model is to create the 

optimal blueprint, containing the number of appointments of each patient type per week, by 

balancing the overtime and idle time. With the blueprint, the needed time for all patient types per 

week can be determined.  

The model is a 2-stage stochastic program. The difference between these two will be explained 

later in this chapter. For now, we will describe the stochastic model since this model is an 

extension of the deterministic model.  

The decision variables of the program are divided into a first- and second-stage variables. The first 

stage variable has no scenario as an index, so this variable should be determined independently 

from the scenarios. The second stage variables depend on the scenario, which means that the 

values of these variables differ between scenarios. With this type of modeling, it is possible to deal 

with uncertainty in certain parameters. In this model, the demand per week for each type of 

patient follows a distribution and is not constant, while the determined blueprint is similar for 

each week.  

The outcome of the model is a blueprint for one week that can be repeatedly used by internists 

and planners to deal with an uncertain demand of types of patients. The model is described in 

detail in the following sections.  

4.1.1 Model assumptions 
In this section, the assumptions needed for the model are described. To make the model as 

realistic as possible, the assumptions made are kept to a minimum, but it is not feasible to model 

the whole reality in this model. The assumptions made for the model are: 

• The model uses historical appointment data based on empirical distributions of the 

demand per patient type per period. 

• The demand per week is generated from appointment data. It is assumed that the week 
the appointment took place is also the demanded week for an appointment. This 

assumption can be biased by the historical capacity of the outpatient clinic. 

• The model only creates a division for control appointments, not for new patient 

appointments. The time spent on new patient appointments is subtracted from the 

capacity an internist has. 

• It is assumed that not all appointments in the ‘yellow zone’ take place. It is assumed that a 
certain percentage of the appointments that have criteria in the ‘yellow zone’ also actually 

take place since an internist takes a look in the patient file of that patient and determines 
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whether a patient needs an appointment or not. This number is based on discussions with 

nephrologists and the change a patient needs an appointment or not. 

• It is assumed that if a patient needs an appointment, this appointment takes 15 minutes. 

In this case, it does not matter whether this appointment takes place physically or by 

phone.  

• It is assumed that all patients in the ‘other’ group need an appointment of 15 minutes. 
Since this group has not been analysed and therefore no decision on whether this group 

needs an appointment or not has been made. 

4.2 Mathematical model 

4.2.1 Sets 
The set notation is used, where I are the patient types, R are the resources (internists) and S is the 

set of scenarios for which the model is run. The sets and their description can be seen in Table 4. 

Table 4: Sets used in the MILP model 

Set Description 

  𝒊 ∈ 𝑰 Set of patient types 
  𝒓 ∈ 𝑹 Set of resources 
  𝒔 ∈ 𝑺 Set of scenarios 

 

4.2.2 Parameters 
Table 5 shows the parameters used in the MILP model. 𝐷𝑚𝑑𝑖,𝑟,𝑠  is the weekly demand of a certain 

patient type and internist. 𝐶𝑎𝑝𝑟 is the capacity per internist per week.  

Table 5: Parameters used in the MILP model 

Parameter Description 

Dmdi,r,s Weekly demand of patient type i at internist r 
in scenario s 

Capr Available time slots per week of internist r 
α Parameter to set the max percentage of 

overtime slots 
Weightover Weight assigned to the overtime part of the 

objective 
Weightidle Weight assigned to the idle time part of the 

objective. 
 

4.1.3 Variables 
Table 6 shows the variables used in the MILP model. The goal of the model is to balance the 

number of slots in idle time 𝑃𝑖𝑟𝑠  and extra slots 𝑂𝑖𝑟𝑠  needed to cover the patients in all scenarios.  

Table 6: Variables used in the MILP model 

Variable Description 

Xir # slots opened for patient type i at internist r 
Yirs # slots of patient type i at resource r used in 

scenario s 
Oirs # extra slots needed for patient type i at 

internist r in scenario s 
Pirs # empty slots for patient type i at internist r in 

scenario s 
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Zirs Binary variable indicating whether extra slots 
are needed for patient type i in scenario s (1) 
or not (0) 

Β Binary variable to determine whether alpha is 
met (0) or not (1). 

 

4.1.4 Objective 
The goal of the model is to minimize both the idle time of the internists and the extra slots needed 

to treat the patients. The second part of the objective gives a penalty if alpha is exceeded. 

Therefore, in the objective, the sum of both is minimized over all scenarios, resources, and patient 

types.  

 

min ∑ ∑ ∑ (𝑊𝑒𝑖𝑔ℎ𝑡𝐼𝑑𝑙𝑒 ∗ 𝑃𝑖𝑟𝑠)
𝑠𝑟𝑖

+ ∑ ∑ ∑ (𝑊𝑒𝑖𝑔ℎ𝑡𝑜𝑣𝑒𝑟 ∗ 𝑂𝑖𝑟𝑠)
𝑠𝑟𝑖

+ β ∗ 10000

∗ (
𝟏

𝑺 ∗ 𝑰 ∗ 𝑹
∗ ∑ ∑ ∑ 𝑍𝑟𝑠𝑖

𝑖𝑠𝑟
− α) 

 

4.1.5 Constraints 
Several constraints have been formulated to ensure the model is solved as preferred. The 

constraints will be explained one by one. Constraint (1) ensures that no more slots are used than 

are available in regular time. The number of slots opened for each patient type is the first stage 

decision in this model, and the number of slots used is the second stage. Constraints (2-3) make 

sure that in a certain percentage (α) of scenarios, enough slots are opened to treat patients in 

regular time. 𝛽 is a binary variable that becomes 1 if 𝛼 is not met, enabling to penalize the objective 

when this is the case. Constraint (4) makes sure the number of opened slots does not exceed the 

capacity of each internist. Constraint (5) calculates the idle time, and constraint (6) makes sure 

all demand is met. Finally, constraints (7) and (8) determine the value of Z, this is done through a 

bigM constraint, since Z is either 1 if the number of overtime slots is larger than 0, or 0 if the 

number of overtime slots is 0.  
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Table 7: Constraints 

Constraint Description 

𝒀𝒊𝒓𝒔 ≤ 𝑿𝒊𝒓  ∀𝒊, 𝒓, 𝒔 (1) Do not use more regular slots than 
available in regular time 

𝟏

𝑺 ∗ 𝑰
∗ ∑ ∑ ∑ 𝒁𝒓𝒔𝒊

𝒊𝒔𝒓
− 𝛂 < 𝑩𝒊𝒈𝑴 ∗ 𝜷 

(2) Check whether the number of 
scenarios in overtime is larger or 
bigger dan α. 

