
MSc Computer Science
Final Project

Generating natural language
triage advice at Dutch
out-of-hours primary care
centers

Gijs Koehorst

Supervisors:
dr. Shenghui Wang (University of Twente)
dr. Faiza A. Bukhsh (University of Twente)
ing. Rob de Negro (Topicus)
dr. Marleen M. Nieboer (Topicus)

December, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente



Acknowledgements

First of all, I would like to thank Topicus for providing me with the opportunity to conduct
this research. In particular, special thanks to Rob de Negro and Marleen Nieboer for their
guidance. The freedom they gave me, along with their interest in my findings, kept me
motivated throughout the process.

Furthermore, I would like to thank Shenghui Wang for the discussions during our
bi-weekly meetings. Her critical questions pushed me forward. I would also like to express
my gratitude to Faiza Bukhsh for her interest in my work.

Also, a big thank you to everyone from the "huisartsenpost" of Arnhem who, in one
way or another, contributed to this research. Without your data and participation in the
user study, this research would not have been possible.

Lastly, I would like to thank my family for always supporting me in my studies, regardless
of the path I chose.

2



Abstract

When a patient calls an out-of-hours primary care center, a triagist goes through
different steps to assess the urgency of the situation. These steps are entered into a software
system. This software is provided by Topicus under the name VIPLive Spoed EPD, for a
large part of the Dutch out-of-hours primary care centers. Triagists are faced with high
workloads at these centers. As such, there is value in reducing their workload. In many
cases, triagists provide an advice which is recorded as natural language. In this study, we
aimed to generate this advice based on historical data. The generated advice could be
presented as a suggestion, which could reduce the typing workload of triagists.

Given their great success in various natural language generation (NLG) tasks, this study
aimed to apply pre-trained language models to tackle this problem. Different models were
finetuned and their performance was compared using ROUGE scores.

A healthcare-specific Med2Med and domain-generic Rob2Rob model were proposed.
Rob2Rob was found to outperform Med2Med, showing that healthcare-specific is not
necessarily beneficial in this situation.

Our data consisted of natural language and categorical features. We proposed an
All-Text approach that simply concatenates all features as plain text using a separator
token. We found that including the categorical features in this approach, improved the
generated advice. Therefore, we also proposed a Fuse-Early approach that first processes
the categorical features separately before fusing them with natural language features. This
approach was found to hurt the performance, showing that the proposed All-Text was
superior in this situation.

To provide more input context, different strategies for concatenating the features in the
All-Text approach were proposed. The best strategy was found to be introducing a new
unique token for each feature into the tokenizer of the Rob2Rob model.

To assess the usefulness of the proposed Rob2Rob model in practice, a user study
was conducted which involved 4 triagists and 3 general practitioners. This study showed
that the Rob2Rob is capable of generating appropriate advice in the majority of cases.
However, domain experts expressed their doubts about the usefulness of the model outputs
in practice.

The same user study also aimed to assess the usefulness of an explainability method
that was proposed, which is based on integrated gradients. We found that the majority
of domain experts did not find this method useful as it was found to be distracting and
occasionally marked irrelevant words.

Given the small sample size of the user study, it could be valuable to conduct a pilot
study where the model is actually integrated into the VIPLive Spoed EPD application, to
really assess the usefulness of the Rob2Rob model in practice.

Keywords: triage advice, language models, NLG, feature fusion, integrated gradients



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Conditional language model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sequence-to-Sequence models for NLG . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Vanilla Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 7
2.2.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Pre-trained language models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Related Work 13
3.1 PLMs in medical domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Multi-modal input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Decoding strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Evaluation methods for text generation . . . . . . . . . . . . . . . . . . . . . 16
3.5 Model explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The Data 18
4.1 Process that produces the data . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Methods 25
5.1 Conditional language model for triage advice . . . . . . . . . . . . . . . . . 25
5.2 Model selection and adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Fusion approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 All-Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Fuse-Early . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Decoding methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1 Repetition penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.2 Beam search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



5.6 Model explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.1 Integrated Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.2 Aggregating attributions . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Experiments 35
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Experiment 1: Rob2Rob vs Med2Med (SQ1 ) . . . . . . . . . . . . . . . . . 35
6.4 Experiment 2: Rob2Rob free-form textual features only (SQ2 ) . . . . . . . 38
6.5 Experiment 3: All-Text vs Fuse-Early (SQ2 ) . . . . . . . . . . . . . . . . . 39
6.6 Experiment 4: Encoder-Decoder weight sharing (SQ3 ) . . . . . . . . . . . . 40
6.7 Experiment 5: Preventing n-gram repetitions (SQ3 ) . . . . . . . . . . . . . 40
6.8 Experiment 6: Beam search (SQ3 ) . . . . . . . . . . . . . . . . . . . . . . . 41
6.9 Experiment 7: Adding more input context (SQ2 ) . . . . . . . . . . . . . . . 41

7 User study (SQ4/SQ5) 48
7.1 Results case questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Results general questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusions 56

A Evaluation metrics 65

B Answers to general questions of user study 66

2



Chapter 1

Introduction

The Nederlandse Triage Standard (NTS) [1], which translates to Dutch Triage Standard,
is a standard for triage in the chain of acute care. Triage refers to the dynamic process
of determining urgency and deciding on subsequent actions. The standard is intended for
emergency department nurses, triage nurses at out-of-hours primary care centers (OOH-
PCCs), and emergency medical dispatchers at ambulance control centers. The goal of the
NTS is to increase the consistency and efficiency of triage in acute care, so that patients
receive appropriate care and treatment as quickly as possible from the right healthcare
professional. The patient and their care needs are the central focus.

When a patient calls an out-of-hours primary care center, a triagist goes through
different steps, outlined by the NTS, to assess the urgency. These steps are entered into
a software system. This software is provided by Topicus under the name VIPLive Spoed
EPD, for a large part of the Dutch OOHPCCs.

1.1 Motivation

A triage is supposed to be quick and due to an ageing population and a general shortage
of medical staff, there is a high workload in Dutch healthcare. This is also the case for
OOHPCCs as reported in Dutch news [56, 21]. Therefore, there is value in reducing
reporting workload of triagists. This reduction can be achieved by minimizing the amount
of typing required by a triagist. This may be realised using Natural Language Generation
(NLG) techniques that are able to generate text that otherwise would have to be typed. By
leveraging historical data, NLG can be used to provide educated suggestions that support
triagists.

NLG is one of the two sub-fields of Natural Language Processing (NLP). Previous work
has shown the application of NLP techniques in the healthcare domain. Most research
focused on classification tasks using natural language input, which is a form of Natural
Language Understanding (NLU). These classification tasks include the prediction of the
medical specialties at hospital admission [3, 32], early detection of dementia [6], predicting
in-hospital cardiac arrest or intensive care unit admission [10], classification of Multiple
Sclerosis severity [13], early prediction of lung cancer [17], predicting emergency department
disposition [50, 65] and extracting the diagnostic goal of an MRI scan of Multiple Sclerosis
patients [44]. On the other hand, NLG has been applied in healthcare to reduce the overall
workload in various areas. For example, hospital documents [19, 30] have been summarized
to allow healthcare professionals to access information in a shorter amount of time. Question
and answering systems have been developed [25, 28, 43, 53] to support/replace healthcare
professionals in less critical situations. NLG techniques have also been applied in an

3



attempt to directly reduce the reporting workload of healthcare professionals. For example,
medical imaging reports have been generated [29]. Others [20] developed an auto-completion
system that determines when a clinician intends to input a clinical concept and provides
suggestions at those specific points. Previous work [37] also generated electronic health
records consisting of natural language, where the input was a combination of text and
tabular data. However, this previous work on generating health records did not leverage
pre-trained language models (PLMs), which are fundamental to state-of-the-art (SOTA)
approaches in various NLG tasks, such as machine translation [42] and text summarization
[64]. These PLMs are pre-trained on a very large corpus in an unsupervised way by for
example masking tokens and training the model to retrieve those tokens. This way a PLM
has knowledge of the language it was pre-trained on. Subsequently, they can be finetuned
in a supervised way on a specific task, while benefiting from the already present knowledge.
Therefore, it is interesting to explore whether these PLMs are useful for NLG in a triage
setting.

In the Spoed EPD application of Topicus, the triage starts with free-form textual input
where the problems of the patient are recorded. This is followed by multiple categorical
inputs, where selections are made out of a predefined set of options. Finally, depending on
the urgency and next step, the triagist potentially writes free-form textual advice. This
advice is given based on previous steps. Therefore, it is interesting to explore whether
PLMs can be used to generate this text advice.

However, there are potential challenges that come with this. First of all, PLMs for
NLG expect both the input and output to be text and are therefore not traditionally
designed to handle categorical data, such as the symptoms that the triagist selects out of
a predefined set of options. Nevertheless, there could potentially be valuable information
in this categorical data that the model can use when generating an output. Secondly,
triage data may contain domain specific language and a distinct writing style. PLMs are
usually trained on publicly available online text, like Wikipedia. However, they might
not extensively incorporate language specific to particular domains, such as healthcare.
To tackle this problem, several PLMs have been trained on healthcare-specific language
[34, 26, 35, 39], including one in Dutch [55]. In some previous work these domain-specific
models outperformed domain-generic models on certain tasks [34, 26], while in other work
they underperformed [44]. Thirdly, evaluating the generated text is not straightforward,
since it may not be definitively right or wrong, and there is no benchmark for comparison.
Even if the generated text appears syntactically similar to the text that was originally
written by a healthcare professional, there could still be errors present. Finally, PLMs are
black box models, which makes it difficult to understand why a certain output is given.
This could make it difficult for healthcare professionals to trust the output of the model. To
mitigate this problem, explainability approaches have been proposed. These approaches are
used to make the decision-making processes of a model more understandable to humans.

1.2 Research questions

The main goal of this thesis is to explore whether PLMs can be leveraged to generate
free-form textual advice of triagist that would otherwise have to be typed during triages
at Dutch out-of-hours primary care centers. Therefore, also given the motivation and
challenges outlined in section 1.1, we formulate the following main research question and
corresponding sub-questions:

RQ: How can PLMs be applied to automatically generate advice of a triagist
during a triage of an out-of-hours primary care center?

4



• SQ1: What is the performance of a domain-specific PLM against a domain-
generic PLM?
This question aims to determine whether healthcare-specific pre-training is
beneficial over domain-generic pre-training when using PLMs to generate
text in a triage setting.

• SQ2: How can natural language and categorical features be combined to
train a PLM that generates triage advice?
Categorical features are not traditionally used as input for language models.
This question aims to determine how we can fuse these features with the
natural language features and to see if they have added value in terms of
model performance.

• SQ3: What strategies with regard to the setup of the PLM can be used to
improve its performance to generate advice?
A language model can have different setups during training and infer-
ence. Therefore, different setups may lead to differences in the model’s
performance to generate advice.

• SQ4: How can we evaluate the generated advice?
This question aims to determine how we can evaluate whether the outputs
of the trained language model are valid and useful in practice.

• SQ5: How can we add explainabilty to the generated advice?
This question aims to determine how we can explain the generated advice
of the model to the end-user.

1.3 Structure of the Thesis

The remaining of this thesis is structured in the following way. Chapter 2 contains
background information on (pre-trained) language models. Chapter 3 discusses related work
on the use of PLMs in the medical domain, the use of multi-modal input data, decoding
strategies, evaluation methods and model explainability. Chapter 4 introduces the dataset
and the cleaning steps that were performed. Chapter 5 presents the proposed methodologies
such as the models that were used. Chapter 6 reports on all the experiments that were
carried out to answer our research questions. Chapter 7 presents the user study that was
conducted to evaluate our model. Chapter 8 concludes this thesis and discusses limitations
and future work.

5



Chapter 2

Background

This chapter provides the background knowledge for this thesis. Section 2.1 introduces
the concept of a conditional language model, which is used in this work to generate triage
advice. Section 2.2 introduces the encoder-decoder architecture and gives an overview of
specific encoder-decoders such as RNNs and transformers, which form the basis of the
PLMs used in this research. Finally, section 2.3 gives a brief introduction to PLMs, which
are leveraged in this work.

2.1 Conditional language model

A conditional language model assigns probabilities to a sequence of words W = (w1, w2, ..., wn)
given some context C, which for example consists of the input text. So, it models the
probability distribution P (W |C). If we have a model with some parameters θ, then the
goal is to find:

argmax
W

Pθ(W |C) (2.1)

Using the chain rule we can decompose this to:

Pθ(w1, w2, ..., wn|C) =

n∏
t=1

Pθ(wt|C,w1, w2, ..., wt−1) (2.2)

Where w1, w2, ..., wt−1 represent the previously generated words. This defines a generative
model that can generate words in an autoregressive manner. So, at each step t a conditional
language model produces a probability distribution p over all possible next words. This
probability is penalized for being different from the true distribution p̂, which is simply a
one-hot vector representing the actual next token. Cross-entropy can be used to measure
the difference between these two probability distributions:

L(p̂, p) = −p̂log(p) (2.3)

Since p̂, is a one-hot vector we have:

L(p̂, p) = −log(pwt)) = −log(p(wt|w1, w2, ..., wt−1, C)) (2.4)

Therefore, we can train a conditional language model by minimizing the per word negative
log-likelihood:

L(θ) = − 1

T

T∑
t=1

logPθ(wt|w1, w2, ..., wt−1, C) (2.5)

6



Encoder Decoder

Context Vector

Input Sequence

Output Sequence

Figure 2.1: High level encoder-decoder architecture

Note that the loss is computed based on the actual previous tokens. This is called teacher
forcing [59], where the model is forced to base its predictions on correct previous words.
This should lead to more stable training and faster convergence.

2.2 Sequence-to-Sequence models for NLG

Traditional Deep Neural Networks (DNNs) require that the inputs and targets are encoded
by vectors of fixed dimensions. Therefore, they are not suitable for tasks where the inputs
and targets are sequences of variable length, which is the case in sequence-to-sequence tasks.
So instead, sequence-to-sequence models are used. Sequence-to-sequence models often come
in the form of an encoder-decoder architecture. As the name implies, this architecture
consists of an encoder and a decoder. The encoder is responsible for processing the input
sequence and transforming it into a fixed-length representation, which is commonly referred
to as the context vector. This vector represents the contextual information of the entire
input sequence. The decoder in turn uses the context vector to produce an output sequence
in an autoregressive manner. It also takes into account the tokens that it has already
generated. A high-level overview of the encoder-decoder architecture is given in figure 2.1.
In the following subsections we discuss different implementations of the encoder-decoder
architecture.

2.2.1 Vanilla Recurrent Neural Networks

At first, these architectures consisted of two simple Recurrent Neural Networks (RNNs)
[11], one for the encoder and one for the decoder as shown in figure 2.2. Each element
of the input sequence is fed to the encoder one by one. At each step a hidden state ht is
computed based on the previous hidden state ht−1 and the current input element xt:

ht = g1(Whhht−1 +Whxxt + bh) (2.6)

Where bh is the bias for the hidden state and Whh and Whx are the weights for the previous
hidden state and the current input respectively. g1 is an activation function, like for example
tanh. When the encoder has processed the final element of the sequence, we end up with a
final hidden encoder state. This encoder state functions as a context vector representing
the input sequence and is used as the initial hidden state of the decoder. The hidden state
of the decoder ht is calculated based on the previous hidden state ht−1 and previous output
yt−1:

ht = g2(Whhht−1 +Whyt−1yt−1 + bh) (2.7)

7



RNN

x0

RNN RNN....

x1 xt

h0 h1 ht RNN

<START>

RNN RNN....

<STOP>y0 y1

Encoder state

Encoder Decoder

Figure 2.2: Encoder-decoder architecture with vanilla RNNs

Where bh is the bias for the hidden state and Whh and Whyt−1 are the weights for the
previous decoder hidden state and the previous decoder output respectively. g2 is again an
activation function. The decoder computes an output based on the new hidden state ht:

yt = g3(Whyht + by) (2.8)

Where by is the bias for the output and Why are the weights for the current decoder hidden
state and the output. g3 is again an activation function. This process continues until the
decoder produces a stop token for yt, which marks the end of the output sequence. Due to
vanishing/exploding gradients [7], and the fact that all memory is being compressed into a
single context vector of fixed size, RNNs struggle with longer sequences.

