
MSc Computer Science
Final Project

Incorporating User Inputs for
Improved JSON Schema
Inference

S. B. Broekhuis
s.b.broekhuis@student.utwente.nl

Supervisor: dr.ir. V. Zaytsev

December, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

mailto:s.b.broekhuis@student.utwente.nl

Abstract

JSON Schemas, as descriptive JSON files, define the expected structure of other JSON
data, serving as a valuable resource for both developers and programs. They play a crucial
role in data validation, testing, and maintaining data consistency. Since creating JSON
Schemas can be challenging, it is common to derive schemas from example data. In this
research, we focus on the introduction of user inputs during the inference process with
the goal of reducing ambiguity and allow an algorithm to make, otherwise inconclusive,
speculations from the sample data. We describe numerous strategies for utilising JSON
Schema features based on sample JSON files and how they were implemented into a Kotlin
program. We evaluated the program on five distinct real world sample JSON datasets from
which the results showed it is able to infer complex patterns.

Keywords: JSON, Inference, JSON Schema, User Input, Interactivity

Contents

1 Introduction 2

2 Background 3
2.1 Data . 4

2.1.1 Notes and Spreadsheets . 4
2.1.2 JSON . 5

2.2 Schemas . 6
2.3 Informational Keys . 7

3 Related Work 9
3.1 Research Papers . 9
3.2 Online Tools . 10

4 Project Description 12
4.1 Problem Statement . 12
4.2 Goal and Scope . 13
4.3 Research Questions . 13
4.4 Approach . 13

5 Implementation & Development 15
5.1 System Design . 15
5.2 Inference System . 16
5.3 User Interaction . 16
5.4 User Input Strategies . 17

5.4.1 Constants . 17
5.4.2 Enumerators . 17
5.4.3 Default . 17
5.4.4 Uniqueness . 18
5.4.5 Contains/PrefixItems . 18
5.4.6 MultipleOf . 18
5.4.7 Length . 18

6 Evaluation 19
6.1 Method . 19
6.2 Samples . 21

7 Discussion and Conclusion 25
7.1 Research Questions Revisited . 25
7.2 Reflection & Future Work . 26

1

Chapter 1

Introduction

In today’s data-driven world, the prevalence of JSON (JavaScript Object Notation) as
a widely adopted data interchange format cannot be overstated. As JSON files have no
specified structure themselves, JSON Schema offers a means to validate, test, and maintain
the consistency of JSON data [10]. The JSON Schema specification has gone through
multiple versions, each adding new features and changing existing ones. These regular
revisions can make it challenging for users to construct schemas manually.

An algorithm can infer a structure from sample data, making it easier for users who
may not fully comprehend the intricacies of the specification [1, 3, 6, 12, 20]. Although
this approach saves time and effort, it may produce less complex structures that require
further refinement. The samples hint at the conditions each field might have, and it should
be possible for an inference algorithm to use these hints to build complex JSON Schemas.
However, this can cause over-fitting.

To address this issue, our research introduces user inputs during the inference process.
By doing so, we can reduce ambiguity and enable algorithms to make informed speculations
that would otherwise be inconclusive. Users have a deeper understanding of the sample
data, which can be leveraged to extract more information and improve the accuracy of the
schema.

In this paper, we present seven interactive strategies for harnessing the capabilities of
JSON Schemas, implemented in a Kotlin program. We evaluate our tool using five real
world sample JSON datasets, highlighting its strengths and limitations.

This study aims to contribute to the field of JSON Schema inference, offering valuable
insights into enhancing the precision and efficiency of schema creation, and the facilitation
of data processing for a wide range of applications and industries. By reintroducing user
inputs into the inference process, we not only aim to improve JSON Schemas inference,
but also illuminate the potential for extending this concept to other domains.

2

Chapter 2

Background

The upcoming chapter provides context for the topic selected for this paper. To understand
the process of inference, one must first grasp the need and concept of a schema, which in
turn relies on comprehending the nature of the data that is stored.

Firstly, we clarify the difference between unstructured, structured, and semi-structured
data. Secondly, we delve into the concept of schemas, encompassing their purpose in
documentation, validation, and interaction control. Lastly, we explain the concept of
Informational Keys and how it effects inference.

Readers who are already well-versed in these topics may choose to skip this chapter,
focusing on JSON Schema inference and its applications.

3

2.1 Data

2.1.1 Notes and Spreadsheets

Since the dawn of writing we have been storing data. When we write/record/draw, we
create data and information. Because the data and information is hidden behind abstract
concepts such as language, extracting this information requires human input and this is
unfavourable to humans. There is however a different method to create data. Data that
can be accessed and processed easily without humans. We call this difference, unstructured
and structured data. Unstructured data is information that is not organised in a defined
matter. Data such as plain-texts, images, audio, are not defined by a structure and their
information is thus difficult to process.

Example 1 Unstructured vs structured data

Emma (11) enjoys playing football and spends most of her free time practising with
her team. Liam (9) is an avid reader and can often be found curled up with a good
book. Aiden (13) loves to draw and is constantly creating new art pieces, often
inspired by nature. Olivia (10) has a passion for science and spends her weekends
conducting experiments in her backyard. Ethan (12) is an aspiring chef who enjoys
experimenting with new recipes in the kitchen.

The text above contains fictional information about children and their hobbies. To
extract the information with a program is difficult. Because the hobbies, names, and
ages are hidden within language, such information would require language processing
or machine learning to extract.

Name Age Hobby

Emma 11 football
Liam 9 reading
Aiden 13 drawing
Olivia 10 science
Ethan 12 cooking

In this table the same data is presented with columns of Name, Age, and Hobby.
This data has less overall information, but provides an accessible format for programs
to search through and process.

Example 1 shows why we stored data in tables or databases. However, tables do have
limitation in their ability to store data. Their structure makes them inflexible compared
to unstructured data, which can be anything. Data does not always fit inside a predefined
structure. In the example it was trivial to convert the example of unstructured text into
a table, requiring the storing of one name, one age, and one hobby per child. One might
already realise that this causes a problem when children start developing more than one
hobby. While it is possible to incorporate multiple hobbies by adding columns or tables
that reference each other, it is apparent that we require a simple solution that bridges the
gap between unstructured and structured data. Something, semi-structured.

4

2.1.2 JSON

JSON (JavaScript Object Notation) [9] is the file format this study will focus on. It was
based on a subset of JavaScript and therefore commonly used in said language. It was
“discovered” by Douglas Crockford around 2001 [25]. Since then, many standards were
made. In Example 2 a JSON file is shown with data regarding children’s hobbies. Here,
Emma has more than one hobby. Where in Example 1 it was difficult to show multiple
hobbies per child, in JSON it is possible and easy.

