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Management summary

Motivation of this research: The Gooi en Vechtstreek region (RGV) and its care providers face high costs in
social care services. One of the reasons for these costs is the inefficient transportation of clients for social care
services. A solution could be to reorganize this transportation. This thesis examines the impact of a potential
new strategy.

Research objective and questions: The objective of this study is to develop a decision-making algorithm
to prospectively assess the impact of various strategies on key performance indicators related to transporta-
tion services for clients of social care services in the RGV. To complete this objective the following research
questions are formulated:

• What is the current strategy regarding the transportation of clients for social care services in the RGV?
• What methods are known to solve VRPs?
• How should the transportation planning algorithm be constructed?
• What is the performance of various strategies regarding Key Performance Indicators (KPIs) in the model?
• Are there recommendations that can be suggested to the RGV for improving the current situation regard-

ing the transportation of clients for social care services?

Approach: Because there is no available data on the outcomes of KPIs for the current strategy validation of
the model is difficult. The current strategy is modelled. Additionally, two strategies are tested. First is the
horizontal cooperation strategy, in which clients remain with their current care provider, but the transportation
is coordinated from a central vehicle depot. Second is the client allocation strategy, where, in addition to the
central vehicle depot, clients can also be allocated to other care providers if this is beneficial for the transporta-
tion routes.

For every strategy, an Integer Linear Programming (ILP) model is formulated. Due to the complexity of the
problem, the ILP models were not suitable. Therefore a meta-heuristic is employed. A random greedy heuristic
feeds an initial solution to an Adaptive Large Neighbourhood Search (ALNS) algorithm, which optimizes the
solution. The ALNS algorithm works by destroying the current solution and then repairing it to create a new
solution. A simulated annealing framework determines whether this new solution is accepted. After a certain
number of iterations, the best-found solution is returned.

Results and conclusions: Various experiments are performed to tune the parameters that are present in
the ALNS algorithm. With the tuned parameters, the various strategies are tested on the total distance driven
during a week of transporting clients to their social care services. The following results were found:

Current strategy: 7618 (±160) kilometres, 53.2 (±1) vehicles needed
Horizontal cooperation strategy: 7047 (±120) kilometres, 16.4 (±1) vehicles needed
Client allocation strategy: 6387 (±79) kilometres, 14 (±1) vehicles needed

We conclude that the new strategies have a positive impact on the current situation based on the distance
driven and vehicles needed. The average driving time per transport request was similar for the current strategy
and the horizontal cooperation strategy with 27.0 (±0.3) and 27.3 (±0.3) minutes, respectively. The client allo-
cation strategy presented a small decrease with 25.3 (±0.3) minutes. The LP models were not able to generate
a lower bound. The solution consists of multiple routes. To check that the routes are logical, they are verified
visually. This thesis helps the RGV to make a more informed decision about strategies for the transportation
of clients of social care services. Additionally, the thesis makes a scientific contribution; no articles with the
same characteristics as those in the RGV situation were found in the literature. We demonstrate that an ALNS
algorithm provides solutions to a problem with the specific characteristics of the RGV.

Where to from here?: The ALNS algorithm can easily be expanded to incorporate more KPIs for making
a better-informed decision. For example, costs or the quality of the ride can be considered in the objective
function. Finding a balance between the various KPIs enables a decision which balances the interests of all
stakeholders. Other strategies can also be tested. Examples include positioning the vehicle depot more central
in the region or adopting a multi-depot approach. If the RGV decides to implement a new strategy, it would be
beneficial to conduct more research on the impact a new strategy would have on the clients. During the data
collection, several care providers indicated that a change in transportation or care provider has a significant
impact on these clients. A gradual transition to a different strategy could be a solution.
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1 Introduction

This chapter describes the context of this research, including the motivation for conducting this study. Section
1.1 describes the context of this research. Section 1.2 defines the problem context, including the core problem.
Last, Section 1.3 states the research objective and questions.

1.1 Context description

This thesis focuses on an issue related to the transportation of clients for social care services. To understand
the current situation and its origins, this section describes the context regarding social care services, including
the development of the law that regulates this matter.

The Netherlands is widely regarded as a welfare state. In 1901 the first social insurance scheme was in-
troduced, a law to compensate for work-related injuries. Over time, additional national plans were imple-
mented [6]. The central government became responsible for the provision of social care, which was regulated
by the Algemene Wet Bijzondere Ziektekosten (Exceptional Medical Expenses Act) or AWBZ. This law was
introduced by, at the time, Minister Veldkamp in 1968 [7]. To illustrate the magnitude of the AWBZ, its total
budget in 2004 was approximately 20.5 billion euros. The AWBZ consisted of a mandatory insurance scheme
for the whole population. This resulting fund paid for care not included in health insurance or private insurance
policies. The AWBZ covered the following aspects:

• Treatment from a medical specialist, behavioural science, or specialized paramedical care.
• Support with activities to prevent mental issues or help cope with medical conditions.
• Support with promoting or maintaining self-reliance.
• Nursing, aimed at recovering or preventing medical conditions and disabilities.
• Personal care aimed at maintaining or promoting self-reliance.
• Domestic care provided in case of limitations/dysfunction in performing household tasks.

The Dutch social care system had several strengths and weaknesses under the AWBZ regulation. The main
positives from the AWBZ were that every citizen was insured and the right to receive social care if needed
was recognized by law [8]. Additionally, clients could choose which caregiver suits them most through a Per-
soonsgebonden Budget (personalized budget) or PGB. This PGB could be requested from the municipality
to arrange care yourself. However, some limitations also occurred in the way social care was handled in the
Netherlands under the AWBZ. Client needs and desires were not sufficiently taken into account. There was
little incentive to increase the efficiency and quality of care. According to the minister of Health, Welfare and
Sport, the natural tendency to look after another was lost [9]. Furthermore, costs and quality were difficult to
monitor under this regulation, and costs were increasing [10] [11] [8].

Because of the rising costs, the government decided to decentralize how social care was managed, and in
2015, the Social Support Act, in Dutch the Wet Maatschappelijke Ondersteuning (WMO), was introduced to
regulate social care in a different way [12] [13]. In the new law, the responsibility to provide care was shifted
from the central government to local governments in the hope that better efficiency and higher quality could be
achieved. It was assumed that local governments were in closer contact with their citizens and could therefore
better determine what care citizens should receive and how that care should be arranged [14].

Hortulanus identifies the importance of the WMO [15]. He states that the introduction of the WMO creates
a safety net for vulnerable people, while also giving the possibility to link vulnerable people to healthy people.
In the new WMO, local initiatives of collective solidarity and the tendency to rely on your own social environ-
ment are encouraged. However, the introduction of the new WMO received criticism as well. Houten argues
that the WMO is merely a cost-cutting policy [16].

Under the new WMO, municipalities were made responsible for supporting people who are not self-reliant [12].
This meant that municipalities were accountable for arranging personal guidance, day care or arranging sup-
port to relieve the family caregiver temporarily. Another task of the municipalities under the WMO was to
arrange a safe living environment for citizens with mental disorders. These were largely the tasks previously
included in the AWBZ.

According to a report about the WMO in practice, municipalities were struggling to find the best way to im-
plement the WMO [17]. The most important aspect for municipalities was continuity of care. Citizens were
to experience as little inconvenience as possible from the transition. For caregivers, the transition meant the
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administrative burden increased as a lot had to be reported to the local governments.

When the new WMO was introduced, local governments could choose what kind of care contracting policy
they would like to adopt. The ideology behind this approach was that municipalities are more familiar with
the needs of citizens and therefore better able to determine how to tailor care to those needs [14]. Since
citizens’ needs differ from one municipality to another, different municipalities have adopted various models
of contracting care. One of the models that local governments use is the so-called ”Zeeuws model” or ”open
house model” [4] [5]. In the setting of this thesis, the open house model is adopted. Therefore, this model is
further explained here.

In the open house model, every caregiver is contracted if they are compliant with certain quality requirements
and are willing to provide care at a fixed price. In theory, this means that an unlimited amount of caregivers
could be contracted. Citizens can choose for themselves which provider to get care from. Table 1.1 displays
the advantages and disadvantages of the open house model.

Table 1.1: The advantages & disadvantages of the open house model [4] [5].

Aspect Advantages Disadvantages

Client has the freedom to
select their own care provider

The most suitable care provider is selected

by the client themselves. Which improves their

empowerment and engagement in their own care.

The open house model requires a high amount

of care providers. Otherwise, clients do not

have enough options to find a suitable care provider.

Quality of care

The freedom of client to choose their own care

provider, creates a natural incentive for care

provider to deliver high-quality care. This

competition motivates care providers to keep improving.

The municipality has little contact with the end user,

making it difficult to check for quality of care.

Costs & administrative burden

While the initial contracting phase may involve

higher administrative burden, the administrative

burden of other phases in the open house model is low

compared to other models.

Control over costs is established by restricting the

provision of care (there is no ”open access”).

However, with a high number of care providers,

implementing such limitations is complicated.

The open house model faced some criticism from State Secretary Van Ooijen (Ministry of Health, Welfare and
Sport) and Minister Weerwind (Legal affairs) [18]. According to their letter, the model creates an influx of new
care providers, some of whom make high profits. The influx of new care providers makes it difficult for mu-
nicipalities to keep in control. Therefore, they proposed a new law making it more difficult for municipalities to
apply the open house model as a procurement method. However, the article of Hoogenraad et al. [19] showed
that the open house procurement method was not related to higher cost increases. This study also shows that
changing the procurement method from an open house procurement method to another on average does not
reduce costs.

Municipalities often procure WMO care together with other municipalities [20]. This is done to share knowledge
and have more power over care providers. Contrary, the process of buying care becomes more complex. In
the region of ”Het Gooi en Vechtstreek” (RGV), the municipalities of Blaricum, Gooise Meren, Eemnes Hilver-
sum, Huizen, Laren and Wijdemeren collaborate. These municipalities purchase WMO support and youth care
together.

In the Netherlands, more than one million people received some form of care from the WMO during the first
half year of 2022 [21]. In the RGV nearly 14.000 people make use of the WMO facilities. The total expenses
of the WMO in 2020 were around 5.6 billion euros, of which around 44.3 million from the RGV [1]. Figure 1.1
illustrates a significant increase in o costs in the RGV since 2018. The total expenses in the Netherlands have
grown since 2017 from 4.5 billion euros to more than 5.6 billion euros in 2020.
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Figure 1.1: Total expenses WMO in RGV, 2022 [1]

Since 2015, the social care services of clients have been part of the WMO, which includes both adults and
juveniles [13]. Social care services aim to help clients have a meaningful purpose for the day. Clients are
guided in various activities, such as assistance with administration, education, outdoor activities, or leisure
activities. The goal is to increase clients’ self-reliance and reduce their social exclusion. The article by Law et
al. [22] shows that having a daytime occupation leads to improved well-being and health benefits. Social care
services in the Netherlands are provided to clients at a designated location. Transportation to this location is
arranged by either the clients themselves, the municipality, or the care provider.

The open-house method offers clients in the region of the RGV the option to select which care provider will de-
liver the social care services. Clients should select care providers who can handle their condition. Conversely,
care providers are specialised in certain conditions and only attract and accept clients with such conditions.
Approximately 1000 clients receive social care services in the RGV, and out of those, 439 clients also receive
transportation. A high amount of kilometres is travelled to ensure access to care for these clients. This poses
challenges that make the current approach unsustainable in the long term. Therefore, the RGV aims to look
at new strategies and assess whether they could offer potential solutions to the issues at hand. An example
of such a strategy is linking clients to specific caregivers. This could potentially create efficiencies that keep
costs manageable. To understand the possible benefits of various strategies, a model is created that includes
the following aspects.

• Type of clients
• Caregivers, including location, type of care they can deliver and capacity
• Distance from caregiver to client
• Amount of transport movements
• Constraints for clients (for example, a client needs special treatment)

Part of the project involves assessing the model’s feasibility of accurately simulating new transportation strate-
gies. If the model is deemed sufficiently realistic, we will examine the potential outcomes of various strategies
and make recommendations based on those calculated strategies.

1.2 Problem context

The problem context in this situation is complex. Various stakeholders have interests regarding the situation.
Examples of stakeholders are care providers, clients and municipalities. To get a better grasp of the problem,
conversations with policy-makers, contract managers and data analysts from the RGV are held. Through these
conversations, several problems were identified. This thesis focuses on one aspect of these problems, namely
the problems surrounding the transportation of clients. The following sub-problems are identified within the
context of the transportation of clients.

1.2.1 Allocation of clients

By default, clients are responsible for arranging their own transportation to the social care services. However,
if a client is unable to do so, the RGV can assign the responsibility for the transportation of the client to the
care provider. The assessment of whether a client is capable of arranging their own transport is not strict.
Consequently, many clients are relying on the care providers for transportation, even when they could have
made their own arrangements.
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When care providers are responsible for the transportation of clients to the facilities, they have several options
at their disposal. They can utilize volunteers, hire a transportation company, or use their own staff members
to pick up the clients. Typically, a van is used to transport the clients. One of the challenges faced is accom-
modating clients who require wheelchairs or extra assistance during transit, as they take up more space than
clients with no additional needs.

Clients have the freedom to choose their preferred care provider, provided they can arrange suitable care
for their specific condition. Clients do not always choose the nearest care provider. As a result, large distances
are covered to transport all clients to their respective care providers.

1.2.2 Transportation prices

The price of the transportation of clients has increased. Various world events, such as the COVID-19 pandemic
and the war in Ukraine have led to the increase of fuel prices in the Netherlands [23]. Not only fuel prices but
also maintenance costs have gone up. Transportation is a big part of the total costs for social care services,
therefore an increase in the price of transportation affects the total costs as well.

The care providers get paid a fixed price per client they pick up, this means clients that are closer to the
facility are more economical to pick up than clients who live far away from the social care services. Although
the prices of transportation have increased, the fixed compensation has stayed the same. Consequently, care
providers have additional expenses, without receiving additional compensation.

1.2.3 Lack of providers

Some care providers quit their services in the RGV. This meant the network of providers became less dense.
Consequently, clients have fewer care providers to choose from, leading to longer travel distances. Because of
the fixed prices per client per transport regardless of the distance or travel time, the rising costs of transportation
are amplified. The pressure on the remaining care providers increased because some providers quit.

1.2.4 High absenteeism

The care providers are struggling with high absenteeism due to the aftermath of the COVID-19 pandemic [24].
Two problems occur due to the high absenteeism in the population. The employees of the care providers call
in sick more often, which means that expensive staff is needed as a substitute. This harms the profitability of
the care providers, which consequently causes more care providers to stop their services.

The other problem is occurring due to clients not showing up to their scheduled appointments. The care
providers are compensated based on the actual time clients spent at the facility, rather than fixed blocks of 4
hours. The revenues are budgeted according to the expected duration of the clients (the 4-hour blocks). Con-
sequently, when a client is not attending during the planned time, the care providers incur a loss in revenue,
while still having to cover costs for employees and facility maintenance. This situation means the profitability is
at risk, which again causes more care providers to stop their business.

1.2.5 Lack of central planning and optimization

The care providers are solely responsible for the transportation of their own clients who are unable to arrange
transportation themselves. This strategy lacks centralized planning and collaboration among care providers re-
garding the transportation of clients, which hampers the possibility of optimizing efficiency. Additionally, routes
for transporting patients to and from the social care services are not optimized. In combination with the lack
of collaboration, this leads to a high amount of kilometres travelled. Which results in higher costs for care
providers.

The combination of challenges results in an unsustainable strategy for the long term. If an excessive num-
ber of providers discontinue their services, the RGV has to arrange alternatives to group-based social care
services. The alternatives to group social care services are often more individually organized, which means
that the costs are higher. Therefore, the RGV aims to prevent this scenario. A part of the solution is to improve
the efficiency of the transportation of clients. Figure 1.2 depicts the problem bundle from the problems regard-
ing the transportation of clients, including the core problem that this project focuses on. Note that there are
more challenges regarding social care services; however, they are not the main focus of this thesis.
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Figure 1.2: Problem bundle: Social care services for the RGV

Implementing a new strategy could be part of the solution for the RGV. Examples of new strategies could be
assigning clients to care providers, contracting more care providers or refusing clients. These strategies may
allow the RGV to regain control of the problems it faces and may provide the opportunity to influence the num-
ber of kilometres travelled, which is a major factor in the incurred costs. While various strategies are promising,
their effectiveness is yet to be determined. This leads to the core problem at hand in this project. There is no
information available on how new strategies, including optimization of routes, perform. Therefore, implement-
ing a new strategy is risky due to the unknown consequences associated with the change. A knowledge gap
is present on whether it is advantageous to switch to a different strategy. Part of this knowledge gap is the
problems surrounding the transportation of clients. This project develops a transportation planning algorithm
to provide insight into the impact that various strategies have on the key performance indicators for the RGV.

