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Running biomechanics play a crucial role in performance and injury preven-
tion. This study aimed to evaluate the influence of post-run feedback on key
running metrics – cadence, overstriding, and vertical oscillation. We utilized
OpenPose, a state-of-the-art pose estimation tool, to capture participants’
running patterns, which were subsequently presented through a prescriptive
dashboard. Participants ran for 10 minutes, received feedback, and then ran
for another 10 minutes. Our findings suggest that post-run feedback can lead
to adjustments in running metrics, with varying degrees of change observed
among participants. Notably, vertical oscillation showed significant changes
across all participants, while cadence and overstriding exhibited individual
variances. Although some participants’ metrics aligned more closely with
ideal biomechanics benchmarks post-feedback, others did not show uniform
improvements. The study underscores the potential of tools like OpenPose
and analytical dashboards in providing insights that may influence running
behaviors, setting the stage for further research in this domain.
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1 INTRODUCTION
In recent years, OpenPose, a real-time multi-person keypoint de-
tection library, has emerged as a valuable tool for sports analysis,
particularly in the domain of running[9] and various other athletic
activities[14, 20]. This advanced framework offers an innovative
approach for precisely estimating critical points on body parts such
as the body, face, hands, and feet[3].
Running analysis typically involves three crucial parameters:

Vertical Oscillation (the degree of "bounce" in a runner’s step), Over-
striding (taking strides that are too long), and Cadence (the number
of steps a runner takes in a minute). These parameters significantly
influence running efficiency and injury risk[18, 21].
The innovative real-time detection provided by OpenPose has

been recognized in different sporting environments, ranging from
football[20] to tennis[14], where estimation of body key points can
significantly influence strategic planning and performance assess-
ment. Meanwhile, the contribution of OpenPose has been equally
profound in healthcare settings such as gait analysis, as seen in the
diagnosis and monitoring of diseases like Parkinson’s[4].
The efficacy of video-based biomechanical analysis in sports

has been well established[21], and OpenPose’s marker-less motion
capture capabilities further extend its potential for usage in such
analyses[9]. This approach eliminates the need for physical markers,
simplifying data acquisition and potentially increasing the applica-
bility of biomechanical analysis in real-world settings.
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In this study, it is leveraged OpenPose’s capabilities to feed real-
time data into a prescriptive dashboard. This dashboard visualizes
key running metrics and offers actionable insights to guide run-
ners toward optimal performance [23]. The choice of visualization,
including bar graphs, is grounded in research highlighting the im-
portance of graph literacy and numeracy in data interpretation[5].

Additionally, mindful of the potential for cognitive overload with
excessive or improper color use, our dashboard design prioritizes
clarity and intuitiveness. This ensures that runners receive feedback
in an understandable and actionable manner, without overwhelming
them[2].

This paper will delve deeper into the application of OpenPose in
three running parameters analysis: Vertical Oscillation, Cadence,
and Overstriding. Moreover, this data will be fed into a prescrip-
tive dashboard. This dashboard visualizes key running metrics and
offers actionable insights to guide runners toward optimal perfor-
mance [23]. The choice of visualization, including bar graphs, is
grounded in research highlighting the importance of graph literacy
and numeracy in data interpretation[5].

Additionally, mindful of the potential for cognitive overload with
excessive or improper color use, our dashboard design prioritizes
clarity and intuitiveness. This ensures that runners receive feedback
in an understandable and actionable manner without overwhelming
them[2].

2 RESEARCH QUESTION

Primary ResearchQuestion:
How does using OpenPose’s real-time keypoint detection, in con-
junction with a prescriptive dashboard offering feedback, influence
key running metrics (Cadence, overstriding, and vertical oscillation)
in participants?

Sub-Questions:
(1) To what extent does Cadence change in participants after

receiving feedback from the dashboard?
(2) How does feedback influence the degree of overstriding in

participants?
(3) What changes are observed in vertical oscillation post-feedback?
(4) Are the observed changes in runningmetrics consistent across

all participants, or are there individual variances?
(5) How do the changes in metrics align with ideal running

biomechanics benchmarks?

