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Summary

Hollow-fibre membrane oxygenators temporarily substitute lung function by facilitating
blood oxygenation. These devices operate by a flow of blood through a container filled
with thin, gas-permeable fibres. Oxygen within these fibres diffuses through the membrane
directly into the bloodstream. The fibres are typically arranged in stacked or wrapped
mats, facilitating relatively large inter-fibre spacings. In contrast to the length scales of the
capillaries found in the lungs, these spacings are typically at least an order of magnitude
greater than the size of red blood cells. At these length scales, particles such as red
blood cells can migrate away from solid boundaries. This migratory behaviour results
in a non-uniform distribution of the particles throughout the flow domain. While both
the oxygenation of blood and the particle migration of red blood cells are extensively
studied fields, the combination of both phenomena has yet to be considered in the extent
of oxygenators. To this end, the main research question of this study was formulated as,

What is the effect of shear-driven particle migration, experienced by red blood cells, on
the gas transfer of oxygen inside hollow-fibre membrane oxygenators?

In this thesis, an extensive review of available models for two-phase flows, blood rheology,
particle migration, and oxygenation has been performed. The review allowed the estab-
lishment of well-founded considerations for the modelling of blood flow and oxygenation
in membrane oxygenators. Blood can be considered a two-phase dispersed system whose
flow inside membrane oxygenators is assumed to be laminar and that of a Stokesian sus-
pension. Blood can now be modelled as a single-phase mixture with a non-Newtonian
rheology. The primary rheological features considered for blood could be reduced to the
sole consideration of its shear-thinning character, which depends on the local shear rate
and particle concentration. The modelling of the migration of red blood cells could be
done using a phenomenological model. This model considers the observation of migration
to be dependent on hydrodynamic particle interactions and variations in mixture viscosity.
Finally, the modelling of oxygenation was considered through a newly derived oxygena-
tion model based on the theory of two-phase flows. The model considers the total mass of
oxygen to be conserved, albeit dissolved in blood plasma or bound to the red blood cells.
Numerically derived results indicate that the bulk flow behaviour of the red blood cells was
the crucial factor in the observation of oxygenation resistances due to particle migration.
In axisymmetric pipe flow, this is of great importance as the bulk flow exhibited signifi-
cant increases in particle concentration. The observed differences between the migratory
and non-migratory considerations showed a maximum of about 12% in mean flow oxygen
saturation. However, these differences were not observed considering an oxygenator as a
maximum value of about 1.56% was found. The particle concentration did show a signif-
icant change locally around the fibres. However, the bulk flow saw only slightly elevated
concentrations.
Additionally, the influence of Newtonian rheology was studied. It showed differences in
oxygen saturation up to about 9%, even considering an oxygenator. This observed be-
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haviour could be related to the parametric fitting for the non-Newtonian viscosity model
considered in this study and requires further research. Lastly, the considered oxygenation
model showed an overestimation of oxygen saturation. This overestimation is linked to
the omitted modelling consideration of interphasic oxygen transport, and a more accurate
description of this behaviour warrants further research.
In conclusion, the influence of particle migration on the oxygenation of blood in hollow-
fibre membrane oxygenators can typically be regarded as negligible.
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Chapter 1

Introduction

The blood that runs through our veins is a complicated fluid that serves an important
function, namely, the transportation of oxygen throughout our bodies. This transportation
is primarily fulfilled by the red blood cells suspended in the flow of blood. These cells are
abundant in blood and give the fluid its distinctive red colour through an iron-rich protein
in the cell known as haemoglobin. This protein makes up about a third of the cell and is
the protein to which the oxygen is allowed to bind to facilitate transportation throughout
the body.

1.1 The Respiratory System and Gas Exchange in the Lungs

The respiratory system is the well-oiled machine in our bodies that efficiently ensures the
oxygen we breathe is loaded into the bloodstream while excreting the carbon dioxide from
our system. Upon inhalation, oxygen enters the lungs and traverses the tracheobronchial
tree, a branching network that extends into both lungs, facilitating gas distribution. Inside
the lung, the tree contains several small successive pathways known as bronchioles through
which the air is distributed [19]. Each pathway is shorter and narrower than the last and
ends in a collection of tiny air pockets known as the alveoli. The tiny alveoli are covered in
narrow blood veins denoted capillaries. These capillaries are generally sufficiently small,
so red blood cells are forced to flow through them individually, also known as single-file red
blood cell motion [95]. This type of blood flow inside the capillaries, combined with their
high density around the alveoli, ensures an efficient oxygen transfer between the lungs
and the bloodstream. A bronchiole with several alveoli and a close-up of the gas transfer
basics between a single alveoli and capillary are illustrated in figure 1.1.

(a) Bronchiole (b) Alveoli

Figure 1.1: Gas exchange between alveolus and capillaries, adapted from [27].
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1.2 Hollow-Fibre Membrane Oxygenators

In some instances, such as cardiovascular surgery, the oxygenation of our blood should be
performed artificially. An important technique used in this regard is the cardiopulmonary
bypass. This procedure temporarily takes over the oxygenation and circulation of blood
during surgery on the heart and great blood vessels [91]. The oxygenation is accomplished
through a heart-lung machine, which circulates the blood outside the body. The ma-
chine typically consists of four main components: a reservoir, pump, heat exchanger, and
oxygenator [24]. The oxygenator component is then where the exciting physics of blood
oxygenation happens and replicates the behaviour of the respiratory system.
One of the most popular and widely regarded oxygenator types is the hollow-fibre mem-
brane oxygenator (HFMO) [49] illustrated in figure 1.2. This type of oxygenator is designed
to mimic the natural gas exchange process in the lungs and functions by having blood flow
through a container filled with thin, flexible, gas-permeable fibres [24]. These fibres are
generally knitted into fibre mats, stacked at various angles or wrapped around an inner
core at various angles [93]. The knitting process is a cost-effective manufacturing method
that, due to the flexibility of the fibres, introduces random inter-fibre distances. These
distances generally exceed the typical length scales of lung capillaries by at least an order
of magnitude, and their randomness plays a crucial role in enhancing the efficiency of the
oxygenation process.

Figure 1.2: A hollow-fibre membrane oxygenator with wrapped fibres and heat
exchanger unit, adopted from [24].

1.3 Particle Migration

Compared to the typical capillary size, the relatively large inter-fibre distances found
in hollow-fibre membrane oxygenators allow the red blood cells to move away from the
fibres. This process is known as shear-induced particle migration and is a well-studied
phenomenon observed for generic particle suspensions and blood flows [104]. The red blood
cells will concentrate in regions with low velocity gradients, such as the central line in pipe
flow, causing a non-uniform spatial distribution. Under the right conditions, this migratory
behaviour is sufficiently severe to deplete the boundary region entirely. This depleted
layer is commonly referred to as the cell-free layer (CFL) and is primarily composed of the
suspending fluid [22], known as blood plasma. The formation of the cell-free layer may
also induce cell margination of white blood cells and platelets. This phenomenon denotes
the opposing behaviour observed by the white blood cells and platelets upon red blood
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cell migration. The cell-free layer, migration, and margination are illustrated in figure 1.3.
The cell-free layer is influential to both the fluid flow and blood oxygenation. The smaller
amount of red blood cells causes a reduction in the apparent viscosity [33], which denotes
the observed viscosity when considering blood as a whole, or whole blood. This reduction
is caused by the typically lower viscosity of the depleted blood plasma, which effectively
lubricates the flow of the concentrated blood [104]. Additionally, the depleted layer may
hinder the oxygen uptake of whole blood as the oxygen must first diffuse through before
it starts saturating the cells.

Figure 1.3: The cell-free layer and margination of white blood cells and pipe flow,
adopted from [104].

1.4 Research Goals

Macroscopic continuum scale computational fluid dynamics (CFD) is a commonly consid-
ered tool in designing and researching blood flow in hollow-fibre membrane oxygenators.
Typically, these studies are focused on identifying low flow velocity regions where the po-
tential of blood clot formation is high [93]. Alternatively, at the fibre scale, the numerical
investigations focus on understanding gas transport around the fibres. The aim of these
studies is to understand the effect of fibre configurations [45, 51], or investigate the fea-
sibility of new membrane geometries [29, 42]. However, these studies consider a uniform
red blood cell distribution throughout the numerical domain. The uniform distribution
effectively neglects the potential oxygenation resistance introduced by the cell-free layer.
The influence exerted on the oxygenation by the migratory behaviour is the main interest
of this study, and to this end, the main research question is formulated as follows:

What is the effect of shear-driven particle migration, experienced by red blood cells, on
the gas transfer of oxygen inside hollow-fibre membrane oxygenators?

1.5 Read Guide

The modelling of blood flow is an exciting but rather complicated topic. The response
of the fluid depends on the flow classifications and geometry under consideration. This
requires a tailored approach to ensure the flow behaviour is accurately described, all be-
haviour of interest is modelled, and no effects are accounted for multiple times. First,
the composition and characteristic properties of whole blood are studied in chapter 2 to
understand what behaviour and effects are of interest for hollow-fibre membrane oxygena-
tors. The composition of interest showed that blood can consist of two components: blood
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plasma and suspended red blood cells. The fluid flow of such suspensions is governed by
conservation laws for immiscible two-phase flows. The derivation of these governing re-
lations required some extra care than those for single-phase flows and are presented in
chapter 3.
The generic conservation laws are tailored to the problem of interest through constitutive
modelling. These constitutive models should accurately describe the characteristics un-
covered in chapter 2, and their considered formulations are discussed in chapter 4. While
the basics of the constitutive modelling are introduced in chapter 4, the closure for the
momentum equations required some additional care. This is necessary to adequately de-
scribe the non-Newtonian behaviour of the suspension and is discussed in chapter 5.
With the basics of blood flow modelling discussed, the attention can be shifted towards
understanding particle migration. The mechanisms driving the interesting behaviour and
the primary modelling considerations of the phenomenon are discussed in chapter 6.
The final literature to be considered is the oxygen transport from the oxygenator into the
blood flow. The oxygen transfer and binding to the red blood cells are discussed in chapter
7, followed by a discussion of the commonly considered oxygenation models. Additionally,
in this chapter, a newly derived model is presented to describe the oxygenation process of
migrating blood and its derivation is provided in appendix A.
The methodology considered in this study to provide an answer to the main research ques-
tion is presented in chapter 8. The results are presented and discussed in chapter 9, and
finally, the conclusions of the current study and recommendations for further research are
provided in chapter 10.
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Chapter 2

The Composition and
Characteristic Properties of
Whole Blood

Blood as a whole is an intricate and multi-faceted fluid whose fluid dynamical proper-
ties are strongly related to its particulate nature. The study of these properties and the
resulting behaviour is denoted haemodynamics, where its precise consideration varies de-
pending on the flow domain and regime under consideration. This chapter delves into the
fundamental composition and characteristic properties of blood from a physical point of
view, followed by simplifying considerations for the flow typical to hollow-fibre membrane
oxygenators.

2.1 The Composition and Functions of Whole Blood

The circulatory system relies on blood, a vital bodily fluid that serves numerous essential
functions required to maintain the overall health and functionality of the body. This
fluid consists of an aqueous liquid base known as blood plasma (BP), wherein various
deformable cellular elements are densely suspended. Together, these constituents are
commonly referred to as whole blood, and this section aims to introduce them and highlight
their essential features.

2.1.1 Blood Plasma

Blood plasma accounts for approximately 55-60 volume percentage (vol%) of whole blood
and is a light-yellow coloured fluid. It comprises approximately 91-92 vol% of water and
8-9 vol% of solids. These solids include clotting proteins, plasma proteins, electrolytes,
antibodies, and waste products [90].
The solids suspended in BP were found to introduce a kind of borderline non-Newtonian
behaviour, as observed by Rodrigues et al. [90]. However, because BP primarily consists
of water, it is usually thought to behave like an incompressible Newtonian fluid [57].
Additionally, an essential functionality of BP for both bodily health and the fluid flow
of whole blood is coagulation, which is a part of the hemostasis process. Coagulation
facilitates the formation of blood clots in the event of blood vessel damage and is initiated
by a complex cascade of signalling through chemical messengers [107]. These messengers
activate the clotting proteins in BP, such as fibrinogen, which convert into long, thin, and
sticky proteins that can capture the blood cells and effectively create the blood clot.
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2.1.2 Blood Cells

The blood cells in whole blood consist of three primary types, each with its specialized
functions:

1. Red Blood Cells (Erythrocytes, RBCs): Red blood cells are the most abundant
cell type in whole blood, accounting for approximately 99 vol% of all blood cells [107].
Their primary function is to transport oxygen (O2) from the lungs to various tissues
and organs and to carry the carbon dioxide (CO2) back to the lungs [93].

2. White Blood Cells (Leukocytes, WBCs): White blood cells play a crucial role
in the immune system of the body, protecting it from infections and foreign invaders
[104]. Unlike red blood cells, white blood cells have a nucleus and are fewer in
number, constituting less than one vol% of whole blood.

3. Platelets (Thrombocytes): Platelets are essential in the coagulation process, as
they initiate clot formation [107]. These small cells are more numerous than white
blood cells but are still significantly outnumbered by red blood cells [104].

In conclusion, whole blood primarily consists of red blood cells that are densely dispersed
in an aqueous liquid, or more generally, in a Newtonian fluid [57, 104]. As a result, it is
commonly assumed that whole blood is a two-phase system consisting solely of these two
components when there is no particular interest in the other constituents [11].

2.2 The Structure of Red Blood Cells

The abundance of red blood cells suspended in the Newtonian fluid phase suggests that
the cells impact the fluidic behaviour of whole blood. This impact is amplified by the
unique structure of the cells, characterized by a flexible outer membrane with a viscous
inner liquid. This section aims to introduce the generic structure and geometry of the
cells in more detail.

2.2.1 Geometry

The characteristic geometric shape of the red blood cell is that observed for a healthy
cell in stasis, which is typically biconcave and disc-like, generally referred to as discocyte
[107]. The cell shape is illustrated in figure 2.1, has an average diameter of approximately
7.5 µm and a thickness varying between 1− 2 µm [104]. These characteristic dimensions
allow the RBCs to be considered non-colloidal particles, which allows the negligence of
colloidal interactions acting on the blood cells such as van der Waals or electrostatic forces.

Figure 2.1: An illustration of the red blood cell geometry and the cell membrane
structure, adopted from [104].
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The volume and surface area of the RBC are, however, observed to decrease throughout
the relatively short lifetime of the cell. This shrinkage is caused by a loss of cytoplasm,
which is the viscous inner liquid [104]. The resulting averaged volume and surface area
throughout the lifetime of the cell are respectively 94 µm3 and 135 µm2.

2.2.2 Membrane

The membrane of a red blood cell exhibits a complex composite structure that plays a
crucial role in maintaining the integrity and deformability of the cell. It consists of a lipid
bilayer, which can be considered as an incompressible two-dimensional fluid, supported
by a network of long spectrin filaments [104]. This composite structure allows RBCs
to undergo large deformations while maintaining a constant surface area. The complex
structure, along with the network of spectrin filaments, can be observed on the right-hand
side of figure 2.1.

2.2.3 Cytoplasm

The cytoplasm of a red blood cell refers to the fluid content enclosed by the membrane.
The fluid primarily consists of an incompressible Newtonian solution of haemoglobin pro-
teins [55], which are responsible for the transport of oxygen in the cells [104]. The dynamic
viscosity of the cytoplasm, characterized by the haemoglobin concentration, is typically
around five times higher compared to that of the surrounding blood plasma, and are re-
spectively approximately 5.91× 10−3 Pa · s [50] and 1.23× 10−3 Pa · s [92]. This significant
viscosity difference between the cytoplasm and BP plays a crucial role in the dynamics and
deformability of the RBCs and generally elevates the apparent viscosity of whole blood
[98].

In conclusion, red blood cells are non-colloidal, non-idealistically shaped, deformable
particles filled with a highly viscous fluid compared to the surrounding blood plasma.
Considering their abundance in whole blood, as discussed in the previous section, this
combination of characteristics suggests the potential for complex rheological behaviour,
which will be discussed in further detail in chapter 5.

2.3 The Characteristic Behaviour of Red Blood Cells

The preceding sections demonstrated the importance of whole blood and the intricate
structure of the red blood cells within whole blood. The complicating geometry, consisting
of a flexible outer membrane and a viscous inner liquid, illustrated the potential for an
intricate fluid dynamical response to the fluid flow of blood. The characteristic behavioural
responses to the fluid flow observed for red blood cells are discussed in this section in more
detail.

2.3.1 Aggregation

Healthy red blood cells generally show two types of aggregation: blood clot and rouleaux
formation. The blood clot formation was briefly discussed in section 2.1 and is essential
during blood vessel damage and blood contact with foreign material [24]. Rouleaux, on the
other hand, are coin-stack-shaped aggregates which can form in blood when fluid stresses
are sufficiently low and may reversibly break apart as these stresses increase [90, 107].
These structures can also be observed without blood vessel damage, and their general
structure is depicted in Figure 2.2.
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Figure 2.2: A snapshot of rouleaux in healthy blood, adopted from [32].

The aggregation of RBCs into rouleaux is driven by two prevailing theories: the ’bridging’
hypothesis, where adsorbed proteins physically cross-link adjacent RBCs, and the ’deple-
tion’ hypothesis, where a depletion layer near the RBC surface leads to osmotic pressure
driving RBC surfaces together [11]. The cross-linked proteins mentioned in the first hy-
pothesis refer to the clotting proteins dissolved in the blood plasma, such as fibrinogen.
This protein is crucial for the observation and behaviour of rouleaux, as the formation
of these microstructures would not be observed without it [107]. On the other hand, in-
creased levels of fibrinogen, which can be associated with cardiac diseases or sepsis [17],
contribute to the resilience of rouleaux against fluid stresses. This heightened concen-
tration of fibrinogen enhances the stability and structural integrity of rouleaux, allowing
them to withstand higher shear forces and maintain their cohesive nature [89, 104].

2.3.2 Dynamical Cell Shapes

The deformable nature of the red blood cells allows for interesting behaviour and numerous
stable cell membrane shapes observed in simple shear flow of red blood cell suspensions
at varying shear rates. The shear rate is defined as the gradient in the velocity normal
to the flow direction and planar to the vorticity direction. A variety of shapes and their
relation to the flow characteristics are discussed in this section.

2.3.2.1 Isolated Cell Dynamics in a Viscous Fluid

The deformation of red blood cells suspended in a viscous fluid has been studied for
relatively low shear rates as early as the 1960s and showed flipping and tank-treading
behaviour [104]. The suspending viscous fluid was used to mimic the elevated viscosity of
whole blood compared to that of blood plasma [57], due to the presence of RBCs containing
the highly viscous cytoplasm as discussed in section 2.2.3.
The flipping behaviour was generally observed for lower shear rates and resembles the
behaviour of rigid discs in a pure shear flow [104]. The general behaviour can be observed
in figure 2.3, and shows that the cells flip around the major axis of the discocyte shape.
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Figure 2.3: Red blood cell flipping in shear flow, adopted from [104]

The RBC starts to tank-tread at higher shear rates. Tank-treading is where the membrane
starts to revolve around the inner cytoplasm and may even elongate in the direction of
the flow at high shear rates [104]. The tank-treading motion observed for an elongated
cell can be observed in figure 2.4.

Figure 2.4: Red blood cell tank-treading in shear flow, adopted from [104]

2.3.2.2 Isolated Cell Dynamics in Blood Plasma

More recent studies, [57, 67], have shown that the red blood cells, in reality, show a richer
range of stable cell shapes when considering cells suspended in a fluid with a viscosity
closer to that of actual blood plasma. This extended range shows that the viscosity ratio
between the cytoplasm and the BP plays a crucial role in the local dynamics of whole
blood. Different cell shapes and cell dynamics can thus be observed over a range of shear
rates for isolated RBCs. The shapes range from the standard discocyte and the similar
stomatocyte, a disc with only a single concave side, shapes at low shear rates to highly
deformed multi-lobed cells at high shear rates. The shapes for various shear rates and
the probability of observation can be seen in figure 2.5, which were derived using physical
and numerical considerations of the characterizing flow. The figures show that, as the
shear rate increases, the observation of highly distorted cells becomes more probable.
Additionally, the standard discocyte shape is rarely observed at shear rates in the range
where trilobes and hexalobes cells are mainly observed.

2.3.2.3 Cell Dynamics in Dense Suspensions

The previously considered blood cell shapes were observed for isolated cells, such that the
influence of cell interactions were effectively neglected. This consideration is far from the
truth when considering the blood flow in an oxygenator. The dynamics of the red blood
cells change drastically as the amount of blood cells in the flow increases. The cells then
show an increased probability for two new shapes, multilobes and creased discocytes [57].
The two shapes can respectively be observed in figure 2.6a and 2.6b. The multilobes behave
similarly to the earlier discussed trilobes and hexalobes, whereas the creased discocytes
are flattened cells characterized by grooves and creases.
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(a) Physcially and numerically observed
cell shapes at various shear rates.

(b) Cell shape observation probabil-
ity as a function of shear rate.

Figure 2.5: Isolated cell dynamics in blood plasma, adopted from [57].

(a) Multilobe. (b) Creased discocyte.

Figure 2.6: Cell dynamics in dense suspensions, adopted from [57].

2.3.3 Non-Uniform Spatial Distribution

The particulate nature of blood gives rise to non-uniform distributions of fluid properties
closely tied to the spatial configuration of red blood cells. These alterations in spatial con-
figuration arise from the migratory behaviour of RBCs in the vicinity of solid boundaries
[104], and they become particularly prominent for domain sizes below 300 µm [33]. The
details of the migration mechanics and modelling thereof will be discussed further in chap-
ter 6, whereas two essential and closely related effects observed due to this non-uniform
configuration are discussed here, the F̊ahræus and F̊ahræus-Lindqvist effects [6].

2.3.3.1 F̊ahræus Effect

The F̊ahræus effect was originally observed for blood flow in a glass tube by F̊ahræus [32].
This effect illustrates that when a small capillary is placed between two larger vessels, the
haematocrit discharged from the capillary is larger than the haematocrit observed inside
the capillary [4]. The two quantities are, respectively, commonly denoted the discharge and
tube haematocrit, where haematocrit refers to the volume fraction of the red blood cells
in whole blood [104]. This observation is generally attributed to the lateral migration of
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the RBCs towards the centre of the capillary, which allows the formation of a cell-free film
near the boundary [7]. The ratio of the tube and discharge haematocrit was empirically
observed to decay rapidly for decreasing tube radii and was observed by Pries et al. [86]
to obey the empirical relation denoted by,

φt

φd
= φd + (1− φd)(1 + 1.7e−0.35D − 0.6e−0.01D). (2.1)

Where φ denotes the haematocrit, D the tube diameter in microns, and the super-scripted
t and d, respectively, tube and discharge. The relation can be rewritten as an expression
for the discharge haematocrit in terms of the tube haematocrit as follows,

φd = − D∗

2(1−D∗)
+

[(
D∗

2(1−D∗)

)
+

φt

(1−D∗)

] 1
2

, (2.2)

where,

D∗ = 1 + 1.7e−0.35D − 0.6e−0.01D. (2.3)

2.3.3.2 F̊ahræus–Lindqvist Effect

The closely related F̊ahræus–Lindqvist effect illustrates a reduction in the apparent vis-
cosity of whole blood as the capillary size decreases [33]. This effect is, similarly to the
F̊ahræus effect, attributed to the non-uniform distribution of the red blood cells and the
formation of a cell-free layer near the solid boundary for small domains.

2.3.4 Sedimentation

In section 2.2.3, it was discussed that the elevated viscosity of the interior fluid of the red
blood cells, cytoplasm, plays a role in the overall fluid dynamics of blood. Next to an
elevated viscosity the cytoplasm also features an increased fluid density of approximately
1110 kg/m3 [76] compared to the fluid density of blood plasma of approximately 994 kg/m3

[105]. This density difference causes the RBCs to sediment in the direction of gravity at
low flow rates [104].

2.3.5 Thermal Agitation

In the previous sections, the importance of the hydrodynamic interactions of the red blood
cells has been demonstrated in the overall fluidic behaviour of whole blood. These interac-
tions are not of sole importance in the consideration of particle suspension in general. In
section 2.2, it was briefly discussed that colloidal interactions may also be of interest and
that the characteristic size of red blood cells allows the negligence of their consideration.
Additionally, the thermal agitation of red blood cells can be left out of consideration, such
that whole blood can be considered as a non-Brownian suspension. This classification
effectively allows the consideration of the rheology of blood, further discussed in chapter
5, to be invariant to the changes in temperature. Thermal agitation is generally impor-
tant when the particulate Péclet number is of order Pep ⪅ 103, whereas for blood, it is
generally of order Pep ⪆ 105 [104]. The particulate Péclet number denotes the ratio of the
characteristic time scale of particle diffusion with the characteristic time scale of the shear
flow and is denoted by,

Pep =
6πµR3γ̇

kBT
. (2.4)
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Where µ denotes the dynamic viscosity of the suspending phase here considered to be blood
plasma, R the characteristic size or radius of the particle, γ̇ the shear rate magnitude and
is further discussed in section 5.2, kB the Boltzmann constant, and T the temperature.

In conclusion, the red blood cells show a wide range of challenging characteristics that
form a complicated base for accurately modelling the flow of blood. However, the con-
sideration of a membrane oxygenator as the flow domain already allows for a simplified
approach. For instance, the aggregation of the blood cells into rouleaux, as discussed in
section 2.3.1, is generally not observed due to the relatively high shear rates within the
device. This consideration then also dictates that the effects of sedimentation are gener-
ally negligible compared to the advective forces, and the rheology becomes independent
of clotting protein concentrations in the blood plasma, such as fibrinogen. Conversely, the
elaborate single-particle dynamics at elevated shear rates, along with the non-uniform spa-
tial distribution, appear of greater importance due to relatively small inter-fibre spacings
in HFMOs.