Example 2 JSON Hobbies

{
"children" : [

{
"name": "Emma",
"age": 11,
"hobbies": ["football", "drawing"]

},
...

]
}

In this example, a JSON file is shown with the data regarding children’s hobbies.
All data is stored via a key-value method. Here, hobbies is an array of multiple
strings. This allows any number of hobbies per child.

However, what makes JSON particularly versatile is its language-independence, which
allows it to be used seamlessly across a wide array of popular programming languages.
Many popular languages have their own JSON parsing and generation libraries or modules.
For instance, Python provides the ’json’ module and Java has the ’Jackson’ library [5, 17].
This universal adaptability makes JSON a versatile and widely accepted data interchange
format, facilitating seamless communication and data exchange between different systems
and platforms.

In addition to its widespread adoption as a data interchange format in various pro-
gramming languages, JSON has found a significant role in the realm of NoSQL databases.
NoSQL databases are designed to handle large volumes of unstructured or semi-structured
data, making them particularly well-suited for modern, highly dynamic applications. The
flexible and schema-less nature aligns seamlessly with the principles of NoSQL databases,
facilitating the storage and retrieval of complex, nested data structures.

5

2.2 Schemas

Schemas are formal specifications that define the structure, content, and constraints of a
data model. They provide a standard for describing and validating data, ensuring consis-
tency and accuracy in its representation. Schemas can be used to define the structure and
content of a variety of data formats, including JSON, XML, and others. For this paper,
we will focus on only the data schema for JSON.

Example 3 An unclear JSON file

{
"orderId" : "2022343-34AZEEF",
"userId" : 433,
"reason" : 1

}

This JSON file is unclear as it does not de-
scribe itself. Questions may arise such as;
What is orderId? Is userId required? Why
is reason a number?
A schema would be able to answer these
questions.

In Example 3, an ambiguous JSON file is presented. To describe it, we can utilise a JSON
Schema [9]. A JSON Schema is a JSON file that outlines the characteristics, description,
and data types of each field in the object, along with any additional conditions.

Example 4 A example of a JSON Schema.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"orderId": {
"description": "Unique identifier of the order", "type": "string"

},
"userId": {

"description": "Unique identifier of the user", "type": "string"
},
"reason": {

"description": "Reason for the return", "type": "string"
}

},
"required": ["orderId","userId","reason"]

}

In Example 4, we see a schema to describe the structure of the file in Example 3. Using
this, it is clear that the reason field is invalid as it is required to be a string. The schema’s
structure is determined by the meta-schema located in the $schema field. Since there are
different versions of the JSON Schema specification, this field is used to specify the version
of the schema.

6

2.3 Informational Keys

As we have discussed, JSON is flexible due to its lack of structure. Due this flexible struc-
ture, the same information can be presented differently. Informational Keys demonstrate
the significance of this. In a JSON file it is intended that the key is used to uniquely
identify and retrieve a specific value from the data. However, it is possible to use the
key as an identifier, attaching data into it. This often makes a file smaller, but results in
inconsistent keys in the file structure.

Example 5 Informational Keys A

"people" : {
"Alis" : {

"age" : 34, "email" : "alis@example.com"
}

}
...
"people" : [

{
"name": "Alis", "age": 34, "email" : "alis@example.com"

}
]

In this example, two methods are shown to display a list of people. In the first
example, the name of the person is used as an informational key. In the second
example, an array of object are used.

In Example 5 an JSON is shown where information can be stored in the keys of an
object. For a JSON Schema, this means that almost any key is allowed. As a result,
an inference system will have trouble inferring this structure. The basic inference system
would, for the second example, describe the structure of a person once, while for the first
example it would describe it for each individual person. JSON Schema has the functionality
to describe structure for any key that matches a specific pattern, however automating this
is difficult. The system would need to detect the difference between normal keys, and keys
that contain information.

7

Example 6 Informational Keys B

{
"variants": {

"powered=false": {
"model": "minecraft:block/oak_pressure_plate"

},
"powered=true": {

"model": "minecraft:block/oak_pressure_plate_down"
}

}
}

In the given example, we see a JSON configuration file for the "blockstate" speci-
fication for an oak pressure plate within the game Minecraft. This pressure plate
is a block that has a state called powered, which changes when stepped on. The
key powered=true in this situation serves as a condition for what model to display
in the game when stepped on. Note that in Minecraft, blocks can contain various
states, such as directionality, waterlogging, or connections to neighbouring blocks.
These states can be combined by separating them with a ’,’ to create more complex
conditions.

Example 6 shows a more complex real world example of how information can be stored
in keys. A schema inference algorithm would, in this example, need to be able to parse
keys and detect the regex pattern that corresponds to possible structure.

8

Chapter 3

Related Work

"That which is inferred; a truth or proposition drawn from another which is
admitted or supposed to be true; a conclusion; a deduction."
from Wiktionary.

JSON, known for its structural simplicity, becomes more complex when JSON Schemas
are involved because these schemas have a schema to follow themselves. To alleviate this
complexity and facilitate schema creation, we can infer the schema directly from the JSON
files. It automates schema generation from sample data by identifying the basic types
(strings, numbers, booleans, objects, and arrays), patterns, and constraints, simplifying
the process while ensuring data accuracy.

3.1 Research Papers

Since this project focuses on JSON Schema, this research is limited to JSON only. While
XML Schema inference exists, the specifics are difficult to apply to JSON due to the
difference in structure.

Much of the existing research focuses on the uses of inference regarding databases. The
motivation stems from NoSQL database, where the lack of structure can result in the need
of a schema. Analysing the existing works shows that JSON Schema inference is generally
done in the following steps, often called MapReduce.

1. A large collection of JSON files is processed in parallel into a new format that the
system uses.

2. Merging the collection of new formats into a single format. This process varies the
most from different approaches.

3. The combined format is then transformed and outputted into a schema.

However,
In recent work, Čontoš and Svoboda [4] studied multiple current approaches for JSON
inference and their limitations. They compared the works of Sevilla et al. [21], Klettke et
al. [12], Baazizi et al. [1], Cánovas et al. [3], and Frozza et al. [6]. I will describe three of
these studies that differ in their approach.

9

Inference with Graphs

Klette et al. [12] use a Structure Identification Graph to combine all the JSON properties
from a NoSQL database into a single schema. The paper describes in detail how these
graphs are created and combined into a single schema. As for its features, it is able to
detect required and optional properties and union types, but foreign keys (stop_id → id)
are not.

Inference with Equivalence relations

Bazazizi et al. [1] describe a different approach. They similarly use a MapReduce method,
however the algorithm build two versions of the schema. The first version fuses all objects
together with the same record. It marks all fields optional that are not present in all.
The second version only combines if the record shares all the same fields. This results
in a relatively small schema and a potentially large schema. Information regarding the
combination of fields is kept in the large schema using this method.

