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Abstract

Assessing the agility of sports practitioners up until now has been done through agility tests and
change-of-direction tests, inwhich the test completion time is thesolemetricofperformance. Within
this thesis, anovelmethod is proposed tobetter understandandestimate anathlete’s agility. As time
isoftenof theessence–especially forprofessional sportsplayers and teams– themethod takesprac-
ticality into account by capturing movement without needing markers or sensors to be attached
to the athlete’s body. This markerless motion capture (MMC) method saves time, as only a set of
two cameras needs to be set up in advance, and no extra valuable time is wasted in between the
data collection of each athlete. Literature research showed correlations between agility and inter-
limb asymmetry, ground contact time, and take-off distance. Tomeasure these features, OpenPose
was used to detect pose keypoints in the stereo video recordings of arrowhead agility tests, which
were triangulated into 3D coordinates using MATLAB. These coordinates were further developed
into parameters, or key performance indicators, by calculating (differences in) joint angles, ground
contact start and end times, and whole-body centre-of-mass positions, velocity and acceleration.
To demonstrate how the data can be used, parameters are modelled through a generalized linear
mixed-effect modelling (GLMM) approach. However, no definitive conclusions can be drawn from
themodelwithout validating thedatawith a gold-standardmotion capture system. Thework shows
promising results for the use of OpenPose in the assessment of agility. The system offersmany pos-
sibilities for easy collectionof biomechanical data usingoff-the-shelf tools, evenoutside of lab envi-
ronments. However, there is room for improvement in several steps of the process (e.g. in the cam-
era calibration, the OpenPose configuration, the triangulation into 3D coordinates, and the joint
angle calculation). These must be addressed before accurate and reliable information can be ex-
tracted.
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Chapter 1

Introduction

Agility is a complex human quality that is especially essential in team sports (Paul et al., 2016).
Specifically in invasion sports, which typically include a substantial amount of interaction between
attackersanddefenders, teamperformancehighlydependson the individual athletes’ agility (Young
et al., 2022). Agility comprises a reactive, cognitive component as well as a physical element. It can
be defined as "a rapid whole-body movement with change of velocity or direction in response to a
stimulus" (Sheppard et al., 2006). In the past, it has been difficult tomeasure the whole of agility, as
most "agility tests" are, in fact, so-called change-of-direction (COD) tests. They merely assess the
physical aspect of agility (i.e. how well a person can decelerate, accelerate, and change direction),
leaving out any conscious cognitive activities. The tests aremost oftenmeasuredby the time it takes
the participant to complete the test, which is referred to as the change-of-direction speed (CODS).
Common tests that measure COD in terms of time are the t-test (Semenick, 1990), the 5-0-5 test
(Draper, 1985), the pro-agility (shuttle) test (Forster et al., 2022; McKay et al., 2020; Nimphius et al.,
2016), and the arrowhead test (Rago et al., 2020). Additionally, FC Twente (n.d.), a professional foot-
ball club fromEnschede, has developed a combination of the arrowhead and 5-0-5 test to routinely
check in on their players’ CODS. A problemwith all of these COD tests is that they lack explanatory
power regarding underlying factors. These are perhaps related to kinematic and kinetic (i.e. biome-
chanical) qualities, techniques and strategies, such as initial take-off, foot placement, or control of
their centre-of-mass position. However, currently, such metrics are not available to sports practi-
tioners during training on the field.

Moreover, especially in professional sports, practice time is considered a valuable resource that is
not to be wasted. In the same preliminary expert interviews that showcased this, it was found that
the football clubathand, FCTwente, sees theactual practiceof football as themost effectivemethod
of improving performance. This is because the ecological validity of measuring agility in a sport-
specific scenario is higher than in separate tests not resembling that specific context. Therefore,
agility is ideallymeasured during regular football training, not "wasting" time taking separate tests.
However, as it is still unknown what should be measured, this is not yet feasible. Therefore, the
discussion brings forth the need for a method of measuring biomechanical features of agility in a
practical, non-time-consumingmanner.

A promising technology worth investigating to find a solution to the described problem is found
in markerless motion capture (MMC). This type of motion capture uses camera footage to detect
body poses and has no need for on-body markers or sensors (see section 2.3 for an elaboration on
the topic). This means that setting up the equipment would only have to be done before the test
session, and the extra time taken to measure the COD factors would be virtually zero. Additionally,
MMC might also make it possible to analyse tests and training retrospectively. However, no im-
plementations formeasuring agility were found for this relatively new computer vision technology.
Therefore, the question arises whether the fast-paced movements typically associated with agility
and COD tests can be accurately captured. Generally, a marker- or sensor-based approach is more
accurate, but it is also more time-consuming as markers or sensors must be attached carefully to
each participant before they can perform a COD test.

13



1.1. Research Questions Chapter 1. Introduction

1.1 Research Questions
Given the observed problems described above, the research conducted in this thesis will be split
into two research questions. First, the knowledge gapmust be closed relating to the biomechanical
features of agility beyond themetric of time and how the found features can bemeasured. The first
research question to address this is formulated as follows:

RQ1: How can biomechanical features of agility be measured in a practical manner
beyond the confines of a lab setting?

Through the development of a method implementing the findings of RQ1, the applicability of the
markerlessmotioncapturemethodcanbeevaluated. Thiswill answer the followingquestion:

RQ2: Towhatextent ismarkerlessmotioncapture suitable formeasuringbiomechan-
ical features of agility?

1.2 Thesis Outline
This thesiswill cover themain elements that are required to answer the researchquestions. In chap-
ter 2, related work is outlined concerning existing technology and research relevant to the topic of
this thesis. The chapter concludes with the design choices made based on the exploration of the
current state of the art. The following chapter 3 encompasses the full methodology, from the initial
study design to themethod used for data analysis. The results and their interpretation and implica-
tions, as well as the limitations of this study, are discussed in chapter 4. Both research questions are
answered in this chapter. Finally, chapter 5 summarizes themainfindingsof the researchconducted
and recommends future directions for research.

14



Chapter 2

RelatedWork

2.1 Agility and Change-Of-Direction Speed
Before anymethods ofmeasuring agility can be investigated, it must be knownwhat agility is. For a
long time, no clear definition existed for agility. In a reviewon the topic, Sheppard et al. (2006) found
that the term has had different meanings in research. They report that agility has been referred to
as the ability to change direction rapidly and, in some cases, accurately. Others add a change of
direction of the whole body or a rapid change in movement and direction of the limbs. It is also
argued that the action should be in response to, for example, "another patient’s movement, move-
ment of the opponent, movement of play, or movement of the ball" (Welling et al., 2021). This is
because agility is believed to have a cognitive component (see figure 1) that cannot be trained if the
trainee already knows what will happen. Naturally, decision-making skills cannot be trained if the
decision is made before the training. In that case, only the physical components of agility would be
trained.

Figure 1: Components of agility (modified from Sheppard et al. (2006)).

Therefore, two types of agility can be distinguished: preplanned and reactive agility (Šimonek et al.,
2016). In preplanned agility, it is knownwhat to dobeforehand,while in reactive agility, participants
react to somestimulus. It canbearguedwhetherpreplannedagility shouldevenbecalledagilitydue
to the lack of such a stimulus andwhether it should be called change-of-direction speed (CODS) in-
stead. Likewise, it is argued that the precursing "reactive" is redundant (Young et al., 2015). There-
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2.2. Measuring Change-Of-Direction Speed Chapter 2. RelatedWork

fore, for the remainder of this project, the definition of agility (for sports) that will be used is the one
from Sheppard et al. (2006)’s review: "a rapid whole-body movement with change of velocity or di-
rection in response to a stimulus". Thus, movements that do not include the reaction to a stimulus
are regarded as (preplanned) change-of-directionmovements.

CODS is an element of agility, yet Young et al. (2015) state that agility andCODS are specific skills in-
dependent of one another. Although there is most likely a difference in how an athlete cuts around
a corner between a test in which the direction to cut to is known beforehand (i.e. a COD test) com-
pared to the same test where this is not known (i.e. an agility test), it is expected that the types of
movement are similar. Therefore, as the cognitive component does not lie within the scope of this
thesis, the next section will dive into existingmethods of measuring CODS.

2.2 Measuring Change-Of-Direction Speed
This thesis aims to find a method of measuring (the CODS part of) agility through the novel use of
markerless motion capture. It is important to know existing methods using other resources, which
will be explored in this section.

2.2.1 COD Tests in Lab Environments
Most of the existing methods for measuring either agility or CODS employ a lab setting where par-
ticipantsmove through a specified parkour as quickly as possible. Therefore, the solemeasure used
in thesemethods is time: the faster the participant is, themore agile they are considered to be. One
example of such a test procedure is the t-test, which is displayed in figure 2a (Semenick, 1990). In
this test, the participant sprints from point A to B, then shuffles sideways to point C, then shuffles
to point D and back to B, after which they run backwards to point A. It measures the participant’s
ability to "change directions rapidly while maintaining balance without loss of speed".

Anotherpopular test is the 5-0-5 test, which, as opposed to the t-test, only requires theparticipant to
run forward (Draper, 1985). Its set-up is shown in figure 2b. Here, players run from point A through
B – where a gate is triggered to start timing – to the line at point C, where they turn around and run
through the timing gates at point B again and do not stop running until they pass point A again.
This test is particularly fitting for cricket players, but "the test has [also] been used for other sports
requiring change of directions and agility" (Sheppard et al., 2006).

A test that is slightly more complicated is the arrowhead test, which is proven to be reliable inmea-
suring CODS in football players (Rago et al., 2020). Displayed in figure 2c, the player starts behind
the timing gates at A and runs around either BL or BR, followed by turning around point CL or CR,
respectively, then aroundD, past B and back to A through the timing gates. As opposed to the other
tests displayed in figure 2, the arrowhead test requires 2-meter high poles instead of small pylons.
The reason for this is that it is required to run around thepoleswith thewhole body, not justwith the
feet. The test has been shown to have "very high validity and reliability and can be used by sports
coaches to evaluate the training process" (Chalil et al., 2017).

Similar to the5-0-5 test is thepro-agility test,whosenamemight cause someconfusionas it is essen-
tially a change-of-direction test (McKayet al., 2020;Nimphius et al., 2016). In this test (seefigure 2d),
the participant starts behind the timing gates at point A, runs to B, where they turn around and run
past A to C. Here, they turn around once more and run through the timing gates at A to stop the
time. The pro-agility test has been used to determine the change-of-direction speed in athletes of
several team sports as themovements resemble the transitions made when shifting from attacking
to defending and vice versa (Forster et al., 2022).
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(a) T-test set-up (b) 5-0-5 test set-up

(c) Arrowhead test set-up (d) Pro-agility test set-up

Figure 2: Test set-ups of several change-of-direction tests.
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2.2. Measuring Change-Of-Direction Speed Chapter 2. RelatedWork

Figure 3: Test set-up for the "Agility FC Twente" change-of-direction test.

An additional change-of-direction test has beendevelopedby FCTwente and its joint academywith
Heracles Almelo, which is a combination of the arrowhead test and the 5-0-5 test. The test does not
have an official name but will be referred to as the "Agility FC Twente" test, or AFCT for short. The
test set-up is displayed in figure 3. In this change-of-direction test, the participant starts at point A
and triggers the timing gates by running past point B to point C. Here, they turn around, run past
point B again and around either point AL or AR, then around point D in the same direction, around
point E, andfinally, runpast A andBandonly stop runningonce they arepast pointC. TheAFCT test
is not yet validated. This would require studying its ability to judge a participant’s level of agility by,
for example, checking the extent to which participants’ performances on the test correlate to those
on a different, validated test.

2.2.2 Exercises Prior to COD Tests
While all of the above tests can be used to assess COD performance, studies exist that have inves-
tigated some of these COD tests one step further by adding a second exercise prior to the routine.
One study investigated whether exercises designed to augment vertical stiffness influenced CODS
(Maloney et al., 2019). They describe vertical stiffness as "the vertical displacement of the center of
mass in response to vertical ground reaction force during sagittal plane movement, [which] seeks
to approximate the deformation of the leg-spring at instants of ground contact". They compared
the effect of unilateral (i.e. using only one lower limb) and bilateral (i.e. using both lower limbs)
interventions conducted prior to a COD test. The study concluded that a significant improvement
in CODSwas observed only for unilateral exercises. Therefore, they recommend incorporating uni-
lateral exercises designed to augment vertical stiffness in training for sports where CODS is rele-
vant.

Similarly, Dann et al. (2022) investigated how the plyometric exercise (i.e. including an explosive
element) called alternate leg bounding might influence performance. In this exercise, the subject
runs in a fashion in which they try to cover as much distance as possible with each step (called a
bound) while maximising the height of the knees, heels and toes (Trackwired, n.d.). The experi-
ment was done on a grass surface by one group and on a hard surface by another. All participants
were female team sports players. The subjects performed three consecutive 20-meter pro-agility
tests 4, 8, and 12 minutes after the bounding intervention. Results indicate that when 8 to 12 min-
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utes of recovery time is given, CODS is improved significantly. This suggests that, independently
of the training surface, alternate leg bounding can be used to enhance team sports players’ CODS
performance.

2.2.3 Time-Independent CODMeasurements and Correlations
All COD tests described in section 2.2.1 (except for the AFCT test) are validated tests, meaning they
are proven to be able tomeasure CODS.However, they rely purely on themetric of time. Some stud-
ies haveproposedothermetrics that gobeyondonlymeasuring the completion timeof a test. These
might be useful for amore technical or biomechanical assessment of agility, potentiallymeasurable
withMMC.

Sprint speed is an inherent part of the COD testsmentioned earlier. To isolate CODability indepen-
dent of sprint speed, Nimphius et al. (2016) introduced a measure called the change of direction
deficit. The researchers had 17 cricketers perform 5-0-5 tests in which the foot of their final ground
contact before turning was instructed: three times turning off the right foot and three times off the
left foot (in random order). Additionally, they performed a 30-meter sprint, measured at the 10m
and 30m marks. The difference between the average times of the two tests was calculated as the
CODdeficit, whichwas proven to be significant. However, themetric can only bemeasured by hav-
ing athletes perform multiple tests in lab environments. This is not desired, as it takes extra time
during training. However, when these tests are already performed as part of amedical and physical
screening, then it would be simple to calculate this metric.

Thepracticality criterioncouldbesatisfiedbyanother study. Philippetal. (2021) investigatedwhether
a difference in the performance of the left and right limbs could cause a different performance in
COD tests. They confirmed that interlimb asymmetries in mostly mean peak velocity (mPV) and
mean peak power (mPP) could indeed be used to discriminate between faster and slower COD test
performances. Similarly, Bishopet al. (2021) concluded that larger asymmetries couldbe associated
with reduced performance in CODS. This suggests that interlimb asymmetry might be useful as a
Key Performance Indicator (KPI) for CODS. A way to measure this exists, but it does require a lab
environment. The limb symmetry index (LSI) is the ratio between performances of a hop test (e.g.
the single hop or triple hop) using the left and right leg (Gokeler et al., 2017). In rehabilitation, an
LSI of 90% is often used as a threshold for patients to allow them to return to their preferred sports
practice again. However, symmetry can also be gaugedby comparing other featuresmeasured from
the left and right limbs. The range of motion (ROM), for example, has been used as a "basic marker
for clinical outcome studies" (Lea et al., 1995). Measurements of joint motion have functioned as a
way to "assess injuries and diseases in the locomotor system" (Roaas et al., 1982), and its range is
generally more restricted in older people.

In contrast to these findings, however, Thomas et al. (2020) found that asymmetry does not influ-
ence completion time. They found that it does, however, influence ground reaction forces (GRF)
and knee abduction angles (KAA) (Englander et al., 2019). A non-straight KAA is commonly referred
to as bow legs, where the knees are pushed away from the centre of the body. Findings of Thomas et
al. (2020) suggest that higher asymmetrymay lead to higher horizontal GRF during the final ground
contact before pivoting with the non-dominant limb. Thus, when a subject had shown to have high
interlimbasymmetry, in aCODtest involvinga180°turn, theywouldproducegreaterbrakingduring
their last groundcontactwhen instructed to turnwith theirdominant foot compared to turningwith
their non-dominant foot. This suggests that the technique used for changing direction within COD
tests is inconsistent and is dependent on pivoting direction and foot preference. As for the knee ab-
ductionangles, the authors found significant differencesbetween thedominant andnon-dominant
limbs: "Turning off the [dominant] limb showed increased KAA; thus, coaches and practitioners are
encouraged to coach a 180°CODstrategy, which emphasizes loading in the sagittal plane (hip, knee,
and ankle alignment) and limits a “knee valgus” position". The latter can be described by a position
in which the knee is bent slightly in the opposite direction as compared to "normal" bending of the
knee, which is linked to an increased potential for injury. Additionally, the extent towhich the knees
are pushed outward is known as the knee abduction moment, which is associated with increased
vertical centre of mass deviations and knee injury risk (Bill et al., 2022).

The role of trunk control during an agility test (i.e. including the response to a stimulus) was ex-
plored by Edwards et al. (2017). They divided participants based on their level of trunk control, in
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which high trunk control meant participants demonstrated a high range ofmotion of the trunk rel-
ative to the pelvis. Participants with high trunk control showed better performance in an agility test
(Getchell, 1979), displayed "higher [counter-movement jump] height, lower knee flexion angles,
greater trunk lateral flexion and rotation relative to [the] pelvis, and greater angular momentum"
(Edwards et al., 2017).

A quite different approach was employed by Welch et al. (2019), who analysed the correlation be-
tween joint-based biomechanical variables in cutting (i.e. a formof changing direction) and cutting
performance using a principal component analysis (PCA). A 110° and a 45° cut were investigated,
and a total of 200 variables related to angles, angular velocities and moments were considered for
axes in x, y, and z direction and for several events and phases of the cutting movement. Principal
components (PC) were identified for both cuts, existing of multiple variables with high correlation
to performance. The identified PCs shared three performance cues: increasing the distance be-
tween the centre of mass and foot placement during the eccentric phase (i.e. while decelerating
before turning), using shorter ground contact time, and maintaining a low centre of mass during
the concentric phase (i.e. while re-accelerating after turning). A study by Hewit et al. (2012) re-
sulted in a similar finding regarding the eccentric phase, as they report the "distance from the foot
of the trail leg to the center of mass" should be kept large. Dos’Santos et al. (2017) and Condello
et al. (2016) confirmed that a shorter ground contact time is beneficial to COD performance. Fur-
thermore, Dos’Santos et al. (2017) found that faster athletes showed significantly greater horizontal
propulsive forces, greater horizontal braking forces in the second to last ground contact (especially
when compared to the final ground contact), and lower vertical impact forces.