2.4 The Essential Modelling Properties of Whole Blood

In this chapter, an overview was given of the composition and various characteristic prop-
erties of whole blood that are of interest in the modelling of its fluidic behaviour from a
physical point-of-view. Not all of the characteristic properties of whole blood are of sig-
nificant interest in the context of modelling its flow within a membrane oxygenator, and
therefore, possible simplified considerations were deduced. In section 2.1, it was demon-
strated that blood is generally considered a two-phase system consisting of a mixture of
blood plasma and red blood cells. The RBCs were found to be non-colloidal deformable
particles with a highly viscous interior fluid suspended in BP in section 2.2. These charac-
teristics were shown in section 2.3 to be of importance in the flow response of the individual
RBCs to the local fluid flow.
Furthermore, in section 2.3, the importance of the characteristic domain sizes found within
HFMOs allow for the negligence of modelling the formation and behaviour of rouleaux but
introduces the modelling requirement for the non-uniform distribution of RBCs. The dis-
regard of the rouleaux decouples the overall rheology of blood flow from the complicated
aggregation and de-aggregation mechanics and the concentrations of clotting proteins in
BP. Lastly, it was additionally deduced that the complicated blood flow characteristics in
HFMOs are not further influenced by sedimentation or thermal agitation, simplifying the
overall rheology of blood flow further and decoupling it from thermal variations.
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Chapter 3

The Governing Relations of
Immiscible Two-Phase Flows

In section 2.1, it was demonstrated that whole blood could be considered to consist solely
of red blood cells suspended in blood plasma, without particular interest of the other con-
stituents, due to their abundance. The flow of such a particle suspension can effectively
be modelled using two distinct approaches: an Eulerian-Lagrangian consideration and an
Eulerian-Eulerian consideration [75]. In the Eulerian-Lagrangian approach, the suspend-
ing fluid is treated as a continuous phase, while the particles are represented as point
masses and individually tracked. However, due to the computational expense of tracking
a large number of particles, this method is not feasible for resolving the macroscopic flow
behaviour of whole blood [11]. Conversely, the Eulerian-Eulerian approach considers both
the fluid and the particles as continua, making it more suitable for macroscopic consid-
erations. This chapter reviews the derivation of the single-phase governing relations to
establish a solid foundation. Subsequently, a concise derivation of the two-phase governing
relations is provided, elucidating the underlying assumptions in these models.

3.1 Single Phase Governing Relations

This section revisits the derivation of the general conservation law for single-phase flows
before delving into more appropriate considerations for describing blood flow.
The conservation law can be derived by considering an arbitrarily shaped fluid element
that may be moving and deforming by the surrounding fluid. A visual representation of
such a fluid element is shown in figure 3.1, where Ω(t) denotes the time-dependent domain,
∂Ω(t) the time-dependent boundary of the element, n the outward unit normal vector of
the boundary, and u the velocity at the boundary.

The general conservation law may now be derived by considering that the rate of change
of an arbitrary scalar quantity per unit mass, ϕ, is dependent on the flux of that quantity
across the boundary in combination with its production inside the element. The general
conservation law in integral form for the arbitrary quantity can now be denoted by [48],

d

dt

∫
Ω(t)

ρϕdV︸ ︷︷ ︸
Rate of change

= −
∫
∂Ω(t)

J ϕ · ndS︸ ︷︷ ︸
Influx across boundary

+

∫
Ω(t)

ρSϕdV︸ ︷︷ ︸
Volumetric source

. (3.1)

Where ρ denotes the mass density of the fluid, J ϕ the boundary flux vector, and Sϕ

the volumetric source term that describes the production in the element. The integral
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dV
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dSΩ(t)

∂Ω(t)

Figure 3.1: Single-phase arbitrary fluid element.

formulation may now be transformed from this Lagrangian point of view to an Eulerian by
means of the Leibniz-Reynolds transport theorem [20]. The surface integral that describes
the boundary flux can be expressed in terms of a volume integral using Gauss’s divergence
theorem [103], such that the differential formulation for the general conservation law may
be denoted by [48],

∂ρϕ

∂t︸︷︷︸
Temporal

+∇ · (ρuϕ)︸ ︷︷ ︸
Advection

= −∇ ·J ϕ︸ ︷︷ ︸
Diffusion

+ ρSϕ︸︷︷︸
Source

, ∀x ∈ Ω(t), ∂Ω(t). (3.2)

The fundamental conservation laws can be expressed by substituting the conserved quan-
tity, the boundary flux, and the source term with suitable considerations, along with the
corresponding tensor products. These considerations are summarized in Table 3.1.

Conservation law ϕ J ϕ Sϕ

Mass 1 0 0
Momentum u −σ g

Energy E q − σ · u g · u

Table 3.1: Fundamental single-phase conservation laws [48].

Where g denotes the gravitational acceleration vector, q the heat flux vector, and σ the
Cauchy stress tensor.

3.2 Two-Phase Governing Relations

The general conservation law derived for single-phase flows can be extended to consider a
mixture of two immiscible constituents, generally denoted two-phase flows. This section
will provide an overview of this extended derivation and present the general governing
relations for immiscible two-phase flows.

3.2.1 Local-Instant Formulation

A mixture of two immiscible phases is generally characterized by the presence of interfaces
that separate the phases from each other [48]. These interfaces introduce discontinuous
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changes in the phase properties, which necessitates the introduction of additional con-
siderations in the derivation process. An arbitrarily shaped fluid element may again be
employed to derive the general conservation laws for a mixture of two immiscible phases,
now encompassing such an interface. Figure 3.2 visually depicts such an arbitrary fluid
element, where the volumes and boundaries for the phases are sub-scripted with indices
1 and 2, respectively. Here, the interface is denoted by the subscript I and is assumed
to be a purely geometric surface, primarily due to the consideration that the thickness of
the interface is generally much smaller than its surface area. The boundary of the inter-
face at time t can be represented by ∂ΩI(t), and the curve enclosing this surface can be
represented by CI(t).

∂ΩI(t)

CI(t)

Ω1(t)

∂Ω1(t)

Ω2(t)

∂Ω2(t)

Figure 3.2: Two-phase arbitrary fluid element, inspired by [70].

The general conservation of an arbitrary quantity for the entire fluid element in integral
form may then intuitively be denoted by,∑

k

d

dt

∫
Ωk(t)

ρkϕkdV︸ ︷︷ ︸
Rate of change
in both phases

+
d

dt

∫
∂ΩI(t)

ρIϕIdS︸ ︷︷ ︸
Rate of change
in interface

= −
∑
k

∫
∂Ωk(t)

J ϕk
· nkdS︸ ︷︷ ︸

Influx across both
phase boundaries

−
∮
C(t)

J ϕI
· nIdC︸ ︷︷ ︸

Influx across
interface boundary

+
∑
k

∫
Ωk(t)

ρkSϕk
dV︸ ︷︷ ︸

Volumetric source
in both phases

+

∫
∂ΩI(t)

ρISϕI
dS︸ ︷︷ ︸

Planar source
in interface

for k = 1, 2.

(3.3)

Where the subscript k denotes the consideration of phases 1 and 2, and nI the outward
unit normal vector of the interface, which is generally directed tangential to the interface.
It must now be noted that the conservation must hold for any volume, such that the
independent contributions must hold. A general conservation law may be denoted for each
phase and the interface separately [70]. These separate integral formulations may then
be rewritten into differential formulations following the single-phase general conservation
law derivation, as presented in section 3.1. The general local-instant conservation law for
both phases is, in differential form, denoted by [48],

∂ρkϕk

∂t︸ ︷︷ ︸
Temporal

+∇ · (ρkukϕk)︸ ︷︷ ︸
Advection

= −∇ ·J ϕk︸ ︷︷ ︸
Diffusion

+ ρkSϕk︸ ︷︷ ︸
Source

, ∀x ∈ Ωk(t), ∂Ωk(t) for k = 1, 2. (3.4)
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The local-instant conservation law for the interface is, in turn, denoted by [48],

∂ρIϕI

∂t︸ ︷︷ ︸
Temporal

+∇ · (ρIuIϕI)︸ ︷︷ ︸
Advection

=
∑
k

(ρkϕknk · (uk − uI) + nk ·J ϕk
)︸ ︷︷ ︸

Phase fluxes

+ Sσ︸︷︷︸
Surface
flux

+ ρISϕI︸ ︷︷ ︸
Source

, ∀x ∈ ∂ΩI(t), CI(t).
(3.5)

Where the surface flux source term is introduced for interface curvature effects, which are
generally dominated by the surface tension σ.
The fundamental conservation laws for these local-instant relations may, similarly to the
single-phase relation, be retrieved by substitution of the considerations presented in table
3.1. It must be noted that the resulting conservation laws will hold only locally throughout
the phase of consideration and not on or across the interface [48].

3.2.2 Time-Averaged Formulation

The local-instant relations derived in the preceding section offer a detailed description of
the intricate dynamics of two-phase flows and enable the resolving of the numerous inter-
faces within the mixture [70]. However, solving for these detailed dynamics in practical
engineering applications is often unnecessary and computationally too expensive. Instead,
by utilizing appropriate averaging techniques, it becomes possible to capture the essential
behaviour of the flow at a more reasonable computational cost [48].

3.2.2.1 Time Averaging

In the interest of a reduced computational cost, the technique of time averaging may be
introduced, such that the two-phase flow can be treated as a mixture of continuous phases
[48]. For this purpose, the flow variables and governing relations are averaged over a
time interval that is sufficiently large to smooth out the complicating variations of the
flow variables while also sufficiently small compared to the macroscopic time scale of the
system. The time average of the arbitrary function F evaluated at arbitrary position x0

and time t0, considered over a time interval [∆t], is denoted by [48],

Fk∨I(x0, t0) :=
1

∆t

∫
[∆t]

Fk∨I(x0, t)dt. (3.6)

3.2.2.2 Phase Indicator Function

To keep track of which phases have passed the point x0 over the time interval [∆t], a
phase indicator function can be introduced. The function returns a value of unity when
the appropriate phase or an interface is observed and zero otherwise [70],

Xk∨I(x, t) :=

{
1 if phase k or the interface exists at position (x, t),

0 otherwise.
(3.7)

3.2.2.3 Local Void Fraction

An important variable may now be introduced by considering the time average of the
phase indicator function, namely the local void fraction. The void fraction represents the
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probability of observing a certain phase in x0 at t0 and may be denoted by [48],

αk∨I(x0, t0) :=
1

∆t

∫
[∆t]

Xk∨I(x0, t)dt. (3.8)

3.2.2.4 Phase Averaging

The flow variables related to each phase can be categorized into quantities defined per unit
volume of the phase or unit mass of the phase [70]. Quantities defined per unit volume
are averaged most naturally using a phase average denoted by [48],

Fk :=
XkFk

X k

≡ Fk

αk
. (3.9)

3.2.2.5 Favre Averaging

The flow variables categorized per unit mass of the phase are most naturally averaged
using mass, or Favre, averaging [48, 84],

F̃k :=
ρkFk

ρk
≡ ρkFk

ρk
. (3.10)

3.2.2.6 Reynolds Decomposition

The flow variables may be expressed as a combination of an averaged and a fluctuating
component to express the local-instant formulations in terms of averages [48]. This con-
sideration is sometimes denoted the Reynolds decomposition and is common practice in
the derivation of Reynolds-Averaged Navier-Stokes (RANS) equations in turbulence mod-
elling [12]. The decomposition for the volume-weighted density, mass-weighted arbitrary
variable, and velocity may then be denoted by [48],

ρk = ρk + ρ′k, ϕk = ϕ̃k + ϕ′
k, uk = ũk + u′

k. (3.11)

Where the super-scripted ′ denotes the consideration of a fluctuating component.

3.2.2.7 Two-Fluid Model

The two-fluid model may now finally be derived by considering the time average of the
local-instant conservation law for the phases and is denoted by [48],

∂αkρkϕ̃k

∂t︸ ︷︷ ︸
Temporal

+∇ · (αkρkϕ̃kũk)︸ ︷︷ ︸
Advection

= −∇ ·
(
αkJ ϕk

)
︸ ︷︷ ︸

Diffusion

+αkρkS̃ϕk︸ ︷︷ ︸
Source

−∇ ·
(
αkJ T

ϕk

)
︸ ︷︷ ︸

Turbulence

+ Iϕk︸︷︷︸
Interface

, ∀x ∈ Ω(t), ∂Ω(t) for k = 1, 2.

(3.12)

Where here Ω(t) = Ω1(t) + Ω2(t), ∂Ω(t) = ∂Ω1(t) + ∂Ω2(t) + ∂ΩI(t), andJ T
ϕk

denotes the
turbulent flux defined by,

J T
ϕk

:= ρkϕ
′
ku

′
k, (3.13)
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and Iϕk
the interfacial transport source term for the phases. The time-averaged local-

instant conservation law for the interface may, in turn, be denoted by [48],∑
k

Iϕk
= Iϕm . (3.14)

Where Iϕm denotes the interfacial transport source term for the complete mixture, where
Iϕm = Iϕm (Sσ).

3.2.3 Mixture Formulation

In the previous section, the two-fluid model was derived using well-established techniques
in turbulent flow modelling, enabling a cost-effective description of the essential behaviour
of two-phase flows. However, this model requires knowledge of the intricate interactions
between the phases, which are often unknown and require extensive constitutive modelling
techniques to accurately describe them, depending on the characteristics of the two-phase
flow [31]. An alternative approach is to model the two-phase flow as a single mixture
to alleviate the need for detailed phase dynamics. This approach reduces the amount of
constitutive modelling required, making it particularly useful when precise knowledge of
the dynamics of both phases is not necessary, or the phasic motions are sufficiently closely
related.

3.2.3.1 Mixture Variables

The various variables found in the two-fluid model should be rewritten appropriately such
that they may accurately represent a description of the mixture. The exact considerations
are dependent on how the flow variables are averaged, where phase-averaged quantities
may be denoted by [48],

Fm :=
∑
k

αkFk. (3.15)

The mass averaged quantities may, in turn, be denoted by,

Fm :=
1

ρm

∑
k

αkρkF̃k. (3.16)

Where ρm denotes the mixture density. An intuitive interpretation of how the mixture
variables are defined is given by considering the volume fractions of each phase for their
local void fractions, e.g. αk = Ωk(t)

Ω(t) . The mixture variables are then weighted simply by
their volumetric presence in the arbitrary fluid element, depicted in figure 3.2, and will
reduce to a single-phase consideration when only one phase is present.

3.2.3.2 Relative Phase Motion

The introduction of the mixture variables will simplify the final mixture formulation for the
two-phase flows. However, it will lose the ability to describe some important characteristics
of these flows. One of these important characteristics is the relative motion between the
phases, which must be approximated using constitutive laws for the mixture formulation
and will be discussed in chapters 4 and 6.
The relative motion of the phases can be described in various ways and mainly serves
for more convenient closure model descriptions. The first and more obvious is the simple
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consideration of a relative velocity, sometimes denoted the slip velocity, and is denoted by
[48],

Vr := ũ2 − ũ1. (3.17)

The second considers the relative velocity with respect to the centre of mass of the mixture
and is denoted the phase diffusion velocity [48],

Vkm := ũk − um. (3.18)

The last considers the relative velocity with respect to the centre of volume of the mixture
and is denoted the phase drift velocity [48],

Vkj := ũk −
∑
k

αkũk. (3.19)

3.2.3.3 Drift-Flux Model

The drift-flux model may be derived by summating the time-averaged general conservation
laws from the two-fluid model for both phases [31], as was presented in equation 3.12.
The various physical contributions can then be summated and replaced by the mixture
quantities defined in equations 3.15 and 3.16. The resulting general conservation law for
the mixture may then be denoted by [48],

∂ρmϕm

∂t︸ ︷︷ ︸
Temporal

+∇ · (ρmϕmum)︸ ︷︷ ︸
Advection

= −∇ · (J ϕm)︸ ︷︷ ︸
Diffusion

+ ρmSϕm︸ ︷︷ ︸
Source

−∇ ·
(
JD

ϕm

)
︸ ︷︷ ︸

Drift

−∇ ·
(
J T

ϕm

)
︸ ︷︷ ︸

Turbulence

+ Iϕm︸︷︷︸
Interface

, ∀x ∈ Ω(t), ∂Ω(t).

(3.20)

Where JD
ϕm

denotes the macroscopic phase diffusion, or drift, flux introduced by the
relative motion of the phases, and is defined by,

JD
ϕm

≡
∑
k

JD
ϕk

:=
∑
k

αkρkϕ̃kVkm. (3.21)

The fundamental conservation laws for the mixture may now, similarly to all previous
considerations, be retrieved by substitution of the considerations presented in table 3.1.
However, to fully describe the behaviour of the mixture, an additional relation is required
to describe the phase interactions. This full description can be accomplished by addi-
tionally considering the mass conservation of one of the two phases. The relation may
be denoted the phase diffusion equation since it describes the macroscopic phase diffusion
and is denoted for k = 2 by [48],

∂α2ρ2
∂t︸ ︷︷ ︸

Temporal

+∇ · (α2ρ2um)︸ ︷︷ ︸
Advection

= α2ρ2S12︸ ︷︷ ︸
Source

−∇ ·
(
α2ρ2V2m

)
︸ ︷︷ ︸

Drift

+ I12︸︷︷︸
Interface

, ∀x ∈ Ω(t), ∂Ω(t). (3.22)

Where the phasic velocity is rewritten into a combination of the mixture velocity and the
phase diffusion velocity using equation 3.18.
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3.3 The Modelling of Two-Phase Flows

This chapter demonstrated the derivation for three types of governing relations of two-
phase flows. The models at heart describe the same physics but differ in the degree of
averaging of the flow variables, where the averaging generally served computationally cost-
effectiveness at the cost of accuracy. The initial and un-averaged model is denoted the
local-instant formulation, derived in section 3.2.1, and requires the modelling of either
phase along with the separating interface. This model is the most expensive, as all gov-
erning relations are only valid in their respective phases. The technique of time-averaging
was employed to derive the two-fluid model in section 3.2.2. The averaging alleviated the
model expenses of the local-instant formulation and is similar to that of the derivation
of the single-phase Reynolds-averaged Navier-Stokes equations. The time-averaging intro-
duces the requirement of modelling the fluctuating components of the variable solutions,
similar to the derivation of the RANS equations. The final model, derived in section
3.2.3, considers the two-phase flows in terms of a single mixture and is generally denoted
the drift-flux model. This mixture consideration loses the ability to describe the detailed
phase dynamics but generally requires less closure modelling.
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Chapter 4

Constitutive Modeling of
Momentum in Dispersed
Two-Phase Flows

The two-phase flow models derived in the previous chapter generally do not obey the
principle of determinism in their current form and require constitutive laws or models
to get a complete description of the system. These constitutive models depend on the
nature of the fluid mixture, such that there are no generally applicable models [31]. This
chapter aims to introduce the primary classifications found in two-phase flows and utilize
their characteristics to set the basis for modelling blood flow in hollow-fibre membrane
oxygenators. Subsequently, a set of closure relations used to model the linear momentum
evolution are presented that abide by the various considerations of blood flow discussed
in the preceding chapters.

4.1 Two-Phase Flow Classifications

Two-phase flows can be classified into three primary categories based on the structure
of the interfaces, each exhibiting distinct flow patterns. These categories are known as
separated, dispersed, and mixed flows [70]. The distinct features of the primary categories,
along with exemplar visual representations, are generally characterized as follows:

1. Separated flows: In separated flows, the two phases exist as independent fluidic
regions with a limited number of interfaces [75]. Examples of separated flows include
film, annular, jet, and stratified or stratified-wavy flows which is the separated flow-
type illustrated in figure 4.1.

Figure 4.1: The illustrated phase separation of a stratified(-wavy) flow, inspired by
[26].

2. Dispersed flows: Dispersed flows involve a mixture of a continuous primary phase
laden with dispersed regions of a secondary phase. The dispersed phase can take
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the form of bubbles, droplets, or solid particles, making this class most eligible to
describe blood flow. The bubbly flow classification is illustrated in figure 4.2.

Figure 4.2: The illustrated phase separation of a bubbly flow, inspired by [48].

3. Mixed flows: Mixed flows, also known as transient flows, exhibit characteristics
of both separated and dispersed flows. They often involve transitions between the
two primary flow classes through, for example, the evaporation of a pure liquid
transitioning into its vapour phase.

Figure 4.3: The illustrated phase separation of a mixed two-phase flows character-
ized by a phase transition, inspired by [100].

In conclusion, the particulate nature of blood aligns most closely with the characteristics
of a dispersed flow within the generic two-phase flow classification framework discussed in
this section.

4.2 Fluid Flow Classifications

Similarly to single-phase flows, dispersed two-phase flows can be classified based on the
expected flow domain and regime. The well-known Reynolds number is a primary tool
for distinguishing the flow regime, which can easily be derived by dimensional scaling
of the single-phase Navier-Stokes equations. These equations are derived from Cauchy’s
equations, denoted in equation 3.2 under the consideration of linear momentum as denoted
in table 3.1, where the fluid is assumed Newtonian. The Reynolds number denotes the
ratio of the inertial forces with the viscous forces and is denoted by [20],

ReL :=
ρUL

µ
≡ UL

ν
. (4.1)

Where U denotes the characteristic flow velocity, L the characteristic domain size, and
ν := µ

ρ the kinematic viscosity of the fluid. The Reynolds number is important as it
allows the fluid flow to be characterized between laminar, transitional, and turbulent flow,
essentially governing the importance of multiple contributions of the previously derived
governing relations. In the limiting case of ReL → 0, the flow can be considered a Stokes
flow. This consideration allows the negligence of the momentum advection contribution,
denoted by,

∇ · (ρu⊗ u) . (4.2)
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Where the operator ⊗ denotes the outer or dyadic vector product [43]. The negligence of
the advection simplifies the overall Navier-Stokes equations to a set of linear partial differ-
ential equations, usually denoted the Stokes equations. The Stokes equations can generally
be used to describe blood flow within the body, i.e. in vivo, as here the Reynolds num-
ber is typically of order ReL ≈ 1× 10−3 [104]. This radical simplification does, however,
not hold for blood flow within membrane oxygenators, i.e. in vitro, as here the Reynolds
number is usually at least of order unity, e.g. ReL ≈ 3− 5 [101].

In conclusion, the flow of blood inside of an HFMO cannot be classified as a Stokesian
flow. However, the generally low Reynolds number allows the consideration of a laminar
flow, given that its value is much lower than the typically considered limit in pipe flow,
denoted by ReD ⪅ 2300 [20]. This consideration effectively permits the negligence of
turbulent effects such that,

J T
ϕk∧m

→ 0, ∀x, t. (4.3)

4.3 Dispersed Phase Inertia

With the fundamental classifications of blood flow in a hollow-fibre membrane oxygenator
now established, attention can be directed toward the motion of the dispersed phase with
respect to the continuous phase. The fluid inertia at the scale of the dispersed phase is
governed by the particulate Reynolds number, denoted by [104],

Rep :=
ρcγ̇a

2
d

µc
. (4.4)

Where the sub-scripted c and d respectively denote the consideration of a continuous and
dispersed phase variable, and ad the characteristic size of the particle or dispersed phase.
A low particulate Reynolds number characterizes a particle suspension as a Stokesian
suspension, indicating negligible inertia at the length scales of the particle [69]. The
characterization of a Stokesian suspension does, however, not dictate the entire flow is
Stokesian, in contrast to the Reynolds number introduced in the previous section, as the
motion at larger length scales may still be of an inertial nature [104]. This distinction
then dictates that the suspended particles possess an inertial time scale that differs from
the macroscopic inertial time scale. The Stokes number denotes the ratio of these time
scales and is denoted by [69],

St :=
τd
τc

≡ γ̇τd. (4.5)

Where τd denotes the inertial time scale at the length scale of the dispersed phase, some-
times denoted the relaxation time of a particle. The formulation of this time scale depends
on the suspension flow regime [61], which can be assumed Stokesian when Rep ⪅ 1 [69].
This consideration holds for blood flow inside an HFMO whenever γ̇ ⪅ 1× 105, as follows
from figure 4.4, and is assumed to hold in this study as generally γ̇ ⪅ 1× 104 is experi-
enced for non-aggregating blood in cardiovascular devices [104]. The inertial time scale
for a Stokesian suspension of spherical particles is denoted by [61],

τd :=
2ρda

2
d

9πµc
, Rep ⪅ 1. (4.6)

The Stokes number at low particulate Reynolds is thus proportional to the particulate
Reynolds number and generally an order of magnitude lower as follows from figure 4.4.
The red blood cells can now be assumed to generally follow the motion of the suspending
fluid, i.e. blood plasma.
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Figure 4.4: Particulate Reynolds, Stokes, and Capillary numbers as a function of
shear rate, where following chapter 8, ρc = ρc = 994 kg/m3, ρd = ρd = 1110 kg/m3,
ad = 3.6× 10−6m, µc = µc = 1.23× 10−3 Pa · s, and G = 5× 10−6N/m [60].

In conclusion, the characteristics of whole blood inside an HFMO generally align with
the behaviour of a Stokesian suspension, as indicated by the typically low values of both
Rep ⪅ 1 and St ≪ 1. The consideration of a Stokesian suspension, along with the generally
high volume fraction of red blood cells, ensures the modelling of blood can successfully be
done using the computationally cost-effective mixture model formulation [61].

4.4 Phasic Stress Tensors

The drift-flux model now governs the linear momentum of whole blood, denoted in equa-
tion 3.20, following the considerations of the previous sections. The first contribution in
the governing relation that must be modelled is the diffusive flux of linear momentum. In
the two-phase system, this flux is governed by the Cauchy stress tensor of both phases
and their phasic average for the mixture. The stress tensor is conventionally decomposed
into an elastic and viscous contribution as follows [35],

σ = σ0 + τ . (4.7)

Where σ0 denotes the stress experienced by the fluid element at rest and τ the viscous
stress tensor, which is entirely dependent on the fluid motion.

4.4.1 Continuous Phase Stress Tensor

The continuous phase of blood consists of blood plasma, which may show a slight non-
Newtonian viscoelastic response to fluid stresses [18, 90]. However, it is generally assumed
to behave like a viscous, Newtonian, isotropic, fully fluid material [11]. The customary
stress decomposition, presented in equation 4.7, may then be rewritten as [64],

σc = −pcI + τ c =
[
−pc + λc tr(Dc)

]
I + 2µcDc (4.8)

Where p denotes the hydrostatic pressure, µ the dynamic viscosity, λ the second coefficient
of viscosity, which may by consideration of Stokes’ hypothesis denoted as λ = −2

3µ [35],
tr(.) the trace norm, I the identity matrix, and D the strain-rate tensor. The strain-rate
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tensor is given by the symmetric contribution of the Jacobian matrix of the velocity field
and may be denoted by [12],

D :=
1

2

(
∇⊗ u+ (∇⊗ u)+

)
. (4.9)

Where ∇⊗ u denotes the velocity gradient tensor, often more concisely but mathemati-
cally inconsistent, denoted by ∇u [43], and (.)+ the transpose operator.