The algorithm then uses a equivalence relation to determine if two objects are equal
and should be merged into a single instance in the schema. This equivalence relation is
a parameter for the algorithm. The paper continues with proofs that their algorithm is
sound and accurate. While the study provides a valid and interesting approach to inferring
a JSON Schema, I found the methodology and analysis to be quite complex and challenging
to fully comprehend.

Inference with Traversal

Cánovas and Cabot [3] present an approach that generates class diagrams from JSON files,
setting it apart from the majority of studies which predominantly concentrate on NoSQL
databases. Their motivation comes from the need for a structure from services building or
using APIs. This method traverses through the input JSON data, systematically crafting
multiple class diagrams, which are then reduced into a singular class diagram. The creation,
refining, and merging steps are documented and specified for each situation.

3.2 Online Tools

Besides research there are online tools available to infer a structure from a JSON sample
or samples. This grey literature might or might not be open source and may infer from a
single or multiple samples.

QuickType

QuickType [18] is a tool that is available as a website, program, library, and IDE extension
written in TypeScript. It is able to infer JSON samples or a single JSON file a JSON
Schema or other programming languages. On the website, the generated JSON Schema
is, however, written with only definitions. Each definition is named after the file or folder
of the sources. Since the resulting schema only contains definitions, this schema does not
validate anything.

10

Saasquach’s JSON Schema inferrer

The JSON Schema inferrer from Saasquach [20] is an advanced library written in Java.
It is able to infer from multiple JSON samples a single JSON file. The resulting schema
can be configured for different drafts, policies, formats, and more. The library has API
features to expand the complexity of the inferrer.

Liquid Technologies & jsonschema.net

Lastly, Liquid Technologies [13] & JsonSchema.net [11] are both online JSON Schema
generator tools that infer a JSON Schema from a single JSON sample. They both have
limited options and settings and are not open source. They are easy to use compared to
the other tools mentioned, making them useful when one needs a simple schema quickly.

11

Chapter 4

Project Description

This chapter offers an overview of the project, starting with the description of the prob-
lem. We will then outline the project’s objectives and scope. To guide our research and
approach, we will present a set of research questions and delve into our methodology for
addressing these questions.

4.1 Problem Statement

The preceding chapter covered existing efforts in the realm of JSON Schema inference.
However, the resulting schemas from these efforts tend to be relatively simple compared
to the full range of capabilities of the JSON Schema specification. This limitation arises
from assumptions these algorithms would be required to make.

Sample data, while informative about what is allowed, cannot convey what is dis-
allowed. Consequently, any algorithm venturing into schema inference inevitably makes
assumptions. A prevalent assumption involves defining the type of a field. For instance,
if a field such as foo is always a number, the system deduces it to be exclusively numeric.
This deduction rests on the assumption that, because we have not received any other type
for this field, only numeric are allowed for the foo key. While this assumptions is trivial,
it cannot be said for more complex situation.

Example 7 Fruits

{
"fruit-type": "apple",
...

}

Consider the JSON snippet above with a fruit-type field that specifies the type
of fruit referred to by the file. The number of allowable values for this field remains
unknown at this moment.
Assume that we, as the inference system, are given 200 examples. We encounter five
unique valid values of fruit-type, but can we conclude that these are the only five
values that are valid? The input JSON files may not encompass all possible options.
Thus, we can only infer that the minimum number of valid values for fruit-type is
five.

12

In Example 7, we illustrate such an complex situation. When information is unavailable,
the algorithm is unable to confidently infer the types of fruit. This underscores the need for
exploring alternative approaches, such as a user-input-based method. In this context, users
could play an active role by offering supplementary information or clarifying ambiguous
situations.

In such instances, we can communicate to the user that, based on our observation of 200
examples, we have encountered only 5 unique values, potentially suggesting an enumeration
type. An enumeration type is a list of all valid values, in this case, a list of valid fruits.
The user may then verify whether the value indeed conforms to an enum type and accept
the valid values.

4.2 Goal and Scope

As part of this research, our objective is to develop a JSON Schema inference program
capable of handling such scenarios mentioned above, utilising a balance between under-
approximation and over-approximation to ensure accuracy. We implement different strate-
gies to handle specific scenarios for the user to respond to. These strategies will be described
in Chapter 5.

This research describes the implementation of an inference program designed specifi-
cally for JSON files. The program will focus on the generation of JSON Schemas derived
from JSON data. Certain aspects fall beyond the purview of this project, including the
parsing of YAML files and the handling of NoSQL databases. The research maintains a
dedicated focus on JSON Schemas and their inference from JSON data exclusively. To
streamline the project and maintain a manageable scale, the research will employ a limited
set of seven strategies for schema inference.

One notable exclusion from the strategies is the detection and handling of informational
keys within JSON data. This exclusion is a consequence of the timing of this research. In-
formational keys became recognised as a concept during the evaluation of the implemented
program. Because this concept is important to grasp, it was added to Chapter 2.

4.3 Research Questions

From the problem statement, we crafted these research questions.

Q1 What are the common types of JSON Schema inference algorithms, and how do they
differ?

Q2 How can user input be integrated into JSON Schema inference algorithms?

Q3 How can user input refine JSON Schema inference algorithms?

4.4 Approach

In Chapter 3, we looked into the existing JSON Schema inference algorithms and tools.
We concluded that most of the research focuses on extracting a structure from NoSQL
databases. Besides the literature, we mentioned existing tools and libraries that can infer a
JSON Schema. This displayed the current limitations in this topic and, with these insights,
helped create strategies to improve the accuracy for JSON Schema inference algorithms.

13

This has answered research question Q1.

For research question Q2, we developed a tool that will be able to interact with the
user. This program will have a GUI where the user can decline or accept speculations,
altering data where needed. Seven different strategies will be developed to refine resulting
schemas. These strategies are the first part of answering research question Q3. The second
part is the evaluation, where we will run the created program on real world JSON data
and the resulting schema will be evaluated in detail.

14

Chapter 5

Implementation & Development

This chapter presents a comprehensive account of the implementation of the Interactive
Schema Inferrer (ISI). It includes design choices the implemented methods of interacting
with a user. The source code for this project is available on GitHub [19].

5.1 System Design

Figure 5.1: This figure illustrates the steps in the ISI. Where the Inferring steps
often replaced by a strategy form requiring user interactions.

Figure 5.1 illustrates the operation of the system through three distinct steps:

The initial step involves displaying the configuration view, where the user is prompted
to specify the schema version and select the JSON files to be used as samples. Additionally,
a checkbox is provided to indicate whether the input JSON files are structured as an array,
where each value in the array should be considered a sample.