2.2.2 Long Short-Term Memory

To mitigate the short term memory problems of vanilla RNNs, Long Short-Term Memory
(LSTM) cells [23] were introduced into the recurrent architecture [52], which should lead
to less forgetting of initial elements. Each RNN cell of the unfolded encoder-decoder
architecture of figure 2.2 is replaced by an LSTM cell, which is depicted in figure 2.3.
First, the current input xt and previous hidden state ht−1 go through a forget gate which
determines which fraction of the long term memory is retained in the cell state c:

ft = σ(Whfht−1 +Wxfxt + bf ) (2.9)

Then, the current input xt and previous hidden ht−1 state go through the input gate. Here
the candidate long term memory qt is computed:

qt = tanh(Whqht−1 +Wxqxt + bq) (2.10)

A sigmoid function of this input gate determines what fraction of ct is actually remembered
long term:

ut = σ(Whuht−1 +Wxuxt + bu) (2.11)

So, the new cell state ct is computed based on the output of the forget and input gate:

ct = ct−1ft + utct (2.12)

Finally, the output gate updates the short-term memory. The new cell state ct is passed
through a tanh, to determine the potential new short-term memory, and the current input

8



Xt

tanh tanh

Long term memory ct-1 ct

ht

ft

ut ct
ot

Whf

Wxf Wxu Wxc Wxo

bf bu bc

bo

Forget gate Input gate Output gate

Whu Whc Who

Short term memory ht-1

Figure 2.3: LSTM architecture

xt and previous hidden ht−1 again go through a sigmoid, to determine how much of that
potential short-term memory is passed on as the new short-term memory ht:

ht = σ(Whoht−1 +Wxoxt + bo)tanh(ct) (2.13)

As can be seen in figure 2.3 and equation 2.12, the cell state c itself does not go through
any weight operations, therefore it does not suffer from vanishing/exploding gradients.
Thus, compared to vanilla RNNs, it deals better with longer sequences. However, the short
term memory h is still exposed to vanishing/exploding gradients.

Another potential problem in the described encoder-decoder architecture, is that the
encoder bases the hidden states only on previous context. It can be beneficial for the
encoder to also look to future context. This can be achieved with bidirectional RNNs [46],
where the input is passed once from left to right and once from right to left. The same
concept applies to bidirectional LSTMs, since they are still RNNs. In sequence-to-sequence
models only the encoder can be bidirectional, because the decoder autoregressively generates
a sequence and therefore cannot look into the future.

2.2.3 Attention mechanism

There is still a bottleneck problem, where all memory has to be compressed into one
context vector of fixed length. Therefore, also LSTMs still struggle with long sequences.
An attention mechanism [4] can be introduced to mitigate this problem. This mechanism
has different forms, but the main idea is that the context vector (encoder output) is given
access to all hidden states instead of only the final hidden state. At each decoder step a
context vector is calculated by taking a weighted sum over all encoder hidden states:

ci =
x∑

j=1

aijhj (2.14)

Where, ci is the context vector at decoder step i, hj is j-th encoder hidden state, x is the
number of encoder hidden states and aij is the attention weight for encoder hidden state j
at decoder step i. The attention weight determines how much attention the decoder should
pay at step i to encoder hidden state j. These weights can for example be learned using

9



a fully connected linear layer, which takes in the previous decoder output i − 1 and all
encoder hidden states [h1..hx] and outputs an attention score for each encoder hidden state
hj . Using a Softmax, these attention scores are converted to attention weights aij that are
used to calculate the context vector in equation 2.14. The model can learn the weights of
the introduced fully connected layer. Therefore, it can learn to which encoder hidden states
it should attend, given the encoder hidden states and the previous decoder output.

2.2.4 Transformers

In 2017, Vaswani et al. [54] introduced the transformer architecture, which uses an attention
mechanism called self-attention. They showed that the self-attention mechanism in itself is
powerful enough, and that recurrence is not necessary when there is enough data. This
means that the tokens of the input sequence do not depend on each other anymore, which
allows for parallel computation, leading to decreased training time.

The architecture of a transformer is depicted in figure 2.4. The inputs are word
embeddings where words are represented by vectors. Positional encoding is added to these
inputs. This is required, since there is no recurrence in this architecture, so there would
be no information about (relative) token position, without positional encoding. The word
embeddings are fed through a Multi-Head self attention block. Self attention allows each
word in the input to attend to all other words in the input. This way the model can learn
to associate certain words with other words. In contrast to LSTMs, transformers do not
struggle with really long sequences, because the self-attention mechanism has a potentially
infinite reference window, given infinite computing resources. The self attention mechanism
is depicted in figure 2.5. Word embeddings of the input sequence are fed through 3 different
fully connected linear layers resulting in Query Q, Key K and Value V vectors. The dot
product between Q and V results in a attention score matrix, where each combination of
words has a score which represents how much those words should attend to each other. The
scores are scaled down by dividing by

√
dk, where dk is the dimension of Q and V . This

should lead to more stable gradients [54]. The Softmax of these scores is computed resulting
in attention weights. Finally, the dot-product between V and the attention weights is taken.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.15)

If the attention weight of a word is higher, this word is considered more important. To make
this MultiHead attention (as shown in figure 2.4), Q, K and V are split into N vectors,
which leads to N Heads. Each split goes through the self attention process shown in figure
2.5 individually. The intuition behind having multiple heads is that each head can learn
something different by attending to information of different sub-spaces. The individual
outputs of the heads are concatenated before going through a fully-connected linear layer.
The result is processed through a feed forward fully-connected network, which marks the
end of the Encoder part of the architecture.

The decoder part of the architecture receives the encoder output as well as previous
decoder outputs. The previous outputs are positionally encoded in the same way as
the inputs of the encoder. They then go through Masked Multi-Head Attention. This
mechanism is the same as shown in figure 2.5 apart from one difference. After scaling, the
attention scores are masked, so that the decoder cannot condition on future words. This is
necessary because the decoder is autoregressive and generates an output sequence token by
token. The output of this Masked Multi-Head Attention block functions as V for the other
Multi-Head Attention block in the decoder. The output of the encoder functions as K and

10



Figure 2.4: Transformer architecture from [54]

Q. This enables the decoder to decide, which encoder input should be attended to the most.
From there, this Multi-Head Attention block works the same as the one in the encoder.
Also here, the output is fed through a fully connected feed forward network. The output of
this network goes through a final linear layer and Softmax, resulting in probability scores
for each word in the vocabulary. The decoder outputs the word with the highest probability.
This process is repeated until the decoder outputs a stop token.

Each block in the encoder and decoder also has a residual connection. The residual
connection skips a Multi-Head Attention block or Feed Forward network and is then simply
added to the output of that block. This way it produces a signal which is not affected by
the vanishing gradient problem, which mitigates this problem to some extent.

2.3 Pre-trained language models

Deep neural networks, that are often used in NLP, are known for their large number of
parameters. Consequently, the availability of labeled data is often a limiting factor in the
performance of such models. To mitigate this problem, PLMs were introduced. These
models are pre-trained on large corpora in an unsupervised manner. They are, for instance,
trained to fill missing words in sentences. These PLMs have achieved great results in NLP

11



Linear layer Linear layer Linear layer

MatMul

Scale

SoftMax

MatMul

Q K V

Figure 2.5: Self-attention edited from [54]

when they are finetuned on a downstream task in a supervised way. Therefore, this has
lead to a paradigm shift from supervised learning to unsupervised pre-training followed by
finetuning on a downstream task [57].

In theory any language model can be pre-trained. However, most PLMs use transformer
architectures, since these allow for parallelization. This significantly speeds up training,
which enables pre-training on huge corpora. In general, we can distinguish three different
transformer architectures that form the basis for PLMs:

• Encoder-only architectures consist of a bi-directional encoder that is trained by
recovering randomly masked tokens in the input sequence. They are traditionally
used for Natural Language Understanding (NLU) tasks.

• Encoder-Decoder architectures consist of a bi-directional encoder and an autoregressive
unidirectional decoder. They can be pre-trained by randomly masking tokens at the
source, and retrieving those tokens at the target. They are traditionally used for a
combination of NLU and NLG, in particular sequence-to-sequence tasks.

• Decoder-only architectures consist of a uni-directional decoder and can be pre-trained
by autoregressively predicting tokens. They are traditionally used for NLG tasks.

12



Chapter 3

Related Work

This chapter introduces related work. First, an overview is given of the use PLMs in the
medical domain. Then related work that use multi-modal data as input is introduced.
Furthermore, it presents different decoding strategies that are used when generating text
with PLMs. Also, different evaluation metrics used in NLG are presented. Finally, related
work on attribution methods is introduced.

3.1 PLMs in medical domain

In the medical domain, BERT [16] has so far been the most used PLM. It is for example
used to create embeddings of clinical text, which are then further processed through a
neural network to predict whether a patient will develop dementia [6]. Others fine-tuned a
BERT model to predict, based on unstructured text, to which medical specialty a patient
should be referred [32]. D’costa et al. [13] used BERT in combination with a CNN and
classification layer to predict the multiple sclerosis severity of patients.

However, PLMs have not been leveraged for NLG in the medical domain. Previous work
[43] has used encoder-decoder architectures with BiLSTMs to create mental healthcare
chatbots. They compared greedy and beam search and found that a beam search decoder
produced significantly more empathetic responses with higher precision in terms of BLEU-
score. Liu [37] used the vanilla transformer to generate electronic health records. This
transformer was not pre-trained, but its components do form the basis for PLMs. The
multi-modal input of the model consisted of structured and unstructured text such as
demographic data, medication information, lab test information and past medical notes.
They used an All-Text approach, where the different inputs were concatenated into a single
string with special delimiter tokens. The goal of the model was to predict the sequence of
a clinical note, based on some note-context that consists of past data extracted from an
Electronic Health Record, a note type and a hint of 10 tokens of the note that is currently
being written. They showed that commonly-used templates in the dataset were learned
and reproduced by the transformers. They evaluated the models using perplexity per token,
accuracy of next token and ROUGE-1 and ROUGE-2. However, no evaluation by domain
experts was done.

Domain-specific models have shown benefits over domain-generic models, for example
in text-mining tasks [34] and predicting 30-day readmission using discharge summaries [26].
Currently, the only Dutch, healthcare-specific PLM is MedRoBERTa.nl [55], which was
pre-trained on nearly ten million hospital notes.

Elfrink et al. [17] adopted two RoBERTa [38] based architectures to predict lung cancer
using Dutch medical notes: MedRoBERTa.nl and the domain-generic PLM RobBERT [15].

13



The performance of these models was comparable for this classification task.
Rietberg et al. [44] used the domain-specific, Dutch, model MedRoBERTa.nl and the

domain-generic, Dutch, models BERTje [14] and RobBERT [15] to classify unstructured
reports on their diagnostic goal. They showed that BERTje outperformed the other models,
which shows that a domain specific PLM does not have to be superior for certain tasks.

Dutch healthcare-specific PLMs have, to our knowledge, not been used to generate
text. MedRoBERTa.nl is encoder-only and is therefore not traditionally used for NLG
tasks. However, Rothe et al. [45] showed that these models can successfully perform
various NLG tasks when they are used as both the encoder and decoder in an encoder-
decoder architecture. This requires two adjustments to the model when it is used in the
decoder: masking the self-attention mechanism to hide the right context and adding an
encoder-decoder attention mechanism.

3.2 Multi-modal input

Electronic health records usually consist of both structured (tabular) and unstructured data
(unstructured text). Therefore, this data is multi-modal. PLMs traditionally expect the
input to be a sequence. However, there are ways to incorporate tabular data into the input.
For example, T5 [42], a PLM trained to perform a variety tasks, took a naive approach to
incorporate structured data by simply casting the values to a text format, such that all
tasks were converted to text-to-text.

Various fusion strategies exist to incorporate categorical data, but in general we can
distinguish All-Text, Fuse-Early and Fuse-Late [47], which are depicted in figure 3.1.
The All-Text approach simply converts the numeric and categorical variables to strings,
before concatenating them to the unstructured text, resulting in a string that contains
all modalities. In Fuse-Early an embedding is learned for each categorical and numerical
field. These embeddings are then jointly fed through a transformer. This strategy to embed
categorical variables is for example used in the TabTransformer architecture [27], which is
designed to model tabular data using contextual embeddings. The Fuse-Late approach first
processes each modality separately through networks and only aggregates them near the
end using pooling methods.

In the experiments of Shi et al. [47], the Fuse-Late approach gave the best scores on
average, but the differences were minor. We also have to note that all of their tasks were
classification or regression. The Fuse-Late approach does not make sense for NLG tasks,
because the strategy fuses near the output layer. In a NLG task this output layer has to be
the decoder, which means it would simply be a Fuse-Early strategy as depicted in figure
3.1.

To our knowledge, apart from the previously discussed work of Liu [37], there is no
previous work that fuses text and categorical data for a NLG task in the medical domain.
Furthermore, apart from the discussed work by [47], different fusion strategies are rarely
compared. Therefore, next, we will also discuss previous work in the medical domain that
uses multi-modal data, but not necessarily for NLG.

Zhang et al. [65] used a "reason for visit" text field to improve models that predict
whether someone is admitted into the hospital. They used bag-of-words in combination
with principal component analysis (PCA) to get a representation of the free text field.
These representations were combined with structured data about a patient to train logistic
regression and neural network models. Including the free text representations resulted in
an improvement in model performance.

Arnaud et al. [3] used triage notes to make an early prediction on the medical specialities

14



Figure 3.1: Fusion strategies for unstructured text and tabular data from [47]

at hospital admission. They used a Fuse-Late approach, where a MLP and a CNN were
trained in parallel on structured data and unstructured triage notes respectively. The
resulting outputs were concatenated and fed through another MLP. The inclusion of
unstructured triage notes boosted the performance.

Chen et al. [10] combined numerical representations of unstructured clinical narratives
and structured clinical and demographic data, before feeding it through various machine
learning models to predict possible critical outcomes. Including the clinical narratives
boosted performance. The model outperformed emergency physicians in the prediction
task.

Jing et al. [29] used a CNN in combination with co-attention and a hierarchical LSTM
to automatically generate medical imaging reports.

All of this previous work that uses multi-modal data in the medical domain [3, 10, 29],
do not leverage PLMs and are therefore potentially missing out of performance, given that
they are SOTA in many NLP/NLG tasks.

3.3 Decoding strategies

Text generated by conditional language models can be far from perfect. The quality of
the generated text is partly determined by the decoding strategy. The simplest strategy is
Greedy search, which simply outputs the token with the highest probability at each time
step. Therefore, posterior tokens with high probabilities may be hidden. So, it may not
always lead to an optimal sequence.

Beam search aims to mitigate this problem by keeping track of the n most likely beams
and finally choosing the beam with the highest overall probability. However, decoding
strategies that attempt to find high likelihood sequences have been found to generate
undesired text that is incoherent and gets into repetitive loops [62, 24].

Other decoding strategies were proposed to generate higher quality text. Top-K sampling
[18] involves the filtering of the K most probable candidate words for the next sequence
element, followed by a redistribution of the probability mass solely among these K candidate,
which should lead to more human-sounding text. However, because K is fixed, problems
can occur when some words are sampled from a sharp distribution, whereas others from a
flat distribution.

Therefore, Nucleus Sampling [24] was proposed. It selects the minimum set of words
whose cumulative probability surpasses a given probability threshold p, rather than confining

15



the selection to the K most probable words. The probability mass is then redistributed
among this word set. This allows for dynamic variation in the size of the word set, which is
determined by the distribution of probabilities for the next word.

Welleck et al. [58] argue that repetitive word sequences are caused by the model training
approach. Their findings indicate that, based on human evaluations, beam search can
generate more fluent text than Nucleus Sampling, given the modification of the model’s
training objective.

3.4 Evaluation methods for text generation

Various standard metrics, such as accuracy and F1, are used to evaluate the performance
of machine learning models. These metrics are straightforward in for example classification
problems, because the number of possible outputs is fixed. So, the prediction is either
correct or incorrect. This is not the case for models that generate text.

Therefore, other metrics, such as ROUGE [36] and BLEU [40] and METEOR [5] were
introduced. These measures give a score based on the number of matching n-grams between
the generated text and the label. Therefore, these scores say something about the syntactical
similarity between the prediction and the label. However, a limitation of these metrics is
that even if a generated piece of advice is syntactically similar to a reference piece of advice,
a subtle difference could mean the generated advice is incorrect.