4.4.2 Dispersed Phase Stress Tensor

The dispersed phase of blood is commonly assumed to consist solely of red blood cells, as
was discussed in section 2.1. The non-idealistic shape, deformability, aggregability, and
relatively high viscosity of the cytoplasm compared to that of the continuous phase neces-
sitate the representation of an anisotropic, viscoelastic, non-Newtonian stress tensor that
is dependent on the local void fraction, its gradient, the orientation, and the strain-rate
of the red blood cells [64]. However, an appropriate stress tensor for this consideration
will become quite complicated. A generalized model where the aggregability was not con-
sidered, initially derived to describe electro-rheological materials, already requires eleven
contributions [64, 87],

σd = σd

(
αd,∇αd,nd,Dd,D2

d

)
. (4.10)

In this model, the anisotropy is governed by assuming the particles may have some princi-
pal direction, nd, but resolving this anisotropy consideration in itself already requires an
additional governing relation. It is therefore generally neglected [62, 64]. For simplicity,
compound contributions are also neglected, such that the dispersed phase stress tensor is
denoted by [65],

σd =
[
C

[0]

σd
+ C

[1]

σd
∇αd · ∇αd + C

[2]

σd
tr(Dd)

]
I+C

[3]

σd
Dd+C

[4]

σd
∇αd⊗∇αd+C

[5]

σd
D2

d. (4.11)

Where C
[0,...,5]

σd
denote flow and material properties of the dispersed phase. The first

coefficient is generally given by the hydrostatic pressure of the dispersed phase, C
[0]

σd
= −pd.

The second and fifth coefficients, C
[1∧4]
σd

, are related to the distribution of the dispersed

phase and describe an additional normal stress contribution [87]. The normal stresses in
blood are not well studied [64], such that the coefficients may be taken from measurements
of granular materials [63], or given by complicated models derived through the kinetic
theory of gasses [14]. In general, however, it is assumed that these normal stress effects

are negligible such that C
[1∧4]
σd

= 0 [53, 65]. The third coefficient corresponds to the second

coefficient of viscosity of the dispersed phase, C
[2]

σd
= λd. The fourth coefficient is related

to the dynamic viscosity of the dispersed phase. It takes into account the non-Newtonian,
viscoelastic rheology of the phase by its dependence on the local dispersed phase volume
fraction and the strain-rate tensor, which will be discussed in more detail in chapter 5.
There are generally two ways this coefficient is described, by direct consideration of the

dynamic viscosity, C
[3]

σd
= 2µd(αd,Dd) [48, 92], or additional local dispersed phase volume

fraction dependence, C
[3]

σd
= (1 + αd)µd(αd,Dd) [63, 64]. The sixth and last coefficient is

similar to the cross-viscosity defined for the Reiner-Rivlin fluid model [64]. The cross-
viscosity is for blood generally not defined, and consideration of this last contribution is
usually neglected due to its higher order dependence on the strain-rate tensor such that,

25



C
[5]

σd
= 0. The most fundamental formulation for the dispersed phase stress tensor is then

denoted by,

σd =
[
−pd + λd tr(Dd)

]
I + 2µd(αd,Dd)Dd. (4.12)

Which resembles the customary stress tensor decomposition denoted in equation 4.7.

4.4.3 Mixture Stress Tensor

The mixture stress tensor can be derived by considering that the phasic diffusion fluxes,
and therefore the phasic stress tensors, are phase-averaged quantities. The mixture stress
tensor may thus, following equation 3.15, be denoted by,

σm = αcσc + αdσd. (4.13)

Where the stress tensors derived in the preceding sections may be substituted. However,
this substitution will not immediately result in a complete consideration in terms of the
mixture quantities as the strain-rate tensors are solely in terms of the phasic velocities.
To this end, the phasic velocities may be substituted using the definition of the phase
diffusion velocity, as denoted in equation 3.18 [48],

σm = −pmI + 2µm(αd,Dd)Dm +
∑
k=c,d

2αkµk

[
Dkm − 1

3
tr(Dk)I

]
. (4.14)

Where pm and µm are also phase averaged quantities, Dm is defined using the mixture
velocity and not an average of the phasic contributions, Dkm is defined using the phase
diffusion velocity denoted in equation 3.18, and the two contributions of the last term
are generally neglected. The strain-rate tensors in terms of the phase diffusion velocities
can generally be assumed to approach zero when the particulate Reynolds number is small
[106], i.e. Rep ⪅ 1. Low particulate Reynolds number considerations were assumed to hold
for blood flow in HFMOs, as discussed in section 4.3. The trace of the individual phasic
strain-rate tensors generally also approaches zero, tr(Dk) → 0, under the assumption of
both phases being incompressible, as was discussed in sections 2.1 and 2.2.

4.5 Interphasic Interactions

Three separate contributions govern the interphasic interactions in the drift-flux model.
The first two are the macroscopic phase diffusion flux and interfacial momentum source
defined for the mixture momentum equation, following equation 3.20. The third and last
contribution is the consideration of the drift flux in the additional phasic mass conservation
equation, denoted in equation 3.22, for which generally the dispersed phase is considered.

4.5.1 Macroscopic Phase Diffusion

The macroscopic phase diffusion for the mixture momentum is generally governed by the
substitution of the phasic velocities into equation 3.21 and may be expanded using the
phase diffusion velocity, as denoted in equation 3.18,

JD
um

=
∑
k

αkρkũk ⊗ Vkm =
∑
k

[
αkρkVkm ⊗ Vkm + αkρkum ⊗ Vkm

]
. (4.15)
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Where the second contribution can be equated to zero using the following phase diffusion
velocity identity [48], ∑

k

αkρkVkm = 0. (4.16)

The resulting macroscopic phase diffusion flux is now proportional to the square of the
phase diffusion velocity and may, in consideration of small particulate Reynolds, be ne-
glected [106], i.e. Rep ⪅ 1, such that,

JD
um

→ 0, ∀x, t. (4.17)

4.5.2 Interfacial Momentum Source

The interfacial transport source term, especially concerning interfacial momentum, is pri-
marily influenced by surface tension, as discussed in section 3.2.2.7. The source term, in
consideration of blood flow, aims to model the momentum absorption of the cell membrane
to generate the intricate particle shapes discussed in sections 2.5 and 2.6. The significance
of the surface tension on the fluid motion is generally quantified using the capillary num-
ber. The capillary number denotes the ratio of the viscous forces with the surface tension
and is denoted by [20],

Ca :=
µcU

σ
. (4.18)

Where a small capillary number denotes the surface tension governs the deformation of
the suspended particles, generally when Ca ⪅ 0.1 [104], allowing the negligence of the de-
formability. Conversely, a large capillary number indicates that the particles are generally
substantially deformed under the hydrodynamic stresses in the suspension. In such cases,
the interphasic hydrodynamic interactions become of great importance due to the inter-
face deformation. In the consideration of vesicles, such as red blood cells, the interface is
characterized by a mechanical membrane rather than the generally considered interfacial
layer. The mechanical membrane is generally not characterized by a surface tension, but
rather an in-plane shear modulus [60]. To this end, should the capillary number be rede-
fined using this shear modulus [104], which is denoted the particulate capillary number in
this study for naming consistency,

Cap :=
µcγ̇ad
G

. (4.19)

Where G denotes the in-plane shear modulus, and this capillary number definition is
sometimes denoted the elastic capillary number [60]. Under physiological conditions the
particulate capillary number is generally considered to be Cap ⪅ 1 [104], such that the
contribution of the interfacial momentum source is generally not negligible. These ele-
vated particulate capillary numbers are also visualized in figure 4.4 as a function of the
shear rate. The figure shows that the capillary number may increase, considering blood
flow in hollow-fibre membrane oxygenators. However, considering HFMOs, the generally
considered range appears unreported, and the formulation of the interfacial momentum
source in continuum modelling is typically omitted. Instead, the effect is typically consid-
ered through the heightened dissipation rate modelled using the rheology of the mixture.
The rheology modelling is further discussed in chapter 5 and is also considered in this
study to model the interfacial momentum source contribution.

27



4.5.3 Phase Diffusion Flux

In the context of the drift-flux model, the final modelling consideration pertains to the
macroscopic phase diffusion flux within the mass conservation of the dispersed phase, typ-
ically governed by equation 3.22. This phase diffusion flux can be modelled either through
its relation to the relative phase motion, as discussed in section 3.2.3.2, or by the closure
of the entire flux.
The relative motion is often modelled through the slip relation, which generally depends on
the exact flow regime and flow type, i.e. sub-classifications of dispersed flows, under con-
sideration and is modelled through a complicated combination of analytical and empirical
considerations [73]. A variety of generalized algebraic and differential analytical models
are discussed in [13] and empirical models in [48]. Additionally, a force-based modelling
approach can be taken to model the relative motion based on the closure relations required
for the two-fluid model. As the derivation for closure models for the two-fluid model was
considered out-of-scope, these considerations are further discussed in appendix D.1.
The direct modelling of the flux is generally considered in studies where the migration
of the dispersed phase is dominant and will be considered in more detail in chapter 6.
Considering that migration is of major interest in this study, the models discussed there
will also be considered as closure models for the phase diffusion flux of the dispersed phase
mass conservation in this study.

4.6 The Constitutive Modelling of Linear Momentum in
Blood Flows

This chapter deduced the primary classifications of blood flow in hollow-fibre membrane
oxygenators. Blood can be considered a two-phase dispersed system whose flow inside
an HFMO generally abides that of a laminar Stokesian suspension. These classifications
effectively show that the red blood cells will generally follow the flow of the blood plasma
and may successfully be described using the mixture model formulation, discussed in sec-
tion 3.2.3.
The derivation of the constitutive models of the various unclosed contributions of the
mixture linear momentum equation proved a complicated task that required several addi-
tional assumptions. The derivation of the Cauchy stress tensor, applicable to the mixture,
was discussed in section 4.4. The deformability of the RBCs and anisotropy due to the
non-sphericity of the cells, along with higher-order strain-rate tensor considerations, were
required to be neglected. These assumptions were required along with the exclusion of the
cell aggregation, whose feasibility was evidenced in chapter 2. The resulting stress tensor
applicable to the mixture followed the customary decomposition of stress tensors, shown
in equation 4.7, and still requires the closure of a non-Newtonian dynamic viscosity. This
dynamic viscosity definition should depend on the local volume fraction and strain-rate
tensor of the dispersed phase, which follows directly from the considerations in section
4.4.2, and its derivation will be further discussed in chapter 5.
Furthermore, the interphasic interactions between the cells and the plasma required clo-
sure for various contributions. While the macroscopic phase diffusion flux for the mixture
momentum could be considered negligible in the context of a Stokesian suspension, the
closure of phase diffusion for the dispersed phase mass conservation equation remains an
open question. This topic will be addressed in detail in chapter 6. Additionally, it is worth
noting that the interfacial momentum source may not be easily dismissed, especially when
considering particulate capillary numbers typically observed under physiological condi-
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tions. However, this contribution appears commonly omitted in the continuum modelling
of blood flow and considered through the non-Newtonian rheology modelling. Therefore,
this contribution is also considered to be modelled through rheology in this study.
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Chapter 5

The Rheology of Whole Blood

The rheological behaviour of whole blood is complicated and typically characterized by the
presence and interactions of the suspended red blood cells [46]. The interesting dynamical
response and interactions were already introduced in section 2.3, where it was shown
that they consist of the deformability of the cells, hydrodynamic interactions for dense
suspensions, and the aggregation of red blood cells. Additionally, it was shown in the
preceding chapter, in section 4.4.2, that the consideration of the rheology is manifested in
the description of the fluid stresses. The rheology depended solely on the local dynamic
viscosity of the dispersed phase, under the negligence of many interesting interactions. The
additional consideration of these interactions shows that whole blood exhibits four primary
rheological features: shear-thinning, thixotropy, viscoelasticity, and viscoplasticity [3].
This chapter aims to introduce the essential rheological behavioural aspects of blood and
how to model them. Firstly, the rheology of a simple arbitrary suspension is considered,
followed by an in-depth consideration of shear-thinning and concluding with an overview
of the remaining rheological features.

5.1 Rheology of Simple Particle Suspensions

First, a simple dilute suspension of small neutrally buoyant rigid spherical particles is
considered to generate a better understanding of how and why the complicating behaviour
of red blood cells is modelled using its rheology. Such a suspension allowed the treatment
of isolated particles and was considered in the first theoretical work in the modelling of
suspension rheology by Albert Einstein within the context of his doctoral dissertation
[30]. The model directly considers the viscosity of the complete mixture and is generally
denoted by,

µm = µc(1 + [µ]αd). (5.1)

Where [µ] denotes the intrinsic viscosity, which describes the non-dimensional proportion-
ality of the particle viscosity due to geometry, deformability, and molecular weight [39],
and is equal to [µ] = 5

2 for rigid spherical particles [104]. The model was derived using a
single spherical particle in parallel flow [81], showing that the enhanced viscosity models
the increase in viscous energy dissipation. This additional dissipation results from the flow
deflection around the particle due to its deformation resistance [8, 104].

5.2 Shear-Thinning

Shear-thinning is a well-known and extensively studied rheological effect observed in the
fluid flow of whole blood [11]. In general, shear-thinning is characterized by a decreas-
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ing mixture viscosity for an increasing shear rate. The resulting mixture viscosity often
exhibits limiting Newtonian behaviour on either side, generally denoted by µ0 and µ∞
respectively [8].
The shear-thinning behaviour of whole blood is influenced by different types of blood cell
interactions at low and high shear rates. At low shear rates, it is primarily governed by the
formation of rouleaux [11], as discussed in section 2.3.1. On the other hand, at high shear
rates, the aggregates break up, and the deformability of blood cells becomes the dominant
factor [104], as explained in section 2.3.2. The impact of both phenomena is visualized in
figure 5.1, which illustrates the shear rate-dependent relative mixture viscosity. The shear
rate is here generally expressed through the shear rate magnitude of the mixture using
the double inner product of the mixture strain-rate tensor [92],

γ̇m :=
√
2Dm : Dm. (5.2)

The consideration of a shear rate, in general, results in an isotropic modelling approach for
the dispersed phase strain-rate tensor-dependent dynamic viscosity, discussed in section
4.4.2, i.e. µm = µm(αd,Dd) ≈ µm(αd, γ̇m). Where additionally the Stokesian suspension
consideration of section 4.3 allows the consideration of the mixture strain-rate tensor to
be equivalent to that of the dispersed phase, Dd ≈ Dm, Rep ⪅ 1. The relative mixture
viscosity is, in turn, denoted by the ratio of the mixture viscosity and the viscosity of the
continuous fluid phase [95],

µr :=
µm

µc

. (5.3)

Figure 5.1: Shear-thinning rheology of whole blood at 45 vol% red blood cells for
three types of treatment, adopted from [104].

In continuum-modelling of whole blood, numerical studies often consider this shear-
thinning behaviour as the primary rheological effect of interest [92]. The modelling of
the shear-thinning curve, with respect to the shear rate magnitude, is typically done by
fitting an appropriate model to empirical data [113]. The choice of the model here de-
pends on the region and included effects of interest. In a fundamental consideration of
shear-thinning, the three models discussed in the following sections can be employed [8].
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5.2.1 Cross Model

The Cross model can describe the complete curve as a function of the shear rate and is
denoted by,

µm(γ̇m) = µ∞ +
µ0 − µ∞

1 + (kγ̇m)m
. (5.4)

Where k denotes the cross-model coefficient, and m the degree of shear-thinning.

5.2.2 Power-Law Model

The power-law model is generally most applicable in the transition region between the low
and high shear rate behaviour and is denoted by,

µm(γ̇m) = kγ̇m−1
m . (5.5)

Where k denotes the consistency coefficient, and m the power-law index

5.2.3 Sisko Model

The third and last model is the Sisko model and is generally most applicable in the high
shear rate region,

µm(γ̇m) = kγ̇m−1
m + µ∞. (5.6)

Where k and m also denote the consistency coefficient and the power-law index.

In conclusion, the steady state shear-thinning is essential in the rheological modelling of
whole blood and considers the decrease in apparent viscosity for an increasing shear rate.
Considering the shear rate dependence, rather than the entire strain-rate tensor, limits
the modelling consideration to an isotropic approach.

5.3 Extended Shear-Thinning Modelling

The simple models for shear-thinning, presented in the preceding section, are generally
only applicable in simple dilute suspensions. Like the Einstein model presented in equation
5.1, such models will break down for non-uniform distributions and high concentrations
of the dispersed phase [8]. A great variety of extended models have been proposed in the
literature to resolve these limitations, and a review of a large amount of these models is
available in [2, 113]. These models are generally extensions of the previously presented
models and can roughly be categorized as Einstein-like, Carreau-type, and Casson-type
models. The Casson-type models are typically extensions of the Sisko model, denoted in
equation 5.6, and include viscoplasticity. For this reason, they are further discussed in
appendix D.2.3.

5.3.1 Einstein-Like Models

The Einstein-like models are generally modelled after equation 5.1 and come in two
flavours. The first considers a higher-order expansion in terms of the dispersed phase
volume fraction and can be denoted by [104],

µm(αd) = µc(1 + [µ]αd + kα2
d + . . . ). (5.7)

Where k denotes a real-valued proportionality coefficient and a uniform dispersed phase
volume fraction is typically assumed throughout the flow domain.
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The second are more commonly employed and include well-known models such as the
Quemada and Krieger-Dougherty type models [92]. These models replace the intrinsic
viscosity consideration with that of a maximum allowable dispersed phase volume fraction
reciprocal, e.g. a maximum packing density, and introduce a non-unity exponent,

µm(αd) = µc

(
1− k

αd

αmax
d

)−m

. (5.8)

Where k denotes a real-valued proportionality coefficient, which for the Krieger-Dougherty
model is set to unity, αmax

d the maximum packing density which for spherical particles

is equal to
√
3π
8 ≈ 0.68, and m the non-unity exponent. The inclusion of additional

effects, such as the non-uniformity of the dispersed phase volume fraction, is generally
done by considering the volume fraction as variable. Either the proportionality coefficient
or the exponent is taken as a function of shear rate and other essential variables such that
µm = µm(αd, γ̇m, . . . ).

5.3.2 Carreau Type Models

The Carreau type models are generally an extension of the Cross model, see equation 5.4,
and thus feature a good approximation to the complete curve. The generalized Carreau-
Yasuda model is denoted by [113],

µm(αd, γ̇m) = µ∞ + (µ0 − µ∞) [1 + (kγ̇m)p]
m−1

p . (5.9)

Where k denotes a real-valued proportionality coefficient, and p and m real-valued expo-
nents where the original Carreau model may be derived for p = 2. A modified Carreau-type
model is the Yeleswarapu-Wu model, which was originally derived based on a model to
include viscoelasticity in the modelling of whole blood [113]. While the model itself may
also be utilized to describe the entire mixture, it is often used solely for the dispersed
phase viscosity and is denoted by [92],

µm(αc, αd, γ̇m) = αcµc + αd

(
µ∞ + (µ0 − µ∞)

1 + log(1 + kγ̇m)

1 + kγ̇m

)
. (5.10)

The inclusion of dependence on the local haematocrit value in Carreau-type models is
generally done through polynomial modelling of the two limiting viscosities. Consider, e.g.
[92], where the limiting viscosities for the Yeleswarapu-Wu model are modelled according
to,

µ0(αd) = a1αd + a2α
2
d + a3α

3
d,

µ∞(αd) = b1αd + b2α
2
d + b3α

3
d.

(5.11)

Where an and bn, n ∈ [1, 2, 3], are real-valued proportionality coefficients to be derived
using data fitting of empirically measured whole blood viscosities. Additional important
physiological parameters such as fibrinogen concentration and temperature dependence
can be included in the shear-thinning modelling of whole blood. Such models are further
discussed in [2, 11, 113], but were exempt from modelling in the consideration of blood
flow in this study as they were either out-of-scope or exempt from modelling following the
conclusions of chapter 2.

5.4 Thixotropy

Thixotropy is another important rheological property displayed by whole blood, which
complements its shear-thinning behaviour. It is considered the change of the mixture
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viscosity with time rather than the shear rate [8]. The property is generally observed
in the elevated-viscosity recovery when shear forces are removed from the mixture. The
generic behaviour of a thixotropic fluid is illustrated in figure 5.2, where the viscosity of
a shear-thinning fluid is compared to that of a shear-thinning thixotropic fluid over time
for a sudden change in shear rates.

Figure 5.2: The illustrated time dependence of a thixotropic and non-thixotropic
fluid for a sudden change in shear rate, inspired by [80].

The figure illustrates that the recovery of the limiting viscosity at zero shear for the
thixotropic fluid takes a long time. In contrast, the viscosity recovery of a non-thixotropic
fluid is nearly instant.
The observation of thixotropy in whole blood is then predominantly governed by the time-
dependent phenomenon of rouleaux formation and breakdown in response to changing
shear rates [3, 83], which was discussed in section 2.3.1. The blood cells simply require
time to rearrange themselves into a new equilibrium configuration within the rouleaux after
a change in shear rates. The observation and interest in this behaviour are more recent
than that of shear-thinning and originate partially due to interest in pulsatile flow [46],
and blood flow at low shear stresses [113]. The modelling of thixotropy was consequently
considered out-of-scope for this study, and basic modelling considerations of the property
are further discussed in appendix D.2.1.

In conclusion, the dependence of thixotropy on the observation of rouleaux within blood
flow allows the exclusions of the modelling of the rheological property within the context of
blood flow in a hollow-fibre membrane oxygenator. This exclusion of consideration follows
directly from the assumption that rouleaux are generally not observed in HFMOs due to
the typically small characteristic domain sizes and high shear rates in the flow of whole
blood, as concluded in chapter 2.

5.5 Viscoelasticity

The viscoelastic behaviour of blood is closely related to its thixotropic character and is
also a time-dependent phenomenon [11]. In general, viscoelasticity combines the viscous
effects observed in fully fluid materials and elastic effects observed in solid materials [104].
An intuitive analogous example for understanding viscoelastic behaviour is a simple me-
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chanical system consisting of a linear spring, and a viscous dash-pot [8]. For these system
components, the stresses are respectively denoted by σV E

E = εE, σV E
µ = µγ̇, where E de-

notes the elasticity modulus and ε the elastic strain. The response of the strain for a
sudden and constant application of stress for a serial combination of a spring and a dash-
pot, generally denoted the Maxwell model [8], is illustrated as a function of time in figure
5.3.

Figure 5.3: The illustrated time dependence of a Maxwell model viscoelastic strain
and individual elastic and viscous strains for a step-function application of stress
in time, inspired by [56].

The figure illustrates that, upon the instantaneous application of stress, the spring will be
excited and the overall strain elevated to the permissible level. Conversely, the dash-pot
takes time to reach an equilibrium state, causing a gradual increase in overall strain over
time during loading. Upon stress unloading, the elastic contribution facilitates a rapid
reduction in strain. However, complete strain recovery may not be achieved [56].
In blood, the effects of viscoplasticity are manifested in the deformation of the flexible
red blood cells as they will regain their original discocyte shape after shear stresses are
removed [11], along with the elastic response of the stretching of the bonds between the red
blood cells in rouleaux [46]. Just like thixotropy, the observation of the viscoelasticity of
blood is mainly of interest in pulsatile flow and regions of low shear [113]. The modelling of
viscoelasticity was consequently considered out-of-scope for this study, and basic modelling
considerations of the property are further discussed in appendix D.2.2.

In conclusion, the viscoelasticity can, similarly to the thixotropy discussed in the previ-
ous section, be exempt from modelling when considering blood flow within a hollow-fibre
membrane oxygenator following the conclusions of chapter 2.

5.6 Viscoplasticity

The viscoplasticity of whole blood is characterized by its yield stress [11]. Fluids that
include a yield stress are usually denoted as Bingham fluids [8] and are characterized by
the requirement of an initial stress application before the fluid is allowed to flow. The
resulting behaviour of a viscoplastic fluid is best envisioned by comparing the observed
shear stresses over a range of shear rates, as illustrated in figure 5.4.
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Figure 5.4: The illustrated shear rate dependence of various non-Newtonian fluids,
inspired by [80].

The figure illustrates that viscoplastic fluids such as Bingham or regular plastics generally
contain a minimum stress threshold. In contrast, fluids with a Newtonian, shear-thinning,
or shear-thickening classification start at zero stress. The shear-thickening classification
here denotes the opposite behaviour of shear-thinning discussed in section 5.2, i.e., the
viscosity increases for an increasing shear rate.
The yield stresses of blood are manifested in the breakage of the bonds in the rouleaux
structure [3]. These stresses are generally relatively small, typically considered in the
order of σV P

y = 1mPa [11]. The small magnitudes of these stresses also cause considerable
uncertainty in its exact value as it is generally difficult to measure. The modelling of
viscoplasticity was consequently considered out-of-scope for this study, and basic modelling
considerations of the property are further discussed in appendix D.2.3.

In conclusion, the observation of viscoplasticity in whole blood depends primarily on
the observation of rouleaux. The resulting typical yield stresses are additionally relatively
small, such that the viscoelastic feature is allowed to be exempt from modelling in consid-
eration of blood flow within a hollow-fibre membrane oxygenator following the conclusions
of chapter 2.

5.7 The Rheological Modelling of Whole Blood

This chapter introduced the rheological modelling of whole blood with a particular interest
in its shear-thinning characteristic. The shear-thinning generally shows a reduction in
the apparent viscosity of whole blood for an increasing shear rate and is related to the
breakage of red blood cell aggregates at low shear rates and deformation of red blood
cells at high shear rates, as discussed in section 5.2. The shear-thinning characteristic
also proved the most important in consideration of non-aggregating whole blood, as the
other characteristics, i.e. thixotropy, viscoelasticity and viscoplasticity, are generally only
important at low shear rates under the observation of rouleaux.
The modelling of shear-thinning can be realized in numerous ways, with some fundamental
considerations introduced in sections 5.2 and 5.3. However, a universally agreed-upon
modelling strategy is lacking [113]. Consequently, the selection of a viscosity model often
seems to be driven more by individual preferences than by strict adherence to performance
or accuracy-based criteria.
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Chapter 6

Shear-Induced Migration
Modelling of Red Blood Cells

The deformable red blood cells suspended in the blood plasma not only ensure an inter-
esting rheological behaviour for whole blood, as evidenced in the previous chapter, but
the particles also tend to migrate lateral relative to the dominant flow direction. This
migratory behaviour is not specific to blood cells and may be observed in any particle
suspension. The behaviour is especially pronounced in small domains, as was evidenced
by the F̊ahræus and F̊ahræus–Lindqvist effects discussed in section 2.3.3, or for low, but
finite, Reynolds flows discussed in section 4.2. The dominant mechanisms that induce
these particle migrations and the modelling thereof are discussed in this chapter.

6.1 Mechanisms of Shear-Induced Migration

The initial observations of the lateral migration of particles in the work of Poiseuille
[85], concerning the flow of whole blood, predate the observations of the F̊ahræus and
F̊ahræus–Lindqvist effects [66]. In contrast to these findings, Bretherton [16] demon-
strated that these observations are not possible for an isotropic, neutrally buoyant, rigid
body in unidirectional Stokes flow of a Newtonian fluid due to the linearity and flow re-
versibility of the Stokes equations [37]. The first experimental evidence of lateral, neutrally
buoyant particle migration in low-Reynolds flow in the work of Segré and Silberg [96] then
demonstrates the importance of inertial effects on the observation of the migratory be-
haviour [102]. The mechanisms that were found to introduce this migratory behaviour are
discussed in this section.