2.2.4 Concluding Remarks
Throughout this section, it has become clear that CODS can be assessed using various tests. Stud-
ies have shown it is possible to improve performance on such tests by having participants perform
an additional exercise before taking the COD test. However, these require extra time from the par-
ticipant. Therefore, other correlations were sought after that could bemeasured during a COD test
besides time. It came to light that people who are relatively asymmetrical in their limbs seem to
underperform as compared to people who are relatively symmetrical. While the level of symmetry
has been assessed using left and right hop tests, it is expected that differences in the range of mo-
tion might exhibit a similar influence on CODS. Similarly, a higher trunk range of motion relative
to the pelvis has been associated with increased agility. Furthermore, research revealed that im-
proved CODS might be achieved by keeping a large distance between trail leg foot placement and
the centre of mass, a low centre of mass, and a short ground contact time. Lastly, agility has been
associated with greater horizontal propulsive and braking forces and lower vertical impact forces.
These findings were used to determine the features that will bemeasured usingmarkerless motion
capture.

2.3 Markerless Motion Capture (MMC)
Seeing that an understanding has been established of what agility and CODS are and how they
can be measured, the existing options for markerless motion capture can be explored. The MMC
method is required to be accurate and practical in use so that the data reflects reality in ameaning-
ful way and the data is easily collectable. As there is amultitude ofMMC software packages that can
be used, they are discussed and considered in this section.

2.3.1 Closed-Source and Commercially Available MMC
Some companies exist that offer their MMC software for a price. One of these closed-source sys-
tems that has shown great potential is Theia3D (Theia Markerless Inc., n.d.), which is offered as a
software package or as a full package, including all required hardware. The company states that
it "distinguishes itself from the other markerless tracking solutions through its ability to provide a
highly accurate and generalized solution tomarkerless motion capture". Additionally, they declare
that every aspect "has been selected to ensure biomechanical accuracy and relevance of the results
and to follow standard practice and conventions in the field". To use their software, a demo can be
booked in which the customermust specify the industry they work in, as well as the camera system
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they intend to use. This way, they want to tailor the package they offer to the specific needs of the
customer. However, this restricts Theia3D for use in research.

AnotherMMC system thatmight be better known than Theia3D is Kinect. This commercially avail-
able system (now discontinued) was originally built to allow people to play games using their body
as the controller. The system consists of "a depth sensor, a colour camera, and a four-microphone
array that provide full-body 3D motion capture, facial recognition, and voice recognition capabil-
ities"(Zhang, 2012). The technology has been widely used in a variety of research areas, such as
hand-gesture recognition, human-activity recognition, bodybiometrics estimation (suchasweight,
gender, or height), 3D surface reconstruction, and healthcare applications (Zhang, 2012). As Kinect
is discontinued, the hard- and software are no longer updated, meaning the systemwould not be a
future-proof option.

2.3.2 Open-SourceMMC
As opposed to the paid closed-source software packages, open-source software is free to use and
available to everyone. It can be argued that these advantagesmake this type of softwaremore inter-
esting for research purposes. One example of open-sourceMMC software was presented by Google
Research through BlazePose: a "lightweight convolutional neural network architecture for human
pose estimation that is tailored for real-time inference onmobile devices" (Bazarevsky et al., 2020).
BlazePose employs a top-down paradigm, which first detects the person in an image and then per-
forms pose estimation in a smaller region of the image (Geng et al., 2021). Due to its lightweight na-
ture, it is suitable for real-time use. However, BlazePose is limited to single-person human pose de-
tection. The software has also been shown to have a relatively low keypoint detection rate,meaning
that it is less capableof consistentlydetectingkeypoints inan input video (Mundtet al., 2023).

A similar open-source tool employing the same top-downparadigm is AlphaPose (Fang et al., 2023).
In contrast to BlazePose, AlphaPose is able to detect multiple persons in an image. AlphaPose "first
detects [each] person and then performs single-person pose estimation for each detected person"
(Geng et al., 2021). The reverse can be referred to as a bottom-up paradigm, where keypoints are
detected first and then associated with a person (Geng et al., 2021). An open-source multi-person
pose estimation tool employing this paradigm is OpenPose (Cao et al., 2021). The system uses part
affinity fields (PAF) "to learn to associate bodypartswith individuals in the image" (Cao et al., 2021).
A PAF is a set of 2D vector fields that encode the location and orientation of limbs over the image
domain (Cao et al., 2016), which are used to associate keypoints with limbs and, eventually, with
the full body. A bottom-up approach like OpenPose ismore robust to occlusion and complex poses
(Jin et al., 2017). Generally, a top-down approach is more accurate, but a bottom-up approach is
more efficient (Geng et al., 2021). In an evaluation conducted byMundt et al. (2023), OpenPose and
AlphaPose both achieve higher detection rates than BlazePose. Additionally, BlazePose has been
found to deviate fromanatomical joint centresmore often thanAlphaPose andOpenPose, resulting
in less accurate joint angle calculations (Mroz et al., 2021).

A slightly different approach from the previously mentioned pose detection methods is employed
by ViTPose (Xu et al., 2022). This method uses "simple and non-hierarchical vision transformers as
backbones to generate featuremaps for the given human instances" (Lovanshi et al., 2022). Despite
themethod being fairly simple, Xu et al. (2022) report "surprisingly good capabilities of ViTPose [re-
garding] simplicity, scalability, flexibility, and transferability". ViTPose might offer a good solution
for scenarios that require low computational costs.

2.4 Biomechanical Analysis UsingMMC
Whichever markerless motion capture system is used within this thesis, all can be used to analyse
biomechanical features of humans such as joint angles and motion. However, the specific MMC
methods used, as well as the results, differ in every study. It is important to understand what meth-
ods have been investigated in the past and what methods have proven successful in related imple-
mentations ofMMC. It was found that commonquestions asked by researchers relate to the validity
and reliability of MMC in acquiring gait parameters (Kanko et al., 2021b; Riazati et al., 2022; San-
dau et al., 2014). Theia3D has shown great potential, as studies have demonstrated its reliability for
biomechanical and clinical use (Kanko et al., 2021a,b; Riazati et al., 2022). A study on the Kinect V2
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has also shown promising results. However, it is explicitly mentioned that "appropriate correction
procedures" must be performed (Tanaka et al., 2018), suggesting that the raw data acquired from
the systemmight not be sufficiently accurate. Furthermore, Sandau et al. (2014) did not use an off-
the-shelf tool but developed a method in which they generate a 3D point cloud based on surface
textures of around 75,000 3D points from an 8-camera set-up. Results showed that although "flex-
ion/extension angles, as well as hip abduction/adduction, closely resembled those obtained from
themarker-based system, [...] the internal/external rotations, knee abduction/adduction and ankle
inversion/eversion were less reliable"(Sandau et al., 2014).

Another study focused on a different biomechanical feature: the ground contact time. Calculating
the feature during running has been proven feasible using accelerometers through the research of
Purcell et al. (2005). Their approach provided very close estimates of actual contact time during
running. Keypoints retrieved from MMC provide information that is rather similar to accelerom-
eter data. While accelerometers measure acceleration (in 𝑚/𝑠2), MMC data can be processed to
acquire positional data over time (i.e. velocity), of which the derivative is acceleration. This idea is
implemented for human gait analysis by Stenum et al. (2021). They call the moment the heel first
touches the ground the heel strike and the moment the toes leave the ground the toe-off. These
events are defined by "the time points of positive and negative peaks of the anterior-posterior an-
kle trajectories relative to the pelvis"(Stenum et al., 2021). These two events make way for a mul-
titude of spatiotemporal gait parameters, namely the step time, stance time, swing time, double
support time, step length, and gait speed. Differences were found while comparing the markerless
OpenPose-based parameters with the same parameters calculated withmarker-basedmotion cap-
ture. However, they state that theirworkflow is accurate enough for thepurposeof their study,which
was to detect changes in the gait pattern.

Yet another study implementedMMC tomeasure vertical jump height based on an approximation
of the body’s centre ofmass. Webering et al. (2021) compare this to reference heights retrievedusing
an 8-camera Vicon set-up (i.e. a benchmark marker-based motion capture system). The height
measurement is basedonamarker attached to the lowerbackof theparticipant. They conclude that
themethod using only OpenPose increases the ease of use as compared to amarker-basedmethod,
but the jump height measurements are slightly less accurate.

2.5 Summary of The RelatedWork
In theprevious sections, relatedworkhasbeendiscussed regarding thedefinitionandmeasurement
of agility, the available markerless motion capture options, and existing implementations of MMC.
This information is used to guide the following steps of the project in order to answer the research
questions.

Change of direction has been measured in several ways in the past, but they are often either time-
consuming or merely quantify COD using test completion times. As it is known that markerless
motion capture will be used during this project to gather richer information regarding agility, the
metrics and associations with agility movements that can be visually distinguished are the most
relevant. Therefore, force-relatedmetricswill notbe implemented. However,metrics related to joint
angles, centre ofmass, and groundcontact timeare assumed tobe extractable fromcamera footage.
Additionally, velocity (using the location over time)will also be included, as straight sprinting speed
covers CODS in part (as can be seen in figure 1). Moreover, looking at the same figure, CODS is also
partly explained by concentric strength and power. As these are required for fast acceleration and
deceleration, thesewill also be derived from the velocity. The COD test that will be carried out is the
arrowhead test because of its reliability in measuring CODS in a football context. It is also closely
related to the AFCT test, which is already part of the training regime of both FC Twente and the FC
Twente/Heracles Academy. Therefore, this test will also be part of the study design. However, using
this test only has the purpose of allowing future expansion of the work presented in this thesis, as
the test is yet to be validated.

As for the MMC methods, open-source pose detection software will be used to, besides it being
cheap, make it easier for others to reproduce and verify the results of this thesis. It has become
clear that each open-source option has its own unique advantages and disadvantages. As a system
is required that only needs to be able to detect a single person, BlazePose might already suffice.
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However, BlazePose has been shown to have a relatively low keypoint detection rate, and joint angle
calculation using the software is expected to be less accurate. OpenPose and AlphaPose both seem
better alternatives. Although AlphaPose is supposedlymore accurate, OpenPose has a slight prefer-
ence as it is assumed to handle occlusion better. This is crucial because the test that will be carried
out has a set-up containing 2-meter high poles that participants must run around. There is no per-
spective the camera can be placed in that can prevent the occlusion of the participant. Although
ViTPose is thought to be a good and simple alternative, OpenPose is thought to be at least similar
in performance and ease of use. The final reason to use OpenPose is the knowledge of the system
present within the Human Media Interaction department of the University of Twente and the fact
that it should serve as a tool that is practical in use.
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Chapter 3

Methods

The previous chapter concluded with a set of options that were chosen to be implemented as part
of this thesis. In this chapter, themethods used to realize these choices are described, starting with
the study design and participants. This is followed by the set-up used for capturing the motion of
the participants taking the COD test. Then, the software that is written for data processing is de-
tailed, followed by the feature extraction methods used. Finally, the data analysis of the features
extracted from the data is addressed. The steps that are taken to get from recording the data to the
analysis of the features are displayed in figure 4, which will be referred to in the related sections of
this chapter.

Figure 4: Steps in the development of the data pipeline that are followed within this thesis.

3.1 Study Design
To gather data about the rapid, multi-directional movements belonging to agility, participants per-
formed the arrowhead test as described in section 2.2.1 due to its high validity and reliability as a
benchmark for agility. Videos were simultaneously recorded from two perspectives so depth infor-
mation could be derived. Additionally, to allow for future extension of the research, participants
performed a second COD test, the "Agility FC Twente" test, again described in section 2.2.1. Fur-
thermore, the participants’ movements in both tests were recorded using a gold standard system
for capturing full-bodymovement, allowing for future validation of the findings and developments

25



3.2. Markerless Motion Capture Set-Up Chapter 3. Methods

of this thesis. The system used for this is theMVN Awindamotion capture system based on inertial
measurement units (IMUs) (Movella Inc., n.d.[b]). Movella Inc., the company behind this system,
is a global leader in the digitization of movement (Movella Inc., n.d.[a]). "The reliability and valid-
ity of [the MVN Awinda sensors] for obtaining joint kinematics have been confirmed against gold-
standard optoelectronic systems such as theOptotrak system and [...] the VICON system" (Cudejko
et al., 2022). Prior to each test, the participants visually tapped an IMU-sensor on one of their thighs
three times. This way, the exactmoments in time of the taps can be found in the sensor data as large
peaks in the sensor’s corresponding segment acceleration, aswell as visually in the video recordings.
In work building upon this thesis, this can be used to synchronize all the data.

3.1.1 Participant Selection
A total of 50 participants were recruited by the FC Twente/Heracles Academy. The mean age of the
participants was 17 (𝑆𝐷 = 1.6). All participants were youth players of the academy, of which 13were
players of theUnder-16 team, 22were of theUnder-18 team, and 15were part of theUnder-21 team.
The participants were asked to sign a consent form drafted by the FC Twente/Heracles Academy in
consultationwith theUniversity of Twente (see appendix A). The research has been approvedby the
ethics committee of the EEMCS faculty and is stored under reference number 230135. In the case
of the under-aged participants, the parents were asked to sign the document. In a preliminary pilot
test conducted beforehand, two adult participants performed the same test and signed the consent
form available in appendix B.

3.2 Markerless Motion Capture Set-Up
The goal of using markerless motion capture is to capture the 3D movements of the test partici-
pants so that biomechanical information can be extracted from it. In order for this to work, a two-
camera set-up is needed. Additionally, information regarding both cameras must be obtained to
undo the lens distortion of the camera and to acquire depth information related to the captured
images. This section is dedicated to describing this set-up, as well as detailing themethods used to
extract the camera parameters through camera calibration. This section contains steps 1 and 2 of
the data pipeline of figure 4.

(a) Undistorted image (b) Distorted image

Figure 5: Example of how a camera lens distorts reality.

3.2.1 Background
Asmarkerlessmotion capture does not use any on-body sensors ormarkers, its pose detection only
relies on the camera images it is fed. However, most camera lenses distort reality to a certain ex-
tent, which, if not addressed, can result in strange results when the detected poses are analysed.
An example of extreme lens distortion is shown in figure 5, which can be achieved through a fish-
eye or a wide-angle lens. To correct such distortions, information about how the camera captures
images must be extracted, such as the focal length, principal point, and image resolution. These
are called camera intrinsics or intrinsic parameters. Some camera brands have this information
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publicly available, but for some brands, they aremore difficult to find. In those cases, these param-
eters can be estimated with tools like OpenCV (OpenCV, n.d.[a]) or MATLAB’s Camera Calibrator
App (The MathWorks Inc., n.d.). The information retrieved from camera calibration can, amongst
others, be used to calculate the distance of an object to the camera.

To estimate the intrinsic parameters of the camera, images that include a calibration pattern are
often used as input. Such a pattern is detected and the differences between the image pattern and
the real-world pattern are compared. The calculations assume that the pattern that is used is com-
pletely flat, so it is important to use a surface as flat as possible to display the pattern. As can be
seen in the example in figure 5b, the image ismostly distorted around the edges and the least in the
centre. Therefore it is crucial that multiple images are used for the calibration, where the pattern is
visible in all corners of the image. After estimating the camera parameters, they are used to project
thecalculatedundistorted locationof apoint in the input imagebackonto the image. Thedifference
in pixels between the detected point on the calibration pattern and the reprojected point is called
the reprojection error. As its unit of measurement is pixels, the reprojection error scales along with
the resolution of the input image. For individual video frames, the error tends to be much smaller
than a single pixel (Eiríksson, 2022). However, when the image resolution is very high (e.g. 4K), an
error of one or two pixels is also deemed acceptable.

(a) Checkerboard
pattern

(b) ArUco pattern (c) ChArUco pattern

(d) Kalibr/AprilGrid
pattern

(e) Circles pattern (f) Asymmetric circles
pattern

Figure 6: Several calibration patterns that can be used for camera calibration.

Several calibration patterns exist that are all useful for camera calibration. An overviewof these pat-
terns is displayed in figure 6. A pattern that is straightforward and commonly used is the checker-
board pattern (figure 6a), where the distinctive corners of the squares are detected by the software.
This is generallyanaccurate solution. Anotherpattern is shown infigure6b. This is amatrixofArUco
markers (OpenCV, n.d.[b]), which are "synthetic squaremarker[s] composed [of] a wide black bor-
der and an inner binarymatrixwhich determines its identifier" (OpenCV, n.d.[c]). Combining these
two patterns results in the ChArUco pattern (figure 6c). The Kalibr/AprilGrid pattern (figure 6d) is
fairly similar, as it also makes use of the ArUco markers. The detection algorithms of the ArUco,
ChArUco, andKalibr/AprilGrid patterns are slightlymore complex, but because eachmarker canbe
uniquely identified, the pattern can still be useful evenwhen only parts of it are visible (Wilm, n.d.).
This is not possible with the checkerboard pattern, as the detected corners cannot be distinguished
from each other. The remaining two patterns contain circles instead of squares and are displayed
in figure 6e and figure 6f. In contrast to the checkerboard pattern, where only a few corner pixels in
between the squares can be used to detect the pattern, all pixels surrounding a circle can be used
to detect its location, which decreases the influence of image noise. Only the checkerboard, circles
and asymmetric circles are currently supported byMATLAB’s Calibrator App. OpenCV supports the
same patterns with the addition of the ArUco and ChArUco patterns.
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3.2.2 Camera Set-Up
As already established in section 2.5, the open-source software OpenPose is used for detecting hu-
man body poses. Although OpenPose offers whole-body 3D pose reconstruction and estimation,
this functionality is currently only supported for (off-the-shelf) USB3 Flir depth cameras (Hidalgo
et al., 2017; Teledyne FLIR LLC, n.d.). As this type of camera is less commonly used than other non-
depth cameras, it is interesting to find out whether the same can be achieved using a normal, non-
depth, off-the-shelf camera. For consistency, it was desired to at least use two cameras capable of
filming in equal display resolutions and frame rates. Therefore, usingmultiple cameras of the same
model was deemed practical. A camera model that was sufficiently available at the University of
Twente was the GoPro Hero 7 Black (GoPro Inc., n.d.).

The camera configuration relative to the test set-up is displayed in figure 7. Here, the red and or-
ange dots represent the 2-meter high poles that make up the route the participants run in the ar-
rowhead test. This approximate route is displayed using the blue (left side) and green (right side)
arrow-headed lines. The pink dotted lines represent boundaries behind which the test leader and
any technicians and spectators should stand during the test. This made sure that there were as few
people visible on screen as possible, which would make the data processing significantly easier,
faster and more accurate. The boundaries were physically made part of the set-up using pylons,
so it was clear to any bystanders where they were and were not allowed to stand.

Figure 7: Camera and arrowhead test set-up.