More recently, PLMs like BERTScore [63] and BARTScore [61] have been adopted to
score the predictions based on semantic similarity. By including semantics, these scores
should be more similar to human judgements compared to syntactic scores. However,
a subtle difference in the generated advice could still make it incorrect. Additionally,
calculating these scores is resource intensive due to the use of PLMs.

3.5 Model explainability

Explaining why language models give certain outputs is difficult given the size and complexity
of the architectures. Nevertheless, explainability is important, especially for adoption of
such a model in practice. Calculating input attributions is a commonly used method to
try to explain model outputs. Different feature attributions methods have been proposed.
For example, the product of gradients and feature values [49] can be used as a measure of
feature importance for a certain output. Other methods, such as DeepLIFT [48] and Layer-
wise relevance propagation (LRP) [8] use back-propagation based approaches, where the
prediction is back-propagated through the network towards the individual features. However,
Sundararajan et al. [51] argue that these gradient and propagation-based approaches violate
two fundamental axioms for attribution methods. The first axiom is Sensitivity, which
states that if an input and baseline differ in one feature but have a different output, then
the feature with different values should receive a non-zero attribution. The second axiom is
Implementation Invariance, which states that if two networks with different implementations
yield identical outputs for all inputs, then the input attributions should also be identical.
To satisfy these axioms they proposed an attribution method called Integrated Gradients
[51]. This method defines a baseline input x′, for example a zero vector, from which a
straight-line path is interpolated to the actual input x. This path is divided into several
steps and the gradients are computed for each step. Integrated gradients are derived by
accumulating these gradients. So, integrated gradients can be described as the integral of
gradients along a direct line from the baseline x′ to the input x. For a network F , this can

16



be approximated for feature i of input x and baseline x′ as follows:

IGi(F, x, x
′) = (xi − x′i)

m∑
j=0

∂F (x′ + j
m(x− x′))

∂xi

1

m
(3.1)

where m is the number of steps along the straight-line path from x′ to x. Attribution
methods cannot be directly applied to language generation, because there is not a single
output. However, it can be used to calculate the attributions of each input and previously
generated output token for every output token.

3.6 Research Directions

In the medical domain, PLMs have predominantly been employed for NLU tasks. Domain-
specific PLMs have also been developed and utilized, but their performance varies compared
to domain-generic PLMs. Also, there is a scarcity of research on the use of PLMs for NLG
tasks specifically in this domain. Moreover, the exploration of utilizing multi-modal data
as input for PLMs in this area is also lacking. Additionally, there is limited research on
the various fusion strategies for integrating such multi-modal data. Furthermore, there
are various evaluation metrics for NLG, but they have their limitations in assessing the
appropriateness of generated advice. Also, decoding strategies can impact the performance
of language models. Finally, explainabality methods have been proposed to explain model
outputs. Therefore, this leaves the following research directions when generating the advice
of a triagist:

1. Exploring domain-specific versus domain-generic PLMs in a triage setting.

2. Exploring the usefulness of including categorical data as input to PLMs in a triage
setting.

3. Exploring different fusion strategies when including categorical data as input to PLMs
in a triage setting.

4. Exploring how we can evaluate the usefullness of our fintuned PLM.

5. Exploring explainability methods to make the decision-making processes of the
finetuned PLMs more understandable.

17



Chapter 4

The Data

In this chapter, we will cover the available dataset. First, we describe the process that
produced the data. Then we will describe the dataset and its fields, followed by an analysis
of the data. Additionally, we will outline the cleaning steps that were performed. Finally,
we will discuss the data that will be used as input for our models.

4.1 Process that produces the data

When a patients calls an out-of-hours primary care center, a triagist assesses the urgency
based on the following steps:

1. ABCD-check: is there a risk to life? ABCD stands for airway, breathing, circulation
and disabilities

2. Subjective DA: What is the problem of the patient? In the application of Topicus
this is represented by the Subjectief Doktersassistent (SDA) field. This field is filled
by the triagist and contains the subjective problems of the patient. Although this is
a unstructured text field, there is some structure in it consisting of 5 points:

• Klacht/beloop: what problems is the person, who calls/visits, experiencing?

• Hulpvraag: what is the care question of the person calling/visiting?
• Voorgeschedenis: history
• Medicatie: medication

• Algemeen: general points

3. The triagist selects the entry symptoms from a pre-defined list of options.

4. Based on these symptoms the triagist is presented with a set of questions. For each
question the triagist can select an answer from a pre-defined set.

5. Determine urgency: based on triage criteria and triage type (physical or telephone
triage). The triage nurse can adjust the urgency based on context, warning signs, and
risk groups. The possible urgency levels are:

• U0 : loss of ABCD - resuscitation

• U1 : unstable ABCD - immediate danger to life (immediate)
• U2 : threat to ABCD or organ damage (as soon as possible)

• U3 : realistic chance of harm/human reasons (within a few hours)

18



• U4 : negligible chance of harm (within a day)

• U5 : no chance of harm (next working day)

6. The triagist determines the next step out of a set of options:

• AMBU: ambulance

• SEH: Spoedeisende hulp (emergency center)

• VLK behandelaar

• HA: Huisarts (visit General Practitioner)

• Politie: Police

• FastTrack

• Advies: Advice

7. If the Urgency level is U4 or U5, the triagist gives advice to the patient. This can
either be advice selected from a pre-defined list or tailored advice as unstructured
text.

After every triage that is carried out, a general practitioner who is present at the call center
goes through the following steps:

1. Subjective GP: the patient indicates what he/she is suffering from. This step is
usually copied by the GP from the SDA field of the triagist.

2. Objective: objective observations in the case the next step is HA (visit the GP).

3. Evaluation: making an evaluation based on the Subjective and Objective step.

4. ICPC: International Classification of Primary Care, which is a standard for encoding
and classifying complaints, symptoms, and conditions in primary care.

5. Plan: a plan is made for the patient. If the next step of the triage was an advice,
the GP usually copies the advice from the triagist.

4.2 Dataset

The data comes from a single Dutch out-of-hours primary care center. It includes information
of triages that took place between 2015 and 2023. The data consists of 901902 rows. Each
row represents a conducted triage. The fields in table 4.1 represent the data that is
produced by triagists during triages. sda_regel contains different sub-fields inside the
unstructured text. Therefore, we extracted these sub-fields(klacht_beloop, hulpvraag,
voorgeschiedenis, medicatie, algemeen) into separate fields using regular expressions.
Their description is given in table 4.3. The fields in table 4.2 represent what is entered by
a GP after a call.

4.3 Data analysis

Given that many fields are optional, the data has many null values. Figure 4.1 shows the
fraction of null values for each column. We see from this figure that aanvullendadvies,
which is the unstructured text advice of triagist that we want to predict, is missing in many

19



Table 4.1: Fields entered by triagist during call. Whether a field is optional is in
this case based on the NTS [1].

Name Description Data type Optional Notes
begintijd Start date and

time of the triage
DateTime No

eindtijd End date and
time of the triage

DateTime No

sda_regel unstructured text
entered by the
triagist describ-
ing the symp-
toms, questions
of the patient
and patient his-
tory

String No Some pre-filled
structure present

ingangsklachten Symptoms of the
patient

Enum No

vragen Questions to be
asked based on
ingangsklachten

Enum No Possible values
determined by
ingangsklachten

antwoorden Answers to the
questions of
vragen

Enum No Possible values
determined by
vragen

nts_urgentie Triagist can de-
viate from pro-
posed urgency

Enum No Possible val-
ues based on
ingangsklachten
and antwoorden

nts_urgentie
_gekozen

Urgency level
chosen by the
triagist

Enum No Is the same as
nts_urgentie if
the triagist does
not deviate

nts_vervolgstap Next step for the
patient proposed
by the system
based on the ur-
gency

Enum No System automat-
ically selects it
based on the
urgency

nts_vervolgstap
_gekozen

Next step for the
patient chosen by
the triagist

Enum No Is the same as
vervolgstap if
the triagist does
not deviate

gekozen_advies Advice chosen by
triagist

Enum Yes

aanvullend
_advies

Advice given by
triagist in un-
structured text
form

String Yes

20



Table 4.2: Fields filled by GP after a call

Name Description Data type Optional Notes
sha_regel unstructured text

entered by GP
describing the
symptoms, ques-
tions of the pa-
tient and patient
history

String No Possibility to
copy sda_regel
from triagist

o_regel Objective obser-
vations by GP

String Yes Only applica-
ble for physical
triage

e_regel Evaluation by
GP

String No

p_regel Treatment plan
for the patient

String No Advice by triagist
considered

Table 4.3: Fields extracted from sda_regel

Name Description Data type Optional
kacht_beloop Symptoms and

course of those
symptoms as de-
scribed by the
patient

String No

hulpvraag Help request of
the patient

String Yes

voorgeschiedenis Medical history
of the patient

String Yes

medicatie Medication the
patient is taking

String Yes

drugs_alcohol Whether the pa-
tient took any
drugs or alcohol

String Yes

cases. This is because this advice is usually only written when nts_vervolgstap, which is
the next step, is "Advies" which is an advice from the triagist.

In figure 4.2 we see that "Advies" is chosen less than "HA". This explains the lack of
filled advice fields, since "HA" means the patient should visit the center, which means an
advice by the triagist is not necessary. Figure 4.3 confirms this, since U3 usually leads to
"HA", while U5 leads to an advice by the triagist.

The following points are the result of analysing the unstructured text fields:

• The aanvullendvies sometimes starts with an abbrevation like "iom reg arts", which
means the advice follows from a discussion the triagist had with the GP that is present
in the call center.

• Depending on the date of the triage, COVID can have an impact on the contents of
the text field, since they for example checked whether a person had COVID symptoms

21



Figure 4.1: The fraction of rows that has no value for each column of the data

Figure 4.2: Occurrence of each the possible nts_vervolgstap as fraction of total
rows

22



Figure 4.3: Occurrence of each possible nts_urgentie as fraction of total rows

at the start of a call during that time.

• Sometimes the triagist wrote an advice in the algemeen field which is part of
sda_regel instead of in aanvullend_advies.

• The start of p_regel is often automatically filled with the aanvullend_advies and
gekozen_advies in case those fields have values.

• The urgency level is sometimes also mentioned in algemeen

• First names or abbreviations like "mw."(ms) or "mr." are mentioned to refer to the
caller in unstructured text fields.

4.4 Data cleaning

The dataset underwent a series of cleaning procedures as outlined below:

• Some rows were corrupted, where the id was a string of another column, these rows
were removed.

• When a field of table 4.3 is not applicable, triagists use different methods to indicate
this. Some leave the field empty while others for example type "geen", which means
none. We account for this by converting these different cases to an empty string.

• gekozen_adviezen included HTML elements of the web application. These elements
were removed using regular expressions.

• Given our focus on generating the unstructured text advice of the triagist, we drop
rows where this field is missing.

23



• Although, most fields are not optional according to the NTS [1], the application
allows the user to skip the urgency and next step, but the user has to give a reason
for skipping. An example is when the person calling is asking for certain medication.
We exclude these cases where rows are missing the urgency level or next step.

• We exclude rows where the length of aanvullend_advies is less than 20 characters.
These advices are often vague and rarely contain useful information.

4.5 Input Data

The input data to our models consists of the following fields:

• All free text fields from table 4.3

• ingangsklachten from table 4.1

• vragen and antwoorden from table 4.1

• nts_urgentie and nts_urgentie_gekozen from table 4.1. We include both of these
fields, because it shows whether a triagist changed the urgency, which could be
valuable information for the model.

• nts_vervolgstap and nts_vervolgstap_gekozen from table 4.1. We include both
of these fields, because it shows whether a triagist changed the next step, which could
be valuable information for the model.

• The day of the week (Monday - Sunday), which is extracted from begintijd from
table 4.1. This can be valuable information, because triagists may give different
advice on certain days (for example during the weekend versus a weekday).

The values of the aanvullend_advies field will form the labels of our input data.

24



Chapter 5

Methods

This chapter goes over the proposed methodologies. First, we formalize our conditional
language model. Next, we go over the models that were selected and how we adapted
these to our use case. Then we will go over two fusion approaches that are used to
combine unstructured text and categorical features. Next, we define the decoding strategies
that were used. Furthermore, we define the evaluation metrics that are used to compare
models. Finally, we define our method for adding explainability to our model outputs, using
integrated gradients

5.1 Conditional language model for triage advice

Our problem can be modeled using a conditional language model that specifies a probability
distribution P (w1, w2, ..., wn|c) over a sequence of n words w1, w2, ..., wn given a context c
as also discussed in section 2.1. In our case, the unstructured text advice A is the sequence
to be predicted. The context C is the input data outlined in section 4.5 and consists of
the entry symptoms and their course SC, the question Q, the history H, medication M,
drugs/alcohol D, selected entry symptoms S, questions and answers QA, proposed urgency
PU, chosen urgency CU, proposed next step PS and chosen next step CS and the day of
the week W. So, we formally define our language model as:

P (A|C = (SC,Q,H,M,D, S,QA,PU,CU, PS,CS,W )) (5.1)

We train our language models using the cross-entropy loss. So, when generating an advice
A consisting of T words given some context C, the training objective is to minimize the
per word negative log-likelihood:

L(θ) = − 1

T

T∑
t=1

logPθ(wt|w1, w2, ..., wt−1, C) (5.2)

We use teacher forcing [59] during training, which should lead to more stable training and
faster convergence.

5.2 Model selection and adaptation

To answer SQ1 we require two PLMs, one which is healthcare-specific and another which
is domain-generic. We also require similar underlying architectures for both PLMs for a

25



fair comparison. Also, we are restricted to models that are pre-trained on Dutch text, since
the data is Dutch. The only Dutch, healthcare-specific model is MedRoBERTa.nl [55],
which is a RoBERTa-based [38] model. Given this limitation, we compare this model to
a Dutch, domain-generic RoBERTa-based model called RobBERT [15]. However, these
RoBERTa-based models consist of twelve encoder blocks and are encoder-only, which means
they are not traditionally used for NLG. Therefore, we adopt the approach from Rothe
et al. [45], which we discussed in section 3.1. MedRoBERTa.nl and RobBERT will both
function as encoder and decoder, such that we have two encoder-decoder models that we
will call Med2Med and Rob2Rob respectively. An overview of these models is given in table
5.1.

Table 5.1: Models that will be used in the experiments

Name Encoder Decoder Pre-training
Med2Med MedRoBERTa.nl MedRoBERTa.nl Healthcare-specific
Rob2Rob RobBERT RobBERT Domain-generic

The architecture for Rob2Rob is depicted in figure 5.1. In the RobBERT decoder we
mask the self-attention mechanism, such that the right context is hidden, i.e. the decoder
can not look into the future when generating outputs. Furthermore, we add an extra
attention block to the RobBERT decoder, such that we create a connection between the
RobBERT encoder and decoder. The weights of this new attention block are randomly
initialized because they are introduced by us and are therefore not pre-trained. The other
attention blocks utilize the pre-trained weights from the model checkpoints. With these
modifications, the architecture corresponds to the vanilla transformer discussed in section
2.2.4. The architecture of Med2Med is exactly the same. Only pre-training is different.
This way we can see if domain-specific pre-training is useful for our triage situation.

The proposed architectures expect the input to be tokenized. RobBERT and MedRoBERTa.nl
have accompanying tokenizers that have also already been trained. Therefore we also use
these tokenizers for tokenizing the text input of Rob2Rob and Med2Med. Both tokenizers
use byte-level Byte Pair Encoding(BPE). The vocabularies of the RobBERT and
MedRoBERTa.nl tokenizers have different sizes. RobBERT has 40000 possible tokens
while MedRoBERTa.nl has 52000 tokens. The separator token of the tokenizers is used to
separate different input features. In case of RobBERT and MedRoBERTa.nl this is the
</s> token. We considered introducing new special tokens into the tokenizer to separate
each feature, which can potentially make it easier for the model to distinguish between
different features. However, this increases the vocabulary of the tokenizer and thereby
also increases the model size. Also, the model may be able to distinguish between the
features based on the separator token and positional encoding. Therefore, we chose to use
the already present separator token.

5.3 Fusion approaches

Our input consists of two modalities: unstructured text and categorical data. However,
our architectures from 5.2 are traditionally designed to handle sequences. Specifically, they
have been pre-trained on free-form text. Therefore, we propose two fusion approaches to
incorporate categorical variables into the input.