 

𝛂 −
𝟏

𝑺 ∗ 𝑰
∗ ∑ ∑ ∑ 𝒁𝒓𝒔𝒊

𝒊𝒔𝒓
< 𝑩𝒊𝒈𝑴 ∗ (𝟏 − 𝜷) 

 

(3) Check whether the number of 

scenarios in overtime is larger or 

bigger dan α. 

 

∑ 𝑿𝒊𝒓 ≤ 𝑪𝒂𝒑𝒓 ∀𝒓
𝑰

𝒊=𝟏
 

(4) Capacity constraint 
 

𝑷𝒊𝒓𝒔 = 𝑿𝒊𝒓 + 𝑶𝒊𝒓𝒔 − 𝑫𝒎𝒅𝒊𝒓𝒔, ∀𝒊, 𝒓, 𝒔 (5) Idle time constraint 
 

𝒀𝒊𝒓𝒔 + 𝑶𝒊𝒓𝒔 = 𝑫𝒎𝒅𝒊𝒓𝒔 ∀𝒊, 𝒓, 𝒔 (6) Demand constraint 
 

𝑶𝒊,𝒓,𝒔 ≤ 𝑩𝒊𝒈𝑴 ∗ 𝒁𝒊𝒓𝒔 ∀𝒊, 𝒓, 𝒔 (7) Determine value of Z 1 

𝒁𝒊𝒓𝒔 ≤ 𝑶𝒊𝒓𝒔 ∀𝒊, 𝒓, 𝒔 (8) Determine value of Z 2 
𝑿𝒊𝒓 ∈ ℤ +  ∀𝒊, 𝒓 

𝒀𝒊𝒓𝒔 ∈ ℤ +  ∀𝒊, 𝒓, 𝒔  
𝑶𝒊𝒓𝒔 ∈ ℤ +  ∀𝒊, 𝒓, 𝒔 
𝑷𝒊𝒓𝒔 ∈ ℤ +   ∀𝒊, 𝒓, 𝒔 
𝒁𝒊𝒓𝒔 ∈ {𝟎, 𝟏)  ∀𝒊, 𝒔 

(9) Side constraints 

 

4.3 Solution approach 
In this section, the solving method of the model is explained. We are going to use the same 

methodology as [22], so first, a deterministic solution to the problem is determined based on an 

average demand scenario, and after that, SAA is used to create a more robust solution to the 

problem that can be applied in practice. The deterministic problem is discussed in the first section, 

and the Sample Average Approximation is discussed in the second section. 

4.3.1 Deterministic solution 
To find a solution to the problem, we first solve a deterministic version of the model, in which we 

consider an average scenario only. The average is determined from the data from the data 

dashboard of Chapter 2, where the total number of patients who had an appointment at an 

internist in 2022 is divided by the number of weeks this internist worked in 2022.  

Because we run the model only for one scenario, the Constraints (2) and (3) are removed from 

the model, and the objective is slightly adapted:  

min ∑ ∑ ∑ (𝑃𝑖𝑟𝑠 + 𝑂𝑖𝑟𝑠)
𝑠𝑟𝑖

 

where s is a set of 1 scenario. 

Now, the model finds the optimal division of overtime and idle time, given the average patient 

demand per week. This model will find a feasible solution to the problem. The quality of this 

solution is assessed by simulating 1000 demand scenarios and evaluating the performance of the 

system with the solution out of the deterministic version of the model.  
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4.3.2 Stochastic optimization 
Since the patient demand fluctuates over the weeks, a deterministic solution probably does not 

give the most robust solution to use in practice. Therefore, we want to optimize the solution for 

multiple patient demand scenarios. Therefore, the model is solved as a two-stage stochastic 

model, considering multiple patient demand scenarios. 

The stochastic model cannot be solved in reasonable time. Therefore, we use Sample Average 

Approximation (SAA). The SAA algorithm approximates the objective value by evaluating a 

sample of N scenarios. These scenarios are randomly drawn from the scenario population, in our 

case based on the patient demand distributions. M runs of N scenarios are performed, and the 

outcomes of the optimal run out of the M runs are chosen to test the performance for a very large 

(say 10000) number of scenarios. The optimal run is determined based on the average of the M 

runs, and the outcome that differs least from the average is chosen as optimal. In this way, the 

performance of the model can be tested, and performance in reality is simulated. For more 

information on SAA, please refer to [25]–[27]. 

Using the SAA algorithm also allows us to say something about parameters such as the allowed 

fraction of time in which overtime is needed, through monitoring the fraction of scenarios that 

incur overtime. This is a useful parameter since overtime has a large impact on the workload of 

the internists.  

4.4 From model to blueprint 
The optimal outcomes of the optimization are used to create a blueprint for the nephrologists of 

the internal medicine department of Isala. With the values of 𝑋𝑖,𝑟  from the model, the number of 

slots to reserve for each patient type and internist can be determined. With these numbers, the 

schedule per week for an internist can be made. An example of a blueprint is given in Figure 9. In 

this Figure, we see that a number of slots are assigned to a nephrologist for each patient group. 

The total number of slots opened for each nephrologist is shown as a number on top of each 

column. The grey dots shown for each nephrologist represent the capacity this nephrologist has 

to treat control patients. It is important to note we only talk about the number of control patients, 

so the number of new patients and short phone consultations are left out of the blueprints. These 

are also not calculated by the model, since these types of appointments are less relevant for the 

problem we are trying to solve in this research. Slots for control patients all take 15 minutes. 

Figure 9: Example of a blueprint composed out of the outcomes of the 
model. 
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4.5 Conclusion 
The research question to answer in this chapter is: 

How can we model the planning of dynamic care paths within the outpatient 
clinic? 

We answered this question by developing a stochastic mixed integer program, which has as the 

most important input the patient type demand, capacity of caregivers, and objective weights. 

The output of the model is an optimal blueprint in which the number of slots per patient type 

opened to treat patients is given.  
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5. Experiments and results 
In this chapter, the research question about the implementation of the criteria-based appointment 

planning method is answered. The research question is as follows: 

How can criteria-based appointment scheduling be implemented at the internal medicine 
outpatient clinic? 

 
This question is answered by setting up an experiment design, through which we see what the 

best way to implement the abovementioned method is.  