The second step encompasses the inference process, in which the inferrer is constructed,
providing it with all the strategies. A strategy is a method of improving an inferred schema
by detecting speculations from a sample set, and using user input to confirm or deny
speculations. It is crucial to emphasise that the absence of user input to affirm or reject
these speculations would result in the generation of schemas overly tailored to the sample
data. This is the underlying rationale why conventional inference systems are unable to
incorporate such strategies. During the inference process, the strategies may replace the
view with a form, enabling the user to response to a speculation. Upon completion, the

15

loading view is reinstated and the response is processed.

Lastly, when the data has been processed and the inference has been completed, the
loading view is replaced with the result view. This view presents the inferred JSON Schema
as the outcome, along with a button for copying it to the clipboard.

5.2 Inference System

During the process of designing the system, it became increasingly apparent that the im-
plementation bore striking resemblance to the work of Saasquatch [20], one of the online
tools mentioned in Chapter 3. This inference system works by combining all the sample
JSONs and traversing for each key all values provided, building up a schema from the bot-
tom up. The library possessed the capability to build enum extractors and generic feature
classes, which were essential components for implementing user interaction functionalities.
Naturally, the decision was made to use the library rather than developing a new one from
scratch.

However, the library was missing a crucial component to regarding user interaction. It
was unable to provide context about the current field (key), as it only provided information
about the values. If the system wanted to use user interaction, providing context to the
user about what field needed clarification is crucial. To fix this, we opened a pull request
to add the current JSON path to the API. Fortunately, the pull request was, after small
adjustments, accepted. At the time of writing, a new version was not yet released, therefore
there was no other option than to compiled the library manually instead.

5.3 User Interaction

To allow users to interact it is favoured to use a graphical user interface (GUI). Several op-
tions were considered for this purpose: Compose Multiplatform [8], which relies on Jetpack
Compose for developing Android applications; TornadoFX [23], a Kotlin-based JavaFX
framework; and SurveyJS [22], a JavaScript library for building forms.

Among these alternatives, TornadoFX emerged as the most suitable choice. Compose
Multiplatform allows for the creation of visually sophisticated GUIs tailored for high-end
applications compatible with multiple platforms. However, its implementation complexity
surpasses that of the other options. SurveyJS, although visually appealing, is a JavaScript
library that necessitates the setup of a local server to facilitate data transmission between
the form and a browser instance. In contrast, TornadoFX allows for the development
of a rudimentary UI application with minimal effort. Despite being no longer actively
maintained, it continues to function well and has comprehensive documentation. Therefore,
it was ultimately the chosen library for this project.

16

5.4 User Input Strategies

Each strategy is a class which implements a method called by the inferrer for each appli-
cable field. Generally, it receives the following information to infer from; the preliminary
schema for this field, the type of the current field (array, number, object, ...), the
draft version provided, the samples of this field, and the JSON path of this field.

As mentioned in Section 2.2, JSON Schema has multiple versions, called drafts. These
specify what keywords are available and how they should be used. Each strategy might
be disabled or behave differently based on the version. In the following paragraphs, when
referring to "all drafts", this encompasses all JSON Schema drafts from 4 onward.

5.4.1 Constants

A const is a keyword that specifies that a field is always this specific value. This keyword
is available since draft 6 and is part of the validation vocabulary. When samples of a field
consists of only a single distinct value the system speculates that this field is a const.
However, this approach proves inadequate when confronted with limited sample sizes or,
even more disadvantageously, when the sample size is merely one. In the latter case, the
system refrains from making any speculations altogether.

5.4.2 Enumerators

A enum is a keyword that specifies that a field is restricted to a specific set of values. This
keyword is available in all drafts and is part of the validation vocabulary. The system
speculates similarly to the const. The system perform a division of the distinct sample
size by the total size and examines whether this surpasses a predefined threshold. The
determination of the threshold value emerged during testing, and led to value of 0.2.
This threshold was selected to strike a balance between minimising false positives and
maximising true negatives. It is essential to understand that the exact threshold value, is
not a critical determinant in the scope of this project. The primary objective is to achieve
reasonable coverage rather than pinpoint accuracy. Fine-tuning this threshold can be a
topic for discussion and adjustment in future iterations.

5.4.3 Default

The default annotation keyword specifies that "...if a value is missing, then the value is
semantically the same as if the value was present with the default value". This keyword is
available in all drafts and is part of the meta-data vocabulary. This strategy is unique in the
sense that it does not influence validation of a JSON file. Nevertheless, it remains feasible
and beneficial to deduce a default value. Initially, the process of speculating whether a
field possesses a default value requires an analysis of the frequency distribution of distinct
values within the sampled data. The system would employ the empirical rule to identify
potential outliers in these frequencies. If such outliers are present, the system postulates
that the most substantial outlier represents the default value.

However, through experimentation, it became evident that the effectiveness of outlier
detection was not as reasonable as initially presumed. To illustrate this point, consider a
scenario in which one value occurs 800 times while another occurs only once. In such a case,
traditional outlier detection methods fail to identify the latter value as an outlier, as they
tend to assume an average frequency of around 400. Consequently, a more straightforward
approach was proposed.

17

https://json-schema.org/understanding-json-schema/reference/const
https://json-schema.org/understanding-json-schema/reference/enum
https://json-schema.org/understanding-json-schema/reference/annotations

This approach involves assessing the frequency of each distinct value and determining
if the most frequent value appears in more than 80% of the cases. The threshold of 80%
was chosen somewhat arbitrarily, but it seemed suitable during testing. Similarly to the
enum strategy, the exact threshold value, whether it is 75%, 80%, or 85%, is not of critical
importance. It should be noted that if the frequency is 100%, we assume it to be a constant
and do not process this value further.

5.4.4 Uniqueness

The uniqueItems keyword specifies that an array field can or cannot contain the same
value multiple times. This keyword is available in all drafts and is part of the applicator
vocabulary. By analysing the array values of an field, we can speculate if the field can
be marked with uniqueItems when each sample of type array for a specific field does not
contain the same value twice.

5.4.5 Contains/PrefixItems

The contains (Draft 6+) and prefixItems (All drafts) keywords specify that an array
should contain the a specific set of values, where prefixItems also specifies the index.
This approach is particularly effective when applied in the context of post-order traversal,
as it benefits from the prior inference of the schema beneath the current stage.

We use the preliminary schema to test whether the array always contains a specific
condition. This strategy is exclusively used when the schema encompasses multiple con-
ditions, typically in the form of an anyOf and/or "type": [...]. If a consistent pattern
emerges where the same index consistently adheres to the same condition, the system des-
ignates it as a prefixItems. In the event that a user declines a prefixItems inference,
the program will ask whether it should be considered as a contains instead. Here the the
system provides options for minContains and maxContains.

