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Summary 

Trade-offs between different definitions of fairness plague many machine learning applications, from 

mortgage lending, to hiring algorithms and recidivism prediction tools. However, the existing 

literature on fairness in machine learning resides predominantly in the computer science domain and 

struggles to offer solutions to these trade-offs. Fairness is mostly reflected in a formulaic and 

reductionist view and significant progress in statistical progress has stagnated for decades. In this 

thesis I revisit the discussion that erupted around one of the most notorious algorithms that was 

accused of persistent fairness issues towards black people: the COMPAS algorithm for recidivism 

prediction used by many courts in the US.  

I analyse how recidivism prediction tools are constructed and whether their use can be justified from 

an epistemological perspective. I identify two main epistemological obstacles that stand in the way of 

using machine learning based recidivism prediction tools. Firstly, the criminological theory 

surrounding recidivism is insufficiently well founded and, secondly, machine learning tools 

notoriously entail problems regarding the opacity of their inner workings. By drawing from literature 

from philosophy of measurement I analyse how COMPAS fares at both measuring criminogenic 

needs and predicting recidivism. I conclude that it cannot satisfyingly fulfil either role in major parts 

because the tool is based on a criminogenic model developed using a dustbowl empiricism approach 

which is regarded as “atheoretical”. I argue that so-called atheoretical approaches for scientific 

modelling both do not exist and are undesirable and conclude that the model in question harmonizes 

well – for the wrong reason – with the supposed atheoretical approach of machine learning based 

modelling argued for by Anderson (2008).  

To address the fact that the literature surrounding fairness in machine learning is too reductionist and 

appears to have been stagnating for a long time, I investigate two major publications on more recently 

developed approaches, namely counterfactual fairness (Kusner et al., 2017) and counterfactual 

explanations (Wachter et al., 2017). Both stand out because they are built using a causal model as an 

underlying basis which, at least in theory, allows for explicitly modelling and correcting for systemic 

biases and fairness issues. I raise several shortcomings with these approaches and cast further doubt 

on the overall project of statistical fairness. By contrast, I introduce a recent publication from 

philosophy of measurement which addresses fairness issues by abandoning the commonly accepted 

benchmark for accuracy in machine learning for a metrological conception of accuracy (Tal, 2023). I 

conclude that the latter may be a suitable candidate for rethinking statistical fairness in a more 

fundamental sense. 
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Introduction 

Algorithms play an increasingly prevalent role in decision making processes, including high-stakes 

areas like medicine, hiring, mortgage lending, and crime prediction. These algorithms garner a lot of 

attention both by philosophers and in the public eye. Especially the recidivism prediction algorithm 

COMPAS obtained so much notoriety that it remained a discussion topic for two decades. Early 

publications of COMPAS mostly focused on epistemological standards with respect to its 

measurement scales and predictive validity (f.ex. Eno Louden & Skeem, 2007) but the 2016 

publication by ProPublica (Mattu et al., 2016) accusing the algorithm of systemic biases against black 

people shifted the discussion towards fairness in algorithms. In its wake, this article sparked a wave of 

publications in many academic areas – most notably computer science, philosophy, and law – that 

discuss definitions of fairness and how they can be implemented in algorithms, especially machine 

learning. 

However, developments in algorithmic fairness have been widely dissatisfying. Machine learning 

ethicists proclaim severe shortcomings in the machine learning literature when it comes to various 

fairness definitions and benchmarks (Lee et al., 2021). In particular, there appears to be no consensus 

when to use which notion of fairness and how to choose among different fairness benchmarks. This 

lack of clarity gives the project of fairness in machine learning an air of arbitrariness and makes it 

appear as if no real progress is being made. In fact, as I will explain in the first chapter, contemporary 

discussions of fairness merely echo identical issues identified fifty years prior in the statistical 

literature regarding fairness in standardised testing. Perhaps even more troublesome is the fact that 

several publications demonstrate that there are mathematically incommensurable trade-offs between 

different fairness conditions (Chouldechova, 2017; Kleinberg et al., 2016). This means that, in 

practice, the mathematical conditions of the fairness definitions cannot be fulfilled at the same time 

because they oppose one another. Given that the current status of algorithmic fairness is in such 

disarray, I will not enter the debate on which fairness condition is most suitable for which 

circumstances, but rather take a step back by reconceptualising what machine learning based 

prediction actually entails.  

For this purpose, my analysis will draw predominantly from recent publications from philosophy of 

measurement. This is because these publications identify an analogy between machine learning and 

measurement, and I investigate this analogy to see whether philosophy of measurement can provide 

some useful tools for addressing the fairness problems in question. My main research question in this 

thesis is therefore: What kind of insights can philosophy of measurement provide about machine 

learning based recidivism prediction and how can these insights help us address the problem of 

apparently incommensurable fairness trade-offs?  
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I break down the main research question into three sub-questions, each treated in an own chapter. 

Firstly, since I approach my analysis by focusing not only on the ethical problems of recidivism 

prediction but also on its epistemological conditions, the first chapter will answer the following sub-

question: What are the ethico-epistemological problems of machine learning based recidivism 

risk prediction? This chapter has a more introductory function and provides the landscape of 

problems that I will treat throughout this thesis. Here, I identify two fairness related problems – 

regarding the reductionist nature of current fairness definitions and the overall lack of progress in 

algorithmic fairness – and two epistemological problems – regarding the definition of the measurand 

and the validity of the prediction tools. For this analysis I consult the criminological literature to 

situate COMPAS accordingly in the criminological field on the one hand and recent analyses on 

fairness in machine learning to sketch out the ethical problems of recidivism prediction on the other.  

The second chapter focuses on the epistemological problems. I choose to focus on the epistemological 

part before discussing the ethical part because it appears more intuitive to me to first ask how 

recidivism risk prediction tools work before contending with the fairness issues they bring about. For 

this reason, the chapter will treat the following question: What kinds of models is the recidivism 

risk prediction tool COMPAS based on? As the epistemological problems identified in the first 

chapter hint at, this question can be further divided into a theoretical part (definition of the 

measurand) and a technical part (validity of the prediction tools). For the theoretical part I visit the 

psychological literature on recidivism and for the technical part I consult technical studies 

investigating the validity of COMPAS. I connect this literature with recent publications in philosophy 

of measurement that concern the analogy between machine learning prediction and measurement in 

order to cast a critical look at the modelling assumptions behind both the theoretical and technical 

parts. Rather than determining to which degree the analogy between machine learning and 

measurement holds, I conclude that this discussion informs best practices and helps specifying 

epistemological responsibilities.  

In the third and last chapter, I investigate how we can approach the fairness issues identified in the 

first chapter from a new perspective. The reductionist definitions commonplace in the literature 

around fairness in machine learning have thus far not provided satisfying solutions and the trade-offs 

they entail can be hard to accept. I will therefore consider the following sub-question: How can we 

incorporate fairness in machine learning based recidivism prediction without relying on 

reductionist definitions or succumbing to inevitable trade-offs? To address this question, I firstly 

present the technical literature on fairness trade-offs in greater detail before introducing the notion of 

counterfactual fairness as an alternative conception. I contrast counterfactual fairness with a recent 

publication introducing counterfactual prediction (Tal, 2023) which draws from philosophy of 

measurement and breaks with certain practices common to machine learning. While I conclude that 
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this latter approach could be a promising candidate for overcoming the predicaments of algorithmic 

fairness, I note some reasons for caution. 

To summarise, the first two questions are dedicated to the first part of the main research question; 

they relate to the epistemological basis of recidivism prediction. The third question relates to the 

second part of my main research question and attempts to conjure up a solution to the problem of 

inevitable trade-offs. I seek to address the fairness issues that plague many machine learning 

applications by focusing on the recidivism prediction algorithm COMPAS. Since I neither want to 

rely on the reductionist definitions of fairness common in the machine learning literature nor succumb 

to apparently inevitable trade-offs, I attempt to reconceptualise machine learning based prediction 

overall rather than remaining in the present debates of algorithmic fairness. These fairness issues 

cannot be neatly separated from epistemological conditions and my thesis presents therefore a joint 

ethico-epistemological analysis of machine learning based recidivism prediction.  

Methodologically, I draw from a wide range of literature. In order to understand what recidivism is in 

itself and how one attempts to predict it, I consult criminological literature, most notably in the 

domain of psychology of criminal conduct. Since COMPAS as a recidivism prediction tool relies on 

machine learning, I furthermore consult the technical ML literature as well as studies concerning the 

epistemic validity of COMPAS. I accompany this analysis with philosophical literature on the 

epistemological challenges of machine learning, most notably relating to the opacity problem and 

mention some parallels to arguments made in the juridical context. In order to elucidate the fairness 

trade-offs, I translate the mathematical proofs for their incommensurability in such a way that it 

motivates the alternatives presented in the last chapter. I complement my entire analysis by invoking 

recent publications from philosophy of measurement. The reason I focus on these recent publications 

is because they contain a paradigm shift in philosophy of measurement away from a representational 

account of measurement and towards a model-based account of measurement spearheaded by Eran 

Tal (2012). It is this model-based account of measurement which connects measurement best to 

machine learning prediction and serves as a main entry point for my analysis. 
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Chapter 1: Contextualisation of Crime Measurement and Prediction 

In this first chapter I will describe two large issues that concern machine learning based recidivism 

prediction tools. Firstly, there are serious epistemological questions both on the side of the construct 

“recidivism” on the one hand and with regards to the prediction algorithm on the other hand. What 

exactly is recidivism? And how are we to understand a person’s likelihood to recidivate? Is the latter 

purely an educated guess about the future based on statistical inferences? Or is “likelihood to 

recidivate” something like a latent variable, a dormant potential in a person that can be triggered and 

cause harm given the right internal and external circumstances? Is this latent variable measurable? 

How then can we trust a machine learning algorithm to measure this variable? The latter question – 

whether machine learning algorithms can be said to measure – will be treated in detail in the second 

chapter of this thesis. For now, in this chapter, I will outline the conceptual issues relating to 

recidivism or likelihood to recidivate by providing an analysis over the field of criminology in general 

and the development of crime prediction tools like the Correctional Offender Management Profiling 

for Alternative Sanctions (COMPAS) specifically.  

Criminology as a field of study has deep rooted issues regarding its internal coherence and the 

existence of its object of study. It is best understood as a ‘rendezvous subject’ where the expertise of 

different domains meet and come together, instead of a discipline itself (Newburn, 2018, pp. 2-3). 

This picture is rendered more complicated when looking at the history of crime prediction tools. 

Developers of the COMPAS algorithm see the history of crime prediction as progressive with 

COMPAS being one of the best available tools to date. They claim that it includes solid theoretical 

foundations, namely the psychology of criminal conduct (PCC), as opposed to previous generations of 

crime prediction, which were less structured, and, while empirical, more static or atheoretical 

(Andrews et al., 2006, pp. 7-8). However, it is also noted that there was not enough evidence to 

confidently state that newest crime prediction tools fare better than the best tools from previous 

generations of crime prediction tools. A note of caution is therefore warranted that only because a tool 

presents itself as the latest innovation and the most complex variant, it does not necessarily mean that 

it is the most preferable especially when considering a range of different evaluation criteria. 

Secondly, besides the epistemological challenges, there are serious ethical issues relating to the fair 

treatment of different target populations by the COMPAS algorithm. Investigations by ProPublica 

(Mattu et al., 2016) have sparked an immense debate about the fairness issues in predictive tools, with 

rebuttals by the developers (Dieterich et al., 2016) and other statisticians and data scientists chiming 

in, among which one very notable contribution by Kleinberg et al. (2016) in which they demonstrate 

inherent trade-offs between different notions of fairness. To top it all off, studies into general issues 

regarding fairness have kept the statistics community (for example Cleary (1966, 1968) and Sawyer et 

al. (1976) busy since the 1960s and produced no progress on resolving the most fundamental 
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problems regarding trade-offs. In fact, Hutchinson and Mitchell (2019) lay out how the discussion 

surrounding fairness issues in COMPAS is merely echoing many of the exact issues statisticians have 

identified in the 1960s with respect to fairness issues in standardized testing and grading. 

The analysis to be provided in this chapter will suggest that justifying the use of recidivism prediction 

algorithms is problematic both from epistemological and ethical standpoints. This will set the stage 

for the subsequent chapters where I will analyse whether reframing machine learning as measurement 

instruments is, firstly, justifiable, and, secondly, able to handle both the epistemological and ethical 

problems raised in this chapter. For now, however, I will proceed as follows. Section 1.1. will give a 

cursory overview about the field of criminology before transitioning in section 1.2. into an analysis of 

the development of crime prediction tools and how they are framed. Section 1.3. will then outline the 

ethical issues relating to fairness, how there are trade-offs between incommensurable definitions of 

fairness and how the literature has responded to these issues. The conclusion will tie these analyses 

together and set the stage for the subsequent chapters. 

1.1. The construction of crime  

The purpose of this chapter is locating our concept of interest, recidivism, within its surrounding field 

of study, criminology. By highlighting the theoretical and methodological difficulties within 

criminology, in particular with regards to the notions of ‘crime’ and ‘criminal’, we can discuss the 

domain-specific obstacles to the creation of an appropriate metric for recidivism prediction. 

First versions of criminology emerged in the late 18th century as disconnected endeavours to collect 

data and analyze criminal behaviour (Newburn, 2018, p. 2). These local movements rarely, if ever, 

used the label “criminology” to describe their work, but understood themselves as branching off from 

other established sciences, like anthropology, sociology, psychology, or statistics (Newburn, 2018, p. 

2). Nowadays, criminology is still best understood as a subject or a field of study, rather than a 

discipline (Newburn, 2018, pp. 2-3). This is because a discipline generally disposes over a more or 

less well-defined and unilaterally accepted methodology and theoretical foundation which are both 

lacking in criminology.  

In terms of theory, it is striking that “[…] crime, the core subject of criminology, has no ontological 

reality.” (Newburn, 2018, p. 17, emphasis in original). Crime is a very relative concept. The legal 

status of many acts has transformed over time. For instance, in the UK, the Abortion Act 1967 

decriminalized abortion under certain circumstances. Another example is the Sexual Offences Act 

1967 decriminalizing homosexual activities between adult males. Examples for acts that used to be 

legal but were criminalized subsequently include, for example, the use of Opium in the UK up until 

1860, smoking cigarettes inside public spaces, and marital rape. Furthermore, it goes without say that 

the legal status of certain actions varies from one legislation to another (Newburn, 2018, pp. 9-14).  
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Another ontological challenge for the concept of crime is the aspect of criminalization, i.e., the idea 

that criminals are constructed by the fact that individuals are “processed” within a criminal justice 

system and subsequently obtain the label ‘criminal’. This is not to say that the process is unjust or 

arbitrary per se. Instead, what is important is to bring attention to the notion of power in deciding 

what constitutes a crime and who therefore constitutes a criminal (Newburn, 2018, pp. 14-17). For 

instance, policing practices like ‘stop and frisk’ (in the US) or ‘stop and search’ (in the UK) 

disproportionally targeted ethnic minorities leading to a disproportionate processing of minorities by 

the criminal justice system and labelling as ‘criminal’ (Newburn, 2018, p. 15).  

Deriving from both the relativity of the concept of crime and the socially constructed aspect of 

criminalization are challenges to define constitutional differences between criminals and non-

criminals (Newburn, 2018, p. 18). The vast majority of people commit at least one of a range of minor 

offences like weed consumption, driving under influence, stealing from a shop, or illegally 

downloading music from the internet (Newburn, 2018, p. 19). The most important takeaway from this 

chapter so far is that the terms ‘crime’ and ‘criminal’ should be handled with extreme caution due to 

their contextual dependencies both in the sense that the socio-political context determines their 

definitions and in the sense that the context influences the occurrence of crime. 

The above critiques about the contextually dependent relativity of crime and criminals are most 

prominently provided by feminist and critical studies. These fields broadly emphasize the power 

dynamics associated with the act of defining and categorizing concepts like “crime” or “risk” and put 

special attention the social context in which these concepts are deployed. They often try to maintain 

that these concepts have no authority that extends beyond specific socio-cultural contextuality and, as 

such, have no claims to authority in an absolute sense. They would argue along the lines of stating 

that the criminal per se does not exist, but is only constructed within a particular setting and that there 

are no universal criteria that ultimately and indefinitely pin down the essence of crime, criminal, risk, 

etc. 

