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Abstract

All forms of sensing devices have optimal performance conditions to achieve accuracy and
reliability. Environmental conditions such as temperature affect the sensing elements of
sensors, which results in a drop in accuracy due to non-ideal effects. Their effects are
difficult to model due to the simplification of physics.

In this research, we focus on Coriolis Mass Flow Sensors (CMFS), which are microfab-
ricated mass flow sensors. They are able to measure the true mass flow by detecting the
inertial effects caused by a fluid flowing through a vibrating channel. The aim is to inves-
tigate the viability of machine learning to combine various sensing elements of a device to
counteract the non-ideal effects.

We present statistical machine learning methods applied on a CMFS, to estimate mass
flow, temperature, pressure drop, viscosity, and density as well as predict the measured
fluid based on its electrical readings. The chip (1.2 cm2) has been exposed to different
combinations of temperatures, flows, and pressure for four different liquids (ethanol, water,
isopropanol, acetone), and one gas (nitrogen). The sensing elements were sampled using
a Data acquisition (DAQ) system at 250 kHz, and features were computed using a Fast
Fourier Transform (FFT) based on its resonance frequency.

This thesis covers the classical machine learning and deep learning approaches. The
classical machine learning approach covers linear regression, support vector regression with
a non-linear kernel, and Gaussian process regression to estimate the fluid-state properties.
Additionally, Naïve Bayes, Gaussian process and deep learning approach classifiers are
employed to predict which fluid was measured based on its electrical readings.

The results for density and viscosity estimations show less fluid-state dependence using
GPR on trained fluids, achieving an average error of 0.132 kg/m3 (0.01%) and 0.62%
for density and viscosity respectively, similarly, mass flow estimation combining sensing
element features by polynomial features using linear regression achieves 2% accuracy, which
is better by a factor of > 2 compared to its counterpart by directly estimating using phase
difference, while even further improved by a non-linear method, improving performance by
a factor of > 4.

Keywords: microfluidics, Coriolis, mass flow sensors, machine learning, deep learning,
regression, classification
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Chapter 1

Introduction and motivation

Nanotechnology is one of the most promising technologies of the past decade [1]. Regular
daily life is surrounded by microelectronics, whether it is phones or cars, these systems
contain various micro-scale devices e.g. accelerometers, gyroscopes, etc. These sensors
are typically MicroElectroMechanical Systems (MEMS) and generally contain mechanical,
optical or fluidic functional structures. For readout, these devices contain electrical compo-
nents such as resistors and capacitors. MEMS are commonly made of silicon via front-end
processes in the cleanroom. With the advancement in nanotechnology and miniaturiza-
tion of electronic devices, many of these micro/nanodevices are being used in different
sub-fields.

In the context of microfluidic flow sensors, they control and measure accurately very
low flows, e.g. few micro or nano litres per minute [2]. This allows to study of fluids at a
micro-scale, which is useful for applications in pharmaceutical, biomedical and many other
fields [3, 4, 5]. It has been shown, that the thermal sensors are capable of measuring up to a
few nl/min, however, the general problem is, that the measurements are highly dependent
on liquid properties, and the sensors would need to be calibrated per liquid [6]. Another
type of microfluidic sensor is called a Coriolis Mass Flow Sensor (CMFS). These sensors
utilise the Coriolis force principle, in which the inertia caused by the fluid causes the sensor
tubes to swing in proportion to the mass flow independent of liquid properties. This is
further explained in Section 2.2. These devices’ weakness is the resolution compared to
the thermal sensors [7]. Alveringh et al. [8] have demonstrated that it can be improved
with a factor of 50 before it reaches the fundamental limit.

In theory, Coriolis force returns a direct measure of mass flow independent of fluid
properties. In practice, this is not the case. The use of CMFS to determine mass flow can
introduce errors due to the simplification of underlying physics which affects the mechanics
of the device. This is highlighted in recent research which shows microfabricated CMFS
with integrated pressure sensors (upstream and downstream) to estimate viscosity via the
Hagen-Poiseuille, in which the viscosity error ranges from 0-12% depending on mass flow
rate and pressure [9]. Moreover, the material properties of the sensing elements are affected
by pressure and temperature [10, 11]. These relationships are difficult to accurately capture
with the conventional methods mentioned in Section 2.2. Thus the goal is to characterize
the device, specifically MEMS-based microfabricated CMFS, in terms of what functionality
is it able to produce by combining sensing components of the device, and whether is it able
to reach the performance of an already established device on the market.

This project focuses on exploring the limitations, additional functionality, and improved
performance of microfabricated Coriolis sensors via a data-driven approach. The main
research question for this project is:
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How viable is a machine learning application on MEMS-based Coriolis flow sensors to
estimate mass flow, temperature, pressure, viscosity and predict the type of fluid?

where viable is in terms of reaching similar levels of performance (i.e. accuracy) as a high-
performance device on the market, thus creating a societal impact with the new presented
methods. To answer this main research question, there are several sub-questions:

• To what extent in terms of accuracy 1, linear and non-linear models are able to
combine capacitive and resistive signals measured from Coriolis Mass Flow Sensor to
estimate mass flow, pressure, density, temperature and viscosity?

• To what extent can different fluids be distinguished from each other using measured
sensing elements at different measurement parameters2 using probabilistic models?

• Is one of the state-of-the-art methods (DeepSense) able to capture the non-linearity’s
better compared to the linear/non-linear models?

The focus is the data part from the measured sensor, specifically determining the
characteristics of the measured fluid, such as density, and viscosity, and estimating mass
flow, pressure, and temperature. Designing and manufacturing the device according to the
results is out of the scope of this project.

1.1 Outline

Chapter 2 covers the background necessary to follow the thesis. The first part covers
the basic principles of fluid dynamics, the acquisition of theoretical fluid properties which
depend on pressure and temperature, as well as covering microfabricated CMFS. Later
sections cover the basic theory of used machine-learning methods, as well as definitions of
used accuracy measures for individual estimation.

Chapter 3 reviews the current state of machine learning applications in microfluidics,
fluid characteristics estimations, as well as deep learning signal processing implementations.

Chapter 4 explains the methodology used, covering the measurement setup and its
properties, as well as the type of produced signals by the setup. The latter parts cover
the methodology for feature extraction and processing, in addition to acquiring additional
labels.

Chapter 5 dives into Data-Driven Device Characterization, analyzing and understand-
ing the measured signals of the CMFS device and its response to fluid properties. This
chapter acts as a data analysis as a pre-requisite in applying machine learning methods.

Chapter 6 covers in-depth machine learning applications on measured signals to esti-
mate fluid characteristics, each section containing an estimation of the individual target in
question - Mass flow, temperature, pressure, viscosity, density and determining what fluid
was measured.

Chapter 7 discusses the outcome, its limitations and drawbacks.
Chapter 8 concisely answers research questions.

1Accuracy in terms of IEC 60601-2-24 standard defined in background section
2At varying mass flow, temperature and pressure
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Chapter 2

Background

This chapter covers the background knowledge necessary to follow the thesis.
Section 2.1 covers basic principles of fluids dynamics, with emphasis on the physical

properties of fluids we want to estimate, e.g. density, viscosity
Section 2.2 covers the physics fundamentals of Coriolis-based microfluidic devices, as

well as the integrated pressure sensor.
Sections 2.3 - 2.6 contain techniques and their theory which is used to process data

signal readings into a different representation form.
Section 2.11 contains quantitative evaluation metrics used to assess the accuracy of

estimations with its corresponding model.

2.1 Fluid dynamics

Since this work aims to estimate the physical properties of fluids, some basic fluid physics
is discussed. This section covers two principles of fluid dynamics, namely fluid density, and
how to estimate theoretical values with temperature dependence, as well as fluid viscosity,
and its theoretical value estimation.

2.1.1 Density

Density is one of the physical properties of a fluid which will be estimated using CMFS
sensor signals.

It is defined as the mass contained in a unit volume [12]. Mathematically speaking, it
is defined as

ρ =
m

V
(2.1)

where m is the mass, and V is the volume, with ρ being the density, usually given in
kg/m3. It is used as a fluid property which characterizes mass in a fluidic system. It
varies between fluids, as well as depending on the state of the fluid, such as temperature
and pressure. Liquids are nearly incompressible, and generally, pressure dependence is
neglected, while temperature dependence is more significant. In contrast to gasses, which
are more compressible, hence their density is more sensitive to pressures.

Temperature dependence for fluid density is called thermal expansion, where matter
changes its volume as a response to temperature. To describe this phenomenon, there is
a coefficient of thermal expansion, which relates the change of volume with respect to the
change in temperature. In the general case, it is defined as

αv =
1

V

(
∂V

∂T

)
p

(2.2)
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This assumes constant pressure, indicated by subscript p. To simplify the relation, we will
use [13]:

Biq = a(1− T/Tc)
c (2.3)

Where a and c are regression coefficients, unique for each chemical compound, T is the
temperature, and Tc is the critical temperature, such as a condition where liquid and vapour
can coexist. This Biq coefficient is denoted as the thermal expansion coefficient which
depends on temperature, with change per ◦C. Gasses depend much less on temperature,
however, they are much more compressible. Dependence on pressure is similarly defined -
as temperature changes, volume as a response to pressure changes, and is defined as:

βT = − 1

V

(
∂V

∂p

)
T

(2.4)

Where p is the pressure, the temperature is assumed to be constant. Similarly to temper-
ature, in this case, the compressibility of liquids is much smaller in comparison to gasses.
Calculation of compressibility factor of gasses is calculated with Z-Factor [13]. However,
due to the nature of the Coriolis device, i.e., the spring constant is dependent on pressure,
further characterization is out of scope.

To acquire theoretical density values for fluids, with the temperature dependence, they
can be acquired via an exponential equation [14].

ρL = AB−(1−T/Tc)n (2.5)

where A,B, Tc and n are liquid parameters, unique for each chemical compound. Using
these parameters, the density values are acquired over the temperature range T . The
drawback of this acquisition is the inability to include pressure dependence and similarly,
does not work for gasses. Instead of this regression formula, the theoretical values are
obtained from [15] with the same principle, which generates density values over a range of
temperature and pressure. These values are based on [16, 17, 18, 19, 20, 21, 22], and the
mentioned accuracy typically is < 1%, but often better than 0.1%

2.1.2 Viscosity

Viscosity is another fluid property which will be estimated using CMFS signals.
Dynamic viscosity is the resistance to deformation. Newton’s law of viscosity defines

the relationship between shear stress and velocity. It is given as

η =
τ

γ
(2.6)

Where τ is the shear stress in fluid given by F
A , where F is the force, and A is the area,

and γ is the shear rate ∂u
∂y , where u is the fluid velocity relative to y, the plate. The

units correspond to (mass/length)/time: kg
m·s , which is equivalent to pressure multiplied by

time (Pa·s), given in pascal-second. Similarly, the units can be given in Poise (P) from a
centimetre-gram-second system of units (GCS), where 1 Pa·s = 10 P, and centipoise, 10−3

Pa·s = 1 cP. Viscosity can be approximated using regression coefficients as a function of
temperature [13]. For gas, it is given as

ηG = A+BT + CT 2 (2.7)

Where ηG is the viscosity of the gas, given in 10−7 Pa.s, T is the temperature in Kelvin,
and A,B,C coefficients are chemical compound regression coefficients, unique per gas.
Similarly for viscosity of liquids as a function of temperature, is given as
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log10 ηL = A+
B

T
+ CT +DT 2 (2.8)

Where ηL is the viscosity of the liquid, given in mPa.s, and similarly as gasses, A,B,C
and D are chemical compound coefficients, with temperature T given in kelvin. Likewise,
the viscosity dependence on temperature and pressure for fluids may be generated using
the same tool [15] as mentioned in the previous section. This accuracy is mentioned to be
<5%, but often better than 2 %.

Kinematic viscosity is the ratio of dynamic viscosity and fluid density. Mathematically
it is defined as

ν =
η

ρ

Where η is dynamic viscosity, and ρ is density. It also can be related to the Hagen-
Poiseuille equation, derived for nonideal fluid dynamics. This equation works under the
assumption that it is a Newtonian incompressible fluid. This equation describes pressure
drop in relation to viscosity. It is given as follows:

∆P =
8ηLQ

πR4
(2.9)

Where ∆P is the pressure drop, η dynamic viscosity, L length of the tube, Q the volumetric
flow rate, and R the radius of the tube.

2.2 Coriolis

This section discusses the main device used in this research, with its fabrication steps
discussed by J.Groenesteijn et al. [23].

When the moving mass of the flow passes through the tube, it generates Coriolis force.
This is illustrated in Figure 2.1b. These forces are directly proportional to the mass flow.
J. Haneveld et. al [24] expressed this in an equation

F⃗c = −2 · Ly · (ω⃗am × Φ⃗m) (2.10)

Where Φm is the mass flow inside the tube, ωam is the angular velocity, and Ly is the
width of the tube. To measure these signals, two readout capacitors are implemented. The
drive axis (twist mode) is present when the device is excited at its resonance frequency
ωT , illustrated in Figure 2.1a. This frequency can be modelled as second order system [9],
which depends on the geometry characteristics of the tube:

ωT =

√
keff

meff
(2.11)

Where k is the effective modal spring constant and m is the effective modal mass. To
measure the displacement of the tube, it is measured with capacitive combs. The twist
capacitive signal was expressed by A.C de Oliveira et al.[25] as:

CT = ĈT sin(ωT t) (2.12)

where ĈT is the amplitude of the twist component. The sense axis (Swing mode) appears
as a result of mass flowing through the tube (see Figure 2.1b), which is caused by Coriolis
force. Consequently, this changes the signal

CS = ĈS cos(ωT t) (2.13)
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where ĈS is the amplitude of the swing component. The swing and twist modes can be
written as composite signals, where Ĉ =

√
ĈT + ĈS , which follows:

C1 = CS − CT = −Ĉ · sin(ωT t− φ) (2.14)

C2 = CS + CT = Ĉ · sin(ωT t+ φ) (2.15)

x

yzΩCT = ĈT sin(ωT t) 

(a) Illustration of twist component ex-
cited at a resonance frequency

FCoriolis

Φm

x

yzCS = ĈS cos(ωT t)

(b) Illustration of swing component in-
fluenced by Coriolis force from mass
flow ϕm

Figure 2.1: Working principle of Coriolis sensor [25] [26]

The phase shift of the capacitive signal output between C1 and C2 appears to be only
dependent on mass flow, and independent of pressure or density. This can be deduced for
small phase differences

∆φ = 2 · arctan

(
ĈS

ĈT

)
(2.16)

The phase difference between a driving signal, and one readout capacitive signal also are
able to measure mass flow, however, the sensitivity is around twice as less compared to the
phase differences of two capacitive readout signals [25]. Moreover, additional non-linear
behaviour might appear on the signals, introducing harmonics, which depend on pressure
and temperature [26]. This behaviour is illustrated in Figure 2.2b.

x

yz

(a) Illustration of phase difference in-
duced by twist and swing components

C1

C2

Suspended Coriolis
tube

Capacitive 
combs

Over actuation

(b) Illustration of ‘over actuation’ of
Coriolis suspended tube, producing
harmonics

Figure 2.2: Illustration of the twist and the swing component induced by the Coriolis force
due to a mass flow ϕm (a), with ‘over actuation’ the readout having secondary harmonic
output (b)

To actuate, and read out the signals, there are small metal tracks on the Coriolis tubes.
An additional track may also be used as a temperature-dependent track (resistor), which
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allows for to calculation of more accurate temperatures and a temperature drop while mass
flow cool-down the tube. This is shown in Figure 2.3.

Figure 2.3: Overview microscopy images of Coriolis Mass Flow Sensor, with zoomed in
part of metal tracks, and Coriolis electrodes.

Furthermore, the frequency is very dependent on density, and somewhat on pressure
[27]. With the swing mode, the resonance frequency of all modes depends on the density
of the fluid. Following Equation 2.11 it can be expanded in terms of the mass of the fluid
and pressure-dependent spring, resulting in

ωfluid =

√
k(P )

ρfl(P )Vch +mch
(2.17)

where the pressure-dependant spring constant is expressed as k(P ), ρfl as the fluid density,
Vch inner volume of the channel, and mch as the mass of the channel itself. Moreover, the
stiffness of the tube, as well as the fluid density both depend on temperature. Since gas
is compressible, ρfl(P ) depends on pressure for gasses, and for liquids, pressure is almost
negligible. Due to the relation of the spring constant and density, a higher resonance
frequency would imply a smaller density of the fluid.

In general, the Coriolis mass flow sensor achieves 4.7 ◦/(g/h) on nitrogen. The frequency
instability is less than 1mHz over an hour [25].
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2.2.1 Viscosity determination

The fluid composition can be determined by pressure, mass flow rate, density and viscosity.
As mentioned before, this sensor measures both mass flow and density. To find the viscosity,
it can be related to mass flow and pressure drop over the channel [9]. As mentioned in the
Viscosity section 2.1.2, this is given by the Hagen-Poiseuille equation. Due to the CMFS
measuring mass flow, instead of the volumetric flow (Q), the calculated viscosity would
correspond to kinematic viscosity. Dividing kinematic viscosity by density yields dynamic
viscosity. The direct equation for kinematic viscosity for CMFS is given by

πR4(P1 − P2)

8Lϕm
= ν (2.18)

where P1 is upstream, and P2 downstream pressures, ν is the kinematic viscosity, ϕm mass
flow rate, L is the channel length, and R is the effective radius. From the previous section,
we have that ∆φ ∝ ϕm and further it can be seen that ∆P

∆φ ∝ ν.