1.3 Goal and research questions

This project aims to give insights into outcomes regarding various strategies for the transportation of clients of
social care services in the RGV. The various components that could be changed in the current situation are
the following:

• Restricting patients’ choices
• Amount of patients
• Capacity of transport
• Capacity of care providers
• Location of care providers
• Combining of specialisations of clients to certain care providers

A change in some of these components could be part of the solution to the problem at hand.
Part of this project is to identify whether the constructed model sufficiently reflects reality in a way that useful
information could be gathered through the model. Key performance indicators (KPIs) are determined to distin-
guish the best strategy.

The following research objective is formulated:

The objective of this study is to develop a decision-making algorithm to prospectively assess the impact
of various strategies on key performance indicators related to transportation services for clients of social
care services in the Gooi en Vechtstreek region (RGV).

To reach this objective, the following research questions are defined:
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1. What is the current strategy regarding the transportation of clients for social care services in the RGV?
(Chapter 2)

The current situation is studied, including the limitations and challenges that occur. This question is
answered by analyzing the available data on the current situation and having interviews with employees
of the RGV.

1.1. What are characteristics of the current strategy in the RGV?

1.2. What stakeholders are involved in the transportation of clients for social care services in the RGV?

1.3. What are limitations of the current strategy of transportation of clients in the RGV?

1.4. What are the KPIs for the transportation of clients in the RGV?

2. What methods are known to solve VRPs?(Chapter 3)

A literature review regarding the methods and theories on VRPs is performed. To answer this ques-
tion a literature search on the following questions is performed in Scopus and Google Scholar.

2.1. What types of VRPs are associated with the situation in the RGV and what methods are used to
solve them?

2.2. Are there cases known in the literature similar to the situation in the RGV?

3. How should the transportation planning algorithm be constructed? (Chapter 4)

A solution approach is constructed using knowledge from the literature. The solution approach prefer-
ably adds to existing literature. A mathematical model is constructed and implemented in software using
Python.

3.1. What are possible strategies that could be implemented in the current situation in the RGV?

The various rules and regulations of the situation are described or approximated using assumptions/lit-
erature or the knowledge of the employees of the RGV.

3.2. What are the rules and regulations that the solution should fulfil?

3.3. What assumptions need to be made for the model to be constructed?

3.4. Can we solve the problem exactly?

First, we try an Integer Linear Programming (ILP) approach to model the various strategies.

3.5. What data is available to solve the VRP at hand?

The problems turned out to be too complex for an ILP approach, as described in Section 5.3. Therefore,
a metaheuristic is applied.

3.6. How can a constructive heuristic be formulated for this problem?

3.7. How can a metaheuristic be formulated for this problem?

4. What is the performance of various strategies regarding KPIs in the model? (Chapter 5)

The metaheuristic needs tuning of various parameters.

4.1. What experiments are conducted to tune the various parameters in the model and what are the
results of these experiments?

Various strategies are implemented in the model and compared based on their respective KPIs.

4.1. How do various strategies perform regarding KPIs?

A strategy can only be accepted if it outperforms the current strategy, therefore the various strategies are
compared to the current strategy. This leads to the final sub-question in this thesis.

5. Are there recommendations for the RGV to improve the transportation of clients for social care services?
(Chapter 6)
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2 Current strategy

This chapter discusses the current strategy for arranging transportation of clients to and from social care
services in the RGV. Information about this strategy is gathered through interviews with employees of the
RGV. Section 2.1 examines the stakeholders involved and their respective roles in the transportation process.
Section 2.2 explains the characteristics of the current strategy. Section 2.3 determines the key performance
indicators of the stakeholders. The gained insights from this chapter are input for the literature study in chapter
3 and the model construction in chapter 4.

2.1 Stakeholders

Three key stakeholders with various interests are involved in this project. The relation between these stake-
holders is shown in Figure 2.1.

2.1.1 Region of Gooi and Vechtstreek

The most influential stakeholder is the RGV. The RGV is responsible for purchasing social care services in
seven municipalities. The municipalities together decided to give the RGV these responsibilities. Additionally,
the RGV handles the payment to care providers. It is the RGV’s responsibility to ensure the quality and
accessibility of care for those in need. The RGV builds a strong relationship with the care provider to achieve
these goals. The RGV is not in power to make policies, however, can advise the municipalities regarding
policies. The main interest of the RGV is ensuring care is accessible, of high quality, and that costs are
maintained reasonable.

2.1.2 Care providers

The care providers deliver the social care services to the clients. According to the Ministry of Health, Welfare
and Sports, social care services refer to delivering useful and structured activities during the day [12]. This can
be in the form of activities, such as making art or doing sports. The social care services provided by the care
providers can also have an educational character or a labour-oriented character. An example is animal care
or working in a restaurant or supermarket. In these examples, clients are not judged on performance but the
social care service is such that something is produced.

The social care services are categorized into youth and adult care. These categories have arisen because
there are two separate laws governing juvenile (Youth Act) and adult (WMO) social care services. The condi-
tions that clients have are the following:

• Dementia: Only adults
• Acquired brain injury
• Mild intellectual disability
• Intellectual disability
• Mental disorders
• Autism
• ADHD
• Physical disability

Several care providers have separate locations for these specializations. The interest of the care providers
is mainly to focus on delivering the best care possible. Additionally, care providers are interested in being
compensated fairly for the services they provide.

2.1.3 Clients

Clients who utilize the social care services are highly diverse, ranging from young to old and from mild to severe
disabilities. When referring to a client, not only the individual themselves but also the parents, caregivers, and
decision-makers who are closely involved in their care and well-being are referred to. In the open house model,
the clients have the opportunity to choose their care provider, allowing them to influence the type of care they
receive. The primary concern of clients is to receive the best possible care that aligns with their individual
needs.
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Figure 2.1: Relation between stakeholders

2.2 Characteristics

This section discusses the current transportation strategy of the RGV for clients requiring transport to social
care services.

There are 26 care providers in the RGV for clients who require transportation to access the social care service.
Care providers are responsible for the transportation of 439 clients to and from social care services, while more
than 1000 clients receive social care services. The social care services are categorized into youth and adult
care. These categories have arisen because there are two different laws governing juvenile and adult social
care services. In total 216 assignments are given for youth transport for social care services, while 223 citizens
have an assignment for adult transport.

In the transportation of clients, a distinction is made between the severity of the condition. Clients are divided
into two groups: those requiring light transport and those needing medium transport. Light transport refers
to standard transportation provided to clients who can be transported under normal circumstances. Contrary,
medium transport is provided for clients who require extra supervision while travelling or have specific impair-
ments that prevent them from being transported under normal conditions. An example in this category is clients
who need to be transported in a wheelchair.

Apart from the various types of transportation, clients also differ in terms of the types of conditions they have.
Similarly, care providers differ in their capability to offer social care services for various conditions. A good
match of client and provider is needed to ensure that the right social care service is given.

Care providers are compensated for the transportation per client. There are two standard fees: one for light
transport and one for medium transport. These fees do not take into account travelling distance. Therefore, if
a client is located far away from the social care services facility, this is disadvantageous for the care provider.
Clients are in power to choose their preferred care provider, resulting in clients of one provider being scattered
throughout the region as is shown in Figure 2.2. The figure illustrates the location of clients associated with
certain care providers, locations are shown based on their postal codes. To ensure the clarity of the figure, not
all care providers and associated clients are shown.
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Figure 2.2: Locations of clients and care providers

In 2023, the total expenses for transportation of clients were e553,884. This is distributed over the various
care providers based on the number of transport movements they need to perform to pick up and deliver their
clients. The total distance that is covered by transportation in the current situation is not known. However, this
will be estimated using the model presented in Chapter 4.

2.3 Key performance indicators

A key performance indicator (KPI) is selected to provide a clear comparison between the current strategy and
the possible new strategies.

Examples of useful KPIs are the following:

• The total/average amount of kilometres travelled:
This KPI provides information about the total distance that is covered during the transportation of clients
during a week.

• The total/average time a client spends in the vehicle:
This KPI represents the total or average time spent by clients in transit.

• The total costs of transporting clients:
This KPI measures the overall costs incurred by care providers for transporting clients to the social care
services facilities in terms of fuel consumption, maintenance, salary etc.

• Number of vehicles:
This KPI indicates how many vehicles are needed for the transportation of clients during a week

The stakeholders share a common objective, which is to ensure the best care for the clients, including the best
possible transportation. However, the RGV and the care providers have an additional aim of achieving this
while maintaining manageable costs. From the client’s perspective, the right transportation means not spend-
ing too long in the vehicle, not having to wait for the vehicle and being on time at the social care services.

The KPIs are intertwined. If a client is spending longer in the vehicle, most likely the distance will be longer.
A longer distance usually results in higher transportation costs for the care providers. Due to the intertwined
nature of the KPIs, the total distance travelled in a week is chosen as the main KPI. The number of vehicles
and the average time a client spends in the vehicle per ride are also computed.

A challenge resulting from the context of the RGV is that the total amount of kilometres travelled and the
total transportation costs in the current situation are unknown. The care providers arrange the transport them-
selves and are not able to deliver reliable data on this topic. As a result, the validation of the model could be
based on the current budget that the RGV pays care providers for arranging transport. This budget is based
on the number of clients rather than the actual distance or costs incurred when transporting clients.
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2.4 Conclusion

In this chapter, the current situation at the RGV is explained. The stakeholders in the context of the region are
the RGV, the care providers and the clients that need social care in the region. Care providers have several
options to fulfil their responsibility of transporting clients to and from the care providers. Compensation for
this transport is based on a per-client basis. Clients are categorized based on the type of transportation they
need and the type of care they need to receive. The current allocation of clients to care providers is scattered
throughout the region, which means an optimization of allocating the clients could be helpful. The main KPI to
compare strategies is the weekly distance travelled in transporting clients to and from their care providers. The
next chapter describes the literature on how the current strategy and potential new strategies can be modelled.
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3 Literature review

The literature is reviewed to study methods and characteristics that are present. The advantages and disad-
vantages of certain methods are reviewed, this way the best-fitting method is chosen. To ensure this study
contributes to existing literature, a literature gap is found. Literature about VRPs is searched through the
databases of Google Scholar and Scopus. Sections (3.1-3.7) discuss the literature about the characteristics of
VRPs and the variations in models and constraints associated with them. Section 3.8 considers the literature
on solving VRPs. Section 3.10 describes problems similar to the context of social care services that are found
in the literature.

3.1 Vehicle routing problems

A VRP can be defined as a problem where the solution tries to minimize a certain objective by selecting routes
through customer locations. The routes have to comply with certain constraints that need to be satisfied [25]. A
VRP is often an NP-hard problem, so there is no guarantee that an optimal solution can be found in reasonable
time [26]. This is why heuristics and meta-heuristics are often used to solve VRPs. The first mention of VRPs
in the literature was by Danzig et al. [27], who presented a large-scale travelling salesman problem. Since
then, numerous VRP variants have been introduced and explored in the literature as Figure 3.1 showcases.

Figure 3.1: Known variants of the Vehicle Routing Problem [2]

The problem that the RGV faces is a VRP, which is related to the following VRP variants. When picking up
clients the capacity of the vehicle should be considered. Section 3.2 discusses a capacitated VRP (CVRP), this
is also considered as the base model. The social care services have certain opening hours for the groups that
the clients are in, therefore Section 3.3 assesses a VRP with time windows (VRPTW). In the context of the RGV
multiple locations are present, where clients can go or vehicles can be driven from. This can be approached as
a multi-depot VRP (MDVRP). Section 3.4 considers the formulation of the multi-depot problem. The problem
of the social care services in the RGV gets even more complex because there are constraints which ensure
that clients go to the correct facility. Not every client can go to every facility and can be transported in the
same way. Section 3.5 describes a VRP with multiple commodities (MCVRP). The social care services require
clients to be brought to their destination and afterwards brought back home. This means a pick-up and delivery
VRP (VRPPD), which is formulated in Section 3.6. A variant of the VRPPD is the dial-a-ride problem (DARP).
Section 3.7 discusses the DARP. The difference is that DARP focuses on the transportation of people and
therefore concerns about the quality of services are present [28].

3.2 Capacitated VRP

There is not one standard VRP model. However, the basis for more complex variants is often the CVRP. The
model of this variant considers the capacity of vehicles as a constraint. A variety of integer linear programming
models (ILPs) have been proposed to solve this problem [29].

• Two-index vehicle-flow formulations
Where a binary variable indicates whether a route is travelled.

• Three-index vehicle-flow formulations
Where a binary variable for every vehicle indicates whether the vehicle travels a certain route.
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• Set-partitioning formulations
Formulation with a binary variable for every potential vehicle route.

The article of Rieck et al. [29] showed that the computational time of a three-index vehicle-flow model is
significantly higher than the two-index vehicle-flow model. However, the three-index vehicle-flow formulations
are easier when implementing additional constraints. The set-partitioning formulation considers all potential
candidates for an optimal solution and is therefore impractical for complex problems.

3.2.1 Two-index Capacitated Vehicle Routing Problem

The CVRP is modelled according to the two-index vehicle-flow as follows [30]:

Parameters:

Set of Customers, indexed by i an j C = {1, ..., n}
Set of locations, where 0 and n+ 1 is the depot N = C ∪ {0, n+ 1}
Number of vehicles in fleet K

Capacity of vehicle Q

Cost of driving from i to j cij

Demand of customer i qi

Decision variables:

xij =

{
1, Route exist directly between customer i and j,

0, No route is made.

yj = Cumulative demand on route at place j

Constraints:

minimize
n+1∑
i=0

n+1∑
j=0

cijxij (3.1)

subject to
n+1∑
j=1
j ̸=i

xij = 1 i = 1, ..., n, (3.2)

n∑
i=0
i ̸=h

xih −
n+1∑
j=1
j ̸=h

xhj = 0, h = 1, . . . , n, (3.3)

n∑
j=1

x0j ≤ K, (3.4)

yj ≥ yi + qjxij −Q (1− xij) , i, j = 0, . . . , n+ 1, (3.5)
qi ≤ yi ≤ Q, i = 0, . . . , n+ 1, (3.6)
xij ∈ {0, 1}, i, j = 0, . . . , n+ 1. (3.7)

The objective function of the CVRP is given by (3.1). This function aims to minimize the sum of the total
costs to travel between locations. Note that in this variant of the model, only the costs to travel are taken into
account, whereas a multi-objective function provides additional possibilities for defining and solving problems
[31]. Constraints (3.2) make sure that every customer is visited exactly once. The next constraints (3.3)
guarantee that once a vehicle arrives at a certain node h, the vehicle also leaves the node again. This way a
correct flow of the vehicles is achieved. Constraints (3.4) limit the number of routes that are constructed to the
number of vehicles that are in the fleet. Because this model takes into account vehicle capacity, the following
two constraints are needed. Constraints (3.5 and 3.6) ensure that capacity is not exceeded. Additionally,
constraints (3.5) guarantee that no sub-tours, routes that do not pass the depot, exist. There are other ways
to model this, however, this variant of the model makes sure that computation time is kept at a minimum with a
high number of locations [32]. The last constraints (3.7) define the variables.
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3.2.2 Three-index capacitated vehicle routing problem

The three-index vehicle-flow formulation is the basis for the other models described in this chapter. The model
is as follows [33]:

Parameters:

Number of vehicles K = 1, . . . ,K

Number of location, where 0 is the central depot N = {0, . . . , n}
Capacity of vehicle k bk

Demand of customer i qi

Cost of driving from i to j cij

Decision variables:

yik =

{
1, if order from customer i is delivered by vehicle k,

0, otherwise.

xijk =

{
1, if vehicle k drives directly from customer i to customer j,
0, otherwise.

Constraints:

minimize
∑
ijk

cijxijk (3.8)

subject to
∑
i

qiyik ≤ bk, k = 1, . . . ,K (3.9)

∑
k

yik =

{
K, if, i = 0

1, if, i = 1, . . . , n
(3.10)

∑
i

xijk = yjk,
j = 0, . . . , n
k = 1, . . . ,K

(3.11)

∑
j

xijk = yik,
i = 0, . . . , n
k = 1, . . . ,K

(3.12)

∑
ij∈SxS

xijk ≤ |S| − 1,
S ⊆ {1, . . . , n}
2 ≤ |S| ≤ n− 1
k = 1, . . . ,K

(3.13)

yik, xijk ∈ {0, 1},
i = 0, . . . , n
j = 0, . . . , n
k = 1, . . . ,K.