3 RELATED WORK
OpenPose has demonstrated its efficacy in various sporting environ-
ments, including football and tennis, where accurate estimation of
body key points is crucial for performance assessment and strategic
planning [14, 20]. Its markerless motion capture capabilities make it
a valuable tool for video-based biomechanical analysis in sports [9].
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Previous studies have explored different methods for gait analysis
and running parameter extraction. Souza [21] employed tape-based
markers to identify anatomical landmarks on runners, allowing for
visual examination of running form. Castelli et al. [15] developed
a machine-learning approach for clinical gait analysis, utilizing
segmental markers on clothing for tracking movements. Feng B. et
al. [9] evaluated a low-cost, single-camera system for running gait
analysis using OpenPose but highlighted some limitations. Moro M.
et al. [16] introduced a markerless approach for gait analysis using
RGB video data, demonstrating accuracy comparable to marker-
based systems.

The significance of vertical oscillation, cadence, and overstriding
in running biomechanics and injury risk has been well-documented.
Understanding these parameters can help optimize running perfor-
mance and reduce the potential for injuries [1, 8, 11, 17, 21].

Clinical dashboards have become an instrumental tool in health-
care to convey performance feedback compared to quality bench-
marks. These dashboards utilize data visualization techniques to
enhance comprehension and guide actionable insights. However, the
true efficacy of these dashboards hinges upon the user’s proficiency
in interpreting the visualized data.
A recent study delved into the comprehension of quality tar-

gets presented in clinical dashboards among home care nurses. It
revealed a marked correlation between graph literacy, numeracy,
and understanding of the data. Specifically, nurses with heightened
graph literacy and numeracy exhibited a more nuanced grasp of the
quality targets presented in the dashboard format [6]. This finding
accentuates the necessity of tailoring dashboard designs to cater to
diverse levels of numeracy and graph literacy among its users.

A comprehensive exploration into the design and applicability of
clinical dashboards was presented in a study focused on home care
nurses. The research leveraged Feedback Intervention Theory (FIT)
to guide the development and evaluation of a prototype clinical
dashboard tailored for this demographic. The study emphasized
the pivotal role of timely and actionable feedback in influencing
clinician behavior, particularly when juxtaposed against established
quality standards. Furthermore, the research highlighted the diverse
challenges in identifying the optimal components of a feedback
intervention, given the variations in content, delivery mode, and
frequency [5].

In the educational domain, an experimental study was conducted
among fourth-grade students in Ningxia, China. This study investi-
gated the efficacy of two different types of dashboards (descriptive
and prescriptive) in the subject of mathematics. These dashboards
were based on the "Big Data for Learning" platform developed by
the research group. The goal was to assess if personalized learn-
ing supported by the two dashboards could significantly improve
student learning outcomes and if there were noticeable changes in
students’ learning strategies and attitudes towards learning. The
findings suggest that both dashboards were effective in promoting
students’ cognitive development, with the prescriptive dashboard
showing a slightly greater facilitative effect. This research under-
scores the potential of dashboard analytics to influence self-directed
learning processes, especially when students’ prior knowledge and
self-directed learning skills are deficient [23].

Fig. 1. Subject running on the treadmill (green rectangle). Tripod with the
smart phone on it (orange rectangle). Blue arrow depicts distance from
tripod to treadmill .

Similar principles apply to our study on running biomechanics.
Using OpenPose for pose estimation combined with a prescriptive
dashboard to delineate key metrics necessitates that runners, much
like healthcare professionals or students, are adept at parsing the
feedback presented. Such comprehension is pivotal, bridging the
gap between mere feedback and actionable, performance-enhancing
insights.

4 METHODOLOGY
In this section, we describe the approach taken for overstriding,
cadence, and vertical oscillation computation by using the OpenPose
library and the implementation of a prescriptive dashboard to give
feedback to the user.