6.1.1 Solid Boundary Presence

The migratory behaviour of dense, neutrally buoyant particle suspensions was first ob-
served in a Couette flow of a dense suspension of rigid spheres [36]. The suspended
particles in the Couette flow were observed to migrate towards the central plane due to
the influence of the solid boundaries [66].
The underlying mechanism responsible for this boundary presence-induced particle lift
arises from an asymmetrical distribution of forces exerted by the suspending fluid on the
surface of the particle, introduced by the solid boundary [40]. This mechanism is easily
envisioned by considering a fluid flow where particles are suspended and moving alongside
a solid boundary, as illustrated in figure 6.1. The solid boundary prevents a deflection
of the flow around the particle, leading to the separation of streamlines at a point closer
to the wall. This results in greater pressure on the side of the particle near the solid
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boundary, forcing the particle away from the solid boundary [66].
The influence exerted by a solid boundary is not the exclusive factor responsible for the
disruption of the force symmetry. The presence of neighbouring particles or a broken
geometrical symmetry will additionally lead to the lateral migration of particles [37, 102].
The geometrical symmetry is generally broken through non-symmetrical shapes and de-
formability. Consequently, deformable non-idealistically shaped particles or rigid spherical
particles in the proximity of a flexible boundary [9] can also be observed to migrate, even
in Stokes flows [95].

Figure 6.1: The illustrated wall-induced lift lateral migration mechanism for par-
ticles near a solid boundary, inspired by [102].

6.1.2 Velocity Profile Curvature

Another mechanism of lateral migration may arise when considering more complicated
flow profiles than simple linear shear flows. This mechanism is induced by a curvature in
the velocity profile, or a non-constant shear rate, and is extensively studied for Poiseuille
flow profiles [25, 34, 52, 59].
Rigid spherical particles are typically observed to migrate away from the central line of
the paraboloid velocity profile [102]. This movement opposes the boundary presence-
induced lift discussed in the previous section, as illustrated in figure 6.2a. The underlying
mechanism responsible for this velocity profile-induced particle lift is believed to originate
from the asymmetry of the velocity acting on the surface of the particle. The velocity
asymmetry results in a pressure asymmetry with a higher pressure acting on the side
where the local flow velocity is higher [66].
On the contrary, the resulting migratory behaviour of deformable soft particles, like red
blood cells or droplets, shows a far richer behaviour. Deformable particles can typically
migrate in both directions and may even stop at intermediate positions [34]. The migratory
behaviour depends on particle geometry, the dispersed and continuous phase viscosity
ratio, and the capillary number. The capillary number describes the ratio between the
viscous drag forces and the surface tension forces, as was previously introduced in chapter
4, and is denoted by,

Ca :=
µcU

σ
. (4.18)

Specifically, for red blood cells, the elevated viscosity ratio is sufficient to reverse the
direction of migration. Consequently, ensuring a migratory behaviour towards the central
line of the velocity profile [34, 52], as illustrated in figure 6.2b.

In conclusion, the behaviour of particles in a suspension is complicated and easily influ-
enced by many factors. Even a factor as simple as the mere presence of a solid boundary
may introduce particle migration. The consideration of deformable non-spherical parti-
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(a) Sphere

Vdm

(b) Red blood cell

Figure 6.2: The illustrated velocity profile-induced migratory behaviour of a rigid
spherical particle and a red blood cell, inspired by [95].

cles, such as red blood cells, compliment the intricate flow response of the particles and
may even reverse the direction of migration.

6.2 Shear-Induced Diffusion

The shear-induced migration is not the sole migratory effect for sufficiently dense suspen-
sions of deformable particles in shear- or pressure-driven flow. The hydrodynamic interac-
tions between the suspended particles also become of significance [37]. The frequent and
repeated irreversible interactions of particles in the suspension result in a self-diffusive-
like migratory behaviour normal to the plane of shear [114]. This phenomenon was first
observed for a suspension of rigid spheres in the work of Leighton and Acrivos [58].
The underlying mechanism of shear-induced diffusion may best be understood by first
considering a pair-collision of two particles moving in a simple pressure-driven flow on
differing streamlines [104]. The interaction of these particles results in an oscillatory dis-
placement within the flow centred around their original streamline. This displacement
is characterized by a length proportional to the characteristic size of the particle and a
frequency proportional to the local shear rate [58]. However, the oscillatory behaviour
around the original streamline is only observed for perfectly smooth spherical particles
and sometimes denoted a random walk. Particles with broken geometrical symmetry,
through non-symmetrical shapes or deformability, will show an irreversible displacement
towards neighbouring streamlines [37, 104], as is illustrated in figure 6.3.

Figure 6.3: The illustrated pair-collision red blood cell trajectories resulting in
irreversible streamline displacement in Poiseuille flow, inspired by [41].

In dense suspensions, the migratory mechanisms discussed in the preceding section lead to
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the accumulation of particles near the central line of the velocity profile. This accumulation
increases the observation of hydrodynamic interactions, such as inter-particle collisions,
as illustrated in figure 6.4. Consequently, this results in a more pronounced diffusive flux
in the opposite direction of the migration mechanisms [104]. The combined dependence
of the characteristic particle size, local shear rate, and the local dispersed phase volume
fraction are thus essential in the observation of shear-induced diffusion. This importance
is evidenced by an effective diffusivity formulation, applicable to red blood cells, which
may be denoted by [37],

DSID
αd

≡ CSID
αd

a2dγ̇αd. (6.1)

Where CSID
αd

denotes a dimensionless diffusivity in the direction of the vorticity, and the
product γ̇αd is generally denoted the frequency of pair interactions. The diffusivity ef-
fectively denotes that particles typically migrate away from the dense particle-laden core
flow due to the increased probability of collisions. Additionally, the particles migrate away
from regions of high shear rate as here collisions are typically more frequent [104].

Vdm

Figure 6.4: The illustrated particle dispersion due to hydrodynamic interactions in
dense suspensions, inspired by [95].

In conclusion, the particle migration mechanism discussed in the preceding section in-
duce a concentration of particles near the central line of the fluid flow. This concentration,
in dense suspensions, allows for an increased observation of particle collisions that cause
the particles to migrate away from the central line in a self-diffusive-like behaviour.

6.3 Shear-Induced Migration Modelling

The constitutive modelling of particle migration is generally done through the macroscopic
phase diffusion for the mass conservation of the dispersed phase, denoted in equation 3.21,
in the absence of other external forces. Two primarily considered model types exist to
model the migration flux, the suspension balance and the diffusive flux models [104].
The derivation of both model types assumes a mixture momentum balance at steady
state without additional source contributions. Drag forces solely govern the interphasic
momentum exchange. Additionally, for the mixture momentum, the relative phase motion
is neglected, such that the mixture momentum equation reduces to [106],

0 = ∇ · (σm). (6.2)

In a two-phase formulation, denoted by equation 3.12, the migration modelling can al-
ternatively be done by modelling individual lift-related forces. These formulations were
considered out-of-scope in this study and are therefore further discussed in appendix D.3.

42



6.3.1 Suspension Balance Models

The suspension balance model was derived by Nott and Brady [77] and aims to relate the
suspension rheology to the macroscopic phase diffusion flux. In this context, the phase
diffusion flux of the dispersed phase mass conservation is considered and modelled through
the dispersed phase stress tensor [78]. A variety of models exist based on this idea [106],
but the most fundamental is that by Morris et al. [71]. Here, the diffusion flux is assumed
linear in the divergence of the dispersed phase stress tensor and denoted as [71],

JD
1d

= ρd
2a2d
9µc

CSH

JD
1d

(αd)∇ · σd (6.3)

Where CSH

JD
1d

denotes a sedimentation hindrance coefficient, dependent on the local dis-

persed phase volume fraction. The dispersed phase stress tensor here is not necessarily
modelled as given in equation 4.12 and is generally the differing factor in various existing
models. The dispersed phase stress tensor modelling here faces the same difficulties and
variety of required assumptions discussed in section 4.4.2.
The consideration of the dispersed phase stress tensor ensures the freedom in the model
as here an anisotropic stress tensor can be utilized, required in the observation of possible
secondary flows induced by normal stress differences [88]. A significant and well-known
limitation of the model is the possibility of it breaking down in regions of zero shear
rate, observed in, e.g. the central line of Poiseuille flow, which is commonly resolved by
including a small contribution to the shear rate [104].

6.3.2 Diffusive Flux Models

The diffusive flux model is a phenomenological model derived by Phillips et al. [82]
based on the parameter scaling arguments derived by Leighton and Acrivos [58]. For
the dispersed phase mass conservation, the macroscopic phase diffusion flux was assumed
to consist of three contributions. The first is introduced by shear-induced diffusion due
to particle collisions, as discussed in section 6.2. The second originates due to spatial
variations in the mixture viscosity. The third and last originates due to Brownian motion
and may generally be neglected for red blood cells, as evidenced in section 2.3.5. The
application of this model appears extensively within the continuum modelling literature
for whole blood, including work such as [22, 92, 111, 112]. The diffusion flux is generally
denoted as [82],

JD
1d

= −ρdC
C

JD
1d

a2dαd∇(αdγ̇m)− ρdC
µ
JD

1d

a2dα
2
d

γ̇m
µm

∇µm. (6.4)

Where the Brownian motion contribution was omitted, and CC

JD
1d

and Cµ
JD

1d

denote model

coefficients of order unity. The usage of the shear rate magnitude instead of the full stress
tensor, in contrast to the suspension balance models discussed in the preceding section,
is a limiting factor to the accuracy of the model. This consideration essentially assumes
an isotropic response, which is limiting in regions with high anisotropic behaviour such as
stagnation points [92]. The model also suffers from the inability to describe zero shear rate
regions in the flow properly. However, the model allows for a cost-effective and convenient
initial modelling simplification, which surprisingly performs well, even at length scales
comparable to that of a few red blood cells [22]. The model can, in some cases, in addition
to the inclusion of Brownian motion, be extended to describe migration in curvilinear flows
or sedimentation effects [111, 112].
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6.4 Mathematical Model Equivalence

The shear-induced migration models discussed in the preceding section are seemingly
vastly different but were shown to be mathematically relatable by means of a total deriva-
tive of an effective potential by Vollebregt et al. [106]. The migration models were shown
to follow the subsequent generic framework under the assumption of an isotropic particle
stress tensor,

JD
1d

= −CM

JD
1d

∇µ∗

= −CM

JD
1d

[
∂µ∗

∂αd
∇αd +

∂µ∗

∂γ̇m
∇γ̇m

]
= Dαd

∇αd +Dγ̇m∇γ̇m.

(6.5)

Where CM

JD
1d

denotes a mobility coefficient related to the dispersed phase volume fraction

and the drag coefficient, Dαd
and Dγ̇m effective diffusivities, and µ∗ an excess chemical

potential. The chemical potential is related to the particulate normal stresses, typically
assumed to reduce to the particulate pressure [106]. This particulate pressure is similarly
behaved to an osmotic pressure [104], which denotes the minimum pressure required to
separate the particulate phase from the continuous phase using a permeable membrane
[12]. This correlation indicates that the shear-induced migration of particles is linked to
thermodynamics [106].

6.5 The Constitutive Modelling of Shear-Induced Migration
of Red Blood Cells

This chapter introduced the various mechanisms of shear-induced migration and diffu-
sion along with commonly considered modelling approaches. The migratory behaviour of
particles generally shows a rich and complicating behaviour strongly related to the flow
domain, flow regime and particle characteristics such as size, shape, and deformability.
The primary mechanisms were discussed to be:

1. Migration due to the presence of solid boundaries, as discussed in section 6.1.1.
2. Migration due to velocity profile curvature, as discussed in section 6.1.2.
3. Self-diffusive-like migration due to particle interactions, such as inter-particle colli-

sions, as discussed in section 6.2.

The modelling of these migration mechanisms is generally considered through two model
types: the suspension balance and diffusive flux models. The suspension balance models
generally aim to relate the migration to the rheological properties of whole blood by
considering the migration flux as a function of the dispersed phase stress tensor. On
the other hand, the diffusive flux models are phenomenological models based on scaling
parameters related to the mechanisms.
Finally, it was discussed that in the consideration of an isotropic particle stress tensor,
which is typically assumed, the suspension balance and diffusive flux models are equivalent.
The assumption of isotropy then ensures that the migration model selection is driven by
individual preference rather than strict accuracy or performance adherence.
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Chapter 7

The Oxygenation of Blood in
Hollow-Fibre Membrane
Oxygenators

The oxygenation of whole blood in hollow-fibre membrane oxygenators consists of four
stages. Firstly, the oxygen inside the fibres must diffuse through the porous membrane.
The diffused oxygen is then dissolved in the blood plasma directly adjacent to the fi-
bres and diffuses towards the red blood cells. The dissolved oxygen then needs to diffuse
through the red blood cell membrane and the cytoplasm, and lastly, it is bound to the
haemoglobin suspended in the cytoplasm. This chapter introduces the primary considera-
tions of these four stages and models capable of describing the blood-side oxygen transfer
and haemoglobin binding process.

7.1 Membrane-Side Oxygen Transfer

Hollow-fibre membrane oxygenators are designed to mimic the natural gas exchange pro-
cess in the lungs. They function by allowing blood to flow through a container filled
with thin, gas-permeable membranes [24]. Specifically, this type of oxygenator employs
thin, hollow fibres typically made of hydrophobic micro-porous polypropylene or poly-
methylpentene. In long-term oxygenation applications, these fibres may also be coated
with a thin layer of silicone [49, 93]. The fibres generally have an interior diameter of
about 100− 200 µm [91], an exterior diameter of about 300− 380 µm [93], and require an
inter-fibre spacing as low as 100 µm for efficient oxygenation [24].
The basic micro-porous structure of the fibres, alongside an exterior bloodstream, is il-
lustrated in figure 7.1. The illustration shows that the hydrophobic nature of the porous
structure enables significant gas exchange, achieved by ensuring the pores remain satu-
rated with air [110]. To this end, the oxygen concentration on the interior and exterior of
the fibres becomes approximately equal [50].
In conclusion, the fibre dimensions and inter-fibre spacings are typically at least an order
magnitude greater than the red blood cells. The RBCs are about 8 µm in diameter, as
discussed in section 2.2. The fibres provide a very efficient method of oxygen supply as
the porous structure allows for the oxygen concentration on either side to be equivalent.
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Figure 7.1: The illustrated membrane-side oxygen transfer, inspired by [94].

7.2 Blood-Side Oxygen Transfer

7.2.1 Continuous Phase Diffusion

The oxygen transfer through the continuous phase of whole blood, blood plasma, is gener-
ally governed by Fickian diffusion [97]. The diffusive flux is then governed by Fick’s first
law of binary diffusion, which is generally denoted by [12],

J ωa = −ρtDa,b∇ωa. (7.1)

Where ωa denotes the mass fraction of species a, ρt the total mass density, and Da,b the
molecular diffusivity of species a in species b. The mass fraction itself is given by the ratio
of the mass density of the species over the total mass density [12],

ωa :=
ρa
ρt

≡ ρa

(∑
k

ρk

)−1

. (7.2)

The mass density may also be related to the molar concentration [12],

ca ≡ ρa
Ma

. (7.3)

Where Ma denotes the molecular mass of species a. The mass and molar concentrations of
oxygen dissolved in blood plasma are generally rather low in magnitude and may, therefore,
be related to the partial pressure of oxygen using the Henry-Dalton law [44],

pa =
ca
βa,b

. (7.4)

Where βa,b denotes the Bunsen solubility coefficient of a gaseous species a in a liquid
species b. The coefficient quantifies the volume of a gas absorbed by a unit volume of
liquid, or more accurately, solvent [15]. The complete transport of oxygen throughout
the continuous phase is now governed by the commonly considered species continuity
equations. In the consideration of constant material properties these are denoted by [12],

∂ϕa

∂t
+ u · ∇ϕa = Da,b∇2ϕa. (7.5)

Where ∇2(.) := ∇ · ∇(.) denotes the Laplace operator, and ϕ can be replaced by ρ, c, or
p depending on the coefficient of interest.
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7.2.2 Interphasic and Dispersed Phase Diffusion

The cell membrane generally constrains the uptake of oxygen by red blood cells. However,
this resistance is not primarily attributed to the membrane itself, which has been deter-
mined to be negligible [47]. Instead, the resistance is linked to the potential formation
of a diffusion boundary layer around the membrane, creating a notable hindrance. This
diffusion boundary layer may also manifest within the interior of the red blood cells. As a
result, the cumulative oxygen resistance at the membrane contributes to a nearly uniform
oxygen concentration field within the cell’s interior [23].

7.2.3 Oxygen Equilibrium, Co-operativity, and Affinity

Haemoglobin is the protein dissolved in the cytoplasm inside the red blood cells and is re-
sponsible for the transportation of oxygen. The protein consists of four heme groups, each
containing an iron atom to which the oxygen may bind reversibly to form oxyhaemoglobin
[5]. The binding process is so-called co-operative, ensuring subsequent bindings become
easier, resulting in differing reaction rates for each binding. These differing reaction rates
are most comprehensively described using the four-step Adair reaction scheme. However,
due to unfamiliarity with these rates, a common approach is to model them through a
one-step approximation, which may be denoted by [23],

1 mol O2 + 1 mol Hb ⇌ 1 mol HbO2. (7.6)

Where Hb denotes an independently considered heme group of the haemoglobin and HbO2

the oxyhaemoglobin. Moreover, the co-operative binding results in a non-linear relation
between the amount of oxygen, generally represented by the partial pressure of oxygen,
and the saturation of these heme groups [97]. The oxygen saturation here is denoted by
[50],

SO2
(pO2

) :=
cHbO2

cHb,t

≡
cHbO2

cHb,t + cHbO2

. (7.7)

Where cHb,t denotes the total haemoglobin concentration, which is a constant. A simple
but accurate and often considered model for oxygen saturation is the Hill equation denoted
by [1],

SODC(pO2
) =

pnO2,m

pnO2
+ pn50

. (7.8)

Where the exponent n denotes the Hill constant, and p50 the partial pressure observed
at 50% oxygenation. The saturation over the partial pressure is visualized in figure 7.2,
which is generally a sigmoidal curve denoted the Hill plot or oxygen dissociation curve
(ODC) [97].
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Figure 7.2: The illustrated oxygen saturation dependence of dissolved oxygen par-
tial pressure for various degrees of oxygenation, modelled by means of the Hill
equation, inspired by [94].

The figure illustrates that the oxygen uptake can differ significantly depending on the
amount of dissolved oxygen present. Additionally, the effect of oxygen uptake affinity is
illustrated. The affinity typically depends on factors such as carbon dioxide concentration,
temperature, and pH of blood plasma, and concentrations of organic phosphates and pro-
teins [5]. A more comprehensive model than the previously presented Hill model includes
dependence on these factors and was proposed by Siggaard-Andersen et al. [99]. However,
the dependence of the oxygen saturation on the affinity is typically neglected, and the Hill
model coefficients are taken as constants.

In conclusion, the transport of oxygen through the blood plasma is similarly behaved
to any generic gas dissolved in a liquid. The cell membrane may limit the oxygen uptake
of the red blood cells through the formation of internal and external diffusion boundary
layers. Consequently, the oxygen concentration throughout the cell is approximately uni-
form. The reversible bonding process of oxygen and haemoglobin is complicated. The
binding rates typically depend on the amount of previously bound oxygen molecules.
Consequently, the amount of bound oxygen present depends non-linearly on the available
oxygen. Furthermore, these rates are influenced by the oxygen affinity, which depends
on the local concentration of carbon dioxide, temperature, and blood pH. However, these
considerations are typically neglected when modelling the saturation profile.

7.3 Oxygenation Modelling

The modelling of oxygenation in hollow-fibre membrane oxygenators is typically done using
two models, the effective oxygen diffusivity model (EOD) and the micro-scale oxygenation
model (MSM). The models were derived based on differing considerations and will be
discussed in this section. Additionally, a newly derived model is discussed at the end of
the section for which the detailed derivation is presented in appendix A.

7.3.1 Effective Oxygen Diffusivity Model

The effective oxygen diffusivity model is the most commonly considered and was originally
derived by Weissman and Mockros [109]. The derivation considered the physical principle
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of mass conservation of oxygen within whole blood at steady state, where the oxygen
uptake of the red blood cells was modelled using an elevated advection. The resulting
model effectively denoted a mixture consideration for oxygen transport throughout whole
blood rather than explicitly modelling blood as a two-phase flow. The resulting steady-
state advection-diffusion equation is generally denoted by [101],

um · ∇cO2,m
= DEOD

eff ∇2cO2,m
. (7.9)

Where DEOD
eff denotes the effective diffusivity coefficient. This coefficient is constructed

using a constant continuous phase diffusivity and the reciprocal of the coefficient of elevated
advection. The effective diffusivity is generally denoted by,

DEOD
eff :=

Dc

1 +
αd

βO2,m

∂SO2

∂pO2

. (7.10)

Where the derivative of the oxygen saturation with respect to the partial pressure aims
to model the oxygen uptake of the red blood cells dynamically.
The model was derived under various simplifying assumptions, potentially limiting its
accuracy under the consideration of non-uniform spatial distributions of red blood cells,
all explained in more detail in [108]. The first is precisely the consideration of a uniform
distribution of RBCs throughout the flow. Additionally, the RBCs are assumed to behave
like reversible oxygen sinks or depositories that are advected in the flow. The fluid is
considered a homogeneous mixture, and, lastly, the saturation derivative is modelled using
the Hill model using the mixture oxygen partial pressure.

7.3.2 Micro-Scale Oxygenation Model

The micro-scale oxygenation model was recently derived by Kaesler et al. [50], under
the consideration of a two-fluid model. The model consists of three governing relations,
one for the continuous phase dissolved oxygen, the dispersed phase dissolved oxygen,
and lastly, the dispersed phase bound oxygen. The model includes closure models for
the interactions between the three considered oxygen species and was derived to improve
an observed overestimation of saturation values by the effective oxygen diffusivity model
discussed in the previous section. The governing relations under steady state are denoted,

∇ · (αcũcc̃O2,c
) = ∇ · (αcDO2,c

∇c̃O2,c
)− IcO2,c→d

,

∇ · (αdũdc̃O2,d
) = ∇ · (αdDO2,d

∇c̃O2,d
)− ScO2→HbO2,d

+ IcO2,c→d
,

∇ · (αdũdc̃HbO2,d
) = ∇ · (αdDHbO2,d

∇c̃HbO2,d
) + ScO2→HbO2,d

.

(7.11)

Where IcO2,c→d
denotes the diffusion of oxygen through the red blood cell membrane, and

is denoted by,

IcO2,c→d
=

Ad

CR
I βO2,d

(cO2,c
− cO2,d

). (7.12)

Where Ad denotes the surface area of the red blood cell and CR
I a measurement of the re-

sistance to interphasic oxygen diffusion. The oxygen binding reaction sink term is denoted
by,

ScO2→HbO2,d
= CR

d,0(SODC − SO2
)3. (7.13)

Where CR
d,0 denotes the reference reaction rate determined by scaling the oxygen transfer

rate to empirical observations, and the oxygen dissociation curve was modelled using the
comprehensive model by Siggaard-Andersen et al. [99]. Here the partial pressure of the
oxygen dissolved in the dispersed phase is considered as input for the ODC.
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7.3.3 Conservation of the Total Mass of Oxygen Model

The last model was newly derived in this study, for which the detailed derivation is pre-
sented in appendix A. The model was, similarly to the effective diffusivity model, derived
on the physical principle of mass conservation of oxygen within whole blood. The deriva-
tion did, however, not consider a steady state, but the conservation of the mass fraction
of the total mass of oxygen governed by the drift-flux model derived in section 3.2.3.
Additionally, the dispersed phase volume fraction was not assumed uniform. The result-
ing incompressible steady-state advection-diffusion equation in terms of the oxygen molar
concentration is denoted by,

(1 + CHbO2)um · ∇cO2,m + CHbO2Vdm · ∇cO2,m = ∇ · (Deff∇cO2,m) . (7.14)

Where CHbO2 denotes an oxyhaemoglobin transport coefficient, and Deff an effective diffu-
sivity. These model coefficients, as introduced in equation A.28, are respectively denoted
by,

CHbO2
:= αd

cHb,t

βO2,m

∂SO2

∂pO2,m
,

Deff := DO2,c +DHbO2,d
MHbO2

MO2

CHbO2 .

(A.28)

7.4 The Modelling of Oxygen Transport in Whole Blood

This chapter introduced the basics of the four stages of oxygen transport through whole
blood in hollow-fibre membrane oxygenators and commonly considered modelling ap-
proaches. Due to the permeable nature of the fibres, the membrane-side oxygen transfer is
an efficient process. This permeable nature allows the oxygen concentration on either side
of the fibre membrane to be assumed to be approximately equal. The oxygen transport
through the continuous phase of whole blood is considered to be governed by the well-
known Fickian diffusion. The interphasic diffusion is constrained by diffusion boundary
layers external and internal to the cells. This constraint results in typically uniform oxygen
concentration profiles throughout the interior of the red blood cells. Oxygen binding in
the blood cells is complicated, including many influencing parameters. The co-operative
process of the binding results in varying binding rates depending on how much oxygen is
already bound in the blood cell.
Additionally, the solids suspended in blood plasma, the presence of carbon dioxide, tem-
perature, and pH modify the oxygen affinity of the blood cells. The variable oxygen affinity
results in the oxygen saturation, with respect to the partial pressure, dependent on these
factors. Lastly, three models were described. The first is the typically considered effective
oxygen diffusivity model, which describes the oxygenation process for blood as a mixture.
The second is the recently derived micro-scale model, which considers blood flow from a
two-phase perspective. The last is the conservation of the total mass of oxygen model de-
rived in this study, which also considers a mixture description of the oxygenation process
but was in contrast to the effective oxygen diffusivity model derived using the modelling
consideration of chapter 3.
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Chapter 8

Methodology

The preceding chapters discussed the physics underlying shear-induced particle migration
and oxygenation. Alongside these physical considerations, various models were introduced
to approximate the response of whole blood. This chapter discusses how these models were
combined into a set of governing relations. It details how the dependent variables were
constrained to reflect the physical behaviour of whole blood in hollow-fibre membrane oxy-
genators. The necessary considerations for numerical solution approximation are explored,
along with defining the representative spatial domains relevant to the study of migration,
oxygenation, and their combination. Finally, the chapter outlines the tools utilized for
verifying and comparing the derived numerical solutions.