Furthermore, it was found from preliminary testing that if the cameras were slightly angled down,
the data points after triangulation into 3D-coordinates (further described in section 3.3.2) would
appear further up the z-axis the further away the pose keypoints were from the camera. Illustrated
in figure 8, the grey dotted line represents the horizontal viewing direction of the camera, as well as
theheightatwhich thebodyof the runner stayspositioned in reality. Additionally, the reddotted line
represents the viewingdirectionof the camerawhen it is angleddown. In reality, the runner remains
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at the same height, but from the camera’s point of view, it moves up and away from its line of sight
as he runs away from the camera. Hence, to acquire the correct keypoint height independent from
thedistancebetween theparticipant and the camera, the angle between the groundand the camera
direction should be zero. Therefore, the camera’s viewing directions were kept horizontal.

Figure 8: Effect of a downward camera angle on triangulated data.

3.2.3 Camera Calibration
Toacquire thecameraparameters,MATLAB’sStereoCalibratorAppwasused. Thismethodwascho-
sen because of its practical nature compared to the alternative methods described in section 3.2.1.
Essentially, OpenCV can do the same, but it requires more manual input prone to human error.
This is even more true for manually calculating all relevant camera parameters. However, using
MATLAB’s application comes with limited options for the calibration pattern. Of the options, the
checkerboard calibration pattern was deemed themost practical because it could easily be created
in the desired size using available software such as Adobe Illustrator. However, most patterns can
also be generated using free tools such as Calib.io (calib.io, n.d.). In a preliminary test, a checker-
board of 9x8 (w x h) squares with sizes of 30 millimetres was used. However, two things became
apparent from the test: (1) the calibration pattern was too small, and (2) the pattern could impos-
sibly stay within the fields of view of all four cameras. The further away the calibration pattern was
from the cameras, the more it was visible by the cameras, but the less accurately it could be de-
tected. Hence, a larger calibration pattern was needed, and the cameras should not be placed too
far apart. Therefore, a new checkerboard calibration pattern was created of 10x8 squares with sizes
of 100 millimetres. The distance between cameras was set to 180 centimetres, as Zago et al. (2020)
found that this results in the highest accuracy of markerless motion tracking using OpenPose. The
authors reason that for the purpose of triangulating two 2d-coordinates into one 3d-coordinate,
"the capture volumewhere the triangulated point can be placed"will decreasewhen increasing the
between-camera distance. This, in turn, leads to a lower uncertainty in the triangulation process
and, therefore, to a higher accuracy in the 3D reconstruction. AlthoughZago et al. (2020) researched
this using straight gait tests, the principle still applies when applied tomulti-directional change-of-
direction tests, as the triangulation is performed separately for each key point in each frame of the
videos.

The stereo images containing the checkerboardpatternwereused to calibrate the cameras. Asmen-
tioned in section 3.2.1, the mean reprojection error should ideally be less than a pixel. However,
the first few tests, in which both extrinsic and intrinsic parameters were estimated simultaneously,
camebackwith errorsmuch larger (>20pixels). Therefore, a different approachwas required,where
the individual cameras were first calibrated separately to estimate their individual intrinsic param-
eters before doing the stereo calibration in the field to estimate the extrinsic parameters. This re-
sulted in errors of about a pixel, slightly above the desired mean reprojection error. This is most
likely caused by the high resolution of the images and the calibration pattern not being entirely flat.
The same could be observed in the stereo calibration using the initial intrinsics of the two cameras.
Here, the mean reprojection error (of 5 stereo calibrations in total) was between 0.7 and 1.5 pixels.
However, judging by the locations and orientations of the cameras reconstructed by the MATLAB
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calibrator, errors of themagnitude in the upper segment (i.e. >1.0 pixel) are still deemed acceptable
for the purpose of this study.

3.2.4 Data Collection
The previous two sections were put into practice when all data used in this research was gathered
on the third and fourth of July, 2023. The FC Twente/Heracles Academie organised two full days
dedicated to themedical and physical screening of their players. Each player went through a nearly
three-hour schedule,which includedamedical screening, coordination tests, jump tests, sprint and
COD tests, and endedwith an endurance test (forUnder-21 only). Each test has its ownway ofmea-
suring the players’ performances (e.g. time, height, or weight), but additional measurements were
introduced to the sprint and agility tests. Player movement was measured using the IMU-based
MVN Awinda motion capture system (Movella Inc., n.d.[b]) during the 30-meter sprint, the 5-0-5
agility test (505), the arrowhead test, and theagility test developedbyFCTwente (AFCT). At the same
time, the latter two agility tests were video-recorded using the set-up described in section 3.2.2, as
these were of particular interest for this thesis. Unfortunately, the two days of testing were rainy
days. This meant that, even though the camera lenses were wiped dry before each test, some video
recordings were unusable due to raindrops on the lens. This caused the images to be too blurry for
pose detection. If one video of a test is incorrectly recorded, then the full test becomes unusable.
Additionally, some tests were not recorded due to technical issues. For example, the cameras spo-
radically crashed, which took toomuch time to wait for due to the tight schedule of the tests. Even-
tually, out of the 100 arrowhead tests recorded (two tests performed by 50 participants), comprising
a total of 200 video recordings, 80 tests were correctly recorded.

Figure 9: Test and camera set-up on the days of data collection.

For each test, an instructor was present to explain how the test should be executed. Next to that, a
secondpersonwas in chargeof the camera set-up. Their tasks consistedof starting and stopping the
recording for each trial, handling any errors that might arise throughout the day, and noting down
the starting times of each trial. The latter was done to make it easier to match the two videos to
each participant afterwards. In order to accelerate the process of syncing the videos afterwards, the
Multi Camera Control for GoPro (Meyer, 2019) mobile application was used. The app allowed for
the simultaneous starting and stopping of recordings onmultiple GoPro cameras, whichwas tested
for accuracy beforehand through a frame-by-frame analysis. The recordings were mostly correctly
synced, yet some showed slight deviance of up to two frames, likely caused by small delays in the
app-to-camera connection. However, this was deemed acceptable and relatively easy to correct. As
a backup, a flashlight was used as a visual cue to synchronise videosmanually afterwards. This was
only used in case the connection with the app was lost, as this requires significantly more work in
the processing of the videos. All video editing was done using Adobe Premiere Pro (Adobe, n.d.). As
a final preparatory step before pose detection, the videos were trimmed so only the part where the
test takes place remained.
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3.2.5 Human Pose Detection using OpenPose
Once the videoswerebothequal in lengthandonly included the segmentof the test, theywere ready
for pose detection. Themethod chosen for this is OpenPose because it is expected to result in high
detection rates, proper handling of occlusion, and because of the knowledge on the system already
present in the university department (as stated in section 2.5).

There are numerous flags that can be used in OpenPose’s command line interface to specify what
should be detected and how this should be executed (Hidalgo et al., n.d.[a]). OpenPose is able to
detect the face, hand and body of multiple people within the image frame. However, the face and
the hand key points are not needed for the purpose of this study, as facial expressions and finger
movement are too distantly related to agility. As for the key point detection of body poses, several
model options exist. The default (i.e. when the --model_pose flag is not specified) is the BODY_25
model. However, an improvement of thismodel wasmade byHidalgo et al. (2019), of which the first
author is also the lead author of OpenPose. The differences between the two models can be seen
in the left and middle images of figure 11. The improved BODY_25B model boasts improved "run-
time performance while simultaneously improving slightly on the keypoint accuracy"(Hidalgo et
al., 2019). Hence, this upgradedmodel was used.

The output is generated twofold. The --write_video flag is used to create a new videowith a skeleton
overlay of the poses detected in each frame. This can be used to check the accuracy of the pose
detection based on face validity. However, the data that is required for further processing comes
from the --write_json flag. Usage of this flag results in a separate JSON file for each frame of the
input video. An example of such a file is displayed in figure 10. All empty elements are not used in
this study. The data in the pose_keypoints_2d element is formatted as 𝑥0, 𝑦0, 𝑐0, 𝑥1, 𝑦1, 𝑐1, ..., where
𝑥 is the x-coordinate of the keypoint, 𝑦 the y-coordinate, and 𝑐 the confidence score in the range
[0, 1].

1 {
2 "version": 1.3,
3 "people": [
4 {
5 "person_id": [ -1 ],
6 "pose_keypoints_2d": [ 1443.07, 767.06, 1, 1443.06, 751.088, 1, ...],
7 "face_keypoints_2d": [],
8 "hand_left_keypoints_2d": [],
9 "hand_right_keypoints_2d": [],
10 "pose_keypoints_3d": [],
11 "face_keypoints_3d": [],
12 "hand_left_keypoints_3d": [],
13 "hand_right_keypoints_3d": []
14 }
15 ]
16 }

Figure 10: Example JSON file

Furthermore, the --number_people_max flag is used to fix the number of people OpenPose should
detect in each frame. Each test executed as part of this research contains only one person of inter-
est, yet sometimes more people are visible inside the frame boundaries due to unforeseen circum-
stances. For example, in the preliminary tests, a coach was located inside the test area beside the
participant who conducted the test. With the flag set to 1, OpenPose often switched between the
participant and the coach when they were standing relatively close to each other. This is caused by
the way OpenPose determines which person is of themost interest. When there aremore people in
view, the personwith the highest "score" is kept, while all others are removed. OpenPose calculates
this score based on the area the person covers within the image, as well as on the confidence values
of individual joints and body parts (i.e. the certainty that a joint or body part is actually located at
the resulting coordinates). Therefore, when the participant and coach were standing close to each
other, the areas of the image frame their bodies covered were almost equal in size. It is highly likely
thatOpenPosewas also similarly confident of individually detected joint andbodypart coordinates,
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leading to pose detection of the participant in one frame and of the coach in the next. Tominimise
the probability that this effect reoccurred in future tests, people other than the to-be-tested partic-
ipant were asked to stay out of view of the two cameras as much as possible (as was explained in
section 3.2.2).

A somewhat related flag is the experimental --tracking flag. The flag, available although still in de-
velopment, ismeant for trackingpeople across frames, potentially resulting inhigher accuracypose
detection. Preliminary tests showed slightly more stable detection of the person of interest when
used together with the --number_people_max flag. Therefore, this flag was included in the defini-
tiveOpenPose settingsused in this research. Lastly, the --display and --render_pose flagswere found
tobeuseful for increasingprocessing speed. The former ensures the video is not displayedwhen the
flag is set to 0, while the latter stops the rendering of the skeleton overlay on top of each video frame
that is displayed during execution. The latter does not influence the output of the --write_video
flag.

3.3 Data Pre-Processing
With the data extracted from the videos using OpenPose, the data can be further processed to ex-
tract the 3D coordinates of the keypoints in real-world space for each frame of the video. Subse-
quently, this spatiotemporal information can be used to calculate whole-body velocity and accel-
eration, whole-body Centre of Mass (COM), ground contact time, joint angles, and asymmetries
between the left and right leg. This section contains step 3 of the data pipeline of figure 4. It goes
into detail about the process of going from two sets of raw x- and y-coordinates of OpenPose key-
points to usable 3D coordinates that form the basis of the biomechanical features calculated in the
section 3.4.

3.3.1 Loading OpenPose Data
The JSON outputs of both cameras related to the same test participant and direction are consecu-
tively loaded into MATLAB. Each JSON file is decoded into a structure array using the jsondecode
(The Mathworks Inc., n.d.[c]) function, which transforms the JSON-formatted text into separately
accessible nested fields. Of these fields, only the pose_keypoints_2d element is kept and split up
into 𝑥 and 𝑦 variables (the confidence values are not used). The x- and y-variables from both per-
spectives all have the shape [# of frames] × [# of keypoints]. The first five keypoints are removed,
as these are related to the gaze of the person, which is not needed for the purpose of this research.
Additionally, OpenPose outputs data using zero-based indexing, whileMATLAB uses one-based in-
dexing. Therefore, the numbering of keypoints changes, influencing how they can be accessed in
MATLAB.

In figure 11, the format of the BODY_25 (OpenPose default) and BODY_25Bmodels can be seen, as
well as the adjusted format of the BODY_25Bmodel used in the remainder of this report (i.e. num-
bering adjusted to one-based indexing and with face keypoints removed). It is important to note
somedifferences between the twomodels thatmust be taken into accountwhencalculatingbiome-
chanical features later in the process. Especially for the COM calculation, whichmakes use of body
segments (further explained in section 3.4.2), it is important to know the body landmarks associ-
ated with the keypoint positions of the model used. To start, keypoint 1 of BODY_25 is not located
in the same place of the body as keypoint 17 of BODY_25B. The former is located in the midpoint
between the shoulder joints, whereas the latter is located slightly higher at the upper vertebrae of
the cervical spine. Furthermore, keypoint 18 of BODY_25B, located at the most cranial point of the
body, is absent from the BODY_25model.

3.3.2 Undistorting Points and Triangulation into 3D Coordinates
With the x- and y-coordinates accessible in separate variables, the data can be triangulated into 3D
coordinates. However, OpenPose keypoints have been detected in the original distorted camera
images and are, therefore, still distorted themselves. The triangulate function (TheMathworks Inc.,
n.d.[a]) that will be used to calculate 3D coordinates assumes that the points it receives as input
are undistorted matching points in stereo images. Therefore, the 2D keypoint coordinates in each
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Figure 11: From left to right: BODY_25 output format, BODY_25B output format (used in this re-
search), and BODY_25B output format with the facial keypoints removed and usingMATLAB’s one-
based indexing.

camera perspective must first be undistorted using the individual camera parameters. The undis-
tortPoints function (The Mathworks Inc., n.d.[b]) is used for this, which calculates the undistorted
coordinates of the distorted points in one image at a time. As points need to be undistorted for all
frames of both videos, the function is used in a loop over all video frames.

The triangulate function is used for eachmatching set of undistorted keypoints. For this, the x- and
y-coordinates of a keypoint pair (i.e. the same keypoint but detected in two different perspectives)
are used together with the set of camera parameters from the stereo calibration. The world coordi-
nates are saved into separate variables: WX, WY, andWZ. All points are rotated -90 degrees around
the X-axis to establish the correct orientation.

3.3.3 Scaling The Data
During the triangulation process, the data points are scaled so they can be expressed inmillimetres
in three-dimensional space. If this process were to be completely flawless, the real-world distances
would be exactly equal to the triangulated distances. However, as error-free triangulation is highly
difficult, a second step of scaling is required to achieve a more accurate display of distances and,
therefore, of bodily proportions. To do this, de Leva (1996)’s adjustments to Zatsiorsky et al. (1990)’s
segment inertia parameters are used. The scaling is done by adjusting all keypoints with a scaling
factor based on the subject’s real and virtual thigh lengths. The real thigh length is defined by

𝑙𝑡ℎ𝑖 𝑔ℎ,𝑟𝑒𝑎𝑙 =
ℎ𝑟𝑒𝑎𝑙 ∗ 𝑙𝑡ℎ𝑖 𝑔ℎ,𝑑𝐿

ℎ𝑚𝑎𝑙𝑒 ,𝑑𝐿
, (1)

whereℎ𝑟𝑒𝑎𝑙 is theparticipant’smeasuredheight inmillimetres, and 𝑙𝑡ℎ𝑖 𝑔ℎ,𝑑𝐿 andℎ𝑚𝑎𝑙𝑒 ,𝑑𝐿 are themale
thigh length andmale height fromde Leva (1996)’s parameters inmillimetres, respectively. The real
thigh length was notmeasured directly from the participants as it was deemed inaccurate. De Leva
(1996)’s segment lengths are measured between joint centres, which are difficult to pinpoint accu-
rately from the naked eye. Moreover, measuring thigh lengths was not part of the screening process
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of FC Twente, while measuring height was. The calculation is still an estimation – as would a mea-
surement between the knee joint centre and hip joint centre be from the outside – but it is thought
to be a better generalization of thigh lengths for the use of scaling. In the calculation, differences
in body proportions between differently aged participants are not taken into account. The virtual
thigh length is calculated step-wise. First, the virtual thigh lengths in each video frame are calcu-
lated by

𝑑 (𝑖 ) =
√︁
(ℎ𝑖 − 𝑘𝑖 )2, (2)

where 𝑖 = 1, . . . , 𝑁 in which 𝑁 is the number of video frames, and ℎ𝑖 and 𝑘𝑖 are the correspond-
ing hip and knee joint locations, respectively. Then, the outliers are removed to clean the data of
any inaccuracies. This is done using the rmoutliers (The Mathworks Inc., n.d.[d]) function, which
removes data points that are more than three scaled median absolute deviations (MAD) from the
median. TheMAD is "a robustmeasure of how spread out a set of data is" (Glen, n.d.) and is defined
as

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 ( |𝑑𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛 (𝑑) |), (3)

where 𝑑𝑖 refers to the virtual thigh length in video frame 𝑖 . To ensure that the MAD is an unbiased
estimator of the standard deviation of the data, theMAD is scaled by the scale factor 𝑘 :

𝑀𝐴𝐷𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑘 ·𝑀𝐴𝐷, (4)

where 𝑘 is a constant scale factor which, for normally distributed data, is defined as

𝑘 = 1/(𝜙−1 (3/4)) ≈ 1.4826. (5)

Subsequently, the data is cleaned from the outliers following the formula

𝑑𝑐 = {𝑑𝑖 | |𝑑𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛 (𝑑) | ≤ 3 ·𝑀𝐴𝐷𝑠𝑐𝑎𝑙𝑒𝑑 }, (6)

where 𝑑𝑐 is the cleaned data set of virtual thigh distances. Then, themean is taken from the cleaned
data

𝑙𝑡ℎ𝑖 𝑔ℎ,𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑑𝑐 , (7)

which is used in the final step in calculating the scaling factor

𝑓𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =
𝑙𝑡ℎ𝑖 𝑔ℎ,𝑟𝑒𝑎𝑙

𝑙𝑡ℎ𝑖 𝑔ℎ,𝑣𝑖𝑟𝑡𝑢𝑎𝑙
. (8)

Finally, the separate world coordinate variables WX, WY, and WZ are multiplied by the scaling fac-
tor. These three-dimensional coordinates will be used as the basis for all calculations described in
section 3.4, which talks about feature extraction.

3.3.4 Removing Frames with Inaccurately Detected Keypoints
While checking the 3D reconstructions of participant movements, it quickly became clear that in
approximately the first and last quarters of the test, the pose detection was rather poor. This was
likely the cause of the participant being too distant from the cameras, which often caused the limbs
to be indistinguishable from each other. This resulted in both legs being detected at the same posi-
tion. Anotherproblemsurfacedat the locationswhere theparticipant ispartlyoccludedby thepoles
marking the test route. Here, the foot of a pole is often detected as the foot of the participant, or the
pole is even detected as a full leg. This is something to keep in mind when doing further research
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on the topic at hand. Although OpenPose was expected to be able to handle occlusions sufficiently,
theymight just be a limitation of MMC.