(3.14)

In this model composed by Fisher & Jaikumar in 1981, the main decision variable takes into account which
vehicle is travelling the route [33]. Note that in this model the vehicle fleet can be heterogeneous, which means
vehicles can have different capacities. In this formulation the objective function is the same as before, namely to
minimize the cost of driving the computed routes. Constraints (3.9)&(3.10) ensure that every vehicle starts and
ends at the depot, that all customers are visited exactly once and that the capacity constraint is not exceeded.
The constraints from (3.11)-(3.14) are constraints from a travelling salesman problem for all customers that are
visited by vehicle k.

3.3 VRP with time windows

A VRPTW is used when customers have to be visited at certain times. Time windows are categorized as either
hard or soft. A hard constraint indicates that the solution is infeasible if the time window is not met. Contrary,
a soft time constraint means that the time window is not needed for feasibility, but is desirable if possible. An
example of a problem including time windows is the delivery of drugs to patients for use at home as shown in
the article of Lui et al. [34]. The two-index vehicle-flow model shown at the beginning of Section 3.2 can easily
be extended to be a model that includes time windows. The same holds for the second model in Section 3.2.2,
only the decision variables differ. The following lines have to be added to the models:
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Parameters:

Earliest time that service is allowed to start at location i wa
i

Latest time that service is allowed to start at location i wb
i

Time that service starts at location i wi

Service time at location i si

Travel time from location i to j tij

Constraints:

wj ≥ wi + (si + tij)xij −Mij (1− xij) , i = 0, . . . , n; j = 1, . . . , n+ 1, (3.15)

wa
i ≤ wi ≤ wb

i , i = 0, . . . , n+ 1, (3.16)

Mij is a large value, which is defined as Mij = max{wb
i − wa

j , 0}.

The constraints (3.15 and 3.16) make sure that the service at the location of the customer is taking place within
a certain time window.

3.4 VRP with multiple depots

There are often multiple depots present from which a service is delivered. If multiple depots are present in the
VRP, it is considered a MDVRP. The complexity of the model becomes larger if multiple depots are present.
The MDVRP can be divided into two stages [35]. The first stage is assigning clients to the depots, and then
the optimal routes with this configuration are constructed. The assignment of clients is partially chosen as the
closest depot to the client, the clients that are around the same distance away from two depots are assigned
in the algorithm to solve the VRP. The article of Lim and Wang shows that ideally these two stages are solved
simultaneously, this way a close-to-optimal solution is obtained with less computation time [36]. Articles are
proposed where the possibilities are discussed to use the depots as intermediate depots, where vehicles are
replenished while being on a route [37]. An example where the MDVRP is applied is given in the article of
Tohidifard et al. [38]. In this study, a home care routing problem is presented. Along with the multi-depot char-
acteristic, other complexities such as time windows are also present in this problem.

Golden et al. [39] describes the classical MDVRP. This model is slightly modified in the article of Ramos et
al. [40]. The model is very similar to the 3-index CVRP, the changes and extra constraints are given below.
Some parameters are given different letters for the sake of consistency in this thesis.

Parameters

Set of nodes from customers Vc = {1, . . . , n}
Set of nodes from depots Vd = {n+ 1, . . . , n+ w}
Subset of vehicles belonging to depot d Ki

Constraints:

Minimize
∑
ijk

xijkcijk (3.17)

Subject to
∑
j∈Vc

xijk ≤ 1 ∀k ∈ Ki, ∀i ∈ Vd (3.18)

∑
i∈Vc

xijk ≤ 1 ∀k ∈ Kj , ∀j ∈ Vd (3.19)

∑
i∈Vc

xijk = 0 ∀j ∈ Vd, ∀k /∈ Kj (3.20)

∑
j∈Vc

xijk = 0 ∀i ∈ Vd, ∀k /∈ Ki (3.21)

(3.22)

The constraints (3.18-3.19) guarantee that each vehicle leaves and returns to its home depot at most once.
The constraints (3.20-3.21) make sure a vehicle can not leave its home depot and return to a different depot,
preventing vehicles from crossing to other depots.
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3.5 VRP with multiple commodities

It is not always the case that only one type of demand is transported. A VRP can cover a wide range of is-
sues, including a problem with multiple commodities. Sometimes these commodities are not compatible, which
means the commodities can not be transported in the same vehicle. There are often multiple compartments
in vehicles that carry different goods at the same time. An example is cooled and heated compartments with
frozen food and regular food. This type of VRP is called a multi-compartment VRP (MCVRP) [41]. When
vehicles can transport different commodities simultaneously, the customer’s demands of all commodities can
be aggregated into a single demand. The demands of the various commodities can be normalized into vehicle
capacity units. Consequently, the remaining VRP is a single-commodity VRP [42]. If this is not the case, a
MCVRP is used.

Extra constraints are added to the base model given in Section 3.2.2 to account for the MCVRP [41].

Parameters:

Set of nodes, where 0 is the depot N
Set of customers C
Set of products M = 1, . . . ,m

Capacity for product m Qm

Demand for product m by customer i qim

Decision variables

yjkm =

{
1, if customer j receives product m from vehicle k,

0, otherwise.

Constraints:

Minimize
∑
ijk

xijkcijk (3.23)

Subject to yjkp ≤
∑
i∈N

xijk ∀j ∈ C, ∀k ∈ K, ∀m ∈M, (3.24)∑
k∈K

yjkm = 1 ∀j ∈ C, ∀m ∈M, (3.25)∑
j∈C

yjkmqjm ≤ Qm ∀k ∈ K, ∀m ∈M, (3.26)

yjkm ∈ {0, 1} ∀j ∈ C, ∀k ∈ K, ∀m ∈M, qjm ̸= 0. (3.27)

In this model, a new decision variable is introduced, yjkm is one if the customer receives a certain product from
vehicle k and is zero otherwise. Constraints 3.24 set yjkm to zero for every product if a vehicle does not visit
the customer. Constraints 3.25 make sure that a product ordered by a customer is brought by a single vehicle.
Constraints 3.26 are capacity constraints for the compartments in vehicles. Last, constraints 3.27 define the
binary variables yjkm.

3.6 VRP with pickup and delivery

Another instance representing a real-life issue is the VRP with pickup and delivery (VRPPD). In this case, there
is a pickup point and a different delivery location [43]. A certain demand should be transported between these
two points, this demand can be goods, but also persons. In the case of the transportation of persons, the
VRPPD is often referred to as a DARP. In literature, three kinds of VRPPD are differentiated [44].

• VRP with backhauls (VRPB) [45]
All deliveries must be completed before the pickup services can be started.

• VRP with mixed delivery (VRPMDP)
A node can be either a delivery or a pickup node, but not both.

• VRP with simultaneous pickup and delivery (VRPSDP)
Both delivery and pickup services can be performed at the same node.
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An example of a VRPPD is encountered in the soft drink industry [46]. Full bottles have to be transported to
supermarkets. While empty bottles should be transported in the other direction, from supermarket to depots.

The extra constraints that need to be added to the VRPTW from Section 3.3 are the following [43]:

Parameters:

Set of pickup nodes P = {1, . . . , n}
Set of delivery nodes D = {n+ 1, . . . , 2n}
Set of pickup & delivery nodes N = P ∪ D
Origin depot of vehicle k o(k)

Destination depot of vehicle k d(k)

Constraints:

Minimize
∑
ijk

xijkcijk (3.28)

Subject to
∑
k∈K

∑
j∈Nk∪{d(k)}

xijk = 1 ∀i ∈ P, (3.29)

∑
j∈Nk

xijk −
∑
j∈Nk

xj,n+i,k = 0 ∀k ∈ K, i ∈ Pk, (3.30)

∑
j∈Pk∪{d(k)}

xo(k),j,k = 1 ∀k ∈ K, (3.31)

∑
i∈Nk∪{o(k)}

xijk −
∑

i∈Nk∪{d(k)}

xj,i,k = 0 ∀k ∈ K, j ∈ Nk, (3.32)

∑
i∈Dk∪{o(k)}

xi,d(k),k = 1 ∀k ∈ K, (3.33)

wik + ti,n+i,k ≤ wn+i,k ∀k ∈ K, i ∈ Pk. (3.34)

Constraints (3.29&3.30) ensure that every request is served exactly once and by the same vehicle. Constraints
(3.31-3.33) guarantee that every vehicle starts at its origin depot and ends its route at its destination depot. The
pickup node should be visited before the delivery node, therefore the final constraints (3.34) are constructed.

3.7 DARP

As mentioned in Section 3.6, the DARP is a special case of a vehicle routing problem, where persons are
transported as opposed to goods. The literature review of Ho et al. [47] shows the extensive amount of papers
that are published regarding DARPs. DARPs often arise in the management of transportation systems for
elderly and disabled people. Due to the ageing of the population, it is expected that these services will gain
importance in the coming years [48]. The DARP represents a generalisation of other vehicle-routing problems,
such as the VRPPD and the VRPTW, the main difference being the human perspective in the DARP. In the
DARP user inconvenience is often taken into consideration [49]. The user experience is balanced against the
minimization of operating costs. Additionally, capacity constraints are usually stricter in the DARP whereas
often redundant in VRPPD. For instance, the delivery of letters is an example where capacity constraints are
not applicable.

DARPs are distinguished into two categories the static and dynamic variants. In the static case, the requests
for transportation are known beforehand, whereas in contrast in the dynamic case, the requests are revealed
during the day. In the dynamic case, the routes can be adjusted in real-time to meet the demand that is oc-
curring. In the case of the RGV, the requests are known beforehand, so a static DARP is present. The model
formulation is given below [50]:

Parameters:

Set of pickup nodes P = {1, . . . , n}
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Set of delivery nodes D = {n+ 1, . . . , 2n}
Total set of nodes, where 0 & 2n+ 1 are the origin & destination depots respectively N = P ∪ D ∪ {0, 2n+ 1}
Load of a vehicle k lk

Ride time of a client i with vehicle k rik

Maximum time vehicle k can be on one route Tk

Maximum time a client can be on a route L

Constraints:

Minimize
∑
ijk

xijkcijk (3.35)

Subject to
∑
k∈K

∑
j∈N

xijk = 1 ∀i ∈ P, (3.36)

∑
i∈N

x0ik =
∑
i∈N

xi,2n+1,k = 1 ∀k ∈ K, (3.37)∑
j∈N

xijk −
∑
j∈N

xn+i,j,k = 0 ∀i ∈ P, ∀k ∈ K, (3.38)

∑
j∈N

xjik −
∑
j∈N

xi,j,k = 0 ∀i ∈ P ∪ D, ∀k ∈ K, (3.39)

wjk ≥ (wik + si + tij)xijk ∀i, j ∈ N , k ∈ K, (3.40)
ljk ≥ (lik + qj)xijk ∀i, j ∈ N , k ∈ K, (3.41)
rik ≥ wn+i,k − (wik + si) ∀i ∈ P, ∀k ∈ K, (3.42)
w2n+1,k − w0k ≤ Tk ∀k ∈ K, (3.43)

wa
i ≤ wik ≤ wb

i ∀i ∈ N , ∀k ∈ K, (3.44)
ti,n+i ≤ rik ≤ L ∀i ∈ P, ∀k ∈ K, (3.45)
max{0, qi} ≤ lik ≤ min{Qk, Qk + qi} ∀i ∈ N , ∀k ∈ K, (3.46)
xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ K. (3.47)

The objective function minimizes the total routing costs. Constraints (3.37&3.39) make sure that each request
is served once and by the same vehicle, while constraints (3.38&3.40 ensure that the vehicle starts and ends
at the depot. Next, constraints (3.41-3.43) set the service times, the load of the vehicle and the ride times of
clients, respectively. Last, constraints (3.44-3.47) guarantee that these constraints will be feasible.

3.8 Solving VRPs

This section discusses the literature regarding the various methods to solve VRPs. Exact methods are exam-
ined in Section 3.8.1. Section 3.8.2 analyzes the use of constructive heuristics, and Section 3.8.3 discusses
improvement heuristics.

3.8.1 Exact methods

When trying to solve VRPs, the size of the solution space determines if a problem can be optimally solved.
Only small instances of the DARP are solvable in polynomial time [49]. According to the book of Laporte et
al., [51] problems with around a hundred customers or less can be solved exactly. An example of an exact
method to solve a VRP is given in the article of Ibramhim et al. [52]. The branch-and-cut method is the most
common exact-solving method in the literature.

The branch-and-cut method is a combination of a branch and bound method and the cutting plane method.
The concept of this method is to find the relaxation of the ILP and set that value as a global lower bound. If
the resulting solution is not an integer solution, a branching procedure is started around one of the fractional
variables of the relaxed outcome. Two branches are created by adding additional constraints ensuring that the
variable is either larger or smaller than its fractional value. By branching the problem is divided into smaller
problems. The branches that are constructed are again solved by relaxing the ILP. If a lower bound found by
relaxing the ILP of a sub-problem is higher than the best integer solution thus far, the branch is pruned. By
repeating this process eventually an optimal solution is found.
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3.8.2 Constructive heuristic

Real-life problems are often bigger and higher in complexity, therefore heuristics are used to construct solu-
tions that are close to optimal. Heuristics are composed of construction and improvement procedures [51]. A
constructive heuristic is used to provide a starting position for improvement heuristics. Most metaheuristics
can be initialized from any feasible solution, therefore constructive heuristics are falling into disuse.

One constructive heuristic is the Clarke and Wright savings heuristic [53]. This heuristic is a very simple method
to establish a starting solution. The heuristic starts by constructing routes from the depot to a customer and
back, this is done for every customer. From 0 (depot) to i and back to the depot, (0, i, 0). These routes are then
merged, (0, i, 0) and (0, j, 0) become (0, i, j, 0). This procedure is illustrated in Figure 3.2. The savings of this
route are determined by the following formula where c = costs of the route and s = saving of merging routes,
sij = c0i + cj0− cij . A list is made where the highest amount of savings is the top value and the lowest amount
of savings is the lowest value. Then from the top combination of the list, every possible value is merged if
possible with the constraints. This gives a fast and easy method to establish an initial solution.

(a) Initial state (b) Merged state

Figure 3.2: Clark & Wright savings heuristic concept

3.8.3 Improvement heuristics

Once an initial starting solution is found, improvement heuristics can be used to find better solutions. Ho et
al. [47] present various metaheuristics for DARPs. As Tabu search, Simulated annealing and Large neighbour-
hood search are the most common single-solution-based methods, a short description of these methods is
given in this section [54].

Tabu Search

Tabu search is a metaheuristic that starts with a solution and explores a subset of the neighbour solutions.
The best solution from that subset is taken as the next solution to search from. A list of recent solutions is
recorded, this way revisiting recent solutions is avoided. Tabu search can escape local optima by allowing the
acceptance of non-improving solutions. This characteristic enables the algorithm to explore a larger search
space and potentially discover better solutions. The flowchart of this algorithm can be found in Figure 3.3a.

Simulated annealing

Simulated annealing is a stochastic local search metaheuristic. It is inspired by the physical process of an-
nealing. A neighbor solution is selected and checked if it is better than the best solution. To avoid local optima
the algorithm accepts worse solutions with a certain probability. This probability is decreasing over the time of
the run. At the end of the run, the best-found solution is returned. Figure 3.3b illustrates the flowchart of the
algorithm of simulated annealing.
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(a) Tabu search algorithm [55] (b) Simulated annealing algorithm [56]

Figure 3.3: Metaheuristics

Large neighbourhood search

In a large neighbourhood search, part of the solution is destroyed and then repaired again by insertion heuris-
tics. Whether the created solution is chosen or not, is determined by implementing the principles of simulated
annealing. The changes that are made to the current solution are larger than with typical neighbourhood oper-
ators. The large neighbourhood search allows for larger parts of the solution space to be explored more easily.
Figure 3.4 illustrates the concept of the large neighbourhood search.