Feminist and critical critiques have a strong point especially when considering non-violent offenses 

like weed consumption, or when considering the history of the criminalization of homosexuality1. The 

differences in legislations across different societies and times lends credibility to their being arbitrary 

and expressions of contingent factors, perhaps even Foucauldian desires for control and power. These 

critical points are also acknowledged in the literature about crime prediction. They are even invited 

and encouraged as assuring that developers of crime prediction tools remain sceptical of their 

practices and are committed to demonstrate the reliability and validity of their tools (Andrews et al., 

 

1 As of writing this (30.05.2023), Uganda passed an Anti-LGBTQ bill endorsing the death penalty for 

“aggravated homosexuality”. 
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2006, p. 21). Maintaining a commitment to the rationalist empirical tradition, they consider scepticism 

and aversion towards misuse as an integral part of their practice.  

Variants of typical postmodern critiques towards criminology manifested themselves for example as 

labelling theory, which states that the law is created by the powerful and is as such a tool for power 

and controlling what they deem deviant. The criminal therefore does not exist but is created by the 

institution of law; the criminal is labelled as such, leading eventually to an identification of the 

labelled with the constructed deviant subculture and thus with their own label (Wellford, 1975, p. 

333). One main counterargument is the widely established literature on cross-cultural studies about 

categories of criminal behaviour. This literature finds that most violent crime such as, for instance, 

murder, forcible rape, and robbery are condemned to relevant degrees in all cultures (Wellford, 1975, 

p. 334). The rational empiricist tradition maintains a tension against the most sweeping postmodern 

critiques and justifies their commitments with rising predictive power of their methods and cross-

cultural validations when it comes to categorizations of crime. 

A more thorough and complete analysis on the debate between the rational empiricist camp on the one 

hand and the feminist and critical studies camp on the other deserves its own thesis. A glance into this 

debate was necessary to clarify the constructed nature of the concepts “crime” and “criminal”, as this 

has repercussions for the justifications of a metric created for recidivist behaviour. For reasons of 

scope, I will limit my analysis to the cursory points made above. I also consider the rational empiricist 

argument for considering violent crimes like murder, forcible rape, aggravated assault, robbery, 

burglary, larceny, and auto theft (Wellford, 1975, p. 334) as intrinsically criminal as justified due to 

cross-cultural studies supporting their condemnation in all cultures studied. At the same time, the 

limitations of crime prediction tools with respect to non-violent crime like drug abuse or practices 

criminalized based on ideological grounds like homosexuality have to be acknowledged and require a 

more nuanced look at crime prediction tools which differentiates between different criminalized 

practices.  

To the degree that we do distinguish between criminals and non-criminals, a range of ‘risk factors’ 

have been identified that indicate a higher propensity to committing crimes. Individual factors include 

low intelligence, low educational achievement, hyperactivity, impulsiveness, and childhood antisocial 

behaviour. Family circumstances include poor parental supervision, child physical abuse, child 

neglect, parental conflict, and delinquent siblings. Peers can contribute to a higher likelihood of 

criminal behaviour when they are themselves in trouble or rejected by other peers. Lastly, the 

community can raise the likelihood for crime when the individual is living in a high crime 
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neighbourhood (Newburn, 2018, p. 32)2. Regarding the impact of these influences, it needs to be said 

that “[t]he risk factors are important influences rather than distinguishing characteristics or 

determining features.” (Newburn, 2018, p. 21). There appears to be a strange twilight space which 

predictive tools occupy. They identify factors that consistently, in terms of statistical relevance, 

predict certain events, but, as Newburn (2018) statement above appears to illustrate, proponents of 

these tools want to refrain from claims about determinism. Instead, one talks continuously of 

“likelihoods”, “propensities”. In the next chapter I will provide an introduction into how such 

likelihoods are estimated with recidivism prediction tools, most notably at the example of COMPAS. 

1.2. The logic behind COMPAS? 

Crime prediction tools are generally not used to predict first crime but rather second or future crime. 

With a bulk of interventions attempting to treat and prevent re-offense rather than crime itself, it 

appears as if the justice system treats first crimes as tragic, uncontrollable events, whereas reoffenders 

are immediately on the system’s radar and the failure to control their reoffending is seen as 

particularly tragic. Indeed, Weisberg (2013) comments: 

“First crimes are caused by inherent character or social conditions that are too complex to control. But 

once someone is identified as an offender, the system is on notice that he is prone to offend, and if he 

enters the system the failure to control becomes an especially lamentable and, in theory, avoidable 

failure.” (Weisberg, 2013, p. 788) 

This quote indicates a certain framing of crime prediction tools. Most people object in horror to an 

Orwellian system set out to monitor every citizen in order to prevent first crime. It is all the more 

striking that there is a system in place that intently studies the criminal population, which, at least in 

2008 in the US, made up one percent of the entire population3. 

Vast studies on the US criminal population have, in a way, culminated in the Correctional Offender 

Management Profiling for Alternative Sanctions (COMPAS) recidivism risk assessment algorithm 

developed by Northpointe (now Equivant). This supervised machine learning algorithm is used as a 

tool to predict the needs and risk of recidivism of a defendant in order to inform a judge’s decision 

about where to place, how to supervise and how to manage the case of a particular offender. Besides 

jailtime, drug courts and mental health courts have emerged to provide alternative sanctions to 

offenders comprised of a mixture of “sanction, supervision and therapy” (Weisberg, 2013, p. 797). 

Rather than exclusively providing motivations in favour of or against jailtime or bail, the COMPAS 

 

2 Note also that many of these proxies appear to track poverty, which is another problematic aspect of crime 

prediction tools. 
3 This has declined to 810 people per 100.000 in 2019 (Gramlich, 2021). For contrast, the incarceration rate in 

the Netherlands declined from 100 per 100.000 in 2008 to 66 people per 100.000 in 2021 (World Prison Brief - 

Netherlands, retrieved 1st June 2023) 
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tool is therefore additionally aimed at informing a judge’s decision about the kind of sanctions to offer 

to an offender.  

For a thorough overview of the recent history of crime prediction tools, I refer to Andrews et al. 

(2006)4. In cursory terms, they distinguish between four generations of crime prediction tools, where 

those of the first generation (1G) were mostly unstructured professional judgements, second 

generation (2G) tools began to include empirical bases but remained atheoretical and static, and third 

generation (3G) tools tended to include wider samples of dynamic variables and introduce theoretical 

foundations (Andrews et al., 2006, pp. 7-8). Fourth generation (4G) tools are described as the best 

currently available methods with wide applicability, able to handle multiple purposes, and 

accompanying assessments from the beginning until the end of an offender’s time within the criminal 

justice system. Indeed, Andrews et al. (2006) describe their major goal as “to strengthen adherence 

with the principles of effective treatment and to facilitate clinical supervision devoted to enhance 

public protection from recidivistic crime” (Andrews et al., 2006, p. 8). 

It is clear that the authors attach high hopes and expectations to this generation of instruments. Their 

confidence in “effective treatment” and “clinical supervision” stems in great deals from advances in 

the psychology of criminal conduct (PCC). In fact, they note that “theoretical, empirical, and applied 

progress within the psychology of criminal conduct (PCC) has been nothing less than revolutionary.” 

(Andrews et al., 2006, p. 8). The main contributions of PCC to 4G instruments consists in a 

theoretical understanding of social learning and social cognition theory, an empirical understanding of 

the so-called risk-need-responsivity (RNR) model shared by several disciplines interacting in the 

criminal justice system, and empirical studies into the effectiveness of different treatment options 

(Andrews et al., 2006, pp. 9-12).  

This risk-need-responsivity model played a central role in third and fourth generation crime prediction 

tools. In fact, Bonta and Andrews (2007) note that “third and fourth generation risk assessment 

instruments would not have been possible without the risk-need-responsivity model of offender 

assessment and rehabilitation.” (Bonta & Andrews, 2007, p. 4). As the name suggests, the model is 

based on three principles. The risk principle states that an offender’s likelihood of recidivism can be 

reduced if the level of the treatment intervention is proportional to the offender’s risk of reoffending 

(Bonta & Andrews, 2007, p. 5). It entails therefore assigning more resources to the treatment of high-

risk individuals than to low-risk individuals. The need principle requires that the treatment focuses on 

criminogenic needs. Criminogenic needs are dynamic risk factors that can be affected by treatment (as 

opposed to static risk factors like sex which are immutable) and are directly linked to risk factors. 

 

4 See also Barabas et al. (2018). 
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Each need individually requires a specific intervention that is defined by the criminogenic need5. For 

example, one of the major risk factors is a history of antisocial behaviour and its associated 

criminogenic need that should be targeted by the treatment intervention is to “build noncriminal 

alternative behaviour in risky situations” (Andrews et al., 2006, p. 11). Lastly, the receptivity 

principle states with respect to general receptivity that social cognitive learning methods are the most 

effective treatment option irrespective of the kind of behaviour being treated and with respect to 

specific receptivity that treatment should be catered to “personal strengths and socio-biological 

personality factors” (Bonta & Andrews, 2007, p. 7) in order to increase the success rate of the 

intervention. All in all, the RNR model centres around effective treatment, focusing on effective 

resource allocation and tailoring treatment interventions to the specific needs and circumstances of the 

offender. 

As a stark contrast, a report by ProPublica revealed biased predictions against black defendants, 

disproportionally classifying them wrongly as high risk and disproportionally classifying white 

defendants wrongly as low risk (Mattu et al., 2016). The report sparked a huge debate about the 

fairness of algorithms, especially risk assessment algorithms with main contributions pointing out 

how large and variable different notions of fairness can be as well as that they often cannot be 

fulfilled at the same time (Kleinberg et al., 2016). Instead, they tend to trade off both against one 

another and against the accuracy of the algorithm. A huge wave of publications analysed the issues of 

fairness in predictions and manifold fairness frameworks and benchmarks for ML and AI were 

created6.  

Rudin et al. (2020) attributed most of the confusion around the COMPAS algorithm and its fairness 

issues to the lack of transparency of the algorithm. Two types of opaqueness are at play here. On the 

one hand, it is unclear how to explain or understand the way the different variables are weighted and 

connected inside the algorithm and how to provide a satisfying justification for a given output. On the 

other hand, the algorithm is protected by proprietary law such that a direct investigation into its 

functioning is impossible in the first place. Investigators and scientists can only indirectly scan given 

outputs for particular datasets to come to certain conclusions. This is why ProPublica could be 

accused of a faulty analysis of the COMPAS algorithm – the lack of transparency makes a clear 

investigation impossible, leading to cases where a biased algorithm can be made to appear just, or, 

conversely, where a fair algorithm can seem biased. Transparency in both the legal and the technically 

 

5 The most relevant factors are called the “central eight” (Andrews et al., 2006, p. 10). For an overview of risk 

factors and their associated criminogenic needs, see Table 1 in Appendix A (reprinted from Andrews et al., 

2006, p. 11). 
6 See Berk et al. (2021) for an overview of different fairness definitions and how they trade off against one 

another and against accuracy, and Lee et al. (2021) for going beyond technical definitions of fairness and 

attempting to reconnect them to philosophical definitions. 
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interpretable sense is thus an overarching value that would enable the creation of fairness in these 

algorithms in the first place7. 

This problem of transparency is already apparent in reports and assessments on COMPAS that were 

published before ProPublica’s investigation. In (Eno Louden & Skeem, 2007), the authors provided a 

scathing analysis of the COMPAS algorithm. Their analysis followed along the lines of predictive 

utility, construct validity, and reliability which they define in the following way: 

• “Predictive utility: [the COMPAS] must contain a standard scale(s) that has been shown to 

predict future reoffending; its actuarial prediction formulae must be cross-validated with 

independent samples; and it must emphasize criminogenic needs that predict future reoffense;  

• Construct validity: it must measure the criminogenic needs it purports to measure; for 

example, it should relate coherently to other measures of needs and capture change in risk 

state over time;  

• Reliability: at the most basic level, it should produce scores that are consistent over short 

periods of time (test-retest reliability), different items (internal consistency within scales), and 

different evaluators (interrater reliability).” (Eno Louden & Skeem, 2007, p. 5, emphasis in 

original)8 

They found only weak support for predictive utility and even claimed that only one of the eight 

factors used in the prediction was actually predicting recidivism and constituted only a limited 

correlation. In terms of construct validity, the COMPAS developers do provide strong evidence that 

their model is rooted in substantiated theory, but provide no evidence that the way the variables are 

implemented and linked in the model relates in any way to existing measures and scales. Lastly, in 

terms of reliability, no support was given neither for test-retest nor for interrater reliability. As such, 

the authors could not recommend the use of COMPAS for its intended purposes. In (Brennan et al., 

2009), the COMPAS developers themselves directly respond to the report by Eno Louden and Skeem 

(2007). They mainly make assurances that their algorithms are tested to ensure adherence to the 

criteria Eno Louden and Skeem (2007) list, but since the algorithm is protected by proprietary law, 

such assessments and responses ultimately cannot lead to a fruitful result.  

An assurance of transparency is therefore a necessary condition for making proper assessments of 

recidivism risk assessment algorithms in the first place and enabling the creation of fairer algorithms 

in the future. The prospects of the latter are also bound by obstacles and reasons for pessimism, as I 

 

7 See also Rudin (2019) for advocating against black box algorithms and in favour of interpretable models. 
8 Note in this quote that predictive utility refers to predicting events in the future while construct validity to 

measuring a criminogenic need currently present in the offender. It is not clear how future prediction and 

present measuring relate to one another and which of the two the COMPAS algorithm is performing in actuality. 

This conceptual confusion will be picked up in chapter 2. 
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will demonstrate in the part below by analysing how notions of fairness in statistics have (or have not) 

developed since early works from the 1960s. 

1.3. No progress in statistical fairness 

The COMPAS affair sparked a massive debate around notions of fairness. Particularly noteworthy is 

that much of the literature stems from data scientists and has an origin in computer science, rather 

than a sociological or philosophical background. Critics point out that these computational fairness 

frameworks are too constrained, unable to capture the “true” complexity of fairness (Lee et al., 2021). 

This issue leads to an interesting tension between the “true” meaning or conceptualisation of fairness 

and the operationalization of fairness. Data science scholars focused more on how to effectively 

operationalize the notion of fairness, i.e., make it implementable for an algorithm. This is why there 

exists a massive literature on technical fairness frameworks and benchmarks. Such frameworks have 

been summarized elsewhere better than I can do here, see for example (Hutchinson & Mitchell, 2019; 

Lee et al., 2021; Verma & Rubin, 2018; Washington, 2018), but I provide an overview over the 

fairness conditions that were at the core of the COMPAS-ProPublica debate: Predictive parity, false 

positive error rate balance, and false negative error rate balance. 

Given a protected9 class, for example race 𝑅, a predicted decision 𝑑 (for simplicity, 1 for high risk of 

recidivism and 0 for low risk), and the actual outcome or true value 𝑌 (whether a defendant actually 

has a high risk of recidivism or not), predictive parity requires that the different groups 𝑤 (for white) 

and 𝑏 (for black) in the protected class 𝑅 have an equal likelihood of truly belonging to the positive 

class given that they received a positive decision. Mathematically, this is equivalent to the following 

equation:  

𝑃(𝑌 = 1|𝑑 = 1, 𝑅 = 𝑤) = 𝑃(𝑌 = 1|𝑑 = 1, 𝑅 = 𝑏) 

The equation states that the probability 𝑃 that the true label is positive (𝑌 = 1) given that we have a 

positive decision (𝑑 = 1) is equal for both races (𝑅 = 𝑤 and 𝑅 = 𝑏). This is the definition of fairness 

the COMPAS developers focused on. Intuitively, the need for this requirement comes down to the fact 

that if predictive parity were not respected, then white and black defendants would have different 

likelihoods of truly belonging to the high-risk category when given a positive prediction (this 

likelihood is called positive predicted value (PPV), also referred to as precision). A judge evaluating 

the prediction of the algorithm would then face the conundrum that a positive prediction by the 

algorithm essentially has a different meaning for white and black defendants. If black defendants had 

a lower PPV than white defendants, then a judge had reason to trust the predictions for white 

 

9 Protected in the sense that it is prohibited to discriminate based on the features that define this class, e.g., race, 

sex, gender. 
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defendants but not for black defendants. This effectively renders the algorithm useless, since the judge 

would disregard the algorithms prediction specifically for black defendants and rely instead on his 

personal judgement which constitutes a case of differential treatment based on race. 