5.1 Experimental design 

5.1.1 Model input 
In this section, the input values for the model are discussed. Each internist has a capacity, based 

on the number of hours in his or her contract, and for each patient type, a demand distribution is 

known for the number of patients per week needing an appointment. The demand distributions 

of each patient type are shown in Table 8. It should be noted that these distributions are truncated 

and only have values larger or equal to 0. In Appendix A, the distribution tests and goodness of fit 

statistics are shown, with an explanation. For all patient types, the normal distribution is chosen, 

except for the CKD-Yellow patient type, for this patient type, the lognormal fits best.  

Table 8: Input parameter demand distribution 

Patient type Distribution Mean number of 
patients 

Standard deviation 

CKD-Red Normal 37.50 10.20 
CKD-Yellow Normal 19.60 6.20 
NCKD-Red Normal 14.80 4.58 
NCKD-Yellow Normal 8.29 3.90 
Other Normal 14.31 4.59 

 

Besides the demand distribution among the patient types, also the capacity of an internist needs 

to be determined. This is done based on the capacity set at the beginning of each year for an 

internist. This is called the norm. The norm consists of the total number of outpatient clinic hours 

an internist should spend. To get a reliable number of hours an internist should spend on control 

patients, the focus group of this research, the number of hours per week an internist spends on 

other types of patients should be subtracted from the norm hours. The calculation of the number 

of CP appointments an internist can handle per week is shown in Table 9.  

Table 9: Calculation of capacity per nephrologist. 

Nephrologist Total capacity 
per week 
(hours) 

Time spent on 
NP and TC per 
week (hours) 

Time available 
for CP’s 
(hours) 

# CPs that can 
be planned 
(rounded) 

Nef1 10.0 3.9 6.1 24 
Nef2 4.0 0.2 3.8 15 
Nef3 9.9 1.3 8.6 34 
Nef4 7.9 1 6.9 28 
Nef5 13.0 0.0 13 52 
Nef6 11.1 1.4 9.7 39 
Nef7 13.8 1.2 12.6 50 
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The next parameter to determine is the allowed percentage of scenarios for which overtime is 

allowed. After discussions with different stakeholders within the internal medicine department 

of Isala, it is chosen to use an allowed percentage of allowed overtime of 10%, resulting in a value 

for α of 0.1. Later in this chapter, an experiment on the value of α is discussed. 

5.1.2 Model parameter settings 
For the SAA algorithm, we solve the model for N runs and M scenarios. These numbers have of 

large influence on the experimental design and reliability of the proposed solution.  

The value of M is determined based on a reasonable solving time of the model, since the 

researcher, and also Isala in the future need to run the model within a reasonable time frame. On 

the other hand, the model does not need to be run daily, so the runtime does not need to be very 

short. Also, the outcomes of the model need to be reliable. For the experiments, the number of 

scenarios (M) is set to 1000. The model is solved with CPLEX 20.1, for 1000 scenarios, the runtime 

of the model is approximately 25 minutes. 

The model uses appointment data based on a distribution generated out of appointment data for 

2022. We assume that data from 2022 is representative, since this year lies not too far in the past, 

and there are no factors such as COVID-19 that had a major impact on the appointments that year. 

Moreover, the weekly patient arrivals for the whole department follow a distribution based on the 

data of 2022. These arrivals are divided among the internists based on the working hours each 

internist has in a week. This is done to have enough data available to generate a reliable patient 

arrival probability. 

The number of runs is determined based on the so-called ‘replication/deletion approach’, 

described in [28]. This method determines the required number of runs based on the width of the 

confidence interval compared to the mean. The calculations for the number of runs can be found 

in Appendix B: Number of runs. The minimal number of runs required according to the 

‘replication/deletion’ approach is 3. After the replication/deletion approach, we also want to look 

at the number of runs based on the number of runs after which no ‘new’ blueprints are generated. 
This is done by running the model 25 times, and after the model does not find a new blueprint, the 

number of runs is determined. The number of runs after which no ‘new’ blueprint was found is 6. 

So, for the experiments in this thesis, we use 6 runs. 

This means, that after 6 runs with 1000 scenarios, the variables with an optimal outcome are 

chosen and tested for a very large number of scenarios.  

5.1.3 Experiments 
Various experiments are executed. We first analyse and compare the deterministic and stochastic 

solutions on performance. To compare the deterministic and stochastic solutions, we determine 

the value of the stochastic solution (VSS) and the Expected Value of Perfect Information (EVPI) 

[29]. We further divide the experiments into theoretical experiments and practical experiments. 

To further analyse the model, theoretical experiments are performed to see what the effects of 

certain constraints and model parameter settings are. Practical experiments are experiments 

executed to see what happens if certain input parameters change. We describe the experiments 

we investigate below, indicating whether it is a theoretical or practical experiment: 

• Theoretical: VSS and EVPI 
As discussed, the deterministic and stochastic solutions are compared. To do so, the VSS 

is determined[29]. To analyse the solution of the stochastic model, the EVPI is determined. 

The VSS is an indicator of what the optimality gap is between the deterministic variant of 

the model and the stochastic model. The EVPI can be used to see the value of perfect 
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information. Mathematically, this means that the decisions made in the first stage can be 

adapted to already account for the realization in the second stage.  

• Theoretical: effect of value of α 

After discussions with several stakeholders in Isala, it is determined that the model strives 

at a maximum of 10% of the scenarios in which overtime occurs (α). In this experiment, 

we want to investigate what the effect is of the value of α, by running the model with 

multiple values of α. The value of α is experimented from 0.1 to 0.9 with steps of 0.1. The 

solutions and decision variables will be compared. 

• Practical: Difference current situation 
We developed a method to implement criteria-based appointment scheduling, and we 

want to see what the effect of this method is on the current situation. Therefore we 

compare the outcomes of the current situation and the criteria-based outcome.  

• Practical: Overtime and idle time weights 

The main part of the model is to balance the overtime and idle time. It is important to see 

the effect of weighting both parts of the balance, and what the effect of applying different 

weights is. Seven experiments were performed. One with equal balance and three with 

unequal balances on both sides.  

• Practical: increased patient demand 
Based on [30], it is likely that the number of patients coming to the internal medicine 

departments in the Netherlands will grow by 10.6% in 2029, compared to 2019, and 

14.1% in 2034. Therefore, it is reasonable to test how much capacity is needed in the 

blueprints of the internists, and whether it is doable to handle all patients with the same 

capacity. 