There is no easy way to fix these parts of the data. However, the frames that are captured when
the participant is closer to the camera can still be used. The occlusion problem was most present
around the poles in themiddle of the set-up (BL and BR in figure 2c). Additionally, most incorrectly
detected keypoints corresponded to a distance beyond this point (i.e. further than approximately
9 meters from the camera). With these observations in mind, the data was trimmed down to only
contain the part right after the participant has run around BL or BR, up until the point where they
pass the B-line again. This is visualized in figure 12, where the orange part of the path is kept and
used for feature extraction, while the grey part remains unused. In the following section, only the
orange part is used for feature extraction.

Figure 12: Running pattern based on the centre of mass position as seen from above. The orange
part of the data is kept, and the grey part is removed. The blue dots represent the camera positions
in the test set-up.

3.4 Feature Extraction
The previous sections laid the foundation required for the extraction of the biomechanical features
mentioned insection2.5. Buildingupon thatbasisof 3Dkeypoint coordinatesover time, this section
goes intodepth about the calculations for obtaining ankle, knee, andhip angles, whole-body frame-
by-frame centre-of-mass locations, heel strike and toe-off points in time, including a multitude of
derivatives, and lastly, whole-body velocity and acceleration. With that, step 4 of the data pipeline
of figure 4 is described.

3.4.1 Joint Angles
Joint angles arebeneficial for calculating symmetry-relatedKeyPerformance Indicators (KPIs), such
as the interlimb range-of-motion (ROM) difference. Joints that are deemed relevant for this way of
quantifying agility are the hips, knees, and ankles. All other joints are not calculated as they are
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Table 1: Joints with corresponding vectors between
BODY_25B-numbered keypoints for calculating their
joint angles.

Joint Side Keypoints Vector 1* Keypoints Vector 2*

Hip
Left 11-5 11-13

Right 12-6 12-14

Knee
Left 13-11 13-15
Right 14-12 14-16

Ankle
Left 15-13 15-19

Right 16-14 16-23
* Keypoint numbers are based on the original BODY_25B pose model, see
middle image of figure 11.

deemed to be of lesser significance for said purpose. To calculate joint angles, the two connected
vectors to the keypoint of interest are needed. Table 1 contains an overview of the vectors that are
used to calculate left and right hip, knee, and ankle joint angles. Vectors mentioned in the table
consist of the original OpenPose BODY_25B keypoints, of which the keypoint numbering can be
seen in the middle image of figure 11. The shoulder and knee joints are used to calculate the hip
angle. The hip and ankle joints are used for the knee angle. Lastly, the knee joint and forefoot are
used for the ankle angle.

3.4.1.1 Disbalance

As it was found that lower limb asymmetry might be an indicator of agility (Bishop et al., 2021;
Philipp et al., 2021), the disbalance between left and right joint angles is derived from the hip, knee,
and ankle joint angles. This is done by saving the angle of each joint for each frame of the video.
To enrich the information gathered about joint disbalance, the KPIs are divided into low-, mid- and
high-range disbalance. Here, low-range is considered 0-60°, mid-range is 60-120°, andhigh-range is
120-180°. More than 180° could also occur, but it is very unlikely that this angle is present during an
agility test. Therefore, the range of angles is limited to 180°. The KPIs are indicators of howbalanced
a joint is in the time span of the agility test. The disbalance is weighted against themagnitude of the
angle range so that a difference between left and right of, for example, 4, weighs heavier in a total
amountof 6 frames than it does in 60. For each joint and rangeof angles, thedisbalance is calculated
using the formula

𝑑𝑎,𝑗 = 2 ·
| 𝑁𝑎,𝑗 ,𝑙 −𝑁𝑎,𝑗 |∑

𝑁𝑎,𝑗
, (9)

where 𝑑𝑎,𝑗 is the disbalance of joint 𝑗 in angle range 𝑎 , 𝑁𝑎,𝑗 ,𝑙 is the number of frames in which the
left side of joint 𝑗 is in angle range 𝑎 ,𝑁𝑎,𝑗 is themean of the number of frames inwhich both sides of
joint 𝑗 are in angle range 𝑎 , and

∑
𝑁𝑎,𝑗 is the total sum of the number of frames in which joint 𝑗 is in

angle range 𝑎 . The multiplication by 2 in the formula functions to let the results range from 0 to 1.
If, for example, for the duration of the test, the participant had their left knee in the low angle range
for 16 frames (𝑁𝑎,𝑗 ,𝑙 ) and their right knee for 20 frames, then 𝑁𝑎,𝑗 = 18 and

∑
𝑁𝑎,𝑗 = 36, resulting in

the disbalance

𝑑𝑎,𝑗 = 2 ·
| 𝑁𝑎,𝑗 ,𝑙 −𝑁𝑎,𝑗 |∑

𝑁𝑎,𝑗
= 2 · |16 − 18|

36
=
1
9
≈ 0.111. (10)

A value near 0 would mean a low disbalance, and a value near 1 a high disbalance. In the example,
as 𝑑𝑎,𝑗 ≈ 0.111, which is relatively close to 0, the disbalance is rather low.
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3.4.1.2 Range of Motion

Themeasurement of the range of motion (ROM) plays an important role in rehabilitation (Davis et
al., 2007) and improving sports performance (Lundgren et al., 2013). Therefore, it is interesting to
findoutwhether therearecorrelations tobe foundbetweenagility andhip, knee, and/orankleROM.
TheROM is calculated as the difference between the largest and the smallest joint angle throughout
the duration of the test. As asymmetry is expected to play an important role in agility, the ROM is
calculated for the left and right joints separately, and the difference between the two is recorded as
well.

3.4.2 Centre of Mass
Thecentreofmassof a set of pointmasses canbecalculatedby theweightedaverageof all thepoints
(Bai et al., 2008). This follows the formula

𝐶𝑂𝑀 =

∑
𝑚𝑖𝑋𝑖∑
𝑚𝑖

, (11)

where𝑚𝑖 is themass and𝑋𝑖 the location of point 𝑖 . For the calculation of theCOMof the body poses
present in each video frame,𝑚𝑖 is taken from de Leva (1996). In their work, they present segment
inertia parameters adjusted to joint centres as landmarks. This is different from the work from Zat-
siorsky et al. (1990) they build upon, who make use of bony landmarks "markedly distant from the
joint centers currently used by most researchers as reference points"(de Leva, 1996). The param-
eters consist of "relative body segment masses, center of mass positions, and radii of gyration"(de
Leva, 1996). The former parameter is used as 𝑚𝑖 , meaning the mass is used in the form of body
weight percentages per segment 𝑖 . The secondparameter is used to calculate𝑋𝑖 following a formula
adjusted from the work byWebering et al. (2021). The authors use OpenPose formeasuring vertical
jump height, meaning they only incorporate the vertical centre of mass positions. For the current
research, the positions on all three axes are of relevance, resulting in an altered formula defined
as

𝑋𝑖 = 𝑝𝑠𝑡 𝑎𝑟𝑡 ,𝑖 + 𝑙
𝑝

𝑖
(𝑝𝑒𝑛𝑑,𝑖 − 𝑝𝑠𝑡 𝑎𝑟𝑡 ,𝑖 ), (12)

where𝑝𝑠𝑡 𝑎𝑟𝑡 ,𝑖 and𝑝𝑒𝑛𝑑,𝑖 are thecoordinatesof the start andendpointsofbody segment 𝑖 , and 𝑙𝑝
𝑖
is the

"relative position of the segment’s [centre of mass] along the principal axis of segment 𝑖"(Webering
et al., 2021). The segment start and end points used, alongwith the associated segmentmasses and
relative COM positions, are shown in table 2. For most of the segments, the regular endpoints as
described by de Leva (1996) are used. However, alternative endpoints are used for the head and
trunk, as the start and endpoints described for these segments weremore fitting to the keypoints of
theBODY_25Bmodel. As for thehead, thealternative segment starts at "themost cranialpointof the
head" (i.e. the highest point when standing upright) and ends at "the superior palpable point of the
spine of the seventh cervical vertebra" (i.e. the top of the lowest vertebra of the neck, i.e. C7). These
points are very close to keypoints 18 and 17, respectively, of the BODY_25B model. However, the
regular head segment endpoints are not, as there is no keypoint close to the middle of the gonions
of the jaw (i.e. the apex of the angle of the lower jaw), as seen from the frontal plane. Likewise, for the
trunk, the segment includes either the top of the sternum, theC7 vertebra, or themidpoint between
the shoulder joints. Because in the posemodel, the only keypoint around the neck is located rather
high up the cervical spine, the most cranial of the three possible endpoints is used, which is the C7
vertebra. The other endpoint is the middle of the hip (MIDH), which can be derived easily from
the OpenPose data as the middle point between the hip keypoints. The hands are not used in the
calculation because they are not part of the posemodel and would require running OpenPose with
the additional hand detector. Besides, the relativemass percentage of the hands with respect to the
full body is negligibly small.

As a final step, the COM locations are filtered to remove obvious outliers and to reduce noise. Out-
liers arefilteredusing thefilloutliers (TheMathworks Inc., n.d.[e]) function,whichdetectsoutliers in
the samemanner as the previously used rmoutliers function. Linear interpolation of neighbouring,
non-outlier values was used to replace the outliers. Furthermore, the function was used to detect
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Table 2: OpenPose keypoints used as start and end points of body segments. Per segment, the body
mass percentage (𝑚𝑖 ) and the CoM’s relative position along the segment’s principal axis (𝑙𝑝

𝑖
) are dis-

played.

Segment
Name start end 𝑚𝑖 (%) 𝑙

𝑝

𝑖
(%)

Head* 18 17 6.94 50.02
Trunk* 17 MIDH** 43.46 51.38
Upper arms 5,6 7,8 2.71 57.72
Forearms 7,8 9,10 1.62 45.74
Thighs 11,12 13,14 14.16 40.95
Shanks 13,14 15,16 4.33 44.59
Feet 21,24 19,23 1.37 44.15
Hands*** - - 0.61 79.00

* Alternative endpoints are used for the head and trunk segments.
** Mid-hip, i.e. the centre point between hip keypoints 7 and 8.
*** The hands were not used in the COM calculation.

local outliers using the median of a moving window instead of the full width. Without the moving
window, important information would be lost, as is shown in figure 13. In this example, the differ-
ence is most notable in the X-coordinates of the centre of mass, where the red line "cuts off" the
trough in the original data.

Additionally, a second-order Butterworth filter(Parks et al., 1987) was applied to the data using the
video’s framerate (i.e. 60 fps) as the sampling rate. A Butterworth filter is often used for filtering out
noise in kinematic data (Beckett et al., 2017; Nakano et al., 2020; Sakurai et al., 2021; Washabaugh
et al., 2022), which makes it highly applicable to the noise likely caused by the slight differences
in OpenPose’s keypoint detection in between frames. The cutoff frequency of 1𝐻𝑧 and the order
were chosen following an iterative process to achieve the desired filter effect. Figure 14 contains an
example of where the centre of mass is located (after filtering) with respect to the 3d-reconstructed
pose, accompanied by the corresponding frame.

(a) CoM X-coordinates (b) CoM Y-coordinates (c) CoM Z-coordinates

Figure 13: Filtered and unfiltered centre of mass XYZ-coordinates over time.

3.4.2.1 Take-OffDistance

A relatively large distance between the COM and the foot placement of the trail leg has been asso-
ciated with improved CODS (Hewit et al., 2012; Welch et al., 2019). Therefore, this take-off distance
can be calculated as a derivative of the centre of mass and the pose keypoints. In a technical analy-
sis of a 180° CoD task, Hewit et al. (2012) consistently observed a large take-off distance in superior
performances. The authors reason that a large take-off distance results in a large step length, and
as long as the step frequency is at least maintained, this, in turn, results in increased velocity. The
take-offdistance is calculated for each video frame inwhich the toes of the trail leg leave the ground.
How these toe-off frames are determined is explained in further detail in section 3.4.3. The distance
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between the centre of mass location, as calculated in the current section, and the keypoints corre-
sponding to the toes (keypoint 20 for left and 22 for right) make up the take-off distance.

(a) Still from COD test video (b) 3D reconstructed pose (first
perspective)

(c) 3D reconstructed pose (second
perspective)

Figure 14: 3D reconstructed pose with calculated centre of mass locations indicated by the green
dot.

3.4.3 Ground Contact Time
A shorter ground contact time has been linked to greater CODS (Condello et al., 2016; Dos’Santos
et al., 2017; Welch et al., 2019). Using accelerometers, Purcell et al. (2005) has proven it is feasible to
calculate the groundcontact timeduring running. Their approachprovided "very close estimates of
actual [contact time] during running", ofwhich the best estimateswere obtainedduring the highest
measured accelerations. OpenPose keypoints provide rather similar information to accelerometer
data. While accelerometers measure acceleration, in𝑚/𝑠2, OpenPose data can be processed to ac-
quire positional data over time (i.e. velocity), of which the derivative is acceleration. It should be
noted that when calculating derivatives based on a series of data points, any inaccuracies present
in the data might exponentially increase. For example, when a keypoint is detected in the wrong
location in one frame, the calculated speed at that point in timewill be enormous. The acceleration
therewill be even greater. Nevertheless, the idea is implemented for human gait analysis by Stenum
et al. (2021). However, they calculate the events only from a lateral view, meaning that the anterior-
posterior distances they use in their calculations can be directly derived from the X-coordinates of
the ankle keypoints. In three-dimensional space where the participant does not walk in a straight
line, this is more difficult to accomplish. Therefore, the way of determining event times in two-
dimensional, one-directional gait cycles is altered to fit the three-dimensional, multi-directional
change-of-direction tests of this research.

To achieve the desired result, the vertical positions of each keypoint are used to calculate the ve-
locity in the vertical direction. Figure 15 contains plots of the vertical velocity of the heel and toe
keypoints over time. The velocity of the heel should be (very close to) zero when the heels are first
touching the ground, but alsowhen the feet are at the highest pointwhile raising up the legs. There-
fore, for all negative peaks in vertical heel velocity, the height of the keypoint is used to determine
which peak belongs to an actual heel strike and which peak corresponds to a leg raise. The peaks
of which both neighbouring peaks corresponded with a greater vertical height were determined to
be the heel strikes (i.e. the blue dots in figure 15). To calculate the corresponding toe-off events,
the positive peaks in the vertical velocity of the toe keypoint in between the current heel strike and
the subsequent leg raise moment are assessed. If only one peak is measured, then the frame corre-
sponding to that peak is determined to be the toe-off event. However, if there ismore than one peak
(likely caused by faulty data), the highest peak is assumed to be the right frame for the toe-off event.
Likewise, if there is no peak, the first vertical toe velocity peak found after the heel strike is used as
the toe-off event. The toe-offs are displayed as orange dots in figure 15. Throughout the develop-
ment of this method, the corresponding video frames were visually checked for face validity. It was
found that it sometimes occurs thatOpenPose detects the left leg as the right leg or vice versa. When
this happens only in one frame, the pre-processing steps handle the problem quite well by replac-
ing the faulty keypointwith interpolatedkeypoint coordinates. However,when the legs are switched
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Figure 15: Participant 22 during a left-turned arrowhead test as an example of how heel strike and
toe-off events are determined.

in several frames in a row, the problem is less accurately addressed. Although these are mostly in-
tercepted by removing outliers that evidently display incorrect values (i.e. where the value is more
than three scaledMAD from themedian), there is still room for improvement here. However, this is
primarily an issue of pose detection that might, therefore, be best addressed by OpenPose.

The events are used as the basis for a number of spatiotemporal parameters inspired by Stenum
et al. (2021), which are described in the following subsections. For a visualization of the temporal
parameters, see figure 16. Here, lhs is the left heel strike, rhs is the right heel strike, lto is the left
toe-off, and rto is the right toe-off.

3.4.3.1 Stance Time

The stance time is the duration in which the foot is in contact with the ground (ergo, the actual
ground contact time). As described by Stenum et al. (2021), it is calculated as the "duration in sec-
onds between heel-strike and toe-off of the same leg". For the left and right stance time, this is the
durationbetween lhs and lto, andbetween rhs and rto, respectively (see figure 16). TheKPIs that are
derived from this data are part bilateral and part unilateral. That is, the mean, minimum andmax-
imum bilateral stance times are calculated based on all stance times, while the unilateral mean,
minimum,maximum and total stance times are calculated for left and right separately.

3.4.3.2 Step Time

The step time is calculated as the "duration in seconds between consecutive bilateral heel strikes"
(Stenum et al., 2021). For the left step time, it is the duration between lhs and the previous rhs.
For the right, it is the duration between rhs and the previous lhs. In a likewise manner as for the
stance time, the step time KPIs exist of bilateral and unilateral mean, minimum andmaximum val-
ues. While the total time was included for the stance time, it was not calculated for the step time as
this did not seem to be a very meaningful parameter.

3.4.3.3 Swing Time

The swing time is the time a foot is not touching the ground. It is calculated as the "duration in sec-
onds between toe-off and heel-strike of the same leg" (Stenum et al., 2021). For the left swing time,
it is the duration between lhs and the previous lto, and for the right between rhs and the previous
rto. The swing time KPIs were the same as those of the step time.
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Figure 16: Left and right heel strike and toe-off events (lhs, rhs, lto, and rto, respectively) with indi-
cations of how temporal parameters are derived.

3.4.3.4 Double Support Time

The double support time is the time in which both feet are in contact with the ground. It is calcu-
lated as the "duration in seconds between heel-strike of one leg and toe-off of the contralateral [i.e.
the other] leg"(Stenum et al., 2021). This is calculated from left to right and from right to left. The
former is the duration between lto and the previous rhs, and the latter is the duration between rto
and the previous lhs. For this parameter, looking at figure 16 might be especially insightful. While
calculating this parameter, it often resulted in negative values. This means that the toe-off of one
foot happens before the heel strike of the other foot. Therefore, a negative double support time,
in fact, can be regarded as "flight time", where no feet touch the ground. This is not surprising, as
both feet touching the ground simultaneously is less frequent, or even absent, during sprint tests or
agility/COD tests. While the parameter is relevant for gait analysis, itmight also be interesting to in-
vestigate for the purpose of this thesis. As for the KPIs, the total double support timewas calculated.
This was, in turn, divided by the completion time of the corresponding arrowhead test to arrive at
an additional double support percentage KPI.

3.4.3.5 Step Length

The step length is the distance between a heel strike of one leg and the following heel strike of the
other leg. It is calculated as the "anterior-posterior distance in meters between left and right [...]
ankle keypoints [...] at heel-strike"(Stenum et al., 2021). However, for the multidirectional COD
tests, the anterior-posterior distance is replaced by the Euclidean distance. The step length KPIs are
equivalent to the step and swing time KPIs.