2.2.2 Pressure sensing

R2|3↑ R1↓ R4↓

P>0

P=0

Figure 2.4: Illustration of on-chip pressure sensor. Adapted from [28]

Furthermore, there are pressure sensors integrated into the device. These pressure sensors
are thin-film gold resistors deposited on top of the channel, connected in a Wheatstone
bridge. Due to pressure, the channel deforms, resulting in two resistors elongating with
increasing pressure, and the other two compressing (see Figure 2.4). This deformation
causes a change in the resistance, which is then measured by the Wheatstone Bridge. This
can be expressed by the equation:

Vout =

(
R2

R1 +R2
− R4

R3 +R4

)
Vin (2.19)

where R1 to R4 are resistors connected in a Wheatstone Bridge formation. To increase
the sensitivity, the resistors are placed so that R1 and R4 resistance decreases, and R2, R3

resistance increases due to pressure.
The pressure sensors achieve a sensitivity of 4 µV bar−1 for pressures ranging from 0

to 1 bar, and it can handle at least 10 bars [27].

2.3 Fourier Transform

This section is based on The Scientist and Engineer’s Guide to Digital Signal Processing
[29]. Fourier transforms are commonly used to convert signals, e.g. time-dependent sound
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signals, or spatial-dependent image signals (pixel values) to an output which describes the
frequencies present in that signal. The transform also holds the other way around, i.e. it
is invertible: F : Cn 7→ Cn, frequency components can be transformed back to its time
representation. The Fourier transform is complex-valued for each output frequency, and
it denotes the amplitude and phase at that particular frequency. Commonly, the Discrete
Fourier Transform is used as measurements in a finite sequence of equally-spaced samples.
It is defined as:

Xk =
N−1∑
n=1

xn · e−
i2π
N

kn (2.20)

where xn is a sample, and e
i2π
N

kn a complex sinusoid, at a frequency k
N . This comes from

the definition reix = r(cos(x)+ sin(x)i). The transform can be seen as an infinite series of
the sum of sine waves (or in the case of discrete transform, the sum of N − 1 sine waves,
where N are the available samples).

Nyquist sampling theorem

To accurately reproduce a signal, the sampling rate of the measurement must be at least
twice its frequency.

Spectral leakage

Leakage results in additional frequency components. This occurs due to the signal having
discontinuities as a consequence of finite windowing of the data.

Frequency bins

Bins are related to the sampling rate, which represents how ‘accurately’ it is able to explain
the measurement. Suppose the sampling rate is 10 kHz, and it is measured for one second.
Then, the frequency bins are 1 Hz, containing information for each frequency, this is a
fraction of the sampling rate, and available samples

binwidth =
samplingFreq

Samples

If there are fewer samples than the sampling frequency, the frequency resolution will be
worse, and other frequency bins will interfere with the result.

Harmonics

Fundamental harmonics usually have the highest magnitude, with the lowest frequency in
the frequency domain, and they correspond to the main signal (excluding 0 Hz component).
Harmonics are secondary outputs of the system, corresponding to non-linearities in the
readout, which may be intentionally produced. An example of signal with harmonics can
be seen in Figure 2.5. Fundamental harmonic is usually denoted as ω, and the second
and third harmonics, 2ω, 3ω correspondingly. This follows the property, that the second
harmonic is twice the frequency of the first harmonic.
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Figure 2.5: Illustration of frequency and time domain representation using example func-
tion 3 cos(ωt) + cos(2ωt) + 0.05 cos(3ωt)

2.3.1 Magnitude

The magnitude of individual harmonic (i.e. sine wave) may also be found via DFT. This
corresponds to taking the magnitude of the signal at every frequency, given as

Ak =
1

N

√
Re(Xk)2 + Im(Xk)2 (2.21)

Where Xk is the complex value from DFT, and N are the number of samples. This returns
a magnitude spectrum.

Fundamental component

To find the fundamental component, it consists of finding the frequency in which the
magnitude is highest. This, however, excludes k=0, as it is the offset component of the
signal.

kω = argmax
k

Ak

Where kω is the frequency bin at the fundamental frequency.

2.3.2 Phase

Since the output from Fourier contains the magnitude and phase information of each
frequency, the phase can be computed for each frequency, resulting in a phase spectrum.

φk = arctan

(
Im(Xk)

Re(Xk)

)
(2.22)

Where φk returns phase for each frequency component.

Phase difference

If two signals have the same frequency, the phase difference can be found by computing by
simply taking the absolute difference between phase spectrums.

∆φ = |φ1k − φ2k |

Similarly, to find the fundamental signal phase shift, it is in the kω frequency bin.
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2.4 Correlation and Cross-Correlation

Given that signals are sinusoidal, the cross-correlation method allows finding the time-lag τ
between the two signals directly, which then can be converted into the angle, full expression
is given as:

θ = arccos

 ∑N−1
n=0 x[n]y[n]√∑N−1

n=0 (x[n])
2
∑N−1

n=0 (y[n])
2

 (2.23)

Where x and y are two distinct sinusoidal signals, and the output θ returns the phase
difference ∆φ between the two sinusoidal signals. This avoids computing DFT to find
phase differences and does not require as many samples. In the most simple terms, this
calculates the angle between two vectors, which is given as

cos θ =
a · b

||a|| ||b||
(2.24)

Where ||.|| is the ℓ2 norm. However, this approach does not work accurately if higher
harmonics are present. Alternatively, the equation inside the bracket can be seen as a
Pearson correlation:

ρX,Y =
cov(X,Y )

σXσY
(2.25)

Where cov(X,Y) is the covariance between two signals, and σX and σY are their standard
deviations. The correlation metric returns values between −1 < ρ < 1. The expanded
form :

ρX,Y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.26)

The numerator of the ρ metric shows what is the joint variability between two data columns,
where x̄ and ȳ are the means of the respective random variables.

Interpretation of this ρ coefficient was catalogued by Rodgers and Nicewander [30] with
thirteen ways to interpret this function. Some of them are the Standardized slope of the
regression line, the ratio of two means, the geometric mean of the two regression slopes,
and so on. The metric gives some intuition on how much the data depends on each other
(only linearly).

2.5 Kernel method

This section discusses the kernel methods used to process data. These methods are useful in
kernel-based algorithms, as they allow linear algorithms to become nonlinear by implicitly
mapping data to feature space.

2.5.1 Kernel trick

Kernel methods, also known as kernel tricks allow implicit mapping of data into high-
dimensional feature space. It works by mapping input space X to the feature space H, via
a nonlinear mapping κ(·) : X 7→ H. This approach translates the nonlinearity of the data
to a linear feature space, in which linear methods for regression and classification can be
applied. To find the right mapping κ(·) is not so easy, and general nonlinear mappings
are proposed for their specific purposes, such as wavelet kernel for time series prediction
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[31], sigmoid kernel for nonlinear classification [32], and many others [33, 34]. These
methods were first used to solve binary classification problems via the so-called kernel
trick applied to Support Vector Machines (SVM) [35]. These kernel tricks were applied
to other algorithms, e.g. kernelized ridge regression [36], where the input to an algorithm
is a kernel (preprocessed data). Due to its universality, the Radial Basis Function (RBF)
kernel is discussed.

2.5.2 Radial Basis Function

This kernel has numerous applications for regression, classification and neural networks
due to its universality. It is defined as:

κ(xi, xj) = exp

(
−||xi − xj ||2

2σ2

)
(2.27)

where X ∈ Rn×m, and ||xi − xj || is the squared Euclidean distance between features. It
may also be seen as a similarity function [37]. This method transforms the input space
into feature space by computing the inner products, which by the definition of exponential,
can be expanded in terms of basis functions. Intuitively, the kernel can be rewritten as

κ(xi, xj) = e−
(xi−xj)

T (xi−xj)

2σ2

= e−
(xTi xi−2xTi xj+xTj xj)

2σ2

= e−
xTi xi+xTj xj

2σ2 ex
T
i xj

(2.28)

which by definition, the Taylor series expansion is used for ex

ex =
∞∑
n=0

xn

n!
(2.29)

The transformation output can be represented in a matrix

κ(xi, xj) =


κ(x1, x1) κ(x1, x2) . . . κ(x1, xn)
κ(x2, x1) κ(x2, x2) ... κ(x2, xn)

...
...

. . .
...

κ(xn, x1) κ(xn, x2) . . . κ(xn, xn)

 (2.30)

where xi ∈ R1×m represents input space with m features (generally n > m) and the
transformation results in a feature space, H ∈ Rn×n.
For the Gaussian Process Regressor, a slightly different RBF kernel is used:

κ(xi, xj) = σ2 exp

(
−||xi − xj ||2

2l2

)
(2.31)

where σ2 is the amplitude of the function, and l is the length-scale, in which increasing
the hyperparameter, points further away are more correlated.

2.6 Regression

This section covers regression algorithms used in this research.
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2.6.1 Linear regression

Regression techniques are used to predict certain targets, (dependent variables), based on
features (independent variables). Linear models of degree one, are in the form

f(x) = w0 + w1x1 + ...+ wpxp + ϵ (2.32)

Where w0 is the intercept, w1 to wp are the weights corresponding to features x1 to xp,
with some noise ϵ. The benefit of linear regression is that weights are easily interpretable,
and give direct relation to which features impact the prediction the most.

Optimization of weights w for ordinary linear regression can be done directly via the
least squares method called the Ordinary Least Squares (OLS):

min
w

||Xw − y||2 (2.33)

The double bars represent the ℓ2 norm, where ||x||2 =
∑n

i

√
x2i . This is a direct opti-

mization in terms of Mean-Squared-Error (MSE), which is simply defined as the squared
residuals E[(Y − Ŷ )2], where Ŷ are the estimated values. Minimizing w corresponds to
taking the derivative of f(x) = (Xw − y)T (Xw − y) w.r.t w, and solving for w, yields
w = (XTX)−1XT y. There are several variations of linear regression using least squares.
Such methods are called Weighted Least Squares (WLS) and Generalized Least Squares
(GLS). Determining which method to use depends on the data, whether it is homoscedas-
tic, i.e. variance of the residuals is constant, or heteroscedastic, where the variance of the
residuals varies. When it can be reasonably assumed that data is homoscedastic, OLS is
the Best Linear Unbiased Estimator (BLUE).

To interpret the predictions, P-values can be calculated for each independent variable.
The P-value is a quantitative measure of how likely it occurred due to chance and generally
determines the feature’s statistical significance. The easiest way to calculate the P-value
is via t-statistic. It is given as

tstatistic =
ŵ − w

Sŵ
(2.34)

Where ŵ are the estimated coefficients, and w is the hypothesis being tested (usually
w = 0). The denominator is defined as

Sŵ =

√
1

n−p

∑n
i=1(yi − ŷi)2√∑n

i=1(xi − x̄)2
(2.35)

Where n− p signifies p degrees of freedom, yi − ŷi are the residuals, and the denominator
is the total sum of squares. The t-value is a statistical method to calculate P-values given
a known number of samples [38].

2.6.2 Support Vector Regression

Similar to linear regression, support vector regression fits data linearly, however, it fits
given an error margin ϵ. Instead of a single linear fit, support vectors are fitted for the
loss-sensitive region, illustrated in Figure 2.6 given by f(x) ± ϵ hence the regressor loss
is only affected if the estimate is not within the ϵ margin. Linearly, the goal is to find a
function which models the relationship between input and output, given as f(x) = wTx+b,
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where x is the input data, and w, the weights. Given constraints of loss sensitive region,
the optimization is formally given as:

min
w,b

1

2
||w||2 + C

m∑
i=1

ℓϵ(f(xi)− yi) (2.36)

where C is the regularization constant, and ℓϵ is the ϵ-insensitive loss function. The ϵ
region can be defined as

ℓϵ(z) =

{
0 if |z| ≤ ϵ

|z| − ϵ otherwise
(2.37)

Since it is possible that no function can satisfy the constraint of having all residu-
als within the ϵ-error margin, slack variables are introduced for each point. With slack
variables ξi and ξ̂i (potential support vectors), we have

min
w,b,ξi,ξj

1

2
||w||2 + C

m∑
i=1

(ξi + ξ̂i) (2.38)

s.t. f(xi)− yi ≤ ϵ+ ξi, ξi ≥ 0,

yi − f(xi) ≤ ϵ+ ξ̂i, ξ̂i ≥ 0, i = 1, 2 . . . ,m.

(2.39)

which is known as the primal formula. To solve this optimization problem, the Lagrangian
dual formulation is applied. This means constructing a function by introducing nonnegative
multipliers for each observation. Solving the optimization problem yields

f(x) =

m∑
i=1

(α̂i − αi)x
T
i x+ b (2.40)

where α̂i and αi are Lagrange multipliers satisfying Karush–Kuhn–Tucker (KKT) condi-
tions, which are given as

αi(f(xi)− yi − ϵ− ξi) = 0,

α̂i(yi − f(xi)− ϵ− ξ̂i) = 0,

αiα̂i = 0, ξξ̂i = 0,

(C − αi)ξi = 0, (C − α̂i)ξ̂i = 0

(2.41)
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f(x) = wTx+b

f(x) - ε

f(x) + ε
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Figure 2.6: Illustration of Support Vector Regression

Kernelized SVR

To fit non-linear data, input space can be projected into higher dimensional feature space,
and similarly, weights applied for that space. From linear formulation as in Equation 2.40
by substituting the kernel function in that equation, it results in

f(x) =
m∑
i=1

(âi − ai)κ(x, xi) + b (2.42)

This allows for the same optimization to kernelize the algorithm, allowing for non-linear
regression. More in-depth theory for Support Vector regression can be found in [39, 40, 41].

2.6.3 Gaussian Process Regressor

Another regression method vastly different from regular regression methods is a Gaussian
Process Regressor (GPR) [42]. It is non-parametric, based on Bayesian learning, and
is considered a non-linear model. This method is fully characterized by its mean and
covariance functions and can be written as

f(x) ∼ GP(m(x), κ(x, x′)) (2.43)

where m(x) is the mean value function, and κ(x, x′) is the covariance function (kernel).
The covariance implies a distribution over functions, hence, theoretically, it is fitted over
an infinite number of functions. This has the advantage of producing confidence bounds on
the prediction. The derivation of finding the regression function is based on Multivariate
Gaussian Distribution, where conditional distribution is based on training data, and new
points based on approximated function are given as

P (f∗|f,X,X∗)

This approximated function (mean of functions) given by conditional distribution is rep-
resented as

f̄∗(x) = κ(X∗, X)(κ(X,X) + σ2
nI)

−1y (2.44)

where X∗ is a new input (generally test data) used in κ(X∗, X) and is projected into the
feature space, relative to training data. Similarly, κ(X,X) is the training data projection.

18



The σ2
nI represents an additional predictive variance component on the diagonal covariance

matrix, where I is the identity matrix. The κ matrix is explained in the previous Section
2.5.2. Likewise, the covariance function, defining the spread of functions is given as

cov(f∗) = κ(X∗, X∗)− κ(X∗, X)(κ(X,X) + σ2
nI)

−1κ(X,X∗) (2.45)

The most basic aspect of estimating the new predictions is matrix operations using non-
linear kernels, fundamentally modelling predictive distribution. Further readings of the
theory, can be found in [42, 43, 44].

2.7 Classification

Several classification methods are discussed in this section.

2.7.1 Naive Bayes

It is a conditional probability model, which assigns probabilities for each outcome given
data. The model can be read as the probability of a class given data x

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(2.46)

where p(Ck) is the prior probability for each class, p(x) is the evidence and p(x|Ck) class-
conditional probability. The ‘Naive’ part comes in the assumption that features are inde-
pendent, which allows to use of conditional independence property.

P (Ck|x1, . . . , xn) ∝ P (Ck)
n∏

i=1

P (xi|Ck) (2.47)

With the assumption that data is Gaussian distributed, a simplified overview of the Gaus-
sian Naive Bayes can be seen as determining the mean µk and standard deviation σk of X
for an individual class. For a new test point X∗, the likelihood of being in class Ck can be
evaluated using the Gaussian assumption

p(x = x∗|Ck) =
1√
2πσ2

k

e
− (x∗−µk)2

2σ2
k (2.48)

this then can be used to compute the probability of each class given data as described in
equation 2.46. Further reading for more formal definitions and empirical study of Naive
Bayes can be found in [45].

2.7.2 Gaussian Process Classifier

Similarly to the regression case, the Gaussian process classification is a probabilistic method
which assumes that all the data points are generated by a latent function with some Gaus-
sian noise [42]. However, due to the discrete nature of labels for classification, likelihood
functions are intractable. Laplace approximation is used as a standard to approximate
the non-Gaussian joint posterior analytically. The latent function assumes the GP prior
directly on f(x) as described in equation 2.43. This latent function is ‘squashed’ through a
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function, which maps the values between 0 and 1, and it is given as a sigmoid function to
produce a probabilistic prediction

σ(x) =
1

1 + e−x
(2.49)

There are two main steps to produce inferences for a new test point. First is computing
the posterior distribution of the latent function outputs given as

p(f∗|X, y, x∗) =

∫
p(f∗|X,x∗, f)p(f |X, y)df (2.50)

and the second step is computing probabilistic distribution given as

π̄∗ = p(y∗ = +1|X, y, x∗) =

∫
σ(f∗)p(f∗|X, y, x∗)df∗ (2.51)

However, as mentioned previously, this equation is intractable due to discrete labels (y ∈
{0, 1}). To approximate the Gaussian, Laplace’s method is used to the posterior of
p(f |X, y), with the second order Taylor expansion, it is approximated as

q(f |X, y) = N (f |f̂ , A−1) ∝ exp(−1

2
(f − f̂)TA(f − f̂)) (2.52)

where A = −∇∇ log p(f |X, y)f=f̂ and f̂ = argmaxf p(f |X, y). These parameters can be
found using Newton’s method, and once they are calculated, the Laplace-Gaussian approx-
imation is

q(f |X, y) = N (f̂ , (K−1 +W )−1) (2.53)

where W = ∇∇ log p(y|f), and K is the covariance matrix based on RBF kernel. To apply
this method for a multi-class classification, where C>2, one versus rest method can be
used. This corresponds to converting the problem to binary classification such as [Class 1]
vs [Class 2, 3, 4, etc.]. For further reading and algorithm definitions, this is described in
[42].