4.1 Data Collection and Video Processing
Eight subjects were recruited to participate in a research project
involving running on a treadmill (see Figure 2a). Prior to beginning
the activity, the participants were given an inform of consent; next
the participants were instructed to warm up by running for two
to two minutes. All of them were told to engage in autonomous
pace-running for one minute at 9km per hour.
The entire procedure was carefully recorded using a Samsung

Galaxy S22 Ultra camera, capturing footage at a rate of 30 frames
per second (FPS). To maintain stability and avoid any unintentional
movements that could potentially impact the reliability of the data,
the camera was securely mounted on a tripod with a height set
to 128 cm and placed at 195cm distance from the treadmill (see
Figure 1). To accurately track the participants’ cadence, manual step
counting was employed. Additionally, it must be said that the videos
were captured from a unilateral perspective (see Figure 2a), with
the camera positioned fixedly and pointing towards the right side
of the runner.
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(a) (b)

Fig. 2. (a) A subject runs on a treadmill at a consistent speed. Additionally,
the camera records the right side of the individual (sagittal plane perspective).
After finishing their exercise, (b) their thigh is measured from the side (from
the right hip to the right knee) using a measuring tape.

In terms of participant demographics, the study was comprised of
individuals aged between 22 to 24 years. Notably, none of the partic-
ipants have a history of any injuries pertinent to athletic activity or
running, primarily because they did not engage in regular running
activity. Additionally, an imperative aspect of the data collection
involved the measurement of each subject’s right thigh using a tape
measure (see Figure 2b). The range among the participants’ thighs is
between 39 to 47 cm. The rationale behind this process is tied to the
scaling considerations crucial to the objectives and interpretations
of this research.

Furthermore, to ensure the accuracy and authenticity of the data
for comparison with the system’s cadence measurements, a meticu-
lous examination of each video was conducted to accurately deter-
mine the number of steps taken by each participant. This rigorous
process involved closely scrutinizing the recorded videos to identify
and count the exact number of steps performed by each individual.
By obtaining this real and reliable step count data, a comprehensive
and meaningful comparison with the cadence readings provided by
the system could be established, facilitating a robust evaluation of
its performance and accuracy in estimating the participants’ step
rates.

4.2 Parameters Extraction
Table 1 provides a comprehensive description of the parameters ex-
tracted from OpenPose, their implications in running biomechanics,
and the corresponding visual perception used to measure them by
using OpenPose.

4.2.1 Cadence extraction: The determination of step rate relies on
analyzing the variation in knee angle [19] across consecutive frames.
To obtain these angles, three keypoint coordinates associated with
the middle hip, right knee, and right ankle are extracted from the
dataset keypoints. Represented as 𝜐 = {𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
}, a = {𝑥 𝑗

𝑓
, 𝑦

𝑗

𝑓
} and

𝜔 = {𝑥𝑘
𝑓
, 𝑦𝑘

𝑓
} represent the coordinates of the middle hip (i), knee (j),

Table 1. Description of parameters extracted from OpenPose

Parameters Implications Visual Perception
Cadence Low speed,

overstriding
[11]

angle between ankle
and center of mass with
knee position point as
center point

Overstriding Meniscal injury,
Patellofemoral
pain
syndrome[7, 11,
17]

angle between middle
hip and ankle with knee
position point as center
point

Vertical Oscilla-
tion

Higher ground
impact[1, 8]

vertical movement of
middle hip

and ankle (k) respectively in frame f. Being j the central point and i
and k as its adjacent nodes, we can form vectors and the Euclidean
distance D between point a and point b, a and b being to adjacent
can be calculated by:

𝐷𝐸 (𝑎, 𝑏) =
√︂(

𝑥𝑎𝑡 − 𝑥𝑏𝑡

)2
+
(
𝑦𝑎𝑡 − 𝑦𝑏𝑡

)2
(1)

To get the range of motion at j:

\ ( 𝑗) = arccos
(
𝑗𝑖 · 𝑗𝑘
| 𝑗𝑖 | | 𝑗𝑘 |

)
As depicted in Figure 3, the estimation of the subject’s step count
involves counting the peaks of the knee angle relative to the middle
hip and ankle. It is important to note that the knee flexion/extension
is exclusively computed for a single leg. However, due to the pro-
cessing of frames by OpenPose, which may occasionally mix up the
legs, some noise is introduced into the data.