8.1 Governing Relations

The mathematical modelling of blood flow and its oxygenation, with its intricate features,
is a complicated affair requiring a large set of closure models, as demonstrated in the
preceding chapters. A large subset of possible closure models have been discussed, allowing
for many model variations. The models utilized in this study, along with the underlying
reasoning behind their selection, are discussed in this section.
Whole blood was considered a two-phase dispersed mixture following the considerations in
chapter 2. The dispersed phase was assumed to consist solely of the red blood cells, while
the continuous phase consisted of blood plasma. To this end, the axiom of continuity is
denoted by,

αd + αc = 1. (8.1)

Where αd denotes the volume fraction of the dispersed phase, and thus identical to the
volume fraction of the red blood cells, more commonly denoted the haematocrit. Further-
more, in chapter 4, it was deduced that generally, in hollow-fibre membrane oxygenators,
whole blood can be considered as a Stokesian suspension. The red blood cells are then
considered to follow the streamlines of the flow, and particle detachment is minimal. This
consideration effectively allowed the modelling of the conserved quantities through the
drift-flux model, which was derived in section 3.2.3. The influence of turbulence was
neglected following the low-Reynolds considerations discussed in section 4.2. Lastly, it
was additionally assumed that the flow of whole blood and oxygenation are invariant
to thermal fluctuations following the considerations denoted in section 2.3.5, such that
the consideration and rheological dependence of the thermal energy evolution could be
neglected.
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8.1.1 Blood Flow

The flow of whole blood is now governed by three types of conservation, the conservation
of mass of the mixture, the conservation of linear momentum of the mixture, and the
conservation of mass of either the dispersed or the continuous phase.

8.1.1.1 Conservation of Mixture Mass

The conservation of mass of the mixture reduced to a divergence-free, or solenoidal, velocity
field restriction. This constraint was the result of three assumptions. Firstly, there is
no mass transfer between the dispersed and continuous phases, effectively neglecting the
cytoplasm loss of the red blood cells discussed in section 2.2. Secondly, there are no mixture
mass sources or sinks, i.e. no creation nor destruction of whole blood. Lastly, the mixture
and its constituents were assumed incompressible fluids following the considerations of
section 2.1 and 2.2. The mixture mass conservation is now denoted by,

∇ · um = 0. (8.2)

8.1.1.2 Conservation of Mixture Momentum

The conservation of linear momentum of the mixture simplified greatly by considering
the particulate Reynolds and Stokes numbers are generally low, as followed from section
4.3. This allowed the negligence of the macroscopic phase diffusion fluxes for the mixture
momentum, as discussed in section 4.5.1. The body forces, such as gravity, were for sim-
plicity in this study neglected and the interfacial mixture momentum source was assumed
modelled through the rheological modelling as discussed in section 4.5.2. The momentum
diffusion and rheology of whole blood were assumed to be governed by shear-thinning
solely, following the considerations of section 4.4 and chapter 5, such that the mixture
stress tensor reduced to,

σm = −pmI + 2µm (αd, γ̇m)Dm. (8.3)

Where the low particulate Reynolds number consideration, along with an isotropic mo-
mentum diffusivity assumption, allowed the consideration of the shear rate magnitude of
the mixture, rather than that of the dispersed phase, i.e. µm (αd,Dd) ≈ µm (αd, γ̇m). The
shear-thinning mixture viscosity was modelled in this study using the Yeleswarapu-Wu
model, denoted in equation 5.10, and was chosen for its familiar phase-averaged defini-
tion. The dependence of the viscosity on the dispersed phase volume fraction was modelled
following the considerations of Schenkel and Halliday [92] using the limiting viscosities,
denoted in equation 5.11. The viscosity model parameters in turn are denoted in table 8.1,
and the resulting relative viscosity for various dispersed phase volume fractions are illus-
trated with respect to the mixture shear rate magnitude in figure 8.1. The figure shows
that the dispersed phase volume fraction dependence of the relative dynamic viscosity is
most prominent in the range of low shear rates, but its variety is still non-negligible in the
limit of µm → µ∞.
The mixture momentum conservation equation may now be denoted by,

∂um

∂t
+∇ · (um ⊗ um) = −∇pkm +∇ · (2νm (αd, γ̇m)Dm) . (8.4)

Where pkm := pm
ρm

denotes the kinematic pressure, and νm (αd, γ̇m) := 1
ρm

µm (αd, γ̇m) the
kinematic viscosity. The mixture density itself was taken constant using the phasic average
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Parameter Value Dimension

µc 1.23× 10−3 Pa · s
k 8.001 s
a1 −0.027 79 Pa · s
a2 1.012 Pa · s
a3 −0.636 Pa · s
b1 0.0749 Pa · s
b2 −0.1911 Pa · s
b2 0.1624 Pa · s

Table 8.1: Viscosity model parameters, adopted from [92].

Figure 8.1: The relative viscosity dependence of the haematocrit and shear rate
magnitude of the Yeleswarapu-Wu viscosity model, where the fitting coefficients
are denoted in table 8.1.

of the densities using a reference haematocrit,

ρm = (1− αd,0) ρc + αd,0ρd. (8.5)

Where the reference haematocrit is taken equal to the area-averaged value at the inlet,
as denoted by equation 8.32, generally considered throughout this study to be equal to
αd,0 = ⟨αd (x)⟩∂Ωinlet

= 0.45, following the considerations of Secomb [95]. The phasic den-
sities are in turn taken constant as the two phases were assumed incompressible, discussed
in the previous section, and were taken equal to ρc = 994 kg/m3 and ρd = 1110 kg/m3 fol-
lowing the considerations of section 2.3.4. The mixture density considered in this study
finally equates to ρm = 1046.2 kg/m3.

8.1.1.3 Conservation of Dispersed Phase Mass

The conservation of the phasic mass, where here the dispersed phase was considered, is
governed by equation 3.22. The formulation simplified, similarly to the conservation of
mixture mass, by neglecting inter-phasic mass transfer, the creation or destruction of mass,
and finally assuming the dispersed phase is an incompressible fluid. The macroscopic phase
diffusion flux was here modelled through the consideration of a diffusive flux model, as
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denoted in equation 6.4, for its simplicity and common consideration in particle migration
studies of whole blood. The dispersed phase mass conservation is now denoted by,

∂αd

∂t
+∇ · (αdum) = −∇ · (αdVdm)

= CC

JD
1d

a2d∇ · (αdγ̇m∇αd) + CC

JD
1d

a2d∇ ·
(
α2
d∇γ̇m

)
+ Cµ

JD
1d

a2d∇ ·
(
α2
d

γ̇m
νm

∇νm

)
.

(8.6)

Where no further formulation expansion was considered as the dispersed phase volume
fraction field may not be continuous in space. Additionally, the kinematic viscosity was
considered in the third contribution rather than the dynamic viscosity. Both considerations
are equivalent as the mixture density was taken constant, as discussed in the preceding
section, i.e. 1

νm
∇νm ≡ 1

µm
∇µm if ρm = const. Lastly, a base value for the shear rate

magnitude of γ̇m,0 = 0.5 was considered to improve the stability of the diffusive flux model
when ∇γ̇m → 0, γ̇m → 0. The sole influence exerted by this consideration on the dispersed
phase volume fraction results was a local decrease. The model parameters for the diffusive
flux model are denoted in table 8.2, following the considerations of Chandran et al. [22].

Parameter Value Dimension

ad 3.6× 10−6 m
CC

JD
1d

0.4 −
Cµ

JD
1d

0.6 −

Table 8.2: Migration model parameters, adopted from [22].

8.1.2 Oxygenation

The oxygenation of whole blood is governed by the conservation of the total mass of oxygen
model described in section 7.3.3 and derived in appendix A. In this study, the formulation
in terms of the partial pressure of oxygen was considered as it should slightly reduce the
computational complexity of the numerical solver without loss of accuracy. The governing
relation is now denoted by,

(1 + CHbO2)
DmpO2,m

Dt
+ CHbO2Vdm · ∇pO2,m = ∇ · (Deff∇pO2,m) . (8.7)

Where the phase diffusion velocity, Vdm, was left out of consideration in this study. In
consideration of migration, these velocities were required to converge to zero, whereas, for
non-migratory cases, the influence was assumed to be non-physical. The model coefficients
are denoted by,

CHbO2
:= αd

cHb,t

βO2,m

∂SO2

∂pO2,m
,

Deff := DO2,c +DHbO2,d
MHbO2

MO2

CHbO2 .

(A.28)

Where the Hill equation, as denoted in equation 7.8, was used to describe the oxygen
saturation of whole blood and its derivative with respect to the partial pressure is denoted
by,

∂SO2

∂pO2,m
=

np50p
n
O2,m

(pn50 + pnO2,m)2
. (8.8)
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The required oxygenation and saturation model parameters are denoted in table 8.3.

Parameter Value Dimension Source

cHb,t 7.457 mol/m3 [50]
βO2,m 1.56× 10−3 mol/(mmHg ·m3) [50]
DO2,c 9.5× 10−10 m2/s [1]

DHbO2 ≈ DHb 1.44× 10−11 m2/s [1]
MO2 32 g/mol [74]

MHbO2 ≈ MHb 6.7× 104 g/mol [23]
p50 26.4 mmHg [23]
n 2.65 – [23]

Table 8.3: Oxygenation and saturation model parameters.

8.2 Boundary Conditions

In this study, typically, three types of boundaries were considered. The inlet, outlet, and
wall. Physically, these correspond to the surfaces where whole blood enters, exits, and
encounters a barrier, such as the fibres in hollow-fibre membrane oxygenators. Mathemat-
ically, these regions define the boundary conditions for the governing relations discussed
in the preceding section. These conditions act as constraints on the solution variables,
ensuring they reflect the physical conditions of the system. Moreover, these boundary
conditions play a crucial role in formulating a well-posed problem, allowing for a unique
solution to the differential equations and a stable algorithm. The boundary conditions
considered in this study are discussed in this section.

8.2.1 Mixture Mass and Momentum Conservation

The mixture mass and momentum conservation require boundary conditions for the kine-
matic pressure and mixture velocity fields. These conditions remained equivalent to the
generic boundary conditions employed in the consideration of Newtonian flow. The inlet
conditions then generally denoted a Dirichlet boundary condition for the velocity field and
a Neumann boundary condition for the pressure field, as denoted by,

um = um(x),∇np
k
m = 0, ∀x ∈ ∂Ωinlet. (8.9)

Where ∇n(.) := ∇(.) · n denotes the boundary normal gradient. The velocity bound-
ary condition was observed to cause solver divergence when a non-physical solution was
employed in combination with the non-Newtonian viscosity model. To this end the an-
alytical solutions for the Newtonian counterparts were utilized, such as the well-known
(Hagen-) Poiseuille velocity field. The conditions imposed on the outlet were identical to
the Newtonian counterpart and are denoted by,

∇n ⊗ um = 0, pkm = 0, ∀x ∈ ∂Ωoutlet. (8.10)

Where the Dirichlet boundary condition for the kinematic pressure ensures the uniqueness
of the solution. The no-slip boundary condition was applied on the solid boundaries of
the domain, which is denoted by,

um = 0,∇np
k
m = 0, ∀x ∈ ∂Ωwall. (8.11)
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8.2.2 Phasic Mass Conservation

The boundary conditions imposed on the inlet and outlet for the dispersed phase volume
fraction were equivalent to the conditions imposed on the velocity field, and are respectively
denoted by,

αd = αd(x), ∀x ∈ ∂Ωinlet, (8.12)

∇nαd = 0, ∀x ∈ ∂Ωoutlet. (8.13)

Where αd(x) = ⟨αd⟩∂Ωinlet
= 0.45 was considered following the considerations of Secomb

[95]. Here the application of a uniform inlet profile, in contrast to the velocity, did not show
any divergence problems. The boundary conditions at the solid boundaries, however, were
not as straightforward. The migration flux, given for the diffusive flux model in equation
6.4, normal to the boundary was required to be zero [82],(

JD
1d

· n
)∣∣

∂Ωwall
= (αdVdm · n)|∂Ωwall

= 0 (8.14)

This type of boundary condition is sometimes denoted the no-penetration boundary [72].
A variety of methods are proposed in the literature, ranging from simplified relations
for the gradient of the dispersed phase volume fraction normal to the wall [22] to the
consideration of a simple slip boundary condition [72]. These methods did however not
show the required conservative behaviour in the analyses performed here, and therefore a
condition was defined based on the normal flux directly. The normal flux was rewritten
in terms of the normal gradient of the dispersed phase volume fraction. This allowed
a gradual application over a number of fixed-point iteration steps every time step. The
iterative application initiated with a zero gradient, and greatly improved the stability of
the solver. A direct application would generally result in solver divergence due to the
strong coupling between the momentum and phasic mass conservation equations. The
applied normal gradient is denoted by,

(∇nαd) = −

αd

γ̇
∇nγ̇ +

Cµ
JD

1d

CC

JD
1d

αd

νm
∇nνm

 , αd ̸= 0, ∀x ∈ ∂Ωwall. (8.15)

Which essentially required the dispersed phase diffusion velocity normal to the bound-
ary, Vdm · n, to approach zero under the assumption that αd ̸= 0. The intuition for this
boundary condition may further be expanded by considering the definition of the dispersed
phase diffusion velocity, denoted in equation 3.18, along with the no-slip condition imposed
for the velocity field. The combination of these considerations result in the requirement
of a zero dispersed phase velocity normal to the wall, elucidating the accuracy of the
no-penetration name for the boundary condition. The implementation of the boundary
condition within the OpenFOAM framework is presented in appendix C.2.2.

8.2.3 Oxygen Mass Conservation

The boundary conditions for the partial pressure of oxygen at the inlet and outlet were also
equivalent to those considered for the velocity field. The imposed conditions are denoted
by,

pO2
= pO2

(x), ∀x ∈ ∂Ωinlet, (8.16)

∇npO2
= 0, ∀x ∈ ∂Ωoutlet. (8.17)

Where pO2
(x) = ⟨pO2

⟩∂Ωinlet
= 0 was considered to solely consider an inflow of oxygen

through the solid boundaries. At the solid boundaries a Dirichlet boundary condition
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was considered for the partial pressure of oxygen following the considerations of section
7.1. The boundary condition is similarly to the inlet condition denoted by,

pO2
= pO2

(x), ∀x ∈ ∂Ωwall, (8.18)

Where now pO2
(x) = ⟨pO2

⟩∂Ωwall
= 688 was considered following the considerations of

Hormes [44].

8.3 Solver Characteristics

8.3.1 Solution Algorithm

The solutions to the governing equations for fluid flow and oxygenation were approximated
using an altered implementation of the PIMPLE algorithm within the open-source Open-
FOAM framework. The nonlinearity in OpenFOAM solvers is resolved by linearization
with respect to the previously obtained solutions. This linearization type generally does
not result in an extensive compromise of accuracy for Newtonian fluid flow [38]. However,
the strong non-linear coupling between the phasic mass conservation and mixture momen-
tum conservation typically required a large number of outer loop fixed-point iterations
or tiny time steps. These requirements originated from the problematic convergence of
the phasic mass conservation along with the sensitivity of the mixture mass conservation
constraint to large fluctuations in the viscosity. An additional stability and numerical cost
improvement was retrieved by resolving the mixture momentum and mass conservation at
a larger time step interval. The larger interval effectively considered differing time step
sizes per conservation equation. The steps for the segregated solution retrieval every time
steps can be enumerated by:

1. Retrieval of the shear rate magnitude, denoted in equation 5.2, corresponding to the
result of the previous time step.

γ̇m =setShearRateMagnitude(um).

2. Initiation of the outer loop fixed-point iterations, or so-called PIMPLE loop.
while (n ≤ NPIMPLE).

3. Determination of the non-Newtonian viscosity, denoted in equation 5.10.

νm =setKinematicViscosity(γ̇m, αd).

4. Solving for the mixture momentum and mass conservation, respectively denoted in
equations 8.2 and 8.4.

solve UEqn.
solve pEqn.

5. Solving for the dispersed phase mass conservation, denoted in equation 8.6.

solve HtEqn.

6. Solving for the oxygen mass conservation, denoted in equation 8.7.

solve PO2Eqn.

The previous time step consideration of the shear rate magnitude greatly improved the ob-
served stability of the solver. The accuracy did not diminish greatly by the consideration,
as the shear rate magnitude did not show great differences between time steps.
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8.3.2 Iterative Methods

The iterative methods chosen for each solver were tailored to the characteristics of the
specific domain and the symmetry of the coefficient matrix of the linear system. The
preference was to employ pre-conditioned Krylov subspace methods, with a focus on the
Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB/PBiCGStab). For asymmetric
systems such as mixture momentum conservation, phasic mass conservation, and oxygen
mass conservation, the Diagonal incomplete-LU (ILU/DILU) pre-conditioning was ap-
plied.
In the case of the pressure equation, utilized to enforce the mass conservation constraint,
the Diagonal incomplete-Cholesky (IC/DIC) pre-conditioning was selected based on the
symmetry of its coefficient matrix. However, numerical instabilities were encountered when
resolving the pressure equation in the two-dimensional oxygenator domain, presented in
section 8.4.3. The non-stationary iterative method was replaced with the (multi-grid ac-
celerated) symmetric Gauss-Seidel method to address this issue.
Furthermore, stationary methods were found to smear the dispersed phase volume fraction
solution in the centroid of the domain in consideration of the cyclic pipe domain, presented
in section 8.4.1.

8.3.3 Numerical Schemes

The governing equations are discretized within OpenFOAM using the commonly consid-
ered finite volume method on a collocated polyhedral grid arrangement. The solution
variables are stored in the grid cell centres, and the cell interactions across the interfaces
are approximated using interpolated data. The typically considered numerical schemes
for temporal and spatial discretization in this study were second-order accurate and are
denoted in table 8.4.

OpenFOAM Variable Mathematical formulation Numerical Scheme

ddtSchemes ∂tϕ CrankNicolson 0.9
gradSchemes ∇ϕ Gauss linear
divSchemes ∇ · (um ⊗ um) Gauss linear

∇ · (νm dev(∇⊗ um)+) Gauss linear
∇ · (umαd) Gauss MUSCL
∇ · (umpO2

) Gauss MUSCL
laplacianSchemes ∇ · (Γ∇ϕ) Gauss linear orthogonal

∇ ·
(

1

Ah
um

∇pkm

)
Gauss linear bounded

interpolationSchemes ϕf linear
snGradSchemes (∇nϕ)f

Structured grid orthogonal
Unstructured grid corrected

Table 8.4: The numerical schemes utilized throughout this study for arbitrary
solution variable ϕ, unless specified otherwise. The variable and scheme names
correspond to the naming conventions of OpenFOAM.

Where dev denotes the deviatoric part of a second rank tensor, which is for the gradient
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of the velocity field denoted by [38],

∇⊗ u = ∇⊗ u− 1

3
(tr (∇⊗ u)I︸ ︷︷ ︸

Deviatoric

+
1

3
(tr (∇⊗ u)I︸ ︷︷ ︸

Spherical

= dev (∇⊗ u) + sph (∇⊗ u) . (8.19)

The consideration of the trace of the velocity field Jacobian should equate to zero in con-
sideration of a divergence-free velocity field, but is in the solver still considered. The
inclusion generally improves the stability of the non-converged system [43]. Additionally,
Ah

um
denotes the diagonal of the coefficient matrix of the discretized mixture momentum

equation without the pressure gradient. The consideration of the Total Variation Dimin-
ishing Monotone Upstream-centered Scheme for Conservation Laws (TVD-MUSCL) was
required for the divergence discretization of the phasic mass conservation. As the solu-
tion of the dispersed phase volume fraction converged, the migratory flux would vanish,
resulting in a hyperbolic character for the system.

8.4 Numerical Domain

Three primary domain types were utilized throughout this study. Their use case and
characteristics are denoted in this section.

8.4.1 Cyclic Pipe

The cyclic pipe domain was primarily utilized to study the migratory behaviour of the
red blood cells. This two-dimensional domain is illustrated in figure 8.2 and allowed
for a computational cost-effective approach to approximate the steady-state solutions.
The domain was chosen to be a so-called OH grid where an exterior O-shaped mesh is
considered with an internal structured grid. The external mesh allowed refinement of the
grid adjacent to the wall boundary to improve the approximation of normal gradients. The
structured inner grid should, in turn, minimize the observation of numerical diffusion.

Ω

∂Ωwall

(a) Front view

∂Ωinlet

∂Ωoutlet

(b) Side view

Figure 8.2: The illustrated cyclic pipe flow domain discretization utilizing the
commonly considered five block OH-grid, inspired by [103].

The illustrated inlet and outlet boundaries in this consideration did not adhere to the
conditions presented in section 8.2. The inlet and outlet were typically considered trans-
lational cyclic or periodic. This periodic consideration ensured the inlet and outlet fields
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were equivalent to promote the simplified approximation of steady-state solutions. The
initial conditions, however, did adhere to the Dirichlet type inlet and outlet conditions.
Additionally, the cyclic consideration required a momentum source term to model the flow
correctly, which was modelled using the average flow velocity. The implementation within
the OpenFOAM framework is presented in appendix C.2.3.
This domain type could not be simplified further to a one-dimensional axisymmetric do-
main as the so-called wedge boundary conditions applied in such a consideration enforce a
zero gradient. The consideration of a zero gradient would result in an inflow of dispersed
phase mass, as this did not necessarily enforce a zero migration flux.

8.4.2 Axisymmetric Pipe

The axisymmetric pipe domain was primarily utilized to study the oxygenation of whole
blood. This two-dimensional domain is illustrated in figure 8.3 and, in contrast to the mi-
gration description, did allow the consideration of zero gradients on the wedge boundaries.

∂Ωwall

∂Ωinlet

∂Ωoutlet

Ω

(a) Side view

θw

∂Ωwall

∂Ωwedge

∂Ωwedge

(b) Front view

Figure 8.3: The illustrated axisymmetric pipe flow domain discretization utilizing
a simple structured grid, inspired by [38].

The illustrated axisymmetric domain generally introduces a geometrical error because the
wall consideration is entirely normal to the radial direction. The error becomes negligible
by consideration of a wedge angle of θw = 1◦ [38] which was, therefore, considered in this
study. The introduction of the migration of red blood cells was realized in this domain by
mapping the results retrieved on the cyclic domain discussed in the previous section. Since
the cell centres of the finite volumes between the two domains were not always perfectly
aligned, a linear interpolation based on the SciPy Python library was used.

8.4.3 Two-Dimensional Oxygenator

A simple two-dimensional staggered fibre arrangement was considered to more realistically
model migration and oxygenation within a hollow-fibre membrane oxygenator. In this
regard, two variants were utilized: a fully and semi-cyclic domain. The fully cyclic domain
was primarily considered to study the particle migration and is illustrated along with its
domain characteristics in figure 8.4. The semi-cyclic domain is illustrated in figure 8.5 and
was considered to additionally study oxygenation. The domain comprises N consecutive
fully cyclic domains, including an inlet and outlet region.
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p

w

h

d

Figure 8.4: The illustrated fully cyclic two-dimensional oxygenator domain, in-
spired by [51].

Unfortunately, during the meshing of the semi-cyclic domain, a domain with differing char-
acteristics from the fully cyclic domain was considered. The differences in characteristics
are denoted in table 8.5. The typical long calculation times of the flow and oxygenation
within this domain did not permit the consideration of the correct characteristics.

d (mm) h (mm) p (mm) w (mm) N (−)

fully 0.3 0.1 0.56 0.26 -
semi 0.4 0.0 0.8 0.4 20

Table 8.5: The domain characteristics of the fully and semi-cyclic two-dimensional
oxygenator numerical domain. The fully cyclic dimensions were considered follow-
ing the considerations of Kaesler et al. [51].

Figure 8.5: The illustrated semi-cyclic two-dimensional oxygenator domain, in-
spired by [51].

8.5 Solver and Solution Verification

The verification of the solver and its produced solutions is an integral part of any numerical
study. The tools considered in this study in this regard are discussed within this section.

8.5.1 Implementation Verification

The workings of the solver itself can first be verified before diving into the physical correct-
ness of the solutions. This study employed the method of manufactured solutions (MMS).
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The method provides a systematic approach to validate whether the numerical solutions
are congruent with solutions to the original differential equation. MMS involves proposing
a known analytical solution, introducing it into the governing equations, and using the
resulting remainder to correct the numerical implementation.
A more complete explanation, including a worked example, is provided in appendix B.2,
along with the imposed manufactured solutions employed in this study in appendix B.3.

8.5.2 Migration Verification

The verification of the physical correctness of the migratory behaviour involved two meth-
ods. Firstly, the solution to the phasic mass conservation under steady state was compared
to an analytical solution considering the Krieger-Dougherty viscosity model, as denoted
in equation 5.8. The analytical solution, derived by Phillips et al. [82], is expressed for
pipe flow denoted by,

αKD
d (r) =

αmax
d

1 +
αmax
d − (αd)∂Ωwall

(αd)∂Ωwall

r

R

. (8.20)

Where αmax
d = 0.68 is the maximum packing density and (αd)∂Ωwall

the value observed
at the wall. In this study, solver divergence occurred when applying the no-penetration
boundary condition, leading to the adoption of a constant value, (αd)∂Ωwall = 0.3.
The second verification method was already introduced in chapter 2. The method concerns
comparing area and mass flow rate averaged dispersed phase volume fraction solutions to
the empirical observations by Pries et al. [86]. The empirical relation was denoted in
equation 2.1,

φt

φd
= φd + (1− φd)(1 + 1.7e−0.35D − 0.6e−0.01D). (2.1)

Where the tube haematocrit, φt, denoted the area averaged value further introduced in
section 8.5.4.3. The mass flow rate averaged results denote the discharge haematocrit, φd,
further introduced in section 8.5.4.2.

8.5.3 Oxygenation Verification

The results of the oxygenation model should be conservative in terms of the amount of
oxygen that enters and leaves the numerical domain under steady-state conditions. This
conservative nature can be tried by comparing the inflow and outflow of material. The
inflow was solely considered over the wall, and the outflow over the outlet. Integrating the
governing conservation equation over the numerical domain can determine the material
flows. For the inflow, this is relatively straightforward as this is governed by the diffusive
flux and is denoted by,

Qin =

∫
Ω
∇ · (Deff∇pO2,m) dV

Gauss
=

∫
∂Ω

(Deff∇pO2,m) · n dS. (8.21)

Where the inflow boundary is taken as ∂Ω = ∂Ωwall. The outflow cannot be derived as
straightforwardly as the structure of the relation does not allow the immediate application
of Gauss’ divergence theorem. Instead, the advective contribution is split into an outflow
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and a source contribution as denoted by,∫
Ω
(1 + CHbO2)∇ · (umpO2,m) dV

=

∫
Ω
∇ · ([1 + CHbO2 ]umpO2,m) dV −

∫
Ω
(umpO2,m) · ∇CHbO2dV

Gauss
=

∫
∂Ω

(1 + CHbO2)umpO2,m · n dS︸ ︷︷ ︸
Qout

−
∫
Ω
(umpO2,m) · ∇CHbO2dV︸ ︷︷ ︸

Sadv

.