All in all, we performed two experiments for the VSS and EVPI, eight experiments on α, an 

experiment on the current situation, seven on the weights of overtime and idle time, and five on 

the increased patient demand which makes in total 23 experiments. With these experiments, we 

test the performance of the model, from both a theoretical and a practical perspective.  
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5.2 Results 
In this section, we will discuss the results of the experiments. For each experiment, the results are 

given per subsection and the reasoning behind the outcomes of the experiment is given. The 

experiments are executed as described in the previous section, Section 5.1.2. For each experiment, 

we compare the results based on certain KPIs. These KPIs are: 

• The number of scenarios in which there is overtime and idle time, expressed in a 

percentage.  

• The maximum slots overtime and idle time per nephrologist and scenario, summed over 
the patient types 

• The average size of overtime and idle time if these are larger than zero. 

• The standard deviation of the overtime and idle time if these are larger than zero.  

• The objective value of the solution.  

In various experiments, we compare the results of an experiment with a base case. This base case 

is composed based on the most realistic combination of input parameters. The most realistic 

combination is composed based on discussions with the stakeholders in Isala. The input 

parameters for the base case scenario are as follows: 

• The percentage of yellow patients having an appointment is 85% 

• The weight for the overtime is 2 

• The weight for the idle time is 1 

• The alpha is 0.3 

• The demand is distributed as described in Table 8 

The base case input parameters are the same for each experiment unless stated in the introduction 

of the experiment.  

5.2.1 VSS and EVPI 
To calculate the VSS, the model is run for an average demand scenario. The outcomes of this run 

are put in the model where we fix the blueprint (so the 𝑋𝑖𝑟) and run the model for 10,000 scenarios 

to test its performance.  

The outcomes are compared to a base case model, to compare the value of the stochastic solution. 

When calculating the VSS, this is: 

𝑉𝑆𝑆 = 𝑂𝑏𝑗𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 − 𝑂𝑏𝑗𝑎𝑣𝑔 𝑠𝑐𝑒𝑛 = 331261 − 351349 = −20088 

So, the true objective is approximately 20.000 lower when applying the stochastic solution. 

Percentage wise, the objective is around 6% lower. The number suggests that there are 20000 

less overtime and/or idletime slots in the 10000 scenarios. This indicates that the VSS is not really 

high, but this view can be misleading if we look at the other KPI values. Therefore, we compare 

the KPI values of the average scenario and the stochastic solution in Table 10. 

 

 

Table 10: VSS results compared with the base case. 

Experiment
Number 

of slots
Overtime  Idletime

Max 

Overtime

Average 

Overtime

StDev 

Overtime

Max 

Idletime

Average 

Idletime

StDev 

Idletime
Objective

Average 

Scenario
89 24.8% 21.6% 14 2.72 1.76 13 2.26 1.76 351349

Base case 94 21.0% 26.8% 15 2.26 1.65 9 2.51 1.44 331261

-6% 15% -24% -7% 17% 6% 31% -11% 18% 6%
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We see that the number of slots for the average is 6% lower than the base case. This logically leads 

to an increase in scenarios with overtime and a decrease in scenarios with idle time, since there 

are less slots available to cover a scenario with a large demand, and the chance of idle time at a 

low-demand scenario is decreased. The average size of overtime is 17% higher for the average 

scenario than for the stochastic model. However, the idle time size is lower for the average 

scenario. In Figure 10 and Figure 11, the blueprints for respectively the average scenario and the 

base case are shown. If we compare these figures, we see that less space is used for nephrologist 

2, 3 and 7 in the average scenario blueprint. None of these nephrologists is at its capacity, so we 

could say that the model is not optimal for these nephrologists, since these nephrologists do have 

a lot of overtime. We therefore say that the average scenario does not lead to an preferred 

solution. 

 

Figure 10: Blueprint for the average scenario 

 

Figure 11: Base case blueprint 

For the EVPI, we allow 𝑋𝑖,𝑟  to change over the scenarios, so the variable will be 𝑋𝑟,𝑠,𝑖. This makes 

sure to adapt the blueprint based on the scenario, so in this case, it is assumed to have perfect 

information. In practice, this will never happen, but it can serve as a lower bound for our model. 

In principle, the objective will equal 0. Only if the demand exceeds capacity, there will be overtime. 

When running the model, the objective equals 63650. Comparing this objective with the base case 

objective, the EVPI is: 
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𝐸𝑉𝑃𝐼 = 63650 − 331261 = −267611 

This means, that when having perfect information and when Isala can change the blueprint for 

each demand scenario, the objective value will be 267.611 lower. The interpretation of this value 

is that the number of overtime slots and number of idle time slots is 0, unless there is more 
demand than capacity. 
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5.2.2 Theoretical Alpha 
In this experiment, we test the impact of the value of 𝛼. The value of 𝛼 is tested from 0.1 to 0.9, 

with steps of 0.1. This means we perform eight experiments on this value. For each 𝛼,, the model 

is run six times, after which the optimal input value for the 10000 scenarios is chosen. These input 

values are chosen based on the average of the six runs performed. The input values closest to the 

average are selected.  

We first look at the results of the 10000 runs. The results are shown in Table 11, displaying the 

KPI values of the experiments. Interesting to see is that when 𝛼 is larger than 0.3, there is no 

change in KPI values anymore.  

 

The fact that the KPI values for an 𝛼 larger than 0.3 do not differ anymore is caused by 𝛼 being 

met for these values. This means that the percentage of scenarios in which overtime occurs is 

lower than the value of 𝛼, and so the outcomes of the model do not differ based on a value of 𝛼 

anymore. For values of 𝛼 0.1 and 0.2, we see that the objective increased compared to 𝛼 =0.3. 

This is caused by 𝛼 not being met, and therefore the objective value is penalized based on how 

much 𝛼 is exceeded. This is also the reason why the objective is higher for 𝛼 = 0.1 than 𝛼 = 0.2. 