2.8 Deep learning fundamentals

Deep learning generally refers to a neural network which is more complex and ‘deeper’
than a simple neural network. This complexity is mainly denoted by depth, and its repre-
sentation learning capability, i.e., automatic feature extraction, often requiring much more
data to train. More formal definitions for deep learning and convolutional neural networks
can be found in [46, 47]. A simple illustration of an artificial neural network can be seen
in Figure 2.7. Where the inputs to the network are denoted as xi, and for all inputs, it
computes a sum of weighted inputs, i.e. for a single red circle, it performs

b+

N∑
i=1

wixi

The output of these operations is then used in activation functions to introduce non-
linearities.
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Figure 2.7: Illustration of a simple neural network

With deep learning, the output of activation functions is then further used as inputs in
the network, computing again the sum of weighted inputs and again applying activations
functions. Each hidden layer has its own weights which need to be optimized. The ‘deeper’
network is illustrated in Figure 2.8.
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Figure 2.8: Illustration of deep learning network with hidden layers

Common activation functions used in these networks are Rectified Linear Units (ReLU),
and it is given by a very simple equation

ReLU =

{
x x ≥ 0

0 0 < x
(2.54)

where x is the output of the sum of weighted inputs, which directly makes the output 0 if
the values are negative. Likewise, Leaky ReLU may be used, which instead of returning
a value of 0 when it is negative, is scaled down by a value, e.g. 0.01x. These activation
functions with a combination of many hidden layers, are able to model complex systems.

The optimization happens through backpropagation, in which the network is optimized
with respect to a chosen loss function (similarly known as a cost function). An illustration
of backpropagation is shown in Figure 2.9.
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Figure 2.9: Illustration of backpropagation

Where L is a loss function chosen for a specific problem, i.e. regression or classification.
For a regression problem, a simple Mean-Squared-Error could be used as a loss function,
i.e.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

where yi is the ground truth label, and ŷi is the prediction from the network. For classi-
fication problems, a widely used loss is cross-entropy, also known as log loss. It is often
used with a combination of a softmax activation function, where the values of the sum of
weighted input at the output layer are ‘squished’ between values 0 and 1, denoting the
most likely ‘class’ the input belongs to. The softmax is defined as:

σ(z)i =
ezi∑K
j=1 e

zj
(2.55)

Where zi is the output of the sum of weighted inputs for the i-th class. The loss function
cross-entropy is defined as

Cost(hθ(x), y) =

{
−log(hθ(x)) y = 1

−log(1− hθ(x)) y = 0
(2.56)

Where hθ(x) is the predicted probability, e.g. the output of the softmax function and y
denotes whether it was correctly classified. This function output value will decrease, the
more accurate the probability is with predictions.

Commonly, the architecture of a network signifies how many hidden layers are in the
network, and the width of individual hidden layers. Many architectures are proposed for
their tasks, e.g. for image classification, object detection, autoencoders (mapping input to
a lower dimension representation), etc.

2.8.1 Convolution

Convolutional Neural Networks (CNN) are a type of neural network which specializes in
processing data with locality. They are very popular in image classification and detection
as they mimic the visual cortex. They can similarly be applied to 1D data, with time
interval representations.
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Figure 2.10: Illustration of a convolution operation on sequential data

The Kernel, or filter (if it consists of multiple kernels) moves through the image, or
sequential data with a stride which can be specified as a hyperparameter, and performs the
dot product of the feature values and the kernel, producing a convoluted feature map. To
preserve the dimensions of the convoluted output, padding is used. For a (m x m) feature
values, and a kernel of (n x n), the dimensions of the resulting output, would be (m - n +
1) x (m - n + 1), when padding is used, it adds zeros to the border of the input, and it
becomes (m + 2p) x (m + 2p), with p being the number of layers of zeros added. Since
convolutions are linear operations, after every convolution, an activation function is used
to introduce non-linearities to the predictions For example, a single convolution performed
on sequential data as shown in Figure 2.10

K11 · 0 +K12 · x11 +K13 · x12 +K14 · x13 +K21 · 0 +K22 · x21 +K23 · x22 +K24 · x23

which produces a single value, for that particular window of features, and with a chosen
stride, it moves through the features, convolving similarly. The kernel has Kij values,
which are adjusted with back-propagation techniques, allowing for the network to adjust
its feature extraction depending on the context. Hence, fundamentally it works as a neu-
ral network, with the exception that produced feature maps have local impact from the
sequential data, hence does not use all inputs directly as a sum of weighted inputs.

Regularization

The most basic regularization technique in neural networks is dropout layers. It nullifies the
contribution of a random feature value with a probability p, set in the architecture. This
helps the networks generalize better, and avoid overfitting. Furthermore, the more popular
choice of regularization is batch normalization. This technique rescales and recenters the
output of the convolution layer, before the activation function. The normalization is given
as

x̂(k) =
x(k) − E[x(k)]√

V ar[xk]

where x̂(k) are features with k dimensions. Moreover, introducing scaling and shifting is
given by

y(k) = γ(k)x̂(k) + β(k)

where γ and β are pair of parameters. This has nice properties, such as recovering original
values. Moreover, this regularization technique speeds up the algorithm learning process
and makes convergence much faster [48].
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2.8.2 Gated Recurrent Unit

Another type of a very specialized neural network introduces an internal state inside the
network. This network originated from Recurrent Neural Networks which were meant to
handle sequential data, however, due to the RNN having ‘short-term memory’, the Long
Short-Term Memory (LSTM) network was developed, which excelled in capturing long-
term dependencies. This similarly had a drawback of being computationally intensive,
thus Gated Recurrent Unit (GRU) was developed. It achieves comparable performance to
LSTM while being faster to train. The main advantage of recurrent neural networks is the
capability to process sequential data (e.g. time series) and model its temporal dynamics.
An illustration of a ‘building block’ of a GRU is shown in Figure 2.11. The σ shown in the
figure represents a sigmoid function, which forces the values to lie between 0 and 1. The
function is defined as

σ(x) =
1

1 + e−x

this function in the reset gate (Rt) controls the importance (how much to remember) of the
previous state, while the update gate (Zt) controls how much of the old state to remember.
They are given as

Rt = σ(XtWxr +Ht−1Whr + br)

Zt = σ(XtWxz +Ht−1Whz + bz)

(2.57)

where W are weights, with subscripts defining weights for feature inputs and hidden layers.
For an input Xt ∈ Rn×d the feature weights are Wxr, Wxz ∈ Rd×h with d representing
the number of features for a single input, and h number of hidden units. Weights for
the hidden units are Whr, Whz ∈ Rh×h with the bias parameters consequently being br,
bz ∈ R1×h. The output dimensions of the reset and update gates are Rt, Zt ∈ Rn×h

To compute a new candidate hidden state, the reset gate is used in the tanh function,
given as

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh) (2.58)

where the symbol ⊙ is a Hadamard product, defined as an element-wise product. Similarly
as previously, Wxh ∈ Rd×h and Whh ∈ Rh×h are additional weights parameters for the
candidate hidden state. To produce the final hidden state, with the effects of the update
gate, it is given as

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t (2.59)
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Figure 2.11: Illustration of a Gated Recurrent Unit. Adapted from [46]

2.9 Model comparisons

The chosen models for this thesis are based on simplicity, i.e. linear regression and Naive
Bayes, as well as more complicated kernel methods (SVR, GP) which allow to introduction
of non-linearities by dot products between features. Moreover, a deep learning method
based on DeepSense architecture is used to test its capabilities in processing Coriolis data.
Some of the advantages of the methods are summarised in Table 2.1.

Method Advantage Model

Linear regression Simplest case of a linear combination of features. Fast and
easy to implement.

Section 2.6

Support Vector
Regression

Has a lot of flexibility in terms of kernels, and hyperparameters
to tune the model. Practically can act as a linear, ridge and
lasso regression due to its regularization parameter. Can be
used for classification (SVM variant).

Section 2.6.2

Gaussian Process Models predictive distribution of data, as well as produces con-
fidence intervals in the estimation. Can be used for regression
and classification.

Section
2.6.3, 2.7.2

Naive Bayes One of the simplest classification methods, calculating the
probability of a class given data with independence assump-
tion between predictors.

Section 2.7.1

Deep Learning Automatic feature extraction, resulting in the ability to handle
large and complex data

Section 2.8

Table 2.1: Model comparisons

2.10 Shapley Additive Explanations

This section is based on definitions from [49]. The method is based on cooperative game
theory, which determines feature impact on the prediction. It is a handy tool to interpret
non-linear machine learning models, based on their global feature interactions. SHAP
is based on Shapley values, where the individual feature is considered as a ‘player’ in a
game, and it tells how to fairly distribute the ‘payout’ among the features. Shapley value
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calculation for a feature is based on marginal contribution across all possible coalitions,
where the coalitions are between various feature input variables (‘players’). In the most
basic case, calculating the individual feature effect of a linear model

f̂(x) = w0 + w1x1 + ...+ wpxp (2.60)

the contribution for the j-th feature with j = {1, . . . , p} is given as ϕj

ϕj(f̂) = wjxj − E[wjXj ] = wjxj − wjE[Xj ] (2.61)

resulting in a feature effect wjxj subtracted from the average effect wjE[Xj ]. Generally,
this definition is written as

ϕj(f) =
∑

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!

p!
(f(S ∪ {j})− f(S)) (2.62)

where f(S) marginalizes over features that are not in the set S

f(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − Ex(f̂(X)) (2.63)

This method works for both regression and classification. Moreover, if non-linear ker-
nels are used (Section 2.5), the KernelSHAP method is applied to convert back to the
original feature space, and compute the feature effects in the same process. This method
has been used with Gaussian Processes [50]. This thesis’s most used model explainability
is via a SHAP summary plot. This plot combines feature importance with feature effects,
where the feature importance is calculated as

Ij =
1

n

n∑
i=1

|ϕ(i)
j | (2.64)

Example

As a basic example, assume we want to estimate a person’s weight given age, height
and average walking speed. Applying a regression model on these features, we can have
a general interaction overview by using SHAP. As illustrated in Figure 2.12, in general,
taller people would be heavier, hence the model output impact showcases that it is the most
significant feature. Similarly, average walking speed has a very small influence, however, it
also indicates that heavier people tend to walk slower (positive impact on the model), while
faster walking indicates a lighter person. Each dot represents a person with its respective
measurement impact on the model.

Tall people

Fast walking

Older

Figure 2.12: SHAP example
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2.11 Accuracy

This section defines accuracy in terms of mass flow, i.e. how accurate is the mass-flow
estimate. The final thesis will include and define accuracy in terms of classification, i.e.
fluid-type prediction.

2.11.1 R-squared

A simple statistical metric which gives general intuition of how well the method performs.
It measures the proportion of explained variance [51], and the closer the value is to 1, the
better the model performance. It is defined as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.65)

where yi is the ‘true’ value, and ŷi is the model prediction of yi, which the numerator can
simply be seen as the sum of squared residuals. In the denominator, we have ȳ representing
the average observation of y, and its squared difference represents the proportional variance
of the data. Generally, this returns values between 0 and 1, but because the model can
perform arbitrarily worse, negative values can appear, i.e. prediction is worse than ȳ.

2.11.2 Mass flow

To align the results with the standards in the industry, mass flow accuracy uses an adapted
version of Trumpet curve according to IEC 60601-2-24 standard [52]. Instead of the x-axis
showing the averaging time window, it shows the flow rates measured by the flow reference
and the y-axis shows the error between what is set by the flow controller, and the measured
flow rate [53]. Two types of errors - Reading (RD) and Full Scale (FS) are mainly used. RD
is expressed as the error between the actual value, and the reading in percentage, while FS
is expressed relative to the maximum scale in percentage. This is generally used to show
the maximum error an instrument can have, i.e. MaxError = x%RD + y%FS, as shown
in Figure 2.13.
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Figure 2.13: Accuracy definition of the measurements. Adapted from [54]
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2.11.3 Temperature & Density

To understand the estimation error on temperature, we will use Mean Absolute Error
(MAE), which is the absolute difference between the prediction, and the value given as a
truth. This is given as

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.66)

where ŷi is the estimated value at i-th sample, and yi is the ‘true’ value. This results in
interpreting the average error in ◦C. Similarly, density values may also be expressed with
MAE, to have the errors in kg/m3

2.11.4 Pressure drop & Viscosity

For the estimation performed on pressure drop, we will use Mean Absolute Percentage
Error (MAPE). This value can be seen as the average relative estimation error to the
‘true’ value and is given as

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.67)

Similarly, we will use MAPE as a way to express the errors of estimations of viscosity.
The values are too small to have to quick and accurate compared to using MSE or MAE.

2.11.5 Classification

There are several common metrics which are used to evaluate the performance of classifi-
cation models. The first metric is the most known one, which simply measures the total
accurate predictions.

Accuracy =
tp + tn
total

(2.68)

where tp are the true positives, and tn are the true negatives. The drawback of just using
accuracy, it does not take into account the balance of samples. Other metrics such as Recall
and precision complement the accuracy score, as they take into account class predictions.
Recall is defined as:

Recall =
tp

tp + fn
(2.69)

which measures what fraction we correctly predict as positive of all positive records, and
it might be also called the sensitivity. Similarly, precision is defined as

Precision =
tp

tp + fp
(2.70)

which measures how many positives were correctly predicted. The small differences in the
denominator emphasize whether to capture false positives or false negatives of the model.

One of the most useful metrics which showcase the overall performance is a Confusion
matrix, which originates from a system confusing two classes. For binary cases, the di-
agonals showcase the percentage of correctly classified positive or negative classes, which
works the same for multiple-class classification. It also shows for each class the proportion
of correctly predicted classes.
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Chapter 3

Related work

This chapter presents and summarizes related literature to this project. The main focus of
reviewing similar literature was to survey machine learning approaches on similar types of
data, as well as what has been done previously on Coriolis-based sensors to improve fluid
mass flow estimations. Likewise, machine learning applications on density and viscosity
estimations were surveyed for micro/nanofluids. To find the prior work, Google Scholar,
Arxiv, Connected Papers and Semantic Scholar were used. The main keywords used for
the search were: coriolis, machine learning, deep learning, microfluidics, viscosity, density,
liquid characteristics, signal processing

As of 2023, most of the available research which implements a microfluidic measurement
system to analyse fluid via a machine learning approach applies vision-based analysis for
liquid droplets. These approaches focus on enhancing the performance of point-of-care
tests. These tests are usually medical diagnostic tools which do not necessarily need to be
in a medical environment [55]. However, there are several articles which focus on improving
CMFS by applying mathematical methods to derive phase differences of Coriolis-based
sensors. The importance of accurately extracting the phase differences is highlighted in
[56]. This is highly important, as under the Coriolis effect yielded by fluid flow, the
signal phase difference is proportional to the mass flow. This phase difference is a true
measure of the mass flow, independent of fluid, however, due to non-ideal sensor effects,
and environmental and measurement instrument noise, may introduce errors. One such
method known as the Hilbert transform on Coriolis signals has been presented by Lin et
al. [57], where the signals were enhanced by using a filter to eliminate white noise, and
employing the Hilbert transform to find the phase difference. Similarly, Hou et al. [58]
used Lagrangian interpolation to find the zero crossing and calculate the time difference
between two signals to find the phase difference. Likewise, Tu et al. [59] presented an
improved version of the standard method using DFT to estimate the phase difference, by
adjusting the recursive relation of the Discrete Fourier Transform (DFT) and improving
the convergence rate.

Besides purely mathematical methods, an article by Zhang et al. [60] focuses on im-
proving the mass flow accuracy of CMFS by processing vibration signals via a machine
learning approach, which may reduce the dependence on fluid states, and increase the
performance. High flow Coriolis flow meter was used, in which the sample flow range was
within 5-25 kg/min, and the Coriolis vibration frequency of around 300 Hz, sampled at
6000 Hz. The resulting dataset had 8448 samples, with a ratio of 10:1:1 for training, vali-
dation and testing set. The temperatures and pressures are not mentioned in the article.
They applied Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN) and
Artificial Neural Network (ANN) on Coriolis flow meters as a method to process the vibra-
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tion signals and determine fluid mass flow. The input data was a standardized sequence
of vibration (sinusoidal) signals. Similarly, Batch Normalization was applied to add regu-
larization. The models were evaluated based on Mean Squared Error (MSE) criteria, and
the results have shown that LSTM (single layer) performed best, with MSE of 0.0546 on
the test set, with close results of RNN, with MSE of 0.0873, and ANN performed worst,
with MSE of 6.8338. The best-performing models are far superior to a calibrated meter
used as a reference, which had an MSE of 0.12.

Similarly, ML algorithms have been used previously to estimate fluid physical proper-
ties using physical quantities and conceptual numbers used to describe fluids. An article by
Adun et al. [61] applied Support Vector Regression (SVR), Gaussian Process Regression
(GPR), ANN and Boosted Tree Regression (BTR) to estimate the thermophysical prop-
erties of nanofluids. Their focus was to predict the viscosity of several hybrid nanofluids
using experimental data acquired from the literature. The dataset contained 700 data
points, with physical parameters, and data split into a common ratio for training (70%)
and testing (30%). As an input to the algorithms, the features were Temperature (T),
volume fraction (VF), density (NPD), nanoparticle size (NPS), and mixture ratio (MR).
The reported performance shows very accurate results, with the best-performing method
as GPR, reaching an R-squared of 0.999998 and Mean Absolute Error (MAE) of 0.008,
while the worst-performing method was BTR, reaching an R-squared of 0.86 and MAE of
0.06. Furthermore, an article by Rezaei et al. [62] estimated the viscosity of gas condensate
by an ensemble approach. This approach combines multiple algorithms to give improved
results of estimation. The algorithms used were SVR, K-nearest neighbours (KNN), Ra-
dial Basis Function (RBF) neural network, and ANN optimized by Bayesian Regularization
and Levenberg-Marquardt. The dataset contained 1370 data points, which were comprised
of physical parameters, such as temperature, pressure, and gas-condensate composition,
given in mole % of N2, CO2, C1 to C12 and the molecular weight of C12+. Data was
split into 80/20 for training and testing respectively. Authors reported the performance of
these models using Average Absolute Percent Relative Error (AAPRE) which is analogous
to Mean Absolute Percent Error (MAPE), and the best-performing model was SVR, with
an error of 4.95%, while the ensemble method with two models: SVR and K-NN, had a
minor performance boost, and reduced the error to 4.83%.