(8.22)

Where the out flow boundary is taken as ∂Ω = ∂Ωoutlet and Sadv denotes the advective
source term. The numerical source term is now denoted by,

Qout + Sadv + Snum = Qin ⇒ Snum = Qin − (Qout + Sadv). (8.23)

8.5.4 Comparison Metrics

In this study several comparison metrics were utilized for more convenient comparison
between large sets of data. These comparison metrics and their notation are discussed in
this section.

8.5.4.1 Normalized P-Norm

The normalized p-norm is a commonly used vector magnitude measure, normalized using
the vector length N . The norm allows the comparison of vector data using a single number
and is for an arbitrary vector quantity ϕ denoted by,

∥ϕ∥p :=

(
1

N

N−1∑
n=0

|ϕn|p
) 1

p

, ϕn ∈ ϕ. (8.24)

In the limiting case, typically denoted the supremum norm, the norm evaluates the max-
imum value of the vector as denoted by,

∥ϕ∥∞ := lim
p→∞

∥ϕ∥p = max (|ϕ0|, |ϕ1|, . . . , |ϕN−1|) . (8.25)

8.5.4.2 Mass Flow Rate Averaging in Two-Phase Flows

In internal incompressible flows, no generic reference variable can be used to average over,
as generally seen in external flows [21]. To this end, the flow quantities are averaged
using mean quantities derived from conservation principles. In two-phase flows, there is,
however, not a single way of deriving this, but three. All three are in turn related. The
mixture consideration is equivalent to the single-phase and is denoted by,

ṁm := ρm⟨|um|⟩mA⊥ ≡
∫
∂Ω

ρmumdS. (8.26)

Where A⊥ denotes the cross-sectional area perpendicular to the dominant flow direction.
The mixture consideration can be split up into the two phasic contributions using equation
3.16,

⇒ ṁm =

∫
∂Ω

αdρdũddS︸ ︷︷ ︸
Dispersed phase
mass flow rate

+

∫
∂Ω

αcρcũcdS︸ ︷︷ ︸
Continuous phase
mass flow rate

= ṁd + ṁc. (8.27)
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Where the contribution of the dispersed phase was of most interest in this study, and its
value could be approximated using the mixture velocity under the Stokesian suspension
assumption,

ṁd =

∫
∂Ω

αdρdũddS ≈
∫
∂Ω

αdρdumdS. (8.28)

The mass flow rate averaged velocity for the mixture is now denoted by,

⟨|um|⟩m =
1

ρmA⊥

∫
∂Ω

ρmumdS. (8.29)

The mass flow rate averaging can also be extended to consider other arbitrary considera-
tions, such as energy. The generalized consideration for a mixture mass flow rate averaged
arbitrary variable ϕ is denoted by,

⟨|ϕm|⟩m =
1

ṁm

∫
∂Ω

ρmumϕmdS. (8.30)

Additionally, the dispersed phase mass flow rate averaged arbitrary variable ϕ is denoted
by,

⟨|ϕ̃d|⟩d ≈ 1

ṁd

∫
∂Ω

αdρdumϕ̃ddS. (8.31)

8.5.4.3 Area Averaging

The technique of area averaging is, in addition to mass flow rate averaging, a commonly
considered technique. For area averaging, no additional phasic considerations were done,
and the area-averaged arbitrary quantity ϕ is denoted by,

⟨ϕ⟩∂Ω =
1

A∂Ω

∫
∂Ω

ϕdS. (8.32)

Where A∂Ω denotes the area of boundary ∂Ω.
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Chapter 9

Results and Discussion

The numerically derived results are presented and discussed in this chapter. Before the
detailed discussion of the results, the credibility of the numerical framework is established
by addressing the solver implementation, migration model, and oxygenation model verifi-
cation.
For a comprehensive understanding, the influence of the particle migration is studied in the
context of axisymmetric pipe flow. Subsequently, the analysis is extended to the consider-
ation of a two-dimensional oxygenator. In addition to the influence of particle migration
modelling, rheological modelling and the presence of particles are discussed. Finally, the
underlying assumptions of the mixture modelling consideration and a comparison between
the newly derived oxygenation model and a commonly considered model are discussed.

9.1 Implementation Verification

In the numerical analysis of physical phenomena, the processes of model verification and
validation are essential considerations before delving into the numerical solutions. In this
study, a new solver was implemented and utilized using the open-source OpenFOAM
framework. An implementation verification is indispensable to ensure the quality of the
implementation and verify that the solver approximates solutions to the intended differen-
tial equations. This verification is conducted using the method of manufactured solutions,
as discussed in section 8.5.1 and appendix B.2.
The manufactured solutions imposed on the system are discussed in appendix B.3, and
the resulting numerical errors for a grid study on a unity cube are presented in figure
9.1. The boundary conditions imposed on the numerical system were Dirichlet boundary
conditions that follow from the imposed solutions evaluated at the boundaries.

65



(a) Normalized Euclidean norm (b) Supremum norm

Figure 9.1: The numerical error with respect to manufactured solutions for the
four dependent solution variables and the expected numerical scheme convergence
order. The results were derived using an equispaced grid of N discrete volumes in
each spatial dimension on a unity cube at time t = 1.

The resulting numerical errors presented in figure 9.1, as a function of the number of grid
cells N in any spatial direction, show good agreement with the order-of-accuracy of the
numerical schemes employed in this study. The utilized schemes are generally second-
order accurate and were denoted in section 8.3.3. The order of accuracy in the figures was
depicted using the equidistant grid spacing h. This spacing reduces to the reciprocal of
the number of grid cells due to the unity domain size and is defined as h := L

N = 1
N .

One solution that stands out is that for the kinematic pressure, as it generally showed an
accuracy one order lower. Such behaviour is typically linked to the boundary treatment,
where the elliptic nature of the pressure equation narrows it down to the discretization
of the surface normal gradient. The consideration of a first-order accurate boundary
treatment appears consistent with the gradient boundary discretization discussed in [38].

9.2 Migration Verification

With the mathematical consistency of the solver verified in the preceding section, attention
should be shifted towards the physical correctness of the numerical solutions. In this
section, the behaviour of the implementation regarding the particle migration modelling
is discussed.

9.2.1 The Steady-State Analytical Solution

The numerical approximations can be compared to analytical solutions to verify whether
the implemented migration model can produce physically relevant solutions. The analyt-
ical solution for the drift flux model was discussed in section 8.5.2 and required utilising
the Krieger-Dougherty viscosity model. The model parameters utilised in this analysis
where αmax

d = 0.68 and m = 1.82 following the considerations of Phillips et al. [82].
The analytical solution, as denoted in equation 8.20, required a wall value due to solver
instability observed in the utilisation of the no-penetration boundary condition.
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(a) Numerical error (b)Analytical and finest grid numer-
ical solutions.

Figure 9.2: The numerical error and profile comparison for the steady state dis-
persed phase volume fraction using the Krieger-Dougherty viscosity model, where
αmax
d = 0.68, m = 1.82 [82], and (αd)∂Ωwall

= 0.3.

The comparison of the analytical and numerical solutions is depicted in figure 9.2 and
was derived for cyclic pipe flow with a singular cell in the longitudinal direction. The
analysis considered a tube radius of R = 50 µm, average velocity of U = 9.55mm/s, an
initial uniform dispersed phase volume fraction of αd,0 = ⟨αd⟩∂Ω = 0.38, and a wall value
of (αd)∂Ωwall

= 0.3.
The numerical errors presented in figure 9.2a generally show a decrease for an increasing
number of grid cells in the radial direction. However, the order of reduction, indicated
by the gradient of the graph, seems to decline as the number of grid cells increases. This
decline can be linked to the nonphysical nature of the viscosity model near the central line
of the pipe flow. The value of the dispersed phase volume fraction here approaches the
maximum value of αmax

d such that lim
αd→αmax−

d

µKD
m = +∞.

Naturally, an infinite viscosity is impossible to converge to, such that the central line value
for the dispersed phase volume fraction converges to a value slightly lower than αmax

d .
These differing values of the viscosity profile additionally result in differing shear rate
magnitudes, resulting in a small error throughout the entire approximation, as presented
in figure 9.2b.

9.2.2 The F̊ahræus Effect

In addition to the comparison with an analytical solution, the derived numerical solutions
could also be compared to empirical observations. Typically, in literature, this verification
is done using the empirical relation denoted in equation 2.1, which quantified the F̊ahræus
effect. Although a proper validation by, e.g. comparison to profile development, would
be preferred, these considerations appear unreported in the literature. Therefore, the
numerical solutions are also compared to the F̊ahræus effect quantification for which the
results are presented in figure 9.3a.
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(a) The absolute error of the ratio of the
tube and discharge haematocrit compared
to the empirical relation derived by Pries
et al. [86] with respect to the number of
radial grid cells.

(b) The numerical error of the tube
haematocrit with respect to the number
of radial grid cells.

Figure 9.3: The F̊ahræus effect and phasic mass conservation.

The numerical errors are depicted in figure 9.3 and were derived for cyclic pipe flow
with a singular cell in the longitudinal direction, tube diameter of D = 100 µm, average
velocity of U = 9.55mm/s, and an initial uniform dispersed phase volume fraction of
αd,0 = ⟨αd(x)⟩∂Ω = 0.45. The errors are presented with respect to an increasing amount
of radial grid cells and appear to approach a constant value of about 0.6%. This observed
error is an order lower than the error reported by Chandran et al. [22], where the differ-
ence can be attributed to the differing rheological model under consideration.
Additionally, the observation of the convergent behaviour to a nonzero value can be at-
tributed to the consideration of the model coefficients CC

JD
1d

and Cµ
JD

1d

. In this study, these

were considered to be constants, denoted in table 8.2, which correspond to the lateral
migration of spherical particles. Regarding the flow of blood, the exact value of these
coefficients might differ or even be functions of the dependent variables and domain char-
acteristics. The consideration of functional coefficients was already proposed as further
work by Chandran et al. [22] to improve the accuracy of the diffusive flux model in the
description of blood flow.
Lastly, the measurement of the tube or cross-sectional averaged haematocrit field allowed
the review of the mass conservation of the diffusive flux model and the no-penetration
wall boundary condition denoted in section 8.2.2. The resulting errors, with respect to the
grid size, are presented in figure 9.3b and show chaotic behaviour that does not appear to
converge to a singular value. However, the magnitude of the error is of the order 1× 10−5

and shows a slight loss of mass. This slight loss in mass can be attributed to the gradual
application of the wall boundary condition required to improve the stability of the solver,
as was discussed in section 8.2.2.

9.3 Oxygenation Verification

In addition to the migration model, the physical correctness regarding the oxygenation
modelling should be considered. While a proper validation, e.g. comparison to profile
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development, would be preferred, this is generally impossible and appears unreported in
the literature. Typically, however, the numerical solutions for the mean or mass-flow-
averaged oxygen saturation or partial pressure at the outlet of the numerical domain are
compared to empirically measured results. This comparison was considered out-of-scope
in this study, and purely numerical considerations were made.

A straightforward consideration to verify whether the derived numerical results are physi-
cally relevant is to derive whether the mass of oxygen is indeed conserved in the numerical
domain. The derivation of a numerically induced source or sink term was presented in
section 8.5.3, and the scaled results are presented in figure 9.4.

Figure 9.4: The relative total oxygen mass flow error or numerical source contri-
bution for variable and uniform dispersed phase volume fraction profiles.

The resulting errors, depicted in figure 9.4, were derived for axisymmetric pipe flow with
a tube radius of R = 50 µm, average velocity of U = 9.55mm/s, and two dispersed phase
volume fraction profiles. The profiles correspond to a uniform and variable profile where
αd,0 = ⟨αd(x)⟩∂Ω = 0.45. The variable profile is presented in figure 9.5a.
The figure shows that the relative numerical error for a coarse radial grid shows a slight
creation of oxygen, composing about 0.5% of the inflow. This percentage rapidly decreased
towards 0% as the number of grid cells in the radial dimension increased, and therefore,
the wall flux approximation accuracy increased. The figure also depicts a difference in
accuracy between the consideration of a uniform and a variable dispersed phase volume
fraction profile. This difference might be attributed to a more accurate representation of
the wall value of the dispersed phase volume fraction as the grid is refined.

9.4 The Influence of Particle Migration on Oxygenation in
Axi-symmetric Pipe Flow

With the implementation and physical response of the numerical solver verified, the nu-
merical results of particle migration and oxygenation can finally be discussed. In this
section, the effect of the particle migration on the oxygenation in axisymmetric pipe flow
is discussed.
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9.4.1 Hydrodynamic Developed Profiles

The profile development of quantities of interest in axisymmetric pipe flow can generally
be simplified into two-dimensional or even one-dimensional considerations. These consid-
erations drastically reduce the computational cost and allow quick comparison between
case studies. However, in the consideration of both migration and oxygenation, the ob-
servation of profile development requires the consideration of three-dimensional domains.
The migration cannot be considered in an axisymmetric domain. The so-called wedge
boundaries in the tangential direction simulate a zero gradient in the profile, not a zero
migration flux, and would generally introduce a non-physical inflow of dispersed phase
mass.
On the other hand, the analysis of oxygenation development could not be done with a
cyclic inlet-outlet boundary condition, as this would quickly result in a uniform profile
equal to the wall oxygen partial pressure. In this consideration, wedge domains were uti-
lized to study the oxygenation to which the velocity and dispersed phase volume fraction
profiles were mapped in the radial direction. The mapped profiles for two pipe diame-
ters, average velocity of U = 9.55mm/s, and initial dispersed phase volume fraction of
αd,0 = ⟨αd(x)⟩∂Ω = 0.45 are depicted in figure 9.5.

(a) D = 100µm. (b) D = 300µm.

Figure 9.5: Comparison of non-Newtonian and Newtonian velocity fields along
with the dispersed phase volume fraction in pipe flow for two diameters, av-
erage velocity of U = 9.55mm/s, and initial dispersed phase volume fraction of
αd,0 = ⟨αd(x)⟩∂Ω = 0.45.

The resulting profiles, as presented in figure 9.5, show nicely how a smaller domain with
identical average velocity results in a higher shear rate magnitude gradient and, therefore,
a more pronounced effect of migration. The dispersed phase volume fraction is especially
of higher magnitude near the centre of the domain, i.e. r = 0. The velocity profile, on
the other hand, although blunt compared to the Newtonian profiles, does not appear to
be influenced significantly by the variation in dispersed phase volume fraction. The small
oscillation near the centre of the profile in the dispersed phase volume fraction can be
attributed to numerical errors related to the corner elements of the structured internal
region of the OH-grid, illustrated in figure 8.2.
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9.4.2 Oxygenation Boundary Layer Development

The profile development of the oxygen partial pressure and saturation fields in the entrance
region were compared to review the influence of the variable dispersed phase volume
fraction. The velocity field and dispersed phase volume fraction field were considered to
be already fully developed and correspond to the profiles presented in figure 9.5b.
The profile development of the variable and uniform fields, alongside their boundary layer
thickness profiles, are respectively presented in figures 9.6a and 9.6b. The boundary
thickness values were derived by linear interpolating the field data along the radial axis.
The interpolation minimised the stepping nature of the results due to the evaluation at
the discrete cell-centred positions. This interpolation also causes a sudden increase in
thickness near the end of the saturation thickness profiles. The maximum values of both
fields along the radial axis scale the profile heights along the longitudinal axis. This
scaling allows the comparison of the profile and magnitude of the fields for the variable
and uniform cases. The resulting scaling for the partial pressure now does not correspond
to the exact wall value, as only the cell-centred values were considered. This consideration
improved the visibility of the profiles along the radial axis, as the internal field values were
generally much smaller in the entrance region. However, the penetration depths of the
partial pressure profiles now seem to mismatch the boundary layer thicknesses, which is
thus a consequence of the altered scaling.

(a) Variable dispersed phase volume fraction field.

(b) Uniform dispersed phase volume fraction field.

Figure 9.6: Oxygen partial pressure and saturation profile development in the
entrance region of pipe flow.
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The resulting profiles presented in figure 9.6 show that, in the entrance region, the be-
haviour of the oxygen transport is significantly modified by the variable haematocrit pro-
file. I.e. figure 9.6a generally shows a non-linear radial development with increasing
non-linearity along the longitudinal axis. On the other hand, figure 9.6b shows nearly
linear profiles. Additionally, the magnitude of the partial pressure and the saturation at
the wall for the uniform dispersed phase volume fraction profile are generally lower than
those observed for the variable profile.
This observation can rather intuitively be explained. The variable dispersed phase volume
fraction profile has fewer red blood cells near the solid boundary than the uniform profile.
This reduction effectively reduces the amount of available heme groups to which oxygen
may bind, such that the smaller number of red blood cells achieve saturation much faster.
When the red blood cells are fully saturated, the dissolved oxygen will pass through the
saturated blood cells and diffuse towards the non-saturated blood cell core. This quick-
ened diffusion is also evident from the significant increase in the dissolved oxygen partial
pressure near the wall at the end of the variable profile. The partial pressure can increase
faster because the oxygen is no longer bound to the blood cells.
The phenomenon can be further explored by considering the effective diffusivity profiles
presented in figure 9.7.

Figure 9.7: Effective diffusivity development profiles for variable and uniform
dispersed phase volume fraction fields in the entrance region of pipe flow. The
profiles correspond respectively to the partial pressure and saturation profiles shown
in figure 9.6a and figure 9.6b.

The effective diffusivity for the uniform profile can be observed in figure 9.7 to be much
larger near the inlet than that for the variable profile. This increased diffusivity effectively
shows lower overall saturation of the blood cells due to the increased amount of blood
cells present, coinciding with the observations in figure 9.6b. Furthermore, the faster
saturation of the variable profile also becomes evident from the radial evolution of the
effective diffusivity. As the blood cells become saturated, the value of the diffusivity again
drops to that observed in the continuous phase. The saturation then causes the effective
diffusivity for the variable field to drop drastically compared to that of the uniform field,
causing a negative gradient in the field and, therefore, a flux cancellation. This cancellation
is best envisioned by considering the expansion of the diffusive flux contribution, Which
is denoted by,

1

r

∂

∂r

(
rDeff

∂pO2

∂r

)
= Deff

∂2pO2

∂r2
+

[
∂Deff

∂r
+

Deff

r

]
∂pO2

∂r
. (9.1)

72



The gradient of the effective diffusivity, with respect to the radial direction, changes signs
and effectively causes a diffusive flux directed towards the solid boundary. This flux
cancellation causes the highly non-linear behaviour observed near the end of the entrance
region in the oxygen partial pressure profile in figure 9.6a.

9.4.3 Oxygenation Developed Saturation Behaviour

The consideration of a uniform distribution for the dispersed phase volume fraction seemed
to delay the oxygenation behaviour observed for the variable distribution primarily. This
delayed behaviour is evidenced by the observation that, further from the entrance re-
gion, the radial dependence of the oxygen partial pressure and saturation profiles become
equivalent, as presented in figure 9.8.

(a) Oxygen partial pressure.

(b) Oxygen saturation.

Figure 9.8: Extended oxygen partial pressure and saturation profile development
beyond the entrance region for variable and uniform dispersed phase volume
fraction fields. The cases correspond to the entrance region development cases
presented in figure 9.6.

The profiles for the uniform dispersed phase volume fraction oxygen partial pressure re-
mained approximately linear for twice the entrance length, as can be observed in figure
9.8a, but show the development of the non-linear behaviour near the boundary similar to
that of the variable profile results. The origin of this non-linear profile development can,
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similarly to that observed for the variable case in the previous section, be attributed to
the saturation of the blood cells near the domain boundary. Once these blood cells were
fully saturated, the oxygen saturation profiles also appeared to become equivalent, with a
slight difference near the central line of the pipe flow.
This slight difference in saturation appeared to be increasing along the longitudinal direc-
tion. It can be attributed to the heightened dispersed phase volume fraction, causing an
elevated effective diffusivity, as shown in figure 9.9.

Figure 9.9: Extended effective diffusivity profile development beyond the entrance
region for variable and uniform dispersed phase volume fraction fields. The
profiles correspond to the oxygen partial pressure and saturation results presented
in figure 9.8.

The effective diffusivity profiles presented in figure 9.9 show that, initially, there appears
an inward propagation of a smoothed step function, similar to numerical dissipative re-
sults of advection scheme studies, with limiting values equivalent to the continuous phase
diffusivity. In this regard, the propagation of the diffusivity for the uniform profile simply
lags behind that of the variable profile. However, as the profile approaches the central line
of the cylindrical domain, the value also increases faster, resulting in a nearly linear profile
with respect to the radial direction. The final profiles show that the effective diffusivity
in the variable dispersed phase volume fraction results is much higher near the central
line. The heightened effective diffusivity causes the slight but increasing difference in the
saturation along the longitudinal direction observed in figure 9.8b.

9.4.4 Pipe Flow Core Particle Distribution-Induced Oxygenation Resis-
tance

The highly concentrated inner core of red blood cells in pipe flow was the primary resistance
to oxygen uptake compared to a uniform distribution. The inner core appeared to show
an increasing delay in blood oxygenation for the variable distribution, as illustrated in the
preceding section. The delay can more conveniently be observed by considering the mass
flow rate averaged saturation along the longitudinal axis presented in figure 9.10. Two
types of mass flow rate averaging were considered, averaging with respect to the mixture
and the dispersed phase. Both techniques were introduced in section 8.5.4.2.
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(a) Mixture. (b) Dispersed phase.

Figure 9.10: The mass flow rate averaged oxygen saturation for variable and
uniform dispersed phase volume fraction fields along the longitudinal axis.

The two averaging techniques depicted in figure 9.10 show that the primary difference in
averaging techniques is found in the entrance region. The variable dispersed phase volume
fraction profile for the mixture averaging, figure 9.10a, shows an overshoot compared to the
uniform profile. This overshoot is solely caused by the consideration that blood is saturated
faster when fewer red blood cells are present, extensively discussed in the two preceding
sections. The dispersed phase mass flow rate averaging eliminates this distinction and
shows that the two profiles overlap throughout the entrance region.
The delay in oxygenation showed, for this particular case, a difference up to about 10% in
the averaged saturation and would suggest that the influence of migration is not negligible.
The difference is, however, observed to diminish until the entire flow of blood is oxygenated.
The maximum differences between the dispersed phase mass flow rate averaged oxygen
saturation showed a linear dependence with respect to the difference between the wall and
core value of dispersed phase volume fraction, as depicted in figure 9.11.

Figure 9.11: The maximum difference between the dispersed phase mass flow rate
averaged saturation along the longitudinal axis for several pipe flow cases with
differing degrees of migration.
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The maximum differences of dispersed phase mass flow rate averaged saturation profiles,
depicted in figure 9.11, were derived for the nine cases abiding R = 50, 100, 150 µm, average
velocity of U = 2.12, 5.31, 9.55mm/s, inspired by [51], and an initial uniform dispersed
phase volume fraction of αd,0 = 0.45.

9.5 Fully Developed Particle Migration and Oxygenation in
a Two-Dimensional Oxygenator

The pipe flow considerations of the previous sections provided a convenient way to study
and create an understanding of the influence of the variable red blood cell distributions on
the oxygenation of whole blood. However, blood oxygenation in a pipe does not entirely
represent the behaviour in a hollow-fibre membrane oxygenator. In this section, the fully
developed migratory behaviour of red blood cells is studied in a two-dimensional staggered
fibre arrangement, as was introduced in section 8.4.3.

9.5.1 Particle Migration Grid Sensitivity in a Cyclic Domain

First, a grid independence study is required to ensure the numerical solutions show the
expected behaviour. This study considered phasic mass conservation accuracy and the
comparison of dispersed phase volume fraction and velocity fields.

Figure 9.12: The numerical error of the volume-averaged dispersed phase volume
fraction with respect to the grid refinement cases.

The phasic mass conservation with respect to the grid refinement cases is depicted in
figure 9.12 and shows good agreement for all domains. The numerical solutions for the
dispersed phase volume fraction and velocity fields are depicted in figure 9.13 and show
convergent behaviour. The profiles are evaluated at the outlet of the cyclic numerical
domain, located between two fibres. The velocity profile is already nearly converged for
the first grid refinement, whereas the dispersed phase volume fraction still shows some
fluctuations, even at the latest refinements.
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(a) Dispersed phase volume fraction. (b) Velocity.

Figure 9.13: Grid independence study for the dispersed phase volume fraction
and velocity fields measured in the cyclic staggered grid arrangement between two
fibres.

9.5.2 Shear Induced Particle Migration in a Cyclic Domain

The shear-induced particle migration of red blood cells in whole blood is depicted in figures
9.13a and 9.14. The phenomenon appears dominant right next to the fibres and shows
large local gradients. The bulk flow, however, remains primarily unaffected other than a
slight increase in particle concentration due to mass conservation.

Figure 9.14: The fully developed dispersed phase volume fraction field for
a cyclic staggered two-dimensional oxygenator domain for an average ve-
locity of U = 9.55mm/s, and initial dispersed phase volume fraction of
αd,0 = ⟨αd(x)⟩Ω = 0.45.
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The numerical results depicted in figure 9.14 were derived using an average velocity of
U = 9.55mm/s, and initial dispersed phase volume fraction of αd,0 = ⟨αd(x)⟩Ω = 0.45.
The dispersed phase volume fraction field depicts a flow separation of particles introduced
by the presence of the fibres in the flow. This behaviour opposes the migration observed in
pipe flow, as the particles would concentrate away from the solid boundaries as depicted
in figure 9.5. The opposing migratory behaviour would now also suggest that the primary
resistance to oxygen uptake observed in pipe flow, as discussed in section 9.4.4, becomes
non-existent in hollow-fibre membrane oxygenators.
The numerically derived solutions did show two non-physical numerical artefacts. Firstly,
the migration profiles near the top and bottom of figure 9.14 show an increase rather
than a decrease in particle concentration. The cyclic boundary conditions introduce this
behaviour but do not influence the bulk flow around the central fibre. The migration model
introduces the second numerical artefact. The results show a local particle concentration
near the trailing edge of the fibre. While this behaviour makes sense near the stagnation
point at the leading edge, near the trailing edge, this appears introduced by the typically
low shear rate magnitude.

9.5.3 The Influence of Particle Migration on Oxygenation

The influence of shear-induced particle migration on the oxygenation of whole blood in a
domain representative of an oxygenator was studied by considering the semi-cyclic two-
dimensional oxygenator discussed in section 8.4.3. The mass flow rate averaged saturation
behaviour of the solution can be studied similarly to the consideration of oxygenation
resistance in pipe flow, discussed in section 9.4.4. In contrast to the pipe flow, there is
no straightforward area of averaging. In this study, the boundary of axial periodicity was
considered for the averaging, where the numerical solutions were derived through linear
interpolation. Several domain discretizations were considered for both the migratory and
non-migratory cases to ensure the solution was independent of the domain discretization.
The solutions for this grid study are depicted in figure 9.15.