26



Feed
Forward

Multi-Head
Attention

12 x

Add & Norm

Add & Norm

Positional
Encoding

Input
Embedding

Feed
Forward

Masked
Multi-Head
Attention

12 x

Add & Norm

Add & Norm

Positional
Encoding

Output
Embedding

Encoder: RobBERT

Multi-Head
Attention

Add & Norm

Attention
block

is masked

Decoder: modified RobBERT

Linear

Softmax

Output
Probabilities

Inputs Outputs
shifted right

Added
attention

 mechanism

Figure 5.1: Rob2Rob architecture

27



5.3.1 All-Text

In this approach unstructured text fields and categorical fields are all concatenated into a
single string using a separator token from the tokenizer as in listing 5.1.

Listing 5.1: All-Text input structure
<klacht_beloop ></s><hulpvraag ></s><voorgeschiedenis >
</s><medicatie ></s><alcohol_drugs ></s><ingangsklachten >
</s><vragen , antwoorden ></s><nts_urgentie >
</s><nts_urgentie_gekozen ></s><nts_vervolgstap >
</s><nts_vervolgstap_gekozen ></s><day_of_week >

The categorical variable ingangsklachten can have multiple values, so if we concatenate
this feature we separate each value using a comma. vragen and antwoorden may also have
multiple values and a value itself can contain a comma, therefore we separate these values
by a semicolon. An example input is shown in listing 5.2. This input can then be fed
through the architecture depicted in 5.1. The benefit of this approach is its simplicity. The
architecture of figure 5.1 does not have to be extended, which means we do not have to train
extra parameters. Therefore, we require less resources. We also hypothesize that language
models are able to handle the categorical features, given that they are text. A feature such
as the urgency (nts_urgentie_gekozen) is a scale, therefore the model may have more
difficulty to make sense of such a feature when it is concatenated as text, compared to for
example vragen and antwoorden which are simple questions and answers. However, we
simply concatenate each value of the categorical features without any modification.

Listing 5.2: All-Text example input
krijgt geen ontlasting sinds 3 dagen , buik is gespannen.
maakt zich zorgen. wat gevoelig aan linkerkant van
onderbuik.</s>kan ik mijn ontlasting kwijtraken dmv een
middeltje?</s>urineretentie , heeft momenteel catheter.
consult uroloog ivm dd vergrote
prostaattamsulosine </s>Obstipatie </s>
Braken: Nee; Buikpijn: Nee/nauwelijks (<4)</s>
U5 </s>U5 </s>Advies </s>Advies </s>Dinsdag

5.3.2 Fuse-Early

This approach is based on the Fuse-Early approach of Shi et al. [47]. In this approach,
the text features are embedded using an encoder. Let d be the embedding dimension of
the encoder and x our sequence of input tokens. For an input consisting of n tokens after
tokenization, the encoder produces a hidden vector hxi of length d for each input token xi.
Together these hidden vectors form a matrix X ∈ Rn×d.

Let c be our categorical features that are embedded separately from the text features.
For each categorical feature ci, a vocabulary is created that maps each possible value to
a distinct integer. So, if ci has a cardinality of k. Each possible value of ci will map to a
discrete value between 1 and k, while 0 is set as the padding token, so that the embedding
layers can handle batches.

After mapping a categorical variable ci to an integer using its vocabulary, we use
entity embeddings [22] to map each categorical feature ci to a continuous vector with
a lower embedding dimension ei. A potential benefit of this approach over for example

28



x1 xn...

Free-text tokens

RobBERT

hx1 hxn...

c1 cl...

Categorical features

Embedding
Layer

Embedding
Layer

hc1 hcl...

Rob2Rob

Free-text advice

Linear Layer Linear Layer

...X C

Figure 5.2: Fuse-Early architecture using RobBERT

one-hot-encoding, is that similar values are mapped close to each other in the embedding
space, which can reveal intrinsic properties of the categorical variable ci.

The embeddings of the unstructured text features and categorical features together
serve as input to an encoder-decoder that is responsible for generating the unstructured
text advice. However, this encoder-decoder has the same hidden dimension d as the encoder
we use to embed the unstructured text features. Therefore, we transform the categorical
features c to this dimension d using a single linear layer for each feature ci, such that
we get a hidden vector hci for each feature ci. Together these hidden vectors form a
matrix C ∈ Rl×d. All hidden vectors from X and C are concatenated such that we have a
hidden state H ∈ R(n+l)×d, which forms the joint embedding of our unstructured text and
categorical features:

H =

[
X
C

]
=



hx1

hx2

.
hxn

hc1
hc2
.
hcl


(5.3)

As any other layer in the architecture, the embedding layers can update their weights
through backpropagation and can therefore be trained. Figure 5.2 shows what this archi-
tecture looks like when we use RobBERT as the encoder for text-features and Rob2Rob as
the encoder-decoder for generating text.

The downside of this approach, compared to All-Text, is the added complexity, which
increases the size of the model in terms of parameters. The potential upside of this approach
is that this model may be more capable of learning the interactions between the modalities.

29



5.4 Decoding methods

The advice written by triagists is concise and straight to the point, and therefore we do not
consider sampling strategies, such as Top-k [18] and Top-p [24], as they are designed to
generate more diverse and fluent outputs. However, we do use two other decoding strategies
that we define in this section, which are a repetition penalty [31] and beam search.

5.4.1 Repetition penalty

Language models have been found to generate consecutive repetitions of n-grams, when
generating an output [24, 62]. Keskar et al. [31] introduced a repetition penalty to mitigate
this problem. This is done by discounting previously generated tokens, when computing
the output probabilities for the next token.

Given that we have a score xi ∈ Rd assigned to every token i within the tokenizer’s
vocabulary, the probability of selecting the ith token during the generation of an output
using a language model, can be described as follows:

pi =
exp (xi)∑
j exp (xj)

(5.4)

The repetition penalty is then introduced as follows. If g are the previously generated
tokens, then using the notation from equation 5.4 we have that the probability of outputting
the ith token is given by:

pi =
exp (xi/I(i ∈ g))∑
j exp (xj/I(j ∈ g))

(5.5)

Where:

I(c) =

{
θ, if c = True
1, otherwise

(5.6)

5.4.2 Beam search

Beam search is a heuristic search algorithm that is used to find the most likely sequence
of elements given a sequence generation model. It can be used to improve the quality of
generated sequences by considering multiple alternative candidates at each step, as opposed
to selecting output tokens greedily. It works as follows:

• We have a sequence-to-sequence model P (yt|y1:t−1), where yt is the token at time
step t and y1:t−1 represents the sequence up to time step t− 1.

• Let B be our beam with width k. k determines the number of candidate sequences
to retain at each decoding step.

• B is initialized with empty sequences: B = {y1:0}.

• For each time step t, where t = 1, 2, ..., T and T is the maximum sequence length:

– For each candidate sequence y in the current beam:

1. Generate the set of next-token candidates Yt by considering all possible
tokens yt and their associated probabilities P (yt|y1:t−1).

30



2. Calculate a score for each candidate sequence y + yt based on the product
of its previous score and P (yt|y1:t−1):

s(y + yt) = s(y) · P (yt|y1:t−1)

– Select the top-k sequences with the highest scores and add them to the beam:

B = TopK({y + yt|∀y ∈ B, ∀yt ∈ Yt}, k)

• The search terminates when we have reached the maximum generation length of the
model or when all candidate sequences have reached an end-of-sequence token.

• The output is the candidate sequence with the highest overall score s.

This way it balances exploration and exploitation by considering multiple alternative
candidates at each decoding step, rather than selecting output tokens greedily. By main-
taining a beam of the top candidate sequences, it can improve the quality of generated
sequences.

5.5 Evaluation metrics

Evaluation metrics in NLG have mostly been designed for machine translation and sum-
marization tasks. However, these metrics can still be applied to other tasks, since they
measure the similarity between the model outputs and references. There is no standard
metric for our task. Therefore, we use several commonly used metrics in NLG. Namely,
ROUGE-1/ROUGE-2 F1 [36], BLEU [40] and METEOR [5].

ROUGE-N measures the overlap of n-grams between the generated text and the reference
text. ROUGE-N P and ROUGE-N R are defined as follows. Where P is precision and R is
recall.

ROUGE-N P =
count(matching n-grams)

count(n-grams in generated text)
(5.7)

ROUGE-N R =
count(matching n-grams)

count(n-grams in reference text)
(5.8)

The F1 score is then defined as follows.

ROUGE-N F1 =
2 ∗ (ROUGE-N P ∗ ROUGE-N R)

(ROUGE-N P + ROUGE-N R
(5.9)

Similar to ROUGE-N, BLEU measures how many n-grams in the machine-generated
text overlap with those in the reference text. BLEU takes into account precision and brevity.
Brevity measures how close the length of the generated text is to the length of the reference
text. It is calculated as follows.

BLEU = BP · exp

(
N∑

n=1

wn · log(pn)

)
(5.10)

Where N is the maximum n-gram order considered. wn are the weights for each n-gram
order. pn is the precision for n-grams, calculated as the ratio of matching n-grams in the
generated text to the total number of n-grams in the generated text. BP is the brevity

31



penalty, which is defined as follows. Where c is the length of the generated text and r is
the length of the reference text.

BP =
{
exp

(
1− r

c

)
if c ≤ r (5.11)

METEOR was designed to address some limitations of BLEU and is calculated as
follows.

METEOR = (1− α) · p+ α · r · fβ (5.12)

Where α, balances precision and recall. p is the precision, which is defined as the ratio of
matching unigrams in the generated text to the total number of unigrams in the generated
text. r is the recall, which is defined as the ratio of matching unigrams in the generated
text to the total number of unigrams in the reference text. fβ is the F-beta score, which
combines p and r and is defined as follows.

fβ =
(1 + β2) · p · r
β2 · p+ r

(5.13)

5.6 Model explainability

To aid triagists in decision making when using our model, we aim to add explainability to our
model outputs. As discussed in 3.5, attribution methods can be used to explain the model
outputs of deep networks. In NLP these methods are used to determine which input had a
high attribution to the output of the model. In an NLG task, a model produces multiple
output tokens rather than a single output. When generating a token, the model takes into
account the input tokens and previously generated tokens. Therefore, attributions of input
tokens and previously generated tokens are calculated for each output token individually.
We use integrated gradients (IG) [51], because this method does not violate the fundamental
axioms for attribution methods, as explained in section 3.5.

5.6.1 Integrated Gradients

Our method for using integrated gradients on a sequence-to-sequence task follows the
approach proposed by Alammar [2]. Using an encoder-decoder model we autoregressively
generate an output sequence y based on an input sequence x of and previously generated
tokens p. Let l be the number of output tokens in y, n the number of tokens in x and
z the concatenation of x and p. Then for every output token yt, where ∀t ∈ {1, .., l} (y0
represents the encoder-decoder start token), we calculate the integrated gradient IGit for
every token zi, where ∀i ∈ {0, .., n+ t− 1}

The following procedure is followed to calculate IGit. Let z′ be our baseline, which
has the same shape as z, but instead is solely filled with the padding token of the encoder-
decoder. Integrated gradients can be described as the integral of gradients along a direct line
from baseline z′ to z. To approximate this, a straight line path is interpolated from z′ to z
using m number of steps. For every step interval j the gradient is computed. The integrated
gradients can then be approximated by accumulating these gradients. The integrated
gradient for a specific zi when generating an output token yt can then be retrieved as
follows. Here ∂F

∂zi
is the gradient of our encoder-decoder F along the ith dimension.

IGit(F, z, z
′) = (zi − z′i)

m∑
j=0

∂F (z′ + j
m(z − z′))

∂zi

1

m
(5.14)

32



Figure 5.3: Example of a visualization that shows the Integrated Gradients
attributions of the input tokens and previously generated tokens for the generated
token " mic". Attributions are only shown if they are above 1%. It is created using
D3 [9]. A date that was present in the data has been hidden.

IGit is a vector with a length equal to the embedding dimension d of the encoder-decoder.
It represents the integrated gradient of token zi when generating yt. We calculate the L2
norm for each of these vectors as follows.

∥IGit∥2 =

√√√√ d∑
j=1

|IGitj |2 (5.15)

Let a be the number of elements in z. Then we normalize each element ∥IGit∥2 such that
we get an attribution score si for each token zi as follows.

szit =
∥IGit∥2∑a

j=1 ∥IGitj∥2
(5.16)

Repeating this procedure for each output token, results in an attribution score for each
input token and previously generated token for all tokens in the output y.

5.6.2 Aggregating attributions

The visualization approach presented in section 5.6.1 and figure 5.3 is too complex for our
end-user, since they would have to hover over different output tokens. This is not desirable,
since a triage is conducted quickly. So, having to analyse the output in this way would take
too much time. So, to simplify it further, we aim to aggregate the attribution scores to
retrieve attribution scores of the input tokens for the entire output sequence as a whole.

For this aggregation we only consider the input tokens x, since we aim to show which
input words attributed most to the proposed output of the model, thereby giving some
form of explanation. So, the procedure for calculating integrated gradients is the same
as in the previous subsection, but after calculating all the attribution vectors IGit, we
ignore the attributions of the previously generated tokens which were denoted as p in the
previous subsection. IGit is a vector with a length equal to the embedding dimension d of
the encoder-decoder, representing the attribution of xi in generating yt. We will call this
vector vit. So for each output token yt, we retrieve a vector vit for each input token xi. For
each xi, we aggregate these attributions into a single vector vi as follows. Where l is the
number of tokens in the output y.

vi =

l∑
t=0

vit (5.17)

33



Figure 5.4: Example visualization that shows aggregated Integrated Gradients
attributions for the input words. Attributions are only shown if they are above 5%.
It is created using D3 [9].

We then use the L2 norm, such that we have a single score for each input token xi for the
entire output sequence y.

∥vi∥2 =

√√√√ d∑
j=1

|vij |2 (5.18)

Then we normalize each element ∥IGit∥2 such that we get an attribution score si for each
token input token xi for the entire output sequence y as follows. Where n is the number of
tokens in x.

sxi =
∥vi∥2∑n

j=1 ∥vij∥2
(5.19)

To make the output more understandable for the end-user we show input word attributions
instead of input token attributions. This is done by simply adding the scores of input
tokens in x if they together form a word. The attributions can then be visualized, using
for example a color scale, as shown in figure 5.4. It indicates to the user which words the
model deemed as important when generating the output. We test the usefulness of this
approach during a user study which is presented in chapter 7.

34



Chapter 6

Experiments

6.1 Experimental setup

The dataset that results from the cleaning steps outlined in section 4.4 consists of 120751
rows. This set is randomly split using a random seed into a train, validation and test. We
use a 80%/10%/10% split as shown in table 6.1. We use the same seed across experiments,
such that the split remains the same.

Split Fraction Entries
Train 0.8 96600
Validation 0.1 12075
Test 0.1 12076

Table 6.1: Dataset split

In order to compare different models we use a training setup that is almost identical
across experiments. We use a single NVIDIA T4 with 16GB of memory. We use Adam [33]
as the optimiser. The learning rate is fixed at 5e-5, the epsilon at 1e-8 and weight decay
at 0.01. A batch size of 4 or 8 is used, depending on the model size. Cross-entropy loss is
used as the loss function for all models. The loss on the validation set is determined after
each epoch. All models are trained for a variable number of epochs until the validation loss
starts to increase. PyTorch [41] is used to implement all models.

6.2 Evaluation

We use ROUGE-1/ROUGE-2 F1 [36], BLEU [40] and METEOR [5] and to compare different
models. All metrics have been loaded from the evaluate library of Huggingface [60] and we
keep all parameters at default. The metrics were unanimous in terms of performance when
comparing different models. Therefore, we report the ROUGE-1 and ROUGE-2 F1 score
in this chapter, which has also been previously used to score NLG models in a healthcare
setting [37]. All full overview of metric scores for the first 4 experiments can be found in
appendix A.

6.3 Experiment 1: Rob2Rob vs Med2Med (SQ1 )

To answer SQ1, which aims to determine whether healthcare-specific pre-training is
beneficial over domain-generic pre-training in our situation, we train Rob2Rob and Med2Med

35



0 200 400 600 800 1000
number of input tokens

0

2000

4000

6000

8000

10000
nu

m
be

r o
f e

xa
m

pl
es

 in
 d

at
as

et

Figure 6.1: Histogram with 125 bins of the number of input tokens after tokeniza-
tion of the whole dataset in the All-Text approach with categorical features

on our dataset.
We use the transformers library from Huggingface [60] to set up Rob2Rob and

Med2Med using the RobBERT v2 base [15] and MedRoBERTa.nl [55] checkpoints, respec-
tively. Apart from the difference in checkpoints, the setup of Rob2Rob and Med2Med and
their tokenizers are identical. Therefore, we only outline the setup procedure for Rob2Rob.