False positive error rate parity requires that the false positive rate (FPR) for black and white 

defendants is equal. The false positive rate is the ratio between false positive predictions and all actual 

negative cases: 
𝐹𝑃

𝑇𝑁+𝐹𝑃
 and reflects the likelihood that a defendant is given a positive prediction (i.e., 

high risk) when they are actually in the negative class (i.e., low risk).  The intuition behind this 

condition is quite straightforward: a false positive prediction means that a defendant was wrongly 

identified as a high-risk individual leading to a harsher sentencing than they would actually deserve. 

Overall, one would like the FPRs to be as low as possible, but disparate FPRs additionally have the 

effect that one group disproportionately receives unjust harsher sentencing than another. In the case of 

COMPAS, the FPR for black defendants was higher than for white defendants, additionally leading to 

disfavouring a minoritized group. Mathematically, false positive error parity can be stated such that 

the probability 𝑃 that a defendant receives a positive prediction (𝑑 = 1, i.e., high risk) when their true 

label is negative (𝑌 = 0, i.e., low risk) is equal for both races (𝑅 = 𝑤 and 𝑅 = 𝑏). It can be 

formulated as follows: 

𝑃(𝑑 = 1|𝑌 = 0, 𝑅 = 𝑤) = 𝑃(𝑑 = 1|𝑌 = 0, 𝑅 = 𝑏) 

Lastly, false negative error parity rate, analogously to the condition above, requires that the false 

negative error rate (FNR) is equal between groups. It is defined as the ratio between false negative 

predictions and all actual true cases: 
𝐹𝑁

𝑇𝑃+𝐹𝑁
. Again, the intuition behind this condition is quite clear. A 

false negative prediction would mean wrongly releasing a high-risk individual. Since, in the case of 

COMPAS, the FNR was higher for white defendants than for black defendants, it meant that white 

defendants disproportionally wrongly received milder sentencing than black defendants. 

Mathematically, this condition can be stated as: 

𝑃(𝑑 = 0|𝑌 = 1, 𝑅 = 𝑤) = 𝑃(𝑑 = 0|𝑌 = 1, 𝑅 = 𝑏) 

Each of these definitions can be debated based on their merit and drawbacks for a given context. 

However, the key point is that these frameworks mostly function as technical approaches to an issue 

that is deeply social and philosophical. There is no clarity how to choose among the variety of 

different definitions of fairness nor how to handle their trading off against one another. Rather, 

because it is difficult to clarify what each of these benchmarks or technical definitions of fairness 

mean in relation to moral judgements and ethical schools of thought, it is also unclear how to justify 

the choice of a particular fairness definition or benchmark. 
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This problem that the choice of a particular technical definition of fairness is hard to justify lends 

them an air of arbitrariness and risks invoking the danger of developers picking those frameworks that 

require the least amount of effort in order to label their algorithms “fair”. We should expect machine 

learning developers to reflect upon which kind of fairness issues are particularly relevant for a given 

application and reconnect their practice to the context their tools will be applied to. First attempts to 

stoke the discussion of values and fairness can be found in (Lee et al., 2021) in which the authors 

connect technical fairness definitions to schools of thought from ethical philosophy and welfare 

economics and suggest concrete steps on how to guide such reflections in development processes (Lee 

et al., 2021, p. 539).  

Besides the problems regarding mathematical or technical definitions of fairness and benchmarks 

today, a historical argument is put forward by Hutchinson and Mitchell (2019) who demonstrate that 

the recent debate around COMPAS merely echoed a practically identical debate from the 1960s and 

1970s which arose around test fairness at the time10. Most strikingly, the authors quote Sawyer et al. 

(1976) as eerily predicting the very same trade-offs that would occur in the COMPAS debate in 2016: 

“A conflict arises because the success maximization procedures based on individual parity do not 

produce equal opportunity (equal selection for equal success) based on group parity and the 

opportunity procedures do not produce success maximization (equal treatment for equal prediction) 

based on individual parity. Such distinctions must be treated through utility statements.” (Sawyer et 

al., 1976, p. 69) 

Compare this statement with Kleinberg et al. (2016): 

“Despite their different formulations, the calibration condition and the balance conditions for the 

positive and negative classes intuitively all seem to be asking for variants of the same general goal — 

that our probability estimates should have the same effectiveness regardless of group membership. 

One might therefore hope that it would be feasible to achieve all of them simultaneously. Our main 

result, however, is that these conditions are in general incompatible with each other; they can only be 

simultaneously satisfied in certain highly constrained cases. Moreover, this incompatibility applies to 

approximate versions of the conditions as well.” (Kleinberg et al., 2016, p. 3) 

Though using slightly different terminology (“group parity” is equivalent to the “calibration 

condition”, and “equal opportunity” is equivalent to the “balance conditions for the positive and 

negative classes”), they identify the same kind of trade-offs, forty years apart from each other, one in 

statistical fairness for testing, and the other in machine learning applications. 

 

10 See for instance Cleary (1966) and Cleary (1968) for studies of fairness in college GPAs and SAT scores. 
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The implications of the arguments presented in this chapter are, firstly, that technical or mathematical 

definitions of fairness are too reductionist and insufficient to satisfy richer conceptions of fairness that 

are valuable and important, especially if one talks about high stakes domains like criminal justice. 

Relying too much on these definitions risks underestimating the importance of richer fairness 

definitions and may lead developers to resort to oversimplified, bare-minimum benchmarks to fulfil 

an arbitrary, not well justifiable benchmark for fairness. 

Secondly, Hutchinson and Mitchell’s (2019) historical analysis of the statistical fairness literature 

indicates that the solution to these problems are likely not to be found within the current practices and 

paradigms. The fact that identical issues are re-identified forty years apart implies that the way experts 

in these fields have been thinking about these issues may be inadequate and that new ways of thinking 

are required to overcome these problems. I will pick up arguments drawing from philosophy of 

measurement in the following two chapters and discuss if they can provide tools that would enable 

exactly such a rethinking of the issues presented. 

1.4. Conclusion 

Four arguments have been presented in this chapter, two of them epistemological, and two ethical. 

The first epistemological argument put into question the degree to which we conceive of a metric for 

measuring recidivism. Criminology itself is a young field that has not developed a unified theory or 

methodological agreement about its objects of analysis. If one narrows down the discussion to most 

violent crimes, for which there appears to exist a strong empirical support for cross-cultural agreement 

and therefore strong justification for categorizing as criminal behaviour, one avoids typical arguments 

from feminist and critical studies about the arbitrariness of crime labelling and their being mere 

expressions of power dynamics. However, crime prediction tools need to be designed so as to keep 

differences with respect to less violent types of crime in mind.  

The second epistemological argument concerned the history and development of crime prediction 

tools which describes their iteration from first generation, unstructured professional judgements to 

fourth generation machine learning tools as a story of linear progress, vindicating the latter as the state 

of the art. While COMPAS as one of the prime representants of 4G tools is claimed to encompass 

theoretical foundations from the psychology of criminal conduct and well established empirical 

methodologies like the risk-need-receptivity model, their usefulness is put into question along the 

dimensions of predictive utility (weak evidence that variables used in assessments predict recidivism), 

construct validity (strong evidence for theoretical foundations, but no evidence for validating the way 

the factors are implemented and weighted inside the algorithms), and reliability (no evidence for test-

retest or interrater reliability). Responses by COMPAS developers defending their algorithm cannot 

be substantiated because they are protected by proprietary law and therefore not required to disclose 

their exact functioning. 
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Despite the shortcomings due to these epistemological considerations, algorithms like COMPAS have 

been in use for years now and are bound by issues relating to fairness between different population 

groups. While direct analyses into the severity of these fairness issues is rendered close to impossible 

due to their lack of legal transparency, a wave of publications proceeded to address several different 

definitions of fairness that can be at play in machine learning applications, as well as how they trade 

off both against one another and against accuracy. The first ethical argument stated that many of these 

publications provided fairness definitions and benchmarks that were too simplistic and reductionist in 

nature, essentially disconnecting the computer science literature from more profound, context-

dependent discussions of fairness. 

The last ethical argument stated that the literature relating to statistical fairness has made no 

significant process within the last fifty years. Rather, scholars writing on the subject of test unfairness 

in the sixties and seventies predicted some of the exact same issues the fairness literature in machine 

learning has noted in the debate that was sparked around the COMPAS algorithm. This implies that 

current paradigms in statistical fairness are insufficient for addressing these problems and that a more 

profound rethinking of these problems is required to make progress. 

In the following chapter I will suggest one such way of rethinking the field of machine learning by 

drawing from philosophy of measurement. Mussgnug (2022) suggested that, in the area of machine 

learning based poverty prediction, a “predictive reframing” has happened which led to machine 

learning developers to understand their task as a prediction task different from the original 

measurement task that measured the initial levels of poverty. This reframing came with an abdication 

of responsibility on the side of the machine learning developers, paying only little attention to the 

validity of the poverty metric they trained their models on and not taking into consideration anymore 

the scope of applicability in specific contexts. Reverting this reframing and considering machine 

learning tools as “automatically calibrated measurement instruments” would, according to Mussgnug 

(2022), reinstate these epistemological responsibilities. This account provides a useful starting point 

to address the ethical issue of the epistemological responsibilities of machine learning developers in 

recidivism risk prediction in the following chapter. 
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Chapter 2: COMPAS – Measuring? Predicting? Or None of the 

Above? 

As has become clear in the first chapter, new concepts are required to stimulate a rethinking in the 

field of machine learning development. In this chapter I will focus on the epistemological issues 

concerning the use of COMPAS and will draw comparisons to recent publications in the field of 

philosophy of measurement (Mitchell, 2020; Mussgnug, 2022; Parker, 2017; Tal, 2023; Tal, 2012). 

The first epistemological issue identified in the first chapter relates to the definition of the measurand. 

In order to address this issue, however, it is necessary to clarify the purpose of COMPAS, because 

both the developers themselves and critics of the tool refer to COMPAS both as measuring 

criminogenic needs and as predicting an offender’s likelihood of recidivism. After a brief motivation 

for the use of philosophy of measurement for my analysis, I therefore dedicate a section to an analysis 

of COMPAS as measuring tool and one to COMPAS as a predictive tool. The measuring part of 

COMPAS is predominantly concerned with the risk-needs-receptivity (RNR) model introduced by 

Andrews and Bonta (1998) which I problematize for its lack of theoretical structure. My main 

conclusion of this section will be that machine learning and the RNR model are well compatible with 

each other for the wrong reasons, namely that the RNR model was developed by relying on a 

dustbowl empiricism approach which understands itself as “atheoretical” and that this harmonizes 

well with the opaque structure of ML algorithms. The prediction part of COMPAS concerns the 

inference from the algorithm’s output to an individual’s likelihood of recidivism. My main contention 

of this inference is that it lacks most of its explanatory basis and is therefore hard to defend when 

challenged from an epistemological perspective. Subsequently, I contrast the notions of measurement 

and prediction using Mussgnug’s (2022) account of how epistemological responsibilities shifted when 

poverty prediction algorithms were used in the place of original measurement procedures. My overall 

conclusion of this chapter will be that important decisions about the design and use of algorithms like 

COMPAS do not allow for considering epistemological and ethical issues separately. 

2.1. Why Philosophy of Measurement? 

With machine learning and AI technologies booming, many scholars, amongst which philosophers of 

science and philosophers of technology, are dedicating a lot of attention to both the epistemological 

basis of these tools and the ethical justifications and implications of their use. Of the few things that 

these scholars tend to agree on, one is that these technologies are quite powerful and hold a large 

chunk of the public imagination in their grasp. Fantasies describing AI as new forms of intelligence 

seem to presume a level of novelty and uniqueness that sets these technologies apart from everything 

that has come before, leading to some kind of enchantment of these technologies (e.g., Campolo & 

Crawford, 2020). Part of this enchantment is the fact that many of the more sophisticated AI and ML 

tools are opaque black boxes with internal structures that are so complex and convoluted that they 
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escape any meaningful interpretations. While claims of intelligence are difficult to demonstrate, the 

opaque nature of many AI and ML models also makes it difficult to disenchant such claims.  

Part of my intention in this chapter is to take a step back from the enchanted discussion about ML and 

AI and cast a fresh look at them from a well-defined vantage point. While philosophy of measurement 

set itself apart as a distinct field after around 1850, discussions about magnitude and quantity reach 

back until the antiquity (Tal, 2020). As such, there is a vast literature available with different schools 

of thought that grapple with the fundamentals of measurement. It is from here that I would like to 

draw concepts to analyse the epistemological and ethical conceptualisations of machine learning. At 

first glance, there are several similarities between measuring and using machine learning (Tal, 2023, 

p. 317): Both are types of methods used to evaluate certain variables based on concrete input. They 

share a modelling phase (training phase for machine learning, and calibration for measurement 

instruments) where reliable data (a training data set or values corresponding to standards) are used to 

ensure a stable mapping between inputs and outputs. Both methods are supposed to be generalizable 

to new, unseen events or objects during application and they are optimized to predict the values of a 

target variable. Lastly, the evidence they provide for decision making is said to be reliable within 

certain limits. One can thus reasonably state, at least at a glance, that there exists some sort of analogy 

between measurement instruments and machine learning algorithms. 

Knuuttila and Loettgers (2014) and Linnemann and Visser (2018) describe which role analogical 

reasoning plays in synthetic biology and emergent gravity, respectively. The purpose of analysing the 

analogy between measurement instruments and machine learning will follow in a similar vein: 

machine learning can be seen as a comparably new, complex discipline that is struggling with 

different paradigms stemming from engineering, science, and computer science. The way recent 

scholars from philosophy of measurement began writing on the analogy between machine learning 

and measurement instruments may be interpreted as attempts to clarify and solidify the paradigms that 

guide and should guide best practices in machine learning. Both Knuuttila and Loettgers (2014) and 

Linnemann and Visser (2018) describe analogies in their respective contexts not as being used for 

providing specific arguments but rather to come up with new concepts. Recent publications from 

philosophy of measurement similarly discuss the role that machine learning can play in science and 

science-based decision making.11 As such, Parker (2017) discusses the epistemic justification of 

simulations in climate modelling by comparing simulation outcomes to measurement instrument 

outcomes; Mitchell (2020) compares machine learning tools to NMR spectroscopy and defends the 

use of ML from an instrumental perspectivist view; Mussgnug (2022) diagnoses an abdication of 

 

11 One thing I will not attempt to do is to equate machine learning and measurement instruments in order to 

justify calling machine learning tools “measurement instruments”. As my analysis below will demonstrate, the 

differences between these two kinds of tools are prominent enough to prohibit such an equation. Instead, their 

comparison will serve to fix epistemic responsibilities. 
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responsibility by ML developers when compared to measurement experts in poverty prediction tasks; 

and Tal (2023) directly tackles the joint ethico-epistemological issue regarding fairness in machine 

learning aided decision making in health care. Each of these publications serves as a vantage point 

from which to analyse the use of machine learning in science and decision making and will be 

discussed in the following sections. Tal (2023) will be discussed in greater detail in the last chapter of 

this thesis. 

2.2. COMPAS as measurement tool 

In any kind of measurement activity, one resorts to inferences from observable variables to a target, 

referred to as ‘measurand’. In order to establish this inferential structure between observable variables 

and measurand, one has to specify the relations between the two, and, in the case of more complex 

measuring tools, the relations between different parts of the tool deployed, as well as theoretical 

assumptions about the context of use. This process of specifying relations and assumptions is referred 

to as ‘calibration’. While the term ‘calibration’ is used in many different contexts with slightly 

different meanings12, Tal (2017) describes calibration as a modelling process involving the 

specification of said relations and assumptions aimed at establishing and justifying the inferential 

structure. In order to obtain justified inferences about the measurand, one requires justified 

specifications of relations and assumptions in the measurement process. 

What then would be the equivalent of a measurand in recidivism risk prediction? Strangely, COMPAS 

seems to present itself both as a tool for predictions about future outcomes and about measuring a 

latent, psychological construct roughly circumscribed as “likelihood for recidivism” and connected to 

the risk-needs-responsivity (RNR) model. It is difficult to separate the two conceptions because the 

tool makes statistical inferences based on both contextual (social) and psychological variables of the 

defendant to determine the likelihood of this person offending in the future. Based on this inference, 

the offender is at the same time branded as embodying something akin to a latent potential of 

recommitting a crime, ready to emerge at any point. Before we can discuss the measurand COMPAS 

is targeting, it is necessary to untangle this conceptual confusion about prediction of future risk and 

measurement of psychological properties. 