(a) Variable dispersed phase volume
fraction field.

(b) Uniform dispersed phase volume
fraction field.

Figure 9.15: Grid independence study for variable and uniform dispersed phase
volume fraction field oxygenation in the semi-cyclic two-dimensional oxygenator.
The grid refinement settings corresponded with the corresponding cases in figure
9.13.
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The numerical results depicted in figures 9.15 and 9.16 were derived using an average ve-
locity of U = 9.55mm/s, and initial dispersed phase volume fraction of αd,0 = ⟨αd(x)⟩Ω =
0.45. The grid dependence studies show a good agreement between the two latest con-
sidered refinement cases for both the migratory and non-migratory results, such that the
results can be considered independent of the domain discretization. The fine grid results
for both cases are compared in figure 9.16a.

(a) Dispersed phase mass flow rate aver-
aged oxygen saturation.

(b) Saturation profiles at x = −4mm.

Figure 9.16: The oxygen saturation behaviour for variable and uniform dispersed
phase volume fraction fields in the semi-cyclic two-dimensional oxygenator domain.

The dispersed phase mass flow rate averaged oxygen saturation profiles for both the vari-
able and uniform dispersed phase volume fraction fields, depicted in figure 9.16a, show a
maximum difference of 1.56%. The migratory behaviour of whole blood and observed cell-
depleted boundary layers in figure 9.14 thus do not appear to have a significant influence
on the oxygenation of whole blood. The saturation profiles considered between the cyclic
slices depicted in figure 9.16b show that the differences in saturation are mainly found
within the high-velocity regions of the flow. A slightly elevated dispersed phase volume
fraction was also observed in this region, as depicted in figure 9.13a. The oxygenation
then appears primarily restricted by the bulk value of the dispersed phase volume fraction
rather than the cell depletion layer near the fibres.

9.6 The influence of Newtonian Rheology and Particle Pres-
ence on Oxygenation in a Two-Dimensional Oxygenator

The migration of red blood cells within whole blood discussed in the preceding sections
was not the sole blood flow modelling considered in this study. Additionally, the non-
Newtonian rheology of the fluid was also considered and the presence of the blood cells by
means of a nonzero volume fraction. In this section the influence of these two modelling
consideration is discussed.
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9.6.1 The Influence of Newtonian Rheology

The non-Newtonian rheology of whole blood was primarily characterized by its shear-
thinning behaviour and modelled an increased dissipation rate due to the interphasic
interactions. A Newtonian consideration replaced this non-Newtonian consideration with
a straightforward phasic averaged mixture viscosity to study its influence,

µm = (1− αd,0)µc + αd,0µd. (9.2)

Where the viscosities correspond to those discussed in section 2.2.3, such that the constant
mixture viscosity equates to µm = 3.336× 10−3 Pa · s. The comparison of the mass flow
rate averaged saturation behaviour of the Newtonian, and non-Newtonian solutions is
depicted in figure 9.17a.

(a) Dispersed phase mass flow rate aver-
aged oxygen saturation.

(b) Saturation profiles at x = −4mm.

Figure 9.17: The oxygen saturation behaviour for non-Newtonian and New-
tonian viscosity modelling in the semi cyclic two-dimensional oxygenator do-
main. The non-Newtonian consideration is congruent with the consider-
ation of figure 9.16a and the constant Newtonian viscosity was taken as
µm = 3.336× 10−3 Pa · s.

The numerical results for the dispersed phase mass flow rate averaged saturation for the
differing rheological considerations of whole blood are depicted in figure 9.17a and show a
maximum difference of 5.29%. The Newtonian saturation profile, depicted in figure 9.17b,
shows a more evenly distribution of the oxygen saturation with differences up to about
9% compared to the non-Newtonian profile. These differences indicate that interphasic
momentum interactions have a non-negligible impact on the oxygenation of whole blood,
and blood flow cannot simply be taken Newtonian.
While the employed viscosity model accounts for the interphasic interactions of individual
blood cells, it is essential to note that the parametric fitting also included the influence
of blood cell aggregation. The aggregation of blood cells is, however, not observed in
oxygenators. The influence of the aggregation on the viscosity model is most dominant
in the regions of low shear and, thus, also in the regions where the primary differences
in oxygenation are observed. The exact influence of this consideration was, however, not
studied here.

80



9.6.2 The Influence of the Presence of Red Blood Cells

In addition to the complicated rheology, the influence of the actual presence of particles
for non-migrating whole blood was studied. The exclusion of the particles is modelled by
setting the dispersed phase volume fraction to zero, αd,0 = 0. The limiting behaviour and
its influence on the oxygenation model are discussed in appendix A.8, and the numerical
results for the semi-cyclic two-dimensional oxygenator domain are depicted in figure 9.18.

(a) Dispersed phase mass flow rate aver-
aged oxygen saturation.

(b) Saturation profiles at x = −4mm.

Figure 9.18: The mass flow rate averaged saturation for particle-laden and non-
particulate Newtonian modelling of whole blood. The particle-laden consider-
ation is congruent with the consideration of figure 9.17a.

The numerical results for the dispersed phase mass flow rate averaged saturation for the
influence of the presence of the red blood cells are depicted in figure 9.18a and show a
maximum difference of 17.65%. The negligence of red blood cells thus greatly impacts the
oxygenation and observed performance of an oxygenator. Due to the lack of blood cells,
all oxygen is allowed to diffuse into the whole domain without the artificial uptake of the
oxygen, causing an overall higher saturation throughout the domain as also depicted in
figure 9.18b.

9.7 Validity and Limitations of the Chosen Models

This study considered several models to model fluid flow and mass transfer in a hollow-
fibre membrane oxygenator. In this section, the validity of the assumptions required in
order to allow the consideration of these models and the comparison between oxygenation
models is discussed.

9.7.1 The Mixture Formulation Consideration of Whole Blood

The mixture model formulation was considered in this study based on the laminar Stoke-
sian suspension character and the typical dense dispersion of the red blood cells in whole
blood, as discussed in chapters 4 and 2. The applicability of the Stokesian suspension
character was primarily determined by the typical Stokes and particulate Reynolds num-
bers denoted in equation 4.5 and 4.4. In consideration of non-Newtonian migratory blood
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flow modelling in the semi-cyclic two-dimensional oxygenator domain, discussed in section
9.5.3, these numbers equate to Rep = 9.22 × 10−3 and St = 7.28 × 10−4. Since both
conditions Rep ≪ 1 and St ≪ 1 hold for the domain and flow types considered in this
study, the consideration of the mixture model appears appropriate.

9.7.2 Comparative Study of Oxygen Transport Governed by Mixture
Formulation Oxygenation Models

The oxygenation behaviour of the newly derived conservation of the total mass of the
oxygen model can be compared to that of the commonly considered effective oxygen dif-
fusivity model. The comparison of the oxygen partial pressure and saturation results of
non-migratory whole blood in pipe flow are presented in figure 9.19.

(a) Oxygen partial pressure.

(b) Oxygen saturation.

Figure 9.19: Oxygen partial pressure and saturation profile development beyond
the entrance region for the CTMO and EOD oxygenation models. The CTMO
model results are congruent with uniform dispersed phase volume fraction results
considered in figure 9.8.

The oxygen saturation results depicted in figure 9.19 indicate that the CTMO model
overestimates the oxygen saturation compared to the EOD. This overestimation is purely
rooted in how both models treat the oxygen uptake by the red blood cells. The EOD
model can be observed to block the transport of oxygen entirely through the unsaturated
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red blood cells. I.e. whenever the transported oxygen comes in contact with non-fully
saturated blood cells, the oxygen is entirely bounded locally. The CTMO model treats
the oxygen uptake as a local sink term and allows oxygen transport throughout the entire
domain.
The difference in the uptake behaviour is additionally evident from the partial pressure
profile comparison. The CTMO model shows a gradual increase of oxygen concentration
throughout the entire domain and only approaches the high wall concentration once the
wall-adjacent blood cells are fully saturated. The EODmodel, in contrast, shows behaviour
equivalent to simple steady-state diffusion up to the non-fully saturated blood cells.
The overestimation of the oxygen uptake in the CTMO model indicates the importance
of the consideration of membrane resistances. The resistance was in the derivation of the
model and, in this study, as a first guess, assumed negligible such that the dissolved oxygen
concentrations of both phases could be taken equivalent. While the direct interphasic
oxygen transport cannot be considered in a mixture model formulation, the transport
is considered in the constitutive modelling of the oxyhaemoglobin discussed in appendix
A.4. The oxygen saturation in this regard was modelled using the mixture oxygen partial
pressure, while a more appropriate choice would be the partial pressure of the oxygen in the
dispersed phase as considered by the micro-scale model discussed in section 7.3.2. This
consideration would then require a constitutive model that relates the mixture partial
pressure and the dispersed phase dissolved partial pressure, which should include the
interphasic oxygen transport.
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Chapter 10

Conclusions and
Recommendations

The influence of shear-induced particle migration of red blood cells and non-Newtonian
rheology of whole blood on the oxygenation of whole blood were studied in this the-
sis. The particle migration was modelled through the commonly considered phenomeno-
logical diffusive flux model, the rheology through a phase-averaged consideration of the
Yeleswarapu-Wu model, and the oxygenation model was newly derived for this study in
appendix A.

Firstly, the influence of the migration on oxygenation was reviewed for blood flow in an
axisymmetric pipe. The migration typically caused a concentration of red blood cells near
the central line of the pipe flow and a reduction near the wall compared to the mean
concentration. The observed profiles for the oxygen partial pressure and saturation were
found to differ most in the entrance region of the pipe. The exclusion of the particle mi-
gration delayed the overall oxygenation behaviour due to the more considerable resistance
to oxygen transport caused by the higher concentration of particles at the wall. Once the
near-wall particles were saturated, the oxygen partial pressure and saturation profiles were
observed to become equivalent. In this region, the saturation of whole blood, including
the migratory behaviour, exhibited a slightly lower saturation caused by the red blood cell
concentration near the central line of the pipe. The lower saturation in this region was
observed to be the primary difference between the migratory and non-migratory whole
blood considerations. The maximum mean saturation differences were up to about 12%
over-estimation due to the exclusion of particle migration.
However, these differences in the mean saturation were not observed to such a degree for
the consideration of the shear-induced migration in a two-dimensional oxygenator domain.
In the considered oxygenator, the maximum difference was observed to be 1.56%. The
bulk behaviour of the particle migration in the oxygenator introduces the equivalence of
the mean saturation for both cases. While significant particle concentration differences
were observed locally adjacent to the fibres, the bulk particle concentration remained uni-
form at a slightly elevated value when particle migration was considered.
Additionally, the influence of the non-Newtonian rheology of whole blood on oxygenation
was studied for the non-migratory modelling consideration. In pipe flow, the primary in-
fluence of the non-Newtonian viscosity modelling was a blunted velocity profile compared
to the typical parabolic profile observed in Newtonian flows. The primary influence for
observing this profile was the shear rate magnitude dependence of the viscosity model.
The influence of the non-Newtonian viscosity in the two-dimensional oxygenator domain
on the oxygen saturation showed local differences up to about 9%. This difference suggests
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the non-Newtonian character of whole blood and its influence on oxygen transport is not
as easily dismissed. However, the parametric fitting considered for the utilized viscosity
model also included an influence of red blood cell aggregation into rouleaux, which is not
observed inside oxygenators. The additional influence of this consideration is unknown,
and further research should identify if the non-Newtonian behaviour is truly inadmissible
for the oxygenation of whole blood.
Furthermore, the influence of the presence of red blood cells on oxygenation was studied
for the non-migratory modelling consideration. The non-consideration of the particles was
observed to influence the oxygenation of whole blood significantly. The exclusion of the
oxygen-absorbing particles resulted in a quickly increasing oxygen content of the fluid and,
therefore, a significant overestimation of saturation levels.
Lastly, the oxygen transport modelled by the newly derived conservation of the total
mass of oxygen model, CTMO, was compared to that of the commonly considered effec-
tive oxygen diffusivity model, EOD. The CTMO model effectively considered the oxygen
uptake by the red blood cells as a sink term, allowing the oxygen to transport through
the entire domain. The EOD model, in contrast, exhibited a blockage of oxygen trans-
port once non-fully saturated blood cells were reached. The CTMO model did show a
saturation overestimation compared to the EOD model, caused by the exclusion of the
interphasic transport of oxygen. As a first guess, in this study, the oxygen dissolved in
the blood plasma and the cytoplasm were taken equivalent. The overestimating nature of
the model then elucidates the importance of membrane resistance to oxygen uptake, and
its modelling requires further research to improve the accuracy of the model.
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[49] H. Iwahashi, K. Yuri, and Y. Nosé. “Development of the Oxygenator: Past, Present,
and Future”. In: Journal of Artificial Organs 7.3 (Sept. 2004), pp. 111–120. doi:
10.1007/s10047-004-0268-6.

[50] A. Kaesler et al. “Computational Modeling of Oxygen Transfer in Artificial Lungs”.
In: Artificial Organs 42.8 (July 2018), pp. 786–799. doi: 10.1111/aor.13146.

[51] A. Kaesler et al. “How Computational Modeling can Help to Predict Gas Transfer
in Artificial Lungs Early in the Design Process”. In: ASAIO Journal 66.6 (Nov.
2019), pp. 683–690. doi: 10.1097/mat.0000000000001098.

[52] B. Kaoui et al. “Lateral Migration of a Two-Dimensional Vesicle in Unbounded
Poiseuille Flow”. In: Physical Review E 77.2 (Feb. 5, 2008), p. 021903. doi: 10.
1103/PhysRevE.77.021903.

[53] J. Kim, J. F. Antaki, and M. Massoudi. “Computational Study of Blood Flow in
Microchannels”. In: Journal of Computational and Applied Mathematics 292 (Jan.
2016), pp. 174–187. doi: 10.1016/j.cam.2015.06.017.

[54] M. Kopernik et al. “Discrete Phase Model of Blood Flow in a Roughness Mi-
crochannel Simulating the Formation of Pseudointima”. In: Acta of Bioengineering
and Biomechanics 24.1 (2022). doi: 10.37190/ABB-01989-2021-02.

[55] C. V. Kulkarni et al. “Pressure Effects on a Protein–Lipid Model Membrane”. In:
Soft Matter 9.28 (2013), p. 6525. doi: 10.1039/c3sm50911g.

[56] R. S. Lakes. Viscoelastic Materials. Cambridge: Cambridge University Press, 2009.
461 pp. isbn: 978-0-521-88568-3.

[57] L. Lanotte et al. “Red Cells’ Dynamic Morphologies Govern Blood Shear Thin-
ning under Microcirculatory Flow Conditions”. In: Proceedings of the National
Academy of Sciences 113.47 (Nov. 22, 2016), pp. 13289–13294. doi: 10.1073/
pnas.1608074113.

[58] D. Leighton and A. Acrivos. “The Shear-Induced Migration of Particles in Concen-
trated Suspensions”. In: Journal of Fluid Mechanics 181 (Sept. 1987), p. 415. doi:
10.1017/S0022112087002155.

[59] S. Losserand, G. Coupier, and T. Podgorski. “Axial Dispersion of Red Blood Cells
in Microchannels”. In: Physical Review Fluids 8.4 (Apr. 6, 2023), p. 043102. doi:
10.1103/PhysRevFluids.8.043102.

[60] A. R. Malipeddi and K. Sarkar. “Shear-Induced Gradient Diffusivity of a Red Blood
Cell Suspension: Effects of Cell Dynamics from Tumbling to Tank-Treading”. In:
Soft Matter 17.37 (2021), pp. 8523–8535. doi: 10.1039/D1SM00938A.

90

https://doi.org/10.5301/ijao.2011.6494
https://doi.org/10.1122/1.5108737
https://doi.org/10.1016/0026-2862(83)90058-4
https://doi.org/10.1007/978-1-4419-7985-8
https://doi.org/10.1007/s10047-004-0268-6
https://doi.org/10.1111/aor.13146
https://doi.org/10.1097/mat.0000000000001098
https://doi.org/10.1103/PhysRevE.77.021903
https://doi.org/10.1103/PhysRevE.77.021903
https://doi.org/10.1016/j.cam.2015.06.017
https://doi.org/10.37190/ABB-01989-2021-02
https://doi.org/10.1039/c3sm50911g
https://doi.org/10.1073/pnas.1608074113
https://doi.org/10.1073/pnas.1608074113
https://doi.org/10.1017/S0022112087002155
https://doi.org/10.1103/PhysRevFluids.8.043102
https://doi.org/10.1039/D1SM00938A


[61] M. Manninen, V. Taivassalo, and S. Kallio. “On the Mixture Model for Multiphase
Flow”. In: ().

[62] M. Massoudi. “An Anisotropic Constitutive Relation for the Stress Tensor of a Rod-
like (Fibrous-Type) Granular Material”. In: Mathematical Problems in Engineering
2005.6 (2005), pp. 679–702. doi: 10.1155/MPE.2005.679.

[63] M. Massoudi. “On the flow of granular materials with variable material properties”.
In: International Journal of Non-Linear Mechanics 36.1 (2001), pp. 25–37. doi:
https://doi.org/10.1016/S0020-7462(99)00085-2.

[64] M. Massoudi and J. F. Antaki. “An Anisotropic Constitutive Equation for the
Stress Tensor of Blood Based on Mixture Theory”. In: Mathematical Problems in
Engineering 2008 (2008), pp. 1–30. doi: 10.1155/2008/579172.

[65] M. Massoudi, J. Kim, and J. F. Antaki. “Modeling and Numerical Simulation of
Blood Flow Using the Theory of Interacting Continua”. In: International Jour-
nal of Non-Linear Mechanics 47.5 (June 2012), pp. 506–520. doi: 10.1016/j.
ijnonlinmec.2011.09.025.

[66] Jp. Matas, Jf. Morris, and E. Guazzelli. “Lateral Forces on a Sphere”. In: Oil & Gas
Science and Technology 59.1 (Jan. 2004), pp. 59–70. doi: 10.2516/ogst:2004006.

[67] J. Mauer et al. “Flow-Induced Transitions of Red Blood Cell Shapes under Shear”.
In: Physical Review Letters 121.11 (Sept. 11, 2018), p. 118103. doi: 10.1103/
PhysRevLett.121.118103.

[68] “Mechanism of the Production of Small Eddies from Large Ones”. In: Proceedings
of the Royal Society of London. Series A - Mathematical and Physical Sciences
158.895 (Feb. 3, 1937), pp. 499–521. doi: 10.1098/rspa.1937.0036.

[69] Modeling Approaches and Computational Methods for Particle-Laden Turbulent
Flows. Elsevier, 2023. isbn: 978-0-323-90133-8.

[70] C. Morel. Mathematical modeling of disperse two-phase flows. en. 1st ed. Fluid Me-
chanics and Its Applications. Basel, Switzerland: Springer International Publishing,
July 2015. isbn: 978-3-319-20103-0.

[71] J. F. Morris and F. Boulay. “Curvilinear Flows of Noncolloidal Suspensions: The
Role of Normal Stresses”. In: Journal of Rheology 43.5 (Sept. 1, 1999), pp. 1213–
1237. doi: 10.1122/1.551021.

[72] F. Municchi, P. P. Nagrani, and I. C. Christov. “A Two-Fluid Model for Numerical
Simulation of Shear-Dominated Suspension Flows”. In: International Journal of
Multiphase Flow 120 (Nov. 2019), p. 103079. doi: 10.1016/j.ijmultiphaseflow.
2019.07.015.

[73] S. T. Munkejord. “Analysis of the two-fluid model and the drift-flux model for nu-
merical calculation of two-phase flow”. PhD thesis. Norwegian University of Science
and Technology, 2006. isbn: 82-471-7338-7.

[74] National Center for Biotechnology Information. PubChem Compound Summary
for CID 977, Oxygen. https://pubchem.ncbi.nlm.nih.gov/compound/Oxygen.
Retrieved November 17, 2023. 2023.

[75] T. Nierhaus. “Modeling and simulation of dispersed two-phase flow transport phe-
nomena in electrochemical processes”. PhD thesis. Aachen, 2009, XXII, 172 S. :
Ill., graph. Darst. url: https://publications.rwth-aachen.de/record/51363.

91

https://doi.org/10.1155/MPE.2005.679
https://doi.org/https://doi.org/10.1016/S0020-7462(99)00085-2
https://doi.org/10.1155/2008/579172
https://doi.org/10.1016/j.ijnonlinmec.2011.09.025
https://doi.org/10.1016/j.ijnonlinmec.2011.09.025
https://doi.org/10.2516/ogst:2004006
https://doi.org/10.1103/PhysRevLett.121.118103
https://doi.org/10.1103/PhysRevLett.121.118103
https://doi.org/10.1098/rspa.1937.0036
https://doi.org/10.1122/1.551021
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.015
https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.015
https://pubchem.ncbi.nlm.nih.gov/compound/Oxygen
https://publications.rwth-aachen.de/record/51363


[76] N. Norouzi, H. C. Bhakta, and W. H. Grover. “Sorting Cells by Their Density”.
In: PLOS ONE 12.7 (July 19, 2017). Ed. by V. M. Ugaz, e0180520. doi: 10.1371/
journal.pone.0180520.

[77] P. R. Nott and J. F. Brady. “Pressure-Driven Flow of Suspensions: Simulation and
Theory”. In: Journal of Fluid Mechanics 275 (Sept. 25, 1994), pp. 157–199. doi:
10.1017/S0022112094002326.

[78] P. R. Nott, E. Guazzelli, and O. Pouliquen. “The Suspension Balance Model Re-
visited”. In: Physics of Fluids 23.4 (Apr. 1, 2011), p. 043304. doi: 10.1063/1.
3570921.

[79] W. L. Oberkampf, T. G. Trucano, and C. Hirsch. “Verification, validation, and pre-
dictive capability in computational engineering and physics”. In: Applied Mechanics
Reviews 57.5 (Sept. 2004), pp. 345–384. doi: 10.1115/1.1767847.

[80] M. I. W. Paper. A Basic Introduction to Rheology. Tech. rep. 2016. url:
https : / / cdn . technologynetworks . com / TN / Resources / PDF /

WP160620BasicIntroRheology.pdf.

[81] N. Phan-Thien. Understanding Viscoelasticity: An Introduction to Rheology. Grad-
uate Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. isbn:
978-3-642-32957-9.

[82] R. J. Phillips et al. “A Constitutive Equation for Concentrated Suspensions That
Accounts for Shear-induced Particle Migration”. In: Physics of Fluids A: Fluid
Dynamics 4.1 (Jan. 1992), pp. 30–40. doi: 10.1063/1.858498.

[83] A. Pincot and M. Armstrong. “Novel Tensorial Thixo-Visco-Plastic Framework for
Rheological Characterization of Human Blood”. In: Scientific Reports 11.1 (Nov. 9,
2021), p. 22004. doi: 10.1038/s41598-021-01362-8.

[84] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. 2nd ed.
Philadelphia: Edwards, 2005. 522 pp. isbn: 978-1-930217-10-2.

[85] J. Poiseuille. “Observations of Blood Flow”. In: Annales des Sciences Naturelles 5
(1836), pp. 111–115.

[86] A. R. Pries, D. Neuhaus, and P. Gaehtgens. “Blood Viscosity in Tube Flow: De-
pendence on Diameter and Hematocrit”. In: American Journal of Physiology-Heart
and Circulatory Physiology 263.6 (Dec. 1, 1992), H1770–H1778. doi: 10.1152/
ajpheart.1992.263.6.H1770.

[87] K. R. Rajagopal and A. S. Wineman. “Flow of Electro-Rheological Materials”. In:
Acta Mechanica 91.1-2 (Mar. 1992), pp. 57–75. doi: 10.1007/BF01194033.

[88] A. Ramachandran and D. T. Leighton. “The Influence of Secondary Flows In-
duced by Normal Stress Differences on the Shear-Induced Migration of Particles in
Concentrated Suspensions”. In: Journal of Fluid Mechanics 603 (May 25, 2008),
pp. 207–243. doi: 10.1017/S0022112008000980.

[89] T. Rodrigues, F. Galindo-Rosales, and L. Campo-Deaño. “Haemodynamics around
confined microscopic cylinders”. In: Journal of Non-Newtonian Fluid Mechanics
286 (Dec. 2020), p. 104406. doi: 10.1016/j.jnnfm.2020.104406.

[90] T. Rodrigues et al. “Understanding the complex rheology of human blood plasma”.
In: Journal of Rheology 66.4 (July 2022), pp. 761–774. doi: 10.1122/8.0000442.

[91] M. Sarkar and V. Prabhu. “Basics of Cardiopulmonary Bypass”. In: Indian Journal
of Anaesthesia 61.9 (2017), p. 760. doi: 10.4103/ija.IJA_379_17.

92

https://doi.org/10.1371/journal.pone.0180520
https://doi.org/10.1371/journal.pone.0180520
https://doi.org/10.1017/S0022112094002326
https://doi.org/10.1063/1.3570921
https://doi.org/10.1063/1.3570921
https://doi.org/10.1115/1.1767847
https://cdn.technologynetworks.com/TN/Resources/PDF/WP160620BasicIntroRheology.pdf
https://cdn.technologynetworks.com/TN/Resources/PDF/WP160620BasicIntroRheology.pdf
https://doi.org/10.1063/1.858498
https://doi.org/10.1038/s41598-021-01362-8
https://doi.org/10.1152/ajpheart.1992.263.6.H1770
https://doi.org/10.1152/ajpheart.1992.263.6.H1770
https://doi.org/10.1007/BF01194033
https://doi.org/10.1017/S0022112008000980
https://doi.org/10.1016/j.jnnfm.2020.104406
https://doi.org/10.1122/8.0000442
https://doi.org/10.4103/ija.IJA_379_17


[92] T. Schenkel and I. Halliday. “Continuum Scale Non Newtonian Particle Transport
Model for Hæmorheology”. In: Mathematics 9.17 (Aug. 30, 2021), p. 2100. doi:
10.3390/math9172100.

[93] P. C. Schlanstein. “Experimental and Numerical Investigations of Anisotropic Per-
meabilities in Blood Oxygenators”. PhD thesis. Rheinisch-Westfälischen Technis-
chen Hochschule Aachen, 2019.

[94] G. A. Schmidt, ed. Extracorporeal Membrane Oxygenation for Adults. Respiratory
Medicine. Cham: Springer International Publishing, 2022. isbn: 978-3-031-05298-9.