(a) Initial state (b) Destroyed state (c) Repaired state

Figure 3.4: Concept of a large neighbourhood search

3.9 Context of RGV

The number of publications regarding VRPs has increased significantly in the last years [57]. VRPs can differ
a lot in characteristics. Because the literature on VRPs is so extensive and diverse, many taxonomy reviews
are written [58] [57] [59] [60] [3] [61]. In these taxonomies, various characteristics are made to classify certain

25



articles. The article of Eksioglu et al. [57] is the starting point of a very well-defined taxonomy overview. In
2015, the article of Lahyani et al. [3] expanded this overview into a taxonomy where researchers could search
for the characteristics of their problem and could analyze the literature accordingly. We use the taxonomy of
Lahyani et al. [3] to place the context of the RGV in the current literature. Figure 3.5 illustrates the various
characteristics of the taxonomy. The characteristics of the context of this project are given in red.

Figure 3.5: The taxonomy used in the article of Lahyani et al. with the characteristics of the context of this project [3].

In the format made by Lahyani et al. [3] the characteristics of the situation are filled in to examine if there is
literature about similar situations. When doing so for the context of the RGV, no articles are shown, so no
literature exists for situations with the same characteristics.

3.10 Similar problems to context of social care services

The situation in the RGV is considered a DARP problem because the transportation is based on persons.
Real-life problems are nearly always a combination of various types of VRPs. This section will focus on exam-
ining literature that is similar to the context of the RGV. Table 3.1 displays articles with similar problems to the
situation in this thesis.

Articles are found using the taxonomy of Lahyani et al. [3]. Additionally, articles are found using Google Scholar
and Scopus with a combination of the following search terms: VRP, Dial-a-ride-problem, Pickup-and-delivery,
Time-windows, Capacity, Multi-trip, and heterogeneous users/vehicles.

Gaul et al. [62] presents a DARP with a static format. The context of the RGV is also a static one. Prede-
termined requests of origin-destination transport are assigned to a heterogeneous fleet of vehicles. In this
instance, all requests have fixed time windows, which can be denied if they can not be met in a reasonable
time or at reasonable costs. In the context of the RGV, it is not possible to deny requests. Their case study
was based on a public transportation service in a German city. Their solution approach was solved using a
standard IP-solver.

In DARPs, there is a trade-off between minimizing costs and maximizing service quality [63]. Multiple at-
tributes contribute to the service quality of clients. The most commonly used is the waiting time between
expected arrival and real arrival. Paquette et al. [48] showed a DARP with a common depot. This problem
aims to plan a set of minimum-cost vehicle routes and maintain a high level of service quality. While satisfy-
ing all/as many requests as possible and being compliant with additional constraints. In the article, a general
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model is given, which is solved using tabu search. The main difference with the context of the RGV is that not
all requests are completely known. Clients receive care at certain locations, however, determining the most
convenient location is an allocation problem itself.

The article of Feillet et al. [64] presents another similar problem. Rather than focusing on the allocation of
clients, time consistency is deemed important in this article. People with disabilities are transported almost
daily to social care services centres. Because of their disabilities, the clients benefit from having a consistent
service. Although the social care services are not necessarily daily in the RGV, the context of the article is
similar to the problem the RGV is facing with a VRP for disabled people who need transport to and from social
care services facilities. A large neighbourhood search heuristic was used to address this issue.

Instead of individual care providers creating routes, horizontal cooperation could bring benefits to dial-a-ride
services. Horizontal cooperation means that care providers can share rides, making centralized planning
possible. The article of Molenbruch et al. [65] explains a large neighbourhood search to solve a DARP that
incorporates horizontal cooperation.

An extensive amount of articles is written on DARPs, including some specifically for disabled people who
need to transfer to social care services facilities. However, in all static DARP articles, the origin of the request
is determined and the destination of the request is known. No articles were found, with multiple possible des-
tinations for one customer. This is the case in the context of the RGV as clients could potentially receive care
from various care providers. The decision of which care provider to allocate the client to is integrated into the
model in Chapter 4.

3.11 Conclusion

An extensive amount of literature is present on the VRP. Various formulations for different versions of the
problem are known and described in the literature. The version of the VRP that is most similar to the context
of the RGV is a DARP, a version that includes the transportation of persons. The situation in the RGV contains
a combination of CVRP, VRPTW, MCVRP and VRPPD. The assignment of clients to care providers can be
compared to the assignment of clients to depots in the MDVRP. So the theory on MDVRP is considered as
well. As most DARPS and VRPs are NP-hard there is no guarantee that an exact solution is found in a
reasonable time, therefor the use of heuristics is widely considered in the literature. Large neighbourhood
search, tabu search and simulated annealing all provided suitable solutions for a wide variety of problems and
could be used in the context of the RGV.
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Table 3.1: Overview of the characteristics found in Darp literature compared to the situation of the RGV

Authors Subject Solving method Problem characteristics

Time windows Data type Problem
Size

Type of
requests Depots Planning

period
Capacity
constraints Type of fleet Users Objective

function

Gaul et al. (2022) [62] Ride-pooling case
study in a German city Standard IP solver On pickup and delivery Real 40 Static

(can be denied) Single Single On vehicles Homogeneous Homogeneous
Distance and
user experience
(waiting time)

Paquette et al. (2013) [48]
Dial a ride services for
people with reduced mobility
in Montreal

Tabu search
On origin for inbound and
on destination for outbound.
Including driver breaks

Real and
fictional 900 Static Single Single On vehicles Heterogeneous Homogeneous

Distance
and
quality of service
(ride time/waiting time)

Malheiros et al. (2021) [66]
Uses a combination of
Meta-heuristic and exact
methods to solve a fictional DARP

Local search with
set partitioning approach On pickup and delivery Fictional 192 Static Multi Single On vehicles Heterogeneous Homogeneous Minimizing

travel costs

Detti et al. (2017) [67] Italian non-emergency
hospital patients transport, Tabu search and VNS On pickup and delivery Real 200 Static Multi Single

On vehicles
(Some users need
specific vehicles)

Heterogeneous Heterogeneous

Travel costs,
ride time
and
waiting time

Feillet et al. (2014) [64]
This article proposes a
way to incorporate
time-consistency for each day

LNS
On pickup and delivery,
with consistency for
each day

Modified
real
instances

65 Static Single Multi On vehicles Homogeneous Homogeneous
Travel costs,
Variability of routes
between periods

Molenbruch et al. (2017) [65]
Horizontal cooperation
of routes is incorporated
in this DARP

LNS On origin for inbound and
on destination for outbound Fictional 200 Static

Single
and
Multi

Single On vehicles Heterogeneous Homogeneous Minimizing
travel costs

Molenbruch et al. (2017) [68] Patient transportation Local search On pickup and delivery Real 1300 Static Single Single On vehicles Homogeneous
Heterogeneous
(Some users cannot be
transported together)

Travel costs,
demand satisfaction and
service level

Melachrinoudis et al. (2007) [69]
Client transport
for healthcare
organizations

Branch and Bound Soft time windows Real 4 Static Multi Multi On vehicles Homogeneous Homogeneous
Travel costs,
customer inconvenience
time

Gschwind et al. (2015) [70] No direct practical implication Branch-and-cut-and-price Dynamic time windows Fictional 96 Static Single Single On vehicles Homogeneous Homogeneous Travel costs

Zhang et al. (2015) [71]
Patient transportation
for a hospital
in Hong Kong

Memetic algorithm with
extra variables for
multi-trip

Time windows Real 185 Static Single Single On vehicles Homogeneous Homogeneous
Travel costs
and number of
unserved requests

Seixas et al. (2012) [72] No direct practical implication
Column generation with
four index variable
for multi-trip

Time windows Fictional 50 Static Single Single On vehicles Heterogeneous Homogeneous Travel costs

This thesis Day care service transportation
in the Netherlands ILP solver and ALNS On origin for inbound and

on destination for outbound Real 439 Static Single Multi

On vehicles
(Some users need
specific vehicles)
and destinations

Heterogeneous Heterogeneous Multi
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4 Model description

This chapter explains the construction of the models for the strategies that are investigated. Section 4.1
shows the investigated strategies. Section 4.2 describes the parameters and rules that are consistent for every
strategy. Section 4.3 explains how the clients are distributed throughout the week. Section 4.4 is about the
construction of various ILPs. Section 4.5 explains the constructive heuristic, where-after section 4.6 describes
the adaptive large neighbourhood search (ALNS) algorithm.

4.1 Strategies

This section explains the three strategies that are investigated. The first strategy is the current strategy imple-
mented in the RGV, which is explained in detail in Chapter 2. The other two strategies are strategies that the
RGV could potentially implement. These strategies, named the horizontal cooperation strategy and the client
allocation strategy, were formulated based on interviews with RGV employees.

4.1.1 Current strategy

The current strategy is explained in detail in Chapter 2. A summary of the strategy is given in this section.

Clients can choose their preferred care provider. Subsequently, the care providers are responsible for ar-
ranging the transportation of clients. Vehicles depart from the care provider, pick up/deliver the clients of that
care provider, and then return to the care provider. Figure 4.1 illustrates a simplistic view of the strategy.

Figure 4.1: Current strategy of the transportation of clients to care providers.

4.1.2 Horizontal cooperation strategy

One of the strategies that the RGV is considering implementing is the strategy of ”horizontal cooperation”.
This strategy involves care providers collaborating in the transportation of clients. This means a central vehicle
depot is established, from which all routes will start. In this strategy, clients from different care providers can
share a vehicle if this results in a more cost-effective route. From the client’s perspective, one aspect of the
social care services changes; the transportation to the social care services is no longer managed by their care
provider but will be arranged by a central vehicle depot. Figure 4.2 depicts what this strategy may look like
compared to the current strategy.

In this strategy, routes from various healthcare providers can be combined, potentially offering optimization
compared to the current strategy. This strategy could be particularly advantageous when care providers are
located near each other, and the clients they serve also reside next to each other. In such a scenario, it may be
possible to achieve the same pickups of clients with only one bus instead of two, potentially having a positive
effect on the number of vehicles needed.
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Figure 4.2: Strategy of horizontal cooperation for transportation of clients for daycare versus the current strategy.

4.1.3 Client allocation strategy

From the client’s perspective, the strategy that imposes the most change to the current strategy is the strategy
of client allocation. This strategy involves establishing a central vehicle depot and allows clients to be reas-
signed to another care provider. The care provider to which a client is allocated should have the capability to
deliver the required type of care. Additionally, the care providers have a maximum number of clients that can
be assigned to them due to their capacity. A potential advantage of this strategy is that clients can be assigned
to a care provider that is located closer to their home. This would mean less distance travelled to transport a
client to their care provider, potentially decreasing the average time clients spend in transit. However, this strat-
egy comes with the drawback of limiting clients’ freedom of choice. From the client’s perspective, this strategy
implies a substantial change, as not only will transportation change, but also the care provider delivering their
care might change. Figure 4.3 illustrates what this strategy entails in comparison to the horizontal cooperation
strategy.

Figure 4.3: Strategy of horizontal cooperation compared to the strategy of client allocation.

4.2 Rules and regulations

This section discusses the rules and regulations to establish the models for every strategy. While most regula-
tions are consistent across the strategies, some regulations vary in the strategies.
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The following rules/assumptions apply to all strategies:

Client related rules

• Clients have a fixed residential address from which they need to be picked up and returned after the
social care service.

• Each client has two transportation requests: one request from their residential address to their care
provider and a second request from their care provider back to their residential address once the social
care service is finished.

Every client is connected to four locations; A location for pickup at home, a location for delivery at the care
provider, a location for pickup at the care provider and a location for delivery at home.

Care provider related rules

• Care providers have a fixed address from where they deliver the social care service.
• The opening times of care providers are fixed.

Vehicle related rules

• It is assumed that there is an unlimited amount of vehicles available.
• Each vehicle has a fixed capacity for seating clients.
• Each vehicle has a fixed capacity for wheelchair-bound clients.
• Each client occupies a fixed number of seats in the vehicle, depending on whether they are wheelchair-

bound.
• Each client has a fixed boarding and disembarking time, depending on whether they are wheelchair-

bound.
• There is a maximum duration that clients are allowed to spend in a vehicle during a single transport

request.

Route related rules

• The possible arcs between locations are constant, which means the distances between these locations
are also constant

• The travel speed is assumed to be constant, which means the travel time is directly linked to the distances
between locations.

The most significant difference in rules between the strategies is the start location of the vehicles. In the current
strategy, the vehicle depot is at the care providers, while in the horizontal cooperation and client allocation
strategies, the vehicles come from a central depot. In current and horizontal cooperation strategies, clients
have a fixed care provider. In the third strategy, the client is allocated to the care provider which results in the
least total direct distance between clients and their care provider.

4.3 Allocating clients throughout the week

A client receives the social care service a fixed number of times per week. From the available data, it is not
possible to determine the exact days a client receives the social care service. This section explains the choices
made to address this issue.

Algorithm 1 describes how clients are assigned to the opening days of their care provider. A client can re-
quire multiple social care services per week. For each service, a day is randomly selected from the days their
care provider is open. If the capacity of that day is exceeded or the client is already assigned to that day, an
alternative day is chosen. This process is done for every client so that ultimately, each client is assigned a day
for every instance they require the social care service.

31



Algorithm 1 Assign clients to a random day

for All clients do
D ← Days that client is already assigned
Empty D
for Amount of days client goes to social care service do

A← Create a list of available days a client can go to social care service
Empty A
for Days that care provider is open do

if Capacity of care provider is not exceeded then
if Day is not in D then

Add day to A
end if

end if
end for
Assign client to random day from A
Add assigned day to D
Update the capacity of the care provider for the assigned day

end for
end for

4.4 ILPs

This section describes the ILPs that are formulated for the various strategies. ILPs are formulated in an attempt
to compute the optimal solution for the issue at hand.

4.4.1 Current strategy

The current strategy assumes that the vehicles depart from the care providers. Each care provider serves as
a vehicle depot, creating a multi-depot VRP. However, since the care providers only pick up their clients, each
care provider can be handled like a sub-problem. This results in the current strategy becoming a single-depot
VRP.

The ILP for the current strategy is as follows:

Sets:

i, j ∈ V Set of locations

V Ph = {1, ..., n} ⊆ V Locations where clients are picked up from home

V Dcp = {n+ 1, ..., 2n} ⊆ V Locations where clients are delivered to care provider

V Pcp = {2n+ 1, ..., 3n} ⊆ V Locations where clients are picked up from care provider

V Dh = {3n+ 1, ..., 4n} ⊆ V Locations where clients are delivered home

V Dep = {4n+ 1} ⊆ V Location of vehicles of care provider

V Rest = {4n+ 2} ⊆ V Location were vehicles can wait

V P = V Ph ∪ V Pcp Set of pickup locations

V D = V Dh ∪ V Dcp Set of delivery locations

Ri = {V Ph
i , V Dcp

i } ∪ {V Pcp
i , V Dh

i } Combination of pickup and delivery locations for every client i
A = {(i, j) : i, j ∈ V } Arcs
k ∈ K Set of vehicles
r ∈ TR Set of transportation requests

Parameters:

n Number of clients
Si Number of seats occupied by client i
SWi Number of wheelchair spaces occupied by client i
BTi Boarding/embarking time for client i
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F Maximum time a clients may spend in a vehicle
Qk Seating capacity of Vehicle k
QWk Wheelchair capacity of Vehicle k
Ci,j Travel distance between location i and location j
Ti,j Travel time between location i and location j
[Ei, Li] Time window at location i
MLoad Big number for load constraint
MTime Big number for time constraint

For modelling purposes, separate parameters are used for V Pcp, V Dcp, V Dep and V Rest. However, in reality,
these locations are all the location of the care provider.

Variables:

qki = Number of seating spaces occupied in vehicle k after location i

qwk
i = Number of clients in wheelchairs in vehicle k after location i

uk
i = Time vehicle k is at location i

urr = Time a request r takes to complete

wtk = Waiting time at location V Rest for vehicle k

Decision variables:

xk
i,j =

{
1, if vehicle k travels arc (i,j)
0, otherwise

Objective function:

The objective function is to minimize the total distance travelled.