3.4.3.6 Running Gait Speed

Velocity can be calculated in other ways than by using the heel strike and toe-off events (see sec-
tion 3.4.4), but the running gait speed is calculated with just that. As speed is often expressed in
meters per second, and the step lengths and step times are known, the speed can be calculated by
dividing themean step length by themean step time. This is the only running gait speed KPI that is
used in themodelling phase.
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3.4.4 Velocity and Acceleration
CODS isameasure that ispartly coveredbyaperson’s straight sprinting speedandconcentric strength
and power present in accelerations and decelerations (see figure 1). Therefore, the velocity and ac-
celeration during the COD test are interestingmeasures to calculate and investigate. For this thesis,
the two measures are based on the location of their centre of mass, calculated according to sec-
tion 3.4.2. For each frame, the whole-body velocity is calculated using the formula

𝑣 =

√︃
𝑑2𝑥 + 𝑑2𝑦 + 𝑑2𝑧

𝑡
, (13)

where𝑑𝑥 ,𝑑𝑦 and𝑑𝑧 are the displacements in 𝑥-, 𝑦 -, and 𝑧-direction, and 𝑡 is the time in seconds. The
Euclidean distance between the centre of mass position in the previous frame and its position in
the current frame is divided by time interval 𝑡 . As the calculation is done for each frame of the video
with a framerate of 60 frames per second, 𝑡 = 1/60. The resulting value is in 𝑚𝑚/𝑠 , which, after
being divided by 1000, results in a velocity in 𝑚/𝑠 . The acceleration of a participant is computed
by calculating the gradient of the velocity data series over the same time interval 𝑡 using MATLAB’s
gradient (TheMathworks Inc., n.d.[f]) function.

To validate whether the computed velocity and acceleration are within the boundaries of what is
physically possible, the data was plotted and compared to reference values based on Postma et al.
(2022). The work proposes a model on (sprint) running kinematics, including action boundaries
regarding velocity andacceleration. Themaximumvelocity andaccelerationpresented through the
model are plotted as reference lines in the velocity and acceleration graphs over time in figure 17,
where maximum velocity 𝑣𝑚𝑎𝑥 = 9𝑚/𝑠 , maximum acceleration 𝑎𝑚𝑎𝑥 = 6𝑚/𝑠2, and the maximum
deceleration 𝑎𝑚𝑖𝑛 = −8𝑚/𝑠2. The latter is not presented in the work of Postma et al. (2022) but
was retrieved from the website of StatSports (Daykin, n.d.). The grey lines show the full velocity
and acceleration data, while the coloured lines show the part of the data that is actually used after
trimming the data as described in section 3.3.4.

Figure 17: Whole-body velocity and acceleration of participants during their COD tests with refer-
ence values for validation.
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3.4.5 Resulting Dataset
All of the KPIs are exported fromMATLAB to an Excel spreadsheet automatically when running the
complete script available onGithub (Peetsma, 2023). The dataset comprises a total of 72OpenPose-
based variables. Furthermore, the OpenPose data was combined with another three anthropomet-
ric variables, one demographic variable and 20 variables from other tests that were conducted on
July 3rd and 4th. The full set of variables, including their unit of measurement, can be found in ap-
pendix C.

3.5 Data Analysis Using GLMM
Following the data pipeline of figure 4, after the features are extracted from the video recordings, the
data can be analyzed. This is done bymodelling the parameters in the dataset to predict a comple-
tion time as close to the observed value. However, some background information is required first
to understand themethods used. The section concludes by critically checking assumptions associ-
ated withmixedmodels. The remaining part of themodel evaluation (i.e. the second part of step 5)
will be addressed in the next chapter.

3.5.1 Background
Generalized LinearModels (LM) can be used to describe the relationship of a certain outcome vari-
able with one or more parameters. A linear model "assumes that there is approximately a linear
relationship between 𝑋 and 𝑌 " (James et al., 2013). When 𝑌 is observed, and there are multiple 𝑋
parameters (called a fixed effectwhenused in anLM) thatmight have a significant relationshipwith
𝑌 , then LMs can serve as a way to predict this relationship. For an LM approach to result in mean-
ingful outcomes, all observations must be independent (Winter, 2013). When this is not the case, a
more extensive method is required: Generalized Linear Mixed-Effect Models (GLMM). As opposed
to an LM approach, Generalized LinearMixed-EffectModelling (GLMM) includes not only fixed ef-
fects but also random effects: an uncontrollable factor that stands for all that affects the outcome
variable (also called the dependent variable) that is not captured in any fixed effect. GLMMs can be
described by the formula defining their linear relationship (Bates et al., 2015):

𝑌 ≈ 𝛽0 +
𝑛∑︁
𝑖=1

(𝛽𝑖𝑋𝑖 ) +
𝑛∑︁
𝑗=1

(𝑍 𝑗 ) + 𝜖 𝑗 , (14)

where𝑌 is the outcome variable, 𝛽0 is the intercept, 𝛽𝑖 is the slope, 𝑋𝑖 is a fixed effect, also called an
independent, explanatory, or predictor variable, 𝑍 𝑗 is the random effect for variable 𝑗 , and 𝜖 is an
error term (assumed to be independent of 𝑋 (James et al., 2013)). The error term can also be inter-
preted as the unexplained or residual variability. The intercept and the slope are together referred
to as themodel coefficients.

3.5.1.1 Assumptions

There are a number of conditions that have to be satisfied tomake sure that the linearmodel will be
meaningful (Winter, 2013). Each of them is described below.

Linearity First, themodelmust be the result of a linear combination of the elements used as fixed
and random effects. This can be verified using a residual plot. In figure 18, each observed value
(i.e. the horizontal line) and its corresponding value predicted by themodel (i.e. the points) can be
plotted. The differences between them are the residuals, shown as the red lines. If a non-linear or
curvedpattern canbeobserved in the residual plot, the datawould violate the linearity assumption.
If not, like in figure 18a, then the assumption is respected.

Absence of Collinearity The second assumption is that the fixed effects used in a model are not
collinear (i.e. correlated with each other). When multiple fixed effects are correlated with each
other, the phenomenon is called multicollinearity. Should two collinear variables be used in the
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(a) Data with homoscedastic variability (b) Data with heteroscedastic variability

Figure 18: Examples fromWinter (2013) of residual plots, where the red line indicates a residual. (b)
shows larger residuals for higher fitted values, whereas in (a) the residuals are approximately equal
across the range of fitted values.

same model together, then the model has no proper way of determining to which of the variables
the variance the model explains should be assigned to. Therefore, the model will not be easily in-
terpretable. To find out which combinations of variables should be avoided, a correlationmatrix of
all available variables can be created. Variables with a collinearity coefficient 𝑟 > 0.7 are considered
collinear and should not be used in the same model. As a final test, the variance inflation factor
(VIF) can be computed, which measures "how much the variance of a regression coefficient is in-
flated due tomulticollinearity in themodel"(Kassambara, 2019). The VIF can have a value down to
1, indicating there is absolutely no collinearity between the fixed effect and the other coefficients.
An often-used rule-of-thumb is to regard any VIF higher than 5 (or even 10) as an indication of a
problematic amount of collinearity.

AbsenceofHeteroscedasticity Thirdly, thedata shouldbehomoscedastic,meaning that "thevari-
ability of [the] data should be approximately equal across the range of [...] predicted values." (Win-
ter, 2013). Figure 18 shows an example of howdatawith homoscedastic variability looks (desired) in
comparison with heteroscedastic variability (undesired). The situation shown in figure 18b essen-
tiallymeans that themodel predicts less accurately for higher values of the outcome variable, which
is unwanted.

No Influential Data Points Lastly, the data should have no influential data points. A data point or
observation is influential when it, "either individually or together with several other observations,
has a demonstrably larger impact on the calculated values of various estimates [...] than is the case
for most of the other observations" (Belsley et al., 1980). Influential observations can "drastically
change the interpretation of [the] results, and [...] it can lead to unstable results" (Winter, 2013).
To see whether a data point is influential, the DFBETAS metric can be evaluated. DFBETAS is "the
change in parameter estimates after deleting the ith observation" (Li et al., 2011). In other words,
themetricquantifies thedifferencebetweenamodelwithacertainobservationand the samemodel
without that observation. According toWinter (2013), any value that changes the sign of the regres-
sion coefficient (i.e. the slope) requires particular attention. However, Belsley et al. (1980) mention
a "size-adjusted cutoff" that can be used of 2/

√
𝑛, where 𝑛 is the number of observations. Addi-

tionally, Winter (2013) mentions that any DFBETAS value that changes the slope of the coefficient
is definitely an influential data point.
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Normality of Residuals The assumption that the residuals are normally distributed is deliberately
excluded. The assumption is that the residual data should be symmetrical around the mean resid-
ual, anddatapoints close to themeanshouldbemore frequent inoccurrence thandatamoredistant
from the mean. However, linear models are relatively robust against normality violations, and the
importance of this diagnostic is even debated (Winter, 2013). Therefore, this assumptionwill not be
tested.

3.5.1.2 EvaluationMethods

Severalmethods canbeused to assess themodel fit. These canbe divided into numerical and visual
evaluations and are described in the subsection below.

Coefficient of Determination Amodel can be evaluated by finding how well the model is able to
replicate the observed value. In statistics, this is expressed as the coefficient of determination, or𝑅2

(James et al., 2013), and can be calculated in numerous ways. After an assessment of the problems
associated with the most common definitions, Nakagawa et al. (2013) proposed a method for cal-
culating two types of 𝑅2: marginal 𝑅2, which represents the variance explained by the fixed effects,
and the conditional 𝑅2, representing the variance explained by the whole model, including fixed
and random effects. When the conditional 𝑅2 is close to 1, it means that a large proportion of the
variability in the observed variable can be explained by themodel. When themarginal𝑅2 is close to
the conditional𝑅2, a large proportion of the explained variance comes from the fixed effects.

A study similar to this thesis was conducted by Rosenblum et al. (2023), who investigated the effect
of arm restriction on dynamic stability and upper body responses to lateral loss of balance during
walking. They report a marginal 𝑅2 of 0.252 and a conditional 𝑅2 of 0.611, which they interpret as
a substantial association between their fixed effects and their outcome variable. Another study, by
Sanchez et al. (2021), investigated several biomechanical variables in relation to post-stroke step
length asymmetry (SLA). They report a marginal 𝑅2 of 0.59 and a conditional 𝑅2 of 0.84 for a model
predicting SLA for participants who took longer steps with their paretic leg. For another model for
participantswalkingwith shorterparetic steps, themarginal𝑅2was0.19, and the conditional𝑅2was
0.77. This is interpreted as an indication that there are additional differences unique to the subject
with shorter paretic steps that are not accounted for by the variables included. Lastly, a study by
Malik (2022) reported marginal 𝑅2’s of several models and related the values to the extent to which
the fixed effects modify group effects. In other words, they discuss how much the fixed effects are
able to explain the variance in the dependent variable for the whole population. According to the
author, marginal 𝑅2 values of 0.141 and 0.434 "maymodify group effects", whereas values of 0.598,
0.766, and 0.808 were said to show an overall group effect. The results and interpretations of these
studies can be used to determine the implications of themodel to predict agility.

Residual Standard Error (RSE) The residual standard error (RSE), ormodel sigma, is a measure
of the error of prediction defined by "the average amount that the response will deviate from the
true regression line" (James et al., 2013). To calculate the RSE, the residual sum of squares is re-
quired, which, in itself, is already ametric to understandhowwell amodel fits a dataset. It is defined
by

𝑅𝑆𝑆 =
∑︁

(𝑒𝑖 )2, (15)

where 𝑒𝑖 is the ith residual. Using the RSS, the RSE can be calculated according to the following
formula as described by James et al. (2013):

𝑅𝑆𝐸 =

√︄
𝑅𝑆𝑆

(𝑛 − 𝑐 ) , (16)

where 𝑛 is the number of observations, and 𝑐 is the number of model coefficients excluding the
intercept (thus, 𝑐 only includes the fixed effects included in themodel). Divided by themean value
of the observed variable gives the prediction error rate (Kassambara, 2019). The RSE has the same
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unit of measurement as the outcome variable, and the error rate is a percentage. A more accurate
model will have a lower RSE value and a lower error rate.

Akaike InformationCriterion (AIC) As an extensionof themaximum likelihoodprinciple, Akaike
(1992) introduced the Akaike Information Criterion (AIC). Although it was the first model selection
criterion to gain widespread attention, it is still one of the most used model selection tools to date
(Cavanaughetal., 2019). Asamodel canbetter adapt to slightdifferences inadatasetonce themodel
gets larger andmorecomplex, a complexitypenalization is introduced to the statistic. Therefore, the
AIC is a measure of both model quality and complexity. However, "it is not the absolute size of the
AIC value, it is the relative values over the set ofmodels considered, and particularly the differences
betweenAICvalues, that are important"(Burnhametal., 2004). A commonruleof thumb is to regard
a model as a viable candidate when its AIC value is reduced by a minimum of 2 units compared to
the model with the previously lowest AIC (Wieling, 2018). This will ensure that the simplest model
is selected that simultaneously best explains the variance of the dependent variable.

Likelihood Ratio Test Two different models can be compared "to determine if one is a better fit
to the data than the other" using a likelihood ratio test (LRT) (Luke, 2017). An LRT compares the
likelihoodsof twomodels. This canbeuseful in case it isnot surewhether toaddorkeepaparameter
in amodel orwhether to remove it. Whenonemodel contains theparameter of interest and another
model does not, the "fixed effect is significant if the difference between the likelihood of these two
models is significant" (Winter, 2013). The model without the fixed effect in question is called the
null model, and the one including it is called the full model.

3.5.2 Approach
As mentioned in section 3.5.1, Linear Models (LM) require all observations to be independent. In
the case of this study, however, these observations cannot be assumed to be independent of one
another as participants performed the COD test twice. Therefore, to predict how agile a participant
is based on one or more predictor variables, Generalized Linear Mixed-Effect Models (GLMM) will
be used.

To account for nested dependencies in the data resulting from the fact that every participant per-
formed the test multiple times (𝑛 = 2), a random effect is introduced for the participants (PID).
This effectively allows themodel to find a different intercept for each participant and lets themodel
know that multiple observations of the same PID should be regarded as dependent. This builds on
the assumption that each participant has a different "baseline" completion time. The fact that a
participant is naturally fast affects both their (left and right) tests. The observed variable 𝑌 is the
completion time of the COD test that corresponds with the OpenPose data analysis. The KPIs de-
scribed in the previous sections are used as fixed effects𝑋 . RStudio (RCore Team, 2023) is usedwith
the addition of the lme4 package (Bates et al., 2015) to allow for GLMMfitting.

Before any fixed effects are introduced into a model, a ’base’ or null model is created that includes
purely the random effect for participants. Then, a matrix of collinearity coefficients was calculated
for all variables in the dataset. Pairs of variables for which the coefficient 𝑟 was above the thresh-
old of 0.7 were regarded as collinear. Using a step-wise forward selection method, all variables de-
rived from OpenPose were added to the intercept-only model one by one. A variable was kept in
the model only when the model AIC reduced a minimum of 2 units compared to the model with
the previously lowest AIC (i.e. Δ𝐴𝐼𝐶 < −2) and when all the model’s fixed effects were significantly
correlated with the test completion time (𝑝 < 0.05). The models that met these criteria were con-
tinued with, and variables were once more added to them to check whether they would improve
the model’s explained variance. This process was continued until no better model could be found
anymore. Next, the available anthropometric and demographic variables were added to the best
models found. Of these, only the age turned out to be significant. The diagnostics of the remaining
best-fitting models are displayed in table 3. The marginal 𝑅2 of the two models nearly quintupled
with the addition of the age parameter.

To determine the best model out of the two displayed in table 3, themodel parameters can be eval-
uated. According to the coefficient of determination and the residual standard deviation,model𝑚𝑑

1
fits the data the best. Moreover, comparing the two models based on the difference between their
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Table 3: Diagnostics of the twomodels fitting best to the data, where𝑅2
𝑚 is themarginal𝑅2,𝑅2

𝑐 is the
conditional 𝑅2, and �̂� is the residual standard deviation, or model sigma, measured in seconds.

Model Fixed effect / Predictor p-value† Δ AIC‡ 𝑅2
𝑚 𝑅2

𝑐 �̂� (s) Error rate

𝑚𝑑
1

maxLeftStanceTime 0.0538 .

-2.16 0.2442 0.9395 0.0765s 0.87%
kneeRangeOfMotionDiff 0.0014 **
hipMidRangeDisbalance 0.0243 *
age 0.0020 *

𝑚𝑑
2

maxLeftStanceTime 0.0350 *

-2.43 0.2426 0.9362 0.0783s 0.89%
kneeRangeOfMotionDiff 0.0021 **
hipHighRangeDisbalance 0.0467 *
age 0.00175 *

† Significance codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ’ ’ < 1
‡ Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑝𝑟𝑒𝑣 , where 𝐴𝐼𝐶𝑝𝑟𝑒𝑣 is the AIC obtained by the previously preferredmodel.

AIC values results in a slightly lower AIC for model𝑚𝑑
1 , strengthening the notion that it is the better

model. Themodel diagnostics in table 3 further confirm this, as both themarginal and conditional
𝑅2 are higher, and themodel sigma and the error rate are lower.

3.5.3 Model Criticism
To ensure that the model can be correctly interpreted, the model assumptions must be checked.
One of the assumptions mentioned in section 3.5.1 that require checking is about influential data
points, which canbe foundby checking howmuch themodel coefficients changewhen adata point
is removed from the dataset. The DFBETAS are displayed in the left panels of figure 19, where the
dashed lines represent the threshold of 2/

√
𝑛 = 2/

√
80 ≈ 0.2236. Any observations with DFBETAS

greater than the threshold are points of interest that are investigated using the panels on the right
side of the figure. In the scatter plots of the fixed effects and the outcome variable, the participant
IDs corresponding to the influential observations are marked. It should be noted that the range of
measurements for all four fixed effects is within the limits of what is physically possible. For exam-
ple, amaximumstance time of 4 secondswould indicate ameasurement error as at no point in time
(during the test)were theparticipants standing completely still. Thehighest valuemeasured for this
fixed effect is slightly longer than a quarter of a second, which, for a fast-paced change-of-direction
test, is deemed reasonable. This is confirmed to be a common value for the predictor by assessing
the face validity. The number of frames the foot visibly touches the ground is counted during a step.
In most cases, this number counted up towards 10 frames, corresponding to a stance time of ap-
proximately 0.167 seconds (as the videos were recorded at 60 fps). No data points are removed due
to the influential data points based onmaxLeftStanceTime.