In my view, the reason why COMPAS appears to present a certain hybridity as both a prediction and a 

measurement instrument stems in part from the fact that its developers resort to concepts from 

psychology of criminal conduct as a theoretical underpinning for its model. However, these 

theoretical considerations do not appear to go beyond the selection of the input variables (of which 

there are 137 (Rudin et al., 2020) taken into consideration for the model. How these factors interrelate 

 

12 For example in Bayesian statistics to describe valid statistical inferences, or in common parlance when one 

gauges the kitchen balance (Tal, 2017, p. 33). 
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and determine the outcome of the algorithm is left to the training process of the model and hidden, 

first of all, behind the trade secret of the algorithm and, secondly and more to the point for the topic of 

this thesis, behind the opaque internal structure of the algorithm. One crucial problem with the opaque 

structure of machine learning based algorithms is that it prevents any meaningful explanation of the 

way by which the tool arrives from the input to the output.  

Eno Louden and Skeem (2007) mention several times in their assessment of the COMPAS algorithm 

that the tool purports to measure certain targets13. These targets are criminogenic needs derived from 

the psychology of criminal conduct and prominently featured by Andrews and Bonta (1998). 

Characteristically, criminogenic needs are non-static attributes that, when influenced, contribute to a 

decreased chance of recidivism (Ward & Stewart, 2003, p. 127). They include, for example, “pro-

offending attitudes and values, aspects of antisocial personality (e.g., impulsiveness), poor problem 

solving, substance abuse, high hostility and anger, and criminal associates” (Ward & Stewart, 2003, p. 

127). These factors should be distinguished from static risk factors like gender, age, or criminal 

history, which, while important for initial risk assessments, are of lesser significance for treatment 

decisions (Ward & Stewart, 2003, p. 127). In this section, I will discuss the theoretical basis of these 

criminological needs and argue that their framing as theoretically well founded is not sufficiently 

justified. The latter entails that COMPAS cannot be justifiably regarded as a measurement tool for 

criminogenic psychometric properties. Instead, the lack of theoretically founded causal links between 

criminogenic needs and delinquent behaviour, as well as the confounding influences between different 

risk factors, make the RNR model a good candidate for machine learning techniques precisely 

because its lack of theory harmonizes with the atheoretical essence of machine learning tools. What 

this atheoretical essence consists in will be more closely described in the next section. For now, I 

focus on the lack of theoretically founded causal links underlying the RNR model.  

The original theory proposed by Andrews and Bonta (1998) does not contain an account of how the 

criminogenic needs interrelate and influence one another (Ward & Stewart, 2003, p. 130). Their 

“dustbowl empiricism”14 approach identified needs and risk factors as merely contributing to or 

subtracting from the potential of criminal behaviour, but it is not clear how they stand in relation to 

one another. This point is picked up in greater detail by Walters (2017) where he criticises Andrews 

and Bonta’s (1998) RNR model precisely for this shortcoming. As a way of establishing causal 

 

13 E.g.: “Construct validity: it must measure the criminogenic needs it purports to measure; for example, it 

should relate coherently to other measures of needs and capture change in risk state over time” (Eno Louden & 

Skeem, 2007, p. 5) 
14 “When a single theory fails to emerge (as is inevitable), empiricists tend to reject the value of theory entirely 

and focus energy exclusively on the collection of data. Declaring a moratorium on theory - Alfred North 

Whitehead's "dustbowl empiricism" - is a recurring phenomenon in the history of social science […]. Dustbowl 

empiricism is characterized by what Feyerabend (1975) described as the rhetorical bullying that is implicit in 

appeals to rationality and evidence.” (Suddaby, 2014, p. 408) 
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connections between different risk factors, he suggests Causal Mediation Analysis, a statistical 

methodology that introduces a third, mediating variable between two correlated variables. As an 

example, one of the best predictors of future physical aggression is past physical aggression. 

However, there is no clear causal link between those two phenomena. How exactly does past physical 

aggression lead to future physical aggression? By introducing a third variable, one can test the 

statistical validity of intermediate relationships and discover potential causal links between different 

phenomena. By introducing, in this case, the variable “positive attitude towards physical aggression” 

into the past-future physical aggression axis, Walters (2017) was able to identify a statistically 

relevant mediating variable between the two (Walters, 2017, pp. 51-52). In this way, one can begin to 

build a theoretical framework that connects the criminogenic needs to one another and design 

intervention strategies that tackle specifically the causal links that lead to criminal behaviour. 

The importance lies in the link between measurement and theory. The main shortcoming of Andrews 

and Bonta’s (1998) RNR model for measuring criminogenic needs and developing treatment for these 

needs is its lack of theoretical grounding. This is mainly due to the fact that Andrews and Bonta 

(1998) applied a dustbowl empiricism approach for determining factors that predict recidivism. This 

approach understands itself as atheoretical, contending itself merely with the empirical identification 

of statistically significant variables for a given target. However, such a conceptualisation of 

atheoretical research and model construction is importantly ill-conceived. It is reminiscent of a 

publication by Anderson (2008) which declared the end of the scientific method in favour of powerful 

big data applications. Many scholars have responded critically to such viewpoints (Boon, 2020; 

Calude & Longo, 2017; Kitchin, 2014) and highlighted the fact that theory-agnostic approaches in 

scientific research do not really exist. Rather, claims of theory-agnosticism have the unfavourable 

side-effect of rendering implicit assumptions and value laden judgements hidden and opaque 

(Suddaby, 2014, p. 408).  

Whether one relies on further statistical tests or builds upon other Need models (e.g., Deci et al., 

2001; Ward & Stewart, 2003) or evolutionary theory (Barkow et al., 1995), the criticisms of the RNR 

model indicate that a more developed theory of criminogenic behaviour and risk factors is required. 

Relying on a machine learning tool like COMPAS when considering the current theoretical 

shortcomings of the risk-needs model is problematic because it conveniently hides the lack of 

theoretical foundations (and, therefore, explanations and understanding) behind a wall of statistical 

relations. What this wall of statistical relations looks like and how it appears to circumvent theoretical 

considerations will be presented in the next section. 

2.3. COMPAS as prediction tool 

According to Tal (2012), measurement accuracy is a special case of predictive accuracy (Tal, 2012, p. 

177). This is the case because he conceptualises prediction – specifically, prediction from instrument 
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indications to the measurement outcome – as an integral part of a measurement process. In fact, the 

measurement process is, in this view, seen as the result of a calibration process, whereas calibration, 

in turn, is a modelling procedure which aims at modelling the measurement process. During this 

calibration procedure, varying assumptions and idealizations will affect the reliability and 

generalizability of the measurement process15. One special case of such a calibration process is 

“black-box calibration” where the measuring instrument is treated as a mere input-output device: its 

inner workings and environmental influences are either neglected or heavily simplified (Tal, 2017, p. 

36). Rather, in such cases the focus lies on establishing stable correlations between the instrument 

indications and measurement outcomes. However, such a correlation is not necessary and sufficient 

for all kinds of measurement processes. During “white-box calibration”, the calibration procedure, in 

addition to the correlation between instrument indication and measurement outcome, establishes a 

stable correlation between the instrument indications and “the predictions of an idealized model of the 

measurement process” (Tal, 2012, p. 160, emphasis in original).  

Machine learning tools have been notoriously problematized for their “black-box” nature (e.g., Rudin, 

2019; Rudin et al., 2020; Sullivan, 2022; Carabantes, 2020; Krishnan, 2020). Looking at the 

difference between black-box and white-box calibration, it becomes clearer why machine learning 

tools struggle to shed the black-box label. The internal workings of these types of algorithms are 

opaque and indecipherable for human agents to the degree that they necessarily have to be neglected 

or simplified when providing an explanation of their functioning. In other words, black-box 

calibration is the only possible kind of calibration feasible for machine learning algorithms. 

Abstracting away the inner working of the tool is not a choice by the developers but a necessity 

stemming from the structure of these algorithms.  

Srećković et al. (2022) lay out the two ways machine learning algorithms ban explanations by 

distinguishing between two explananda without explanantia: the process and the phenomenon 

(Srećković et al., 2022, p. 161). By process they refer to the internal algorithmic pathway between 

input and output. The process of a machine learning algorithm has two distinct features that render it 

opaque: semi-autonomy and complexity (Srećković et al., 2022, pp. 162-163). Semi-autonomy refers 

to the idea that machine learning algorithms automatically adjust the weights attributed to the input 

variables according to patterns observed in the training data16 (Srećković et al., 2022, p. 162). In the 

end, not even the engineers themselves are able to tell why a particular weight has a certain value. By 

complexity, the authors mean the complexity of the information paths inside the algorithm, which 

 

15 For instance, “one-way white-box calibration” assumes that the behaviour of the measurement standard used 

for the calibration is perfectly predictable and “black-box calibration” additionally assumes that the mapping 

from instrument indications to measurement outcomes is unaffected by fluctuations in external circumstances 

(Tal, 2012, p. 176). 
16 Note that such patterns may be biased or spurious correlations. 
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makes it generally impossible for any human agent to track the flow of information from layer to layer 

(Srećković et al., 2022, p. 163). 

Besides the process, the authors also claim that the phenomenon that is being predicted with a 

machine learning algorithm is an explanandum without explanans. This is due to the associativity of 

machine learning techniques; the model a machine learning algorithm creates is based solely on the 

data and it is hard to determine whether the associations surpass mere correlations (Srećković et al., 

2022, pp. 163-164). Fundamentally, it is typically considered that machine learning algorithms are not 

capable of identifying causal, or otherwise explanatorily valuable relations between data points. That 

is the reason why they are often described as atheoretical in sense Anderson (2008) envisions.  

If we consider COMPAS therefore strictly as a predictive algorithm, it runs into the inherent problems 

of explanatory opacity that concern many machine learning algorithms17. Both the semi-autonomy 

during the training based on data from various US legislations and the complexity with which the 137 

input values of the algorithm are weighted against one another render it opaque and constitute 

significant hurdles for meaningful explanations. The most famous court case around COMPAS was 

the State of Wisconsin v. Loomis, in which Loomis appealed against the use of risk assessment 

software in court on grounds of violations of due process (Washington, 2018). The court dismissed 

the appeal by arguing that all the parties involved had access to the input data for the algorithm and 

could assess its accuracy. However, critics subsequently remarked that the court had “ignored the 

computational procedures that processed the input data” (Washington, 2018, p. 134) and that the mere 

accuracy of the input data reflected too low of a bar to justify the use of such risk assessment 

algorithms (Washington, 2018, p. 159).  

Washington’s (2018) assessment that a more plausible and stronger appeal against the use of risk 

assessment algorithms in courts could have been made if Loomis had put more weight on the opaque 

way the data of a defendant is processed inside the algorithm is thus in line with what Srećković et al. 

(2022) have to say about the lack of explanation that goes hand in hand with the fundamental way 

machine learning algorithms are designed. Sullivan (2022), on the contrary, argued that it is possible 

to obtain explanations and understanding from machine learning algorithms by decreasing the link 

uncertainty between the target phenomenon and the model. By link uncertainty, she means “a lack of 

scientific and empirical evidence supporting the link connecting the model to the target phenomenon” 

(Sullivan, 2022, p. 21). On her account, a machine learning model obtains greater epistemic validity 

as it replicates empirical findings. The greater the correspondence between the ML model and the 

empirical findings, the greater the chance that we can obtain explanations from a machine learning 

model about the target phenomenon. 

 

17 Some Interpretable and Explainable AI techniques may be exceptions. 
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However, my main contention with her account is that one cannot create a connection between a 

machine learning model and the target phenomenon due to the conditions listed by Srećković et al. 

(2022). Semi-autonomy and complexity are conditions that prohibit a meaningful description of what 

the machine learning model consists in in the first place. Associativity entails that the patterns 

identified by the algorithm can be caused by biases in the datasets or be entirely spurious correlations 

that do not indicate any causal or otherwise meaningful relation. Only further investigation into 

correlations identified by algorithms18, e.g., empirical experiments determining causal links between 

certain phenomena, may reveal whether it constitutes a meaningful piece of information. However, in 

that case, it is still not true that the ML model itself serves as the explanatory medium, but the 

scientific theory that is enriched by a new piece of evidence.  

The main problem with predictions from machine learning algorithms, as opposed to, say, predictive 

methods from more traditional statistics is that they contain hurdles preventing meaningful 

explanations about both the internal process and the target phenomenon that arise precisely because of 

the way machine learning algorithms work: they are semi-autonomous and complex, and derive 

patterns from mere associations. In essence, they are pseudo-atheoretical association-detectors 

because they detect relevant patterns and associations in datasets and are presented as theoretically 

neutral tools while, in reality, their application implies tacit theoretical assumptions19. In some 

instances, it may not matter that a machine learning algorithm cannot provide explanations for its 

predictions, as long as the latter have a high degree of accuracy. For instance, in the case of 

COMPAS, one might argue that it is of primary importance to prevent further harm from potential 

reoffenders to society and therefore should resort to any tool that increases the chances of making 

more accurate predictions. However, philosophers of science (e.g. Boon, 2020) have provided similar 

accounts as Srećković et al. (2022) where they problematize the epistemic role of these algorithms in 

the context of scientific knowledge generation. Such accounts often invoke the value of explanations 

and understanding, as well as the atheoretical nature of machine learning algorithms. This value of 

explanation and understanding is precisely what is invoked by Washington (2018) in her analysis of 

the case State of Wisconsin v. Loomis where she argues that the opacity of the COMPAS algorithm 

should have been considered in the appeal on grounds of violation of procedural due process.  

What the arguments above suggest is that machine learning algorithms are, due to their very structure, 

unsuited for high-stakes decision making processes that require meaningful explanations for the 

 

18 Sullivan refers to these as how-possibly explanations (Sullivan, 2022, p. 20). 
19 I call them “pseudo-atheoretical” because they are only seemingly devoid of theory, whereas, in actuality, the 

use and application of machine learning for a given purpose already implies a set of implicit, theoretical 

assumptions, like for instance that the target phenomenon can be reliably captured by a machine learning tool. 

Furthermore, training datasets may have structural properties (biases) due to, for example, sampling errors 

which transmit value laden assumptions into the encoding of the algorithm.  
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output they provide. The main issue with COMPAS as a predictive tool is that the inference from the 

output of the algorithm to the conclusion that a certain individual will with a certain likelihood 

reoffend is very difficult to justify because of the internal opacity of the algorithm. The fact that 

COMPAS is doubly opaque, both in terms of trade secrecy and algorithmic opacity makes the use of 

the algorithm, in my view, very hard to justify both from an epistemic and ethical perspective.  

Reviewing the present section and the one above, we find therefore that COMPAS purports both to 

measure and to predict. Specifically, it aims to measure criminogenic needs of offenders and infers a 

risk of future reoffence based on these needs in connection with other relevant factors. However, as 

things stand now, COMPAS’ measurement scales for criminogenic needs are not sufficiently 

validated with other existing measurement tools while the predictive inference lacks any causal 

explanation and rests solely on statistical justifications. Furthermore, the account of this sections 

highlights that both the internal process of ML algorithms and the phenomenon they attempt to predict 

remain opaque. Taken together, I find that COMPAS is an opaque tool that bars any meaningful 

explanation about the highly contentious topic of crime prediction and is developed on the basis of a 

theoretically lacking conceptual model of recidivism. It appears therefore that opaque machine 

learning algorithms and weak theory work well together for the wrong reason: machine learning 

conceals the lack of theoretical foundations and renders elucidating investigations close to impossible 

due to its very structure. In what follows, I discuss the connection between machine learning 

prediction and measurement along three publications from philosophy of measurement: Mussgnug 

(2022), Parker (2017), and Mitchell (2020). As announced in section 2.1., each account serves as a 

vantage point to discuss the epistemic role of machine learning in measurement processes and will 

serve to underpin my discussion thus far. 