In this context, it could be argued that the number of high or lower
peaks observed in the knee angle represents the count of steps taken
by the selected leg, considering the knee angle alteration during the
leg’s flexionwhen executing a step. To accurately determine the total
number of peaks, it became necessary to employ specific techniques
for peak smoothing, such as the Savitzky-Golay filter. This technique
effectively eliminates noisy data while preserving important data
features, such as width, as highlighted in previous studies [10].
Utilizing these filtering and smoothing methods ensures a more
precise calculation of the step count by mitigating the influence of
noise and enhancing the accuracy of the analysis.

4.2.2 Vertical Oscillation extraction: To compute the vertical oscil-
lation, first, the displacement of the middle hip is been tracked in
every frame of the video. Figure 4 shows the vertical displacement
over frames, where the number of oscillations or high peaks may
equal the number of steps, the subject total step number is 28. How-
ever, due to noise in the peaks, the total number of high peaks is
33. To address this problem, smoothing has been done on the peaks
only to get the average width distance in order to reduce noise in
the data. Figure 6 represents both the original vertical oscillation
from raw data and the smoothed curve of that data. Even though
the smoothed curve has lower vertical oscillation, it could be said
that it still conserves the width of the raw data [10]. By separating
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Fig. 3. A 10-second window video from a one-minute video of a subject
running at 10 km per hour at her normal running form. The orange curve
depicts the original data extracted from OpenPose. The blue curve depicts
the smoothed data. Each high or low peak on the blue curve corresponds to
a leg strike, enabling step count determination of one leg, in this case, 28
steps .

Fig. 4. Same video as in Figure First 3. Vertical displacement is plotted from
the original data showing high peaks marked with blue x and low peaks
marked with orange. Any noise present in the peaks is visually marked with
black circles.

Fig. 5. The green curve indicates the vertical Displacement from Figure 4.
While the orange curve depicts the original curve but is smoothed using
the algorithm Savitzky-Golay smoothing filter. The number of high peaks
is equal to 27, and low peaks are equal to 28

each peak of the original curve with the width of the peaks of the
smoothed curve, the data may become more accurate since only
one point of each peak is taken.

Fig. 6. The data Fig.4 was transformed into vertical oscillation (VO) per step,
and the optimal range was defined with a minimum value of 5cm and a
maximum value of 10cm [1]. This range signifies the safe zone within which
the vertical oscillation should ideally fall.

Fig. 7. Green area represents the measured shank angle.

To calculate the vertical oscillation (VO) of a subject, it is nec-
essary to make meaningful comparisons with average optimal VO
values but to get there before; it is essential to establish a conver-
sion from pixel measurements to centimeters. This conversion is
achieved by incorporating known values into the system. In this
case, the subject’s thigh length (see Figure 2b) is measured and used
to scale each frame’s pixel values. The following formula defines
the parameters used in the calculation of VO in centimeters:

𝑉𝑂 𝑓 =𝑚
𝑓

𝑝𝑖𝑥𝑒𝑙𝑠
∗ ℎ𝑐𝑚

𝑝
𝑓

𝑝𝑖𝑥𝑒𝑙𝑠

(2)

Let ’h’ represent the subject’s thigh length in centimeters. The thigh
length in pixels, denoted as ’p,’ is computed using the Formula 1 with
(hip - knee) key points as parameter at time f. The displacement of
the middle hip coordinate, denoted as ’m’, is defined as the position
of m at time f. Upon implementation of Equation 2.