Most of the weights of Rob2Rob, which is depicted in 5.1, are initialized using the
RobBERT v2 base checkpoint. Only the weights of the cross-attention block are randomly
initialized, since this block is newly introduced into the architecture and can therefore
not leverage the checkpoint. So, these cross-attention weights are learned from scratch.
Rothe et al. [45] experimented with sharing the weights between the encoder and decoder.
They found that it only leads to small drops in performance and sometimes even slightly
increases performance, while reducing the memory footprint. Therefore, we chose to also
share the weights between the encoder and decoder. The tokenizer of Rob2Rob uses the
default special tokens from the RoBERTa [38] tokenizer. This includes for example the
padding token <pad>. The vocabulary of the tokenizer is loaded from the model RobBERT
v2 base checkpoint.

We use the All-Text approach from section 5.3.1 to prepare the inputs for the tokenizers.
To determine the maximum number of tokens of our inputs, we tokenized the entire dataset
(so before train/validation/test split) and determined the length of all input sequences
after tokenization, as depicted in 6.1. We see that the distribution has a long tail with
outliers. We are forced to truncate all inputs at least to a length of 512, as this is the
maximum number of tokens that our PLMs can process per input. However, we took this a
step further and truncated any sequence that fell into the top 0.05% of lengths, which is
a sequence length of 386 tokens. So, we set the max_length of the tokenizer to 386 and
truncation to True. This reduces the memory overhead, because we require less padding
of batches. All other tokenizer parameters were kept at default.

36



The models were trained with a batch size of 8, until the validation loss increased. This
was after 4 epochs for both models. Therefore, we evaluate both models on the test set
after epoch 3.

The ROUGE-1 and ROUGE-2 scores of both models are given in table 6.3. We observe
that Rob2Rob slightly outperforms Med2Med when using the All-Text approach with all
features. This shows that healthcare-specific pre-training on hospital notes is not beneficial
compared to domain-generic pre-training in this case. This is in line with previous work,
where MedRoBERTa.nl and RobBERT showed similar performance in predicting lung
cancer [17] and classifying unstructured reports on their diagnostic goal [44]. There can be
different explanations for this.

First of all, MedRoBERTa.nl was pre-trained on Dutch hospital notes with a total size
of roughly 25.8GB, while RobBERT was trained on a Dutch corpus that was 39GB in size.
So, RobBERT’s pre-training was more extensive, which may have put Rob2Rob in a better
initial state compared to Med2Med.

Secondly, people usually call an out-of-hours primary care center in case of minor
problems and therefore they do not undergo an assessment by a doctor. Consequently,
the amount of medical terms used in the texts is likely limited compared to the hospital
notes that were used to train MedRoBERTa.nl. For instance, in the MedRoBERTa.nl
paper [55] they give the example text: "Patiënt met possibele pulmonale aspergillus met
oplopend galactomannan onder vori mono", which translates to "Patient with possible
pulmonary aspergillus with ascending galactomannan under vori mono". We rarely see texts
with so many Latin/Greek medical terms in our data. In our data the texts are usually
more straightforward such as: "Heeft een blaasontsteking, donderdag klachten begonnen.
Branderig gevoel bij het plassen en vaak plassen, plast ook kleine beetjes. Geen temp.
Drinkt slecht omdat zij dan bang is te moeten plassen.", which translates to: "Has a bladder
infection, Thursday symptoms started. Burning sensation when urinating and urinates often,
also urinates small bits. No temp. Drinks poorly because she is then afraid to urinate.". As
such, Med2Med may not be able to fully leverage the healthcare-specific pre-training on
hospital notes.

In addition to a slightly worse performance, Med2Med is roughly 6% larger in size
compared to Rob2Rob in terms of trainable parameters. However, since we used an identical
batch size, the extra training time was only about 2% in our experiment. The number of
parameters of Rob2Rob and Med2Med and the training time per epoch for this experiment,
are given in table 6.2. Given the slightly better performance and smaller model size, we
use Rob2Rob in subsequent experiments.

Table 6.2: Number of trainable parameters of Med2Med and Rob2Rob and the
training time per epoch for experiment 1.

Model number of parameters
(million)

Training time
(min/epoch)

Med2Med ≈ 146 ≈ 102

Rob2Rob ≈ 155 ≈ 105

37



0 200 400 600 800 1000
number of input tokens

0

2000

4000

6000

8000

10000

12000
nu

m
be

r o
f e

xa
m

pl
es

 in
 d

at
as

et

Figure 6.2: Histogram with 125 bins of the number of input tokens after tokeniza-
tion of the whole dataset in the All-Text approach without categorical features

6.4 Experiment 2: Rob2Rob free-form textual features only
(SQ2 )

The goal of this experiment is to answer SQ2, which aims to determine whether the
categorical input fields have added value when generating a triage advice.

In experiment 1 we already trained Rob2Rob using an All-Text approach. Here we
adopt the same approach, but we only concatenate the unstructured text features. These
fields consist of the following: entry symptoms and their course, the question, the history,
medication and drugs/alcohol. So, the features that were originally categorical are not
included. The structure of this input is shown in listing 6.1.

Listing 6.1: All-Text input with only unstructured text features
<klacht_beloop ></s><hulpvraag ></s><voorgeschiedenis >
</s><medicatie ></s><alcohol_drugs >

The model was trained with a batch size 8, until the validation loss increased. This was
after 5 epochs. Therefore, we evaluate the model after 4 epochs on the test set.

The ROUGE-1 and ROUGE-2 scores of the trained model is given in table 6.3. We
observe that the performance of Rob2Rob decreases when only unstructured text features
are included in the All-Text approach. This indicates that the categorical features contain
information that is valuable to the model when it generates an advice. Therefore, it is
interesting to explore a different fusion strategy for these features.

38



Model Fusion
approach

Only
unstructured text

features

encoder/decoder
weights shared

ROUGE-1
F1

ROUGE-2
F1

Rob2Rob All-Text No Yes 27.5 12.0
Med2Med All-Text No Yes 27.2 11.8
Rob2Rob All-Text Yes Yes 22.0 8.1
Rob2Rob Fuse-Early No Yes 18.4 3.6
Rob2Rob All-Text No No 27.9 12.4

Table 6.3: ROUGE-1 and ROUGE-2 F1 scores on the test set, for all models that
were trained in experiments 1-4.

6.5 Experiment 3: All-Text vs Fuse-Early (SQ2 )

The results of experiment 2 show that, when the categorical variables are concatenated as
text, they contain useful information that Rob2Rob can use when generating an advice.
Therefore, it is interesting to explore a more complex fusion approach. So, to answer SQ3,
we explore the Fuse-Early approach from section 5.3.2 with Rob2Rob.

The archictecture of this approach is depicted in figure 5.2. We chose to not have
separate embedding layers for vragen and antwoorden. vragen are questions a triagist
has to ask based on ingangsklachten. There are 306 unique questions in total and for
a particular input only a handful will be relevant, therefore we deem it wasteful to have
a separate embedding layer for each question. So, we chose to concatenate vragen and
antwoorden as text as in the All-Text approach.

The text encoder RobBERT is loaded from the RobBERT v2 base [15] checkpoint
without any modification. The tokenizer of RobBERT is also loaded from the same
checkpoint and is identical to the tokenizers of experiment 1 and 2. However, we again
truncated any text input that fell in the top 0.05% of lengths. This is a sequence length of
369 tokens. So, we set the max_length of the tokenizer to 369 and truncation to True.
All other tokenizer parameters were kept at default.

The setup for Rob2Rob is the same as in experiments 1 and 2. Rob2Rob does not
require a tokenizer in this setup, since the inputs are already embedded by the RobBERT
encoder and the embedding layers for categorical features as described in section 5.3.2.

Each remaining categorical feature is embedded using a separate embedding layer as
shown in figure 5.2. The configurations of these layers are shown in table 6.4.

Categorical feature Cardinality Embedding dimension
ingangsklachten 61 32
nts_urgentie 5 4
nts_urgentie_gekozen 5 4
nts_vervolgstap 11 4
nts_vervolgstap_gekozen 11 4
dag 7 6

Table 6.4: Embedding layer configuration for each categorical feature in the Fuse-
Early approach of experiment 3

The model was trained with a batch size of 4 until the validation loss increased. This
was after 6 epochs. Therefore, we evaluate the model after 5 epochs on the test set.

39



The ROUGE-1 and ROUGE-2 scores of the model trained with Fuse-Early approach
are given in table 6.3. We observe that the performance of Rob2Rob decreases significantly
when using the Fuse-Early approach. The model is even outperformed by the model that
only considers unstructured text features.

The size of our dataset could be a limiting factor for the Fuse-Early approach. First
of all, because there are more trainable parameters in general, compared to the All-Text
approach. Secondly, more of these parameters, such as the new embedding layers, have to
be trained from scratch.

Another potential problem with the Fuse-Early approach may lie in the fusion of the
embeddings of the unstructured text and categorical features. Rob2Rob has an embedding
layer that is used to get embedding vectors based on the input tokens that are obtained
using its tokenizer. However, in our Fuse-Early approach we pass the input embeddings,
which we construct ourselves by concatenating the unstructured text embeddings and
categorical embeddings, directly to Rob2Rob. So, these categorical features do not pass
through the embedding layer of Rob2Rob. Therefore, Rob2Rob may struggle to make
sense of these embeddings in combination with the embeddings from the unstructured text
features.

Finally, we used entity embeddings, which projects each categorical feature to a lower
dimension. However, the hidden layer dimension of Rob2Rob is fixed at 768, which forced
us to project each of those embeddings to that dimension before passing them to Rob2Rob.
These projections may not be optimal, which could have caused a loss of information.

6.6 Experiment 4: Encoder-Decoder weight sharing (SQ3 )

In all previous experiments we shared the weights between the encoder and decoder. However,
this is based on the assumption that sharing these weights does not hurt performance [45].
To confirm this, in this experiment, we used an identical setup to experiment 1, which is
the Rob2Rob model with an All-Text approach, but this time the weights are not shared
between the encoder and decoder.

The model was trained with a batch size of 4 until the validation loss increased. This
was after 4 epochs. Therefore, we evaluate the model after 3 epochs on the test set.

The ROUGE-1 and ROUGE-2 scores of Rob2Rob, trained with an All-Text approach
and where the weights are not shared between the encoder and decoder, are given in table
6.3. We observe that it slightly outperforms the same Rob2Rob model that does share the
weights between the encoder and decoder. The difference is minor, which is inline with the
findings of Rothe et al. [45]. Not sharing the weights between the encoder and decoder,
increases the number of trainable parameters by almost 80%, which forced us to decrease
the batch size from 8 to 4. Overall, it led to an increase in training time of almost 24%.
Given the small decrease in performance in terms of ROUGE scores and the large decrease
in memory footprint, we conclude that weight-sharing is beneficial. Therefore, we keep
using this in subsequent experiments.

6.7 Experiment 5: Preventing n-gram repetitions (SQ3 )

During manual examination of the outputs of our Rob2Rob model that resulted from
Experiment 1, we observed that consecutive uni- and bi-gram repetition occurred. For
example, the following uni-gram repetition was found in one of the outputs of the test set:

40



Voor nu geen alarmsymptomen uitleg drukverband en verband. Advies om met
verband verband verband te verbinden. Akkoord

The word "verband" is repeated multiple times consecutively, which is obviously unwanted
behaviour. Especially, if we consider the goal of the model, which is to reduce the workload
of triagists. Therefore, having to manually remove repeated words is undesirable. In the
examples of the test set we found 34 examples with uni-gram repetition and 5 examples
with bi-gram repetition. Given that there are 12076 in the test set, this is only a small
portion. However, we still explore if this problem can be easily overcome.

In an attempt to tackle this problem, we introduce a repetition penalty when generating
outputs. This is done as described in section 5.4.1. This penalty is set to 1.2 as suggested
by Keskar et al. [31]. We repeat the evaluation of the All-Text Rob2Rob model that was
already trained in Experiment 1. So, the model checkpoint after 3 epochs is evaluated again
on the test set, but this time with the repetition penalty in place.

Using the repetition penalty resulted in a ROUGE-1 score of 27.8 and a ROUGE-2
score of 11.9. The original evaluation resulted in a ROUGE-1 of 27.5 and ROUGE-2 of
12.0 as shown in table 6.3. So, the penalty led to a slight increase in ROUGE-1 score and a
slight decrease in ROUGE-2 score. Furthermore, only one output with uni-gram repetition
was found in the outputs of the test set, showing that the penalty mitigates the problem.

6.8 Experiment 6: Beam search (SQ3 )

In all of our previous experiments greedy search was used, where at every time step the
language model outputs the token with the highest probability. As also explained in section
3.3, beam search can be used to increase performance, because it keeps track of the n most
likely beams and finally choosing the beam with the highest overall probability. Beam
search is not used during training, since we use teacher forcing there. Therefore, we repeat
the evaluation of the All-Text Rob2Rob model that was already trained in Experiment 1.
This comes down to evaluating the model checkpoint after 3 epochs on the test set, using
different beam widths.

The results are given in table 6.5. Note that a beam width of 1 corresponds to greedy
search. We can see that using beam search does indeed increase the performance of the
model in terms of ROUGE scores compared to greedy search. However, interestingly enough
the performance decreases again when the beam width is set to 4 or more. A possible
explanation for this, which was found by Cohen et al. [12], is that when the beam width is
increased, it results in sequences that primarily begin with early, highly improbable tokens,
followed by a sequence of tokens with higher conditional probabilities. They showed that
such sequences tend to receive lower evaluation scores compared to sequences with lower
probabilities without that pattern.

6.9 Experiment 7: Adding more input context (SQ2 )

During our analysis of the user study results of chapter 7, we found that our model
sometimes focuses on irrelevant parts of the input. A part of the triage information of
an example case where we observe this, is given in table 6.6. The medication field lists
the caller’s medication. We can see that the caller uses tramadol, but was calling with
symptoms of hyperventilation. Our attribution method marked the word "tramadol" as
import and the model gave the advice to use tramadol. However, the triagist that evaluated
this case noted that it does not make sense to use tramadol in case of hyperventilation. It

41



Beam Width ROUGE-1 F1 ROUGE-2 F1
1 27.5 12.0
2 28.1 12.6
3 28.2 12.7
4 28.0 12.7
6 27.7 12.6
8 27.4 12.4

Table 6.5: ROUGE-1 and ROUGE-2 F1 scores on the test set for Rob2Rob with
the All-Text approach and weight sharing between the encoder and decoder, when
using beam search with different beam widths.

is worth noting that the input for these cases was generated by simply combining all input
features using a single separator token. This suggests that our model might benefit from
more context. Therefore, we explore 2 different approaches to provide more context with
regard to input features.

Table 6.6: Information of a case that was assessed by a domain expert. The 5
most important words according to our attribution method are marked green. Some
input fields are not shown for brevity.

Dutch Translated

Symptoms

denkt hyperventilatie
aanval te hebben,
klachten al uur bezig.
Moet woensdag naar
cardioloog voor onderzoek.

Suspects hyperventilation attack,
symptoms been going on for hours.
Must see cardiologist
on Wednesday for examination.

Question wil graag even luisterend oor
zodat aanval afneemt.

Would like a listening ear
so attack subsides.

History
longklachten, alcohol misbruik,
paniek aanvallen.
dec. cordis AP klachten.

lung complaints, alcohol abuse,
panic attacks.
dec. cordis AP complaints.

Medication pufjes, tramadol . puffs, tramadol .
Entry symptoms Kortademig Short of breath

Generated
advice

i.o.m dd ra mag mw
tramadol gaan nemen.
Bij toename klachten
opnieuw contact HAP.

In consultation with the
doctor the woman
can take tramadol.
If symptoms increase
contact HAP again.

The first approach aims to leverage the natural language knowledge already present in
the model by adding a prefix to each input feature. The prefixes that were used are given
in table 6.7. So, we still concatenate all features using the separator token </s>, but we
prefix each feature value. An example input is given in listing 6.2.