For the signal processing approach, one of the state-of-the-art methods has been pro-
posed by Yao et al. By applying CNN and RNN on time series data to do regression and
classification in a unified way [63]. They focused on accelerometer data, combining multiple
sensors to e.g. estimate car position, or recognize human activity. The proposed method
DeepSense uses frequency representation of the features. The first layers of CNN, approxi-
mate sensing quantity within a time interval, and the following layers of RNN approximate
across time intervals. According to the authors, their architecture might be the first one
that possesses the capability for modelling temporal relationships and fusing multi-modal
sensor inputs. The evaluation is based on data from phones consisting of 17,500 miles for
driving data, such as accelerometer, gyroscope, and magnetometer, and their frequency
responses are used in the model. This resulted in a mean absolute error of 40.43 ± 5.24
meters. Similarly, the same architecture applied to human activity recognition, e.g. sitting,
standing, walking, climbing up, and biking, is able to reach an accuracy of 94.2 %. The
architecture more in-depth will be discussed in methodology Chapter 4.6.

The most relevant literature was found when searching specifically on periodic time
series data processing. An applicable to this project article seems to be DeepSense, in
which the proposed method deals with combining multiple sensor data in a unified way to
do regression and classification, which fits the theme of this project. Furthermore, some
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attempts have been made to process Coriolis flowmeter devices’ signals, to estimate mass
flow. To the best of our knowledge, there is only a single available article published that
processes these signals only to estimate the mass flow via a deep learning approach.

31



Chapter 4

Methodology

The methodology is split into four parts: (i) an overview of the measurement setup and
how were the measurements performed, (ii) feature extraction and analysis, (iii) acquiring
theoretical values for labels - density, viscosity, as well as an approximation for temperature
and pressure drop, (iv) classical machine learning approach, and deep learning approach.

4.1 Measurement setup

The measurement setup used for experiments was custom-built at the University of Twente
[64]. A visual schematic of the setup can be seen in Figure 4.1. The Coriolis device -
Device-Under-Test (DUT) along with its electronics is stationed in an incubator, which
allows having stable temperature, as well as vary it. The fluid used for experiments is in
a reservoir, in which then nitrogen is applied to pressurise the system, while the degasser
removes the nitrogen from the liquid. The controllers for setting the experiment parameters
also measure mass flow, pressure and temperature which act as the target for the DUT.
An actual overview image of the setup can be seen in the appendix, Figure A.2.
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Figure 4.1: Illustration of measurement setup [64]

The measuring principle of the DUT is shown in Appendix A. Theory with respect
to amplifiers, and filters are out of scope for this project. The Data Acquisition (DAQ)
process is used to sample the signals and the Analog-to-digital converter (ADC) of the
DAQ converts analog signals into numerical values which allow for further analysis.
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4.1.1 Properties

The flow controller is a mini CORI-FLOW ML120V21 manufactured by Bronkhorst. This
controller is of the same principle as the discussed Coriolis, with a different readout method,
and instead of a micromachined microchannel, it is a conventionally machined metal tube.
It has an accuracy to measure mass flow of ±0.2% for liquids, ± 0.5% for gas (in terms
of RD), and zero flow stability of < ±10mg/h. The incubator, which is used to control
the temperature is MEMMERT IPP55, with a temperature accuracy of ±0.1◦C, and the
additional temperature sensor (PT100) measuring temperature locally at chip-level, with
an accuracy of ±0.1◦C. The pressure sensor, is EL-PRESS P-602CV, with an accuracy of
± 0.5 %, and lastly, the DAQ is NI PCI-6143, with 16 bits. In practical situations due
to noise, effective bits may be closer to 14. These accuracies directly correspond to how
accurate are the ground truth values. The accuracy of these instruments is summarised in
Table 4.1

Table 4.1: Measurement instruments

Measurement Instrument Accuracy

Temperature MEMMERT IPP55 ±0.1◦C
Temperaturepcb PT100 ±0.1◦C
Mass flow CORI-FLOW ML120V21 ±0.2%(RD) for liquids, ±0.5%(RD) for gas
Pressure EL-PRESS P-602CV ±0.5% (FS)
DAQ NI PCI-6143 16 bits

4.2 Measurements

Measurements were performed with varying mass flow, pressure and temperature param-
eters. The parameters were changed linearly. The temperature range was from 15 to 35
◦C, pressure from 4 to 6 bar(a), and mass flow from 0 to 5 g/hr. Temperature step change
was set to 5 ◦C, pressure set to 0.5 bar(a) and similarly, mass flow to 0.5 g/hr. A sin-
gle measurement at a specific measurement parameter contains reference sensor readings:
pressure input to the vessel (Pin), mass flow (ϕm), and the temperature (Tincubator) of the
incubator.

To achieve a stable temperature, mass flow and pressure, for each measurement, a
‘settling time’ was set according to the reference readings. The settling time depends on
the variance of reference readings, e.g. variance should be < 0.05% within a time win-
dow (30 mins). For each measurement at stable temperature, mass flow, and pressure,
there are 3x(250k) sampled readings using DAQ. Capacitive signal readings (C1 and C2)
and actuation signal (D) were sampled at 250 kHz. This results in a single experiment
containing time-based samples Xp ∈ R3×250k, where Xp is the data for the p-th experi-
ment. Additionally, one-time readings at the stable parameters are saved from the CMFS:
temperature-dependent resistive track (Rtrack), resistive pressure sensors (P1 and P2). One-
time readings such as temperature (Tpcb) with the addition of (Rtrack) to calculate the fluid
cooling down effect on the tube, and mass flow (ϕm) readings can be used as a ‘ground
truth’. The measured signals of CMFS are illustrated in Figure 4.2.
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Figure 4.2: Illustration of measured parts of the CMFS.

4.3 Feature extraction and analysis

Since signals were sampled at 250 kHz, performing further analysis and correlating them
to the ground truth requires a method to summarise the behaviour of the signal. One of
the main methods is FFT.

Features acquired via the FFT approach are from the first fundamental harmonic. Since
the signals were in the form of Asin(ωt+ φ) + o, for capacitive signal 1 and 2 (shortened
to C1 and C2), the offset C1 implies o signal shift in y-axis from the capacitive signal 2,
similarly as capacitive signal 1. The same logic holds for magnitude C1 and magnitude C2.
The phase differences are denoted by ∆φC1 and ∆φC2, which is analogous to the phase
difference between the actuation signal and the corresponding capacitive signal, while ∆φ
symbolizes the phase difference between ∆φC1 and ∆φC2

Features from FFT are used in the ‘classical’ machine learning approach. An overview
of the feature extraction can be seen in Figure 4.3
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Figure 4.3: Feature processing methodology and correlations relative to fluid properties
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4.4 Ground-truth values

Accurate values to be used as a label, such as viscosity, density and fluid temperature
are not present in the current measurements or were inaccurate. The data set as labels
contained mass flow, pressure, temperature (PCB), and the liquid measured. However,
measurements of the temperature were locally at the chip level, and the pressure values
were the pressurised vessel readings. This ignores the pressure drop between the tubing
and the device, as well as across the device. Although the liquid type was mentioned in
the dataset, viscosity was not measured, as well as more accurate density measurements
were not directly available.

4.4.1 Temperature label

By using temperature-dependent resistive tracks mentioned in the background section,
together with the reference temperature of the PT100 sensor, we estimate the more accurate
temperature to be used in our data as a label and further analysis. Performing linear fit
at no flow:

TRtrack = αRtrack + TR0

where Rtrack are the temperature-dependant resistance track readings. Performing a linear
fit using coefficient α (ohms per ◦C) with temperature offset TR0, at experiments with
mass flow, we will get a temperature drop from the fluids (see Figure 4.4a and 4.4b). This
results in the resistive track sensitivity of 2.12 ohms per ◦C. This neglects the temperature
offset of the tube, hence the true temperature may be hotter by a couple of ◦C.
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Figure 4.4: Modelling temperature drop

4.4.2 Pressure drop label

To have a ground-truth value to train and evaluate pressure-drop estimation, we utilise
curve fitting using electrical readings from the pressure sensors. While pressure input is
included in the dataset, as well as pressure sensors are present on-chip, the pressure drop
reading across the tube is not present in the measurements. This was estimated by linear
fit, including temperature dependence. For individual liquids, measurements with no mass
flow were used, since the pressure in the system should be constant. The readings from
pressure sensors (P1 and P2) were fitted to equal the pressure of the input (since P1 = P2

should result in 0 pressure drop), and the coefficients applied with measurements including
mass flow. This is calculated as:
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P1est = α1P1 + β1TRtrack + P10

P2est = α2P2 + β2TRtrack + P20

where P1 and P2 are pressure sensor readings, TRtrack temperature based on temperature-
dependant resistive track, and α1/2, β1/2 are coefficients with the assumption that the
behaviour is linear with P10 and P20 pressure offsets. This results in an estimated pressure
drop

∆Pest = (P1est − P2est)

4.4.3 Density and viscosity labels

Fluid density and viscosity are sensitive to pressure and temperature changes. To obtain
the ground-truth values as closely as possible to pressure and temperature changes, we
use the estimated temperature using resistive track values as a ‘true’ temperature, and the
applied pressure in the system. Using the estimated temperature, as well as the pressure, we
apply theory from background subsections 2.1.1 and 2.1.2 to obtain the theoretical values
of density and viscosity to use as ground-truths. Measured fluids and their characteristics
are summarised in Table 4.2.

Table 4.2: Fluids measured, and their theoretical characteristics

Liquid Density kg/m3 (at 20◦C, 4 bar) Dynamic viscosity mPa.s (at 20◦C, 4 bar)

Ethanol 806.4 1.146
Acetone 796.5 0.318
IPA 810.8 2.191
H2O 998.4 1.018

Gas Density kg/m3 (at 20◦C, 4 bar) Dynamic viscosity mPa.s (at 20◦C, 4 bar)

N2 4.602 0.0174

4.5 Machine learning

This section covers the steps used before training classical machine learning models

4.5.1 Feature selection & processing

The first crucial step in classical machine learning is to select features and/or do feature
engineering to increase performance. Feature engineering is used to find better represen-
tations of features, by performing non-linear transformations [65].

Each section in the results covers its unique transformations for the task. The feature
selection was based on correlation metrics and analysis of feature dependence on fluid,
temperature, pressure and mass flow for individual tasks, i.e. mass flow, density, viscosity
and other estimations. The collinearity between features (when one feature can explain
the relationship of another) was minimized as much as possible. The effects of collinearity
are unfavourable, which affects the explainability of the model, as the weights can be
shifted between two collinear features, as well as it may introduce higher prediction errors
in certain regions [66, 67]
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4.5.2 Data splitting

In general, data splitting is used to test whether the model can generalize well on un-
seen data. This avoids overfitting data, e.g. memorizing without reliably estimating new
untrained data.

For this research, the ratio of data is 30% for training and 70% for testing. This is
due to expected linearities, which it should generalize very well. Similarly, simple random
sampling is used across all measurements without any of the advanced methods. How-
ever, for some of the estimations (specifically density and viscosity) in the result section,
performance is tested on an untrained fluid.

4.5.3 Data normalization

Another essential step before training classical machine learning is the data normaliza-
tion/standardization pre-processing step. Due to various scales of features, the algorithms
would give uneven contributions to individual features [68] if data was not properly pre-
processed. By applying methods to transform the data, e.g. normalize, it has the advantage
of speeding up the learning process of algorithms, as well as increasing performance.

Many normalization and standardization techniques are proposed, such as Z-score,
Pareto scaling, Power transformation, Min-Max, etc. [69]. For this project, a Min-Max
normalization method is applied. It has been shown that Min-Max outperforms Z-score
for classification tasks using k-NN [70], moreover, it provides the benefit of each feature
having the same scale, the weight for the individual feature should directly represent its
importance in linear regression tasks. The Min-Max normalization is given as

Xnew =
X −Xmin

Xmax −Xmin
(4.1)

4.5.4 Validation

The validation of performance is based on the test set, which includes 70% of data. Pefor-
mance metrics are mentioned in Section 2.11, and vary per property estimation. Mass flow
estimation, uses Full-Scale (FS) accuracy, denoting the maximum error, temperature and
density uses Mean Absolute Error (MAE) to directly interpret error in given units, while
pressure drop and viscosity use Mean Absolute Percentage Error (MAPE).

The performance of the estimations are compared to one of the state-of-the-art de-
vices to determine viscosity and density in a paper by H.Bissig et al. [71], as well as to
similar measurement principle of high-performing devices on the market for mass flow es-
timation comparison, in particular one from Bronkhorst® mini CORI-FLOW ML120V21
(mentioned in Table 4.1).

4.6 Deep learning

Compared to classical machine learning, deep learning has a different approach. Usually, it
requires much more data to achieve good performance, however, the benefit of doing so, it
learns its feature representations without explicit feature engineering [72]. For this method,
feature selection was not done, and the only pre-processing step was applying FFT to
acquire the frequency representation of data. The features were not explicitly normalized,
and the input training data were real and imaginary components Xp ∈ R4×15k where Xp

represents data of the p-th experiment, containing 4 real and imaginary components of
C1 and C2 sampled signals, however only first 15000 frequency components were taken,
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as the most information up to 3ω (3 times the fundamental frequency) is stored. The
architecture of this deep learning approach was based on Yao et al. DeepSense [63] as
faithfully as possible, which can be used for both regression and classification. An adapted
illustration of this architecture can be found in Figure 4.5. Individual layer output is
denoted as X(k).
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Individual convolution layer
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Merge convolution layer 2
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X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

Pair of inputs Pair of inputs

Figure 4.5: Illustration of DeepSense architecture used for Deep Learning. Adapted from
[63].

The pair of inputs on the left and right sides of the architecture are symmetrical. The
input on the left side contains the C1 real part and C2 real part, in which the network
learns the patterns from real parts of the capacitive signal, and convolves them together,
while the right side inputs are C1 and C2 imaginary components. The input dimensions
were adjusted within the network, such that the dimensions are 1x3x2x5000, representing
(channel x 3 Frequency bins x 2 frequency components x 5000 frequencies). The channel
is an extra dummy dimension to produce feature maps, while 3 frequency bins are simply
dividing 15000 frequency components into separate layers, i.e. first frequency bin layer
contains frequencies 0-5000, while the second 5000-10000 and third 10000-15000, and fre-
quency components containing 2x real/imaginary components of C1 and C2 signals. The
role of frequency bins is to build up on the recurrence of frequencies, such that a Gated
Recurrent Unit could be applied to learn the dependencies between the frequency ranges.
The input of frequency bins is illustrated in Figure 4.6. The input data is processed via con-
volutions. Individual convolution layer contains regularization functions such as dropout,
batch normalization and activation functions. Each layer contains the same structure,
however, parameters such as stride, kernel size and padding vary between some layers. An
illustration of a convolution layer composition can be seen in Figure 4.7.
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Figure 4.6: Illustration of input dimensions to the DeepSense architecture
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Figure 4.7: Illustration of a single Convolutional layer composition

The first convolution layer has a kernel size of (1,2,18), where 1 denotes how many
frequency bins to convolve directly, 2 represents the pair of frequency inputs, and 18
convolves in a width of 18 frequency components. Stride results in how the kernel steps
through the input, with the first layer having a stride of (1,2,6). Equivalently to kernel
size, it steps through frequency components, e.g. assuming the convolution starts from
F0, and ends at F18, then with stride, the next convolution begins from F6, and ends F24.
The convolution parameters for each layer are summarized in Table 4.3. The activation
function was ReLU for every layer, as well as batch normalization, normalizing over the
three frequency bins. A dropout of 0.8 was used to have regularization in the network.

Table 4.3: Convolution layer summary

Layer Kernel size Stride Padding

Individual convolution layer 1 (1, 2, 18) (1, 2, 6) valid
Individual convolution layer 2 & 3 (1, 1, 3) (1, 1, 1) valid
Merge convolution layer 1 (1, 2, 8) (1, 1, 1) same
Merge convolution layer 2 (1, 2, 6) (1, 1, 1) same
Merge convolution layer 3 (1, 2, 4) (1, 1, 1) same

The individual convolution layers from the article are twice as small compared to this
implementation. The original paper approach contained real and imaginary components
in a row, alternating between (Real, Im, Real, Im, ... etc.), and the FFT values were based
on non-overlapping time samples. Hence, the input contained X ∈ Rt×m, where t was the
time-dependent samples and m number of features per time. This input was processed on
a 1D convolution, with kernel size (1,18), however, due to our split of real and imaginary
components, we process twice the amount of features. The output layer of the architecture
was the same as the original paper, two stacked GRU units were used with 120 hidden
layers. In terms of regression tasks, due to the time dependence, this architecture was
not adjusted for our problem. However, for classification, CrossEntropy was used as a loss
function.
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Chapter 5

Data-Driven Device Characterization

This chapter begins by showcasing measured signals, and the data set used in this research.
The purpose is to understand the relations between measured signals and analyse each
feature individually to assist in interpreting the estimation results.

Section 5.1 showcases the available experiments, and two types of data; measured
signals via DAQ, and the corresponding one-time readings.

Section 5.2 covers correlations between features, which were acquired at the resonant
frequency (ω), and the corresponding one-time readings of labels. Analogously, it covers
more in-depth individual feature analysis and its linearities.