Furthermore, the other KPI differences for 𝛼 values 0.1 to 0.3 do not differ significantly. This is 

probably because the blueprints for the different 𝛼-values only differ one slot, and therefore also 

do not differ significantly in performance. The blueprints for the 𝛼-values can be found in 

Appendix C: Blueprints experiments on α 

  

Experiment
Number 

of slots
Overtime  Idletime

Max 

Overtime

Average 

Overtime

StDev 

Overtime

Max 

Idletime

Average 

Idletime

StDev 

Idletime
Objective

Alpha 0.1 95 19.5% 29.0% 15 2.30 1.69 15 2.76 1.88 334385

Alpha 0.2 95 20.1% 28.7% 15 2.28 1.65 12 2.42 1.89 331778

Alpha 0.3 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.4 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.5 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.6 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.7 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.8 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Alpha 0.9 94 21.0% 26.8% 15 2.26 1.62 14 2.51 1.69 331261

Table 11: Results of the experiments on alpha 
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5.2.3 Difference current situation 
This experiment is about testing the benefits of applying the new way of appointment planning 

regarding the time needed for control patients at the nephrology department. To compare the 

appointment planning strategy based on medical criteria with the current appointment planning 

strategy, we need to run the model with a configuration that approaches the current situation as 

good as possible. This is done by putting the percentage of yellow patients needing an 

appointment to 100% and adding the CKD_Green and NCKD_Green groups to the input data, 

representing the patients with and without  CKD not needing an appointment.  

 

 

 

 

  

 

The blueprint of the current situation is shown in Figure 12. In this Figure, we see that almost all 

nephrologists are at capacity. When comparing the blueprint of the current situation with the 

Figure 12: Blueprint for the current situation 

Figure 13: Blueprint for the base case 
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blueprint of the base case in Figure 13 , we see that there is significantly more capacity available 

in the base case blueprint.  

To further investigate the differences between the base case and the current situation, we take a 

look at the differences in KPI values, shown in Table 12. 

 

 

In Table 12, we see that the number of slots for the current situation is 8% higher than for the 

base case. Interesting to see is that all other KPIs have increased much more. The percentage of 

scenarios in which is overtime and idle time is around 25% higher, and also the average and 

standard deviations of the amount of overtime and idle time are around 25% higher. These 

increases are probably caused by two extra demand groups being added to the data and therefore 

the standard deviation of the demand also increased.  

This also explains the difference in increase for the number of slots and the other KPIs. If we take 

a look at the sum of the means of the patient group demands without the CKD_Gr and NCKD_Gr 

groups, this number equals 94.5, as can be concluded from Table 8. The sum of the patient demand 

means with CKD_Gr and NCKD_Gr equals 101.5. This is also an increase of approximately 8%. This 

declares an increase of 8% in number of slots used. However, the other KPI values are much higher 

than 8%. This is caused by the increased standard deviation caused by adding an extra patient 

group. 

Based on the blueprints shown in Figure 12 and Figure 13 and the KPI values, introducing criteria-

based appointment planning for control patients at the nephrology department will have a 8% 

decrease in the time needed to treat these patients, and a 17% decrease in the chance of overtime.  

5.2.4 Weights objective 
In this experiment, the weights for the objective are varied, to see what the effects of these weights 

are on the KPIs and blueprint. Seven experiments are performed, with different combinations of 

weights for the objective overtime and idle time. The combinations of the weights are given in 

Table 13. 

Table 13: Weight experiments 

Exp No. Overtime Idle time 

1 1 1 
2 1 2 

3 1 3 

4 2 1 

5 2 3 
6 3 1 

7 3 2 

A higher weight for overtime or idle time means that in the objective, this part weights heavier on 

the value of the objective function, and thus the model tries to reduce this part of the objective 

more than when the weights are equal or opposite. 

Table 12: KPI values base case and current situation 

Experiment
Number 

of slots
Overtime  Idletime

Max 

Overtime

Average 

Overtime

StDev 

Overtime

Max 

Idletime

Average 

Idletime

StDev 

Idletime
Objective

Current situation 102 28% 34.9% 18 2.98 2.41 14 2.91 1.87 438493

Base case 94 21.0% 26.8% 15 2.26 1.65 9 2.51 1.44 331261

Difference 8% 25% 23% 17% 24% 32% 36% 14% 23% 24%
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The outcomes of these experiments differ significantly. First, we take a look at the blueprints that 

are the output of the six runs of 1000 scenarios. We compare the blueprint for which both weights 

are set to 1 in Figure 15 and the blueprint for which the weight for overtime is 1 and for idle time 

is 2 in Figure 14.  

 

In the Figures, we see that the blueprints change depending on the weights given in the 

experiments. If we focus on reducing the idle time by putting extra weight on it in the objective 

the blueprint contain less slots to treat patients. This indeed reduces the chance of idle time, but 

on the other hand, increases the chance of overtime, as can be seen in Table 14.  

 

  

Figure 14: Blueprint for weight 1-2 

Figure 15: Blueprint for weight 1-1. 
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In Figure 17 and Figure 16, we compare the situation with equal weights (Figure 17) and putting 

more weight on the overtime (Figure 16). What we see is that in the situation where we put more 

weight on the overtime, more slots are opened to treat patients. This is as expected since opening 

more slots leads to a decrease in the chance of having overtime. On the other hand, this leads to 

an increase in idle time scenarios. 

 

In Table 14, the KPI results of all weight experiments can be seen. For this experiment, the 

objective values are less relevant since we multiply the value of the overtime and idle time with a 

certain weight and therefore the objective will change significantly based on this weight.  

When looking at the number of slots in the experiments, these follow a logical progression through 

each weight experiment. If we focus more on reducing idle time by adding weight to this 

component of the objective, the number of slots decrease and when we add weight to the overtime 

component of the objective, the number of slots increase.  

Increasing or decreasing the number of slots, respectively leads to a decrease and increase in 

scenarios in which overtime occurs, and the opposite counts for the idle time. When looking at the 

average overtime and idle time, their progression is the same as for the percentage of overtime 

and idle time. When the percentage overtime decreases, the average overtime size also decreases 

and opposite. The same counts for the average idle time. The standard deviation of the overtime 

size does not showing the typical pattern as described above. 