4.2.3 Overstriding extraction: The existing body of literature, specif-
ically reference [22], highlights the significance of the shank angle
as a valuable indicator for identifying instances of overstriding in
runners. A detailed analysis of three specific key points is warranted
to assess overstriding using the key point data provided by Open-
Pose. These key points include the ankle, knee, and the center of
mass (COM), which can be conveniently derived by constructing
an array with the x-coordinate equivalent to the x-coordinate of
the knee and the y-coordinate equivalent to the y-coordinate of the
ankle (Figure 7.
By extracting and analyzing these three keypoint values, it be-

comes possible to leverage Equation 4.2.1 to estimate the shank
angle at the specific time point denoted as f. This estimation of-
fers valuable insights into the extent of overstriding exhibited by
the runner during that particular instance. Integrating these key
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Fig. 8. One-minute video of subject running at moderate cadence depicting
the shank angle cycle for 172 steps.

Fig. 9. The shank angle cycle for a single step. Adapted from [22].

point-based calculations into the research methodology enhances
the ability to evaluate and estimate overstriding tendencies, facilitat-
ing a more comprehensive understanding of running biomechanics
and potential performance limitations.
Figure 8 presents a visual representation of an approximately

10-second video segment, showcasing the locomotion of a subject
engaged in running activity. The depicted running pattern exhibits a
moderate degree of overstriding, falling within the angular range of
0◦ to 7◦ . It is noteworthy that angles surpassing 7◦ can be regarded
as indicative of high overstriding, based on established conventions
[22].

4.3 Prescriptive Dashboard Implementation
Upon completion of the video analysis using the OpenPose library,
the extracted parameters—namely cadence, vertical oscillation, and
overstriding—are used to generate a comprehensive report. This
report, presented in the form of a prescriptive dashboard, is designed
to offer clear and actionable feedback to the user based on the post-
analysis of their running video.

4.3.1 Dashboard Design and Features. The dashboard is organized
into distinct sections, each dedicated to one of the three main pa-
rameters: Cadence, Vertical Oscillation, and Overstriding.

(1) Overview Section: This part briefly overviews the runner’s
performance, focusing on the average and standard deviation
of cadence, vertical oscillation, and shank angles. It also in-
cludes a ’Targeted Achievement’ section suggesting optimal

benchmarks for cadence, vertical oscillation, and overstriding
that the runner should aim for.

(2) Graphs: Three visual representations are employed, using
color-coded bars to signify instances of elevated overstriding,
low cadence, or excessive vertical oscillation throughout the
run. A scatter graph is incorporated to enhance the accu-
racy of vertical oscillation data, featuring specific timestamps
from the video. This empowers the runner to scrutinize and
comprehend precise moments characterized by heightened
vertical oscillation. The y-axis of the cadence graph repre-
sents step count, while the x-axis denotes time in minutes.
In the case of overstriding, the y-axis represents degrees of
the shank angle, while the x-axis corresponds to time in min-
utes. For vertical oscillation, the y-axis illustrates the runner’s
vertical movement in centimeters, with the x-axis indicating
time in minutes.

(3) Recommendations and Feedback Panel:This section pro-
vides users with a brief performance summary. When in-
stances of incorrect form are detected, it highlights potential
associated risks. Within this section, suggestions are offered
to the runner. Notably, a recommendation to increase ca-
dence is provided to reduce occurrences of overstriding and
minimize vertical oscillation. This advice was given to users
as a response to situations characterized by high levels of
overstriding, excessive vertical oscillation, and low cadence.

4.3.2 Dashboard Implementation. The dashboard is web-based, en-
suring accessibility across various devices. It is built using a com-
bination of Next.js, CSS, and JavaScript, with data visualization
facilitated by the Chart.js library. The backend, responsible for pro-
cessing the OpenPose data and generating insights, is developed
using Python and Supabase (Figure 14).
To ensure the dashboard’s effectiveness, an initial beta version

can be tested with a small group of runners. Their feedback would be
invaluable in refining the design, adding features, and ensuring that
the presented information is both understandable and actionable.

A solution was implemented to prevent overwhelming the runner
with excessive information by incorporating three buttons, each
corresponding to a specific running parameter. Upon clicking a
button, the screen will then display the relevant section pertaining
to the chosen running parameter. This design ensures a focused and
organized presentation of information for the user’s convenience.