5.1 Measurements

This section covers two types of measured data - measurements from the controllers, i.e.
labels in the data set, and measured signals from the capacitive and resistive sensing
elements, i.e. raw data.

5.1.1 Labels

As mentioned in Chapter 4.2, the measurements were performed with varying parameters
(mass flow, pressure and temperature) linearly. There were a couple of differences in
performed measurements between fluids. Nitrogen was measured from 0 g/hr to 1.5 g/hr
with steps of 0.3 g/hr due to its very low density. Water measurements similarly had
different mass flow steps, measuring at steps of 1 g/hr. The rest of the fluids were measured
with steps of 0.5 g/hr. An overview of the performed measurements of acetone can be seen
in Figure 5.1 illustrating the sequential measurement process. The labels as ground truth
were taken from measurements acquired from instruments summarized in Table 4.1. They
are the pressure input (Pin), mass flow (ϕm), temperature (Tincubator) as well as the fluid
name. Ground truth labels acquired via theoretical methods mentioned in Chapter 4.4,
containing the temperature of the suspended tube (TRtrack), pressure drop (∆Pest), density
(ρfl) and dynamic viscosity (η).

In general, this data set contains 2130 Ethanol, 1125 IPA, 1107 Acetone, 617 H2O and
561 N2 measurements.
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Figure 5.1: Performed Acetone measurements with varying temperature, pressure and mass
flow, showcasing the structure of experiments

5.1.2 Raw data

As mentioned in Section 4.2, there are 3 dimensions of raw data representing a single mea-
surement, and with the addition of pressure sensors (P1 and P2), as well as temperature-
dependant resistive track (Rtrack), it can be expanded to 6 dimensions. The 3 dimensions
represent actuation signal, and capacitive readouts measured for one second synchronously
at 250 kHz, and can be seen in Figure 5.2a. Pressure sensors having a negative output and
a one-time reading stretched to match the sampling length can be seen in Figure 5.2b.
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Figure 5.2: Sample of a time series data of a single experiment, showcasing raw data signals

5.2 Feature analysis

Due to high amounts of raw data, extracting features using certain techniques, e.g. DFT
requires a lot of computation resources. While the resources were not an issue, this limits
the efficient processing of such datasets with non-consumer-friendly machines (e.g. >150
GB RAM). As a workaround, DFT was attempted on a truncated data set - using only 5k
samples out of 250k. This results in inadequately capturing small differences between the
measurements, as it loses the resolution of small differences in frequencies.
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The following analysis performed on the features attempts to capture relations to de-
pendent variables - the parameters of the measurements which were mass flow, pressure,
temperature and the fluid. As a way to correlate different fluids with respect to differences
between measurements, instead of using fluid names, we use density ρ instead. These vari-
ables were correlated with respect to the extracted features such as the amplitude of the
signal actuation (D) and capacitive signals (C1 and C2), resonance frequency (Fω) and
phase differences (∆φ). Correlations of acquired features with respect to the ground-truth
labels (target) are summarised in Table 5.1. The initial linear correlation shows that the
values correspond to theory: density and frequency of the signal have a linear relationship,
and resistive pressure sensors have a linear correlation of 0.77, however, the current iter-
ation of this specific design had pressure drift, which means the correlation might not be
accurate across all fluids directly. Moreover, since these correlations contain all measure-
ments and all liquids altogether, it does not show more complex relationships to viscosity.
Mass flow is very correlated with the ∆φ, although the correlation of ∆φC1 and ∆φC2

seems quite low due to the Nitrogen inclusion, which will be expanded in following Section
5.2.3.

Table 5.1: Feature correlation with respect to labels. Coefficients of |r| > 0.5 are high-
lighted

Features Mass Flow Pin Tpcb TRtrack Density Viscosity

Magnitude D -0.003 -0.006 0.019 0.020 -0.003 -0.075
Magnitude C1 0.019 -0.004 -0.866 -0.869 0.299 0.336
Magnitude C2 0.040 -0.004 -0.770 -0.774 0.378 0.339
Rtrack 0.045 -0.009 0.999 0.999 -0.042 -0.265
Offset D -0.110 0.013 -0.892 -0.869 -0.008 0.264
Offset C1 0.072 -0.009 0.999 0.997 -0.038 -0.268
Offset C2 0.073 -0.008 0.999 0.997 -0.035 -0.266
Phase C1 0.016 0.009 -0.011 0.007 0.014 -0.001
Phase C2 0.016 0.009 -0.011 -0.011 0.021 0.013
Frequency (Fω) 1 -0.320 0.020 0.012 0.016 -0.992 -0.483
P1 0.402 -0.528 0.598 0.583 0.005 0.054
P2 -0.114 0.774 -0.621 -0.617 -0.061 0.135
P1 − P2 -0.237 0.703 0.635 0.627 -0.041 -0.062
∆φC1 0.792 0.176 0.175 0.154 -0.321 -0.306
∆φC2 0.786 -0.038 -0.034 -0.061 0.824 0.326
∆φ 0.995 0.074 0.102 0.074 0.23 0.032

5.2.1 Frequency

The acquired resonance frequencies (Fω) of the capacitive signal from individual measure-
ments using DFT have been compared to the ’refined’ frequency from the curve-fitted
signal. Applying DFT on the dataset, returns frequency bins of 1 Hz, not allowing to
see fractional frequency. This has been observed via curve fitting the sinusoidal signal
with Equation 2.14, which returns a frequency of 3367.43 Hz while DFT returns 3367 Hz.
However, using curve-fitted frequency may result in introducing noise from the instrument
itself.

1Actuation frequency as well as the resonance frequencies of C1 and C2 are identical
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Further analysing the dependence of frequency in terms of fluid characteristics, from
theory it is known that frequency is highly dependent on the density of the fluid, however,
pressure and temperature have an influence as well. This can be observed in Figure 5.4.
This impact is reasonably correlated to fluid dynamics, i.e. the relation of thermal expan-
sion changes density, and pressure has more impact on gasses due to its compressibility.
Empirically it has been observed that the temperature has less impact compared to the
pressure in frequency change, e.g. temperature for Acetone changes by ≈ 0.86 Hz per ◦C,
while pressure influences by ≈ 3.6 Hz per Bar. This is due to the dependence of pressure on
the spring constant k(P ) denoted in Equation 2.17. The spread of experiments in Figure
5.3a is due to pressure dependence, while the spread in Figure 5.3b shows the temperature
dependence. To capture this relationship, we use

Fωe = αT · TRtrack + βp · Pin + F0 (5.1)

where TRtrack is the temperature of the suspended tube (based on Section 4.4.1), and Pin
is the pressure input to the device. Performing linear fit using coefficients αT and βp, we
get the so-called temperature and pressure coefficients, with frequency offset F0. With
this equation, we try to capture the relationship of pressure and temperature effect per
liquid on frequency. This is summarized for individual fluid in Table 5.2. Biq is the
thermal expansion coefficient at 20 ◦C. This coefficient was calculated using the regression
formula mentioned in Equation 2.3 with regression coefficients taken from [14], and the
correlation between fitted temperature coefficients and thermal expansion coefficient is
> 0.99, however, the sample size (different fluids) is quite low to determine the significance.
The explanatory power of frequency using independent variables such as temperature and
pressure is quite high. Acetone achieves R2 of 0.998, however, it achieves the lowest
explanatory power on Nitrogen. Furthermore, the temperature coefficient may indicate
some fluid properties, while the pressure coefficient might be too dependent on the spring
constant to derive useful properties directly, and would require first finding the spring
constant value itself.

(a) Frequency dependency on the temperature of
the fluid. The fitted middle line represents the
average temperature influence on frequency.

(b) Frequency dependency on the pressure ap-
plied. The fitted middle line represents the av-
erage pressure influence on frequency.

Figure 5.3: Frequency dependency

1At 20 C◦ and 4 bar(a)
2thermal expansion coefficient

43



Table 5.2: Frequency dependency on temperature and pressure

Fluid Pressure coef Temperature coef Density 1 Biq coefficient 2 R2

Ethanol 3.499 ± 0.206 0.659 ± 0.065 806.4 kg/m3 1.159 · 10−3 0.932
Acetone 3.704 ± 0.094 0.869 ± 0.030 796.5 kg/m3 1.458 · 10−3 0.998
IPA 3.294 ± 0.266 0.652 ± 0.084 810.8 kg/m3 1.095 · 10−3 0.904
H2O 3.498 ± 0.231 0.161 ± 0.073 998.4 kg/m3 3.715 · 10−4 0.892
N2 2.727 ± 0.227 -0.062 ± 0.072 4.662 kg/m3 - 0.838

5.2.2 Frequency and density

According to theory, frequency is inversely proportional to the square root of the density,
and in the general sense, density is determined by frequency as shown in Figure 5.4a how-
ever, by itself, it’s not an accurate measure of fluid density. The influence of temperature
and pressure affects the frequency. Such dependence can be visualised in Figure 5.4b,
where pressure is set to constant, and the frequency varies by ≈5 Hz. Estimating density,
as a direct linear measure of frequency, on average, can make an error of ≈ 15 kg/m3, de-
pending on mass flow, pressure and temperature. This is due to the complex relationship
of temperature, pressure and mass flow affecting the density of the fluid, as well as the
device, e.g. pressure and temperature changes as mass flow changes.

(a) Frequency and density, linearity illustration
of frequency to density.

(b) Ethanol at constant pressure and varying
temperature, illustrating small fluid state depen-
dence (mass flow) on frequency.

Figure 5.4: Frequency and density linearity

5.2.3 Phase difference

As explained in Section 2.2, the phase difference between the capacitive signal is linearly
dependent on mass flow. However, observing the data points with varying temperature
and pressure shows a spread of ∆φC1 and ∆φC2 per mass flow in g/hr. It is important
to extract the ∆φ which would be as linear as possible to the mass flow. Three different
methods were tested to extract the phase difference.

Comparison between the methods is made via a linear fit (ϕm = α∆φ + o), which
explains the sensitivity of how much phase difference between measured capacitive signal α
flow coefficient in terms of radians per g/hr, with zero flow offset. Analysing the differences
in coefficients between methods: DFT, cross-correlation and curve fitting do not result in
substantial differences on average. Coefficients vary by ± 10−4 or ≈ 0.005◦, and the offset
by ±10−3, or ≈ 0.05◦. However, the variance of phase difference for mass flow measurement
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is much higher for cross-correlation and curve fitting methods. One of the main reasons
could be the harmonics present in the signal, as the variance is even more evident when
applying the cross-correlation directly between C1 and C2 signals.

Proceeding with DFT as the best-performing method to acquire phase difference, in-
dividual phase difference, i.e. phase difference between actuation and capacitive readout
signals shows higher variance at higher mass flows, as seen in Figure 5.5a and 5.5b. This
variance is removed if the difference between phase differences is taken, as shown in Figure
5.6.
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Figure 5.5: Sensitivity of phase difference relative to the mass flow
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Figure 5.6: ∆φ calculated as the phase difference between capacitive signals |φC1 − φC2|
and plotted relative to mass flow.

The sensitivity can be fitted for each fluid separately, to see whether fluid characteristics
influence phase difference. The influences could be the thermal conductivity of the fluid,
e.g. how fast it could cool down the tube to affect the sensing element. One of the noticeable
effects is density, which affects the sensitivity of the sensor. Table 5.3 summarizes the
sensitivity for each fluid. This shows that the phase difference and the offset did not
change per liquid substantially. These differences can be explained due to the imbalanced
dataset per fluid, where some measurements had fewer data points at lower or higher
temperatures (i.e. the same measurement sweep may have been performed multiple times
at a certain temperature). The main difference can be observed for Nitrogen, as clearly the
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offset for zero mass flow is different, as well as phase difference is more sensitive to a mass
flow change. According to ∆φ coefficients, the sensitivity correlates to denser fluids being
less sensitive (e.g. water compared to acetone), in contrast to nitrogen, being the lowest
density gas, with the most sensitivity. All coefficients and their offsets are significant, with
a P-value much lower than <0.001. A summary plot of sensitivities is shown in Figure
5.7, at a constant temperature, and constant pressure. Since Nitrogen was measured at
only up to 1.5 g/hr, the plot shows only ∆φ for <= 1 g/hr. At constant temperature and
pressure, liquids correspond to the same sensitivity, hence they overlap.
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Figure 5.7: ∆φ sensitivity of all fluids at constant temperature and pressure. The figure
shows ∆φ to ≤ 1 g/hr.

Table 5.3: Comparison ∆φCi sensitivity to mass flow

Fluid Coef. ∆φC2 Offset C2 Coef. ∆φC1 Offset C1 Coef. ∆φ Offset ∆φ

Ethanol 0.0151 1.356 0.0323 1.786 0.0473 0.0007
Acetone 0.0152 1.354 0.0321 1.788 0.0473 0.0012
IPA 0.0147 1.355 0.0333 1.785 0.0479 -0.0
H2O 0.0146 1.370 0.0297 1.77 0.0441 0.0005
N2 0.0223 1.269 0.0459 1.876 0.0681 0.0038

Assuming a perfect linear relationship of ∆φ to mass flow for all liquids, we should ex-
pect closer to 1% Full-Scale (FS) accuracy (including errors from the measurement setup),
however, without compensating temperature, or pressure, it achieves an FS accuracy of
approximately 4.5 %, as shown in Figure 5.8. Moreover, the errors are not normal distri-
butions, which indicates that fluid properties affect mass flow calculations. One of such
discussed properties is the fluid density, which results in mass flow being over-estimated.
This is also seen in the same figure, starting at 20%, and every additional 20% 1 of flow
meters full range, an additional skew in the distribution.

1Water was measured at a step size of 1 g/hr
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Figure 5.8: (FS) accuracy curve including water, isopropanol, acetone and ethanol. Ex-
cluding nitrogen due to its different sensitivity.

5.2.4 Magnitude

According to the initial linear correlations, the magnitude of the capacitive signal had
some linear correlation to temperature, while the magnitude of the driving signal, had
no linear correlation to any of the dependent variables. This of course is logical, as the
driving signal is simply actuation, independent of the measurement parameters (mass flow,
pressure, fluid), although temperature may affect the wires, it seems the hardware inter-
nally compensates for this change. However, at higher temperatures, it can be observed
that capacitive signal produces harmonics, this can be seen in Figure 5.9 at a constant
temperature and pressure, and for a small sample size.
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(a) Capacitive signal output at low temperature
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Figure 5.9: Capacitive signal outputs at two different temperatures (15 ◦C and 35 ◦C),
with the same pressure and mass flow readings. Capacitive signal readouts at higher
temperatures (b) have a ‘flattened’ signal, compared to the same measurement conditions,
except at lower temperature (a).

Modelling only the fundamental magnitude relation of capacitive signal measurement
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using magnitude from DFT, two models were attempted. One is a quadratic relationship in
only in terms of suspended tube temperature, where AC is the magnitude of the capacitive
signal:

AC = a(TRtrack − s)2 + o (5.2)

where TRtrack is the temperature of the suspended tube, a, s and o are the quadratic
term coefficients. This relation can be seen in Figure 5.10. The second model utilises
environmental conditions of the measurement, i.e. temperature, pressure, mass flow and
resonance frequency. This is formalized in an equation as:

AC = (αt · TRtrack + αϕ · ϕm + αf · Fω + αp · Pin) +A0 (5.3)

where TRtrack , Pin, ϕm and Fω are the experiments temperature, pressure, mass flow and
frequency correspondingly, and coefficients αt, αϕ, αf , and αp correspond as relationship
weight to these measurement conditions.

The spread of the experiments influenced the fitting significantly to get accurate es-
timates of the coefficients and did not fit nicely per individual fluid. Applying the first
model (eq. 5.2) to fit temperature dependence is shown in Figure 5.10a. The line fits the
mean of the spread quite well, however at 35 ◦C it fails to fit. In an attempt to explain
the spread of the magnitude, involving parameters such as temperature, pressure, mass
flow and frequency (using eq. 5.3) to explain capacitive signal magnitude did not show
significant results (see 5.10b). This relationship on average per liquid explains 70% of the
spread (R2 score of 0.7), with frequency having the most impact.
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(a) Estimating magnitude relation to tempera-
ture in terms of quadratic fit using DFT magni-
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Figure 5.10: Capacitive signal magnitude (acquired via DFT) relation to temperature, and
the fits which try to explain the non-linear behaviour

Using magnitude acquired from DFT has quite a big spread between experiments for
a constant temperature. This is because harmonics affect the fundamental signal mag-
nitude components. The driving signal magnitude does not have any dependence on the
temperature, and the electronics itself attempts to keep it stable, hence it was not further
analysed.

In an attempt to reduce harmonic ‘noise’ from the magnitude acquired via DFT, curve-
fitted magnitude is used instead. This has shown the spread is much more stable at a
constant temperature, as well as exhibits the same non-linear behaviour. Modelling the
temperature dependence using Equation 5.2 shows quite an accurate fit across all fluids
(R2 > 0.99), and the fit for Acetone can be seen in Figure 5.11a. Using the relationship
of temperature, pressure, mass flow and frequency again on the noise-reduced magnitude,
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does not explain the spread of the magnitude per experiment (see Figure 5.11b). These
results indicate that the fundamental signal magnitude has a quadratic relationship to
temperature (and mass flow due to the cooling effect on the tube), and is independent of
pressure, however dependant on fluid properties. Coefficients of the quadratic relation in
terms of temperature are summarised in Table 5.4.
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Figure 5.11: Capacitive signal magnitude (curve fitting) relation to temperature, and the
fits which try to explain the non-linear behaviour

Table 5.4: Magnitude quadratic coefficients using curve fitted magnitude, with fitted co-
efficients a, s, o for C2 and C1 capacitive signals

Fluid aC2 sC2 oC2 aC1 sC1 oC1

Ethanol −5.58 · 10−4 18.016 0.439 -5.01 ·10−4 12.24 0.469
Acetone −5.68 · 10−4 18.066 0.432 -4.89 ·10−4 12.44 0.457
IPA −5.88 · 10−4 18.204 0.437 -5.17 ·10−4 12.88 0.464
H2O −7.06 · 10−4 19.352 0.482 -6.62 ·10−4 15.34 0.500
N2 −4.11 · 10−4 20.201 0.289 -3.76 ·10−4 15.99 0.295

5.2.5 Offset

Similarly, as the magnitude of the signal, the offset of the capacitive signal is more linear to
temperature. This relationship can be modelled with a simple linear equation (y = ax+b),
where a denotes the temperature sensitivity as shown in Figure 5.12a. Offset dependence
on the temperature is very minimal. Capacitive signal 2 changes ≈ 4.73 · 10−4 (V) or
≈ 0.473 (mV) per ◦C. This change seems independent of other parameters, e.g. fluid,
pressure, and mass flow. The same behaviour is apparent on the offset of the Capacitive
signal 1, with a sensitivity of ≈ 4.65 · 10−4 (V) or ≈ 0.465 (mV) per ◦C. This is unlikely
to have much of an influence on the sensor.