42



Listing 6.2: Example All-Text input with feature prefixes. Prefixes are marked
yellow.

De klachten zijn: baby van 10 maanden , van oudere
dochter 30 tum tum zonder kauwen doorgeslikt. Zonder
toezicht gebeurd , dochter zag dat hij ineens leeg was.
Dus waarschijnlijk doorgeslikt , loopt nu rond. Niet
benauwd , niet kortademig , geen kuchen , is lekker
fanatiek , hoor haar ook op de achtergrond vrolijk
brabbelen. Loopt wat te kwijlen , lijkt nu opeens wel
meer. 3 snoepjes ui de mond gevist , koker is leeg.
</s> De hulpvraag is: advies </s> De ingangsklachten zijn:
Corpus alienum </s> Dit zijn gestelde vragen en gegeven antwoorden:
Corpus alienum: Nee; Corpus alienum ingeslikt/ingeademd:
Ja, zonder klachten; Doorboord: Nee; Oogletsel: Nee;
Pijnlijk oog: Nee; Stoornis doorbloeding: Nee </s>
De voorgestelde urgentie is U5 </s> De gekozen urgentie is U5 </s>
De voorgestelde vervolgstap is Advies </s> De gekozen vervolgstap is
Advies </s> Het is vandaag Zaterdag

Table 6.7: Prefixes used to concatenate input features

Input feature Prefix Prefix translation
klacht_beloop De klachten zijn: The complaints are:
hulpvraag De hulpvraag is: The help question is:
voorgeschiedenis De voorgeschiedenis is: The history is:

medicatie
De volgende medicatie
wordt gebruikt:

The following medication
is already being used:

alcohol_drugs Alcohol/drugs: Alcohol/drugs:
ingangsklachten De ingangsklachten zijn: The entry symptoms are:

vragen_antwoorden
Dit zijn de gestelde vragen
en gegeven antwoorden:

These are the questions
asked and answers given:

nts_urgentie De voorgestelde urgentie is The proposed urgency is
nts_urgentie_gekozen De gekozen urgentie is The chosen urgency is

nts_vervolgstap
De voorgestelde
vervolgstap is

The proposed
next step is

nts_vervolgstap_gekozen De gekozen vervolgstap is The chosen next step is
dag Het is vandaag Today it is

The second approach introduces a new token into the tokenizer for each input feature.
These tokens are used to prefix each feature. The tokenizer will have to learn all the weights
for these new tokens from scratch. The idea is that the model will be able to be better
distinguish between different features when those features are separated with distinct tokens.
In principle these tokens can be any token that is not already present in the vocabulary of
the tokenizer. The tokens that we introduced are given in table 6.8. When concatenating
the features we do not use the </s> token anymore, since this seems redundant given that
the new tokens already separate the features. An example input is given in listing 6.3

43



Listing 6.3: Example All-Text input with token prefixes newly introduced into
the tokenizer

[KLACHT_BELOOP]baby van 10 maanden , van oudere dochter
30 tum tum zonder kauwen doorgeslikt. Zonder toezicht
gebeurd , dochter zag dat hij ineens leeg was. Dus
waarschijnlijk doorgeslikt , loopt nu rond. Niet benauwd ,
niet kortademig , geen kuchen , is lekker fanatiek , hoor
haar ook op de achtergrond vrolijk brabbelen. Loopt wat te
kwijlen , lijkt nu opeens wel meer. 3 snoepjes ui de mond
gevist , koker is leeg.[ HULPVRAAG]advies
[INGANGSKLACHTEN]Corpus alienum[VRAGEN_ANTWOORDEN]
Corpus alienum: Nee; Corpus alienum ingeslikt/ingeademd:
Ja, zonder klachten; Doorboord: Nee; Oogletsel: Nee;
Pijnlijk oog: Nee; Stoornis doorbloeding:
Nee[URGENTIE]U5[URGENTIE_GEKOZEN]U5
[VERVOLGSTAP]Advies[VERVOLGSTAP_GEKOZEN]Advies
[DAG]Zaterdag

Table 6.8: Tokens introduced into the tokenizer to use as prefix for each input
feature.

Input feature Token
klacht_beloop [KLACHT_BELOOP]
hulpvraag [HULPVRAAG]
voorgeschiedenis [VOORGESCHIEDENIS]
medicatie [MEDICATIE]
drugs_alcohol [DRUGS_ALCOHOL]
ingangsklachten [INGANGSKLACHTEN]
vragen_antwoorden [VRAGEN_ANTWOORDEN]
nts_urgentie [URGENTIE]
nts_urgentie_gekozen [URGENTIE_GEKOZEN]
nts_vervolgstap [VERVOLGSTAP]
nts_vervolgstap_gekozen [VERVOLGSTAP_GEKOZEN]
dag [DAG]

We also extended this approach from listing 6.3 further by extending the tokenizer with
a new token for each possible value of our categorical variables. Similar to experiment 3
we exclude vragen and antwoorden, because there are 306 unique questions in total with
different possible answers. Therefore, we think it is wasteful to have a separate token for
each possible question and each possible answer. So, we chose to concatenate vragen and
antwoorden as text as in the All-Text approach. For remaining categorical variables we
add a new token to vocabulary of the tokenizer. This was done by taking each value and
surround it by square brackets. So, for instance, the urgency value U5 is represented as
[U5] in the tokenizer. An example input of this extended approach is given in listing 6.4.

44



Listing 6.4: Example All-Text input with token prefixes and categorical value
tokens newly introduced into the tokenizer

[KLACHT_BELOOP]baby van 10 maanden , van oudere dochter 30
tum tum zonder kauwen doorgeslikt. Zonder toezicht gebeurd ,
dochter zag dat hij ineens leeg was. Dus waarschijnlijk
doorgeslikt , loopt nu rond. Niet benauwd , niet kortademig ,
geen kuchen , is lekker fanatiek , hoor haar ook op de
achtergrond vrolijk brabbelen. Loopt wat te kwijlen , lijkt
nu opeens wel meer. 3 snoepjes ui de mond gevist , koker is
leeg.[ HULPVRAAG]advies[INGANGSKLACHTEN ][ Corpus alienum]
[VRAGEN_ANTWOORDEN]Corpus alienum: Nee; Corpus alienum
ingeslikt/ingeademd: Ja , zonder klachten; Doorboord: Nee;
Oogletsel: Nee; Pijnlijk oog: Nee; Stoornis doorbloeding:
Nee[URGENTIE ][U5][ URGENTIE_GEKOZEN ][U5][ VERVOLGSTAP ][ Advies]
[VERVOLGSTAP_GEKOZEN ][ Advies ][DAG][ Zaterdag]

So, we trained a Rob2Rob model with weight sharing, 3 times with the 3 different
approaches described above. Each model was trained with a batch size of 8 until the
validation loss increased. We evaluate each model on the test set during the epoch before
the validation loss increases. During evaluation a beam width of 3 and a repetition penalty
of 1.2 is used.

Table 6.9 shows the results of this experiment. As can be seen the performance of
each model improved in terms of ROUGE score when compared to the original model that
simply concatenated all features using a separator token </s>. The approach where natural
language prefixes are introduced has the highest performance. Adding categorical value
tokens to the tokenizer in addition to adding special token prefixes, only increased the
performance by roughly 0.1%.

Table 6.9: ROUGE scores on the test set, with a beam width of 3 and a repetition
penalty of 1.2, for different input processing approaches

Input approach With categorical
value tokens Epochs ROUGE-1 F1 ROUGE-2 F1

Concat with
</s> No 3 28.3 12.8

Natural language
prefixes No 5 29.3 13.6

Special token
prefixes No 4 29.1 13.3

Special token
prefixes Yes 5 29.2 13.5

If we look at the advice of the cases of our user study from chapter 7 that were assessed
with "Strongly Disagree" and "Disagree" we can see some changes. For instance, the
example from earlier where tramadol is given as advice for a case of hyperventilation:

i.o.m dd ra mag mw tramadol gaan nemen. Bij toename klachten opnieuw
contact HAP.

Resulted in different advice for all three approaches:

45



• Natural language prefixes: iom dd ra dhr oxazepam innemen, bij geen resultaat
opnieuw contact en consult afspreken

• Special separator tokens and categorical value tokens: i.o.m dd ra dhr naar
post komen ter controle.

• Special separator tokens: i.o.m dd ra dhr naar post komen ter controle.

None of the approaches results in an advice that includes tramadol, which was incorrect.
The advice resulting from the approach with natural language prefixes now mentions
oxazepam, which makes more sense than tramadol, but was also not mentioned by the
domain expert.

For each of the approaches the advice may not have changed, improved or became worse.
We consider an advice to not have changed if the advice is identical or is simply rephrased
with no new information. An advice is considered to have improved if it for instance includes
information that is mentioned in the comments made by the domain expert. An advice is
considered worse if it is for example a safety net is not included anymore. Table 6.10 shows
an example where natural lanuage prefixes slightly improves the generated advice, since it
includes putting a cold cloth on the neck, which was also proposed by the domain expert.
The other two approaches lead to a worse advice in this example, because they simply refer
to another source for the advice. Table 6.11 shows another example. Here, all approaches
lead to an improved advice, since they all recognize that the crisis service/hotline should
be called, instead of saying there are no alarm symptoms, which is also mentioned by the
domain expert.

Table 6.10: Example of outputs using the different approaches from experiment
7 on a case were the domain expert disagreed with original output. Outputs are
translated from Dutch to English.

Original Ouput Blow your nose thoroughly and pinch it shut.
if no result then contact own GP

Comment
domain expert

Keep head slightly bent forward. Blow nose
thoroughly. Hold nose under nasal bone tightly
closed for about 10 min. Put a cold wet cloth on
the neck. Repeat procedure if bleeding
has not stopped. If the bleeding still has not stopped,
contact the doctor again and a
consultation at the HAP will be scheduled.

NL Prefixes for now first blow nose well and put cold cloth
on neck if nosebleed does not stop then call hap back

Special separator tokens /
categorical value tokens advice given according to thuisarts.nl

Special separator tokens See thuisarts.nl nosebleed

We also counted how often the advice did not change, improved and got worse for each
approach. These counts are given in table 6.12. We observe that in most cases there is
no change between the output that was presented during the user study and the advice
generated by the 3 new approaches from this experiment. For each approach 3 or 4 advice
improved, while 2 or 3 got worse. So, these approaches can lead to both better and worse
advice.

46



Table 6.11: Example of outputs using the different approaches from experiment
7 on a case were the domain expert disagreed with original output. Outputs are
translated from Dutch to English.

Original Ouput
Advice: no alarm symptoms for now and tomorrow
contact own GP.
Safety net: If symptoms worsen contact again.

Comment
domain expert

Assessment crisis service given obvious
suicidal manifestations

NL Prefixes Advice: Crisis service called
they are going to contact her

Special separator tokens /
categorical value tokens

Advice: Reporting center called they are going
to contact

Special separator tokens Advice: Called reporting center confused
persons they are going to make contact

There are a couple of things to note. For some of the cases where the domain experts
disagreed, this was because they felt like they were missing information such as age, to give
a proper judgement. Furthermore, there are cases where the domain experts disagreed with
the urgency level itself, which is not an output of the model.

Table 6.12: Counts of advice that remained unchanged, improved or gotten worsen
for different input processing approaches. These counts are for cases where domain
experts originally disagreed or strongly disagreed with the generated advice.

No Change Improved Worse
Natural language
prefixes 24 4 3

Special separator tokens /
categorical value tokens 26 3 2

Special separator tokens 25 4 2

Given the limited number of changes in advice compared to the advice provided in the
user study cases, it is inconclusive whether these approaches lead to an improvement in
model performance. Nevertheless, they do show improved performance in terms of ROUGE
scores. The differences in ROUGE scores among the approaches from this experiment
are minimal. Considering these marginal differences and the fact that using only special
token prefixes (excluding categorical value tokens) demands the least resources, which
is also shown by number of required epochs, we conclude that this is the best setup for
pre-processing the input.

47



Chapter 7

User study (SQ4/SQ5 )

To assess the usefulness of our model in practice we conduct a user study. This user study
has several goals:

1. To assess whether the model produces appropriate advice.

2. To assess whether the model outputs can (partly) be used in practice.

3. To assess the usefulness of our explainability method in practice.

To this end, we have our participants work through several cases. Each case consists of
a sample data point from our test set. However, the unstructured text advice has been
replaced with the output of our model. For each case the participants answers 2 questions.
These questions are shown in figure 7.1. Statement 1 translates to: Given the triage
information the given ’own advice’ is appropriate. This question is answered using a Likert
scale from 1 (Completely Disagree) to 5 (Completely Agree) and aims to achieve goal 1
of the user study. To achieve goal 2 of the user study, question 2 asks the participant to
change the given ’own advice’ if they deem this necessary. This way we can assess if the
generated advice is (partly) usable, which could still reduce the typing workload of triagists.

To achieve goal 3, aggregated input attributions as explained in section 5.6.2, are added
to 5 words that have the highest attributions. The number of steps for approximating the
integrated gradients were set to 25. An example of what this coloring looks like in one of
the cases, is given in figure 7.2.

At the end of the cases, 4 general questions are asked:

Figure 7.1: Questions asked for a case in the user study

48



Figure 7.2: Example of colored words with high attribution in a case of the user
study

1. Was it difficult to assess whether the advice was appropriate based on the given
information? Why or why not? It could be that the participant does not always have
enough information to answer the questions of a case. We aim to capture this with
this question.

2. Could the suggested advice you evaluated (which was provided under ’Own advice’) help
you formulate ’Own advice’ more quickly? Why or why not? Even if a participants
think that the generated advice are appropriate, it could still be that they do not
think it will help them.

3. Did the colored words in the triage information assist you in determining whether
you found ’Own advice’ suitable? Why or why not? This question tries to assess the
usefulness of our attribution method during decision making.

4. Did the colored words give you more confidence in the suggested ’Own advice’? Why
or why not? This question aims to assess whether the participant has more trust in
the output due to the attribution method.

For this study 4 triagists and 3 regieartsen were recruited. A "regiearts" is a general
practitioner (GP), who is the point of contact for triagists at an out-of-hours primary care
center in case of questions. The "regiearts" is also ultimately responsible for approving
every advice that is given during his shift.

In total 185 unique cases were sampled from our test set. Categorical features were
included and the All-Text approach from experiment 1 of section 6.3 was used when
preparing these samples. For each sample an output was generated using the Rob2Rob
model with weight sharing. Beam search was used with a beam width of 3 and the repetition
penalty was set to 1.2.

Each participant was asked to assess a minimum of 15 cases, to limit their workload.
We assigned 3 triagists and 3 GPs the same set of 5 cases. This was done to assess the
variability between individuals. The other 10 cases of these participants will be unique.
The remaining triagist received 15 unique cases. Each partcipant also received 15 additional
unique cases which are optional. These are optional to prevent people from refusing to
participate because of a high workload.

49



7.1 Results case questions

In total 160 cases where assessed by domain experts. Of which 5 cases were shared between
6 out of 7 participants. An overview of the number of cases assessed is given in table 7.1.

Table 7.1: Number of shared and unique cases assessed by each participant

Shared cases assessed Unique cases assessed
Triagist 1 0 15
Triagist 2 4 22
Triagist 3 5 10
Triagist 4 5 10

GP 1 5 25
GP 2 5 25
GP 3 5 24
Total 29 131

For the 5 cases that were shared between participants, table 7.2 shows the responses to
the statement "Given the triage information the given advice is appropriate". For case 2
and 5 the participants have a similar assesment where the maximum difference is 1 point on
the Likert scale. For case 2 almost all participants (strongly) disagree with the generated
advice. The generated advice and changes by domain experts for this case are given in
table 7.4. We can see that the generated advice is really short and not specific at all. There

Table 7.2: Likert scale responses for the 5 cases that were shared across participants.
1 is ’Strongly Disagree’ and 5 is ’Strongly Agree’.

Case 1 Case 2 Case 3 Case 4 Case 5
Triagist 2 3 1 3 2 -
Triagist 3 4 2 2 2 4
Triagist 4 2 2 2 4 4

GP 1 5 1 2 3 4
GP 2 5 2 4 2 3
GP 3 4 2 4 3 3

are differences in the changes that different domain experts make. GP 1/2 do not agree
with the urgency level and respond that they would let the child come to the center for an
assessment. Triagist 2/3 and GP 3 add a safety net to the advice, while triagist 4 changes
the advice itself. This shows that domain experts may have different ideas about how an
advice should be changed in case they disagree with it.