 

  

Figure 17: Blueprint for weight 1-1 Figure 16: Blueprint for weight 2-1 

Experiment
Number 

of slots
% Overtime % Idletime

Max 

Overtime

Average 

Overtime

StDev 

Overtime

Max 

Idletime

Average 

Idletime

StDev 

Idletime
Objective

Weight 1-1 88 25.3% 21.4% 15 2.46 1.65 14 2.16 1.44 346219

Weight 1-2 79 34.3% 14.2% 15 2.68 1.64 13 1.77 1.19 414619

Weight 1-3 69 44.3% 8.5% 13 3.49 1.92 11 1.48 0.97 531618

Weight 2-1 94 21.0% 26.8% 15 2.26 1.65 9 2.51 1.44 331261

Weight 2-3 81 32.1% 15.7% 15 2.68 1.64 14 1.88 1.29 395997

Weight 3-1 100 16.7% 35.3% 13 2.31 1.80 11 3.15 1.81 339460

Weight 3-2 92 22.4% 24.6% 15 2.31 1.62 13 2.28 1.81 332021

Table 14: KPI values for the weight experiments 
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5.2.5 Increased demand 
In this experiment, we want to test what the effect of an increase in demand is on the blueprint 

and the over- and idle time. To do so, we change the configuration of the base case where we 

increase the mean of the patient group demands with a certain percentage. The standard deviation 

is not changed, since it is hard to see what the effect is on the standard deviation when the patient 

demand increases. This standard deviation will likely decrease if there is more demand, but we 

do not know an exact number, so therefore it is chosen to keep the standard deviation the same 

as it is right now.  

We tested a 10%, 20%, 30%, and 40% increase in demand compared to the base case. The KPI 

results are compared and put in Table 15. We will go through the results per experiment. 

If we look at the 10% extra demand, the total number of slots needed to treat the control patients 

increases from 94 to 101. The number of scenarios with overtime and idle time stay almost equal 

compared to the base case. Also, the average size of overtime and idle time stay quite the same if 

we compare to the base case. The standard deviation of the overtime and idle time increases, this 
is caused by the increased variability of the demand scenarios since the mean increased but the 

standard deviation stayed the same. 

When looking at the 20% increase in demand, we see that the system starts to struggle with the 

amount of patients. The amount of slots opened is 103 and especially the amount of scenarios with 

idle time increases, from 21.0% to almost 29%. Besides that, the average size of overtime also 

increases to 3.35 slots. Following the increased average, also the standard deviation has increased, 

from 1.64 to 2.64. The average idle time decreased, indicating that the blueprints are more filled 

with patients than for the base case scenario.  

At a 30% demand increase, we see that the number of slots opened (108) is equal to the total 

capacity of the nephrology department. The percentage of overtime scenarios increased to 32%, 

and also the average and standard deviation increased, compared to the 20% demand increase, 

and even more for the base case. Opening the maximum amount of slots indicates that the system 

is on its boundaries and that an increase in capacity is needed to treat all patients coming to the 

nephrology department of Isala. 

A 40% increase in demand further confirms that more capacity is needed to treat these amounts 

of patients. Overtime occurs in almost 40% of the scenarios, and also the size of the overtime 

increases significantly. The idle time decreased more than 10% compared to the base case, 

suggesting that the blueprints are completely filled in 85% of the scenarios.  

Conclusionary, we see that the system can handle an increase in demand of 10% and 20%. This 

meets the demographic growth indicating that in the coming year, more than 10% extra capacity 

is needed at an internal medicine department [30]. Introducing the criteria-based appointment 

scheduling strategy makes it possible to handle the increase in demand stated in the 

abovementioned report. 

 

Experiment
Number 

of slots
% Overtime % Idletime

Max 

Overtime

Average 

Overtime

StDev 

Overtime

Max 

Idletime

Average 

Idletime

StDev 

Idletime
Objective

+10% Demand 101 22.8% 27.8% 16 2.75 2.16 13 2.71 1.69 481929

+20% Demand 103 28.9% 22.1% 18 3.35 2.67 12 2.39 1.57 417994

+30% Demand 108 32.0% 21.8% 21 4.38 3.36 10 2.44 1.46 484063

+40% Demand 108 39.1% 15.7% 24 5.11 3.97 9 1.99 1.17 571749

Base case 94 21.0% 26.8% 15 2.26 1.64 9 2.51 1.19 331261

Table 15: Results increased demand experiment. 
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6. Conclusion and discussion 
In this chapter, the conclusion of the research is discussed. In Section 6.1, we answer the research 

questions stated in Chapter 1, Section 6.2 provides a discussion of the research.  

6.1 Conclusion 
This research aimed to find a method for implementing criteria-based appointment scheduling in 

the Internal Medicine department of Isala. To find an answer to this, we divided the research into 

multiple steps that combined form the answer to the aim of the research. 

To understand what the actual problem of the Internal Medicine department is should we first 

understand what the current situation within the Internal Medicine department looks like. We 

took one specialty of the Internal Medicine, the Nephrology to represent the Internal Medicine 

department. Patients coming to the nephrologists are often chronic patients, having an 

appointment with a nephrologist each period, for  example, three months. A consequence of this 

is that patients often visit a nephrologist without a specific reason, only because he or she should 

visit the nephrologist according to the system. This is what should be changed. 

A data analysis has been performed to find the answer to the question of what the potential of 

preventing unnecessary visits to a nephrologist is. In other words, we wanted to know how many 

patients visited a nephrologist without medical reason. Only 57% of the appointments had a direct 

medical reason for a nephrologist visit. 19% of the appointment had no medical reason to visit, 

and for 25%, the decision whether an appointment is needed should be made after a patient file 

review by the nephrologist. So, we conclude that developing a method that prevents unnecessary 

appointments at a nephrologist has a big capacity improvement potential. 

In literature, we searched for the best way to develop an optimal blueprint, when implementing 

the method to prevent unnecessary visits to a nephrologist. The outcome of the literature study is 

that we can create a Mixed Integer Linear Program that outputs a blueprint. This blueprint 

contains the number of slots opened for each resource, in this case, a nephrologist.  

Based on the outcome of the literature review, we formulated a Mixed Integer Linear Program 

(MILP) that outputs an optimal blueprint. Input for the model is the patient type demand and 

capacity of the nephrologists. With this model, we can see what the effect of implementing criteria-

based appointment scheduling is on the time needed to treat all patients. Besides that, the model 

also gives the opportunity to see what the effect of changing several input parameters is.  

To see what the effect of criteria-based appointment scheduling is on the blueprint, several 

experiments have been performed. The outcomes of the experiments are that the new 

appointment strategy gives the opportunity to reduce the blueprint by 15% while maintaining the 

chance of overtime, or reducing the chance of overtime by 25% while remaining the same number 

of slots available.  