Interestingly, the offset of the driving signal has a non-linear relation to temperature.
This may be due to the current decreasing with temperature and electronics compensating
for the change. The fitted coefficients uses the Equation 5.2, with coefficients being ≈
5.724 · 10−6 for linear term, ≈ 1.514 shift, and ≈ 30.630 offset [Figure 5.12b]
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Figure 5.12: Capacitive signal offset (a) linear dependence to temperature, and the fit
which explains the relation. Driving signal offset (b) non linear behaviour, and its non-
linear fit explaining the behaviour

5.2.6 Pressure sensor

This iteration of pressure sensors has a linear temperature dependence and introduces
offset to the readings as shown in Figure 5.13. The offset seems to be around 0.2 (scaled
voltage units) per 5 ◦C.
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Figure 5.13: Temperature dependence on pressure sensor readings. The figure is based on
no mass flow measurements, for constant pressure on the system. The y axis is a scaled
value of the wheatstone bridge reading.
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Chapter 6

Fluid characteristics estimation

This chapter covers the results of fluid characteristics estimations using a linear combina-
tion of features, which are most interpretable physically, as well as including non-linear
methods, such as Support Vector Regression (SVR) with Radial Basis Function kernel
(RBF), and Gaussian Processes. The estimation is performed on the mass flow of the
fluids, temperature, pressure drop, viscosity, density, and classifying what fluid was being
measured.

6.1 Mass flow estimation

This section covers mass flow estimation of various fluids using linear and non-linear meth-
ods. The first part of mass flow estimation is based on the expected linearity of the device,
hence a linear combination of features is used to estimate the mass flow. The second part
is based on non-linear methods, which mainly constitute Radial Basis Function Kernel
(RBF) and Support Vector Regression to include robustness to outliers.

6.1.1 Linear regression

Linear models depend on the assumption that the relationship between the dependent and
the independent variable is linear. The choice of features is based on the correlation metric
with respect to the mass flow. This was analysed in Section 5.2, where the main features
are ∆φCi, P1 and Frequency (Fω). The feature ∆φCi with subscript i describes whether it
is the phase difference between actuation signal and capacitive signal 1, or 2 or the phase
difference between both capacitive signals, named simply as ∆φ. Although the linear
correlation to the mass flow of phase differences between actuation and capacitive signals
is quite low, this is due to nitrogen having different properties, however, the difference
between the two signals compensates for this linearity. To estimate the mass flow more
accurately, we also can include Rtrack to compensate for temperature. The linear correlation
between features is also quite low. Colinearity occurs between ∆φCi features, where ∆φ
has correlation with ∆φC1 of 0.84, and between ∆φ and ∆φC2, with correlation of 0.73.
Interestingly, the correlation is quite low between ∆φC1 and ∆φC2. Similarly, frequency
has a correlation of -0.82 with ∆φC2. This is summarised in Table 6.1, where coefficients
with |r| > 0.5 are in bold.

Although ∆φCi features should be quite linear to each other, it seems the linearity is
influenced by some physical properties. This could be due to uneven stress on the geometry
of the suspended tube, i.e. on the left and right parts of the tube due to pressure and mass
flow.
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Table 6.1: Linear colinearity between features

Features ∆φC1 ∆φC2 ∆φ Rtrack P1 Fω Mass flow

∆φC1 1 0.25 0.84 0.15 0.44 0.3 0.79
∆φC2 0.25 1 0.73 -0.06 0.20 -0.82 0.78
∆φ 0.84 0.73 1 0.074 0.43 -0.24 0.99
Rtrack 0.15 -0.06 0.07 1 0.58 0.02 0.04
P1 0.44 0.20 0.43 0.58 1 -0.01 0.40
Fω 0.3 -0.82 -0.24 0.02 -0.01 1 -0.32

We apply weights to individual features to estimate mass flow with the linear model.
Three linear models were used:
Linear model 1, is described as:

y = β0 + β1∆φC1 + β2Rtrack + β3Fω + β4P1

Linear model 2, is described as:

y = β0 + β1∆φC2 + β2Rtrack + β3Fω + β4P1

Linear model 3, is described as:

y = β0 + β1∆φ+ β2Rtrack + β3Fω + β4P1

The main difference between the models is which fundamental linear relationship we use
to estimate the mass flow, i.e. which ∆φCi. This allows us to see the feature differences with
respect to the mass flow. Including all features would not result in a higher performance,
as well as multi-colinearity between features affects interpretability.

Between the three tested models, simple linear relations to compensate for the difference
between gas and liquids, as well as adjust the estimation with temperature, frequency and
pressure coefficients, shows that there are minor differences between ∆φ with respect to
estimating gas altogether. The phase difference between two capacitive signals shows the
best performance in regards to linearity, as shown in Table 6.2.

Table 6.2: Linear models R2 scores, trained on every fluid, evaluated for individual fluid
only from the test set (70%). The red color denotes the nitrogen inclusion effect

Fluid R2 (Model 1) R2 (Model 2) R2 (Model 3)

Acetone 0.995 (-0.001) 0.990 (-0.001) 0.999 (-0)
Ethanol 0.994 (-0) 0.989 (-0.001) 0.999 (-0)
Water 0.992 (-0.02) 0.989 (-0.01) 0.996 (-0.005)
Isopropanol 0.993 (-0.002) 0.986 (-0.001) 0.999 (-0)
Nitrogen 0.802 0.691 0.799

Linear estimations including Nitrogen do not work due to the phase difference sensitiv-
ity between gas and liquid. Gasses appear to be much more sensitive as analysed in Section
5.2.3. Interestingly, using ∆φC1 as the main linear feature, it tends to underestimate the
mass flow as seen in Figure 6.1a, while in contrast, ∆φC2 tends to overestimate mass flow
as seen in Figure 6.1b. These differences are nullified if ∆φ is applied to estimate the mass
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flow as shown in Figure 6.2. Same performance is reached as Model 3, if features ∆φC1

and ∆φC2 are used together, instead of ∆φ.
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(a) Mass flow estimation using Model 1
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(b) Mass flow estimation using Model 2

Figure 6.1: Differences in estimating mass flow using ∆φC1 and ∆φC2
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Figure 6.2: Mass flow estimation using Model 3

Weight differences between the models show the influence of frequency and temperature
correction as shown in Table 6.3. Including Nitrogen in the training, there is more emphasis
on frequency correction, since the gas has a much higher frequency due to its density
compared to fluids. The majority of the features are very significant, with a P-value much
lower than 0.05. The exception is the P1 feature, on model 1, with a P-value of 0.041, and
for model 2, P1 is insignificant.

The best-performing linear model with ∆φ achieves FS accuracy of ≈ 2.5%, and the
trumpet error curve is shown in Figure 6.3. This already outperforms the conventional
method of using just the phase difference by a factor of 2.
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Table 6.3: Linear model weights (excluding nitrogen)

Weights Model 1 Model 2 Model 3

β1 (∆φCi) 6.238 6.516 5.261
β2 (Rtrack) -0.414 0.590 -0.080
β3 (Fω) -0.840 1.0778 0.198
β4 (P1) -0.042 0.0012 -0.063
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Figure 6.3: (FS) accuracy curve including water, isopropanol, acetone and ethanol from
the testing dataset (70%)

Polynomial features

To further investigate non-linearities in the sensing elements, we can apply a polyno-
mial transformation to our feature space, acquiring additional features such as [∆φ2; ∆φ ·
Rtrack; ∆φ · Fω; ∆φ · P1;R

2
track, ...;P

2
1 ] which returns additional 10 features. By selecting

one polynomial feature, and testing the performance on Nitrogen, while training on the
entire dataset, we can find the most significant polynomial feature to estimate more ac-
curately, as well as keeping the complexity of the model low. Such brute force method
found that the polynomial feature of ∆φ ·Fω is the most significant to estimate mass flow,
which compensates for ∆φ sensitivity. This relationship physically can be seen as the fluid
density effect on mass flow, as by definition, density is the mass contained in a unit volume.
Unfortunately, the colinearity between ∆φ and the new polynomial feature is quite high
(0.989), however, without ∆φ, the mass flow estimation performs sub-optimal. We define
a model:
Linear model 4

y = β0 + β1∆φ+ β2(∆φ · Fω) + β3Rtrack + β4P1

This model outperforms model 3 by a small margin, however, allows it to be a much
more accurate estimate of Nitrogen, achieving a R2 score of 0.993. The model with these
polynomial features achieves an FS accuracy of ≈ 2.6%, however, if we do not take into
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account the Nitrogen, it is closer to ≈ 2% across all fluids. The features are all significant,
with a P value of < 0.001 The FS accuracy trumpet curve is shown in Figure 6.4.

Table 6.4: Linear regression coefficients with most significant polynomial features (includ-
ing nitrogen)

Feature Weight

β1 (∆φ) 8.691
β2 (∆φ · Fω) -3.467
β3 (Rtrack) -0.091
β4 (P1) 0.0382
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Figure 6.4: (FS) accuracy curve of a linear model including water, isopropanol, acetone,
ethanol and nitrogen from the testing dataset (70%)

6.1.2 Non-linear regression

To allow much more non-linearity in estimations, as well as introduce hyperparameters,
which help adjust the model, we apply the Support Vector Regression algorithm. Addi-
tionally, with the Radial Basis Function kernel, we project the feature space into infinite
dimensional space. The same features are used as the best-performing linear model (ex-
cluding polynomial features) - ∆φ, Fω, Rtrack and P1. Polynomial features are excluded
because the RBF projects in high-dimensional space for us directly, and we avoid colinear-
ity between features. Since the correlations between features are quite low, SHAP values
are interpretable for the estimations. Practically all fluid mass flows are explained with
0.999 R2, with the exception of Nitrogen, which has an R2 of 0.998. However, this non-
linear model achieves FS accuracy of ≈ 1%, which is influenced by the accuracy of the
device we are testing, and the accuracy of the ground-truth. The trumpet error curve,
showcasing FS accuracy is shown in Figure 6.5.
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Figure 6.5: (FS) accuracy curve of a non-linear model including water, isopropanol, ace-
tone, ethanol and nitrogen from the testing dataset (70%)

Feature significance for the non-linear model, shown in Figure 6.6, describes that ∆φ
is used as the main feature to estimate the mass flow, frequency compensates for Nitrogen
mass flow estimation, capturing ∆φ·Fω relation, Rtrack has minor influence to compensate
for temperature, and P1 compensates at higher pressures.
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Figure 6.6: Non-linear mass flow estimation using SVR, feature significance based on
Shapley values

Table 6.5: Mass flow estimation Summary of models (FS) accuracy. Red denotes Nitrogen
inclusion effect on accuracy

Fluid Linear model (poly features) Non-linear model ∆φ ∝ mass flow

Acetone ≈ 2.2% (2.8%) ≈ 1% (1.1%) ≈ 4.5 %
Ethanol ≈ 2.6% (3.1%) ≈ 1% (1.1%) ≈ 4.5 %
Water ≈ 1.6% (3.1%) ≈ 0.6% (0.84%) ≈ 7 %
Isopropanol ≈ 1.8% (2.2%) ≈ 1.3% (1.1%) ≈ 4 %
Nitrogen ≈ 1.8% ≈ 1.8% -
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6.2 Temperature

Temperature can easily be estimated using one of the capacitive signal offsets. Taking a
Fourier transform of C1 or C2, the 0 Hz offset present in the frequency domain is linearly
sensitive to temperature. This temperature linearity was also analysed in Section 5.2.5.
To add some more complexity, we aim to estimate the temperature drop, i.e. how much
does the fluid cool down the suspended capacitive tube, with a goal to expand the analysis
on relationships to temperature. The temperature drop label was acquired using linear fit
on a resistive track, which is explained in the methodology section 4.4.1. The drawback
of temperature estimation is that it was performed in laboratory conditions, and it is
uncertain how well it would work in real conditions.

6.2.1 Linear models

The most linear features to temperature, as well as correlations between the features, are
present in the table below. There is no significant difference between the two capacitive
signal offsets, magnitude C1 is more linear to temperature, and the colinearity between
magnitude C2 is quite high. Pressure sensors also hold some linear relation to temperature,
as was shown in Section 5.2.6, the temperature introduces offset in the pressure reading.

Table 6.6: Linear colinearity between features

Features Magn. C1 Magn.C2 Offset C1 OffsetC2 P1 P2 TRtrack

Magn. C1 1 0.98 -0.86 -0.85 -0.51 0.51 -0.87
Magn. C2 0.98 1 -0.76 -0.76 -0.46 0.44 -0.77
Offset C1 -0.86 -0.76 1 0.99 0.59 -0.62 0.99
Offset C2 -0.85 -0.76 0.99 1 0.59 -0.62 0.99
P1 -0.51 -0.46 0.59 0.59 1 -0.84 0.58
P2 0.51 0.44 -0.62 -0.62 -0.84 1 -0.61
∆φ -0.02 -0.01 0.10 0.10 0.43 -0.12 0.07

However, excluding the mass flow feature from the estimation, it does not estimate
temperature drop based on mass flow. Hence, for the final linear model, we include ∆φ as
a feature, and exclude P2.

Defining the linear model as :

y = β0 + β1∆φ+ β2oC1

Table 6.7: Linear regression coefficients with most significant polynomial features

Feature Weight

β1 (∆φ) -0.7598
β2 (OffsetC1) 20.3670

Temperature set points are mainly estimated by offset, and the temperature drop from
the flow is corrected by ∆φ. Since the temperature drops similarly across the fluids, it
is quite consistent. A sample of temperature drop estimation is shown in Figure 6.7 for
Acetone.
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Figure 6.7: Sample of linear temperature estimation, and the cooling down based on mass
flow of Acetone

The temperature linearly drops down for the estimation, due to the linear model. It can
also be observed, that at temperature ranges between 24 - 34 ◦C, the model overestimates
the temperature drop, while at the lowest, and the highest temperatures, it underesti-
mates. On average, the temperature error per fluid is 0.29◦C (or 0.33◦C if excluding ∆φ).
Similarly, the explained variance is consistent across the fluids. R2 coefficient is 0.997.
Small variations could be explained by fluid thermal properties.

6.2.2 Non-Linear models

Including non-linear dependence, with only two features - ∆φ and offset C1, the tem-
perature estimations are much more accurate. Explained variance (R2) is 0.999 for all
fluids
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Figure 6.8: Sample of SVR-based non-linear temperature estimation, and the cooling down
based on the mass flow of Acetone
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Since there is no correlation between the two features, SHAP feature significance values
give an accurate representation, which corresponds to the linear case - at high mass flow,
there is a small negative drop in temperature, while at low, and no flow, temperature
increases.
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Figure 6.9: Non-linear individual feature impact on model output

The general estimation error (mean absolute error) for both linear and non-linear ap-
proaches is summarized in Table 6.8. In general, the offset feature can determine the
general system temperature and the temperature drop can be approximated using mass
flow dependant feature. However, using temperature-dependant resistive track is more
accurate, as well as more efficient.

Table 6.8: Temperature estimation summary

Fluid (Linear) Average error ◦C (Non-linear) Average error ◦C

Acetone 0.27 0.06
Ethanol 0.28 0.10
H2O 0.33 0.17
IPA 0.28 0.06
N2 0.29 0.09

6.3 Pressure drop

A Coriolis-based sensor has already integrated pressure sensors on the chip, however, it is
interesting whether using the capacitive signals itself, it would be possible to estimate the
pressure drop. Similarly, this section acts as an additional analysis in terms of analysing
linear and non-linear physical relations. The drawback of this estimation is that an accurate
pressure drop label does not exist, hence it was approximated with the approach mentioned
in the methodology section 4.4.2. Moreover, acetone was not included in this estimation,
as the pressure sensors were not sensitive enough to measure this liquid.

6.3.1 Linear models

We begin by looking at the most linearly correlated features with respect to the pressure
drop. Acetone and nitrogen measurements were not included due to low sensitivity, and
more complex physical relations to gasses.

The two separate capacitive phase differences between the actuation signals have the
highest correlation coefficient, as the pressure sensor is sensitive to flow. This correlation
would similarly hold for ∆φ itself, however logically it would be to have two separate ends
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Table 6.9: Linear colinearity between features

- Fω ∆φC1 ∆φC2 Rtrack Magn. C1 Magn. C2 Pressure drop

Fω 1 0.02 -0.40 0.10 -0.19 -0.22 0.26
∆φC1 0.02 1 0.85 0.23 -0.22 -0.22 0.76
∆φC2 -0.40 0.85 1 -0.07 0.11 0.11 0.66
Rtrack 0.10 0.23 -0.07 1 -0.90 -0.82 -0.17
Magn. C1 -0.19 -0.22 0.11 -0.90 1 0.98 0.10
Magn. C2 -0.22 -0.22 0.11 -0.82 0.98 1 0.05

of the tube measured. The magnitudes of the capacitive signal do not hold any significant
correlation to the pressure drop.