5.4.6 MultipleOf

The multipleOf keyword specifies that an numerical value should be a multiple of a given
positive number. This keyword is available in all drafts and is part of the validation vo-
cabulary. By finding the greatest common divider (GCD) of the samples, we can speculate
if the field can be marked with multipleOf. This only happens if the sample size and the
GCD are both larger than 1.

5.4.7 Length

The last strategy implements keywords regarding the size or length of values. JSON Schema
can add these conditions for Numbers (Range), Arrays (Item Count), Strings (Length),
and Objects (Property Count). These keywords are available in all drafts.

This strategy waits until the inference is complete before asking the user for input.
By doing so, the system can present the user with a list of all options at once (disabled
by default), rather than multiple screens. During the inference process, the system keeps
track of the minimum and maximum values for each condition mentioned earlier. This
information is used to ensure that the user cannot set an invalid minimum or maximum
value that would invalidate the samples. Additionally, for numbers the system provides an
option to specify if the range is exclusive or inclusive.

18

https://json-schema.org/understanding-json-schema/reference/array#uniqueItems
https://json-schema.org/understanding-json-schema/reference/array#contains
https://json-schema.org/understanding-json-schema/reference/numeric#multiples

Chapter 6

Evaluation

The previous chapter described the development of the ISI. This chapter will continue with
evaluating the tool by executing it on specific datasets and examining their results.

6.1 Method

The evaluation procedure is as follows: The tool is executed on a designated dataset, and
the resulting schema is reviewed. During the inference noticeable speculations or lack of are
documented. Certain datasets originate from sources that already provide a JSON Schema,
and in such instances, a comparison will be conducted between the derived schema and
the source schema. The ISI serves as an extension of an established library, albeit with
a distinct configuration where certain pre-existing features remain disabled intentionally.
The deliberate omission of these features allows for the focus on newly added functionalities.
Resulting schemas will, for example, not contain any format — strings with specific format
rules, such as emails — inferences.

In the previous chapter we have mentioned the use of specific sample files for experi-
mentation and system testing purposes. In the interest of preserving the impartiality of
the evaluation process, it is important to abstain from including these sample files during
the evaluation, as the software’s performance has likely been optimised to align with them.

The following datasets will be used during the evaluation:

• Minecraft Biomes. [15]

• Earthquakes data. [24]

• NPM packages configurations. 1

• IMDb movies example dataset. [7]

• OSI Licences. [16]

The resulting schemas will be available on the GitHub page as they are too large to provide
in this paper.

1Extracted from public GitHub repositories.

19

The selection of these five specific JSON datasets for the study was guided by several
considerations:

• Real-World Examples: The datasets chosen are grounded in real-world scenarios,
providing a practical foundation for the study. This decision was motivated by the
intention to ensure that the schemas inferred are relevant and applicable in genuine
operational contexts. The authenticity of these datasets contributes to the robustness
of the study outcomes.

• Diverse Use Cases: One key criterion for selection was the diversity in the util-
isation of the datasets. The chosen datasets represent a spectrum of applications,
ranging from configurations files to scientific research data and database information.
This deliberate variation in use cases aims to expose the inference algorithms to a
wide array of JSON structures.

• Variety in Data Types: The datasets exhibit significant differences not only in
their use cases but also in the types of data they encapsulate. This intentional
diversity encompasses various data structures, field types, and nesting levels. This
breadth in data types serves to challenge the inference algorithms and ensures that the
resulting schemas are capable of accommodating a broad range of JSON structures.

• Study Scope and Manageability: The decision to limit the study to five datasets
was deliberate, stemming from a balance between comprehensiveness and practicality.
A more extensive dataset collection might not necessarily yield significantly different
insights and could potentially overlap with the characteristics of other samples. By
constraining the dataset count, the study aims to reduce the work while still ensuring
a meaningful and focused exploration of JSON schema inference.

20

6.2 Samples

Sample 1: Minecraft Biomes

The first sample data that will be used is data from the game Minecraft. Minecraft is a
video game made set in a world of cubes. A biome is a region in that world with its own
geographical features and properties. A biome can have different grass, foliage, sky, water
colours. Such information is stored as JSON files within the games files.

Notes & Comparisons

The unofficial Minecraft Wiki [14] describes the structure for custom biomes. This docu-
mentation is used to compare the resulting schema.

The initial point of distinction lies in the lack of fields within the particle.options
object. Within the context of the game, certain biomes feature ambient particles that
traverse the screen. In the case of sample biomes, these particles are defined through an id
and a probability parameter. However, it is important to note that the game provides
more intricate customisation options for biomes created by third-party developers. As
these customised options are not utilised in the provided samples, they are consequently
absent from the resulting schema.

Another notable result of the schema was the detection of default values for fog_color
and water_fog_color. These attributes dictate, as a number, the colour of fog both within
and outside of water. The system has detected for the fog_color the value 12638463 ■
predominates, being employed in over 80% of instances. The inclusion of this information
as a default setting will prove advantageous for third-party developers seeking to employ
a standard fog colour in their biome implementations.

The complexity increases for the temperature_modifier field, which is an optional
key. This particular field can assume one of two values: none or frozen, with none being
the default in cases where it is omitted. Ideally, this field should be categorised as an
enumeration encompassing these specific values. However, a challenge arises due to its
optional nature. Since no JSON file would explicitly denote none in this context, the
samples featuring this field consistently exhibit the only other option, frozen. Consequently,
the system has mistakenly identified it as a constant value.

Lastly, we turn our attention to the spawners field, which delineates the entities that
can potentially spawn within the confines of the biome. Each mob category field has the
same structure, where the category is monster, creature, ambient, water_creature, under-
ground_water_creature, water_ambient, misc, or axolotls. Ideally, the propertyNames
keyword, in conjunction with additionalProperties, should be used to establish a con-
sistent structure encompassing all mob categories without having to repeat the structure
in the schema. However, due to the system inferring each field independently without con-
sidering other related fields, it fails to recognise the shared structure among these fields.
This gives rise to two primary issues: first, the resulting schema redundantly represents
the structure multiple times, and second, users are required to provide repetitive responses
to identical speculations. Which provides opportunity for inconsistencies in user input.

21

https://json-schema.org/understanding-json-schema/reference/object.html#property-names

Sample 2: Earthquakes

The second dataset in this study comprises GeoJSON2 features representing earthquake
locations from the past 30 days, sourced from the United States Geological Survey. This
dataset, initially presented as a GeoJSON FeatureCollection, has been streamlined to
exclusively include the individual Features arranged within an array structure. One might
realise that this will change the resulting structure.