Next, the difference in knee range of motion is investigated. Themarked observations in figure 19d
are all insideor close to a relatively dense areaof the scatter plot,meaning the influential datapoints
do not correspond to any outliers. However, some of the other observations are far removed from
thedense areabut are not influential. To interpret this correctly, it’s important tonote that anoutlier
is not the same thing as an influential data point. This can be seen in figure 19d, where the highest
value is an outlier but is not influential, and in figure 19f, where the highest value is an influential
point. As the outliers for the difference in knee range of motion are not influential points, they are
kept in the dataset. However, as the outliermarkedwith participant ID 45 in figure 19f is an influen-
tial data point, more information is required to determine the appropriate course of action.
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Figure 19: Left panels (a,c,e,g): DFBETAS values for each observation (where two tests of the same
participant count as 1 observation) ofmodel𝑚𝑑

1 . Right panels (b,d,f,g): Fixed effects plotted against
the outcome variable CODTestTime
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Figure 20: Model with (a) and without (b) the influential data point included regarding participant
45.

Tounderstand the impact of the influential data point, themodel canbe compared to amodelwith-
out the influential datapoint. As canbe seen infigure20, the influential datapoint changes the slope
of the hipMidRangeDisbalance fixed effect only slightly (i.e. from approximately -0.546 to -0.698, as
can be seen in table 4). By further examining the model coefficients, it is observed that removing
the influential data point does not result in a sign change (i.e. positive estimates turning negative,
and vice versa) for any of the fixed effects. Therefore, the interpretation of the model is not altered
by removing the influential data point. Because of this, together with the observation that all data
points have logical and realistic values, the influential data point is retained in the dataset.

Table 4: Difference in significance of model coefficients after removal of influential data point re-
lated to participant 45.

Influental point included Influential point excluded
Estimate p-value† Estimate p-value†

(Intercept) 9.934 < 2e-16 *** 9.921 < 2e-16 ***
maxLeftStanceTime 0.651 0.054 . 0.700 0.040 *
kneeRangeOfMotionDiff 0.006 0.001 ** 0.006 0.002 **
hipMidRangeDisbalance -0.546 0.024 * -0.698 0.011 *
age -0.076 0.002 ** -0.075 0.002 **

† Significance codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ’ ’ < 1
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Linearity, Homoscedasticity & Collinearity
The other three assumptions can be confirmed by checking the residual plot and the VIF values. By
observing the residualplot infigure21, it canbe seen that thedata showsnoobvious curvedpatterns
that would signal a violation of the linearity assumption. Moreover, no clear increasing, decreasing,
ormodulating variance can be discerned from the residuals that would indicate heteroscedasticity.
Therefore, the variability of themodel data can be said to be linear and homoscedastic.

Figure 21: Residual plot of model𝑚𝑑
1 for checking linearity and homoscedasticity.

The remaining assumption can be checked with the VIF values displayed in table 5. The values for
all four coefficients are close to 1, indicating that there is close tono collinearity present between the
fixed effects. As James et al. (2013) mentions, there is always a small amount of collinearity among
predictors, and the amount of collinearity present in themodel is deemed not problematic.

Table 5: Variance Inflation Factors per fixed effect for model𝑚𝑑
1 .

Coefficient VIF
maxLeftStanceTime 1.062
kneeRangeOfMotionDiff 1.153
hipMidRangeDisbalance 1.149
age 1.006

50



Chapter 4

Results & Discussion

In this chapter, the results relating to both research questions are described and simultaneously
discussed. The applicability of OpenPose is discussed first (answering RQ2), which is followed by
an evaluation of howbiomechanical featuresweremeasured andwhat the results imply for practice
(answering RQ1). The chapter concludes with the limitations of the presented work.

4.1 Applicability of OpenPose
Throughout the development of the data pipeline, in which a set of video recordings is transformed
into tangible quantifications of thephysical aspects of agility, observations and realisationshave led
to an understanding of the applicability of OpenPose in a fast-paced human movement scenario.
However, proper validation of the 3D reconstructed movement data and the parameters derived
from it has yet to be performed. This did not fit within the scope of this thesis and is something
that can be done in future research building upon the work presented here. How themethods were
justified and evaluated throughout the project is discussed in the following sections.

4.1.1 Camera Set-Up and Calibration
The pipeline starts with the camera set-up and calibration, which was tested before the actual data
collection was planned. It was found that cameras should be placed perfectly horizontally, as, oth-
erwise, the triangulated height of keypoints would incorrectly increase as theymove away from the
camera. Additionally, the ideal distance between cameras was determined by reviewing literature
describing similar studies and by trying it out during a hands-on pilot test. The resulting between-
camera distance seems to be a trade-off between capturing as much 3D information as possible
while also keeping the calibration pattern in view of both cameras. It might be interesting to re-
search other methods of stereo calibration that might not require a calibration pattern. This would
allow for awider angle between the two cameras and the test area, resulting in a smaller capture vol-
umewhere the triangulated point can be placed, asmentioned by Zago et al. (2020). Essentially, the
only thing that is calibrated in a stereo calibration of two cameras with known intrinsics is their rel-
ative positions in space. Detecting a recognizable object fromboth perspectivesmight be sufficient
in placing the object in a shared three-dimensional space. However, this would most likely require
significantly moremanual development as this is not amethod currently supported byMATLAB or
OpenCV.

Another finding related to the camera calibration method was noticed when, at first, the intrinsic
parameters and the relative positions of the two cameras were attempted to be calibrated simulta-
neously. This resulted in an unacceptably large reprojection error, which was corrected by splitting
up the calibration. The intrinsic parameters of both cameras, retrieved from individual camera cali-
brations, could be used as input for the stereo calibration, resulting in amuch lower and acceptable
reprojection error. However, the error couldmost likely have been even lower if the calibration pat-
tern were flatter. Additionally, the reflections of light on the calibration boardmight also have been
disadvantageous for pattern detection. Corners in between black and white squares should have
been clearly visible but appeared as one smudge of light instead. This would be less of a problem
if the test was performed indoors, where the light is more static and the reflections are predictable.
However, as change-of-direction tests performed by football players are rarely indoors, amatte cal-
ibration board would probably be a better option.
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4.1.2 OpenPose Configuration
Next to flags required to save the detected keypoints, the OpenPose settings used included flags
to improve its accuracy, like the tracking and number_people_max flags (see section 3.2.5 on page
31). However, there are other flags not investigated that might further improve OpenPose’s perfor-
mance. One example of this is the net_resolution flag, which, according to theOpenPose documen-
tation (Hidalgo et al., n.d.[a]), potentially increases accuracy. The network resolution is a parameter
that specifies the resolution at which the input image is processed by the neural network. Themax-
imum speed-accuracy balance is said to be obtainable by using values closest to the aspect ratio
of the to-be-processed images. However, as the default is recommended to let OpenPose find the
ideal resolution (Hidalgo et al., n.d.[b]), the configuration used during this project might already
have resulted in themost accurate pose detection. Concerning themodel_pose flag, the BODY_25B
model was chosen for its expected better performance and accuracy compared to its predecessor,
the BODY_25model. However, other models have not been actively investigated.

4.1.3 Data Pre-Processing
After theOpenPosedata is triangulated toacquire3Dcoordinatesof everykeypoint, thedata seemed
somewhat inconsistent. The length of limbs, for example, differs in every frame, although slightly
in most cases (i.e. a fewmillimetres). This is an effect likely caused by inconsistent keypoint detec-
tion. For example, the distance between the hip and knee can differ when the knee is detected at
the joint centre in one frame but in amore lateral or distal location from the joint centre in the next
frame. Another causemight liewith incorrect triangulation. As the triangulationmethodmakes use
of the camera parameters acquired earlier in the process, part of the inconsistencies might already
be solved by limiting the reprojection error in each calibration. However, if the keypoint detection
remains inconsistent, then the triangulation will never be fully accurate. A common saying is that
machine learning models are only as good as the data they are trained on. It is possible that Open-
Pose was not trained on images of COD or agility tests, causing the recordings of the arrowhead test
tobe thefirst time thealgorithmhas seendata like this. Thismight cause themodel tohavedifficulty
detecting poses in these recordings.

Addressingpotential underlyingcausesof the scaling issuewouldbeadifficult and time-consuming
challenge. Therefore, the problem is mostly circumnavigated by adding an additional scaling step
to the pipeline. Here, the thigh length is used to calculate a scaling factor that is used to resize all
keypoints. The actual thigh length differs for each participant, but as an approximation, the length
reported by de Leva (1996) is used. When looking at figure 12 on page 35, it can be observed that
some running patterns seem larger than others. Although it is natural that some participants take
relatively wide turns, the differencemight be caused by scaling using a factor that is not completely
tailored towards the unique bodily proportions of each participant. During scaling, the locations of
all keypoints change positions with respect to the world origin. Therefore, the cameras might not
be scaled properly for the tests of participantswhere the part of the running pattern between points
B and C (see figure 2c on page 17) is closer to the cameras.

In turn, this most likely affects the extracted features that draw upon keypoint coordinates, such as
the step length, take-offdistance, velocity andacceleration. It doesnot affect thecalculated joint an-
gles, as the angles betweenkeypoints remain the samewhen scaling all keypointswith the same fac-
tor. The scaling can potentially be correctedwhen the thigh lengths (or any other easilymeasurable
lengthbetween two jointswith correspondingOpenPosekeypoints) aremeasuredaspart of the test.
If this were to be done, then it is crucial tomeasure the distance between joints consistently so that
themeasured value can be realistically used to differentiate participants’ bodily proportions. How-
ever, this method assumes that when two participants share the same thigh length, they also share
the same height. In reality, this is not the case, as some people have relatively long legs compared
to others. Whether or not the thigh length of each participant is measured is a trade-off between
accuracy and pragmatism. The latter was preferred slightly over accuracy, as the accuracy obtained
without the thighmeasurements was considered sufficient for the purpose at hand.

As a final step, before features are extracted from the data, frames in which the participant is too
far away from the camera or is occluded by an element of the test set-up are removed. This was a
necessary step to acquire meaningful parameters. If players only had tomake a turn with their feet
goingaround the corner, then lowpylonswould suffice. However, as it is a requirementof the test for
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players to run around each corner with their whole body, the high poles are required for the arrow-
head test. It was known beforehand that these poles were part of the test set-up, but as OpenPose
was expected to handle occlusion well, this did not seem a problem. However, it turned out to be
a larger problem than anticipated. Although no literature was found that stated that other mark-
erless motion capture methods were more capable of handling occlusion than OpenPose, it might
be worth it to investigate this further. Additionally, pose detection might have been less difficult if
a different COD test had been recorded. Using the arrowhead test was a deliberate choice, as it was
found to be reliable in measuring COD in football players. However, with the current knowledge,
the t-test, 5-0-5 test or the pro-agility test might have resulted in fewer issues. These tests merely
require flat training cones, and additionally, the cameras can be placed much closer. The use of a
different COD test does not stand in theway of extracting any of the features proposed in this thesis,
as they all require the same type of movements from the participants.

4.1.4 Feature Extraction
During this project, five main features were extracted from the OpenPose data: joint angles, centre
of mass, ground contact time, velocity, and acceleration. All parameters that are derived from the
features are calculated based on the full observable part of the data (i.e. the orange part of figure 12
on page 35). Thismeans that the parameters do not distinguish between clearly different segments
of the test route, such as straight parts in between turns and the turns themselves. Itmight beworth
investigating whether a segmented analysis of the test produces a different outcome.

However, the features inherently cover somepartsof the testmore thanotherparts. Forexample, the
maximum step length, velocity and positive acceleration are relatedmostly to the straight sections,
although they are calculated for the whole test. Likewise, the maximum negative acceleration is
only relevant for the sections right before a turn, and the double support time is almost exclusively
related to the turn sections. Therefore, someof theparameterswill likelynot changemuchwhen the
analysis is split into segments. However, it might be good practice to remove certain segments from
the calculations of parameters when it is known those segments do not contribute to the meaning
of those parameters. As the performed analysis was not segmented, the following subsections will
discuss the results of the feature extraction based on the full range of frames.

Joint Angles
The joint angles are calculated for the hip, knee and ankle joints, both left and right. It is difficult
to validate the angles without comparing them to some "gold standard" (which can be done in fu-
ture work using the data measured with the MVN Awinda system), the joint angles were checked
for accuracy using a face-validity approach. As can be seen in figure 22, the 3D reconstructed pose,
the angle in graph form, and the corresponding video frames were assessed for multiple tests and
participants. No incorrect angles have been observed throughout this process.

Although the rangeofmotionand thedisbalanceparameterboth seemtohaveacorrelationwith the
test completion time (as can be seen in figure 23 on page 56), one important caveat must be noted.
In the current work, it is assumed that each angle that is measured is the product of flexion and
extension. For example, a healthy knee will mostly bend in the sagittal plane about the frontal axis.
However, for some people more than others, the knee can also bend in the frontal plane about the
sagittal axis. This is referred toas kneeabductionor adduction, and, as alreadymentioned in section
2.2.3 on page 19, this can lead to an increased risk of knee injuries. Therefore, it is important to be
able todistinguish inwhichplane a knee is rotated. Sensor-basedmotion capture often includes the
principal axis of every segment, whichmakes it possible to calculate angles relative to neighbouring
segments. However, using only OpenPose data, which does not come with information about the
orientation of body segments, this is difficult to achieve.

Additionally, the rangeofmotioncalculationdoesnot allow for angles greater than180°. Thismeans
that when joints are hyperextended (which does not occur often in a COD test), a knee angle of, for
example, 185° would bemeasured as a 5° angle. Such a small angle is filtered out by the rmoutliers
function, which removes datamore than three scaledmedian absolute deviations from themedian,
and therefore regards potentially interesting information as incorrect.
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Figure 22: Screenshot of the face validity assessment of the joint angles.

Centre Of Mass
The centre of mass has been calculated by using the segment masses and relative segment COM
positions proposed by de Leva (1996). To achieve the desired outCoMes, the segment endpoints of
deLeva (1996) arematchedwithkeypoint locations. Someendpoints, like theupper arms, forearms,
thighs and shanks, correspond directly to OpenPose keypoints. However, some do not have a direct
match, meaning the endpoints needed to be as closely approximated to a keypoint as possible. For
these segments, i.e. the head, trunk and feet, the segment masses and relative COM position along
the segment’s principal axismight not be fully accurate. This, in turn, could lead to a slight deviation
of the calculated COM position compared to the actual COM position. To accommodate for any
inconsistencies present in the data due to this, or due to incorrectly detected keypoints, the data
is filtered. Any outliers are replaced with linearly interpolated values, and a Butterworth filter is
applied to remove any remaining noise in the data. As could be observed in figure 13 on page 38,
both steps were necessary to achieve proper results.

For essentially the same reasonaswith the joint angles, theCOMwasvalidated through face validity.
This was done by plotting the centre of mass position together with the 3D reconstructed pose for
each frame of a video (an example is shown in figure 14 on page 39). It is known that the COM of
the human body lies slightly above the hips, and depending on a person’s pose, the COM can be
positioned outside of the human body. With this in mind, the calculated locations were assessed
and found to be in logical positions relative to the body.

Ground Contact Time
The ground contact time was calculated by determining, for each step, the moment the feet first
touch the ground and the moment they leave the ground. These heel strike and toe-off events are
based on peaks in the vertical velocity of the heel and toe keypoints. Like in previous evaluations,
the face validity was assessed by comparing the original videos with the timestamps of the events.
It is difficult to pinpoint these events precisely when the cleats (in Dutch: "noppen") of the shoes
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disappear into the grass. However, to ensure themost consistency in the evaluation, the heel strike
is determined to be themoment the heel does not "sink" further into the ground. The results seem
to be mostly correct event times with only slight deviations. The deviations found were only about
three frames apart from theobserved events, corresponding to amere 50milliseconds off. However,
it was also observed that the further the participant is away from the camera, the higher the devi-
ation. This once again shows the importance of the percentage of the image area the participant
occupies for achieving accurate pose detection.

Another point of discussion is related to the applicability of heel strikes and toe-offs in scenarios
other than gait analysis. When a person is walking, the heel always strikes the ground first, and the
toes are always the last part of the foot to leave the ground. However, when running in a COD test
(but also in sprint tests), the heels do not even touch the ground at (near-)full speed. Therefore, for
the purpose of this study, the heel strike might not be the best fit for the start of the ground contact
time. However, the vertical velocity of theheel ismeasured,whichwill alsohaveanegativepeak very
near the first ground contact. Therefore, it is not expected to result in a drastically different ground
contact time when this is taken into account.

Velocity And Acceleration
The velocity and acceleration could be calculated using the position of the centre ofmass over time.
To assess whether the calculations did not result in any values outside the boundaries of what is
physically possible, the data was plotted and compared to reference values. As can be seen in fig-
ure 17 on page 42, most of the velocities and accelerations lie within these boundaries, and the
exceptions are only slightly over the reference value. These might be due to a difference in par-
ticipants compared to Postma et al. (2022). They recruited healthy, injury-free individuals aged
19-22, whereas, for the present study, all participants were experienced youth football players of
a professional football academy aged 14-20. It is possible that the participants of the present study,
who practise several times a week, were fitter and thus faster than the participants of Postma et al.
(2022). One couldwonderwhether ahigher acceleration canbe reached in a sprint test compared to
a change of direction test, as the linear distances covered are longer. However, themodel shows that
the maximum acceleration is reached within the first second of accelerating. This means that the
same acceleration can be reached during both tests. The opposite is true for the velocity, for which
it takes a little longer to reach its maximum. According to Postma et al. (2022)’s model, speeds of
9 ms-1 can be reached during a sprint. However, their sprint distances were at least 7.5 m and the
maximumdistance covered during the observable part of the COD test was only 5m. Therefore, the
participants of the arrowhead testmight not have been able to reach the top speeds the participants
of Postma et al. (2022) have reached.