Min
∑
i,j∈A

∑
k∈K

Ci,jx
k
i,j

Restrictions:

Every pickup node should be visited exactly once∑
k∈K

∑
j∈V

xk
i,j = 1 ∀i ∈ V P (4.1)

Every pickup and corresponding delivery should be visited by the same vehicle∑
j∈V

xk
i,j −

∑
j∈V

xk
j,i+n = 0 ∀i ∈ V P , k ∈ K (4.2)

Flow conservation, if a vehicle arrives at a location it should also leave that location∑
i∈V

xk
i,j −

∑
i∈V

xk
j,i = 0 ∀j ∈ V, k ∈ K (4.3)

A vehicle can only start a maximum of one route from the depot∑
j∈V

xk
i,j ≤ 1 ∀i ∈ V Dep, k ∈ K (4.4)

The load of a vehicle k at location j is equal to the load of last location i plus the demand of seats of last location
i for seating and wheelchair-bound clients

qkj ≥ qki + Si −MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.5)

qkj ≤ qki + Si +MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.6)

qwk
j ≥ qwk

i + SWi −MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.7)
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qwk
j ≤ qwk

i + SWi +MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.8)

The capacities of vehicles is not exceeded

0 ≤ qki ≤ Qk ∀i ∈ V, k ∈ K (4.9)

0 ≤ qwk
i ≤ QWk ∀i ∈ V, k ∈ K (4.10)

Vehicle loads at depots are zero

qk0 = 0 ∀k ∈ K (4.11)

qwk
0 = 0 ∀k ∈ K (4.12)

Time at node i is equal to the last node plus driving time and service time plus a waiting time for arriving to the
waiting location

uk
j ≥ uk

i + Ti,j +BTi − (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D ∪ V Rest, j ∈ V P ∪ V D, k ∈ K (4.13)

uk
j ≤ uk

i + Ti,j +BTi + (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D ∪ V Rest, j ∈ V P ∪ V D, k ∈ K (4.14)

uk
j ≥ uk

i + Ti,j +BTi + wtj,k − (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D, j ∈ V Rest, k ∈ K (4.15)

uk
j ≤ uk

i + Ti,j +BTi + wtj,k + (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D, j ∈ V Rest, k ∈ K (4.16)

Pickup of a client should happen before the delivery of the client

uk
i ≤ uk

i+n ∀i ∈ V P , k ∈ K (4.17)

Time at care providers should be before the starting time of the social care service

Ei ≤ uk
i ≤ Li ∀i ∈ V Dcp + V Pcp, k ∈ K (4.18)

Total time a transport request takes should be less than F

uri ≥ uk
i − uk

i+n ∀ i ∈ V P (4.19)

uri ≤ F ∀i ∈ V P (4.20)

Binary constraints

xk
i,j ∈ {0, 1} ∀i, j ∈ A k ∈ K (4.21)

4.4.2 Horizontal cooperation

In the strategy of horizontal cooperation, a central vehicle depot is established from which all vehicles depart to
transport the clients. This means the various care providers can no longer be treated as sub-problems. Thus,
the complexity of this problem is greater than the current strategy. The ILP for horizontal cooperation shares
many similarities with the ILP for the current strategy. In the current strategy, vehicles are constrained to wait
at the location of the care provider. This modelling choice aligns with reality. In the horizontal cooperation
strategy vehicles are able to wait at any location, provided there are no clients in the vehicle. If the waiting of
vehicles was not modelled differently, both strategies could have been solved with the same model but with
different input data.

The ILP for the horizontal cooperation strategy is as follows:

Sets:

i, j ∈ V Set of locations

V Ph = {1, ..., n} ⊆ V Locations where clients are picked up from home

V Dcp = {n+ 1, ..., 2n} ⊆ V Locations where clients are delivered to care providers

V Pcp = {2n+ 1, ..., 3n} ⊆ V Locations where clients are picked up from care providers

V Dh = {3n+ 1, ..., 4n} ⊆ V Locations where clients are delivered home

V Dep = {4n+ 1} ⊆ V Location of vehicles of care provider

V P = V Ph ∪ V Pcp Set of pickup locations
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V D = V Dh ∪ V Dcp Set of delivery locations

Ri = {V Ph
i , V Dcp

i } ∪ {V Pcp
i , V Dh

i } Combination of pickup and delivery locations for every client i
A = {(i, j) : i, j ∈ V } Arcs
k ∈ K Set of vehicles
r ∈ TR Set of transportation requests

Parameters:

n Number of clients
Si Number of seats occupied by client i
SWi Number of wheelchair spaces occupied by client i
BTi Boarding/embarking time for client i
F Maximum time a clients may spend in a vehicle
Qk Seating capacity of Vehicle k
QWk Wheelchair capacity of Vehicle k
Ci,j Travel distance between location i and location j
Ti,j Travel time between location i and location j
[Ei, Li] Time window at location i
MLoad Big number for load constraint
MTime Big number for time constraint

Variables:

qki = Number of seating spaces occupied in vehicle k after location i

qwk
i = Number of clients in wheelchairs in vehicle k after location i

uk
i = Time vehicle k is at location i

urr = Time a request r takes to complete

wtki = Waiting time at location i for vehicle k

yki =

{
1, if load of vehicle k at location i is bigger than zero
0, otherwise

Decision variables:

xk
i,j =

{
1, if vehicle k travels arc (i,j)
0, otherwise

Objective function:

The objective function is to minimize the total distance travelled.

Min
∑
i,j∈A

∑
k∈K

Ci,jx
k
i,j

Restrictions:

Every pickup node should be visited exactly once∑
k∈K

∑
j∈V

xk
i,j = 1 ∀i ∈ V P (4.22)

Every pickup and corresponding delivery should be done by the same vehicle∑
j∈V

xk
i,j −

∑
j∈V

xk
j,n+i = 0 ∀i ∈ V P , k ∈ K (4.23)
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Flow conservation if a vehicle arrives at a destination it should also leave that destination∑
i∈V

xk
i,j −

∑
i∈V

xk
j,i = 0 ∀j ∈ V, k ∈ K (4.24)

A vehicle can start a maximum of one route from the depot∑
j∈P

xk
i,j ≤ 1 ∀i ∈ V Dep, k ∈ K (4.25)

Load of a vehicle is equal to last node plus load at node j for both seating clients as wheelchair clients

qkj ≥ qki + Si −MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.26)

qkj ≤ qki + Si +MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.27)

qwk
j ≥ qwk

i + SWi −MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.28)

qwk
j ≤ qwk

i + SWi +MLoad ∗ (1− xk
i,j) ∀i, j ∈ A k ∈ K (4.29)

Capacities of vehicles at Depot is zero

qk0 = 0 ∀k ∈ K (4.30)

Capacities of vehicles is not exceeded

0 ≤ qki ≤ Qk ∀i ∈ V, k ∈ K (4.31)

0 ≤ qwk
i ≤ QWk ∀i ∈ V, k ∈ K (4.32)

Time at node i is equal to the last node plus driving time and service time plus a possible waiting time

uk
j ≥ uk

i + Ti,j +BTi + wtki − (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D, j ∈ V, k ∈ K (4.33)

uk
j ≤ uk

i + Ti,j +BTi + wtki + (MTime ∗ (1− xk
i,j)) ∀i ∈ V P ∪ V D, j ∈ V, k ∈ K (4.34)

The waiting time is zero if the load of the vehicle is not zero

yki ≤ qki ∀i ∈ V, k ∈ K (4.35)

yki ≥ qki /Qk ∀i ∈ V, k ∈ K (4.36)

wtki ≤MTime ∗ (1− yki ) ∀i ∈ V, k ∈ K (4.37)

Pickup of a client should happen before the delivery of the client

uk
i ≤ uk

n+i ∀i ∈ V P , k ∈ K (4.38)

Time at care providers should be before starting time group

Ei ≤ uk
i ≤ Li ∀i ∈ V Dcp + V Pcp, k ∈ K (4.39)

Total time a request r takes should be less than F

uri ≥ uk
n+i − uk

i ∀i ∈ V P (4.40)

uri ≤ F ∀i ∈ V P (4.41)

Binary constraints

xk
i,j ∈ {0, 1} ∀i, j ∈ A k ∈ K (4.42)

yki ∈ {0, 1} ∀i ∈ V k ∈ K (4.43)

4.4.3 Client allocation

The ILP described in Section 4.4.2 on the horizontal cooperation strategy is also used for the client allocation
strategy. The difference between these two strategies is the input of clients. In the client allocation strategy,
clients can be assigned to a different care provider, while complying with some constraints. These constraints
include the capacity of the care provider and the type of care that should match between the client and the
care provider. This allocation of clients to care providers is optimized before optimizing the routes using the
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ILP of the horizontal cooperation strategy.

The following ILP minimizes the total distance between the clients and their respective care providers.

Sets:

i ∈ I Set of clients
j ∈ J Set of care providers

Parameters:

Di Number of days a client i receives care
Oj Number of days a care provider j is open per week
Ti Type of care a client i receives
Tj Type of care a care provider j delivers
Li Type of law that client i falls under
Lj Type of law that care provider j falls under
Qj Capacity of care provider j
Ci,j Distance between client i and care provider j

yi,j =

{
1, if client i type of care matches care providers j type of care
0, otherwise

zi,j =

{
1, if client i type of law matches care providers j type of law
0, otherwise

Decision variables:

xi,j =

{
1, if client i is placed at care provider j
0, otherwise

Objective function:

The objective is to minimize the total distance between care providers and clients, taking into account the
number of times a client receives social care service per week.

Min
∑
i∈I

∑
j∈J

Ci,j ∗ xi,j ∗Di

Restrictions:

Every client should be allocated to one care provider∑
j∈J

xi,j = 1 ∀i ∈ I (4.44)

If a client is allocated to a care provider, they receive and provide the same type of care

yi,j ≥ xi,j ∀i ∈ I, j ∈ J (4.45)

If a client is allocated to a care provider, they are categorized under the same law type

zi,j ≥ xi,j ∀i ∈ I, j ∈ J (4.46)

Number of days per week a client receives care should not exceed the number of opening days of the care
provider

Di ∗ xi,j ≤ Oj ∀i ∈ I, j ∈ J (4.47)

The capacity of care providers should not be exceeded∑
i∈I

xi,j ∗Di ≤ Qj ∀j ∈ J (4.48)
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4.4.4 Feasibility of using the ILPs

Due to the complexity of the strategies, it is not feasible to attain an exact solution for the optimization of the
routes through the ILPs. Section 5.3 shows that the ILP for route optimization is not able to find a feasible
solution within a reasonable time. Considering this problem is not suitable for solving using an ILP, we develop
a meta-heuristic. The client allocation ILP is still applied before the optimization of the routes using the meta-
heuristic for the client allocation strategy.

4.5 Constructive heuristic

To apply a meta-heuristic, an initial solution is constructed. This section explains how an initial solution is found
for this problem.

Algorithm 2 Constructive heuristic to find an initial solution

Request← A list of all transport requests is constructed
Randomly shuffle Requests
Routes← Initialize an empty list for the routes
for each Request do

BestDistance←∞ ▷ Initiate the best-found distance as infinity
BestRoutes← empty
for each insertion place in Routes do ▷ Creating a new route is also an insertion place

Insert Request in Routes
if Routes is a valid solution then ▷ Verify that ILP constraints are not violated

Distance← Calculate the distance of the created route
if Distance < BestDistance then

BestDistance← Distance
BestRoutes← Save the route

end if
end if
Remove Request from Routes

end for
Routes← BestRoutes

end for

A random greedy heuristic is used to construct the initial routes. Algorithm 2 shows the pseudo-code of how the
routes are constructed. A transport request consists of two locations; A pickup location and a delivery location.
A list containing all transport requests from the clients is created and shuffled randomly. This randomization
facilitates generating alternative initial solutions by choosing different random seeds. Each request is inserted
into the routes one by one. For each request, all possible insertion points of the existing routes are checked
for validity. The test to determine if the routes are valid uses the constraints of the strategy’s ILP in Section
4.4. If one of the constraints is violated the route is deemed invalid and the request can not be inserted at
those points in the route. The request is inserted at the insertion points which create a valid solution and add
the least distance to the total routes. Once every request is inserted, a complete route is built, and an initial
solution is ready to be used as input for an optimization heuristic. Figure 4.4 illustrates a simplified overview of
the constructive heuristic.
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Figure 4.4: Overview of the Constructive heuristic

4.6 Meta-heuristic: adaptive large neighborhood search

This section explains how the initial solution is improved using an adaptive large neighbourhood search (ALNS).
Subsection 4.6.1 gives an overview of the algorithm. Subsection 4.6.2 explains the destroy and repair opera-
tors. Subsection 4.6.3 describes the various parameters and the adaptability of the method.

The ALNS algorithm is an extension of the large neighbourhood search algorithm described in Section 3.8.3.
For problems with high complexity and many constraints, a large neighbourhood search is a useful method [73].
Due to the numerous constraints, it is challenging to find a valid solution among the direct neighbours of the
current solution. The large neighbourhood search circumvents this by partially destroying the current solution
and then repairing it. The adaptive version of the large neighbourhood search changes the way of destroying
and repairing during the search process, which leads to a more frequent selection of successful ways to alter
the solution.

4.6.1 Outline of the ALNS algorithm

The ALNS algorithm uses the principles of simulated annealing to diversify and intensify the search. Figure
4.5 shows a flowchart of the ALNS algorithm.
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Figure 4.5: Flowchart of the ALNS algorithm

During the search, a temperature parameter is gradually decreased. This temperature influences the likelihood
of accepting a worse solution. At the start of the search, with a high temperature, there’s a greater chance of
accepting a worse solution. This diversifies the search. As the search progresses, after each Markov length
of iterations, the temperature decreases. Consequently, the probability of accepting a worse solution also de-
creases, leading to intensification of the search.

The algorithm starts with an initial solution constructed using the constructive heuristic. Destroy and repair
operators are chosen based on their performance during the run. Using the selected destroy and repair op-
erators, the current solution is transformed into a new solution. Section 4.6.2 outlines how the destroy and
repair operators are selected and operated to generate a new solution. Once the operators have created a
new solution, the algorithm evaluates whether this solution is better than the best solution found so far. If this is
the case, the new solution is adopted as the current solution for the next iteration, and it becomes the new best
solution. If the new solution is not better than the best solution so far but is still an improvement to the current
solution, it is also accepted as the new current solution. If the new solution is worse than the current solution,
Formula 4.49 calculates the probability of still accepting the solution. In the formula, the current temperature
influences the probability of accepting a worse solution.

AcceptanceProbability = e
−
(
NewSolution− CurrentSolution

Temperature

)
(4.49)

Once the Markov length number of iterations is completed the parameters that influence the algorithm are
updated. The parameters that make the algorithm adaptable during the run are also modified here. These
parameters are discussed in Section 4.6.3. The temperature is also decreased, if the end temperature is
reached, the best solution is returned. Otherwise, a new iteration starts. Algorithm 3 presents the pseudo-
code of the algorithm.
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Algorithm 3 Adaptive large neighborhood search

Initiate parameters: EndTemperature, Amount, Counter, ScoresOperator, MarkovLength, CoolingRate

Routes← Initial solution from constructive heuristic
Weights← equal divided among operators
BestRoutes← empty
BestDistance←∞
while Temperature > EndTemperature do

for MarkovLength do
BackupRoutes← Make a backup of the current Routes

Choose Destroy and Repair operators based on Weights

Routes← Destroy Amount of Routes with Destroy operator
Routes← Repair Routes with Repair operator
NewDistance← Calculate distance of Routes

CurrentDistance← Calculate distance of CurrentRoutes

AcceptanceProbability ← Determine the acceptance probability of the NewDistance

if NewDistance < CurrentDistance or Random[0, 1] < AcceptanceProbability then
if Newdistance < BestDistance then

BestRoutes← Save the current Routes

Add scores to ScoresOperator ▷ Scores for finding BestRoutes

else
if NewDistance < CurrentDistance then

Add scores to ScoresOperator ▷ Scores for better Routes than BackupRoutes

else
Add scores to ScoresOperator ▷ Scores for getting an accepted Routes

end if
end if

else
Routes← BackupRoutes Do not make a change to the route

end if
Update Counter

end for
Amount← Decrease proportionally with Temperature

Weights← Update based on ScoresOperator

Temperature← Decrease with CoolingRate factor
end while
Return BestRoutes

4.6.2 Operators

This subsection discusses the selection mechanism of destroy/repair operators at the start of an iteration. This
subsection also explains how the various operators work.

There are various ways to destroy and repair the current solution. The ALNS algorithm utilizes four destroy
operators and three repair operators. In each iteration, each operator has a certain weight depending on how
much it has contributed to the current solution. This weight adapts throughout the search process, as further
explained in Section 4.6.3. The destroy and repair operators are selected separately. A roulette wheel selec-
tion first chooses the destroy operator and then the repair operator. The probability that operator j is chosen
is determined by formula 4.50 using the weight of operator j. In this formula, n represents the number of
operators of the same type.