For the remaining unique cases, so the ones who are not shared between participants, the
responses to the statement: "Given the triage information the given advice is appropriate",
are given in figure 7.3.

In 47% of the cases the participants agreed with the statement that the advice was
appropriate and in 21% they strongly agreed. This indicates that the model is capable
of producing appropriate advice. For most of these cases the generated advice is simple
and mention that there are no alarming signals and give a safety net in case symptoms
worsen. An example of a generated advice, translated from Dutch to English, in this
category is: "for now, no alarm signals; in case of shortness of breath or new symptoms,
contact again". For these cases where the domain experts agree, the generated advice can

50



Table 7.3: Changes made by domain experts to the advice from case 1. The
advice is translated from Dutch and Domain experts that did not make changes are
omitted.

Generated advice IOM HA-> for now no reason for assessment at HAP
if additional other complaints, contact again

Triagist 2

Iom RA -> U3-> U5 exp. If persistent headache symptoms
contact own gp tomorrow. Safety net: if increase in headache
symptoms despite pcm , vomiting or other worsening
call back HAP.

Triagist 3
Addition: Indicate if persistent headache to contact
own GP. IOM GP-> for now no reason for assessment at HAP
if additional other symptoms contact again

Triagist 4
Missing the age of the patient in question.
Based on age, an assessment at the HAP may be necessary.
This especially for the elderly.

GP 3

IOM GP-> for now no reason for assessment at HAP
if additional other symptoms re-contact.
I would give a wake-up advice and clearly refer to thuisarts.nl
for proper implementation of this

Table 7.4: Changes made by domain experts to the advice from case 2. The advice
is translated from Dutch.

Original
generated advice For now no action :

Triagist 2 Iom RA: exp. if within 6 hours
no good diaper re-contact.

Triagist 3 Safety net according to contact advice fever child.

Triagist 4 Administering small bits of drink/fluids advised
For now, no action :

GP 1
Based on longer than 3 days of fever, sick child
and moderately wet diaper assessment at HAP and
do not wait until after weekend

GP 2 Child makes a sick impression, suspicion of dehydration,
in my opinion assessment at HAP, U3

GP 3 No action for now but contact if symptoms increase,
less alertness, etc.

also be more complex such as for example: "iom doctor: now inject 6eh novorapid and
in 2 hours measure blood sugar again and call through." or "Advice: get prescription from
service pharmacy. If symptoms do not disappear after the cure, have urine checked by your
doctor.". So, for most of the cases where the domain experts (strongly) agree, the generated
advice is straightforward, but more complex advice is also found.

In 13% of the cases the participants were neutral with regards to the statement, in
18% they disagreed and in 2% of the cases they strongly disagreed. An example of a case
where the participant disagreed is given in table 7.5. The generated advice suggests to
get microlax, which is a laxative, but the domain expert thinks the patient should get a
stronger laxative. Another example where the participant disagreed is given in table 7.6.

51



Here the advice suggests ibuprofen for the pain, but according to the domain expert, this is
not allowed due to pregnancy. So we see that the model can struggle with subtleties such
as pregnancy, which leads to an incorrect advice.

Figure 7.3: Counts of Likert scale responses to the statement "Given the triage
information the given advice is appropriate", for all the cases that were unique across
all participants.

Table 7.5: Example of a case where the domain expert disagreed with generated
advice. Translated from Dutch.

Symptoms

Was in the hospital last week because of a tumor in the
head. Today home again. Can’t pass stool. had too
little movement. constantly has small bits of stool.
May not push too much.

Question Would like something to promote defecation.

Generated advice for now get a microlax from the service pharmacy.
Call back if no result or symptoms worsen.

Domain expert advice In my opinion something stronger to laxate,
such as phosphate enema

The participants were also asked to change the advice if they deemed it necessary. It
is difficult to quantify how much they changed the advice, because the participants used
different approaches. For example, some participants kept the output of the model, but
added "Addition: ...", indicating what they were missing. While others also wrote inside
the advice why they changed the advice. Therefore, we attempted to manually find patterns
in the changes that were made. In general, we observed 5 reasons that the domain experts
had for making changes to the output of the model. These reasons and how often they
occurred are given in table 7.7. Note that more than one point can occur in a change. For

52



Table 7.6: Example of a case where the domain expert disagreed with generated
advice. Translated from Dutch.

Symptoms

is 38wk pregnant. has hemorrhoids own gp
made incision, had thrombosis hemorrhoid,
pain heavier and is still there. difficulty sitting.
This morning by own gp still incised,
pcm does not help sufficiently now.
struggles to go to toilet

Question what can we do?
don’t want to go into night like this

Generated advice

iom ra > for now no alarm signals,
stand by with painkillers pcm and ibuprofen.
if acutely sicker or other pain then call hap.
otherwise own gp tomorrow for
further management. mw reassured and agreed

Domain expert comment Patient not allowed to take ibuprofen due to pregnancy

example a domain expert can make both an addition to the advice and also add a safety
net.

Table 7.7: Changes made by domain experts to the generated outputs of the cases
that were unique across participants

# Reason for changing the output Count
1 A safety net was missing 23
2 An addition to the advice was needed 6
3 They disagreed with the advice 22
4 They were missing necessary information 3
5 They disagreed with the urgency 9

Outputs of the model that lead to reason 1 (which occurred most often) and reason 2
could still be valuable, because the participants kept the output of the model, but simply
added something extra. Therefore, they still have to type less when they use the output of
the model. Model outputs that resulted in point 3, which occur second most often, are not
useful, since the triagist would be spending time changing the advice, which probably takes
more time than writing the advice from scratch. Point 4 is a shortcoming of the user study
itself, since some information was lacking such as age. In practice, a triagist would, almost
always, request such information from a different system using the citizen service number of
the person that is calling. Point 5 shows that domain experts may not agree with urgency
level of our input data, which is something out of our control. This also shows that certain
cases are difficult to assess for humans as well.

7.2 Results general questions

The general question were answered by 2 triagists and 3 general practitioners. All the
general questions were open-ended, but they did steer towards a yes or no answer with
explanation. Therefore, we tried to deduce a yes/no answer for each question. These
answers are given in table 7.8. The raw answers to the each question can be found in

53



appendix B.

Table 7.8: Answers to the general questions

Question 1 Question 2 Question 3 Question 4
Triagist 1 Yes Sometimes No No
Triagist 2 Yes No No No
GP 1 No No No No
GP 2 Yes Yes Yes Yes
GP 3 Yes No No No

Triagist 1/2 and GP 1/3 sometimes found it challenging to assess the advice, because
they were missing some information such as age. GP 2 found it hard to assess the cases,
because each healthcare professional has his/her own formulation.

With regard to the usefulness of the advice that were given by the model, triagist 2
mentioned that the advice were sometimes incomplete and really often lacked a concrete
safety net. For example, for the generated advice: "Iom RA: no alarm symptoms now,
Monday EHA.", this triagist is missing the safety net: "In case increase in abdominal
pain, vomiting call back HAP". Triagist 1 did not think the model outputs would help her
because of her way of working, but she could imagine that it could be useful for others. GP
1 mentioned his/her concerns about confirmation bias. GP 2 responded that the model
outputs could save time when composing an advice and that small changes can easily be
made. GP 3 said it could also be confusing and in his/her opinion relying on your own
judgment is better and more objective.

As for the colored words of our attribution method, GP 2 found it useful because
he could focus on the important parts while ignoring noise. GP 1 did not find it useful,
because it sometimes puts emphasis on irrelevant things. He mentioned that for the case
with the following symptoms: went through foot this morning; walked out, sagged through
foot, slip? is swelling, not cooled, sat on couch, limping to toilet; toes a little tingly, the
attribution method had for example marked "amputution injury" inside the questions and
answers section of the triage information, which is obviously irrelevant for these minor
symptoms. GP 3 found the colored words annoying. Triagist 2 disregarded the colored
words completely, while triagist 1 found it distracting, because he/she immediately focused
on those words and felt like she did not read the entire case properly. This suggests that
the method could have been more useful if the attention was directed towards the right
words instead of irrelevant ones.

7.3 Conclusion

A user study, involving 4 triagists and 3 GPs, was conducted to assess the appropriateness
and usefulness of the advice produced by our model. Furthermore, the study aimed to
assess the effectiveness of the proposed explainability method in practice.

The results of the study showed that in the majority of cases the model produced an
appropriate advice. However, in some cases the advice was inappropriate and also often
lacked information such as a safety net. Even though not all participants answered the
general questions, the study also revealed that the majority of participants indicated that,
in general, they did not think that the outputs would be useful in practice. These conflicting
results from the case questions and general questions show that there is still a lot of room
for improvement. Finally, the study also showed that the explainability method in its
current form was not beneficial for most participants.

54



In general, we can conclude that the model is capable of producing appropriate ad-
vice, but domain experts have doubts about its usefulness in practice. Furthermore, the
explainability method is not effective in its current form.

55



Chapter 8

Conclusions

VIPLive Spoed EPD is a software application developed by Topicus that is used by triagists
to enter information about a triage conducted by phone at an out-of-hours primary care
center. Due to a constant shortage of staff, a triage has to be conducted quickly. In some
cases an advice is given in the form of unstructured text. The goal of this research was to
reduce the workload of triagists by predicting this natural language advice based on the
input given by the person who calls the care center. Here, we answer each sub-research
question and the main research question.

• SQ1: What is the performance of a domain-specific PLM against a domain-generic
PLM?

We proposed the healthcare-specific Med2Med and domain-generic Rob2Rob PLM,
with identical setups apart from the model checkpoints. Rob2Rob slightly outper-
formed Med2Med on our dataset, showing that healthcare-specific pre-training on
hospital notes is not beneficial compared to domain-generic pre-training in a triage
setting at out-of-hours primary care centers. There are possible explanations for
this. Firstly, the size of the pre-training dataset for Med2Med is significantly smaller
compared to that of Rob2Rob. Furthermore, the natural language in our dataset
likely contains fewer medical terms in comparison to the hospital notes in which
Med2Med was pre-trained.

• SQ2: How can natural language and categorical features be combined to train a PLM
that generates triage advice?

We trained our proposed Rob2Rob only on features that were originally unstructured
text. We observed that this model significantly under performed compared to a
Rob2Rob model that was trained on all features using an All-Text approach. Showing
that there is valuable information in the categorical features, when these features are
simply concatenated as text.

Next, we proposed a Fuse-Early approach in which separate embeddings are created
for categorical features, before fusing them with the unstructured text embeddings.
We observed that the performance of Rob2Rob decreases significantly when using
the Fuse-Early approach. The model is even outperformed by the Rob2Rob model
that only considers natural language text features. This shows that, at least with our
dataset, processing categorical features separately is not beneficial. There could be
several explanations for this result. First, the size of our dataset might be a limiting
factor, given the greater complexity and increased number of parameters that need to
be learned from scratch in the Fuse-Early approach. Furthermore, it is possible that

56



our Fuse-Early architecture is suboptimal because our input does not pass through
the pre-trained embedding layer of Rob2Rob, and we have to project our categorical
embeddings to the hidden dimension of Rob2Rob. Previous work [47] did not find
such a big difference in performance between All-Text and Fuse-Early, which indicates
that a deficiency in our architecture is more plausible.

In an effort to enhance the context provided by the All-Text approach, we proposed
three strategies. Firstly, we included natural language prefixes that describe each
feature in front of the corresponding input feature. Secondly, we introduced a special
token for each input feature into the tokenizer and placed it in front of the respective
feature. Finally, we extended the last approach by introducing a token for each
possible value of the categorical features. Each approach improved performance in
terms of ROUGE scores, and the differences between these approaches were marginal.
Considering these minor differences, along with the fact that using only special token
prefixes leads to the smallest memory footprint, we conclude that this is the best
setup for preprocessing the input among all the strategies we explored for combining
input features.

• SQ3: What strategies with regard to the setup of the PLM can be used to improve its
performance to generate advice?

First of all, to reduce the memory footprint of our model and to decrease training
time, we used weight sharing between the encoder and decoder of our Rob2Rob model.
This only led to a small decrease in performance in terms of ROUGE score, which is
in line with previous work [45]. Secondly, introducing a repetition penalty successfully
mitigated the problem of consecutive uni- and bi-gram repetition. Finally, using beam
search with a beam width of 3 improved the performance of our Rob2Rob model
when using an All-Text approach.

• SQ4: How can we evaluate the generated advice?

We used ROUGE, which measure the syntactic similarity between two pieces of text,
to compare the performance of different models and different model setups. However,
to evaluate the usefulness of the model outputs we recruited domain experts. By
working through several cases we had them assess the appropriateness of the model
outputs. We observed that they primarily agreed with the advice that was given
by the model. Furthermore, through general open-ended questions we also found
that they have doubts about the usefulness of the outputs in practice. However,
the number of participants and number of cases assessed in our user study was low.
Therefore, these findings are not sufficient to statistically evaluate the usefullness of
our model in practice.

• SQ5: How can we add explainabilty to the generated advice?

We proposed an attribution method that aggregates input attributions that are
obtained using integrated gradients. This method was applied on the cases of the user
study where words with high attributions were marked. However, the majority of
domain experts did not find this method useful because it was found to be distracting,
as it occasionally marked irrelevant words. Therefore, we conclude that the proposed
attribution method does not provide a good explanation of the model output to the
end-user.

So, to answer our main RQ, we can conclude that our proposed and finetuned Rob2Rob
PLM, in most cases, is capable of generating appropriate advice in a triage setting at

57



out-of-hours primary care centers. However, domain experts have doubts about their
usefulness in practice. Furthermore, our proposed attribution method was not useful as an
explainabilty method according to domain experts.

Here, we also discuss some limitations and future work. First of all, our models were
trained on data that was produced by a single out-of-hours primary care center. Although
all centers are expected to adhere to the same standard (NTS), it could be that there
might be subtle differences in the way of working or writing styles between different centers.
Therefore, we cannot guarantee that our trained models generalize well for other centers.
As such, it would be beneficial to train the models on more data from different out-of-hours
primary care centers.

Secondly, the proposed attribution method has its limitations. Integrated gradients
results in scores for each input token across all output tokens. We aggregated these scores by
summing the attribution vectors for each input token. However, since we use a conditional
language model, this may not be fair because the output tokens depend on each other.
Furthermore, we summed the aggregated attribution scores of the input tokens that together
form a word to make it more readable for the end user. Therefore, words that are made
up of multiple tokens are more likely to have a higher attribution score, which may not
be desirable. So, in hindsight, it may have been better to average the attribution scores
over the tokens that form a word. In general, a big limiting factor for explaining our model
outputs is the fact that we have multiple outputs (a sequence of tokens). This makes it
hard to have an easily digestible explanation, because it is hard to explain why the model
produces the entire output as a whole.

Furthermore, we restricted ourselves to data that is entered into the Spoed EPD
application. However, triagists can retrieve other personal information, such as age, from
different systems. Therefore, it could be beneficial to also add this information to the input
of the model, such that is has more context.

Also, the conducted user study has its limitations. The participants were only presented
with the information that they themselves enter into the system. In practice they also
request personal information, such as age, from a different system. This sometimes made it
difficult for them to assess the advice. Furthermore, 136 different samples from our test
set were evaluated by domain experts. This is obviously a small portion of the entire test
set, which consisted of 12076 samples. Therefore, to really assess the usefulness of the
model in practice, it would be valuable to conduct a pilot study where the model is actually
integrated into the application.

Finally, our user study showed that domain experts have doubts about the usefulness of
the model outputs in practice, while they did assess that they were appropriate in most
cases. Therefore, instead of presenting the advice as a suggestion, the model can also be
used to create an auto-complete system, as also suggested by Liu et al. [37], because it is
trained to predict the next token given some context.

58



Bibliography

[1] Nederlandse triage standaard (nts). https://de-nts.nl/. Accessed: 14-03-2023.

[2] J Alammar. Ecco: An open source library for the explainability of transformer language
models. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing:
System Demonstrations. Association for Computational Linguistics, 2021.

[3] Émilien Arnaud, Mahmoud Elbattah, Maxime Gignon, and Gilles Dequen. Nlp-based
prediction of medical specialties at hospital admission using triage notes. In 2021
IEEE 9th International Conference on Healthcare Informatics (ICHI), pages 548–553,
2021.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[5] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evalu-
ation with improved correlation with human judgments. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics.