2.4. Machine Learning Prediction vs. Measurement 

One way of approaching the difference between machine learning prediction and measurement is by 

highlighting epistemic responsibilities connected to these practices. Mussgnug (2022) investigated 

how machine learning developers reframed the task of determining a poverty distribution in a certain 

area from measurement to prediction. Important about this reframing is that it is neither ethically nor 

epistemically neutral. The original poverty measurement task required a well-defined and validated 

metric. Essentially, the designers of this metric had to be well-aware of socioeconomic circumstances 

and be mindful of not (re-)creating unfair measuring outcomes by defining the metric in an unsuited 

way. It required thus both ethical and epistemic contemplations and justifications. Meanwhile, 

Mussgnug’s (2022) observation was that, the moment machine learning experts took over the original 

measurement task, a problematic reframing took place where the justification of said metric was 

pushed under the rug. More than mere terminological convention, what machine learning experts 

called poverty prediction, was in effect the prediction of a metric whose suitability for certain contexts 

was no longer discussed. 
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This problematization of the predictive reframing is closely related to the issues surrounding the 

construct validity of recidivism measurement and the lack of causal explanations behind predictions 

outlined in the previous sections. While we do not find a reframing in the sense that there was a 

previously well-established measurement that was subsequently taken over by a predictive task, the 

same ethical and epistemic issues nevertheless arise because COMPAS constitutes a predictive task 

without sufficient justification and validation of the metrics used.  

Mussgnug (2022) proposes to restore a more thorough contemplation of the metrics used in machine 

learning prediction tasks by reconceptualising the latter as automatically-calibrated measurement 

instruments (Mussgnug, 2022, p. 10). He motivates this move with the expectation that the 

subsumption of machine learning tools under the umbrella of measurement instruments would 

introduce the epistemic virtues of measurement practices into machine learning. The move is further 

justified by drawing from Tal’s (2017) model-based account of calibration and Boumans’ (2007) 

description of model-based measurements in the social sciences.  

Tal’s (2017) model-based account of calibration makes a difference between instrument indication 

and measurement outcome, essentially construing the relationship between the indication and the 

outcome as a calibration process which is conceived of as a model describing the inferential step from 

the indication to the actual measurement outcome and quantifying errors and uncertainties along the 

way. The modelling of this calibration process has two steps. The forward calibration step iteratively 

establishes a relation between the instrument indications and reference procedures. For instance, 

during the forward calibration of a calliper, gauge blocks are placed between its jaws in order to 

develop a mapping between the size of the gauge blocks as references to the indication provided by 

the calliper. The backward calibration step happens when one infers the measurement outcome from 

an instrument indication. The latter does not constitute the measurement outcome in and of itself. 

Rather, a set of background assumptions and quantifications of uncertainties accompany the 

instrument indication to arrive at an evaluation of the object to be measured.  

Mussgnug (2022) draws important analogies between this two-part model-based account of 

measurement calibration and the way machine learning algorithms are trained and tested. Firstly, 

survey-based data and empirical forms of “passive observation” (Mussgnug, 2022, p. 14) used for the 

poverty prediction algorithm are similar to datasets commonly used for measurements in the social 

sciences. Furthermore, the iterative nature of the calibration procedure that Tal (2017) describes is 

also to be found in the way the parameters of the machine learning algorithm are adapted. The 

principle that guides the adaptation of these weights is that of a maximum likelihood estimation, 

meaning that the weights are adjusted such that the ML model best predicts the data. Again, such 

maximum likelihood estimations find applications in other social science domains, like econometrics 

(Mussgnug, 2022, p. 14). This would conclude what one could call the forward calibration of the 
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machine learning algorithm. Subsequently, Mussgnug (2022) mentions the similarity that the machine 

learning model is tested on a previously unseen dataset while a calibrated measurement instrument is 

applied to other reference objects for evaluation. If machine learning developers or measurement 

experts are unsatisfied with the inferences made from the instrument, they go back to revise the 

forward calibration process. 

These analogies constitute the most intuitive similarities between machine learning and measurement. 

Mussgnug’s (2022) motivation of treating machine learning tools like automatically-calibrated 

measurement instruments is commendable because he seeks to imbue the practice of developing and 

applying these tools with a greater care regarding the choice and justification of the metric that is 

being used. However, some issues remain. 

Firstly, a simple reconceptualization of machine learning as measurement will not change the fact that 

machine learning has developed in a discipline different from measurement, with different paradigms 

and different core understandings of their practices. Machine learning is a quite young field of study 

and if one follows the heated discussions, both in the field of computer science itself and in 

philosophy, surrounding the technologies that have emerged and are currently emerging from that 

field, one would rather conclude that the paradigms20 guiding machine learning are heavily scrutinized 

and still under a process of formation and solidification.  

Secondly, Mussgnug’s (2022) reconceptualization needs to be justified beyond the ethical-

epistemological demand that machine learning developers adopt some best practices form 

measurement experts. The analogy between machine learning and measurement, although present in 

the more or less superficial manner that Mussgnug (2022, pp. 14-15) describes, is problematic in 

multiple ways. 

The most pressing difference between machine learning and how we commonly understand 

measurement instruments is the computational, as opposed to the physical, medium. The model of the 

ML algorithm exists purely in a digital, virtual form which additionally entails that the input fed into 

it cannot be a physical object as is the case for most common measurement instruments, but rather a 

model of the phenomenon in form of data. In fact, the way a data set about a desired phenomenon is 

created is accompanied by its own modelling assumptions regarding e.g., the collection, storage, and 

representation of information. The fact that the input is a mere digital representation of the 

 

20 “As a field of study, machine learning sits at the crossroads of computer science, statistics and a variety of 

other disciplines concerned with automatic improvement over time, and inference and decision-making under 

uncertainty. Related disciplines include the psychological study of human learning, the study of evolution, 

adaptive control theory, the study of educational practices, neuroscience, organizational behavior, and 

economics. Although the past decade has seen increased crosstalk with these other fields, we are just beginning 

to tap the potential synergies and the diversity of formalisms and experimental methods used across these 

multiple fields for studying systems that improve with experience.” (Jordan & Mitchell, 2015, p. 256) 
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phenomenon, in turn, entails that the model the machine learning adopts cannot be a model of a 

physical object, but rather, a model of the data concerning that object (Tal, 2023, p. 317). One may 

object that the virtuality of the machine learning algorithm might not be sufficient to disqualify it as a 

measurement instrument on the whole. In fact, Parker (2017) investigates at length the role computer 

simulations play in measurement procedures. She concludes that “computer simulations can be 

embedded in measurement practices in such a way that simulation results constitute measurement 

outcomes” (Parker, 2017, p. 274). Important to note here is the word embedded – Parker (2017) notes 

further that “[m]easuring is an activity that involves, among other things, physical interaction with the 

system being measured” (Parker, 2017, p. 285) leading to the important statement that “[a] computer 

simulation, on its own, is not a process for measuring properties of the system being simulated.” 

(Parker, 2017, p. 285). 

So, even according to Parker (2017), a digital instrument cannot in and of itself fulfil the role of a 

measuring process. Nevertheless, it is interesting to pay closer attention to the role digital mediums 

can play in measurement processes. As an example, she raises the task of measuring the temperature 

of a cup of tea or coffee by inserting a thermometer into the cup. The problem is that the insertion of 

the thermometer will influence the temperature of the cup, leading to a discrepancy between the 

instrument outcome on the thermometer (neglecting, for the sake of example, other noisy 

interferences) and the actual property of interest. A corrective function is therefore needed to quantify 

the influence of the thermometer on the measurement, calculating the heat transfer that occurred 

between the instrument and the coffee in order to arrive at the measurement outcome. Sometimes, the 

function describing this corrective step is straightforward and can be calculated directly. In different, 

more complex circumstances, a computer simulation might be needed to arrive at this corrective step. 

In the latter cases, computer simulations therefore play the role of corrective error adjustments that 

bridge the gap between the raw instrument indication and the proper measurement outcome. The 

outcome of the simulation is, in effect, the measurement outcome. 

At the same time, Parker (2017) notes that the output of computer simulations can also serve as raw 

instrument indications. For instance, she asks us to imagine a measurement procedure supposed to 

determine the positions of some celestial bodies in our solar system four or five months ago based on 

current measurements of their position, mass, velocity, etc., and a Newtonian model of motion. In 

such a case, the result of a simulation can be either an instrument indication or the measurement 

outcome depending on how exact the model and the corrections inside the simulations are. If the 

simulation is heavily simplified, numeric corrections are required afterwards to correct the output of 

the simulation. In this version, the simulation does indeed provide raw instrument indications, rather 

than a measurement outcome. 
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Looking both at the poverty prediction algorithm described by Mussgnug (2022) and at the COMPAS 

algorithm, we see that neither of them serve an error correction function for an instrument indication. 

Rather, what they provide can better be described as raw instrument indications which are unadjusted 

for any potential errors. I would further argue that it is a feature of machine learning algorithms that 

they are difficult to adjust for potential errors precisely because the statistical model constructed to 

map inputs and outputs is so opaque that the development of any meaningful corrective adjustment 

function is prohibited by the impossibility of understanding the machine learning model which led to 

the instrument indication in the first place. To illustrate through the example of the thermometer in the 

coffee mug: the process leading to the instrument indication of the thermometer is clearly understood 

through well-established laws of heat transfer between different mediums. It is practically feasible, 

therefore, to investigate the sources of errors and uncertainty and develop a corrective model for 

these. However, the process which led from the input parameters through the machine learning 

algorithm to its outputs is undecipherable. It is not clear why a particular weight has the value it has, 

and what that means, practically speaking. It is therefore also not clear, where and why the origin of 

potential errors in the outcome might arise. This renders the determination of a corrective function 

extremely difficult. It is because of the structural complexity of machine learning algorithms 

identified by Srećković et al. (2022) and outlined above – the semi-autonomy, complexity, and 

associativity – that machine learning algorithms cannot take the proper role of measurement 

instruments.  

I agree with Mussgnug (2022) that in most machine learning applications, developers ought to be 

more concerned about the validity and justification of, firstly, the machine learning model in itself, 

and, secondly, of the conceptualisation of the phenomenon they predict. As measurement practices 

teach us, a measurand does not lie simply in the observable world, much less in a digital dataset, ready 

for the taking, extractable by something akin to a “statistical kraken”. It has to be carefully 

constructed and validated; background assumptions have to be made explicit and associated 

uncertainties have to be quantified. The greater the stakes associated with the application, the greater 

the care that has to be dedicated to the design of the measurand. However, this normative maxim can 

be directed towards machine learning developers without resorting to a reconceptualization of 

machine learning as measurement. As the discussion above highlights, the effective analogies 

between machine learning and measurement instruments are not sufficient to warrant this equation. 

Instead, I would argue that greater epistemic responsibilities can be expected from machine learning 

developers simply by pointing at measurement practices as guiding examples. 

Lastly, Mussgnug (2022) justifies part of the analogy between machine learning and measurement by 

referring to measurements in the social sciences. However, as I mention in the previous sections, the 

social sciences often struggle themselves with evaluative standards like construct validity and 

universalizable models. The risk-need-receptivity model used for COMPAS, while resting on an 
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empirical basis, lacks descriptions of the interaction between the different parameters that predict 

recidivism as well as a causal account of how the presence of a particular feature leads to recidivism. 

For this reason, I see the comparison of machine learning to measurement in social science less as a 

justification and more as a similarity between two domains that are riddled with similar core issues of 

validity and justification.  

Mitchell (2020) investigates adjacent issues of trust and reliability by comparing machine learning 

tools to NMR spectroscopy in the context of knowledge generation. She adopts an instrumental 

perspectivist stance which states that instruments that are used in scientific research knowledge 

production, together with their associated models, constitute a certain perspective on the target 

phenomenon. She opposes views that idealize the representative aspect of models, criticizing the 

notion on the basis that the ultimate level of representation of a phenomenon would be an exact copy 

of that phenomenon, recreating the original problem regarding its accessibility. Models should not 

represent as many aspects as possible, but what is important, instead, is which aspects are represented. 

She concludes that different tools and models therefore constitute different perspectives based on the 

aspects they incorporate and that a scientist may therefore use many different ones for a given purpose 

as long as each individual one internally respects some standards of reliability and trustworthiness.  

While Mitchell (2020) acknowledges that machine learning and especially more advanced AI 

applications differ from other tools in that the rules they establish internally to map the target 

phenomenon during their learning phase reflect an epistemology which is unintelligible for humans, 

she nevertheless maintains that their warrant is comparable to that of NMR spectroscopy in terms of 

reliability and trustworthiness, such that they constitute another perspective in the repertoire of any 

scientist. However, in line with the argumentation outlined in this chapter, I cannot accept machine 

learning application simply as another perspective on a phenomenon amongst others. I have to reject 

instrumentalism as a useful perspective to analyse machine learning tools. As Heidegger already so 

prominently stated “So long as we represent technology as an instrument, we remain transfixed in the 

will to master it.” (Heidegger, [1993] 2008, p. 316). My concern is that instrumentalism is too 

uncritical of a lens, especially for newer technologies like machine learning, such that its proponents 

remain too fixed on how to make machine learning tools work rather than when, how, or if they 

should be used at all. 

I do not state that Mitchell’s (2020) thesis is incorrect per se. However, I will state that her frame of 

analysis does not allow for a proper engagement with the problems that underlie machine learning and 

AI applications and which I outlined thus far. Especially the issue that the latter are often framed as 

“atheoretical” is in contradiction with her own insistence that “just as there is no independent-of-

theory test of a single measurement, neither is that [sic] any independent-of-theory calibration.” 

(Mitchell, 2020, p. 19). As I outlined above, Andrews and Bonta’s (1998) RNR model was 
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intentionally constructed with a methodology that was framed as atheoretical and many philosophers 

of science have criticized the “end-of-theory” mindset that went along with an overly enthusiastic and 

naïve view of machine learning technologies. That epistemological considerations in the development 

and application of technologies (and their models or underlying theories) go hand in hand with ethical 

choices is a theme that underlies most of the present chapter and which will be further reinforced in 

the next and last chapter where I consider the fairness problems that govern the COMPAS algorithm. 

2.5. Conclusion 

Both in terms of measuring psychological properties and predicting the likelihood of recidivism, the 

COMPAS algorithm exhibits epistemic problems that are tightly connected to ethical issues. The risk-

need-receptivity model developed by Andrews and Bonta (1998) is supposed to capture attributes of 

defendants that indicate statistically relevant risk factors for increased recidivism. However, the 

dustbowl empiricism approach they deployed for the construction of the model was framed as an 

atheoretical methodology designed to identify supposedly objective statistically relevant influences. 

As many philosophers of science have argued in recent years, there is no such thing as an atheoretical 

lens. This renders the methodology of Andrews and Bonta (1998) problematic because it conceals 

implicit assumptions in their methodology rather than opening it up for scrutiny. Furthermore, 

focusing solely on a list of factors that indicated some predictive relevance for recidivism risk 

assessment should not be favoured over a holistic theory that contains information about causal 

mechanism and confounding factors. The present chapter argued that, from an epistemological and 

ethical perspective, understanding about how recidivism occurs is important, just as explanations 

about how an algorithm arrives at a certain output is important.  

The fact that a machine learning algorithm like COMPAS was used in tandem with such a supposedly 

atheoretical framework is no coincidence. The “end-of-theory” mindset some enthusiastic and naïve 

proponents of machine learning and AI espouse features exactly this idea that all that is required for 

knowledge generation is heavy statistical models bolstered by the newest neural nets. I conclude 

therefore that the link between machine learning and the RNR model in COMPAS is a perfect match 

for the wrong reasons. The methodology framed as atheoretical goes hand in hand with the inherent 

nature of machine learning models as pseudo-atheoretical association detectors. Furthermore, the 

way the input features are linked amongst one another and mapped to the output does not reflect any 

humanly intelligible epistemology and serves as a convenient cover up for the lack of theoretical 

foundations with respect to the different risks and needs of offenders and how they relate to one 

another. From the present analysis, it already transpires that epistemology and ethics are tightly bound 

to one another within the development and application of technologies and their respective theories 

and models. In the next and last chapter, I will focus on the fairness issues that govern many of 

COMPAS’ outputs and discuss existing counterfactual approaches to fairness and explanation in 

machine learning as well as a potential solution from the literature of philosophy of measurement.  
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Chapter 3: Counterfactual approaches to fairness problems 

In this chapter I will delve more deeply into the fairness issues identified in the first chapter. As 

mentioned in chapter 2, defining the measurand of the COMPAS algorithm proved epistemically 

problematic both from the perspective of measuring and predicting. These epistemic concerns cannot 

be separated from ethical concerns regarding the definition of the measurand. The purpose of this 

chapter will therefore be to investigate how we can predict a property like the propensity to recidivate 

fairly in an unfair world and will first and foremost focus on counterfactual approaches to fairness. To 

address the argument that a more profound rethinking of statistical fairness is required, counterfactual 

prediction will be presented the way it is featured by Tal (2023) in the context of medical diagnoses. 