Based on the colinearity Table 6.15 Chosen features are phase difference (∆φC2), reso-
nance frequency (Fω) due to its pressure dependence, and Rtrack for temperature compen-
sation, as pressure drop is related to the viscosity of the fluid, which is again sensitive to
temperature.

Defining Linear model as:

y = β0 + β1∆φC2 + β2Fω + β3Rtrack

Similar performance can be achieved by adding additional phase (∆φC1) difference,
however, the increase in performance is not significant, and the feature significance using
P-value shows that ∆φC1 is not significant. Using both frequency and ∆φC2 as a feature
achieves best results, with features being significant. The feature weights are summarized
in Table 6.10.

Table 6.10: Linear regression coefficients with most significant polynomial features

Feature Weight

β1 (∆φC2) 2.391
β2 (Fω) 1.135
β3 (Rtrack) -0.260

The performance of pressure drop estimation seems to be dependent on fluids. Ethanol
achieves a R2 score of 0.93, seemingly accurately estimating it based on capacitive tube
phase difference, while isopropanol tends to underestimate the pressure drop, achieving R2

of 0.63. This is most likely due to the different viscosities of fluids, and linearly it overfits
ethanol due to some imbalance in the training data set. Water is the worst-performing,
and has an R2 score of 0.50. Sample estimations are shown in Figures 6.10a and 6.10b.
The model achieves MAPE of 20%, 42.8% and 22.5% for ethanol, water and isopropanol
respectively.
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Figure 6.10: Pressure drop visualisations on a small sample of measurements. At a constant
pressure input, measurements contain varying mass flow parameters.

6.3.2 Non-Linear models

Applying the non-linear approach, with RBF and SVR, the pressure drop estimates are
more accurate for individual fluids. The model achieves R2 of 0.99 for ethanol and water,
with worst-performing isopropanol at 0.96. The MAPE values are 2.3%, 1.5% and 7.9%
for ethanol, water and isopropanol accordingly.

0 20 40 60 80 100
Experiments #

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Pr
es

su
re

 d
ro

p

Ethanol R2: 0.9972

Predicted pressure drop
Label pressure drop

(a) Small sample of Ethanol non-linear pressure
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Figure 6.11: Non-linear pressure drop estimation

Similarly to the previous section, because of a small linear relation between features,
the SHAP value indicates which feature values have what influence on the estimations
(see Figure 6.12). The phase difference due to being proportional to mass flow affects the
pressure drop linearly. Temperature track shows at lower temperatures, the higher the
pressure drop, while higher temperature, decreases the pressure drop. Frequency feature
may affect the main differences between the liquids. Table 6.11 summarizes the errors for
each liquid per model.
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Figure 6.12: SHAP figure indicating feature importance and impact to estimation

Table 6.11: Pressure drop estimation summary of models (MAPE)

Fluid Linear model Non-linear model

Acetone 1 - -
Ethanol 20% 2.3%
Water 42.8% 1.5%
Isopropanol 22.5% 7.9%

6.4 Viscosity

Viscosity can be estimated with a mathematical Hagen Poiseuille equation, however, it
has been shown that the accuracy is very dependent on mass flow, as well as other inac-
curacies due to the simplification of physics, i.e. it would be very challenging to include
exact geometry of the Coriolis suspended tube, such as rounded edges. Using the Hagen-
Poiseuille equation on this data set to estimate viscosity, on average it produces 7.2%,
13.2% and 5.4% error, for ethanol, water and isopropanol respectively. This error also
depends on temperature, pressure and mass flow. For estimations performed with linear
and non-linear models, we take out Acetone and nitrogen measurements, as well as filter
mass flow to ≥ 0.5 g/hr, since measurements with no flow do not yield a pressure drop.

6.4.1 Linear models

Choosing the most linear feature to viscosity shows that pressure sensors by themselves do
not have a linear relation to viscosity, while frequency has the highest correlation coefficient
to viscosity. Due to the colinearity between frequency and ∆φC2, the latter feature is not
used in the model. Due to the compressible nature of gas, for the linear model, nitrogen
is not used.

Although the linear correlation of pressure sensors to viscosity is very low, based on
physics, they are important to estimate the viscosity. This was also observed empirically,
that without including the pressure sensors, linear model viscosity estimation performs
much worse. Furthermore, the magnitudes of C1 and C2 are not statistically significant to
estimate the viscosity based on P-values. Pressure sensors are linearly correlated with each

1Pressure sensor readings very insensitive
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Table 6.12: Linear colinearity between features

Features Fω ∆φC1 ∆φC2 Rtrack Magn. C1 Magn. C2 Viscosity

Fω 1 0.36 -0.85 0.02 -0.31 -0.39 -0.64
∆φC1 0.36 1 0.14 0.17 0.27 -0.30 -0.36
∆φC2 -0.85 0.14 1 -0.04 0.28 0.35 0.49
Rtrack 0.02 0.17 -0.04 1 -0.85 -0.75 -0.32
Magn. C1 -0.31 -0.27 0.28 -0.85 1 0.98 0.42
Magn. C2 -0.39 -0.30 0.35 -0.75 0.98 1 0.43
P1 0.05 0.52 0.28 0.58 -0.51 -0.44 -0.08
P2 0.08 -0.13 -0.08 -0.61 0.50 -0.42 0.17

other, having a 0.84 Pearson coefficient. A simple linear combination of features does not
outperform the classical approach of viscosity estimation. To resolve this, we can include
Hagen-Poiseuille in the linear model, performing additional feature engineering for which
we can use Equation 2.18. Since we do not care about the constants in linear regression,
as they are multiplied by a scalar, we can use feature ∆P

∆φ , which is analogous to the
ratio between pressure drop and mass flow. Furthermore, the best performance is achieved
while including both ∆φC1 and ∆φC2, although the colinearity affects the interpretation of
accurate weights to colinear features. This indicates a very small dependence on individual
sensing elements, replacing with ∆φ decreases the accuracy by 2%.

We define a linear model

y = β0 + β1∆φC1 + β2∆φC2 + β3
∆Pr

∆φ
+ β4Rtrack + β5Fω + β6P1 + β7P2

Table 6.13: Linear regression coefficients with most significant polynomial features

Feature Weight

β1 (∆φC1) 0.0005
β2 (∆φC2) -0.0030
β3 (∆Pr

∆φ ) 0.0002
β4 (Rtrack) -0.0012
β5 (Fω) -0.0007
β6 (P1) 0.0058
β7 (P2) 0.0040

Chosen features have significant P-values of much lower than P < 0.025. Since the
viscosity labels are extremely small, i.e. ranges from 10−5 to 10−3, the linear combination
of the features will also have very small weights, which might be challenging to interpret
individual features’ impact. Based on feature weights shown in Table 6.13, it can be seen
that P1 and P2 features are the most significant. Linearly, the viscosity estimations are
very sensitive to mass flow, and the best-performing fluid is Ethanol, with an R2 of 0.36,
shown in Figure 6.13a.
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(a) Viscosity estimation on ethanol using a linear
model. Showcasing fluid state dependence.
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(b) Viscosity estimation on IPA using a linear
model. Showcasing fluid state dependence.

Figure 6.13: Viscosity estimation result of a linear model, plotting testing dataset (70%).
At constant temperature, the measurements contain varying pressure and mass flow pa-
rameters.

The mean absolute percentage error for these estimations are 7.8%, 25.3% and 11.4%
for ethanol, water and isopropanol respectively. If ∆Pest is used instead, which is pressure
drop calculated with respect to the Pin, compensating for temperature, the performance
is much better, resulting in 5.9%, 11.6% and 3.6% respectively.

6.4.2 Non-Linear models

Applying SVR with RBF kernel, the results outperform the linear method by a significant
amount due to the feature space produced by the kernel. The best-performing fluid shown
in Figure 6.14, water achieves R2 of 0.99.
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Figure 6.14: Viscosity estimation using non-linear kernelized SVR method. Showcases
estimation with fluid state dependence.

With the selected features, there is a colinearity of 0.84 between P1 and P2 values. The
feature significance of the selected features is shown in Figure 6.15. The values show some
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consistency with physics - the higher the temperature (Rtrack), the less viscous the fluid,
likewise, pressure readings have the most significance in the estimations, with a mostly
linear relationship.
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Figure 6.15: SHAP feature significance and impact on estimation

A second non-linear method is a Gaussian Process. Since it is a non-parametric method,
it can fit non-linearly better due to its kernel hyperparameter length scale, involving co-
variance calculation with points further away. Applying the same features as previously
for SVR, the results look very promising. All of the fluids have explained variance (R2) of
>0.99, results are shown in Figure 6.16.
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(a) Viscosity estimation using Gaussian Process
on ethanol
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(b) Viscosity estimation using Gaussian Process
on isopropanol

Figure 6.16: Gaussian Process applied on a trained liquid, and showcasing results on (70%)
testing dataset

Feature significance shows very different model impact patterns compared to SVR.
The temperature dependant track (Rtrack) and resonance frequency (Fω) seems to have
less impact while the pressure sensors seem to be much linear impact. This may be due
to the SVR epsilon loss, as the maximum error in the test dataset is 4.35% compared
to 5.56% of GPR. Although ∆Pr

∆φ should be a significant feature, as it is proportional to
kinematic viscosity, the influence from using sensor readings directly is not so linear to
viscosity. Difference between electrical readings ∆Pr and fitted readings ∆Pest is shown in
Figure 6.18.
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Figure 6.17: SHAP feature significance and impact on estimation
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temperature showcasing distribution for individ-
ual fluid.
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(b) Pressure readings directly from Wheatstone
readout showcasing distribution for individual
fluid.

Figure 6.18: Differences between estimated pressure drop using pressure input as a refer-
ence, and the direct on-chip measurements

This approach works reasonably well for some liquids (e.g. IPA), even if a certain
temperature range was taken out from the training data set. However, for the best accuracy,
it has to interpolate between liquids, hence nitrogen was excluded. One such viscosity
interpolation for temperature between 28 ◦C and 30 ◦C can be seen in Figure 6.19. The
downside of excluding temperature range, it becomes very fluid-state dependent.

Ethanol had the largest error in terms of this interpolation, achieving a maximum error
of 29% at very low flow (0.5 g/hr). On average, the estimation of the unseen temperature
range is 16.8%, 5.5%, and 9.8% for ethanol, water and isopropanol respectively.
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(a) Viscosity estimation on ethanol, on a range of
temperatures, excluding 28-30 ◦C from training
completely.

T = 35°C
High flow

Low flow

Pressure = 4 bar
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(b) Viscosity estimation on isopropanol, on a
range of temperatures, excluding 28-30 ◦C from
training completely.

Figure 6.19: Viscosity estimations showcasing fluid-state dependence on unseen tempera-
ture range

Another performance check is to exclude ethanol entirely from the training dataset and
check the performance of the unseen fluid. Since ethanol viscosity is between water and
isopropanol, theoretically it should interpolate viscosity between the trained viscosities.
The result shows a huge offset in the estimated viscosity Figure 6.20a compared to the
trained liquids Figure 6.20b. This also shows that it transformed into features which are
completely fluid-state independent.
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(a) Viscosity estimation on ethanol while com-
pletely excluding ethanol from training.
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(b) Viscosity estimation on isopropanol, while
excluding ethanol, increasing accuracy on other
trained fluids

Figure 6.20: Viscosity estimation showcasing fluid state independence on untrained fluid
as well as trained.

This offset issue seems to be completely frequency-dependent. Which might be affected
by the normalization method. Without normalizing or applying different techniques, it
produces different results. Deriving a new scaling method instead of min-max might solve
the offset. The current approach is to simply offset ethanol frequency by subtracting 100
Hz from its fundamental frequency. This results in very accurate viscosity estimation as
shown in Figure 6.21 although the liquid has not been trained, it shows the potential of
using a statistical approach to determine viscosity.
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Figure 6.21: Viscosity estimation on ethanol while completely excluding ethanol from
training. The frequency was offset by 100 Hz to solve the resulting viscosity offset.

The final result shows that the Gaussian Process can estimate viscosity very accurately,
achieving <2 % error on average, even while including nitrogen in the training data set.
However, since Nitrogen is an extreme outlier with its characteristics, it achieves an average
112% error, while at higher temperatures it is even more. Overall, the GPR outperforms
conventional approaches by a factor of ≈ 4 compared to the same dataset presented in [71].
In the worst-case performance, SVR outperforms GPR, however, on average, GPR has the
best performance. A summary of temperature-dependent viscosity with estimated values
using Gaussian processes regressor can be seen in Figure 6.22.
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Figure 6.22: Estimated viscosity of the fluids

1Insensitive pressure readings
2Hagen-Poiseuille estimation only works on non-compressible fluids
3Estimated using ∆Pest
4The better performance represents the offset correction
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Table 6.14: Viscosity estimation summary of models (MAPE)

Fluid Linear model Non-linear(SVR) Non-linear(GP) Hagen-Poiseuille 3

Acetone 1 - - - -
Ethanol 8.0% 0.78% 0.65% 7.2%
Ethanol(unseen) 4 - 4.76 % / 74% 1.18% / 75.3% -
Water 25.6% 0.39% 0.76% 13.2%
Isopropanol 11.4% 0.67% 0.47% 5.4%
Nitrogen 2 - - 112% -

6.5 Density

In theory, frequency should be proportional to the density of the fluid. However, the
frequency is affected by temperature, pressure and fluid differently. Using frequency as
directly proportional to density, on average, the absolute error is 17.4 kg/m3, 17.2 kg/m3,
81 kg/m3, 3 kg/m3 11.4 kg/m3 for acetone, ethanol, water, isopropanol and nitrogen
respectively.

6.5.1 Linear models

Similar features as the previous viscosity section are present to estimate density. As already
known, frequency is the most linearly correlated to density, having a coefficient of -0.99
(this is due to lower density equaling higher frequency). Similarly, ∆φCi features have
some linear correlation.

Table 6.15: Linear colinearity between features

- Fω ∆φC1 ∆φC2 Rtrack Magn. C1 Magn. C2 Density

Fω 1 0.30 -0.82 0.02 -0.27 -0.35 -0.99
∆φC1 0.30 1 0.25 0.15 -0.24 -0.27 -0.32
∆φC2 -0.82 0.25 1 -0.06 0.25 0.31 0.82
Rtrack 0.02 0.15 -0.06 1 -0.86 -0.77 -0.04
Magn. C1 -0.27 -0.24 0.24 -0.86 1 0.98 0.29
Magn. C2 -0.35 -0.37 0.31 -0.77 0.98 1 0.37

However, due to the effective spring constant of the suspended tube, the frequency is
dependent on pressure. To include pressure, temperature and flow dependence, we will
use features: ∆φC1, Rtrack, P1, P2 and frequency. Although magnitudes of the C1 and C2
signals have more correlation w.r.t density, the resulting estimation is very noisy, which
is most likely due to harmonic dependence on the signal, as analysed in Chapter 5.2.4.
Due to the high magnitude dependence on temperature, substituting with Rtrack should
be sufficient. Similarly, ∆φC2 has a high correlation to density, however, its colinearity
with frequency affects the interpretation of the model. Although including it as a feature
to estimate density improves the estimation on average by ≈ 4.8kg/m3, the weights of the
features are mainly shifted between the frequency and ∆φC2.

Defining Linear model as :

y = β0 + β1Fω + β2P1 + β3P2 + β4∆φC1 + β5Rtrack
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Table 6.16: Linear regression coefficients

Feature Weight

Fω -920.83
P1 45.98
P2 28.89
∆φC1 -31.79
Rtrack -14.21

The chosen features all have P < 0.001 and are significant. The density estimation
seems to be substantially sensitive to mass flow, as well as temperature, as seen in Figure
6.23. The weights of features show that frequency is the most dominant component. Since
features are normalized in a range from 0 to 1, the frequency weight might seem not
intuitive. The linear model has an offset (β0) in the initial predictions, which results in
density decrease with frequency increase. Likewise, the upstream pressure (P1) has quite
a substantial effect. At the highest pressure, it increases density by 45.98 kg/m3, however,
it is reduced by temperature and mass flow. The overall performance of the linear model
outperforms the Frequency ∝ Density as an estimation by a small margin. The MAE values
are 12 kg/m3, 16.8 kg/m3, 80.9 kg/m3, 6 kg/m3 and 12.3 kg/m3 for acetone, ethanol, water,
isopropanol and Nitrogen respectively.
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Figure 6.23: Linear model on fluid density estimation

Linearly, it seems there are many different influences to estimate accurately fluid den-
sity. Frequency and density vary quite a lot depending on its fluid state (mass flow,
pressure, temperature), as well as fluid properties itself. This is shown in Figure 6.24, a
contour plot showcasing three liquids which are very similar in density, however at the same
frequency, the density may differ by > 20 kg/m3. Likewise, due to the different properties
of gasses, the effect of frequency on nitrogen is opposite due to its compressibility property
as shown in Figure 6.25a.
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Figure 6.24: Similar density liquids, and their contour plots of frequency with respect to
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Figure 6.25: Contour plots of fluids very different from the rest

6.5.2 Non-Linear models

Similarly, as with other estimations, we re-use the same features as in the linear case and
apply SVR with the RBF kernel to estimate the density. The results show very accurate
predictions of density based on the given features [Figure 6.26].
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Figure 6.26: Density estimation on trained liquid using SVR

The fundamental feature as expected is frequency. The impact of pressure sensors, as
well as mass flow, seem quite similar to each other, while temperature has quite a small
effect. These feature impacts are similar to the linear case, where higher flow (∆φC1)
decreases the density, while higher pressure increases. The overall performance is quite
superior compared to the linear method. The density error for each fluid is 0.62 kg/m3,
0.34 kg/m3, 2.6 kg/m3, 1.34 kg/m3 and 0.75 kg/m3 for acetone, ethanol, water, isopropanol
and nitrogen respectively. On average, SVR outperforms the linear method by 23 kg/m3.
The feature’s importance and impact on the estimation can be seen in Figure 6.27

600 400 200 0 200
SHAP value (impact on model output)

Rtrack

P2

P1

C1

F

Low

High

Fe
at

ur
e 

va
lu

e

Figure 6.27: SHAP SVR with RBF feature importance

It is also interesting to see how it performs on unseen liquids, i.e. estimating properties
of unknown liquids. Since there are two extremes - nitrogen and water, the estimation can
be performed on liquids between this range. Applying the trained model which excludes
ethanol, shows its high dependence on the fluid state, particularly mass flow. This estima-
tion can be seen in Figure 6.28a. On average, it has an error of 7.2 kg/m3. However, if we
exclude low mass flow (< 2 g/hr), the performance is better, reaching an average error of
4.3 kg/m3, shown in Figure 6.28b
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flow >2 g/hr

(a) Density estimation on untrained fluid
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(b) Density estimation on untrained fluid, fil-
tered for mass flow of >2 g/hr

Figure 6.28: Density estimation on untrained fluid, showcasing fluid-state dependence

Applying the non-parametric technique - the Gaussian Process performs better than
SVR on trained fluids. Overall average performance is increased by ≈ 1 kg/m3. One such
sample estimation is shown in Figure 5.10b. The results for individual fluid achieve an
error of 0.13 kg/m3, 0.09 kg/m3, 0.3 kg/m3, 0.18 kg/m3, 0.19 kg/m3 for acetone, ethanol,
water, isopropanol and nitrogen respectively.
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Figure 6.29: Density estimation on trained fluid using GP showcasing fluid-state indepen-
dence

However, the performance of SVR is better for unseen fluids. Applying the same method
for unseen liquid as in the SVR case, the result reaches an average error of 10 kg/m3. In
contrast, to SVR’s significant dependence on flow, the GPR results have different effects
as shown in Figure 6.30.