4.1.5 Concluding Remarks
One of the research questions (RQ2) set to be answered by this project was: To what extent is mark-
erless motion capture suitable for measuring biomechanical features of agility? In this section, the
method developed to answer this question has been discussed. It became clear that it is possible to
derive certain biomechanical features from stereo videos that aremeaningful for movement analy-
sis. However, there are also a few impediments throughout the process that influence the suitability
of the methods used. The velocity and acceleration, as well as the centre-of-mass positions over
time they are based on, lend themselves rather well to be measured using MMC (with the neces-
sary data processing). However, the joint angles can only be calculated regardless of the anatomical
plane in which the rotation takes place. For the ground contact time, face validity assessment de-
termined the times to be sufficiently accurate. However, as is true for all extracted features, without
proper validation through comparisonwith a gold standard, no definitive conclusions can be given
about themethod’s accuracy.
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4.2 Measuring Biomechanical Features of Agility
The method described in the previous section has been the result of an investigation of litera-
ture into how agility and change-of-direction speed can be measured. The research resulted in a
set of overarching biomechanical features that can essentially be measured from any stereo video
recording of a person performing change-of-direction movements. All parameters derived from
the biomechanical features were analysed using a Generalized Linear Mixed-Effect Modelling ap-
proach. Parameters were added to models in an iterative manner to find the ones that could be
significantly associatedwith agility. This resulted in amodel consisting of four fixed effects and one
random effect. However, because the data has not been compared to a gold standard yet, the anal-
ysis and implications of the data, as described in this section, can only serve as a demonstration
of how the data can be interpreted after the data has been validated. Because of this, no definitive
conclusions can be given about the features’ significance to agility.

(a) (b)

(c) (d)

Figure 23: Predicted linear relationships between fixed effects and the outcome variable according
tomodel𝑚𝑑

1 .

4.2.1 Statistical Analysis andModel Evaluation
To determine the best model out of the two displayed in table 3 on page 47, the model parameters
canbeevaluated. According to the coefficient of determinationand the residual standarddeviation,
model𝑚𝑑

1 fits the data the best. Moreover, comparing the two models based on the difference be-
tween their AIC values resulted in a slightly lower AIC formodel𝑚𝑑

1 , strengthening the notion that it
is the better model. Themodel diagnostics in table 3 further confirm this, as both themarginal and
conditional𝑅2 are higher, and themodel sigma and the error rate are lower. The linear relationships
between thefixedeffects and theoutcomevariable of themodel are shown infigure23. While this all
points in thedirectionof𝑚𝑑

1 , themaxLeftStanceTimefixed effect only has ap-value of 0.0538,which
is above the significance threshold of𝑝 < 0.05. Thismight indicate that the correlation between the
fixed effect and the test completion time is not strong enough.
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Table 6: Significance of likelihood ratio tests when removing each of the fixed effects.

Full model
CODTestTime ∼ maxLeftStanceTime + kneeRangeOfMo-
tionDiff + hipHighRangeDisbalance + age + (1|PID)

Null model p-value†

CODTestTime ∼ kneeRangeOfMotionDiff +
hipHighRangeDisbalance + age + (1 | PID)

0.04208 *

CODTestTime ∼maxLeftStanceTime +
hipHighRangeDisbalance + age + (1 | PID)

0.00078 ***

CODTestTime ∼maxLeftStanceTime +
kneeRangeOfMotionDiff + age + (1 | PID)

0.01742 *

CODTestTime ∼maxLeftStanceTime +
kneeRangeOfMotionDiff +
hipHighRangeDisbalance + (1 | PID)

0.00147 **

† Significance codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ’ ’ < 1

To check the extent to which it contributes to the overall performance of the model, a likelihood
ratio test (LRT) is performed. As can be seen in table 6, the difference between the null model not
containingmaxLeftStanceTime and the fullmodel is significant (𝑝 < 0.05). Using the same tests, the
other fixed effects can also be evaluated. This is relevant, as the differences in total explained vari-
ance betweenmodels𝑚𝑑

1 and the intercept-onlymodel do not differ greatly. This begs the question
of whether the addition of the fixed effects significantly improves the model fit to the data com-
pared to a model with just a random effect. Therefore, LRTs are additionally performed for each
of the other fixed effects of model 𝑚𝑑

1 . As can be seen in table 6, the differences between the full
model and each null model are all significant (𝑝 < 0.05). The kneeRangeOfMotionDiff is especially
significant with 𝑝 < 0.001.

Table 7: Model summaries of included fixed effects.

Original Fixed Effects:

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 9.934 0.403 49.954 24.65 < 2e-16 ***
maxLeftStanceTime 0.651 0.326 34.028 1.998 0.054 .
kneeRangeOfMotionDiff 0.006 0.002 38.654 3.439 0.001 **
hipMidRangeDisbalance -0.546 0.232 35.847 -2.351 0.024 *
age -0.076 0.023 46.164 -3.274 0.002 **

Standardized Fixed Effects:

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 8.796 0.039 45.862 228.363 < 2e-16 ***
maxLeftStanceTime.z 0.027 0.014 34.028 1.998 0.054 .
kneeRangeOfMotionDiff.z 0.055 0.016 38.654 3.439 0.001 **
hipMidRangeDisbalance.z -0.032 0.014 35.847 -2.351 0.024 *
age.z -0.128 0.039 46.164 -3.274 0.002 **

† Significance codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ’ ’ < 1
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Model𝑚𝑑
1 is summarized in table 7. Additionally, themodelwith thefixed effects centred and scaled

is displayed. Standardizing parameters makes sure that the coefficients can be meaningfully com-
pared to one another by transforming them to the same scale (James et al., 2013). The standardized
slopes, displayed in the ’Estimate’ column in the lower half of the table, are an indication of the ef-
fect sizes of the fixed effects and therefore show how strongly the parameters are associated with
the outcome variable. In the lower part of the table, it can be observed that the association with
the age of the participants is the strongest based on the steepness of its slope. Of the parameters
derived fromOpenPose, the difference in knee range ofmotion ismost strongly associatedwith the
test completion time. This correspondswith the significanceof theparameter in theLRTmentioned
earlier.

One potential issue that needs to be addressed regards the dataset. Some participants only ap-
pear once in the dataset due to technical errors that occurred during data collection. However, in
GLMMs, the random effect is introduced to let the model know that there are multiple observa-
tions for each value of the random effect (in this case, the participant ID). This might give rise to
an identifiability issue for participants with only a single observation. In equation 14 on page 43,
it can be argued that when there is only one observation 𝑋𝑖 for random effect 𝑍 𝑗 , then the model
cannot properly distinguish between 𝑍 𝑗 and the residual variance 𝜖 𝑗 as the sum of the two remains
constant. This means that single-observation random effects do not contribute to estimating the
overall participant random effect variance of themodel. However, they can still be used to estimate
the mean structure of the outcome variable. Therefore, the single-observation participants are not
excluded from the dataset.

4.2.2 Model Implications
To understand what the statistical analysis means, the implications of the model are discussed. It
was found that the combination of themaximum left stance time (related toGCT), the difference in
left and right range of motion of the knee (related to asymmetry), the disbalance in the hips in the
range of 60°–120°(also related to asymmetry), and the age of the participant resulted in the model
with the highest explained variance. The conditional 𝑅2 is 0.9395, meaning that the variance ex-
plained by both fixed effects and random effects is 93.95%. Interestingly, the value is not much
higher than the conditional𝑅2 achievedusing only a random intercept per participant in themodel.
This indicates that a substantial portion of the variability in the test completion time is attributed
to individual participants. To some extent, this was to be expected, as each participant’s test times
were very close to each other. That would imply that the range of outcome values per participant is
limited to only a fraction of the range of outcomes of the full dataset. However, this should also be
seen as the strength of a mixedmodel, as the method excels in personalized predictions. Using the
model and a known participant ID, a trainer canmake very refined predictions about how a change
in an independent variable will affect that particular person. Examples are given in the following
discussions per parameter of the best-fittingmodel found.

While the small difference in𝑅2
𝑐 between the best-foundmodel and the intercept-onlymodelmight

indicate that the fixed effects do not contributemuch to the overall performance of themodel, they
do contribute to understanding what predictor parameters are significantly associated with CODS
(assuming thedata is correct). The reason is that themarginal𝑅2 has a value of 0.2442,meaning that
24.42% of the total variance in completion time is explained by the fixed effects. A large portion of
this is due to the age of the participant, as themarginal𝑅2 before the addition of the parameter was
only approximately 5%. Although it is no biomechanical parameter, it is a useful insight as it can be
used by trainers of specific age-grouped teams. Without the age taken into account, a player might
not appear to be very agile, but perhaps for their age, they are. Coaches can have their players train
specifically to improve their agility if it is known that they underperform compared to other players
their age. The reason why the age is significant is unknown. However, possible explanations might
be associated with the branches of CODS in figure 1 on page 15. For example, older players have
had more training hours to improve their technique. Another reason might be that their muscles
aremore developed, allowing them tohave greater concentric strength andpower. Further research
is required to learn about potential contributing factors of agility related to age and perhaps other
anthropometric variables.

The age can also be used to predict how a player is expected to perform over time. Figure 23d on
page 56 shows that when a participant ages two years, he is expected to execute the COD test ap-
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proximately 0.125 seconds faster than before. Coaches can use this to gaugewhether a player is per-
forming to their full potential. Furthermore, the age parameter poses an interesting discussion. Say
a player sets the fastest test time in his age group at a certainmoment in time, but five years later, he
is the slowest in their age group while still completing the test quicker than he did five years earlier.
He might be more agile than he was, but compared to his peers, he is rather slow. In such a case, it
might be good to check his and his peers’ data to see whether this person’s CODS has actually stag-
nated or that his peers have improved relatively greatly. Additionally, the differences in test times
might have become smaller compared to five years ago. It is essential that data is collected regularly
to allow coaches to see howmuch players have progressed over the years and tomake comparisons
over time and between players possible.

As for the other fixed effects, it seems that interlimb asymmetry, especially for the knees and the
hips, is associated with COD ability. However, the relationship between COD ability and the hip
disbalance parameter is contrary to what was expected. As was found by Bishop et al. (2021) and
Philipp et al. (2021), a disbalance between left and right limbs should indicate a lowered COD per-
formance, but the fixed effect shows a shorter completion time for greater imbalances. This might
have to do with the way the parameter is calculated. When speaking of the hip angle, the angle be-
tween the trunk and the thigh ismeant, and themid-range angles are those between 60° and 120°. A
mid-rangedisbalanceof thehipmeans that there is a differencebetween the total duration inwhich
the left and right hips were in that range of angles. Therefore, a "disbalance", in this case, might be
an indication of how a participant turns around a corner, i.e. a tactical factor rather than biome-
chanical. This is illustrated in figure 24, where figure 24a shows an example of a participant with a
low disbalance, and figure 24b one with a high disbalance. What can be seen is that, when turning
around a corner, the placement of the outer foot ismore distal for participants with a high hipmid-
range disbalance. Furthermore, the knee of the outer leg is further extended for these participants,
causing a larger difference between the left and right hip angles. A greater difference in the angle
might correspond with a low centre of mass, which might benefit an efficient change of direction.
However, this has yet to be confirmed.

(a) Participant with low disbalance (b) Participant with high disbalance

Figure 24: Examples of a participant with a low disbalance value (a) and a high disbalance value (b).
The difference between the left and right hip angles is smaller for the participant in (a).

The increased performancemight also be due to greater braking forces associated withmore distal
foot placement, but as this has not been researched during this thesis, this presumption can only
be confirmed by further research. Nonetheless, trainers are recommended to steer their underper-
formingplayers into improving their posturewhen rapidly changingdirectionby keeping the centre
of mass low to the ground while extending the outer leg (compared to the contralateral leg) in the
steps close to the turn.

The other asymmetry-relatedpredictor included in themodel is the difference between the range of
motion of the left and right knees. This parameter is, apart fromage, themost significant parameter
according to its effect size in table 7 on page 57. When the difference in range of motion between
the knees is smaller, the test completion time is shorter, and the COD performance is, therefore,
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greater (as can be seen in figure 23b on page 56). As opposed to the hip mid-range disbalance, this
does concurwith the findings of Bishop et al. (2021) and Philipp et al. (2021). The result implies that
when test participants use the full range of motion of both knees (or at least to a greater extent),
they are able to change directions quicker as compared to participants who only use part of their
range ofmotion. More specifically, players are expected to perform the arrowhead test 0.05 seconds
faster when their knee range of motion difference is decreased by 10°. This might not seemmuch,
but it might, at the same time, be something that is easily improved. If, for example, a player is not
using his full range of motion of a certain leg, causing a difference of 30°, then that player "only"
has to improve the range of motion of his lesser leg to the level of his other leg to decrease his test
time with 0.15 seconds. However, it is most likely that there are other factors that contribute to this
difference that are more difficult to tackle.

Putting this next to the implications of the disbalance parameter, the ROMposes an interesting dis-
cussion. On the one hand, participants are thought to perform better when their difference in hip
angles is large during a turn. Yet, on the other hand, the difference in the range of motion of the
knees should remain small. Investigating the role of these angles (i.e. of the hip and knee) rela-
tive to each other might result in valuable insights. A possible result of such a study might be that
the efficiency of changing direction is related to how far up the knees are raised or, alternatively,
how far down the trunk is lowered. This would again connect knee and hip angles to the centre of
mass, which would feed into the assumption that CODS is all about one’s ability to control their
centre of mass. Additionally, the trunk is tilted forward (i.e. smaller hip angle) mostly when accel-
erating and straighter (i.e. larger hip angle) when at full speed or during deceleration. Therefore,
this suggested study might also work well in combination with the segmented analysis proposed
earlier on in section 4.1.4 on page 53. Themechanism behind efficiently controlling one’s centre of
mass likely varies between different sections of a COD test. As mentioned earlier, lowering it dur-
ing deceleration might improve efficiency. Likewise, aligning the centre of mass and the trail leg at
take-off with the direction one wants to go (i.e. having a significantly forward-tilted pose) might ef-
ficiently push the ground reaction force in the desired direction, allowing for increased acceleration
efficiency.

Furthermore, the ground contact time association thatwas found byWelch et al. (2019), Dos’Santos
et al. (2017), and Condello et al. (2016) was confirmed. The stance time parameter indicates that
having a shortermaximumstance timeof the left leg canbe associatedwith decreasedperformance
in the COD test. More specifically, a decrease of 0.15 seconds in the maximum left stance time is
expected to decrease the test time by 0.1 seconds (see figure 23a on page 56). Thus, when players
canmanage to keep the time their feet touch the ground for each step to aminimum, they are able to
change directions faster. Why only the parameter for the left leg came forward as significant might
have to do with the preferred foot of the participants (besides data being potentially inaccurate). It
could be the case that most participants preferred their right foot (as the majority of the world is
right-handed), and there is some correlation between stance time, turn direction and "footedness".
However, foot preference information could not be obtained in time, so this was not included in the
model parameters. It might prove useful to investigate this further, as it could be the case that the
faster test completion times were obtained by participants who were (relatively more) ambipedal
(i.e. those who can use both feet equally well).

There is still a significant portion of the variance not accounted for by the variables included. The
additional unexplained variance could come from other biomechanical parameters not explored
here, such as the centre of mass height during an acceleration, ground reaction forces in key mo-
ments of the test, or the strength and power of individual participants. There is much to explore
in this field, of which some recommendations for future work can be found in section 5.1 on page
64.

4.2.3 Concluding Remarks
The research question left to be answered (RQ1) is: How can biomechanical features of agility be
measured in apracticalmanner beyond the confines of a lab setting? Answering this question started
offwith diving into literaturewith the goal of finding biomechanical associationswith change of di-
rection speed and ability. Three main factors were found: interlimb asymmetry, ground contact
time (GCT), and take-off distance. Using OpenPose, three-dimensional coordinates of 20 anatom-
ical landmarks (i.e. keypoints) were derived from a set of video recordings, which were used to cal-
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culate the biomechanical features. Based on this, 65 variables that could theoretically play a role in
assessing a person’s COD ability were calculated. Additionally, seven variables related to speed or
acceleration and another four variables related to demography and anthropometry were added to
the dataset. Each of these variables was analyzed by using them as fixed effects in Generalized Lin-
ear Mixed-Effects Models. As stated earlier, without comparing the data to a gold standard, defini-
tive conclusions cannot be drawn. However, the biomechanical parameters can all bemeasured in
a practical manner using only a set of cameras. Although the parameters are currently calculated
from recordings of a COD test, which is a lab setting, they can essentially also be calculated with
video recordings of regular football practice.
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Conclusion

This thesis has served as a first step towards analysing agility using markerless motion capture.
Most research usingmarkerlessmotion capture is conducted for gait analysis, which is often a two-
dimensional and one-directional assessment. However, an agility test contains multidirectional
movement, requiring three-dimensional movement data. To address this, a data pipeline was de-
veloped inwhichbiomechanical features relevant to agility are derived fromstereo video recordings
of participants in the dynamic, fast-paced environment of a change-of-direction test.

The research first set out to answer the research question: How can biomechanical features of
agility be measured in a practical manner beyond the confines of a lab setting? Through liter-
ature research, correlations were found between biomechanical features and the physical compo-
nent of agility (i.e. not related to cognition). Interlimb asymmetry, ground contact time, and the
take-off distancewere included in the pipeline. Thesewere expected to bemeasurable usingMMC,
as opposed to, for example, ground reaction forces. Calculating parameters for the selected biome-
chanical features required joint angles, the centre of mass, and foot-ground contact start and end
times for each step to be computed. Additionally, the velocity and acceleration of the participants
were calculated. The parameters could be measured in a way that did not take extra time per par-
ticipant. While the parameters were calculated from change-of-direction tests, they are not strictly
tied to such tests and canhypothetically also bemeasuredduring regular football practice. Whether
this is achievable yet, the answer to the second research question is needed.

The second research questionwas: Towhat extent ismarkerlessmotion capture suitable formea-
suringbiomechanical features of agility? It canbe concluded that byusingOpenPose, it is possible
toextract relevant information regardingagility. The technologyoffersagreatdealofpossibilities for
the extraction of biomechanical data in a practical manner using off-the-shelf tools. OpenPose was
relatively consistent for a considerable part. However, OpenPose has displayed a decreased pose
detection accuracy when the person is more than approximately 10 meters away from the camera
using a resolution of 2.7K. Additionally, when elements of the test set-up partly occluded the body,
OpenPose could not always accurately detect the human pose. To acquire truly useful data, the
pose detection must be more accurate and consistent. Additionally, the triangulation of the set of
2DOpenPose coordinates into 3D coordinates has been proven difficult to do accurately. When the
reprojection errors within the camera calibration process are too large, the triangulation will not
result in actual world distances regardless of the accuracy of the keypoint detection by OpenPose.
Therefore, OpenPose is suitable for measuring biomechanical features of agility, but only once its
pose detection accuracy is improved and the triangulation is done correctly.

Toknowtheaccuracy is sufficientwithadequatecertainty, thedatamustbecompared toagold stan-
dard. This has not beenpart of this thesis, essentiallymeaning that the validity of the data cannot be
confirmed, although face validity assessments did not result in any apparent errors. For the same
reason, no definitive conclusions can be drawn from themodel predicting agility. However, agewas
not a feature calculated from OpenPose data but did turn up as a significant predictor. Therefore,
it can be concluded that with age, people tend to perform better on COD tests. The reason for this
might be related to the time older players have had to improve their technique and strength. How-
ever, this has yet to be researched.
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5.1 FutureWork
Some unexplored research directions can be considered to build upon, improve, and extend this
work. The most important recommendation is to conduct a validation of the data using a gold-
standardmotion capture system. This evaluation can be conducted inwork building upon this the-
sis because all the tests of which video recordings were made were also recorded using the MVN
Awinda sensor-basedmotion capture system. The comparison is useful to evaluate the accuracy of
the triangulated three-dimensional data that is used as the basis for calculating all biomechanical
features in this thesis.