The main notion that Tal (2023) defends is that accuracy and fairness ought not to be considered 

orthogonal notions; rather, fair prediction is the truly desired goal of the tools in question which 

implies that unfair tools are simultaneously inaccurate because they miss their intended target. I 

compare his ideas to frameworks about counterfactual explanations and fairness from the machine 

learning literature. 

3.1. Introduction to Counterfactuals 

Generally speaking, the target function21 in machine learning based risk assessment can be said to be 

implicitly based on a non-ideal point of departure. The trade-offs in recidivism risk assessment, for 

instance, occur because the base rate of recidivism differs from one social group to another (Kleinberg 

et al., 2016). In machine learning, a paradigm seemingly taken for granted is that the trained algorithm 

is supposed to reflect or represent aspects of the training data. In classification tasks, the aspects in 

question are relevant features of the data used for training the model such that target labels are 

correctly assigned to the inputs according to some metric of accuracy. There is therefore a condition 

which dictates that the algorithm should capture relevant features and their respective distributions in 

the way they are present in the dataset. It appears that it is because this condition in machine learning 

is taken for granted that we occasionally obtain a discrepancy between what the algorithm outputs and 

what stakeholders desire. Taking for granted that the ML model accurately captures the idiosyncrasies 

of the training data could potentially be entirely at odds with the actual desires of stakeholders 

because the feature distributions in the dataset may either reflect injustices one would not want the 

algorithm to exhibit or lead to the learning of false rules (for example, that belonging to a certain race 

leads to higher criminality). 

Tal (2023) exemplifies this in the case of disease prediction in health care which is riddled with 

fairness issues similar to those that occur in the COMPAS algorithm – persistent, systematic, and 

disproportionate error rates for different identity groups, be it through markers of race or sex. These 

 

21 By target function I mean the intended prediction target that is operationalized by a machine learning model. 
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discrepancies arise due to features inherent in the datasets: As Kleinberg et al. (2016) demonstrated, it 

is mathematically impossible to respect the calibration condition22 and the balance conditions for the 

positive and negative class23 all at the same time if the base rates of recidivism differ between groups 

(Kleinberg et al., 2016, p. 5).  I have provided the informal overview of the proof in Appendix B. For 

the detailed proof, see (Kleinberg et al., 2016, pp. 9-12). The discrepancies in the predictions are 

unacceptable as they, in a legal context, violate principles of equal treatment and justice, and, in the 

case of health care, could lead to dangerous health implications in particular for minority groups. Such 

negative consequences are, of course, not desired by the stakeholders using or affected by the 

algorithms in question. If these discrepancies arise due to unequal base rates in the dataset, ought one 

not perhaps design a tool based on an idealised approach where these trade-offs do not occur? Instead, 

it may be necessary to formulate counterfactual scenarios in order to correct for biases.  

A counterfactual scenario is a hypothetical alternative to an observed scenario. There are multiple 

reasons to be interested in such hypothetical scenarios. As I will explain in greater detail in the next 

chapter, counterfactual explanations in machine learning aim at providing the user with explanations 

by describing how a given output would have changed if certain inputs had been different. In a similar 

way, counterfactual fairness approaches list as their primary fairness condition that a given prediction 

remain the same if one swaps out a sensitive, protected variable like race, sex, or gender. 

Counterfactuals also play a role in measurement: the definition of measurands often include idealized 

scenarios that are only approximately approachable in practice (Tal, 2023, p. 316). In the next section, 

I will introduce existing frameworks for counterfactual explanations and counterfactual fairness and 

subsequently contrast them to Tal’s (2023) approach. I finish by discussing whether counterfactuals 

are able to address the fairness issues presented in the first chapter. 

3.2. Counterfactuals – One Concept Among Many? 

In recent years, counterfactuals have received significant attention in the domain of ethical machine 

learning, specifically in the form of counterfactual explanations and counterfactual fairness. While 

these two approaches can be technically succinct in the sense that a counterfactually fair algorithm 

does not have to offer explanations and an algorithm that offers counterfactual explanations does not 

require it to be fair, they are both based on Pearls (2000) theoretical work on causality. Prominent 

examples for each approach are Kusner et al. (2017) for counterfactual fairness and Wachter et al. 

(2017) for counterfactual explanations. 

In all brevity, a causal model based on Pearl’s (2000) work features a directed, acyclic graph (DAG) 

with parameters (𝑈, 𝑉, 𝐹), where 𝑈 refers to unobservable background variables and 𝑉 to observable 

 

22 The calibration criterion holds that for a given classification (e.g., “high risk of recidivism”), the probability 

of truly belonging to this classification should be equal for all groups. 
23 Equal false positive, resp., false negative error rates for different groups. 



  

38 

 

variables. It is important that no variable in 𝑉 causes any variable in 𝑈. 𝐹 is a set of structural 

equations (Bollen, 1989) for each 𝑉𝑖 ∈ 𝑉 describing the relationship between parent nodes (i.e., nodes 

in the graph preceding or pointing at the variable 𝑉𝑖), background variables and 𝑉𝑖. Kusner et al. 

(2017) additionally distinguish between A and X where A are protected, and X are the remaining 

observable variables (𝑉 ≡ 𝐴 ∪ 𝑋). They then propose the following definition of counterfactual 

fairness: 

“Definition 5 (Counterfactual fairness). Predictor �̂� is counterfactually fair if under any context 

𝑋 =  𝑥 and 𝐴 =  𝑎, 

 𝑃(�̂�𝐴←𝑎(𝑈) = 𝑦 | 𝑋 = 𝑥, 𝐴 = 𝑎) = 𝑃(�̂�𝐴←𝑎′(𝑈) = 𝑦 | 𝑋 = 𝑥, 𝐴 =  𝑎), (1)  

for all y and for any value a′ attainable by A.” (Kusner et al., 2017, p. 3) 

To understand this equation, note that the only difference between the expressions on either side of 

the equal sign are the terms 𝐴 ← 𝑎 and 𝐴 ← 𝑎′. It states that the probability 𝑃 that the predictor �̂� 

outputs the classification 𝑦 for a given individual, given that (indicated by the symbol “|”) this 

individual has the feature vector 𝑋 = 𝑥 and the protected attribute 𝐴 = 𝑎 remains the same even if we 

change 𝑎 for 𝑎’ in the predictor.  The authors note that the counterfactual definition of fairness sets 

itself apart from more conventional definitions like fairness through unawareness (simply leaving out 

the label of race at the moment of training), individual fairness (requiring that similar instances 

receive similar predictions), demographic parity (requiring that predictions are independent of the 

protected attribute), and equality of opportunity (requiring that probabilities are equal for different 

groups) because it enables the modelling of historical biases by explicitly incorporating them in the 

causal model (Kusner et al., 2017, p. 3). However, Rosenblatt and Witter (2023) prove that Kusner et 

al.’s (2017) definition of counterfactual fairness is equivalent to demographic parity and additionally 

demonstrate that Kusner et al.’s (2017) definition does not respect in-group ordering. The latter 

requires that, given a rank ordering of individuals along, say, their likelihood for recidivism in an 

unfair world, we would expect that the ordering would be preserved in the counterfactual scenario of a 

fair world since all individuals are equally affected by the unfair background conditions. However, all 

three levels of counterfactual fairness proposed by Kusner et al. (2017, p. 7) provide varying in-group 

orderings that differ wildly both from one another and from the initial ordering. This furthers the 

point, stressed in the first chapter, that any formulaic definition of fairness appears to invariably 

attract unwelcome side effects, increasingly putting into question the entire project of creating fair 

algorithms. 

In order to further elucidate the idea of counterfactuals in machine learning, I want to discuss 

counterfactual explanations because they rely on the same model for causality as Kusner et al.’s 

(2017) counterfactual fairness approach, although counterfactual explanations are not strictly 
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necessary for fairness in the sense of equal predictions for different groups24. Rather, because 

counterfactual fairness relies on the same causal model as counterfactual explanations, it adopts the 

same assumptions about the causal structure of the target phenomenon. Further expanding on the 

counterfactual understanding of causality will provide better insides about the underlying assumptions 

of counterfactual fairness. 

With counterfactual explanations one is more concerned with the explainability of machine learning 

models. Prominent in explainable AI (XAI), counterfactual explanations provide a sense about how 

the outcome would have changed in case some inputs had been different. They can take the form 

“Score 𝑝 was returned because variables 𝑉 had values (𝑣1, 𝑣2, … ) associated with them. If 𝑉 instead 

had values (𝑣1
′ , 𝑣2

′ , … ), and all other variables had remained constant, score 𝑝′ would have been 

returned.” (Wachter et al., 2017, p. 848) Causal structures in the algorithm are highlighted in order to 

identify the set of input variables that led to the output at hand. In turn, one would then be able to state 

that, had (some of) these inputs changed, the output would have changed in a predictable manner. 

Identifying these relevant inputs requires comparing the given output to closely related scenarios (or 

close-enough-possible-worlds) with different outputs where the inputs were only minimally changed.  

One problem with determining close-enough-possible-worlds is that the approach relies on a distance 

function to determine how closely related different worlds are. Defining such a distance function is 

difficult to justify (Kasirzadeh & Smart, 2021, p. 233). For example, it is conceivable that a 

recidivism prediction algorithm identifies the most salient factors for a high-risk prediction as the 

offender having had a low age at first contact with law enforcement and living in a high crime 

neighbourhood. It offers the counterfactual explanation that the offender would have received a lower 

risk classification if their age at first contact had been higher or if they had lived further away from 

the neighbourhood with a high crime rate. How can we decide which counterfactual world is “closer” 

to the original? Comparing the two proposed scenarios seems arbitrary, not only because it is difficult 

to define a metric by which one could compare the two, but also because the counterfactual scenario 

in which the offender had lived in a different neighbourhood could potentially have completely 

changed the offender’s life to the degree that the counterfactual scenario is entirely unlike the original 

one. 

Wachter et al.’s (2017) model of counterfactual explanation furthermore sidelines questions regarding 

the internal functioning of the algorithms and does not contend with the problem of opacity identified 

in chapter 2 (Wachter et al., 2017, pp. 845-846). Counterfactual explanations instead aim at providing 

information directly about the “dependency on the external facts that led to that decision.” (Wachter et 

 

24 One may raise the point that explanations are necessary for fairness in the sense of due process before law, or 

in the context of medical advice for patients, but, while highly relevant, that is not the kind of fairness I discuss 

here. 
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al., 2017, p. 845) The authors acknowledge that opening and explaining the black box of machine 

learning algorithms is a large challenge and furthermore doubt that providing explanations about its 

functioning is helpful for a layperson. Counterfactual explanations are therefore presented as a means 

to reduce the regulatory burden for algorithms because they are simpler to obtain and give clear 

indications (Wachter et al., 2017, pp. 860-861). However, in this case it should be clearly 

distinguished between the causal model designed for an algorithm able to provide counterfactual 

explanations and the true causal model underlying the actual phenomenon of interest. 

What becomes noticeable at this point is how causal structures in question are not equal for the 

phenomenon and the machine learning model supposed to provide explanations. Wachter et al.’s 

(2017) approach clearly targets the latter: the aim is to explain how differences in the input, which 

reflect real properties, would have changed the output of the algorithm. It is an attempt at rendering 

the algorithm more transparent without explaining the technical details of the algorithm itself. What 

has to be clearly highlighted, however, is that causal relations in reality do not necessarily follow 

counterfactual logic. Kohler-Hausmann (2019) explains at lengths how the factor race cannot be 

exchanged for a different value in real life situations while keeping all other factors constant. Such 

thinking treats race as an independent variable which relies on a biological conception of race rejected 

by constructivists (Kohler-Hausmann, 2019, p. 1169).  

Constructivists argue that categories of race (at least in the US) have historically developed in 

contexts of domination and colonialism such that race as a concept has become a pervasive way of 

perceiving and experiencing the world. I hesitate to fully adopt the constructivist view at face value25. 

However, in my view, it demonstrates correctly that race is not subject to counterfactual logic since it 

does not function in the same way a treatment variable functions in, for example, medical studies 

testing the effectiveness of a particular intervention. In the latter case, the causal influence of the 

treatment is – provided the experiment setup allows for controlling for other factors – the difference in 

outcome between the group that received the treatment and the control group that did not. Such 

experiments are, according to Kohler-Hausmann’s (2019) view not feasible with regard to race as a 

treatment variable. That means, it is simply not possible to create two comparable scenarios in which 

the only difference is race, because this would imply that race is reducible to factors like skin colour, 

 

25 While I do not have the space to expansively address the role of race in society, I hesitate to overemphasize its 

pervasiveness. This is because, in my view, it risks reinforcing the very differences constructivist scholars wish 

to resolve, since arguing that race is such a fundamental category of experience can easily lead to a version of 

“race determinism” which conceives individuals, and, in particular, black individuals, as mere pawns subject to 

the pervasive forces of a racialised society, denying individual agency and rendering a notion of progress in race 

relations close to impossible. I also believe that this view risks reducing explanations about disparate outcomes 

between social groups to a singular, universal factor of racial discrimination, where invoking other factors like, 

for instance, socio-economic status (although correlated) may be more illuminating. 
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whereas, according to the constructivist view, race influences the experiences and behaviours of 

individuals in many different ways26. 

The argument against the counterfactual aspect of race together with the criticism directed at the 

finding of a suitable distance functions for finding close-enough-possible-worlds and the flaws in the 

concept of counterfactual fairness all point at the difficulties of modelling social behaviour. Taking 

stock of the arguments presented in this chapter thus far, one may formulate the following tentative 

conclusions. Firstly, since fairness issues regarding the disparate treatment of different social groups 

by algorithmic decision making arise due to unequal base rates in these groups, the project of 

formulating mathematical definitions of fairness that could be implemented in algorithms are unlikely 

to deliver an ultimately satisfying solution. Rather, they are better conceived of as inherently flawed 

attempts at improving decision making processes in an unjust, complex world. The statistical fairness 

approaches reviewed in this thesis appear more like a drop of water on a hot stone. They merely 

contend with symptoms of underlying complex issues and will not solve the problem at the root. 

The second conclusion I would like to draw is that counterfactual approaches struggle in particular 

when it comes to causality in the social sciences. For physical phenomena, one can usually draw 

concise causal relations. For instance, one can say that heat caused a metal bar to expand. With 

respect to social phenomena, whether macroscopic, historical events or individual behaviour, 

statements linking cause and effect are usually not as easy to formulate and are often heavily 

contested by different scholars (e.g., Chatterjee, 2017; Illari et al., 2011; Pearl, 2009; Salmon, 1998 

for causality in more general terms, and Hedström & Ylikoski, 2010; Holland, 1986; MacIntyre & 

Korbut, 2013; Marini & Singer, 1988 for causality in the social sciences) . While an expansive review 

of the role of causality in social science is beyond the scope of this paper, suffice it to say that 

causality has been discussed by philosophers for centuries and that it poses particular problems to 

social scientists (Marini & Singer, 1988). It is further reinforced by Kohler-Hausmann’s (2019) 

analysis of the factor race not following counterfactual logic. This problem poses a significant hurdle 

both to the development of a causal theory for recidivist behaviour and, by extension, for 

counterfactual models for machine learning like the ones introduced above. Turning to Tal’s (2023) 

paper on counterfactual predictions I’m interested to see if his approach can handle these tentative 

conclusions and offer a way to address their problematic implications.  

 

26 Kohler-Hausmann (2019) discusses rebuttals to this view which, for reasons of space, I cannot go into in 

detail. Suffice it to say that, in her view, audit studies which attempt to control for the factor race in order to 

detect discrimination do not provide counterfactual explanations of race as a treatment variable, but rather 

“evidence of a constitutive claim that grounds a thick ethical evaluation” (Kohler-Hausmann, 2019, p. 1215). 

This means that audit studies do not demonstrably detect racial discrimination as a univariate explanation but 

rather provide empirical support for the existence of a complex, multifaceted ethical problem tied to race.  
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3.3. Counterfactual Target for Recidivism Prediction 

Tal’s (2023) point of departure is to compare the notion of accuracy commonly adopted in machine 

learning to the well-established metrological notion of accuracy. The former focuses on the rate at 

which the machine learning model correctly matches its predictions to the true label in the training 

dataset. The higher the rate at which the machine learning model assigns the correct label to a training 

instance, the more accurate it is deemed. Tal (2023) calls this notion of accuracy label-matching 

conception of accuracy (LMCA) (Tal, 2023, p. 313). The problem with using this notion of accuracy 

as a benchmark is that it may not agree with the what the stakeholders actually expect in a given 

scenario. For example, Tal (2023) presents the example where a machine learning model developed to 

help decide which pneumonia patients to hospitalize turned out to attribute a lower mortality rate to 

asthmatics. This was because the label the model was trained with was patient mortality, but 

asthmatics received more aggressive treatment early on, leading to a lower mortality rate for 

asthmatics. The model therefore picked up the rule that asthma decreases mortality rate (Tal, 2023, p. 