The proposed schema’s architecture will be compared against the official documentation
provided by the United States Geological Survey, as published on their website.

Notes & Comparisons

The resulting schema was of good quality, as it was able to detect all conditions accurately.
All properties were detected, and marked as required. Because the resulting samples only
contained Features, the type field was detected as an constant. In cases where data was
missing, the samples provided a null value. This resulted in the schema allowing both
for these properties. Nonetheless, it is worth noting that certain values were consistently
featured in the data, and as such, the schema did not add the option for null to allowed.
It is unclear from the documentation which values are or are not allowed to be null.

Delving into the specifics of the properties, we encounter noteworthy detection for enums:

• The status property astutely discerns whether an event has undergone human re-
view, signifying this via the automatic or reviewed options. Notably, the deleted
alternative, while mentioned in documentation, is understandably absent from the
samples (and thus also the resulting schema).

• The alert property informs the alert level according to the PAGER earthquake
impact scale, and was detected as an enumeration of green, yellow, and orange.
The absence of the red sample came from the apparent lack of red cases within the
last 30 days in the sample data — perhaps a fortunate twist of fate.

• The tsunami property, denoting whether an event occurred in an oceanic region, was
correctly identified as an enumeration of either 1 or 0. It raises the question of why
a boolean data type was not employed for this purpose. Possibly, it was the result
of how booleans are stored in their database.

• The type property, categorising the seismic event, was detected as an enumeration
of earthquake, quarry blast, explosion, ice quake, and other event. However,
the official documentation does not specify this property as an enumeration. This
detection leaves me uncertain whether this detection should be interpreted as a pos-
itive or negative result, as other event implies that the given options would suffice
as an enum type.

Finally, the schema’s length strategy allowed the addition of minItems and maxItems
for the coordinates array. This would require the array to be comprised of three values
(longitude, latitude, depth).

2GeoJSON is a format designed for representing geographical locations in JSON

22

Sample 3: NPM Packages

The next dataset contained samples for the JavaScript package manager NPM. Informa-
tion about a package is stored in the package.json file present in each project. This file
provides information about the name of the project, mark what dependencies that are
used, macros to run scripts, and other configurations. The gathering of this sample data
was done with the use of the GitHub API. Using this API, package.json files from public
repositories were extracted and aggregated into a single JSON file. Due to the presence
of potentially sensitive or personal information within this document, despite its publicly
accessible nature, we shall refrain from providing it.

Notes & Comparisons

The NPM package.json file presents a formidable challenge for schema inferences. As
mentioned in Section 2.3, when a JSON files use informational keys, inference becomes
difficult. Ideally, a single definition would be presented in the additionalProperties.
Unfortunately, the current inference system is not implemented to detect such usage of
keys, treating each field independently. As a consequence, the system produced an ex-
ceedingly extensive JSON Schema, where each field, be it a library, dependency, script,
or configuration choice, is specified. Comparing this to the version available on SchemaS-
tore.org, resulting schema is appalling.

However, it does reveal numerous licenses to be an enum, which the other schema also
specifies. The SchemaStore.org variant adopts, however, the elegant approach by utilising
the enumeration an suggestion, permitting any string value while still documenting the
most prevalent licenses through the use of the anyOf keyword.

Sample 4: IMDb Movies

The Internet Movie Database (IMDb) is an online repository dedicated to entertainment
media. Its API documentation includes a curated dataset comprising JSON responses
spanning a range of queries as an example responses. Among these queries, ’title with
parameters’ movie responses were specifically extracted and utilised as the primary sample
data.

Notes

The sample dataset appears to be curated, as they predominantly featuring highly-rated
films. This was apparent in the program’s repeated speculation for ratings (such as IMDb
and Rotten Tomatoes ratings) to marked as an enum. Interestingly, when dealing with
ratings, as they are stored as strings, the inference system can therefore not infer a potential
multipleOf constraint for ratings. Moreover, a substantial portion of the movies in the
dataset are English, which suggests a bias in the samples. Consequently, the program
erroneously assumed that language was a constant, a speculation I declined.

The program was able to detect Language, Genre, and Country as enums. A deeper
understanding of the back-end infrastructure could enable more informed judgements re-
garding the enumeration of these attributes. For instance, if IMDb merely stores languages
as key/string pairs. Noticeably, the language data is stored as an object with two fields:
key and value, where the two fields were always the same. My assumption is that value

23

would be different in other languages. If this were the case, an enum would be rather com-
plex to implement. While it was chosen to designate them as enums, this choice notably
inflates the schema’s size.

The program identified a comical repetition in the lists of people, particularly in the
cast and crew context. In the fullCast section, the program noticed a pattern regarding job
descriptions that were listed alongside individuals. This field was also observed in specific
job sections, such as directors, where all directors were specified as director. This keen
observation caused the system to detect that field as a possible constant.

Sample 5: OSI licenses

The Open Source Initiative (OSI) is a organisation dedicated to promoting and safeguard-
ing the rules of open-source software development. It maintains a comprehensive dataset of
open-source licenses that developers can use for their software. This dataset is in the form
of a JSON file, which will be used as the last sample to test the system on. Unfortunately,
we were unable to locate a schema for this file to use for comparison.

Notes

Each licence has an array of identifiers that display the identifier of the licence in at
most 3 different formats (SPDX, Trove, or DEP5). The system was able to detect the
3 types of format were as a possible enum. In the text field of the samples, the JSON
file specifies the link to the licence and the type of the file. In this field the media_type
property was correctly categorised into three distinct enumerations: text/html, text/plain,
and application/pdf. Similarly, the title property was categorised into three enumerations
as well: HTML, Plain Text and PDF.

However, it is noteworthy that the program did not inherently establish a direct cor-
relation between the media_type and title properties, even though a clear correlation
exists. As said before, the system processes each field independently, and is therefore lack-
ing functionality in detecting correlations between fields. For instance, when media_type is
identified as text/html, the corresponding title is HTML. This, and other previously men-
tioned, lack of correlation recognition highlights a potential area for potential enhancement
in the program’s functionality, as it could improve the accuracy of the resulting schema.

24

Chapter 7

Discussion and Conclusion

7.1 Research Questions Revisited

In Section 4.3, we have defined the following research questions to help guide the project.

Q1 What are the common types of JSON Schema inference algorithms, and how do they
differ?

Q2 How can user input be integrated into JSON Schema inference algorithms?

Q3 How can user input refine JSON Schema inference algorithms?