Finally, we combine the findings in all steps in the process to formulate an answer to the main 

research aim, to find a method to implement criteria-based appointment scheduling at the 

Internal Medicine department of Isala. We conclude that by introducing criteria based on which 

can be determined whether an appointment is needed or not, 19% of the appointments can be 

reduced based on medical criteria, and for 25% of the appointments can be determined after a 

patient file lookup whether an appointment is needed or not. This results in a decrease of overtime 

of 31% when keeping the same blueprint as it is right now, and can result in a decrease in the 

amount of time needed of 8%, while maintaining the same chance of overtime.  
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6.2 Discussion 
In this section, the assumptions and limitations of the research are discussed. During the research, 

we had to make certain choices that had to be made. These choices had an impact on the process 

of this research and the outcomes of it. The choices and their impact are discussed. 

6.2.1 Discussion on results 
In this section, we will discuss the choices made during this research project and what the impact 

of these choices is on the results.  

When defining the patient groups we worked with during the research, we divided the patients 

into three groups, patients with Chronic Kidney Disease, patients with other nephrology-related 

diseases, and an other group. The ‘other’ group is left out of the analysis, since it was not in the 

scope of this research to do an in-depth analysis on what type of patients were in this group, and 

whether it was possible to apply the developed method to this group too. This could have 

influenced the patient division, and therefore the results of this research.  

In Chapter 2, we wanted to know how many patients had an appointment while there was no 

reason to have an appointment from a medical perspective. This was done by comparing the 

medical data of all appointments with criteria, and based on that can be determined whether an 

appointment is needed or not. We wanted to take the most recent data available for this, but not 

all medical parameter is checked before each appointment. Therefore, we took a maximum of one 

year before the appointment date as valid data to base the decision on. This could have an impact 

on the results of the dashboard. It could be that a data point is used more than once. If for example 

a patient has an appointment every three months, and the blood pressure value is only measured 

once a year, this blood pressure data is used for all four appointments the patient had in that year. 

This means that if the blood pressure indicated that an appointment was needed for the time it 

was measured, in the data dashboard, it gave four times an indication for an appointment. And the 

other way around, if the blood pressure did not indicate appointment the time it was measured, 

it did not indicate all four appointments the patient had that year.  

The data dashboard contains data of all appointments that took place at the nephrology 

department in 2022. This means that there is one year of data available to analyse on. When we 

determined the distribution of the weekly demand per patient type, we used the data of the 

dashboard to determine the mean and standard deviation of the weekly number of patients per 

patient type that arrived at the nephrology department of Isala. If we take the weekly number of 

patients of one year, this means that we have 52 data points to determine our distributions on. 

The distributions found have a relatively high standard deviation compared to the mean. If we had 

used more data points to determine the distribution on, we would probably have a more accurate 

distribution with lower standard deviations.  

In the model and experiments of Chapters 4 and 5, we used the demand  distributions based on 

52 weeks of data. When we determined the capacity of the nephrologist, the holiday weeks of the 

nephrologists were subtracted from the total number of weeks in a year. In the capacity 

calculations, it is assumed that a nephrologist works 44 weeks in a year, while in the demand 

calculations, the demand of all 52 weeks is used to determine the weekly demand. Therefore, the 

actual demand per week per nephrologist is higher than the demand used in the model. This 

means that the capacity constraint is a bit too loose compared to reality. This could also be the 

reason why in the experiment described in Section 5.2.3 about the current situation, the blueprint 

is not filled completely, while in reality, the nephrologists all run into overtime all the time. 
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6.2.2 Contributions 
Our literature study is mainly focused on how to create a blueprint and what methods are 

available to create the optimal blueprint. The outcomes of this literature study are that a 

Stochastic Program is a well-fitting way of developing an optimal blueprint. After we indeed 

created a blueprint and did our experiments on this, it has indeed been a good choice to formulate 

an SP to develop the optimal blueprint for the nephrology department. Talking about impact on 

science, we say that this research showed that increasing the variability of appointments by 

adding an extra step in the appointment scheduling process ís leading to an increase in 

performance of the system. Despite the statistics arguing against it. 

When we talk about the impact on practice of this research, the potential of the developed method 

for reducing the time needed to treat chronic patients at an outpatient clinic is very high. There is 

a large need in healthcare for methods to treat more patients while using the same or less amount 

of resources. The method we developed in this research causes a decrease of at least20% in 

appointments needed to treat the same patient group.  

6.2.3 Managerial implications 
This section discusses the managerial implications of this research. The outcomes of this research 

are reason for discussion, since they are not all in line with the way healthcare is organized right 

now.  

The experiment results discussed in Chapter 5 show a relatively high percentage of idle time 

scenarios. Isala has as goal to have a maximum of 15% idle time, while the numbers shown in 

Table 11-14 show an idle time percentage of around 30%. This could imply that the proposed 
method leads to a too high percentage of idle time. However, the researchers argue against this.  

As Kuiper et al. [16] discuss, idle time does not necessary increase when a schedule is more loose, 

giving more space for variability in demand. Medical professionals will have enough other jobs to 

do to use eventual idle time, resulting in a more flexible and even spreaded work load for a medical 

specialist.  

The experiment on the objective weights, described in Section 5.2.4 Weights objectivealso gives 

reason for discussion for the people in Isala. On the one hand, they can focus on reducing idle time, 

to meet the maximum 15% of idle time, but on the other hand, and that is also the 

recommendation in this research, they can focus on reducing the overtime, since the focus on this 

results in more flexible schedules and possibilities to deal with patient demand fluctuations. 

6.2.3 Further research 
This research is conducted as a case study at the nephrology sub-department of the Internal 

Medicine department of Isala. The goal of this assignment was to develop a method to implement 

criteria-based appointment scheduling at the Internal Medicine department of Isala. By 

developing this method for the nephrology department, it is not said that this method can also be 

used for the whole Internal medicine department of Isala. Each sub-department has its own 

specialty and also its own type of patient. The developed method works well for chronic patients 

coming every period, but probably not for patients that visit the outpatient clinic once because of 

the comparison between results of different outpatient visits. Therefore, further research has to 

be done on whether it is possible to extend the method developed for the nephrology department 

to other parts of the Internal Medicine department of Isala. 

The research conducted was about implementing a method to implement criteria-based 

appointment scheduling. We created a method to determine based on medical reasons whether 

an appointment is needed or not. Besides the medical reasons, the patient can also have a reason 

why he or she wants to have an appointment. Isala wants to implement the patient side of 
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determining whether an appointment is needed by sending the patient a questionnaire based on 

which can the need for an appointment be determined. It is recommended to do further research 

on the patient perspective of criteria-based appointment scheduling, to see what the impact of 

such a questionnaire is on the time needed to treat this patient group, and what the patients think 

of implementing this.  
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A: probability distribution patient demand 
In this Appendix, the goodness of fit test statistics are shown for each patient group. To determine 

the input data for the model, we used the appointment data from 2022, as shown in the dashboard. 