Pj =

(
Weightj∑n
i=1 Weighti

)
(4.50)

A specific number of requests from the current solution is destroyed using the selected destroy operators. The
adaptability of the number of requests that is destroyed during the search process is further explained in 4.6.3.
The output of the destroy operator consists of the remaining route along with a set of transportation requests
that need to be inserted into the routes by the selected repair operator. The output of the repair operator is the
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new solution.

The operations of the destroy and repair operators are explained here:

Destroy random locations

From the list of transport requests, a random selection is chosen. The corresponding locations are removed
from the routes. Figure 4.6a illustrates the random destroy operator.

Destroy routes

A solution consists of multiple routes. In this operator, one or more routes are destroyed in their entirety.
Random routes are selected from the list of available routes. These selected routes are then removed. Al-
lowing the locations of the removed routes to be inserted into different routes. Figure 4.6b illustrates how the
destroy routes operator works.

Destroy locations based on time

To maximize the likelihood of a successful alteration of the solution, locations with a similar time window can
be removed together. This increases the probability that these locations can be inserted in one route during
the repair process. A random location is chosen. Then random locations with a similar time window as the first
location are removed. Figure 4.6c shows the working of this operator.

Destroy locations with high potential savings

For each location, the theoretically shortest possible distance required to reach and get away from that location
is calculated. If the current travel distance is significantly longer than this minimum distance, the location has a
good potential to be inserted into a more efficient route. This operator sorts locations based on their potential
savings and subsequently removes those at the top of the list. Figure 4.6d illustrates the operator for destroying
locations with high potential savings.

(a) Random (b) Routes

(c) Time (d) High savings

Figure 4.6: The four destroy operators that are used in the ALNS algorithm

Repair random

From the list of all removed transport requests a random request is selected and inserted at the best pos-
sible place in the solution. The request is then extracted from the list of removed transport requests. This
process is repeated until all removed transport requests are inserted back into the solution.
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Repair greedy

For every request that needs to be inserted back into the solution, the best possible place for insertion is
determined. The distance added by inserting each request is evaluated. The request that adds the least addi-
tional distance upon insertion is inserted first. Subsequently, the second best request is inserted, and so on,
until all requests are inserted into the solution.

Repair regret-2

The regret operator attempts to take into account future insertions when deciding which request to re-insert
first into the solution. The operator determines the difference in added distance between the best possible
insertion place and the second-best insertion place. This is called the regret distance. Requests with a high
regret distance are prioritized over requests with a low distance and are inserted into the solution first.

4.6.3 Adaptability

This subsection describes the adaptability of the ALNS algorithm during the search process. Two main com-
ponents in the algorithm are adaptable: The weights that determine the probability of selecting the operators,
and the number of requests that are destroyed from the solution.

The weights of the operators are influenced by how well they perform during the search process (Score).
These weights of operator i are updated at the end of each Markov segment j using formula 4.51.

Weightj+1
i = Weightji ∗ (1− ρ) + ρ ∗

(
Scorei
Ni

)
(4.51)

In this formula, j represents the current Markov segment, while j +1 represents the next segment. N denotes
the number of times the operator was chosen in the current segment. Parameter ρ influences how much the
current segment contributes to the weight adjustment. When ρ = 1, the weights are solely based on the scores
from the current Markov segment. If ρ = 0, the values are not updated, and the current Markov segment’s
weights are the same for the next segment. The parameter Score reflects the operator’s performance in the
current Markov segment.

The Score of the operators is adjusted when they are selected to generate a new solution. The Score is
adjusted based on the quality of the new solution. There are four possible scenarios for assigning a score to
the operator based on the new solution. The values that are assigned to each scenario are based on the article
of Pisinger and Ropke [73]. Table 4.1 describes the various scenarios including their corresponding Score.

Table 4.1: Scores of the scenarios for a new solution

Parameter Scenario Value
σ1 The new solution is better than the best solution. 33

σ2
The new solution is worse than the best solution,
but better than the current solution. 9

σ3

The new solution is worse than the current solution,
but accepted as the new current solution
by the simulated annealing criteria.

13

σ4 The new solution is not accepted as the new current solution. 0

The number of requests that are removed (ω) is proportional to the temperature during the run. Formulas 4.52
and 4.53 are utilized to update the number of requests to remove corresponding with the current temperature.
First, the percentage of the current temperature compared to the total temperature change is determined,
and then this percentage is used to calculate the number of requests to be removed. ωStart is the number
of requests that are removed at the start of the run, while ωEnd represents the number of requests that are
removed at the end of the run.

PercentageTemperature =

(
StartTempertare− Temperature

StartTemperature− EndTemperature

)
(4.52)

ω = ωStart − PercentageTemperature ∗ (ωStart − ωEnd) (4.53)
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4.7 Conclusion

In addition to the current strategy employed by the RGV, two new strategies are assessed in this thesis. The
first is the horizontal cooperation strategy, where clients keep their current care provider, but their transporta-
tion to that care provider is arranged by a central vehicle depot. The second strategy is the client allocation
strategy, where, in addition to the central vehicle depot managing the transportation, clients can also be allo-
cated to a care provider with a more convenient location compared to their current care provider. Data on the
outcomes of the current strategy is unavailable, and thus, this strategy is also modelled.

Various rules and regulations are assumed for constructing the models. ILPs are formulated for the vari-
ous strategies. The difference in ILPs between the current strategy and the horizontal cooperation strategy is
in the way the waiting time of vehicles is modelled. For the client allocation strategy, the ILP of the horizontal
cooperation strategy is used. However, the input is modified with an ILP model that optimizes the allocations
of clients, ensuring they are placed with a care provider that minimizes the total distance between clients and
their care providers.

Due to the complexity of the problems, ILPs are found to be unsuitable for these problems. Therefore, a
meta-heuristic is employed to approximate the exact solution. A random greedy algorithm provides an initial
solution to an Adaptive Large Neighbourhood Search algorithm (ALNS). In each iteration, the algorithm de-
stroys the current solution using one of four destroy operators. Subsequently, the destroyed solution is repaired
using one of the three repair operators. The acceptance of the newly created solution is determined based on
simulated annealing criteria. Throughout the algorithm’s run, the probability of selecting operators adapts to
their performance. Additionally, the extent to which the solution is destroyed is also adaptive.
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5 Results

This chapter describes the computational experiments that were performed. Section 5.1 presents the data
instances that were used in the various experiments. Section 5.2 presents the values of the fixed parame-
ters that the model uses. Section 5.3 explains the experiments and results of the ILP method. Section 5.4
showcases how the various parameters are tuned in the ALNS algorithm. Section 5.5 presents an illustrated
verification of the routes. Section 5.6 describes the results of the various strategies that are tested using the
ALNS algorithm.

5.1 Data instances

The data on which the experiments are performed consists of clients distributed across different days. An
instance represents a day when clients need to be transported to care providers. The size of this instance
depends on the number of care providers that are open that day. Because clients are randomly distributed
over the days, as described in Section 4.3, data instances are generated for five random seeds per day. This
results in a total of 30 instances. Table 5.1 illustrates the number of clients to be transported per day on average
over the five random seeds. On Saturday, only a few care providers are open, resulting in fewer clients being
transported. Furthermore, the maximum distance from a client to their care provider is shorter on Saturday
than on other days. The mean and median distance between clients and their respective care providers is
similar for all the instances.

Table 5.1: Averages of data instances over the random seeds for distributing clients to days

Day Number of clients Max distance (km)
Monday 113.2(±14.8) 15.4(±1.3)
Tuesday 110.8(±13.1) 15.8(±1.4)
Wednesday 108.2(±3.6) 17.6(±4.4)
Thursday 119.6(±9.5) 17.0(±3.3)
Friday 96.6(±6.0) 18.2(±4.1)
Saturday 9.6(±1.9) 9.1(±0.4)

5.2 Fixed parameters

In the various strategies, some parameter values are tailored to the RGV. This section showcases these values.
Clients are categorized into two types: wheelchair-bounded clients and clients occupying a regular seat in the
vehicles. For some parameters different values apply for the different types of client. The fixed parameters are
the following:

S = [Seating : 1,Wheelchair : 2] Number of seats occupied by a client
SW = [Seating : 0,Wheelchair : 1] Number of wheelchair spaces occupied by a client
BT = [Seating : 3,Wheelchair : 6] Boarding/embarking time (in minutes) for a client
F = 60 minutes Maximum time a client may spend during a transport request
Q = 6 Capacity of a vehicle
QW = 2 Wheelchair capacity of a vehicle
TravelSpeed = 40 km/h Constant travel speed of a vehicle

5.3 Results of ILP

The ILP tries to compute the exact solution to the problem at hand. Due to the complexity of the model, it
is challenging to arrive at a solution within a reasonable amount of time. Figure 5.1 shows the time it takes
to reach a solution as the number of clients increases. In this experiment, the time is measured to reach an
optimality gap of less than 40%.
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Figure 5.1: Time it takes to reach a solution with an optimality gap less than 40% for various instance sizes

For small instances, the ILP finds solutions in a reasonable time, however, if the number of clients increases the
complexity of the model increases rapidly. As a result, the time required to reach a solution also increases sig-
nificantly. For the size of the instances that need to be tested, using an ILP is not feasible due to computational
constraints.

5.4 Parameter tuning

Several parameters in the ALNS algorithm require tuning to find the best configuration of the algorithm. This
subsection describes these parameters and the experiments that we conducted to tune them.

5.4.1 Start temperature

The temperature influences the likelihood of accepting worse solutions. At the beginning of the run, worse
solutions have a good chance of being accepted. Formula 5.1, an adapted version of Formula 4.49, is used
to determine the precise starting temperature. The starting temperature depends on both the value of µ and
the value of the initial solution. The StartTemperature is set such that a solution which is µ percentage worse
than the current solution is accepted with a probability of 50%.

StartTemperature = −
(
(CurrentSolution ∗ µ)− CurrentSolution

Ln(0.5)

)
(5.1)

The assumption is made that a solution which is 50% worse should have a 50% probability of being accepted
at the start of the run. This means µ becomes 1.5. To verify that the acceptance probability is sufficiently high
at the beginning of the run, the algorithm is initiated without allowing the temperature to decrease. This exper-
iment is conducted with an instance size of 50 clients. After one thousand iterations, the average acceptance
probability is found to be 0.991. This indicates that these settings are effective in ensuring a high likelihood of
accepting worse solutions at the start of the run.

5.4.2 End temperature

The value of the EndTemperature determines how long the algorithm can search before it is terminated. When
the temperature is low, the likelihood of accepting a worse solution is also low. This transforms the algorithm
into a greedy one. To determine a suitable value for the end temperature, the behaviour of the objective value
(distance) during the run is looked at. The goal is to choose a value at which the objective value at the end of
the run remains unchanged or changes negligibly, which means likely a (local) optimum is reached. Figure 5.2
showcases a run with an instance size of 120 clients and an EndTemperature of 0.5. In this figure, each step
represents an iteration. The objective value does not decrease significantly at the end of the run, indicating a
good end temperature is chosen.
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Figure 5.2: ALNS algorithm run results: Objective value development (top), temperature (bottom left), and acceptance
probability (bottom right) during the run.

5.4.3 Number of requests to remove with destroy operators

The destroy operators destroy a certain number of requests (ω). At the start of the run, a high ωstart is removed
to make sure diversification is possible, at the end of the run only small portions of the solution are removed
to intensify the search. The parameter that requires tuning is the start value of ωstart. An experiment is run,
where ωstart is varied. In the tests, instance sizes of 50 clients are used with a temperature cooling rate (C) of
0.8 and the influence of the scores (ρ) set to 0.1. Table 5.2 presents the outcomes of these tests.

Table 5.2: Results of experiment: percentage to remove at the start of a run

ωstart
Best solution
(in kilometres)

Percentage of run
where best solution is found

Number of times
best solution is found

80% 608 79% 16
60% 601 92% 21
40% 629 82% 13
20% 595 100% 27

An ωstart of 20% results in the best outcomes. The ω at the end of the run is set to 5 for all operators except the
destroy routes operator. Due to the nature of the operator, it is not possible to remove a fixed number of clients.
Experiments show that selecting a minimum of 2 routes to be destroyed yields the best outcomes. Appendix A
displays the detailed results of these experiments.

5.4.4 Influence of last Markov segment on weights

The weights that determine the probability of selecting certain operators are updated during the run. The
influence of the last Markov segment on the weights of the operators (ρ) is a parameter that needs tuning.
Tests were performed on various settings of ρ with 50 clients as instance size. The test was done with a
cooling rate (C = 0.8) and start ωstart = 20%. Figure 5.3 shows the probability that a certain operator is
chosen during the run for various settings of ρ. The ALNS algorithm adapts the most in the experiment with
setting ρ = 0.8. This setting also yields the best objective value and performance indicators. Appendix A
presents the detailed results of various performance indicators of the experiments.
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(a) ρ = 0.2 (b) ρ = 0.4

(c) ρ = 0.6 (d) ρ = 0.8

Figure 5.3: Outcomes of probabilities of selecting destroy operators with various settings for ρ

5.4.5 Multi-start and cooling rate

The cooling rate (C) determines the rate at which the temperature decreases, thereby affecting the time it
takes for the algorithm to finish. Two shorter runs with different initial solutions may lead to a better result than
a single, longer run. The following experiments explore the impact of the initial solution and cooling rate on
the final solution. For this experiment, the starting point is a total run-time of one hour. Various numbers of
starts within an hour are tested, with each start utilizing a different initial solution. The cooling rate for these
experiments is calculated using Formula 5.2. Here, M represents the number of Markov segments that should
be completed to achieve a certain run time. This can be calculated by multiplying the average time for an
iteration by the number of iterations in a Markov segment. In this algorithm, the average Markov segment
takes approximately 20 seconds. So for a run of one hour and one initial solution, 180 Markov segments can
be completed. Tests are run for various numbers of runs within an hour with a max of 6 different initial solutions
within an hour.

C = M

√
EndTemperature

StartTemperature
(5.2)

The experiments use the tuned parameters:

• ωstart = 0.2

• ρ = 0.8

• µ = 1.5

• EndTemperature = 0.5

• Number of routes for destroy routes operator at end run = 2
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The experiment is conducted for each day of the week when care providers are open. Figure 5.4 presents the
result of the experiments. The x-axis displays the number of starts conducted within an hour. Each dot in the
figure represents the result of an individual run. For instance, if six starts are performed in an hour, there will
be six dots on the figure.

(a) Monday (b) Tuesday (c) Wednesday

(d) Thursday (e) Friday (f) Saturday

Figure 5.4: Results of the experiment on using multi-start for various days of the week. The red diamond indicates the
best-found distance for that day

The longer runs with one initial solution and a C of 0.92 result in the best solution on four of the six days.
Appendix A shows the detailed results of this experiment. The differences in the outcomes from runs with a
multi-start are on average 8.24%. This indicates that the impact of the initial solution on the outcome is limited
in the ALNS algorithm.

5.5 Verification of the routes

Once a solution is found, the routes are checked on whether they are correct and logical. The solution should
fulfil all constraints formulated in the ILP of the strategy. If all these constraints are satisfied the solution is
considered a feasible solution. A feasible solution however does not imply a solution of high quality. Because
the ILP is not able to identify a lower bound, the quality of the routes is visually confirmed. The longest route
in the solution is plotted to assess its logic. Figure 5.5 shows the longest route divided into sections. The
route appears logical considering clients who are located close together are picked after each other, taking into
account the various constraints. Appendix B displays the shortest route from this solution.
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(a) Whole longest routes (b) First third of the longest route

(c) Second third of the longest route (d) Last third of the longest route

Figure 5.5: Longest route of a best-found solution. The route is colour-coded, with the start marked red, the end in blue
and a gradient to represent the middle portion.

5.6 Outcomes of strategies

This section depicts the outcomes of the various strategies that are tested for the transportation of clients
for social care services in the RGV. The ALNS model with the parameters described in Section 5.4 tests the
strategies.

For the client allocation strategy, the distance between clients and their care providers is reduced by choosing
a more efficient allocation of clients. The distance between clients and their care providers, when considered
as a direct route, is 3541 kilometres in the current strategy and the horizontal cooperation strategy. The client
allocation strategy reduces this distance to 3122 kilometres. A total of 113 clients are allocated to a different
care provider compared to the current strategy.