Q1 Schema inference algorithms

We answer this question in Chapter 3, where we discussed existing inference algorithms.
From the existing JSON Schema inference algorithms we found that most focus on generat-
ing a structure from NoSQL databases [1, 2, 4, 6, 21]. Generally, these inference algorithms
use the MapReduce method for processing the files. Unfortunately, these algorithms often
do not produce a JSON Schema, rather they produce class diagrams, or their own defined
structure definition. Besides research there are online tools available to infer a structure
from a JSON sample or samples. One of these was the work of Saasquatch [20]. We used
this library in our tool was ultimately the basis for the implemented system.

Q2 User interaction integration

We addressed this question in Section 5.3, which explored the various ways of implementing
user interaction. Users are prompted by the tool when it requires clarification, this halts
the program until it receives an answer. This can happen during the inference or after the
inference has completed. It was chosen to use TornadoFX as the library for the GUI as
it was the best solution from possible options. During the inference, the inference system
creates a basic schema from the primitive types of each file. It then calls strategies for each
field with relevant information to improve the resulting schema. If the strategy thinks it
has found an improvement, it asks and waits for the user to respond. To improve the user
experience, the design of the UI for each strategy focuses on making it simple for the user
to decline any speculation. Additionally, for strategies that would otherwise always require
user input, they are instead combined and asked at the end of the inference process.

25

Q3 How users improve inference

In order to address this question, we have provided a detailed account of the strategies we
have implemented in Section 5.4. These strategies were formulated by examining all the
keywords in the JSON Schema and contemplating how a program could identify situations
in a set of JSON files where a keyword would be appropriate. As JSON Schema can be
expanded with custom vocabularies, there is no limit to the potential for other strategies.

As seen in Chapter 6, there were still some limitations in the inference process. In that
chapter we evaluated the created program on five distinct JSON datasets. The evaluation
of the five samples revealed a spectrum of quality, ranging from schemas deemed highly
favourable to those considered significantly unfavourable from my subjective standpoint,
reflecting the varying degrees of refinement that would be needed. We saw that the enu-
meration strategy was the most successful, improving the structure for almost all samples.
In the following section of this chapter we will delve into the limitations and future work
of this study in more depth. Nevertheless, the implemented strategies have demonstrated
how they can assist a user in enhancing the resulting schema of an inference algorithm.

7.2 Reflection & Future Work

In the course of this study, it became apparent that JSON Schema possesses a far greater
degree of complexity than foreseen. This complexity allowed for many strategies to be
created, although many its features were not implemented. I recognise that, in retrospect,
greater confidence in my abilities may have led to the implementation of additional strate-
gies that could have further enhanced the system. In particular, strategies that would
organise and structure parts of the schema. However, as the system’s ability to detect
structure improves, the task of organising specific schema components with similar struc-
tures becomes progressively more intricate.

Besides validation rules, a JSON Schema provides tools for documentations. The cur-
rent system does not make use of these tools as it is hard to infer documentation from
samples. Unless artificial intelligence is used, it is debatable whether this system could
provide this functionality. Future systems might allow, similarly to how the length strat-
egy works, to provide an end screen where all fields could be provided with an description.
Alternatively — as the resulting schema is expected to be tweaked or altered — the system
could provide empty description fields for users to fill in later.

A important part of this study was the challenge of striking a balance between user
interaction and automated inference. As a system that is supposed to make the creation of
a JSON Schema easier, excessive user involvement counteracts this. The design attempted
to minimise the user interaction, where most of the interaction is required when confirm
any speculation. Regrettably, within the scope of this study, I was unable to address this
problem directly, highlighting the necessity for further exploration and refinement.

When we focus us on specific strategies, there are improvements to be made. Consider
the strategy for detecting enumerations. This strategy was the inspiration for this study.
The current implementation works well, however a different approach can improve it. In-
stead of separating the constant and enumeration strategies, they could be merged. Since
an enum with a single value is equivalent to a constant, the system could easily replace

26

it. An additional improvement would be to allow the user to specify if these values are
suggestions. If so, the schema would wrap the result around an anyOf with the primitive
type. This allows all values to be valid but still provides suggestions for autocompletion.

One might have noticed in the evaluation that the strategy for speculating prefix items
and contains keywords was not detected in any of the samples. This might indicate that
this strategy is not working as expected. The strategy works by testing the already made
schema for the current field, but this sub-schema might be to complex to detect any
consistent patterns. To avoid any influence of the sample data on the code, the experiment
was conducted in a one-time manner. While this approach aligns with the objective of
unbiased analysis, it does introduce a challenge when identifying potential issues or errors
in the code post-experiment. Therefore, I chose not to attempt to find a solution for the
strategy at this time. Future work should evaluate the implementation of this strategy.

Furthermore, the current multipleOf strategy can also be improved. At the moment,
largest value is the only option to select. The option to select a common divider that is
smaller than the greatest common divider would be a good quality of life feature. Ad-
ditionally, as we saw in Chapter 6, some numbers are displayed as strings. Future work
can improve this strategy to attempt to parse strings as numbers and attempt to detect a
GCD in the string. The multipleOf keyword, however, does not apply to strings. For the
system to specify this condition, we instead would use a regex on the string.

Continuing, we realised that sample do not always provide a complete depiction of a
structure. We observed scenarios, such as Minecraft biomes, where programs or systems
receiving JSON files would use a default value when a field is not present. This reveals
that even the most advanced systems can not infer all nuances, and thus needs to remain
flexible.

As we have discussed, informational keys are difficult to infer, but perhaps not impos-
sible. Many JSON files we encountered prioritised human readability over adhering to the
expected structure of a JSON file. For example, dependencies inside a NPM package could
have been an array of objects with the same structure, where the name of the package
would be value of a field. Instead, it was chosen to use an object, with the key the name
of the package. Since keys are unique, this makes it clear when there exists a duplicate de-
pendency. It is important to recognise that the complexity of informational keys can vary
widely. It can be as basic as an enum of keys or as sophisticated as Minecraft Blockstate
(see Example 6).

Besides these limitations, I am pleased with the results of this study. It showed how a
complex JSON Schema can be created with the help of a user, in particular, enumeration.
This research journey has not only contributed to my understanding of JSON Schema
inference and but has also yielded valuable insights and lessons that can guide future work
in this domain.

27

Bibliography

[1] Mohamed-Amine Baazizi et al. “Parametric schema inference for massive JSON
datasets”. In: The VLDB Journal 28.4 (Aug. 1, 2019), pp. 497–521. issn: 0949-877X.
doi: 10.1007/s00778-018-0532-7. url: https://doi.org/10.1007/s00778-018-
0532-7 (visited on 01/30/2023).

[2] Mohamed-Amine Baazizi et al. “Schema Inference for Massive JSON Datasets”. In:
OpenProceedings.org, 2017. doi: 10.5441/002/EDBT.2017.21. url: https://
openproceedings.org/2017/conf/edbt/paper-62.pdf (visited on 12/20/2022).