314). Here, one can clearly see that stakeholders are not interested in a ML model that purely focuses 

on accurately matching the labels in the dataset – for that the model did well – but rather in predicting 

mortality rates had patients received the same treatment. They are interested in predicting patient 

mortality in a counterfactual scenario that does not correspond to the label the model was trained upon 

(Tal, 2023, p. 314). The predictions desired by stakeholders consist in predictions about an idealized 

scenario. The label is rather an operationalization of the ideal target in the sense that it is generally 

assumed that labels approximate the desired target sufficiently well. Tal (2023) refers to the bias in 

which the operationalized target is considered to be the ultimate benchmark for accuracy as target 

specification bias (Tal, 2023, p. 313). To remedy target specification bias, Tal (2023) suggests taking 

inspiration from the metrological conception of accuracy. In metrology, targets are generally idealized 

and considered inaccessible (Tal, 2023, p. 316). Realizations of measurands operationalize this ideal 

and are accompanied by information about possible biases and uncertainty to inform metrologists how 

reliable a measurement is with respect to the ideal target (Tal, 2023, p. 316). 

It is worthwhile to mention at this point that the label-matching conception of accuracy was criticised 

for its insufficiencies in other contexts as well. Karaca mentions how cost-sensitive machine learning 

is used in the case of imbalanced classes (Karaca, 2021, pp. 13-14). Imbalanced classes are instances 

where the size of one of the classification categories vastly exceeds (i.e., by orders of magnitude) that 

of the other category. If uncorrected, such situations typically lead to significantly higher error rates 

for the minority classes because the model will adapt better to the majority class. In addition, minority 

classes are typically the more interesting cases in which a classification error weighs more heavily 

than for the majority class. For example, in cancer detection, patients with cancer are a minority class 

where a false-negative diagnosis can be far more harmful than a false positive diagnosis of a healthy 

individual. Cost-sensitive ML is therefore used to penalize errors for the minority class more heavily 
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such as to balance these discrepancies. Note however that in the context of COMPAS we don’t find 

imbalanced classes in the sense of vastly disproportionate class sizes (both the number of black vs. 

white defendants and of recidivists vs. non-recidivists are of the same order of magnitude). The 

primary discrepancy between black and white defendants consists instead in different base-rates for 

recidivism. The kind of difference at the heart of the fairness issues discussed throughout this thesis is 

distinct from imbalanced classes. 

In concrete terms, Tal (2023) is concerned with any machine learning application that exhibits unfair 

treatment for different groups. Unfairness is broadly conceived of as inequality in classification 

outcome along any significant metric and fairness as the remedy of these inequalities. Fairness does 

not have to consist specifically in equal false positive and false negative error rates, but, instead, 

different applications will weigh different kinds of inequalities in different ways. Verma and Rubin 

(2018), for instance, list twenty different fairness conditions in machine learning (Verma & Rubin, 

2018, p. 2). The point that Tal (2023) makes is that machine learning applications are currently too 

transfixed on the label-matching conception of accuracy and he sees fairness issues as an at least 

partial result of the transfixion on this label-matching conception. This transfixion is the reason why a 

ML developer may state, for instance, that their application has fairness issues X, Y, and Z, but 

exhibits an eighty percent accuracy rate which makes it highly reliable, nevertheless. Tal (2023) 

rejects this two-part distinction between fairness issues on the one hand and (label-matching) accuracy 

on the other because it is by accepting this distinction that these fairness issues arise in the first place, 

and the field of machine learning fairness remains stuck. 

In order to understand why this is the case, consider that the whole idea of training a machine learning 

classifier on a labelled dataset is that the dataset is representative of the target population and that its 

labels are sufficiently good approximations of the classification target. In other words, the dataset is 

an operationalization of the population and the labels an operationalization of the target function. The 

classifier receives its validity from the overall validity of this chain of operationalizations. For this 

reason, we can trust the label-matching conception of accuracy as long as it rests on a reliable chain of 

operationalizations. This view, however, misses the point that a representative dataset will necessarily 

include discrepancies and inequalities between different groups. As mentioned multiple times 

throughout this thesis, in the case of recidivism prediction, it is unequal recidivism base-rates between 

black and white defendants that unavoidably lead to unfair error rates during classification. It is 

therefore precisely because one accepts the dataset and labels as such as the operationalizations for the 

target that fairness trade-offs will become unavoidable. 

To avoid the fairness-accuracy dichotomy, Tal (2023) invites us to consider what stakeholders 

actually expect from ML classifiers. Stakeholders do not want a recidivism estimation tool that 

exhibits different error rates for black and white defendants but one that treats each individual equally 
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and fairly. Focusing on the target the way stakeholders conceive of it, COMPAS already misses the 

mark widely. It is from this starting point that Tal (2023) develops the notion of counterfactual targets 

for machine learning applications. In short, this notion states that the desired target should be built 

from an idealized standpoint that does not allow fairness issues in the first place. It requires the 

developer to imagine an ideal scenario where the preconditions for fair classification (for COMPAS 

this means equal base-rates) are met. 

The notion of counterfactual targets does not simply drop from the sky but builds on important 

parallels to ideal measurement targets common in the practice of complex measurement procedures. 

In measurement procedures, defining the quantity intended to be measured (the measurand) is 

distinguished from the task of realizing the measurement (Tal, 2023, p. 316). For instance, the SI unit 

for the second is defined as “the duration of exactly 9,192,631,770 periods of the electromagnetic 

radiation corresponding to the transition between two hyperfine levels of the unperturbed ground state 

of the cesium-133 atom” (Tal, 2023, p. 316) where it is assumed that the cesium atom is “unaffected 

by gravitational fields, magnetic fields, or thermal radiation, and to have no interactions with other 

atoms” (Tal, 2023, p. 316). Such conditions are practically unobtainable in any laboratory setting and 

are essentially counterfactual. Metrologists make use of a range of practical, theoretical, and statistical 

methods to approximately approach the ideal, for instance by practically setting the temperature as 

close to the ideal as possible or by developing statistical models that predict the frequency of the clock 

at zero density (Tal, 2023, p. 316).   

By contrast, in machine learning, the transfixion on the label-matching conception of accuracy already 

maintains a focus on the operationalization of the measurand while its definition was not clearly 

developed. Believing in the dichotomy between accuracy and fairness already indicates a commitment 

to the LMCA and uncritically assumes it to be the best or only possible operationalization of the 

measurand. It represents a reversal of the procedural order compared to measurement: rather than 

departing from the ideal definition of the measurand towards realizations that approximate it, one is 

committed to a particular way of realizing the measurand and makes conclusions about the measurand 

on the basis of this operationalization. This is the reason why machine learning developers typically 

consider fairness and accuracy as orthogonal dimensions trading-off against one another: because the 

operationalization via the LMCA requires this conclusion.  

Following Tal’s (2023) suggestion to adopt a metrological conception of accuracy in machine 

learning recentres the practice of defining a measurand and loosens the grip that (seemingly) 

unavoidable trade-offs have on machine learning applications. In concrete terms, defining a 

measurand for recidivism prediction would consider that an ideal target does not allow for unequal 

outcomes for different social groups. Some predictive errors are practically unavoidable but that 

disparate error rates disproportionately affect disenfranchised groups is not acceptable. Simply put, 
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the desired target function is a reliable measure (implying calibration between groups) of an 

offender’s likelihood of recidivism whose false positive and false negative error rates do not vary 

between groups. In other words, since disparate error rates are linked to unequal recidivism base-rates, 

the model has to provide predictions for an idealized, counterfactual scenario where the base-rates 

between groups are equal. The machine learning application needs to operationalize a realization of 

this measurand and enshrine these conditions. 

Tal`s (2023) approach hence explicitly calls for value judgements in the formulation of the target 

function. At first glance, it could align itself well with a recent movement in philosophy of science 

that complicates the long purported epistemological objectivity of scientific practice (see for example 

Zecha (1992) for various formulations of the principle of value-neutrality) by demonstrating both the 

presence of and need for non-epistemic value judgements in science. Prominent examples of this 

movement include Douglas (2000) who argues that non-epistemic value judgements both do and 

should play an internal role in scientific research in order to mitigate inductive risk, and Karaca 

(2021) who adopts a similar line of argumentation for binary machine learning classifiers. Elliott and 

McKaughan (2014) demonstrate that non-epistemic value judgements may even override epistemic 

values and thus play a primary role in the adoption or rejection of theories and models, especially 

when it comes to considering the intents and purposes of users (Elliott & McKaughan, 2014, p. 4). 

Intemann (2015) goes a step further and argues that non-epistemic value judgements are “legitimate in 

climate modeling decisions insofar as they promote democratically endorsed epistemological and 

social aims of the research” (Intemann, 2015, p. 219, emphasis in original), thus concretizing the 

kinds of acceptable non-epistemic values in science.  

Looking at the role that social values play in scientific practice, we can discuss the meaning of Tal’s 

(2023) explicit call for non-epistemic value judgements for the target function and highlight some 

hurdles that need further exploration. One difference to be highlighted right away is that, in cases 

typically considered in the literature mentioned above, non-epistemic values play the role of 

mitigating inductive risk during the “choice of methodology, gathering and characterization of the 

data, and interpretation of the data” (Douglas, 2000, p. 565). That is, non-epistemic values help decide 

which methodological approach to adopt at certain stages because the problem of, for example, which 

model to choose for a particular application is generally underdetermined by the available data such 

that multiple competing models match the data equally well (Karaca, 2021, p. 5). Non-epistemic 

values can play the deciding role in such instances. Elliott and McKaughan (2014) exemplify this 

point at the hands of government agencies determining the carcinogenic properties of substances. 

They point out that researchers have to make a choice between an assessment method that is slow but 

accurate and one that is fast but less accurate. This choice reflects a non-epistemic value-judgement 

about the value of certain social costs (Elliott & McKaughan, 2014, p. 8). 



  

46 

 

Tal’s (2023) metrological conception of accuracy in machine learning, by contrast, requires an 

explicit inclusion of social values into the very construct of the prediction target. Target specification 

becomes a task in itself which involves complex and difficult evaluations of values by many different 

stakeholders (Tal, 2023, p. 319). These stakeholders are typically interested in counterfactual 

scenarios that do not match the actual conditions under which the data for the prediction task was 

collected. For health outcome predictions, the learned rule that asthma decreases the mortality risk for 

pneumonia is technically correct if one solely looks at the training data, but entirely at odds with the 

target domain health professionals actually want predictions about. What they want to know is how 

efficient an intervention would be in a counterfactual scenario where an asthmatic had not received 

more intense treatment. This prediction target specified under counterfactual conditions is not a purely 

epistemological entity like the SI unit of the second. What I mean by this is that the latter refers to a 

purely physical phenomenon under ideal physical conditions. What Tal (2023) proposes for the 

definition of a counterfactual target function for health outcome prediction is predictions under ideal 

socio-economic conditions. It is necessary to make predictions under the assumption of such ideal 

social and economic conditions because it is precisely disparities in socio-economic makeup reflected 

in the training dataset that give rise to unfair predictive outcomes (Tal, 2023, p. 313).  

By specifying the counterfactual target function under ideal socio-economic conditions, the work of 

the machine learning engineer becomes tightly entangled with understanding social problems and 

navigating ethical questions. The target function is no longer purely epistemological, like in 

metrology, but necessarily incorporates in its definition a vision of fairness and ideal socio-economic 

conditions. This goes well beyond what Douglas (2000) had in mind when it comes to values in 

scientific practice. Taking Tal’s (2023) suggestion seriously, the target specification task requires 

machine learning developers to include the norms of the society affected by their prediction tools in 

the very aim of the tool. Tal (2023) highlights the need for a close collaboration with stakeholders in 

order to specify these conditions and clarifies that this task will very likely involve complex 

negotiations about different values27. In the example of the falsely learned rule that asthma decreases 

mortality chances for pneumonia, it is quite clear and uncontentious that fairness requires predictions 

about counterfactual scenarios where asthmatics would not receive more intense treatment. However, 

in more complex cases the task of target specification would require a clearer definition and 

methodology.   

One way of concretizing the target specification task is through Richardson (1990) approach of 

specifying norms to solve concrete ethical problems. The strength of Richardson’s (1990) approach is 

 

27 Karaca also clearly advocates for the inclusion of user values in the design of ML models (Karaca, 2021, p. 

17). However, I see Tal’s suggestion as more extreme since his suggestion is directed at the definition of the 

prediction target while I see Karaca’s point as addressing the mitigation of inductive risk once a prediction 

target is chosen.  



  

47 

 

that it forms an alternative to dominant hybrid models of norm specification that include a core 

deductive element and a subsequent intuitive balancing element. The deductive element implies quite 

straightforwardly that a solution to a given ethical problem can be deduced from universal or general 

moral norms and the intuitive balancing element is supposed to provide the necessary flexibility to 

balance ethical conflicts between different general moral norms. Richardson (1990) points out that 

these approaches are weak because the complexity of ethical conflicts escapes any deductive general 

prescription, and the intuitive balancing approach devolves into arbitrariness without rational 

foundation; and the combination of both elements into a hybrid model does not solve either of these 

problems. Richardson’s (1990) alternative rests on the assertion that the necessary action to be 

undertaken during a given ethical conflict will become sufficiently clear simply through the act of 

continued specification (Richardson, 1990, p. 294). It enables therefore certain actions to resolve a 

conflict without universalizing the norms arrived at through specification and avoids unfounded 

balancing approaches. 

A presentation of how exactly such a specification task would look like in the context of COMPAS 

goes beyond the scope of this paper. However, in cursory terms, some of the norms in need of 

specification are the assertion (which I have been taking for granted throughout this thesis) that 

disparate predictive outcomes which disadvantage minority groups are unacceptable and the notion of 

equality (f.ex. of opportunity and of outcome) because they are tightly connected to the core fairness 

issues. Furthermore, since Equivant (formerly Northpointe), developed different variations of their 

COMPAS model for different states and legislations in the US, it is worthwhile to ponder whether the 

target specification task should be mandated at the federal or at the state level. Furthermore, 

comparing different versions of recidivism prediction algorithms through standardised benchmarks 

may become significantly more complicated because benchmarks would, similarly to the target 

function, be defined by concrete ideas of fairness that may differ in relevant ways from one legislation 

to another. A standardised system would therefore require a transparent overview of the values at play 

in the different benchmarks. 

Lastly, on a practical level, it needs to be determined which level of metrological accuracy (as 

opposed to LMCA) recidivism prediction tools devised under Tal’s (2023) suggestion can achieve. 

Right now, under the LMCA, COMPAS reaches area under the curve (AUC)28 accuracy levels that 

hover around the seventy percent mark (Eno Louden & Skeem, 2007, p. 13). Since the inherent flaw 

of the LMCA is that it overestimates the accuracy of the tool (Tal, 2023, p. 315) because it wrongly 

 

28 AUC refers to the area under a receiver operating characteristic (ROC) curve which plots the true positive 

rate (tpr) against the false positive rate (fpr). Each predictor will have a characteristic curve and if one curve 

dominates (i.e., lies above) another curve, its associated predictor is said to be more reliable than the other. One 

way to determine whether one curve dominates another is to calculate the area under the curve, hence AUC has 

become a widely used heuristic to compare predictor performance (Powers, 2012). 
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operationalizes the target function, the metrological accuracy of the alternative tool will be lower than 

seventy percent. In addition to the questionable epistemological validity identified in chapter 2, a 

significantly lower metrological accuracy may, if no progress in performance is achieved otherwise, 

render the use of recidivism prediction tools entirely obsolete or unjustifiable.  

3.4. Conclusion 

In this chapter, I have focused on the fairness related problems identified in the beginning of my 

thesis. These problems stated, firstly, that existing fairness frameworks for machine learning are too 

formulaic and reductionist, and, secondly, that a rethinking of fairness in statistics is required since 

present debates merely echo past debates from over fifty years ago. As alternative frameworks I 

discussed counterfactual fairness approaches but highlighted several of their shortcomings. Kusner et 

al.’s (2017) proposed framework for counterfactual fairness introduced undesirable and unintuitive 

changes in rank orderings while Wachter et al.’s (2017) approach to counterfactual explanations 

struggled with counterfactual logic for social phenomena and an arbitrary distance metric to determine 

close-enough-possible worlds. As a way to rethink more fundamental axioms in fairness and accuracy 

in machine learning, Tal’s (2023) framework was introduced and compared to the issues outlined 

above. 