73



0 200 400 600 800 1000 1200 1400
Experiments #

790

795

800

805

810

815

820

825

830

D
en

si
ty

 (k
g/

m
3 )

Ethanol

Predicted density (kg/m3)
Label Density (kg/m3)

Figure 6.30: Density estimation on untrained fluid using GP

Feature significance shows a similar trend to the SVR case, however, pressure sensors
have different properties in estimating density. Likewise, the mass flow has much less
impact (see Figure 6.31).
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Figure 6.31: Gaussian Process feature importance
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Figure 6.32: Density estimation on test data set (70%). The error plot represents maximum
error.

1The lower error is with higher mass flow (>2 g/hr)
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Table 6.17: Density estimation models summary (MAE)

Fluids Linear Non-linear (SVR) Non-linear (GP) Fω ∝ Density

Acetone 12 kg/m3 0.62 kg/m3 0.13 kg/m3 17.4 kg/m3

Ethanol 16.8 kg/m3 0.34 kg/m3 0.09 kg/m3 17.2 kg/m3

Ethanol(unseen)1 - 4.3 / 7.2 kg/m3 10.1 kg/m3 -
Water 80.9 kg/m3 2.6 kg/m3 0.3 kg/m3 81.8 kg/m3

Isopropanol 6 kg/m3 1.34 kg/m3 0.18 kg/m3 3.4 kg/m3

Nitrogen 12.3 kg/m3 0.75 kg/m3 0.19 kg/m3 11.4 kg/m3

6.6 Fluid type classification

To determine what liquid was being measured, we can use probabilistic models to determine
the measured fluid based on its response to the sensing elements.

6.6.1 (Naive) Bayes

One of the most straightforward probabilistic models is Naive Bayes. It assigns probabilities
for each class (fluid) given data.

From the data analysis performed in Section 5.2.5, it is known that capacitive signal
offset does not depend on any fluid and is proportional to temperature. Similarly, mag-
nitude had some minor differences per fluid but was more sensitive to temperature. The
intrinsic features which correspond mostly to different fluids were frequency, pressure sen-
sors, and some fluid differences in ∆φC1. Although ∆φC2 has more correlation for density,
it is quite colinear with frequency. For classification, we use frequency, P1 and P2 readings,
temperature-dependant resistive track (Rtrack) and ∆φC1. Applying the Naive Bayes ap-
proach, we can probabilistically predict which liquid is measured. The results obtained
show an overall accuracy of 82.9%, with nitrogen and water perfectly classified. Recall
scores of acetone, ethanol and isopropanol correspond to 61.1%, 93.1% and 67.3%, (of
specific fluid correctly classified) while precision corresponds to 68.5%, 87.8% and 67.8%
(correctly classified % of the time). However, very similar results can be seen from a simple
Bayes classifier, classifying directly based on frequency. The total accuracy drops by 6.6%,
while still correctly classifying water and Nitrogen. Including more fluid-dependent fea-
tures increases accuracy on similar liquids. The best-performing model with Naive Bayes
is shown in Figure 6.33.
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Figure 6.33: Naive Bayes confusion matrix

The reason for the performance is due to the similarity between acetone, ethanol and
isopropanol densities. This results in very similar frequencies, which overlap, and in return
misclassify fluids based on it. The frequency distribution of fluids (excluding nitrogen
due to its very different frequency) is shown in Figure 6.34a, and Figure 6.34b shows the
samples misclassified respectively to their density distribution.
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Figure 6.34: Distribution of frequencies with respect to individual fluids, and misclassified
samples with reference to the distribution

6.6.2 Gaussian Process

Applying the Gaussian process classifier, the performance is much superior with only a
fraction of training data. The input features are the same as the Naive Bayes approach,
using frequency, pressure (upstream/downstream) sensors, resistive track and ∆φC1. These
features were not normalized to keep the distance between fluid-specific measurements far
apart.

The accuracy of the models varying how much data is used to train the model is shown
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in Figure 6.36a. With only 1% of data (55 samples), the performance is similar to that
of Naive Bayes. The samples consist of measurements of 23, 11, 10, 6, and 5 of ethanol,
isopropanol, acetone, water and nitrogen respectively. While only a few measurements of
water and nitrogen were included, they were classified correctly without misclassifying, and
the confusion matrix looks similar to that of Naive Bayes, with ethanol also being correctly
classified 100% of the time. Using 5% of training data, there is not much difference between
using more for training the models as shown in Figure 6.36a. It achieves 99.5% accuracy,
with few misclassifications on similar liquids in terms of densities (isopropanol and acetone).
The confusion matrix where only 5% of the data was used is shown in Figure 6.36b

In total, there were 24 misclassifications, which from a frequency perspective, most
of the samples had overlapping frequencies. The samples which were misclassified are
visualised in Figure 6.37, showcasing from which part of the distribution the samples were.
The results show that using GPC, the results are completely fluid-state independent, and
only a very small amount of data is required. The general model performance still mainly
depends on frequency as a feature and pressure sensors similarly assist in determining the
fluid based on its viscosity. The feature importance is shown in Figure 6.35.
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Figure 6.36: Gaussian Process performance
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6.6.3 DeepSense

In an attempt to capture more features across a wide range of frequency components, we
use the DeepSense deep learning architecture developed by Yao et al. The original paper
uses real and imaginary features directly into the architecture, which they used to classify
human activity based on accelerometer and gyroscope measurements. In our scenario,
we have readings of capacitive signals, which similarly can use frequency components to
classify the liquids. The best-performing model achieves an accuracy of 98.7%. In the
input layer, it convolves real parts of the frequency components as [C1 real, C2 real] as the
left side of the input, and equivalently, [C1 imag, C2 imag]. The confusion matrix results
can be seen in Figure 6.38. It can be observed, that the main misclassified fluids were quite
similar in their density properties, i.e. frequency components were overlapping.
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Figure 6.38: DeepSense classification results summarised in confusion matrix

Varying the number of feature maps (filters) against the training data shows that with
more filters, it requires much less training data to achieve close to 92% accuracy, still
outperforming the simple Bayes classifier based on frequency data. With more training
data, 16 filters achieve comparable performance, with the advantage of faster training.
This can be seen in Figure 6.39
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Figure 6.39: DeepSense architecture

The architecture output for the left side and right side of the convolutions can be seen
in Figure 6.40. Using real and imaginary components directly in the architecture seems
to compress data, and find impulse responses for resonant frequencies. The peaks vary
depending on the resonant frequency of the fluid, such as the nitrogen peak is around 600
on the x-axis.
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Figure 6.40: Visualised architecture output for a single measurement

Multiple orders of pairs of inputs were tested. This means that the individual convo-
lution was performed on [C1 real, C2 real], [C1 real, C1 imag] on the left and right side
as an input to the architecture. Similarly, magnitude and phase spectrums were also used
as input, which was preprocessed by finding the magnitude with the square root, as well
as phase with arctan operations. Using phase spectrum and magnitude spectrum directly
such as [C1 magnitude, C2 magnitude] and [C1 phase spectrum, C2 phase spectrum] shows
sub-optimal results. The convolutions on the phase spectrums seem to be unable to learn
the fundamental features, and they converge to extremely small values in the output of
the convolutions as shown in Figure 6.41a. This may be due to the fact that the phase
spectrum with the non-linear arctan operation contains too much noise and finding reso-
nance frequency is too complex, while magnitude spectrum convolutions similarly compress
data as shown in Figure 6.41b, and the resonant peaks correspond to the best-performing
approach.
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If we exclude the phase spectrum and use magnitude spectrums instead, this results in
very similar results to the Bayes classifier, with an accuracy of approximately 70%. This
underperformance is caused by scaling magnitude values by 1

N , where N is the number of
samples (250kHz) which results in the majority of the frequency components closer to 0,
while only harmonics have some magnitude value. Directly training on unscaled magnitude
features, the model achieves an accuracy of 92%. This difference seems to be caused by
feature map smoothness, as seen in the difference between Figure 6.41b and Figure 6.40,
where using magnitude spectrum directly, has less ’noise’ in the higher frequencies in
contrast to convolving real and imaginary components it produces ’noisier’ output, which
increases accuracy. Similarly, the imaginary components assist in determining what liquid
was being measured. This may be due to some small noise footprint from individual liquids.
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Chapter 7

Discussion

This work aims to improve Coriolis-based microfluidic mass flow sensors by using a ma-
chine learning-driven approach, and demonstrates possibilities to enhance MEMS-based
devices using machine learning. The current standard techniques rely on physical relations
to estimate mass flow, pressure, temperature, density and viscosity. With our proposed
methods, we combine sensing elements to compensate for fluid property differences. This
project covers a lot of multi-disciplinary knowledge, which involves the physics of fluid dy-
namics and its properties, as well as the physics of the microfabricated Coriolis mass flow
sensor which acts as a domain knowledge to apply machine learning methods to estimate
fluid properties in question.

The main results demonstrate that using a resonance frequency in combination with
phase difference achieves more accurate mass flow results in contrast to just applying phase
difference directly. This is due to phase difference sensitivity having a physical relation to
frequency. This is discussed in Section 6.1.1. Applying a non-linear method to estimate
the mass flow, the error reaches approximately 1.2% Full-Scale, which still indicates there
are non-linearities in the reading, which are not captured by the fundamental signal. Using
frequency spectrum instead via a deep learning approach may increase the performance
even further. Likewise, a statistical machine learning approach to determine viscosity
and density shows less fluid-state dependence while only using a small sample of training
data (30%). Moreover, these results outperform state-of-the-art methods presented by
H.Bissig et al. [71] by a factor of > 4. The results of density and viscosity estimation from
this thesis have been submitted to the peer-reviewed, 37th International Conference on
Micro Electro Mechanical Systems (IEEE MEMS 2024). Correspondingly, applying similar
methods to classify what fluid was measured based on its electrical readings, achieves near-
perfect accuracy while only using a small fraction of the data (5%) to train the model.
Similarly, a deep learning approach to process Coriolis signals shows a lot of promise. By
using the frequency spectrum, instead of summarized features, it can incorporate the non-
linearities in the measurements. With the current approach, the deep learning approach
has shown that it is able to determine the measured fluid, outperforming a simple Naive
Bayes approach, moreover, the impulse responses in the architecture output, similarly show
dependence on mass flow, temperature and pressure, which indicates a unified approach is
possible.

This research still has many limitations and drawbacks. For example, the labels used
as a ’ground truth’ in like manner have accuracy to actual true values of every measure-
ment due to equipment having accuracies such as 0.5 % FS for mass flow readings, with
differences in the accuracy of gas and liquids. With the mass flow controller being out-
side of the highly controlled temperature environment, may introduce more errors. Errors
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were introduced by simplification of modelled labels, such as pressure drop, and labels for
density and viscosity as well as accuracies of the literature values. This is more obvious
with nitrogen measurements, as its density is much more sensitive to pressure, in which
the pressure changes with mass flow, introducing further errors. Likewise, there are draw-
backs to chosen fluids: it contains two extremes in terms of densities - water being much
denser than other liquids, and nitrogen gas, which has completely different properties from
liquids, e.g. it is compressible, while isopropanol, ethanol and acetone have very similar
densities. The last limitation is that only one CMFS was analysed, which does not repre-
sent the average performance of a device. Miniscule variations in resistivities/sensitivities
affect the performance, which may result in a lot of work to implement a machine-learning
approach as a commercial product for individual devices. This requires more validation
to check the transferability of models. Many of these limitations and drawbacks are easily
solvable, which includes more variety of fluids, as well as more devices to validate these
results.
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Chapter 8

Conclusion

This research aimed to improve CMFS via a data-driven approach, analysing measured
electrical signals, and combining them to improve the general performance of the device
(mass flow, pressure and viscosity sensing), as well as finding potential new methods, such
as estimating pressure drop purely based on Coriolis vibration signals. The main research
question for this project is given as:

How viable is a machine learning application on MEMS-based Coriolis flow sensors to
estimate mass flow, temperature, pressure, viscosity and predict the type of fluid?

The following sub-questions aim to answer the extent of accuracy of the machine learning
approach on CMFS.

8.1 Research sub-question 1

• To what extent in terms of accuracy, linear and non-linear models are able to combine
capacitive and resistive signals measured from Coriolis Mass Flow Sensor to estimate
mass flow, pressure, density, temperature and viscosity?

Mass flow

The best-performing linear model for mass flow achieves full-scale accuracy of ≈ 2.05% if
nitrogen (gas) is excluded, and ≈ 2.6% if including gas. Implementing a non-linear method
SVR with RBF, the performance reaches ≈ 1.2% even if gas is included. In contrast, using
∆φ as a direct measure of mass flow achieves ≈ 5%. [Section 6.1]

Pressure

[NOTE: Since no accurate label was available, the pressure drop was based on on-chip
pressure sensors, with a reference to pressure input.] Linear model performed on average
with an error of approximately 23.9%, showing high fluid dependence. Similarly, with a
non-linear model, the pressure drop estimation performed much better, reaching an average
error of approximately 3.8 %, with less dependence on fluids. [Section 6.3]

Temperature

For temperature estimation, it was found that offsets of capacitive signals are highly linear
to temperature, and it is already a good estimate of temperature, on average producing
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an error of 0.33 ◦C. Applying a non-linear model, the temperature drop is highly accurate,
reaching the limit of the accuracy of measurement instruments (0.1 ◦C). [Section 6.2]

Density

With a linear approach, the density on average achieves ≈ 25 kg/m3 error, which is very
similar to the performance of simply using frequency proportional to density. The best-
performing non-linear approach using GPR achieves on average an error of ≈ 0.178 kg/m3

or 0.01% relative error for trained liquids. [Section 6.5]

Viscosity

Linear viscosity estimation does not outperform the Hagen-Poiseuille approach and reaches
an average error of 13% (depending on the fluid state). The best-performing approach using
GPR achieves an average 0.39 % error on trained liquids, excluding nitrogen, due to its
compressibility factor. Similarly, it shows the potential to have similar performance on
untrained fluids, achieving a 1.18 % error with offset correction on ethanol. [Section 6.4]

8.2 Research sub-question 2

• To what extent can different fluids be distinguished from each other using measured
sensing elements at different measurement conditions using probabilistic models?

Applying the Naive Bayes classifier, it achieves 83% accuracy, mainly misclassifying
acetone and isopropanol, with the two fluids being classified 67% and 61.9% correctly.
Classification using Gaussian processes, achieves near-perfect accuracy of 99.5% using only
5% of training data, whilst similarly only misclassifying a couple of cases of acetone and
isopropanol measurements due to their similarities. [Section 6.6]

8.3 Research sub-question 3

• Is one of the state-of-the-art methods (DeepSense) able to capture the non-linearity’s
better compared to the linear/non-linear models?

DeepSense method results in an accuracy of approximately 98% if it learns on 40% of
the measured fluids. This performance is comparable to the Gaussian Process, with simi-
larly misclassifying acetone and isopropanol measurements due to their property similarity.
[Section 6.6.3]

8.3.1 Main research question

Revisiting the main research question:

How viable is a machine learning application on MEMS-based Coriolis flow sensors to
estimate mass flow, temperature, pressure, viscosity, density and predict the type of fluid?

The estimations on fluid properties show a lot of promise. Density and viscosity show
less fluid-state dependence, and these results outperform accuracies mentioned in an ar-
ticle by H.Bissig et al. [71], which showcased state-of-the-art viscosity and density deter-
mination. Similarly, determining (classifying) what liquids were measured shows superb
accuracy with only a fraction of the data used, while measurements contain very similar
liquids.

85



Appendix A

Appendix

Wheatstone bridge

mixer filter

carrier
generator

charge
amplifier

readout capacitor
of the Coriolis

mass flow  sensor

capacitive readout

ADC card

×2 mirror line

R3

R4

R1

R2 mixer filter

difference
amplifier

Wheatstone readout

carrier
generator

offset correction

actuation

reference
inlet/outlet

pressure sensor

sensor (on-chip)

data
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