Per patient group, the appointments in this group are extracted from the Power BI dashboard. It 

is determined in which week the appointment took place and, in this way, the weekly demand in 

2022 can be determined.  

For each patient type, the weekly demand data is used for an R script to determine the distribution 

that fits best for the data. The fit of each distribution is determined based on five goodness of fit 

statistics.  

CKD Red 
The CKD Red patient type has lowest goodness of fit values for the Weibull and Normal 

distribution. In Figure 18 and Table 16, an overview of the distributions is given. For this figure, 

and the figures of all other patient groups, a selection is made for the normal, lognormal, and 

Weibull distribution, since the shape of the data and the shape of the distributions are most equal 

for these distributions.  

In this case, it is chosen to use a normal distribution, since the goodness of fit statistics is (almost) 

lowest for all tests, and this is the most easy-to-use distribution. 

 

Figure 18: CKD Red distributions plotted over the data. 

Table 16: goodness of fit statistics for the CKD Red patient type 

Distribution Normal Exponential Poisson Lognormal Gamma Weibull 
Kolmogorov- 
Smirnov 

0,086 0,387 0,170 0,113 0,106 0,085 

Cramer- 
Von Mises 

0,057 2,198 0,222 0,102 0,070 0,049 

Anderson- 
Darling 

0,408 10,922 1,752 0,699 0,498 0,354 

AIC 310,126 382,723 311,595 310,709 309,078 309,165 
BIC 314,029 384,674 313,546 314,611 312,981 313,068 
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CKD Yellow 
For the CKD Yellow patient type, the test statistics for the lognormal distributions are the lowest, 

as can be seen in Table 17. So, we use this distribution, with a meanlog of 2,933 and sdlog of 0,306. 

 

Figure 19: CKD Yellow distributions plotted over the data. 

Table 17: the goodness of fit test for the CKD Yellow patient type 

Distribution Normal Exponentia
l 

Poisson Lognormal Gamma Weibull 

Kolmogorov
- 
Smirnov 

0.130220
8   
 

0.4084445  0.163611 0.1020364
1  

0.1135120
3  

0.110740 

Cramer- 
Von Mises 

0.133739
1   

2.4162303  0.315761
2  

0.0745560
8  

0.0836177
2  

0.121275
1 

Anderson- 
Darling 

0.794136
8  

11.762883
0  

2.536728
0  

0.4170183
6  

0.4627038
3  

0.806704
1 

AIC 341.5769  416.0452  348.4659  334.6848  335.4805  342.1815 
BIC 345.4794  417.9965  350.4171  338.5873  339.3830  346.0840 
       

 

NCKD Rood 
For the NCKD Red Patient type, the test statistics are lowest for the Weibull distribution, as can be 

seen in Table 18. In this case, it is chosen to use a normal distribution, since the goodness of fit 

statistics is (almost) lowest for all tests, and this is the most easy-to-use distribution. 
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Figure 20: NCKD Red distributions plotted over the data. 

Table 18: the goodness of fit test for the NCKD Red patient type 

Distribution Normal Exponential Poisson Lognormal Gamma Weibull 
Kolmogorov- 
Smirnov 

0.1029311   0.376700  0.1647037  0.1548647  0.1359993  0.1024556 

Cramer- 
Von Mises 

0.0719115   2.235812  0.3383002  0.1938284  0.1391696  0.0641906 

Anderson- 
Darling 

0.5278277  11.138972  2.2988360  1.1887229  0.8806617  0.4890584 

AIC 309.8884  386.2953  312.6619  314.7988  311.8479  308.3317 
BIC 313.7909  388.2465  314.6132  318.7013  315.7504  312.2341 
       

NCKD Yellow 
The normal distribution has the lowest values for the NCKD Yellow patient type, as can be seen in 

Table 19. Therefore, we choose this distribution for this group. The mean is 8,29 and the standard 

deviation is 3,90. 
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Figure 21: NCKD Yellow distributions plotted over the data. 

Table 19: the goodness of fit test for the NCKD Yellow patient type 

Distribution Normal Exponential Poisson Lognormal Gamma Weibull 
Kolmogorov- 
Smirnov 

0.10246856  0.299122  0.2122905  0.1753598  0.1479163  0.110298 

Cramer- 
Von Mises 

0.08125755  1.174017  0.4987141  0.3937547  0.2271188  0.119613 

Anderson- 
Darling 

0.53669543  6.011192  4.1993619  2.5102829  1.4816525  0.894704 

AIC 293.2263  325.9459  308.6885  313.5500  300.8728  293.8164 
BIC 297.1288  327.8971  310.6397  317.4525  304.7753  297.7189 
       

Other 
For the Other patient type, it is chosen to use the normal distribution, since this distribution has 

the almost lowest values of the parameters.  
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Figure 22: Other distributions plotted over the data. 

Table 20: the goodness of fit test for the Other patient type 

Distribution Normal Exponentia
l 

Poisson Lognorma
l 

Gamma Weibull 

Kolmogorov
- 
Smirnov 

0.0864968
3   

0.3869123  0.169944
0  

0.113202
0  

0.106455
2  

0.0847586 

Cramer- 
Von Mises 

0.0568120
1   

2.1979864  0.221926
7  

0.101729
0  

0.069958
1  

0.0487146
3 

Anderson- 
Darling 

0.4075545
4  

10.922441
4  

1.752273
2  

0.698901
6  

0.497935
6  

0.3543060
3 

AIC 310.1260  382.7229  311.5947  310.7085  309.0783  309.1653 
BIC 314.0285  384.6742  313.5460  314.6110  312.9808  313.0678 
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B: Number of runs 
This appendix shows the replication/deletion approach described in [28]. The approach is 

executed in Excel, where the stochastic model is solved for 1000 scenarios 10 times. A KPI is 

chosen to base the number of runs on. The chosen KPI is the total number of slots opened to treat 

the control patients. This KPI is put in an Excel file and the required parameters are determined. 

In Figure 23 one can see that the number of runs for which the test statistic is first YES is at the 

third run. This means that the number of runs we need is three. 

 

Figure 23: Excel file to determine the number of runs. 
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C: Blueprints experiments on α 
In this appendix, the blueprints for the different values of α are shown.  
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