Because there is randomness involved in the allocation of clients, the model is run five times with clients
distributed differently over the days for every strategy. This results in a confidence interval of the mean dis-
tance travelled during the week. In the current strategy, the total number of clients is distributed among the
various care providers. Therefore, the ALNS algorithm runs faster because the instance sizes are smaller. The
total run time for the current strategy is approximately two hours. For the horizontal cooperation and client
allocation strategy, a single day takes, on average, one hour to complete, resulting in a total run time for one of
the strategies of approximately 30 hours. Figure 5.6 shows the results of these tests.
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Figure 5.6: Outcome of distance for the various strategies

Compared to the current strategy, both the horizontal cooperation and client allocation strategies are improve-
ments. The horizontal cooperation gives a 7.5% decrease in the number of kilometres travelled, while the
client allocation strategy gives a 16.2% decrease. This corresponds to a decrease of 571 km and 1231 km per
week, respectively. If we extrapolate these outcomes for an entire year, the savings are approximately 29,700
kilometres for the horizontal cooperation strategy and approximately 64,000 kilometres for the client allocation
strategy.

Figure 5.7 presents the average time clients spend in the vehicle during a transport request and the num-
ber of vehicles needed in the strategy. Appendix C shows the detailed results of the conducted tests.

(a) Number of vehicles needed (b) Average time a client spends in the vehicle per transport request

Figure 5.7: Number of vehicles needed and average driving time per transport request in the various strategies

The number of vehicles required to transport clients throughout the week is lower in the horizontal cooperation
and client allocation strategy compared to the current strategy. The horizontal cooperation strategy results in
a savings of approximately 37 vehicles, and the client allocation strategy yields a savings of about 39 vehicles.
The horizontal cooperation and client allocation strategies do not have a big impact on the average driving time
per transport request. The client allocation strategy shows a small decrease of approximately two minutes.

5.7 Conclusion

The number of clients is evenly distributed over the days Monday to Friday. On Saturdays, fewer clients need
transportation to the care provider. Furthermore, the maximum distance to the care provider on that day is also
smaller.
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The time it takes for the ILP to reach a feasible solution with an optimality gap of at least 40% increases signif-
icantly if the instance size is larger than 12 clients. As a result, the ILP is not a suitable method for this problem.

The ALNS algorithm has several parameters that require tuning. The StartTemperature depends on the
value of µ, which determines how much worse the solution may be at the beginning of the run to still have a
50% chance of being accepted. The EndTemperature is chosen based on the graph of a run. The number of
requests to remove at the start of the run (ωstart), is determined by running several tests with different values
for ωstart. The same is done for the influence of the last Markov segment on the weights of operators (ρ), to
determine the most appropriate cooling rate (C), and to see whether using a multi-start is beneficial or not.

The best-found values for these parameters are the following:

• µ = 1.5

• EndTemperature = 0.5

• ωstart = 0.2

• ρ = 0.8

• C = 0.92

• Not beneficial to use a multi-start

Routes are verified when the constraints from the ILP are satisfied and the route is visually logical.

The strategies of horizontal cooperation and client allocation were tested versus the current strategy. Both
strategies outperformed the distance of the current strategy. The distance of the current strategy was 7618
(±160) kilometres, while the distance of the horizontal cooperation and client allocation strategies was 7047
(±120) and 6387 (±79) respectively. The number of vehicles needed in the current strategy was 53.2 (±1).
The horizontal cooperation and client allocation strategies resulted in 16.4 (±1) and 14 (±1) vehicles needed
respectively. The average driving time per transport request for the current strategy and the horizontal co-
operation strategies was similar with 27.0 (±0.3) and 27.3 (±0.3) respectively. The client allocation strategy
resulted in a small decrease with 25.3 (±0.3) minutes for the average driving time per transport request.
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6 Conclusion

This thesis investigates the impact of various strategies on the transport of clients for social care services in
the RGV. The motivation for this research is that the current strategy does not seem sustainable. If the trans-
portation of clients cannot be arranged more efficiently, the costs will rise. This creates a lack of profitability,
which causes care providers to quit. Fewer care providers means less efficient transportation due to a less
dense network of care providers. A different strategy could bring benefits.

In the literature, several examples of similar situations are present. However, the combination of character-
istics specific to the RGV is not seen in the literature. To assess whether alternative strategies can have a
positive impact on the RGV’s situation, a transportation planning algorithm is developed. An ILP model proved
unsuitable due to the complexity and scale of the problem. Therefore, a meta-heuristic was employed to ap-
proximate the exact solution. A random greedy heuristic is used for the initial solution, followed by an ALNS
algorithm that optimizes the solution.

In each iteration, the ALNS algorithm destroys the solution using one of four destroy operators. Subsequently,
one of the three repair operators repairs the solution. The principles of simulated annealing are employed to
determine whether this new solution is accepted as the new solution. The ALNS algorithm is adaptable during
the run. After each Markov segment, the probability of choosing the operators and the percentage of the route
that is destroyed is adjusted. After a number of iterations, the best solution is returned as the final solution.

The ALNS algorithm contains several parameters that need tuning. This was done through various experi-
ments with different settings. The tested parameters that performed the best were the following:

• Percentage above current solution that is accepted with 50% probability, µ = 1.5

• EndTemperature = 0.5

• Percentage of the solution that is destroyed at the start of the search process, ωstart = 0.2

• Influence of the last segment on the weights to choose the operators, ρ = 0.8

• Cooling rate, C = 0.92

• Not beneficial to use a multi-start

In the current strategy, clients are located to care providers who are responsible for the transportation of these
clients. Vehicles depart from the care providers and can only pick up and deliver clients from that care provider.
Performance outcomes on the current strategy are not available therefore this strategy was also modelled with
the ALNS algorithm. Two new strategies are tested with the algorithm. The first new strategy is the horizontal
cooperation strategy. In this approach, clients remain with their original care provider, but the transportation is
not organized by that care provider. Instead, it is managed from a central vehicle depot. The second strategy
is the client allocation strategy, where clients are allocated to a care provider that allows for a more efficient
route. In this strategy, a central vehicle depot is also used to arrange the transportation. Clients are allocated
to a care provider using an ILP model that minimizes the distance between the clients and their care provider.

The strategies were tested on the total distance driven in a week to transport the clients to their care providers.
The current strategy had an outcome of 7618 (±160) kilometres. The horizontal cooperation strategy had a
total distance driven in a week of 7047 (±120). The client allocation strategy resulted in a distance of 6387
(±79). This means the horizontal cooperation strategy resulted in a 7.5% decrease, while the client allocation
strategy resulted in a 16.2% decrease in distance driven per week. The number of vehicles needed in the
current strategy is 53.2 (±1). The horizontal cooperation strategy resulted in 16.4 (±1) vehicles needed, while
the client allocation strategy resulted in 14 (±1) vehicles needed. This corresponds to a decrease of approxi-
mately 37 vehicles for the horizontal cooperation strategy and 39 vehicles for the client allocation strategy. The
average driving time per transport request for the current and the horizontal cooperation strategies are similar
with 27.0 (±0.3) and 27.3 (±0.3) respectively. The client allocation strategy resulted in an average of 25.3
(±0.3) minutes driving per transport request.

6.1 Managerial recommendations

This section outlines the managerial recommendations. It discusses the potential to expand the model and
some further research the RGV should take before implementing the strategies.

The current model is aimed at minimizing the total distance travelled, which serves as a good baseline KPI.
However, more KPIs may be of interest. Section 2.3 outlines some additional KPIs that could be relevant. It
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would be beneficial to have a more holistic approach to check all the stakeholders’ interests.

Clients want the quality of their trip to be as high as possible, which means minimizing the time they spend
in the vehicle. Additionally, they want to be picked up at a certain time and delivered at a certain time. In the
model, this could be implemented by giving a penalty if a vehicle is late or early. For clients, driver consistency
could be a factor to implement in the model. Having the same driver every time could have a large impact on
the quality of a trip for the client.

The driver’s perspective can also be taken into account by adding constraints to ensure a driver gets enough
breaks and can be limited to certain working hours.

Costs could be an important KPI to the RGV and the care providers. From the current objective of minimizing
the distance, a reasonable estimation can be made regarding the costs associated with a strategy. However, a
more accurate estimation can be made by expanding the model to take into consideration the costs of different
vehicles, including the purchasing and maintenance costs. This way a more accurate representation of the
total annual costs is made.

These examples of KPIs can be incorporated into the model by altering the objective function. A balance
between these KPIs should then be found to come to the best configuration for the model.

The horizontal cooperation and client allocation strategies demonstrate that by reorganizing the transportation
of clients, potential savings can be achieved. By checking the models’ outcomes, some potential improvements
come to mind.

The depot that is used for the horizontal cooperation and client allocation strategies is located outside of
the main area where the addresses of clients and care providers are. A strategy with a vehicle depot that is
more central than the current location could provide improved outcomes.

A potential addition to the strategies could be to add a second depot. The distance between the depot in-
cluded in the current model and the farthest clients exceeded 20 kilometres. Utilizing an ILP model to minimize
the total distance between one of the two depots and the clients could provide valuable information for identi-
fying an optimal location for the depots.

The investigated strategies show a clear potential for savings. However, some considerations need to be
taken into account before implementing any of these strategies. Table 6.1 displays the positive and negative
impact of each strategy on the various stakeholders.

Table 6.1: Impact of the strategies on the various stakeholders

Strategy: Current strategy Horizontal cooperation strategy Client allocation strategy

Clients: + Freedom of choice for the pre-
ferred care provider

Freedom of choice for the preferred
care provider

• Care provider is closer to home
• Reduced average driving time of ± 2

minutes

- - Adapting needed to change in trans-
portation

Adapting needed to change in trans-
portation

Care
providers:

+ Easy way of connecting with the
caregiver of the client

Transportation is outsourced to the
RGV

Transportation is outsourced to the
RGV

- High costs for arranging the
transportation

Easy way of connecting with the care-
giver of the client is lost

• Easy way of connecting with the
caregiver of the client is lost

• Less influence on client acquisition

RGV: + No responsibility for the trans-
portation of clients

• Savings in number of kilometres
(±29,700 km per year)

• Saving in number of vehicles (±37)

• Savings in number of kilometres
(±64,000 km per year)

• Saving in number of vehicles (±39)

-

• High costs from care providers
are passed on to the RGV

• Have to deal with unhappy
care providers

The transportation service of the RGV
must be able to handle and organize
the transportation

• The transportation service of the
RGV must be able to handle and or-
ganize the transportation

• Additional research is needed on the
impact of the strategy on clients
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The group of clients is a vulnerable one, and any changes can have a significant impact on them. Switching
transportation providers, let alone changing care providers, constitutes a major change. Therefore, it should
be evaluated whether such changes are wise for these clients.

During the data collection process, multiple care providers indicated that the transportation of clients is also
considered a moment where information of the day could be handed over to the caregiver/parent of the client.
The importance of this moment for the quality of care should not be underestimated. If this moment is care-
fully considered, the majority of care providers would be willing to have the transportation arranged by the RGV.

If the RGV decides to implement the client allocation strategy a big impact is made on the clients. Further
research could provide more insights into this impact. If the RGV wishes to implement the client allocation
strategy, it could be wise to do it gradually, possibly starting with the horizontal cooperation strategy. And
allocating only new clients to a more ideal-located care provider.

6.2 Discussion

In this thesis, an overview of the issues that arise in the transportation of clients to social care services in the
RGV is given. An ALNS algorithm investigates the impact of various strategies on the current situation. This
section discusses the used methodology and its assumptions. The strengths and limitations of this research
are identified and the contribution to the existing literature is explained.

The RGV has limited information available on how client transportation is organized in the current strate-
gies. This lack of detailed data makes it unclear how many kilometres are covered in the current strategy. For
this reason, not only the horizontal cooperation and the client allocation strategy but also the current strategy
was modelled with the ALNS algorithm. As a result, the model may optimize the current strategy more than
it is in reality because it is unknown whether care providers themselves use optimization to plan client routes.
However, modelling all strategies with the same algorithm allows for a more fair comparison between them.

An attempt was made to compute an exact solution for the various strategies, however, the problem proved to
be too complex for exact resolution. The obtained results are an approximation of the exact solution. Given
the complexity of the problems, it is unclear how close this solution is to the exact one, as it was not possible
to compute a lower bound using the ILP model.

In the model, several assumptions are made with various degrees of impact. These assumptions are pre-
sented here and an approximation of the impact of all the assumptions on the outcomes can be found in
Appendix D.

The analyses did not use the exact addresses of clients due to confidentially rules, instead, the postal codes of
the clients and care providers were used. This has a minor impact on the accuracy of the locations. For some
routes, this will mean that they are slightly longer, while for others, they may be slightly shorter in reality.

The distance between all locations is calculated using QGIS’s ArcMap 10.8. Via a road network, the shortest
route is computed between every possible location that is needed for this analysis. In reality, the shortest route
is not always the fastest route. When comparing certain distances between locations obtained from the road
network to the distances provided by Google Maps, the road network sometimes finds slightly shorter routes.
As a result, the total distance computed for a week of transporting clients is shorter than the real distance that
is needed to transport all the clients during that week. For a fair comparison between the strategies, the impact
of computing the distances between locations in this manner is minimal since the same road network is used
for all strategies.

The day on which clients go to the care providers is an important assumption in the model. This data was not
available, so in the model, clients were randomly assigned to a day. In reality, it is possible that the scheduling
of the days that clients go to the care providers already takes into account route optimization, or that clients
have a preference for a particular day, resulting in an uneven distribution between the days. This effect is not
considered in the model but could mean that the various strategies may yield slightly higher distances as a
result compared to reality.

The parameters in the model are modelled in a deterministic way. Most parameters were estimated with
the knowledge of the RGV, such as the embarking time of clients and the number of seats a wheelchair occu-
pies. Some of these parameters have a stochastic nature, but it is assumed in the model that these values are
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constant. This assumption may have a minor impact on the results.

Another deterministic parameter is the travel speed. A driving speed of a constant 40 km/hour is assumed
between each location, which also determines the travel time between different locations. This is a significant
assumption, as different routes may have varying speed limits and traffic density. However, the impact on the
final results on the distance travelled will not be substantial, as speed primarily affects travel time and not the
actual distance travelled.

The exact condition of a client is not known to the RGV; only the conditions treated by their care providers
are known. In the client allocation strategy, clients are allocated to a care provider that treats the exact same
conditions as their current care provider. In reality, a more optimal allocation of clients is likely possible if the
exact condition of clients is known. This would result in a decreased distance outcome for the client allocation
strategy.

This thesis provides insight into how the strategies of horizontal cooperation and client allocation can im-
pact the current situation. Despite the assumptions made in the model, this project shows how a change in
strategy can affect the number of kilometres travelled per week for clients attending social care services or the
number of vehicles needed. No articles with the same characteristics as the RGV were found in the literature.
We demonstrate that an ILP is not suitable for solving a problem of this magnitude with this many constraints.
However, we conclude that an ALNS algorithm provides a good feasible solution. Thereby the thesis adds to
the existing literature.
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[2] T. Režnar, J. Martinovic, K. Slaninová, E. Grakova, and V. Vondrak, “Probabilistic time-dependent vehicle
routing problem,” Central European Journal of Operations Research, vol. 25, 09 2017.

[3] R. Lahyani, M. Khemakhem, and F. Semet, “Rich vehicle routing problems: From a taxonomy to a defini-
tion,” European Journal of Operational Research, vol. 241, no. 1, pp. 1–14, 2015.

[4] TransitieBureau Wmo, “Informatie,” tech. rep., Rijksoverheid, 2014.

[5] N. Uenk, Commissioning of social care services. PhD thesis, Utrecht University, 2019.

[6] W. van Oorschot, “The Dutch Welfare State: Recent Trends and Challenges in Historical Perspective,”
European Journal of Social Security, vol. 8, no. 1, pp. 57–76, 2006.

[7] O. romp AWBZ, “Toekomst AWBZ,” tech. rep., 2004.

[8] R. Douven, E. Mot, and K. Folmer, “Momentopname van de AWBZ Een analyse van de sterke en zwakke
punten,” tech. rep., Centraal planbureau, 2004.

[9] Tweede Kamer stuk 29538, “Zorg en maatschappelijke ondersteuning,” 2004.

[10] P. Feijten and F. Vonk, “Social support in the Netherlands: local policies and individual outcomes,” (Milan),
Sociaal cultureel planbureau, 2017.

[11] SER, “Langdurige zorg verzekerd: Over de toekomst van de AWBZ,” tech. rep., SER, 2008.

[12] W. e. S. Volksgezondheid, “Wet maatschappelijke ondersteuning 2015,” 2015.

[13] E. Berkers, M. Cloı̈n, and I. Pop, “Informal help in a local setting: The Dutch Social Support Act in practice,”
Health Policy, vol. 125, no. 1, pp. 47–53, 2021.