[6] Zina Ben Miled, Paul R. Dexter, Randall W. Grout, and Malaz Boustani. Feature engi-
neering from medical notes: A case study of dementia detection. Heliyon, 9(3):e14636,
2023.

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[8] Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller,
and Wojciech Samek. Layer-wise relevance propagation for neural networks with local
renormalization layers. In Artificial Neural Networks and Machine Learning – ICANN
2016, pages 63–71, Cham, 2016. Springer International Publishing.

[9] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven documents.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[10] Min-Chen Chen, Ting-Yun Huang, Tzu-Ying Chen, Panchanit Boonyarat, and Yung-
Chun Chang. Clinical narrative-aware deep neural network for emergency department
critical outcome prediction. Journal of Biomedical Informatics, 138:104284, 2023.

59

https://de-nts.nl/


[11] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.

[12] Eldan Cohen and J. Christopher Beck. Empirical analysis of beam search performance
degradation in neural sequence models. In International Conference on Machine
Learning, 2019.

[13] Alister D’Costa, Stefan Denkovski, Michal Malyska, Sae Young Moon, Brandon
Rufino, Zhen Yang, Taylor Killian, and Marzyeh Ghassemi. Multiple sclerosis severity
classification from clinical text. In Proceedings of the 3rd Clinical Natural Language
Processing Workshop, pages 7–23. Association for Computational Linguistics, November
2020.

[14] Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan
van Noord, and Malvina Nissim. Bertje: A dutch bert model, 2019. arXiv:1912.09582.

[15] Pieter Delobelle, Thomas Winters, and Bettina Berendt. RobBERT: a Dutch RoBERTa-
based Language Model. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 3255–3265. Association for Computational Linguistics, November
2020.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics, 2019.

[17] Auke Elfrink, Iacopo Vagliano, Ameen Abu-Hanna, and Iacer Calixto. Soft-prompt tun-
ing to predict lung cancer using primary care free-text dutch medical notes. In Artificial
Intelligence in Medicine, pages 193–198, Cham, 2023. Springer Nature Switzerland.

[18] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 889–898, Melbourne, Australia, July 2018.
Association for Computational Linguistics.

[19] Yanjun Gao, Dmitriy Dligach, Timothy Miller, Dongfang Xu, Matthew M. M. Churpek,
and Majid Afshar. Summarizing patients’ problems from hospital progress notes using
pre-trained sequence-to-sequence models. In Proceedings of the 29th International
Conference on Computational Linguistics, pages 2979–2991, Gyeongju, Republic of
Korea, 2022. International Committee on Computational Linguistics.

[20] Divya Gopinath, Monica Agrawal, Luke Murray, Steven Horng, David Karger, and
David Sontag. Fast, structured clinical documentation via contextual autocomplete.
In Machine Learning for Healthcare Conference, pages 842–870. PMLR, 2020.

[21] Marjolein Groenendijk. Drukte op huisartsenpost door onnodige belletjes: ‘kind met
keelpijn is geen spoed’. Het AD. URL: https://www.ad.nl/dordrecht/drukte-
op-huisartsenpost-door-onnodige-belletjes-kind-met-keelpijn-is-geen-
spoed~a0d0d113/.

60

http://arxiv.org/abs/1912.09582
https://www.ad.nl/dordrecht/drukte-op-huisartsenpost-door-onnodige-belletjes-kind-met-keelpijn-is-geen-spoed~a0d0d113/
https://www.ad.nl/dordrecht/drukte-op-huisartsenpost-door-onnodige-belletjes-kind-met-keelpijn-is-geen-spoed~a0d0d113/
https://www.ad.nl/dordrecht/drukte-op-huisartsenpost-door-onnodige-belletjes-kind-met-keelpijn-is-geen-spoed~a0d0d113/


[22] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables, 2016.
arXiv:1604.06737.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9:1735–80, 12 1997.

[24] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In International Conference on Learning Representations,
2020.

[25] Yun Hu, Guokai Han, Xintang Liu, Hui Li, Libao Xing, Yong Gu, Zuojian Zhou, and
Haining Li. Design and implementation of a medical question and answer system based
on deep learning. Mathematical Problems in Engineering, 2022:1–6, 09 2022.

[26] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clinical
notes and predicting hospital readmission, 2020. arXiv:1904.05342.

[27] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer:
Tabular data modeling using contextual embeddings, 2020. arXiv:2012.06678.

[28] Hadi Jahanshahi, Syed Kazmi, and Mucahit Cevik. Auto response generation in online
medical chat services. Journal of Healthcare Informatics Research, 6(3):344 – 374,
2022.

[29] Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic generation of medical
imaging reports. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2018.

[30] Neel Kanwal and Giuseppe Rizzo. Attention-based clinical note summarization. In
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, SAC ’22,
page 813–820, New York, NY, USA, 2022. Association for Computing Machinery.

[31] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard
Socher. Ctrl: A conditional transformer language model for controllable generation,
2019. arXiv:1909.05858.

[32] Yoojoong Kim, Jong-Ho Kim, Young-Min Kim, Sanghoun Song, and Hyung Joo.
Predicting medical specialty from text based on a domain-specific pre-trained bert.
International Journal of Medical Informatics, 170:104956, 12 2022.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[34] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho
So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics, 36(4):1234–1240, sep 2019.

[35] Yikuan Li, Shishir Rao, José Roberto Ayala Solares, Abdelaali Hassaine, Rema Ramakr-
ishnan, Dexter Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza Salimi-Khorshidi.
Behrt: transformer for electronic health records. Scientific reports, 10(1):1–12, 2020.

61

http://arxiv.org/abs/1604.06737
http://arxiv.org/abs/1904.05342
http://arxiv.org/abs/2012.06678
http://arxiv.org/abs/1909.05858


[36] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association
for Computational Linguistics.

[37] Peter J. Liu. Learning to write notes in electronic health records, 2018. arXiv:
1808.02622.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019. arXiv:1907.11692.

[39] Andriy Mulyar, Ozlem Uzuner, and Bridget McInnes. MT-clinical BERT: scaling
clinical information extraction with multitask learning. Journal of the American
Medical Informatics Association, 28(10):2108–2115, 08 2021.

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July 2002. Association for Computational Linguistics.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Red
Hook, NY, USA, 2019. Curran Associates Inc.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21:140:1–
140:67, 2020.

[43] Afsana Binte Rakib, Esika Arifin Rumky, Ananna J. Ashraf, Md. Monsur Hillas, and
Muhammad Arifur Rahman. Mental healthcare chatbot using sequence-to-sequence
learning and bilstm. In Brain Informatics, pages 378–387, Cham, 2021. Springer
International Publishing.

[44] Max Tigo Rietberg, Van Bach Nguyen, Jeroen Geerdink, Onno Vijlbrief, and Christin
Seifert. Accurate and reliable classification of unstructured reports on their diagnostic
goal using bert models. Diagnostics, 13(7):1251, 2023.

[45] Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Leveraging pre-trained check-
points for sequence generation tasks. Transactions of the Association for Computational
Linguistics, 8:264–280, dec 2020.

[46] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11):2673–2681, 1997.

[47] Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J. Smola. Bench-
marking multimodal automl for tabular data with text fields. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks, 2021.

62

http://arxiv.org/abs/1808.02622
http://arxiv.org/abs/1808.02622
http://arxiv.org/abs/1907.11692


[48] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 3145–3153. JMLR.org,
2017.

[49] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In 2nd In-
ternational Conference on Learning Representations, Workshop Track Proceedings,
2014.

[50] Nicholas Sterling, Rachel Patzer, Mengyu Di, and Justin Schrager. Prediction of
emergency department patient disposition based on natural language processing of
triage notes. International Journal of Medical Informatics, 129, 06 2019.

[51] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 3319–3328. JMLR.org, 2017.

[52] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, page 3104–3112, Cambridge,
MA, USA, 2014. MIT Press.

[53] Deeksha Varshney, Aizan Zafar, Niranshu Kumar Behera, and Asif Ekbal. Knowledge
grounded medical dialogue generation using augmented graphs. Scientific Reports,
13(1):3310, 2023.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[55] Stella Verkijk and Piek Vossen. Medroberta.nl: A language model for dutch electronic
health records. Computational Linguistics in the Netherlands Journal, 11:141–159,
Dec. 2021.

[56] Hessel von Piekartz. Huisartsen hebben al te weinig tijd, komen er ook
nog mensen met pijnlijke tenen naar de spoedpost. De Volkskrant. URL:
https://www.volkskrant.nl/nieuws-achtergrond/huisartsen-hebben-al-
te-weinig-tijd-komen-er-ook-nog-mensen-met-pijnlijke-tenen-naar-de-
spoedpost~bfddc09f/.

[57] Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. Pre-trained language
models and their applications. Engineering, 25:51–65, 2023.

[58] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason
Weston. Neural text generation with unlikelihood training. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, 2020.

[59] Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

63

https://www.volkskrant.nl/nieuws-achtergrond/huisartsen-hebben-al-te-weinig-tijd-komen-er-ook-nog-mensen-met-pijnlijke-tenen-naar-de-spoedpost~bfddc09f/
https://www.volkskrant.nl/nieuws-achtergrond/huisartsen-hebben-al-te-weinig-tijd-komen-er-ook-nog-mensen-met-pijnlijke-tenen-naar-de-spoedpost~bfddc09f/
https://www.volkskrant.nl/nieuws-achtergrond/huisartsen-hebben-al-te-weinig-tijd-komen-er-ook-nog-mensen-met-pijnlijke-tenen-naar-de-spoedpost~bfddc09f/


[60] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45. Association for Computational Linguistics, October
2020.

[61] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text
as text generation, 2021. arXiv:2106.11520.

[62] Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off
diversity and quality in natural language generation. In Proceedings of the Workshop
on Human Evaluation of NLP Systems (HumEval), pages 25–33. Association for
Computational Linguistics, April 2021.

[63] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with BERT. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[64] Xingxing Zhang, Yiran Liu, Xun Wang, Pengcheng He, Yang Yu, Si-Qing Chen,
Wayne Xiong, and Furu Wei. Momentum calibration for text generation, 2022. arXiv:
2212.04257.

[65] Xingyu Zhang, Joyce J. Kim, Rachel Elizabeth Patzer, Stephen R. Pitts, Aaron
Patzer, and Justin D Schrager. Prediction of emergency department hospital admission
based on natural language processing and neural networks. Methods of Information in
Medicine, 56:377 – 389, 2017.

64

http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/2212.04257
http://arxiv.org/abs/2212.04257


Appendix A

Evaluation metrics

Model Fusion
Strategy

Only
free-text
features

encoder
decoder
weights
shared

Epochs R1
F1

R2
F1 BLEU METEOR

Rob2Rob All-Text No Yes 3 27.5 12.0 7.5 24.7
Med2Med All-Text No Yes 3 27.2 11.8 7.3 24.5
Rob2Rob All-Text Yes Yes 4 22.0 8.1 4.7 19.9
Rob2Rob Fuse-Early No Yes 5 18.4 3.6 1.3 18.3
Rob2Rob All-Text No No 3 27.9 12.4 7.7 25.0

Table A.1: All evaluation metrics on the test set of the models trained in experi-
ments 1 - 4 of chapter 6. R1 is ROUGE-1, R2 is ROUGE-2.

65



Appendix B

Answers to general questions of user
study

1. Was het lastig om te beoordelen of het advies passend was op basis van de gegeven
informatie? Waarom wel/niet? (Was it difficult to assess whether the advice was
appropriate based on the given information? Why or why not?)

• Triagist 1: Ja vond ik wel, we zijn geneigd om veel te vragen en te willen
weten. Dus ik had het gevoel advies te moeten geven op een half verhaal. Dat
is natuurlijk lang niet altijd zo. Is meer de aart van het beestje , ervaring en
onderbuik gevoel.

• Triagist 2: Ja, ik mist soms nog info.

• GP 1: Over het algemeen niet moeilijk om een oordeel te geven, maar hier en
daar miste ik wel wat info, bv over de leeftijd van patiënten

• GP 2: Redelijk lastig. Als zorgverlener kies je je eigen formulering.

• GP 3: Ja, want leeftijden stonden er veelal niet bij. Soms ook wat tegenstrijdig
verhaal

2. Zouden de voorgestelde adviezen die u heeft beoordeeld (en welke gegeven waren
onder ’Eigen advies’), u kunnen helpen om sneller een ’Eigen advies’ op te stellen?
Waarom wel/niet? (Could the suggested advice you evaluated (which was provided
under ’Own advice’) help you formulate ’Own advice’ more quickly? Why or why
not?)

• Triagist 1: Mij niet echt denk ik. Ik klik nu al vaak het hokje bij zelfzorg aan
en dan een summier extra regel erbij in mijn eigen bewoording. Denk dat het
anderen zeker kan helpen, de een is nu een maal sneller met afhandelen van een
melding dan de ander.

• Triagist 2: De opgestelde adviezen waren soms niet compleet en miste heel vaak
een concreet vangnet.

• GP 1: Helpen niet echt, en ik vraag me af of er door het gegeven advies niet een
risico van conformation bias insluipt

• GP 2: Jazeker. Kan tijd schelen en enige aanpassing tekst is snel verricht.

• GP 3: Kan ook verwarrend werken; afgaan op eigen oordeel wat mij betreft
beter en meer objectief

66



3. Hielpen de gekleurde woorden in de triage informatie u bij het bepalen of u een
’Eigen advies’ passend vond? Waarom wel/niet? (Did the colored words in the triage
information assist you in determining whether you found ’Own advice’ suitable? Why
or why not?)

• Triagist 1: Nee, het gaf mij afleiding. Ik keek meteen naar de gekleurde woorden
en had de neiging om minder goed te lzen daardoor.

• Triagist 2: Niet opgelet.

• GP 1: Niet. Soms brenhen ze een probleem terecht onder de aandacht (bv
nierdonatie in casus 29), maar soms lijken ze ook niet relevant (amputatieletsel
in casus 30)

• GP 2: Jazeker. Je kunt snel inzoomen op de kern.

• GP 3: nee, eerder irritant

4. Had u door de gekleurde woorden meer vertrouwen in het voorgestelde ’Eigen advies’?
Waarom wel/niet? (Did the colored words give you more confidence in the suggested
’Own advice’? Why or why not?)

• Triagist 1: Nee eigenlijk een overlap met de vorige vraag. Daarnaast is het denk
ik aan de andere kant ook een kwestie van wennen. Bij iedere release moet je
ook wennen aan nieuwe dingen. Daarnaast is het een kwestie van vertrouwen
hebben. Als je het aangegeven zelfzorg advies mondeling toegelicht hebt hoef je
het in principe hierdoor niet uit te schrijven.

• Triagist 2: Niet opgelet.

• GP 1: Zie bovenstaande antwoord: nee

• GP 2: Ik denk het wel. Ontdaan van allerlei ruis in de tekst.

• GP 3: nee, niet door laten leiden

67


	Introduction
	Motivation
	Research questions
	Structure of the Thesis

	Background
	Conditional language model
	Sequence-to-Sequence models for NLG
	Vanilla Recurrent Neural Networks
	Long Short-Term Memory
	Attention mechanism
	Transformers

	Pre-trained language models

	Related Work
	PLMs in medical domain
	Multi-modal input
	Decoding strategies
	Evaluation methods for text generation
	Model explainability
	Research Directions

	The Data
	Process that produces the data
	Dataset
	Data analysis
	Data cleaning
	Input Data

	Methods
	Conditional language model for triage advice
	Model selection and adaptation
	Fusion approaches
	All-Text
	Fuse-Early

	Decoding methods
	Repetition penalty
	Beam search

	Evaluation metrics
	Model explainability
	Integrated Gradients
	Aggregating attributions


	Experiments
	Experimental setup
	Evaluation
	Experiment 1: Rob2Rob vs Med2Med (SQ1)
	Experiment 2: Rob2Rob free-form textual features only (SQ2)
	Experiment 3: All-Text vs Fuse-Early (SQ2)
	Experiment 4: Encoder-Decoder weight sharing (SQ3)
	Experiment 5: Preventing n-gram repetitions (SQ3)
	Experiment 6: Beam search (SQ3)
	Experiment 7: Adding more input context (SQ2)

	User study (SQ4/SQ5)
	Results case questions
	Results general questions
	Conclusion

	Conclusions
	Evaluation metrics
	Answers to general questions of user study