[3] Javier Luis Cánovas Izquierdo and Jordi Cabot. “Discovering Implicit Schemas in
JSON Data”. In: Web Engineering. Ed. by Florian Daniel, Peter Dolog, and Qing Li.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 68–83.
isbn: 978-3-642-39200-9. doi: 10.1007/978-3-642-39200-9_8.

[4] Pavel Čontoš and Martin Svoboda. “JSON Schema Inference Approaches”. In: Ad-
vances in Conceptual Modeling. Ed. by Georg Grossmann and Sudha Ram. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 173–
183. isbn: 978-3-030-65847-2. doi: 10.1007/978-3-030-65847-2_16.

[5] FasterXML. Jackson Project Home @github. 2023. url: https://github.com/
FasterXML/jackson (visited on 10/26/2023).

[6] Angelo Augusto Frozza, Ronaldo dos Santos Mello, and Felipe de Souza da Costa.
“An Approach for Schema Extraction of JSON and Extended JSON Document Col-
lections”. In: 2018 IEEE International Conference on Information Reuse and Inte-
gration (IRI). 2018 IEEE International Conference on Information Reuse and Inte-
gration (IRI). July 2018, pp. 356–363. doi: 10.1109/IRI.2018.00060.

[7] IMDb. IMDb Sample Data. Sept. 5, 2023. url: https://imdb-api.com/API.

[8] JetBrains. Compose Multiplatform UI Framework | JetBrains. JetBrains: Developer
Tools for Professionals and Teams. url: https://www.jetbrains.com/lp/compose
(visited on 10/26/2023).

[9] JSON. url: https://www.json.org/json-en.html (visited on 10/26/2023).

[10] JSON Schema Working Group. JSON Schema. url: https://json-schema.org/
(visited on 10/26/2023).

[11] JSONschema.net. JSON Schema Generator. url: https://jsonschema.net/ (vis-
ited on 12/20/2022).

[12] Meike Klettke, Uta Störl, and Stefanie Scherzinger. “Schema extraction and struc-
tural outlier detection for JSON-based NoSQL data stores”. In: Datenbanksysteme
für Business, Technologie und Web (BTW 2015) (2015). Publisher: Gesellschaft für
Informatik eV.

28

https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.5441/002/EDBT.2017.21
https://openproceedings.org/2017/conf/edbt/paper-62.pdf
https://openproceedings.org/2017/conf/edbt/paper-62.pdf
https://doi.org/10.1007/978-3-642-39200-9_8
https://doi.org/10.1007/978-3-030-65847-2_16
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://doi.org/10.1109/IRI.2018.00060
https://imdb-api.com/API
https://www.jetbrains.com/lp/compose
https://www.json.org/json-en.html
https://json-schema.org/
https://jsonschema.net/

[13] Liquid Technologies Limited. Free Online JSON to JSON Schema Converter. url:
https://www.liquid-technologies.com/online-json-to-schema-converter
(visited on 11/14/2023).

[14] Minecraft Wiki. Custom biome. Minecraft Wiki. Sept. 13, 2023. url: https://
minecraft.wiki/w/Custom_biome (visited on 09/26/2023).

[15] Mojang Studios. Minecraft JSON Biome Data. Version Minecraft Java 1.20.1.

[16] open source initiative. Opensource.org Licenses. Sept. 5, 2023. url: https://api.
opensource.org/licenses/ (visited on 09/05/2023).

[17] Python Software Foundation. JSON encoder and decoder. Python documentation.
url: https://docs.python.org/3/library/json.html (visited on 10/26/2023).

[18] QuickType. quicktype/quicktype. original-date: 2017-07-13T00:22:50Z. May 23, 2023.
url: https://app.quicktype.io/#l=schema (visited on 05/23/2023).

[19] S. Broekhuis. sbroekhuis/InteractiveSchemaInferrer. GitHub. 2023. url: https://
github.com/sbroekhuis/InteractiveSchemaInferrer (visited on 10/23/2023).

[20] saasquatch. GitHub - saasquatch/json-schema-inferrer: Java library for inferring JSON
schema from sample JSONs. url: https://github.com/saasquatch/json-schema-
inferrer (visited on 02/06/2023).

[21] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús García Molina. “Inferring
Versioned Schemas from NoSQL Databases and Its Applications”. In: Conceptual
Modeling. Ed. by Paul Johannesson et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015, pp. 467–480. isbn: 978-3-319-25264-3. doi:
10.1007/978-3-319-25264-3_35.

[22] SurveyJS. SurveyJS - JavaScript Libraries for Surveys and Forms. url: https :
//surveyjs.io/ (visited on 10/26/2023).

[23] Edvin Syse. TornadoFX. url: https://tornadofx.io/ (visited on 10/26/2023).

[24] USGS. GeoJSON Summary Format. Sept. 5, 2023. url: https://earthquake.usgs.
gov/earthquakes/feed/v1.0/geojson.php (visited on 09/05/2023).

[25] YUI Library. Douglas Crockford: The JSON Saga. Aug. 29, 2011. url: https://
www.youtube.com/watch?v=-C-JoyNuQJs (visited on 03/13/2023).

29

https://www.liquid-technologies.com/online-json-to-schema-converter
https://minecraft.wiki/w/Custom_biome
https://minecraft.wiki/w/Custom_biome
https://api.opensource.org/licenses/
https://api.opensource.org/licenses/
https://docs.python.org/3/library/json.html
https://app.quicktype.io/#l=schema
https://github.com/sbroekhuis/InteractiveSchemaInferrer
https://github.com/sbroekhuis/InteractiveSchemaInferrer
https://github.com/saasquatch/json-schema-inferrer
https://github.com/saasquatch/json-schema-inferrer
https://doi.org/10.1007/978-3-319-25264-3_35
https://surveyjs.io/
https://surveyjs.io/
https://tornadofx.io/
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://www.youtube.com/watch?v=-C-JoyNuQJs
https://www.youtube.com/watch?v=-C-JoyNuQJs

	Introduction
	Background
	Data
	Notes and Spreadsheets
	JSON

	Schemas
	Informational Keys

	Related Work
	Research Papers
	Online Tools

	Project Description
	Problem Statement
	Goal and Scope
	Research Questions
	Approach

	Implementation & Development
	System Design
	Inference System
	User Interaction
	User Input Strategies
	Constants
	Enumerators
	Default
	Uniqueness
	Contains/PrefixItems
	MultipleOf
	Length

	Evaluation
	Method
	Samples

	Discussion and Conclusion
	Research Questions Revisited
	Reflection & Future Work