[14] T. Dijkhoff, “The Dutch Social Support Act in the shadow of the decentralization dream,” Journal of Social
Welfare and Family Law, vol. 36, no. 3, pp. 276–294, 2014.

[15] R. Hortulanus, “Het belang van de Wet maatschappelijke ondersteuning,” 2004.

[16] D. Houten, “Een kritiek op de wet maatschappelijke ondersteuning - discussiebijdrage/essay,” Journal of
Social Intervention : Theory and Practice, vol. 14, 01 2008.

[17] L. van der Ham, M. den Draak, W. Mensink, P. Schyns, and v. d. B. Esther, “De WMO 2015 in praktijk,”
tech. rep., Sociaal en cultureel planbureau, The Hague, 2018.

[18] Tweede Kamer, kenmerk 3363611-1028816-J, “Kamerbrief over visie op stelsel jeugdzorg en noodzake-
lijke hervormingen,” 2022.

[19] W. Hoogenraad, L. Knight, N. Uenk, and F. Vos, “Minder aanbieders verlaagt kosten jeugdzorg niet,” Deal!,
2023.

[20] N. Uenk, “Gemeentelijke inkoop wmo in beeld,” TPC, 2017.

[21] CBS, “Wmo-gebruik; aantal maatwerkarrangementen, regio,” 2022.

[22] M. Law, S. Steinwender, and L. Leclair, “Occupation, health and well-being,” Canadian Journal of Occu-
pational Therapy, vol. 65, no. 2, pp. 81–91, 1998.

[23] CBS, “Pump prices motor fuels; location petrol station, type fuel,” 2023.

[24] CBS, “Gezondheid in coronatijd,” 2023.

[25] G. Laporte, “What you should know about the vehicle routing problem,” Naval Research Logistics (NRL),
vol. 54, pp. 811 – 819, 12 2007.

[26] H. Jia, Y. Li, B. Dong, and H. Ya, “An improved tabu search approach to vehicle routing problem,” Procedia
- Social and Behavioral Sciences, vol. 96, pp. 1208–1217, 2013. Intelligent and Integrated Sustainable
Multimodal Transportation Systems Proceedings from the 13th COTA International Conference of Trans-
portation Professionals (CICTP2013).

57



[27] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management Science, vol. 6, no. 1,
pp. 80–91, 1959.

[28] R. Jorgensen, J. Larsen, and K. Bergvinsdottir, “Solving the dial-a-ride problem using genetic algorithms,”
Journal of the Operational Research Society, vol. 58, 10 2007.

[29] J. Rieck and J. Zimmermann, “A new mixed integer linear model for a rich vehicle routing problem with
docking constraints,” Annals OR, vol. 181, pp. 337–358, 12 2010.

[30] P. A. Munari, “A generalized formulation for vehicle routing problems,” ArXiv, vol. abs/1606.01935, 2016.

[31] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Multi-objective vehicle routing problems,” European Journal of
Operational Research, vol. 189, no. 2, pp. 293–309, 2008.

[32] Z. Borcinova, “Two models of the capacitated vehicle routing problem,” Croatian Operational Research
Review, vol. 8, pp. 463–469, 12 2017.

[33] M. L. Fisher and R. Jaikumar, “A generalized assignment heuristic for vehicle routing,” Networks, vol. 11,
no. 2, pp. 109–124, 1981.

[34] R. Liu, X. Xie, V. Augusto, and C. Rodriguez, “Heuristic algorithms for a vehicle routing problem with si-
multaneous delivery and pickup and time windows in home health care,” European Journal of Operational
Research, vol. 230, no. 3, pp. 475–486, 2013.

[35] J. Renaud, G. Laporte, and F. F. Boctor, “A tabu search heuristic for the multi-depot vehicle routing prob-
lem,” Computers & Operations Research, vol. 23, no. 3, pp. 229–235, 1996.

[36] A. Lim and F. Wang, “Multi-depot vehicle routing problem: a one-stage approach,” IEEE Transactions on
Automation Science and Engineering, vol. 2, no. 4, pp. 397–402, 2005.

[37] B. Crevier, J.-F. Cordeau, and G. Laporte, “The multi-depot vehicle routing problem with inter-depot
routes,” European Journal of Operational Research, vol. 176, no. 2, pp. 756–773, 2007.

[38] M. Tohidifard, R. Tavakkoli-Moghaddam, F. Navazi, and M. Partovi, “A multi-depot home care routing prob-
lem with time windows and fuzzy demands solving by particle swarm optimization and genetic algorithm,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 358–363, 2018. 16th IFAC Symposium on Information Control
Problems in Manufacturing INCOM 2018.

[39] B. L. Golden, T. L. Magnanti, and H. Q. Nguyen, “Implementing vehicle routing algorithms,” Networks,
vol. 7, no. 2, pp. 113–148, 1977.
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A Detailed results of parameter tuning

Number of requests to remove at start of the run

Experiment Results experiments

Percentage to remove
at start run (ωstart)

Best solution Percentage of run to
find best solution Number of improvements Percentage of end solution

above best solution
0.8 608 79% 16 0
0.6 601 92% 21 0
0.4 629 82% 13 0
0.2 595 100% 27 0

Number of routes to remove at end of the run with destroy routes operator

Experiment Results experiment

Minimum routes to
be removed Best solution Percentage of run to

find best solution Number of improvements Percentage of end solution
above best solution

3 657 97% 20 0
2 622 97% 22 0
1 661 64% 15 0

Influence of last Markov segment on weights of operators

Experiment Results experiment

Influence of last Markov
segment during run (ρ) Best solution Percentage of run to

find best solution Number of improvements Percentage of end solution
above best solution

0.8 604 91% 32 0
0.7 664 83% 22 0
0.6 674 96% 20 0
0.5 657 87% 26 0
0.4 633 91% 29 0
0.3 650 84% 25 0
0.2 606 94% 23 0
0.1 631 91% 20 0

Multi-start & Cooling rate

Experiment for determining multi-start and cooling rate: Monday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 1177 89% 80 9% 0
30 90 0.85 2 1269 89% 46 10% 0
30 90 0.85 2 1181 89% 51 11% 0
20 60 0.78 3 1308 100% 65 22% 0
20 60 0.78 3 1308 83% 27 9% 0
20 60 0.78 3 1202 100% 55 18% 0
15 45 0.72 4 1271 98% 49 22% 0
15 45 0.72 4 1295 93% 34 15% 0
15 45 0.72 4 1250 100% 42 19% 0
15 45 0.72 4 1304 65% 39 17% 0
12 36 0.67 5 1299 98% 44 24% 0
12 36 0.67 5 1350 98% 36 20% 0
12 36 0.67 5 1274 89% 28 16% 2.22045E-16
12 36 0.67 5 1384 89% 31 17% 0
12 36 0.67 5 1278 97% 35 19% 2.22045E-16
10 30 0.62 6 1325 99% 48 32% 0
10 30 0.62 6 1300 94% 31 21% 0
10 30 0.62 6 1333 97% 29 19% 0
10 30 0.62 6 1286 97% 33 22% 0
10 30 0.62 6 1285 99% 33 22% 0
10 30 0.62 6 1308 99% 41 27% 0
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Experiment for determining multi-start and cooling rate: Tuesday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 1486 99% 74 8% 0
30 90 0.85 2 1649 100% 53 12% 0
30 90 0.85 2 1518 100% 56 12% 0
20 60 0.78 3 1607 98% 59 20% 0
20 60 0.78 3 1723 100% 40 13% 0
20 60 0.78 3 1687 82% 51 17% 0
15 45 0.72 4 1810 94% 27 12% 0
15 45 0.72 4 1663 100% 45 20% 0
15 45 0.72 4 1669 97% 49 22% 0
15 45 0.72 4 1656 99% 50 22% 0
12 36 0.67 5 1680 94% 52 29% 0
12 36 0.67 5 1679 96% 38 21% 0
12 36 0.67 5 1679 98% 45 25% 0
12 36 0.67 5 1753 99% 49 27% 0
12 36 0.67 5 1648 99% 28 16% 0
10 30 0.62 6 1766 93% 26 17% 0
10 30 0.62 6 1693 95% 40 27% 0
10 30 0.62 6 1823 95% 30 20% 0
10 30 0.62 6 1845 86% 31 21% 0
10 30 0.62 6 1669 96% 48 32% 0
10 30 0.62 6 1787 100% 34 23% 0

Experiment for determining multi-start and cooling rate: Wednesday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 1356 100% 64 7% 0
30 90 0.85 2 1345 98% 54 12% 0
30 90 0.85 2 1334 90% 43 10% 0
20 60 0.78 3 1414 99% 52 17% 0
20 60 0.78 3 1432 90% 25 8% 0
20 60 0.78 3 1296 99% 72 24% 0
15 45 0.72 4 1442 96% 53 24% 0
15 45 0.72 4 1360 100% 56 25% 0
15 45 0.72 4 1350 94% 58 26% 0
15 45 0.72 4 1389 99% 40 18% 0
12 36 0.67 5 1407 98% 67 37% 0
12 36 0.67 5 1415 97% 33 18% 0
12 36 0.67 5 1362 96% 55 31% 0
12 36 0.67 5 1395 99% 43 24% 0
12 36 0.67 5 1431 97% 44 24% 0
10 30 0.62 6 1491 89% 42 28% 0
10 30 0.62 6 1447 99% 53 35% 0
10 30 0.62 6 1520 96% 43 29% 0
10 30 0.62 6 1497 99% 31 21% 0
10 30 0.62 6 1427 99% 46 31% 0
10 30 0.62 6 1417 99% 35 23% 0
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Experiment for determining multi-start and cooling rate: Thursday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 1493 100% 92 10% 0
30 90 0.85 2 1568 100% 57 13% 0
30 90 0.85 2 1619 94% 36 8% 0
20 60 0.78 3 1530 98% 71 24% 0
20 60 0.78 3 1571 97% 40 13% 0
20 60 0.78 3 1561 100% 79 26% 0
15 45 0.72 4 1654 99% 52 23% 0
15 45 0.72 4 1794 96% 37 16% 0
15 45 0.72 4 1744 100% 31 14% 0
15 45 0.72 4 1695 100% 33 15% 0
12 36 0.67 5 1684 95% 29 16% 0
12 36 0.67 5 1704 97% 29 16% 0
12 36 0.67 5 1750 93% 33 18% 0
12 36 0.67 5 1775 99% 28 16% 0
12 36 0.67 5 1618 96% 41 23% 0
10 30 0.62 6 1679 99% 41 27% 0
10 30 0.62 6 1758 88% 33 22% 0
10 30 0.62 6 1628 95% 48 32% 0
10 30 0.62 6 1692 98% 29 19% 0
10 30 0.62 6 1788 100% 28 19% 0
10 30 0.62 6 1569 95% 41 27% 0

Experiment for determining multi-start and cooling rate: Friday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 1211 99% 78 9% 0
30 90 0.85 2 1284 81% 64 14% 0
30 90 0.85 2 1259 98% 64 14% 0
20 60 0.78 3 1378 96% 43 14% 0
20 60 0.78 3 1294 97% 42 14% 0
20 60 0.78 3 1357 100% 40 13% 0
15 45 0.72 4 1310 98% 44 20% 0
15 45 0.72 4 1340 100% 43 19% 0
15 45 0.72 4 1405 100% 35 16% 0
15 45 0.72 4 1307 95% 53 24% 0
12 36 0.67 5 1427 98% 42 23% 0
12 36 0.67 5 1261 92% 33 18% 0
12 36 0.67 5 1434 98% 35 19% 0
12 36 0.67 5 1292 99% 41 23% 0
12 36 0.67 5 1427 97% 42 23% 0
10 30 0.62 6 1358 92% 38 25% 0
10 30 0.62 6 1489 17% 10 7% 0.022
10 30 0.62 6 1358 98% 35 23% 0
10 30 0.62 6 1501 95% 19 13% 0
10 30 0.62 6 1469 97% 38 25% 0
10 30 0.62 6 1426 99% 36 24% 0
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Experiment for determining multi-start and cooling rate: Saturday

Experiment Results experiment

Approximate
runtime (min)

Amount of
markov iterations

Cooling rate
(C) Multi-starts Best

solution

Percentage of
run to find
best solution

Number of
improvements

Percentage
improvements

Percentage of
end solution
above best solution

60 180 0.92 1 184 58% 12 1% 0
30 90 0.85 2 192 67% 10 2% 0
30 90 0.85 2 184 37% 6 1% 2.22045E-16
20 60 0.78 3 197 25% 12 4% 0
20 60 0.78 3 181 30% 9 3% 0.064355244
20 60 0.78 3 212 18% 4 1% 0.004679573
15 45 0.72 4 198 29% 9 4% 0
15 45 0.72 4 184 17% 8 4% 0.074830283
15 45 0.72 4 205 63% 8 4% 0
15 45 0.72 4 182 5% 5 2% 0.123766543
12 36 0.67 5 194 89% 12 7% 0
12 36 0.67 5 200 12% 5 3% 0.010473479
12 36 0.67 5 199 44% 5 3% 0
12 36 0.67 5 182 6% 5 3% 0.09338248
12 36 0.67 5 208 29% 4 2% 0
10 30 0.62 6 197 19% 11 7% 0.045694975
10 30 0.62 6 200 14% 5 3% 0.014802294
10 30 0.62 6 195 75% 6 4% 0
10 30 0.62 6 181 36% 6 4% 0
10 30 0.62 6 208 37% 5 3% 0
10 30 0.62 6 181 47% 10 7% 0
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B Verification of routes: Shortest route
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C Detailed outcomes of strategies

Current strategy

Detailed results of the current strategy

Random seed number Total distance travelled
througout a week (kilometres) Number of vehicles needed Average driving time per

transport request (minutes)
0 7639 52 27.3
1 7523 53 26.8
2 7601 54 26.8
3 7825 54 27.0
4 7500 53 27.2

Horizontal cooperation strategy

Detailed results of the horizontal cooperation strategy

Random seed number Total distance travelled
througout a week (kilometres) Number of vehicles needed Average driving time per

transport request (minutes)
0 7167 17 27.3
1 7007 15 27.5
2 6907 17 27.4
3 7085 17 27.2
4 7071 16 26.9

Client allocation strategy

Detailed results of the client allocation strategy

Random seed number Total distance travelled
througout a week (kilometres) Number of vehicles needed Average driving time per

transport request (minutes)
0 6427 14 25.0
1 6447 14 25.5
2 6342 15 25.6
3 6420 14 25.3
4 6299 13 25.2
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D Assumptions in the model

Assumption Explanation Degree of impact and explanation Impact of assumption
to the modelled solution

Locations are based
on postal codes

Due to conifidentiality the precise
adresses were unavailable.

Minimal impact as locations that are
chosen are very close to the real locations. Effect cancels out

The distance
between locations

Distances are determined by QGIS’s
ArcMap road network, which
produces the shortest route.

The total distance of the solution is likely
higher in reality, as a lot of the routes are
longer in reality than in the model.

Model underestimates total distance

Allocation of clients
to random days

Data on which day clients have day
care was unavailable, therefore they
are randomly assigned.

The more clients in one day, the more
optimization is possible, therefore an
even distribution makes the solution
worse than reality.

Model overestimates total distance

Deterministic
parameters

To simplify the model, deterministic
parameters were chosen. Such as a
fixed boarding/embarking time.

Minimal impact as these parameters do
not have a great influence on the outcome
of distance.

Effect cancels out

Fixed travel speed
The driving time between locations
is approximated using a constant
travel speed.

The driving time partially determines
how many clients can be transported in a
single vehicle. The impact of the fixed
travel speed is minimal as it does not
influence the distance.

Effect cancels out

Unlimited vehicles An unlimited number of wheelchair
busses is available in the model.

In reality, the number of vehicles might be
a restriction. A homogeneous fleet creates
a better solution than in reality possible.

Model underestimates total distance

Exact match on
conditions needed
in client allocation
strategy

The exact condition of a client is not
known, therefore an exact match
between the conditions of the current
care provider and allocated care
provider needs to be present.

Only for the client allocation strategy: the
solution is likely lower in reality. A better
allocation of clients is possible as an exact
match between current and allocated care
providers is not needed in reality.

For client allocation strategy only:
Model overestimate total distance

Approximate total impact of assumptions:
Current strategy: Model underestimates the total distance
Horizontal cooperation strategy: Model underestimates the total distance
Client allocation strategy: Model overestimates the total distance
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