5 RESULTS
The primary objective of this researchwas to determine the effective-
ness of feedback provided through a dashboard on key performance
indicators (KPIs) of runners. The KPIs under investigation were
Cadence, Overstriding, and Vertical Oscillation. Descriptive statis-
tics, paired t-tests, and graphical visualizations were employed to
analyze the data.

5.1 Descriptive Analysis
The initial investigation involved computing descriptive statistics,
including the mean, median, and standard deviation for each metric
both before and after feedback.
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For the Cadence metric, mean values before feedback ranged from
149 to 188.2 steps per minute. Post-feedback, the range was from
160.4 to 196.4 steps per minute.

Overstriding showed mean values ranging from 4.26 to 14.04
degrees before feedback. After feedback, the range shifted from 1.61
to 16.27 degrees.
For Vertical Oscillation, the pre-feedback mean values ranged

from 4.88 to 12.12 cms, while post-feedback values were between
4.89 and 10.06 cms.

5.2 Statistical Analysis
Paired t-tests were conducted to determine if there were statistically
significant differences in the KPIs before and after the feedback. For
data not conforming to normal distribution, the Wilcoxon signed-
rank test was employed as a non-parametric alternative.

For Cadence, most participants exhibited statistically significant
changes post-feedback. Notably, Participant 6 was the exception
with no significant difference detected.

Overstriding also displayed significant changes for many partici-
pants, with Participant 7 and Participant 8 being the exceptions.
Vertical Oscillation changes were universally significant across

all participants.
By glancing at the heatmap (Figure 10), you can quickly identify

which participants had significant changes in their running metrics
after viewing the feedback. Darker cells highlight these significant
changes.

For example, most cells in the "Vertical Oscillation" row are dark,
suggesting that changes in this metric were statistically significant
for almost all participants.
Conversely, lighter cells, especially those with p-values above

0.05, indicate non-significant changes. For instance, the cell for
"Participant 6" in the "Cadence" row is lighter, signifying that the
change in cadence for this participant wasn’t statistically significant
post-feedback.

Fig. 10. Heatmap of p-values for each metric and participant. Darker shades
indicate lower p-values, with values in cells providing precise p-values.

5.3 Graphical Evidence
Bar charts were constructed to visually represent the percentage of
observations within ideal ranges for each metric before and after
feedback.

For Cadence, participants like Participant 5 displayed a marked
increase in observations within the ideal range[12, 13] (160-170
steps/min) post-feedback.

In the Vertical Oscillation chart, participants such as Participant 5
and Participant 6 showed noticeable changes, moving their metrics
towards or away from the ideal range of 5-10 cms.
For Overstriding, while participants like Participant 2 displayed

significant improvements in remaining within the ideal threshold
of 7 degrees, others like Participant 5 and Participant 6 showed a
decline.

5.4 Summary
The results suggest that the dashboard feedback had a discernible
impact on the running metrics of most participants. The statisti-
cal tests and visualizations indicate a shift in KPIs after viewing
the feedback, with varied effects depending on the participant and
metric. Further research might delve into the factors influencing
these changes and the potential long-term impacts of continuous
feedback on performance.

Fig. 11. Percentage of Observations within Ideal Cadence Range (160-170
steps/min) before and after feedback. The shaded yellow region repre-
sents the ideal range. As observed, participants like Participant 5 displayed
a marked increase in observations within the ideal cadence range post-
feedback.

6 DISCUSSION

6.1 Interpretation of Results
The primary objective of this investigation was to gauge the influ-
ence of feedback furnished via a dashboard on the running metrics
of participants. Observations denote that for a majority of partici-
pants, the feedback precipitated discernible modifications in their
subsequent running metrics.