The accuracy of the developed method can presumably be improved by altering the extra scaling
step that was introduced to the process after triangulation. Scaling the data based on a body seg-
ment measurement per participant, such as the thigh length, is likely to result in more accurate
distances and body segment lengths.

Higher accuracy and consistency might also be attainable by slightly changing some aspects of the
camera calibration and data processing steps. For example, using a calibration pattern printed on a
thick and robust panel might decrease reprojection errors while calibrating the camera. Addition-
ally, the accuracy of the pose detectionmight be improved by training the system on data similar to
change-of-direction tests. This might make OpenPosemore familiar with the video recordings that
were used in this thesis. In turn, thismight solve the occlusion andmisdetection problem observed
close to the test poles.

Furthermore, being too far removed fromthecamera resulted indecreasedposedetectionaccuracy.
The issue, as well as the occlusion problem, might be bypassed by using a different COD test than
the arrowhead test. It is, therefore, recommended to use the t-test, 5-0-5 test or pro-agility test to
allow the camera to be positioned closer to the test area. The tests also do not require the high poles
that occlude the participant during the test.

Apart from the test set-up and data processing steps, some more research directions are recom-
mended to explore. First and foremost, it is recommended to analyse the data in segments. For
certain parameters, such as the maximum negative acceleration, only specific sections of the COD
test are relevant. Two people might have a similar test time, but one might be faster in the straight
sections, and the other might be able to turn around corners more efficiently. The latter might also
be due to the participant’s foot preference during turns in certain directions. Therefore, including
information about whether a participant is left-footed, right-footed, or ambipedal might result in
interesting insights.

Another aspect worth investigating relevant to a segmented analysis is the vertical position of the
centre of mass. As stated in section 2.2.3, a lower centre of mass while (re-)accelerating, e.g. after
a turn, was associated with cutting performance. In fact, it might be the case that being agile is all
about howwell one can control their centre-of-mass position whenmoving around. Therefore, it is
also recommended that the role of centre-of-mass control is further investigated, perhaps related
to relative foot placement and acceleration.

Furthermore, itmight proveuseful to extend this researchby adding sensors to the set-up. However,
practicality should remain a requirement. Sensor fusion should improve the accuracy, consistency,
and/or reliability of the data while keeping any additional time the data collection costs per partic-
ipant to a strict minimum. One could think of a minimal sensor set-up in which GPS data is used
to calculate position and velocity more accurately. FC Twente, and likely also other professional
football clubs, already use sports vests that include such trackers. These can be leveraged to gain
additional insights on top of the MMC data. The data can also be used for research into whether
models can be created that aremore reliable than the one developed here as a demonstration. This
might result in models that are better able to explain the variance present in the test completion
time.

Lastly, itmight prove useful to present the camera footage to trainers and sports scientists in combi-
nationwith the extracted features. At the very beginning of this thesis, sports scientists of FCTwente
and the FC Twente/Heracles Academie were already asked what they pay attention to during an
agility test. While this did not result in any tangible insights, perhaps showing them the data with
corresponding test images provides new insights. Additionally, comparisons between the superior-
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and inferior-performing athletesmight aid in understanding the difference in agility. An interactive
dashboard can be created to present all the information. The specific wants and needs of the end
users of such a display of data (e.g. trainers, coaches, and sports scientists) should be researched.
However, it would be interesting to include interactivity surrounding the predictors, so the user can,
for example, adjust the age of a player of interest to see how that player is expected to develop as he
ages.
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Appendix A

Information Letter

Beste spelers en ouders/verzorgers,

Recent hebben we u geïnformeerd over de testdagen die gepland staan voor maandag en dins-
dag, 4 en 5 juli. De testdagen zijn voornamelijk bedoeld om inzicht te krijgen in de medische en
fysieke staat van onze spelers, dit ter optimalisatie van prestatie en het voorkomen van blessures.
Met de inzichten die we opdoen, kunnen we onze spelers gerichte en individuele begeleiding
bieden.

Tijdens de testdagen zullen er, naast onze eigenmedische staff, fysieke staff, en wetenschappelijke
staff, tevens onderzoekers vandeUniversiteit Twente aanwezig zijn. Zij zullen onderzoekdoennaar
wendbaarheid in voetbal. Op verzoek van de Universiteit Twente verschaffen we u bij dezen met
aanvullende informatie aangaande hun onderzoek.

Wat houdt het onderzoek van de Universiteit Twente in?
Wendbaarheidwordtmeestal gemetendoor gevalideerde sprint- enwendbaarheidstesten. De snel-
heid waarmee een speler een bepaalde afstand of parcours aflegt wordt gezien als een goede in-
dicatie voor de wendbaarheid van deze speler. Tijd en snelheid geven trainers en coaches echter
maar weinig inzicht in de redenen dat een speler wendbaar is. Sommige spelers hebben een grote
wendbaarheid omdat ze beschikken over een groot explosief vermogen, terwijl andere spelers het
juist moeten hebben van hun uitstekende coördinatie. Onderzoekers van de Universiteit Twente
onderzoeken of ze demotorische kwaliteiten van spelers kunnen linken aan wendbaarheid. De re-
sultaten van dit onderzoek kunnen trainers en coaches helpen om gerichtere trainingsinterventies
te ontwikkelen ten behoeve van wendbaarheid.

Welke data wordt er verzameld voor het onderzoek?
Voor het onderzoek naar wendbaarheid zal er data gedeeld worden met de Universiteit Twente en
zal er data verzameldworden door deUniversiteit Twente. Gegevens uit prestatietests, zijnde de ‘5-
0-5 test’ en de ‘arrow-head test’; gegevens uit sporttrackers, zijnde acceleratie en hartslagdata; en
antropometrische gegevens (zoals lengte en gewicht) en persoonsgegevens (leeftijd) zullen gedeeld
worden met de Universiteit Twente. In aanvulling zullen onderzoekers van de Universiteit Twente
videodata opnemen van spelers voor de ‘5-0-5 test’ en de ‘arrow-head test’.

Hoe verwerkt de Universiteit Twente deze data?
Zoweldedatadie gedeeldwordtmetdeUniversiteit Twentealsweldedatadie verzameldwordtdoor
de Universiteit Twente wordt geanonimiseerd. Voor de videodata betekent dit dat de gezichten van
de spelers onherkenbaar worden gemaakt. De onderzoeksgegevens worden, conform de richtlij-
nen van de VNSU, minimaal 10 jaar bewaard. De data, waaronder de geanonimiseerde videodata,
is enkel toegankelijk voor demensendiebetrokken zijnbij het onderzoeksprogramma. Een lijstmet
namen vanmensendie toeganghebben tot hetmateriaal is beschikbaar en kanwordenopgevraagd
via Youri Geurkink, coördinator Fysiek en Wetenschap van FC Twente/Heracles Academie. De
materialen zullen op geen enkele wijze publiek beschikbaar gemaakt worden of gebruikt worden
voor promotiedoeleinden. De geanonimiseerde data kan enkel gebruikt worden voor onderzoeks-
doeleinden.

Kan ik afzien van deelname aan het onderzoek van de Universiteit Twente?
Spelers zijn niet verplicht om deel te nemen aan het onderzoek. Mochten u af willen zien van deel-
name aan het onderzoek van de Universiteit Twente, dan kunt u dit aangeven bij Youri Geurkink.
Deze beslissing zal niet van invloed zijn op de deelname van de speler tijdens de testdagen. Mocht
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unaafloopvande testdagenalsnogafwillen zienvandeelname, dankuntudatbinnen5werkdagen
doorgeven aan Youri Geurkink. De opgenomen videodata zal dan verwijderd worden.

Met wie kan ik contact opnemen voor aanvullende vragen?
Voor vragen omtrent de testdagen kunt u contact opnemen met Youri Geurkink, Coördinator
Fysiek en Wetenschap, FC Twente/Heracles Academie (y.geurkink@fctwenteheraclesacademie.
nl)

Voor vragen omtrent het onderzoek naar wendbaarheid kunt u contact opnemen met de hoof-
donderzoeker op dit project, Dees Postma, Assistant Professor, Universiteit Twente (d.b.w.postma@
utwente.nl).

Wilt u graag eenonafhankelijk advies overmeedoen aandit onderzoek, of een klacht indienen? Dan
kunt u terecht bij de secretaris vandeEthischeCommissie (ethicscommittee-cis@utwente.nl). De
commissie bestaat uit onafhankelijk deskundigen van de universiteit en is beschikbaar voor vragen
en klachten rondom het onderzoek.
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Appendix B

Pilot Test Documents

B.1 Participant Information
I would like to invite you to take part in a research study for my graduation project. Before you de-
cide, you need to understand why the research is being done and what it would involve for you.
Please take time to read the following information carefully. Ask questions if anything you read
needs clarification or if you would like more information. Take time to decide whether or not to
take part.

Who I AmAndWhat This Study Is About
Myname is JasperPeetsma, andcurrently, I amdoingmygraduationproject formymaster’s in Inter-
action Technology at the University of Twente. During this project, I focus on defining new perfor-
mance indicators for agility, quantifying these, andmeasuring themusingopen-sourcevideo-based
human pose detection software. The data can be used by trainers and sports scientists to better un-
derstand the difference in performance between players and to trackwhether specific performance
indicators improve or decline over time. The research activity you are invited to participate in aims
to collect movement data for further analysis as part of the project.

WhatWill Taking Part Involve?
Theactivity involves performing so-called change-of-direction testswearing amotion capture (Mo-
Cap) suit while being video-recorded for biomechanical analysis. The data will be used to study the
use of video data to quantify agility. The session will take an hour at maximum. The location of the
session is Pro-F, Kotkampweg 65.

WhyHave You Been Invited To Take Part?
Youhavebeen invited to this research activity because, as a professional football player, you are part
of the target group that the system is designed for. Therefore you are considered a potential partic-
ipant who can provide a valuable and realistic performance in the change-of-direction test.

Do YouHave To Take Part?
Your participation in this research activity is entirely voluntary. You have the right to refuse par-
ticipation, refuse any question or assignment, and withdraw at any time without any consequence
whatsoever.

What Are The Possible Risks And Benefits Of Taking Part?
Participation in this research activity provides valuable data that can be used to better understand
agility. You are asked to perform the test the best you can. However, as each performance is mea-
sured using two methods that will be compared, any performance is helpful for research. All input
is good input.
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Just like in anyother physical exercise, there is a risk of injury. However, this risk is equal to anyother
common change-of-direction or agility test. Should anything happen during one of the tests, you
are free to stop participating at any time without any consequence whatsoever.

Will Taking Part Be Confidential?
Anythingyousayordo for the full durationof the sessionwill remainconfidential. Thevideo footage
and the MoCap data are retained as part of the research process. However, they will not be shared
with anyone outside the researchers and employees involved in the graduation project. After anal-
ysis, the data will be anonymised and might be used for publication. Any frames from the videos
taken during the test may be used in the thesis. Any personally identifiable information will be
anonymised by, for example, blurring your face and any other aspects that might be enough to
recognise you as a person. This way, no data used in the report can in any way be connected to
you as a person, except byme as the researcher due to being present at the session.

HowWill Information You Provide Be Recorded, Stored And Protected?
As stated earlier, the information you provide during the session by performing the tests will be
recorded through video and full body motion capture. The research data will be stored securely on
a password-protected computer and backed up in a password-protected online storage account.
Access to the research data will be limited to only me. The video recordings will be deleted once
the graduation project is finished. However, the anonymised research data used in my thesis will
be retained by UT staff involved in the project. You have the right to request rectification or erasure
of personal data until one week after participation. You have the right to request access to personal
data at any time.

WhatWill Happen To The Results Of The Study?
The session results will be used for the writing of my thesis and as input for the following stages
of my research design. This includes MoCap data, the video recording of the test session, and the
findings based on your input.

Whom Should You Contact For Further Information?
For any further information, you can contact the researcher, Jasper Peetsma, by sending an email to
j.j.peetsma@student.utwente.nl.

If you have questions about your rights as a research participant or wish to obtain information,
ask questions, or discuss any concerns about this study with someone other than the researcher(s),
please get in touch with Dees Postma, my supervisor of the graduation project, through the email
d.b.w.postma@utwente.nl.

Additionally, you can contact the Secretary of the Ethics Committee of the Faculty of Electrical En-
gineering, Mathematics and Computer Science at the University of Twente through
ethicscommittee-cis@utwente.nl.

Thank You For Considering Participating In This Research Study.
Your experiences and opinions are indispensable in this field of study, and completing this study
wouldn’t be possible without your help.
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B.2 Consent Form

Please tick the appropriate boxes. Yes No
Taking part in the study
I have read and understood the study information dated 13-04-2023, or it has been read to
me. I have been able to ask questions about the study, which have been answered to my
satisfaction.

◦ ◦

I consent voluntarily toparticipate in this studyandunderstand that I can refuse to answer
questions and withdraw from the study at any time without having to give a reason.

◦ ◦
I understand that participating in the study involves performing a video-recorded agility
test while wearing amotion capture suit.

◦ ◦
Risks associated with participating in the study
I understand that participating in the study involves the risk of physical discomfort or in-
jury, but this risk is no greater than in any other standard agility test.

◦ ◦
Use of the information in the study
I understand that the information I provide will be used for the writing of the researcher’s
thesis for theMaster program Interaction Technology.

◦ ◦
I understand that personal information collected about me that can identify me, such as
my name, will only be shared with the researchers and employees involved in the gradua-
tion project.

◦ ◦

I agree that the information I provide can be used in research outputs as long as they are
anonymised.

◦ ◦
Consent to be video-recorded andmotion-captured
I agree to be video-recorded during the session, and I understand that the video-recorded
data will be used for analysis, anonymised, and retained as part of the research process.

◦ ◦
I agree to be full-body motion-captured during the session, and I understand that the
motion-capture data will be used for analysis, anonymised, and retained as part of the
research process.

◦ ◦

Future use and reuse of the information by others
I givepermission for theanonymiseddata Iprovide tobearchivedon the researcher’s com-
puter to be used for future research and learning.

◦ ◦
Signatures

Name of participant Signature Date
I have accurately read out the information sheet to the potential participant and, to the
best of my ability, ensured that the participant understands to what they are freely con-
senting.

Name of researcher Signature Date
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Variable Category Unit Variable (continued) Category (continued) Unit (continued)
PID Factor range [0,50] meanLeftSwingTime

Swing Time

𝑠

age Demographic years meanRightSwingTime 𝑠

weight
Anthropometric

kg meanBilateralSwingTime 𝑠

height cm minLeftSwingTime 𝑠

sittingHeight cm minRightSwingTime 𝑠

CODTest Factor ’arrowhead’ minBilateralSwingTime 𝑠

direction Factor ’L’ / ’R’ maxLeftSwingTime 𝑠

CODTestTime

Test Results

𝑠 maxRightSwingTime 𝑠

sprint10m1st 𝑠 maxBilateralSwingTime 𝑠

sprint10m2nd 𝑠 totalDoubleSupportTime
Double Support Time

𝑠

sprint10mAvg 𝑠 doubleSupportPercentage %
sprint30m1st 𝑠 meanRightStepLength

Step Length

𝑚

sprint30m2nd 𝑠 meanLeftStepLength 𝑚

sprint30mAvg 𝑠 meanBilateralStepLength 𝑚

AFCT505Left 𝑠 minRightStepLength 𝑚

AFCT505Right 𝑠 minLeftStepLength 𝑚

AFCT505Avg 𝑠 minBilateralStepLength 𝑚

AFCTFullLeft 𝑠 maxRightStepLength 𝑚

AFCTFullRight 𝑠 maxLeftStepLength 𝑚

AFCTFullAvg 𝑠 maxBilateralStepLength 𝑚

Left505 𝑠 runningGaitSpeed Running Gait 𝑚/𝑠
Right505 𝑠 kneeLowRangeDisbalance

Disbalance

range [0,1]
Avg505 𝑠 kneeMidRangeDisbalance range [0,1]
arrowheadLeft 𝑠 kneeHighRangeDisbalance range [0,1]
arrowheadRight 𝑠 hipLowRangeDisbalance range [0,1]
arrowheadAvg 𝑠 hipMidRangeDisbalance range [0,1]
endurance1000m 𝑠 hipHighRangeDisbalance range [0,1]
endurance400m 𝑠 ankleLowRangeDisbalance range [0,1]
meanLeftStanceTime

Stance Time

𝑠 ankleMidRangeDisbalance range [0,1]
meanRightStanceTime 𝑠 ankleHighRangeDisbalance range [0,1]
meanBilateralStanceTime 𝑠 kneeRangeOfMotionLeft

Range of Motion

degrees
minLeftStanceTime 𝑠 kneeRangeOfMotionRight degrees
minRightStanceTime 𝑠 kneeRangeOfMotionDiff degrees
minBilateralStanceTime 𝑠 hipRangeOfMotionLeft degrees
maxLeftStanceTime 𝑠 hipRangeOfMotionRight degrees
maxRightStanceTime 𝑠 hipRangeOfMotionDiff degrees
maxBilateralStanceTime 𝑠 ankleRangeOfMotionLeft degrees
totalLeftStanceTime 𝑠 ankleRangeOfMotionRight degrees
totalRightStanceTime 𝑠 ankleRangeOfMotionDiff degrees
meanL2RStepTime

Step Time

𝑠 meanLeftTakeoffDistance

Takeoff Distance

𝑚

meanR2LStepTime 𝑠 meanRightTakeoffDistance 𝑚

meanBilateralStepTime 𝑠 meanBilateralTakeoffDistance 𝑚

minL2RStepTime 𝑠 maxLeftTakeoffDistance 𝑚

minR2LStepTime 𝑠 maxRightTakeoffDistance 𝑚

minBilateralStepTime 𝑠 maxBilateralTakeoffDistance 𝑚

maxL2RStepTime 𝑠 meanSpeed
Speed

𝑚/𝑠
maxR2LStepTime 𝑠 maxSpeed 𝑚/𝑠
maxBilateralStepTime 𝑠 meanAcceleration

Acceleration

𝑚/𝑠2

minAcceleration 𝑚/𝑠2

maxAcceleration 𝑚/𝑠2

meanPosAcceleration 𝑚/𝑠2

meanNegAcceleration 𝑚/𝑠2
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