Tal’s (2023) introduction of target specification bias for machine learning applications has the 

potential to cause a paradigmatic shift in machine learning because it fundamentally questions the 

reliance on the label-matching conception of accuracy. It also tightly connects the job of the machine 

learning developer with considerations of societal norms and makes the task of target specification an 

indispensable value-laden practice. As such, Tal’s (2023) approach intensifies recent approaches that 

seek to promote a more thorough discussion of fairness in machine learning and reconnect it to 

philosophical concepts (Binns, 2018; Lee et al., 2021). A major bulk of work under this approach will 

involve consulting stakeholders in order to specify norms relevant to the particular application in 

question and Richardson’s (1990) framework for the specification of norms was briefly introduced to 

concretize this practice. Whether and how machine learning developers can adhere to standards 

specified this way and operationalize them in prediction tools is a practical question that needs to be 

discussed in the technical literature. Especially the level of metrological accuracy obtained through 

Tal’s (2023) approach may reveal recidivism prediction algorithms to be obsolete if they cannot meet 

a certain benchmark. Concludingly, while Tal’s (2023) critique of target specification bias appears to 

strike at a core issue in machine learning that is responsible for what experts in the field identify as 

unavoidable fairness trade-offs, the practical implications need to be closer investigated. Furthermore, 

from a social perspective, the fact that the target function will, under Tal’s (2023) approach, in large 

parts be defined by certain concrete concepts of fairness it may become difficult to inter-compare 

different machine learning models because the benchmarks used by different developers (derived 
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from the values of the stakeholders they consulted) may reflect altogether different values in a 

different legislation with different stakeholders. 

The counterfactual approaches to fairness in machine learning base their superiority over other 

approaches on the adoption of causal models to model and correct for unfair conditions. One finds a 

reliance of ethical approaches on epistemological standards. This theme culminated in the discussion 

of Tal’s (2023) approach on the relation between accuracy and fairness which explicitly rejects the 

position that these two notions form orthogonal dimensions and trade-off one another. The idea that 

accuracy and fairness trade off against one another is a direct consequence of the label-matching 

conception of accuracy which is a poignant example of how a particular epistemological commitment 

shapes one’s view on fairness. Tal’s (2023) suggestion that the task of counterfactual target 

specification should become an indispensable value-laden practice in the development of machine 

learning applications, especially those that exhibit fairness problems, is a hopeful message that these 

applications will, in the future, be developed transparently and that their values align with 

stakeholders’ expectations. 
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Conclusion 

In this thesis, I set out to give a broad picture about the epistemological basis of the recidivism 

prediction algorithm COMPAS and the fairness issues that plague it. In the first chapter I discussed 

the problematic basis for the development of this tool and in the second chapter I investigated 

COMPAS’ framing both as a measurement and a predictive tool before arriving, in the third chapter, 

at a potential reframing of the very concepts of accuracy and its relation to fairness in machine 

learning. I divided my line of questioning into two parts. Firstly, I asked how these fairness issues 

arise and what we can do about them, and, secondly, how we can justify the use of recidivism 

prediction algorithms from an epistemological perspective. While the fairness issues were the primary 

point of interest, investigating the epistemological basis of predictive algorithms allowed me to 

determine to which degree they rest on a well-established foundation and whether their use could be 

justified or discredited before one even has to address the fairness related problems. Following this 

line of questioning, I identified two epistemological and two fairness related problems and each pair 

was subsequently addressed in an own chapter.  

The epistemological problems consisted in the lack of well-established theory in the field of 

criminology and the weak support for the predictive utility of COMPAS and for the validity of its 

measurement scales. The lack of theory implies difficulties in supporting the very definition of 

recidivism as well as constructing an operationalizable measurand for measuring recidivism. The 

weak support for the utility and validity of COMPAS implied that the narrative of COMPAS being 

the state-of-the-art of recidivism prediction methods may overstate its usefulness. For these reasons, I 

analysed COMPAS in the second chapter both as a predictive and as a measuring tool, drawing from a 

range of recent publications from philosophy of measurement. I concluded that that the theoretical 

basis of recidivism prediction was insufficiently well-founded in major part because the primary 

model it was founded on, the risk-needs-receptivity (RNR) model, was developed using a dustbowl 

empiricism approach which is framed as an atheoretical, empirical approach. The developers of the 

RNR model specifically and intentionally avoided a theory-laden approach which made it a perfect 

match for machine learning models for the wrong reason. Philosophers of science have recently 

criticised the supposedly “theory-agnostic” conceptualisation of machine learning modelling, on the 

grounds that theory-agnosticism both does not exist (because value-laden assumption enter the 

modelling process either explicitly or implicitly) and is undesirable (implicit value-judgements in 

modelling can have potentially dangerous effects). I concluded therefore that the COMPAS algorithm 

was part of a trend gaining track in some scientific disciplines which hailed machine learning 

algorithms as superior techniques to modelling than existing, theory-laden approaches. Such 

approaches allude to a sense of objectivity by removing the human factor from the modelling process 

and avoiding potentially flawed human assumptions and biases. I argued that such an approach 

necessarily and implicitly imports value-laden assumptions that can have dangerous consequences if 
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not made transparent and fulfils neither epistemological standards of explainability nor legal standards 

of due process. I concluded that, on an epistemological and ethical basis, the use of COMPAS was 

hard to defend. 

Turning to the two fairness related problems, I identified the first as the fact that problems regarding 

fairness trade-offs in machine learning are mainly addressed in the computer science literature and 

that the frameworks offered there are often too formulaic and reductionist to resolve the fairness 

issues. The second problem stated that many of the discussions around fairness trade-offs echo near 

identical debates about fairness that occurred fifty years prior in the context of fairness in standardized 

testing. The implication that statistical fairness has made no progress within the last five decades casts 

into doubt the entire project of resolving these issues. An overall rethinking of these fairness issues 

was therefore required. For this reason, I investigated recent publications regarding counterfactual 

fairness (Kusner et al., 2017) and explanations (Wachter et al., 2017). These approaches stand out 

from previous frameworks because they build on top of a causal model of the target phenomenon 

which, at least theoretically, allows for specifically modelling confounding links between variables 

and historic biases in order to mitigate them. However, subsequent publications demonstrated that the 

counterfactual fairness model (Kusner et al., 2017) demonstrated inconsistencies with respect to rank-

orderings and was equivalent to the more simplistic model of demographic parity (Rosenblatt & 

Witter, 2023). Furthermore, the counterfactual explanation approach (Wachter et al., 2017) proved 

problematic because significant factors like race do not follow counterfactual logic since they do not 

act in the same way as treatment variables in, for example, clinical trials and cannot be trivially 

controlled for by keeping other variables constant. The latter is because race is confounded with many 

social, cultural, and economic factors that influence an individual’s situation such that considering it 

as a treatment variable would amount to reducing the concept of race merely to superficial factors like 

skin colour. Counterfactual explanations furthermore rely on determining close-enough-possible-

worlds to compare two predictions that are as similar as possible and in which only the variables that 

change the outcome differ. The comparison of the differences then serves as an explanation for the 

prediction of the algorithm. However, defining a metric for closeness between counterfactual worlds 

is hard to justify because different changes would presumably change the distance in worlds in 

different ways. Furthermore, some slight changes in variables could potentially change the world in a 

drastic way. Phenomena of interest therefore typically do not strictly follow counterfactual logic.  

I contrast these counterfactual approaches with Tal’s (2023) framework regarding counterfactual 

predictions which approaches fairness problems in a different way by drawing from philosophy of 

measurement. Specifically, Tal (2023) contrasts the commonly accepted benchmark of accuracy in 

machine learning – the label-matching conception of accuracy – with the metrological conception of 

accuracy and identifies an inferential gap between the measurement target that stakeholders actually 

desire and the target that labels in a training dataset operationalize. To mitigate this target 
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specification bias, Tal (2023) suggests adopting aspects of the way metrologists define measurands, 

namely by formulating an idealized, generally not directly accessible, target and finding ways to 

operationalize targets with respect to this ideal. Tal (2023) therefore calls for abandoning the 

automatic reliance on the label-matching conception of accuracy and instead proposes to design a 

suitable target function, in tandem with stakeholders, which specifies the counterfactual conditions of 

the predictions the stakeholders are interested in. Viewed from this perspective, the commonly held 

idea that accuracy and fairness trade off against one another in prediction algorithms is ill-conceived 

because it misunderstands that stakeholders actually expect a fair prediction tool such that fairness 

becomes an integral component of the definition of the ideal target. This approach explicitly rejects 

the idea that labels in a training dataset – however reliably the data was collected – automatically 

reflect the best operationalization of the target function and instead recentres rendering expectations 

and values of stakeholders explicit by making the task of target specification an indispensable, value-

laden practice of developing machine learning based predictive algorithms. Viewing the labels in 

datasets as suboptimal operationalizations, one could conceivably manipulate datasets and training 

methods such that they operationalize a counterfactual vision of the target function.  

How counterfactual targets can be operationalized in practice will need to be investigated by the 

technical literature. In particular, two major challenges I identified for future work will be, firstly, that 

the construction of standardized benchmarks for machine learning applications designed for 

counterfactual conditions will require transparent specifications of values in order to make different 

applications comparable at all. This is because the counterfactual conditions stakeholders are 

interested in may vary from legislation to legislation such that different applications reflect different 

sets of values and visions of fairness. The key issue is to agree on a way of comparing non-

epistemological standards like definitions of fairness when even epistemological standards of 

performance evaluation appear to produce failures across many subfields of machine learning (Liao et 

al., 2021). A promising way of approaching such benchmarks may by following the work of (LaCroix 

& Luccioni, 2022) who consider the design of ‘ethical’ AI models impossible but suggest shifting the 

evaluation standard towards the degree of value alignment for different stakeholders. 

The second challenge will be that, by adopting the metrological conception of accuracy, some 

machine learning applications will reveal themselves to be unable to meet the benchmark for 

reliability. Recidivism prediction algorithms like COMPAS produce, under the current label-matching 

conception of accuracy, accuracy levels that hover around seventy percent. Since applications 

designed under the LMCA overestimate the accuracy of the application since they fail to consider the 

counterfactual condition stakeholders are actually interested in, their metrological accuracy will likely 

be (much) lower. Without performance increases, recidivism prediction algorithms like COMPAS 

could likely turn out to be too unreliable to use. A way of safeguarding against such a scenario would 

be by better models of recidivist behaviour and a more thorough understanding of the causal links 
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between different risk factors. At the same time, directly addressing the socio-economic 

circumstances that cause base rate disparities in recidivism between different races will also reduce 

the disparities in the training datasets for recidivism prediction algorithms, thereby also reducing their 

biases and fairness issues. This last suggestion should be the overall goal of policy makers: the main 

focus should lie on working on socio-economic issues underlying criminal and recidivist behaviour 

while prediction tools only play – at best – a complementary role, provided their reliability and 

trustworthiness was sufficiently demonstrated. 

Wordcount: 23720  
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Appendix A – Risk/Needs factors 

TABLE 1  Major Risk and/or Need Factors and Promising Intermediate Targets for Reduced 

Recidivism 

Factor Risk Dynamic Need 

History of antisocial behaviour Early and continuing 

involvement in a number and 

variety of antisocial acts in a 

variety of settings 

Buil noncriminal alternative 

behaviour in risky situations 

Antisocial personality pattern Adventurous pleasure seeking, 

weak self-control, restlessly 

aggressive 

Build problem-solving skills, 

self-management skills, anger 

management and coping skills 

Antisocial cognition Attitudes, values, beliefs, and 

rationalizations supportive of 

crime; cognitive emotional 

states of anger, resentment and 

defiance; criminal versus 

anticriminal identity 

Reduce antisocial cognition, 

recognize risky thinking and 

feeling, build up alternative 

less risky thinking and feeling, 

adopt a reform and/or 

anticriminal identity 

Antisocial associates Close association with criminal 

others and relative isolation 

from anticriminal others; 

immediate social support for 

crime 

Reduce association with 

criminal others, enhance 

association with anticriminal 

others 

Family and/or marital Two key elements are 

nurturance and/or caring and 

monitoring and/or supervision 

Reduce conflict, build positive 

relationships, enhance 

monitoring and supervision 

School and/or work Low levels of performance and 

satisfaction in school and/or 

work 

Enhance performance, rewards, 

and satisfactions 

Leisure and/or recreation Low levels of involvement and 

satisfaction in anticriminal 

leisure pursuits 

Enhance involvement, rewards, 

and satisfactions 

Substance abuse Abuse of alcohol and/or other 

drugs 

Reduce substance abuse, 

reduce the personal and 

interpersonal supports for 

substance-oriented behaviour, 
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enhance alternatives to drug 

abuse 

NOTE: The minor risk and/or need factors (and less promising intermediate targets for reduced 

recidivism) include the following: personal and/or emotional distress, major mental disorder, physical 

health issues, fear of official punishment, physical conditioning, low IQ, social class of origin, 

seriousness of current offense, other factors unrelated to offending. [Note in original] 

Note: Reprinted from “The Recent Past and Near Future of Risk and/or Need Assessment” by 

Andrews, D. A., Bonta, J., & Wormith, J. S., 2006, Crime & Delinquency, 52(1), 7–27. 
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Appendix B – Proof of mathematical incommensurability of fairness 

definitions 

Given the number 𝑁𝑡 of members in group 𝑡 and the number 𝜇𝑡 of people in this group that belong to 

the positive class, let us call 𝑥 ∈ [0; 1] the average score attributed to the members of the negative 

class and 𝑦 ∈ [0; 1] the average score attributed to members of the positive class. Remember that we 

are looking here at the training dataset and therefore know all the true class labels. The balance 

conditions for the positive and negative class require that the scores 𝑥 and 𝑦 are the same for both 

groups. The number of people assigned to the negative class should be (𝑁𝑡 − 𝜇𝑡) and the number of 

people assigned to the positive class should be 𝜇𝑡 (if the algorithm assigns more or less people to the 

positive class than there are in the training dataset, it is over- or underfitted). The calibration condition 

requires that an 𝑥 fraction of the people assigned to the negative class, (𝑁𝑡 − 𝜇𝑡)𝑥, belong to the 

positive class and a 𝑦 fraction of the people assigned to the positive class, 𝜇𝑡𝑦, belong to the positive 

class. To understand this, remember that the score here denotes the estimated likelihood that a 

member of this class will recidivate. Assigning, for example, an average risk score of 70% to the 

high-risk (positive) class containing 100 people, we expect 70 of these people to truly recidivate if the 

algorithm is well calibrated. Analogously, assigning an average score of 30% to the low-risk 

(negative) class also containing 100 members, we expect 30 of these members to truly recidivate. 

Since, in this example, we assume that there are only those two classes (positive and negative, high-

risk and low-risk), the two terms add up to the total number of members of the positive class, 𝜇𝑡, 

which results in the following equation for each group 𝑡: 

(𝑁𝑡 − 𝜇𝑡)𝑥 + 𝜇𝑡𝑦 = 𝜇𝑡 

Dividing by 𝑁𝑡, we obtain: 

(1 − 𝜌𝑡)𝑥 + 𝜌𝑡𝑦 = 𝜌𝑡 

Where 𝜌𝑡 = 𝜇𝑡 𝑁𝑡⁄  designates the relative base rate of group 𝑡. We have therefore two linear 

equations in x-y-space that align perfectly only if the base rates are equal: 𝜌1 = 𝜌2, or which, if the 

base rates are not equal, only intersect at the point (𝑥, 𝑦) = (0,1). The latter condition amounts to 

perfect prediction: the average score to assigned to members of the negative class is 0 and the average 

score for members of the positive class is 1, meaning that no members assigned to the negative class 

recidivate and all members of the positive class do. This proof demonstrates therefore that the 

calibration condition together with the balance condition for the positive and negative class can only 

hold all at the same time if the base rates of the different groups are equal (which in the case of 

recidivism is not the case) or if we can make perfect predictions (which is practically infeasible). The 

immediate conclusion is that we cannot simply have totally fair prediction algorithms but rather have 

to contend with inherent trade-offs and discrepancies. 