6.2 Comparison with Existing Research
Numerous studies underscore the merits of feedback across diverse
domains. This exploration, however, distinguishes itself by lever-
aging OpenPose in tandem with a tailored dashboard in a running
milieu. The significant modifications in KPIs for a substantial por-
tion of participants align with the overarching academic consensus
emphasizing the potency of feedback in enhancing performance.
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Fig. 12. Percentage of Observations within Ideal Vertical Oscillation Range
(5-10 cms) before and after feedback. The shaded yellow region indicates
the ideal range. Participants such as Participant 5 and Participant 6 showed
noticeable changes, moving their metrics towards or away from the ideal
range.

Fig. 13. Percentage of Observations within Ideal Overstriding (up to 7 de-
grees) before and after feedback. The shaded yellow region indicates the
ideal threshold. Participants like Participant 2 displayed significant improve-
ments, while others like Participant 5 and Participant 6 showed a decline.

6.3 Implications of Findings
The mechanism of post-run feedback manifests potential boons
for a spectrum of individuals ranging from runners and coaches to
rehabilitation professionals. The dashboard, with its capability to
elucidate and guide, emerges as a potent instrument for technique
refinement, prophylaxis against injuries, and augmentation of over-
all performance. Yet, understanding why certain participants did not
exhibit marked improvements is pivotal, leading to a contemplation
of potential limitations.

6.4 Limitations
• OpenPose Accuracy:While OpenPose is state-of-the-art for
pose estimation, it might not always capture every movement
accurately, especially during rapid or complex movements
typical in the running.

Fig. 14. The Prescriptive Dashboard highlights overstriding information.
The first panel displays average knee flexion angles in a red color, indicating
excessive overstriding by the participant. The second panel provides general
information about the runner’s performance and desired goals. The third
panel presents feedback, while the fourth panel features buttons that allow
users to switch between the three Key Performance Indicators (KPIs).

• Camera Dependencies: The efficiency of OpenPose can be
influenced by the quality of the camera, its positioning, and
ambient lighting conditions. Any inconsistencies in these
elements can lead to variations in pose estimation.

• Feedback Interval: The lacuna between the initial run, the
provision of feedback, and the ensuing run was relatively
brief, potentially not allowing participants to assimilate and
respond to the feedback.

• Subjective Interpretation: The feedback, articulated via bar
charts on a dashboard, is inherently subjective. The thresholds
for acceptability or the need for rectification might oscillate
among participants.

• Participant Pool: The scope of the study was constrained to
a select cohort of participants. An expansive and eclectic as-
sembly of runners could offer a more panoramic perspective.

6.5 Recommendations and Future Research
In light of the tangible modifications observed in numerous partici-
pants, it becomes pertinent to delve into extended feedback sessions,
more bespoke training regimens, and possibly amalgamating biome-
chanical analysis for a more enriched feedback spectrum. Probing
the lasting repercussions of such feedback and melding qualitative
feedback from participants can further hone the methodology.

7 CONCLUSION
This study evaluated the influence of post-run feedback on runners’
key metrics, namely Cadence, Overstriding, and Vertical Oscillation,
utilizing OpenPose for pose estimation and a prescriptive dashboard
for feedback presentation.

The data revealed varying degrees of adjustment in these metrics
among participants post-feedback. This suggests that providing
insights through tools like OpenPose and analytical dashboards can
affect certain running behaviors.
However, it’s important to note that while some participants

showed changes in their metrics, not all responded uniformly to the
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feedback. This underscores the complexity of individual responses
and the challenges of universal feedback mechanisms.
OpenPose, despite its advanced capabilities, has its set of limita-

tions, especially in the context of rapid movements like running.
While effective for some, the dashboard might require further re-
finement to cater to a broader range of runners.

The goal moving forward is to refine and validate the system fur-
ther, expanding its capabilities to provide real-time, individualized
feedback that can help runners optimize their technique, enhance
performance, and reduce injury risk. With the rising prevalence of
wearable technologies and advanced motion tracking systems like
OpenPose, the future holds great promise for providing runners with
accessible and actionable insights into their running biomechanics.
In summary, the combination of OpenPose and the dashboard

offers a new perspective on feedback provision in the running. The
initial findings provide a foundation for future research, emphasiz-
ing the importance of iterative refinement and broader participant
engagement.
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