[95] T. W. Secomb. “Blood Flow in the Microcirculation”. In: Annual Review of Fluid
Mechanics 49.1 (Jan. 2017), pp. 443–461. doi: 10.1146/annurev-fluid-010816-
060302.
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Appendix A

Conservation of the Total Mass of
Oxygen

A.1 Introduction

The complex process of oxygenation in whole blood was explored in chapter 7. In the
literature, two model types are proposed to describe this phenomenon: a mixture and
a two-phase formulation. While this study focused on a mixture model for blood flow,
necessitating a mixture formulation for oxygenation, the existing mixture model in the
literature was not derived from the considerations discussed in chapter 3. Thus, this
appendix delves into the derivation of a new oxygenation model, aligning with the mixture
formulations considered throughout this study. Throughout the derivation, mathematical
contributions are marked in red to indicate changes with respect to previous derivation
steps.

A.2 Total Mass of Oxygen

The total mass of oxygen in whole blood at any given time for an arbitrary fluid element
consists of three contributions: the oxygen dissolved in blood plasma, the oxygen dissolved
in the cytoplasm of the red blood cells, and the oxygen bound to the haemoglobin in
the cytoplasm of the red blood cells [50]. These three species can reversibly exchange
oxygen, but their combined mass remains constant, ensuring the total amount of oxygen
is conserved for the fluid element. For now, these oxygen species may be distinguished by
the phase in which they are suspended. The contribution of the mass of the bound oxygen
should be determined using the stoichiometric relation that governs the reaction between
oxygen and haemoglobin. The one-step approximation for this reversible reaction, as was
introduced in equation 7.6, is denoted by,

1 mol O2 + 1 mol Hb ⇌ 1 mol HbO2. (7.6)

Where O2 denotes the oxygen species, Hb the haemoglobin species, and HbO2 the bound
oxygen or oxyhaemoglobin species. The total mass of oxygen can now be expressed as the
sum of all three contributions while distinguishing the contributions of both phases,

mO2,t := mO2,c︸ ︷︷ ︸
Continuous

+mO2,d +
MO2

MHbO2

mHbO2,d︸ ︷︷ ︸
Dispersed

. (A.1)
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Where m denotes the mass, M the molar mass, the sub-scripted t the consideration of
total mass, c the mass in the continuous phase, and d the mass in the dispersed phase.
The relation for the total mass of oxygen can now be expressed in terms of the partial
mass density of each species for the volume of an arbitrary fluid element, Ω(t). The partial
volumes correspond to those depicted in figure 3.2, with the exclusion of the oxygen mass
contribution within the interface, i.e. the cell membrane. The total mass of oxygen in the
arbitrary fluid element is then expressed as,∫

Ω(t)
ρO2,tdV =

∫
Ωc(t)

ρO2,cdV +

∫
Ωd(t)

[
ρO2,d +

MO2

MHbO2

ρHbO2,d

]
dV. (A.2)

Where ρ denotes the mass density, and with the neglect of the interface volume,
Ω(t) = Ωc(t) + Ωd(t). The integrands on the right-hand side may now be recognized as the
conserved quantities per unit volume of either phase, such that the conservation of their
respective mass fraction is governed by the local-instant formulation denoted in equation
3.4. With the mass fractions denoted by,

ωO2,c,t := ωO2,c ≡
ρO2,c

ρc
,

ωO2,d,t :=
ρO2,d

ρd
+

MO2

MHbO2

ρHbO2,d

ρd
.

(A.3)

Where the sub-scripted inclusion of t denotes the combined or total consideration of the
dissolved and bound oxygen mass fractions. In the continuous phase, this total mass
fraction is simply equal to that of the dissolved oxygen.
The derivation of the two-fluid model formulations for these local-instant formulations
requires the process of time-averaging, as detailed in section 3.2.2, where generally the
conserved variable per unit mass is averaged using Favre averaging. While the mass
fraction of each species is not a candidate for Favre averaging in the general sense, i.e.
the product of the conserved variable per unit mass with the phasic density is generally
considered to be an extensive property of the phase such as momentum or energy, it does
represent an additive set function of mass. This consideration for the mass fraction is
best envisioned by considering the generic notion of mass conservation for the phases,
where the conserved quantity per unit mass is taken as unity. The value resembles the
consideration of a mass fraction for a single species, which is naturally equal to unity. The
consideration of mass conservation for the entire mixture can still be done using the value
of unity, considering the mass fraction for the total mass of oxygen is generally assumed
negligible compared to the mass fractions of the individual phases. The Favre-averaged
total mass fractions of oxygen for the individual phases are now denoted by,

ω̃O2,c,t = ω̃O2,c,

ω̃O2,d,t = ω̃O2,d +
MO2

MHbO2

ω̃HbO2,d.
(A.4)

Where the additive property of integrals is used in the time-averaging of the dispersed
phase total oxygen mass fraction, and the fraction of molecular weights is assumed to
be constant. The mixture total oxygen mass fraction is now defined by considering the
mixture definition for the Favre-averaged quantities, as defined in equation 3.16, for both
the dissolved and bound oxygen separately such that it is denoted by,

ωO2,m,t = ωO2,m +
MO2

MHbO2

ωHbO2,m

=
1

ρm

(
αcρcω̃O2,c + αdρdω̃O2,d

)
+

1

ρm

MO2

MHbO2

(
αdρdω̃HbO2,d

)
.

(A.5)
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A.3 Mixture Conservation

The mass fraction for the total mass of oxygen in the mixture, as defined in the preceding
section, is a conserved quantity per unit mass. The conservation of the quantity inside
the mixture can be described using the drift-flux model, presented in equation 3.20. The
conservation equation for the mass of oxygen in whole blood may then be denoted by
substitution of ϕm = ωO2,m,t,

∂ρmωO2,m,t

∂t︸ ︷︷ ︸
Temporal

+∇ · (ρmωO2,m,tum)︸ ︷︷ ︸
Advection

= −∇ ·
(
J ωO2,m,t

)
︸ ︷︷ ︸

Diffusion

+ ρmSωO2,m,t︸ ︷︷ ︸
Source

−∇ ·
(
JD

ωO2,m,t

)
︸ ︷︷ ︸

Drift

−∇ ·
(
J T

ωO2,m,t

)
︸ ︷︷ ︸

Turbulence

+ IωO2,m,t︸ ︷︷ ︸
Interface

.

(A.6)

The resulting conservation equation may already be simplified by considering there is
no production or destruction of oxygen inside of the arbitrary fluid element, such that
SωO2,m,t = 0. The influence of turbulence may also be omitted following the considerations

for momentum described in section 4.2 or 8.1, such that J T
ωO2,m,t

→ 0 ∀x, t. Lastly, it may
be assumed that the interfacial transfer of oxygen, i.e. the transport of oxygen over the
cell membrane, does not enhance the total amount of oxygen, such that IωO2,m,t = 0 ∀x, t.
The simplified consideration can now be expressed as,

∂ρmωO2,m,t

∂t
+∇ · (ρmωO2,m,tum) = −∇ ·

(
J ωO2,m,t

)
−∇ ·

(
JD

ωO2,m,t

)
. (A.7)

This formulation can now be expanded by substitution of equation A.5, and simplified
by the consideration of mixture mass conservation, and assuming the mass fractions are
continuous in space and time,

ρm
DmωO2,m

Dt
+ ρd

MO2

MHbO2

Dm

Dt
(αdω̃HbO2,d) = −∇ ·

(
J ωO2,m,t

)
−∇ ·

(
JD

ωO2,m,t

)
. (A.8)

Where the mass densities for the mixture and the individual phases are assumed constant,
considering whole blood and its primary constituents can be assumed incompressible fluids
as described in section 8.1. Additionally, the operator Dm

Dt (.) denotes the material deriva-
tive in terms of the mixture velocity, which is defined for an arbitrary scalar quantity ϕ
by,

Dmϕ

Dt
=

∂ϕ

∂t
+ um · ∇ϕ. (A.9)

The final conservation relation for the total mass of oxygen now contains several quantities
that generally are not explicitly solved for and must thus be closed using constitutive
modelling.

A.4 Constitutive Modelling of the Oxyhaemoglobin

The Favre-averaged oxyhaemoglobin mass fraction can be modelled using the local oxygen
saturation under the assumption that the oxygen dissolved in the red blood cell phase
and the haemoglobin are in chemical equilibrium. While this equilibrium consideration
does not generally hold for the entire cell, it is the case in the bulk of the cell. The
non-equilibrium is only observed in a boundary layer near the cell membrane, which is
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generally much smaller than the characteristic length scale of the red blood cell [23]. The
oxygen saturation, described by the oxygen dissociation curve, is a non-linear function of
the partial pressure of the dissolved oxygen in blood and, as was introduced in equation
7.7, may be related to the haemoglobin concentration by,

SO2(pO2) :=
cHbO2,d

cHb,t
≡

cHbO2,d

cHb + cHbO2,d
. (7.7)

Where cHb,t denotes the total haemoglobin concentration, which is a constant. The mass
fraction of the oxyhaemoglobin can now be derived using the relation between mass and
molar concentrations [12],

ω̃HbO2,d =
cHb,tMHbO2

ρd
SO2(pO2). (A.10)

Where the oxygen saturation can be modelled using the Hill equation, given in equation
7.8. The oxygen partial pressure of the mixture will be considered here for simplicity,
given that there is no general definition for it in terms of a two-phase consideration. The
oxygen partial pressure for the mixture itself can finally be related to the mixture mass
fraction of oxygen using the Henry-Dalton law, defined in equation 7.4, along with the
relation between mass and molar concentrations,

pO2,m ≡ ρm
βO2,mMO2

ωO2,m. (A.11)

Where βO2,m denotes the Bunsen solubility coefficient of oxygen in the mixture, for which
the variations may generally be neglected [23]. Additionally, the mixture dissolved oxygen
mass fraction was assumed normalized using the mixture mass density. This normalization
effectively defines the mixture dissolved oxygen mass density as the phase average of the
densities of both phases,

ρO2,m = ρmωO2,m = αcρcω̃O2,c + αdρdω̃O2,d = αcρO2,c + αdρO2,d (A.12)

The constitutive model for the mass fraction of the oxyhaemoglobin may now be substi-
tuted into equation A.8 as follows,

ρm
DmωO2,m

Dt
+ cHb,tMO2

Dm

Dt
(αdSO2(pO2,m)) = −∇·

(
J ωO2,m,t

)
−∇·

(
JD

ωO2,m,t

)
. (A.13)

This formulation can be expanded by assuming the dispersed phase volume fraction and
oxygen saturation are continuous in space and time,

ρm
DmωO2,m

Dt
+ cHb,tMO2

[
SO2(pO2,m)

Dmαd

Dt
+ αd

∂SO2

∂pO2,m

DmpO2,m

Dt

]
= −∇ ·

(
J ωO2,m,t

)
−∇ ·

(
JD

ωO2,m,t

)
.

(A.14)

Finally, the formulation may be simplified using the relation between the oxygen partial
pressure and the mass fraction of the mixture, denoted in equation A.11,

ρm

(
1 + αd

cHb,t

βO2,m

∂SO2

∂pO2,m

)
DmωO2,m

Dt
+ cHb,tMO2SO2(pO2,m)

Dmαd

Dt

= −∇ ·
(
J ωO2,m,t

)
−∇ ·

(
JD

ωO2,m,t

)
.

(A.15)
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A.5 Constitutive Modelling of the Molecular Diffusion

Molecular diffusion is characterized by the diffusion of the dissolved and bound oxygen in
both the continuous and dispersed phases such that, J ωO2,m,t = J ωO2,m

+J ωHbO2,m
. The

mixture diffusion fluxes are, in turn, governed by the phase-averaged diffusion fluxes, given
in equation 3.15, and the phase-averaged fluxes by Fick’s first law of binary diffusion, as
was introduced in equation 7.1,

J ωa = −ρtDa,b∇ωa. (7.1)

The total molecular diffusion flux for the total mass of oxygen is now denoted by,

J ωO2,m,t = −αcρcDO2,c∇ω̃O2,c − αdρdDO2,d∇ω̃O2,d

− αdρdDHbO2,d∇ω̃HbO2,d.
(A.16)

Where the molecular diffusion coefficient of oxygen in the continuous and dispersed phases
are typically taken constant and equal [50], e.g. DO2,c ≈ DO2,d ≈ DO2,m. The constitutive
model for the mass fraction of the oxyhaemoglobin can be substituted in the definition of
this molecular diffusion flux such that the flux can be expressed as,

J ωO2,m,t = −αcρcDO2,c∇ω̃O2,c − αdρdDO2,d∇ω̃O2,d

− αdDHbO2,dcHb,tMHbO2∇SO2(pO2,m).
(A.17)

The molecular diffusion flux for the oxyhaemoglobin may now be rewritten in terms of
the mass fraction of the mixture, denoted in equation A.10, such that the total molecular
diffusion flux is denoted by,

J ωO2,m,t = −αcρcDO2,c∇ω̃O2,c − αdρdDO2,d∇ω̃O2,d

− αdρmDHbO2,d
cHb,t

βO2,m

MHbO2

MO2

∂SO2

∂pO2,m
∇ωO2,m.

(A.18)

The consideration of chemical equilibrium in the complete red blood cell, considered in the
constitutive model of the oxyhaemoglobin, also allows for a simplified consideration of the
molecular diffusion in the blood cell phase. The bulk chemical equilibrium is caused by a
major resistance of molecular diffusion inside the boundary layer and causes ∇ω̃O2,d → 0
[23]. The total molecular diffusion flux can then be reduced to,

J ωO2,m,t = −αcρcDO2,c∇ω̃O2,c

− αdρmDHbO2,d
cHb,t

βO2,m

MHbO2

MO2

∂SO2

∂pO2,m
∇ωO2,m.

(A.19)

The gradient of the phase-averaged mass fraction of oxygen dissolved in the continuous
phase can be written in terms of the mixture mass fraction by expanding it as follows,

∇ωO2,m =
1

ρm
∇
(
αcρcω̃O2,c + αdρdω̃O2,d

)
= αc

ρc
ρm

∇ω̃O2,c +
ρdω̃O2,d − ρcω̃O2,c

ρm
∇αd.

(A.20)

Where the gradient of the continuous phase volume fraction was written in terms of the
dispersed phase volume fraction using the axiom of continuity, as given in equation 8.1.
The second contribution is here assumed negligible compared to the first contribution,
effectively neglecting molecular diffusion governed by the difference in phasic dissolved
oxygen concentrations, such that the final total molecular diffusion flux is denoted by,

J ωO2,t
= −ρm

[
DO2,c + αdDHbO2,d

cHb,t

βO2,m

MHbO2

MO2

∂SO2

∂pO2,m

]
∇ωO2,m. (A.21)
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A.6 Constitutive Modelling of the Phase Diffusion

The relative phase motion characterizes the macroscopic phase diffusion of the oxygen.
The mixture flux, as was introduced in equation 3.21, is here denoted by,

JD
ϕm

=
∑
k

JD
ϕk

=
∑
k

αkρkϕ̃kVkm. (3.21)

The macroscopic phase diffusion flux may now be determined using the Favre-averaged
mass fractions defined in equation A.4, along with the phase diffusion velocities defined in
equation 3.18. Generally, however, only one of the two-phase diffusion velocities is mod-
elled, of which the dispersed phase diffusion velocity is typically modelled. The continuous
phase diffusion velocity must then be derived from the following relating identity, as was
introduced in equation 4.16, ∑

k

αkρk
ρm

Vkm = 0. (4.16)

The continuous phase diffusion velocity is denoted in terms of the dispersed phase diffusion
velocity by,

Vcm = −αdρd
αcρc

Vdm (A.22)

The macroscopic phase diffusion flux is then denoted by,

JD
ωO2,t

= αdρd

[
ω̃O2,d − ω̃O2,c +

MO2

MHbO2

ω̃HbO2,d

]
Vdm. (A.23)

Where, similarly to the derivation of the constitutive model for the molecular diffusion
flux, the effect due to the difference in phasic dissolved oxygen concentration is assumed
negligible, and the constitutive model for the mass fraction of the oxyhaemoglobin may
be substituted, such that the macroscopic phase diffusion flux is denoted by,

JD
ωO2,t

= αdcHb,tMO2SO2(pO2,m)Vdm. (A.24)

A.7 Conservation of the Total Mass of Oxygen

The final relation that describes the conservation of the total mass of oxygen based on a
mixture consideration can now be derived by substituting the constitutive models for the
molecular and phase diffusion fluxes into equation A.15,

ρm

(
1 + αd

cHb,t

βO2,m

∂SO2

∂pO2,m

)
DmωO2,m

Dt
+ cHb,tMO2SO2(pO2,m)

Dmαd

Dt︸ ︷︷ ︸
Temporal + Advection

= ∇ ·
(
ρm

[
DO2,c + αdDHbO2,d

MHbO2

MO2

cHb,t

βO2,m

∂SO2

∂pO2,m

]
∇ωO2,m

)
︸ ︷︷ ︸

Diffusion

−∇ · (αdcHb,tMO2SO2(pO2,m)Vdm)︸ ︷︷ ︸
Drift

.

(A.25)

The resulting relation can be simplified by separating the macroscopic phase diffusion
or drift flux into a contribution in terms of saturation and the phase diffusion velocity.
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Consequently, the latter contribution and the second term of the resulting relation cancel
as these exactly make up the dispersed phase mass conservation denoted in equation 8.6.
The relation is now denoted by,

ρm

(
1 + αd

cHb,t

βO2,m

∂SO2

∂pO2,m

)
DmωO2,m

Dt
+ ρmαd

cHb,t

αO2,m

∂SO2

∂pO2,m
Vdm · ∇ωO2,m

= ∇ ·
(
ρm

[
DO2,c +DHbO2,d

MHbO2

MO2

αd
cHb,t

βO2,m

∂SO2

∂pO2,m

]
∇ωO2,m

)
.

(A.26)

For convenience, an oxyhaemoglobin transport coefficient, an effective diffusivity coeffi-
cient, and an arbitrary oxygen concentration variable may be defined such that the oxygen
transport in a mixture consideration of whole blood is governed by,

(1 + CHbO2)
DmϕO2,m

Dt
+ CHbO2Vdm · ∇ϕO2,m = ∇ · (Deff∇ϕO2,m) . (A.27)

Where,

CHbO2
:= αd

cHb,t

βO2,m

∂SO2

∂pO2,m
,

Deff := DO2,c +DHbO2,d
MHbO2

MO2

αd
cHb,t

βO2,m

∂SO2

∂pO2,m

≡ DO2,c +DHbO2,d
MHbO2

MO2

CHbO2 .

(A.28)

The choice of the arbitrary oxygen concentration variable is now solely dependent on the
conversion of the variable to the mixture partial pressure of dissolved oxygen, which can,
for common oxygen concentration variables, be determined using table A.1.

ϕO2,m ωO2,m ρO2,m cO2,m pO2,m

pO2,m
ρm

βO2,mMO2

ϕO2,m
1

βO2,mMO2

ϕO2,m
1

βO2,m
ϕO2,m ϕO2,m

Table A.1: Conservation of total mass of oxygen model conversion table.

A.8 Model Derivation Verification

A newly derived model must thoroughly be verified and validated to assess whether it
behaves according to expectations.

A.8.1 Dimensions

A first verification, rooted in good engineering practices, is to verify whether the dimen-
sions of the derived governing relation are consistent. From the initial contribution de-
noted in the governing relation, equation A.27, it can be deduced that the oxyhaemoglobin
transport coefficient should be dimensionless. The dimensions of the Bunsen solubility co-
efficient are easily deduced from the Henry-Dalton law denoted in equation 7.4,

[βa,b] =

[
ca
pa

]
=

mol/m3

Pa
= mol/(Pa ·m3). (A.29)
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The dimensions of the oxyhaemoglobin transport coefficient are now denoted by,

[CHbO2 ] =

[
αd

cHb,t

βO2,m

∂SO2

∂pO2,m

]
= [−]

mol/m3

mol/(Pa ·m3)

[−]

Pa
= [−] . (A.30)

The effective diffusivity should by its own definition have the dimensions of a diffusivity
coefficient, its dimensions are denoted by,

[Deff] =

[
DO2,c +DHbO2,d

MHbO2

MO2

CHbO2

]
= m2/s + m2/s

g/mol

g/mol
[−] = m2/s. (A.31)

The dimensions of the entire governing relation are now denoted by,[
(1 + CHbO2)

DmϕO2,m

Dt

]
+ [CHbO2Vdm · ∇ϕO2,m] = [∇ · (Deff∇ϕO2,m)] .

⇒ ([−] + [−])
[ϕO2,m]

s
+ [−] m/s · 1

m
[ϕO2,m] =

1

m
·
(
m2/s

1

m
[ϕO2,m]

)
.

(A.32)

Where it is implied that the dimensions of the governing relation are consistent, and every
contribution has the dimensions of the arbitrary oxygen concentration variable per unit
time.

A.8.2 Limiting Behaviour

With the dimensions of the governing relation verified in the preceding section, the phys-
ical response of the model should be reviewed. Here, the response in terms of the limiting
behaviour is considered. The two considerations of most interest are the limiting behaviour
of the dispersed phase volume fraction and the saturation gradient. In the limit of zero
dispersed phase volume fraction, i.e. the exclusion of red blood cells, the oxyhaemoglobin
transport coefficient also approaches zero. The resulting differential equation then ap-
proaches a simple linear advection-diffusion equation in terms of oxygen through blood
plasma,

DmϕO2,m

Dt
= DO2,c∇2ϕO2,m. (A.33)

Which resembles Fick’s second law of binary diffusion for an advecting fluid element, which
is in line with the expected behaviour.
The saturation gradient has two limits of interest, zero and fully saturated blood cells.
Both of these limits result in a zero gradient, as can be deduced from figure 7.2. The
resulting governing relation then, similarly to the exclusion of red blood cells, results
in the simple linear advection-diffusion equation denoted in equation A.33. While this
results may seem counter-intuitive, it essentially states that the time-averaged behaviour
of the chaotic oxygen transport around and through the red blood cells approaches that
of single-phase blood plasma diffusion.
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Appendix B

Solver Implementation Verification

B.1 Introduction

The PIMPLE-algorithm-based solver, PimpleFoam, included in the open-source Open-
FOAM framework, was enhanced for this study to incorporate the drift flux model de-
noted in equation 8.4. This model enables the description of the fluid flow behaviour
of whole blood, including the migration of red blood cells. The diffusive flux model de-
noted in equation 8.6 included the migratory behaviour. Additionally, the solver adopted
the conservation of total mass of oxygen, oxygenation model as denoted in equation 8.7.
This model represents the oxygen transport and oxygen binding to the haemoglobin. The
implementation and validation of these models into the existing PimpleFoam solver was
considered through the method of manufactured solutions (MMS). The method and the
proposed solutions are discussed in this appendix.

B.2 The Method of Manufactured Solutions

The method of manufactured solutions provides a systematic procedure to validate the
numerical implementation of governing partial differential equations [79]. The framework
is relatively straightforward and works by supplying a proposal solution as a function of
space and time, e.g. ϕ = Φ(x, t). This proposal solution is not limited to physically
accurate solutions, and any form may be proposed, providing it is a nontrivial, analytic
solution that exercises all included derivative orders [10].
The methodology involves substituting the proposal solution into the governing relation
and utilizing the resulting remainder within the numerical implementation to correct
the right-hand side of the system of algebraic equations. For instance, consider a one-
dimensional autonomous second-order linear operator derived from the general single-
phase conservation law as proposed in equation 3.2,

Lϕ(ϕ) ≡
∂ρϕ

∂t
− ∂

∂x

(
Γ
∂ϕ

∂x

)
= 0. (B.1)

Here the advection and volumetric source contributions are omitted, the density is taken
as some constant scalar, and the diffusion flux is taken as J ϕ = −Γ∇ϕ, with Γ some
constant scalar. To ensure all derivative orders are exercised, a simple harmonic solution
in terms of space and time may be employed,

Φ(x, t) = A sin (x−Bt). (B.2)
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Where A and B are some constant scalars. The correction, or artificial source term, then
simply becomes,

Lϕ(Φ) = −ρA (B cos (x−Bt) + Γ sin (x−Bt)) . (B.3)

The modified governing relation then becomes,

LΦ(ϕ) ≡
∂ρϕ

∂t
− ∂

∂x

(
Γ
∂ϕ

∂x

)
= −ρA (B cos (x−Bt) + Γ sin (x−Bt)) . (B.4)

This modified relation may now be resolved numerically to validate the implementation
by examining whether ϕ(x, t) → Φ(x, t) using, e.g. grid convergence studies [10]. The
initial and boundary conditions for this analysis are simply given by Φ(x, t) under the
appropriate conditions, where any canonical boundary condition type and combination of
can be applied, i.e. Dirichlet, Neumann, Robin.

B.3 Manufactured Solutions

To ensure the implementations of the governing relation are appropriately checked, an ap-
propriate manufactured solution must be proposed for each solution variable. As discussed
in the preceding section, these manufactured solutions are not limited by physical correct-
ness but must be nontrivial, analytic solutions that exercise all derivative orders. The
manufactured solutions for the mixture velocity, mixture kinematic pressure, dispersed
phase volume fraction, and oxygen partial pressure equipped to check the implementation
are proposed in this section.

B.3.1 Taylor-Green Vortex Flow

The manufactured solutions proposed for the mixture velocity field is the three-dimensional
Taylor-Green Vortex flow as proposed by Taylor and Green in 1937 [68]. The field is used
for its inherent complexity that will ensure, firstly, spatial and temporal differentiability
over all included derivative orders, a divergence-free velocity field, a constraint imposed
by the pressure-velocity coupling of the PIMPLE algorithm and the inability to propose
an artificial source term for the pressure equation in OpenFOAM. The velocity field is, in
its most general form, denoted by,

uMMS
m =


A cos(ax) sin(by) sin(cz)
B sin(ax) cos(by) sin(cz)
C sin(ax) sin(by) cos(cz)

 . (B.5)

Where A,B,C are arbitrary coefficients and a, b, c wave numbers. For simplicity, the wave
numbers are taken equal and as an integer multiple of π, a = b = c = nπ with n ∈ Z. The
coefficients of the components in the x and y direction are set as A = B =

umax

2
e−2t, such

that a divergence-free velocity field can be retrieved using [68],

Aa+Bb+ Cc = 0 ⇒ C = umaxe
−2t. (B.6)

The final, divergence-free, manufactured mixture velocity is then denoted by,

uMMS
m =


umax

2
e−2t cos(nπx) sin(nπy) sin(nπz)

umax

2
e−2t sin(nπx) cos(nπy) sin(nπz)

umaxe
−2t sin(nπx) sin(nπy) cos(nπz)

 . (B.7)
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B.3.2 Mixture Kinematic Pressure

The manufactured solution proposed for the mixture pressure field is the sum of the squares
of the spatial coordinates,

pMMS
m = x2 + y2 + z2. (B.8)

The field is applied for its twice differentiability in space, as required by the pressure
equation supplied by the pressure-velocity coupling used in the PIMPLE algorithm [38],

∇ ·
(

1

Ah
um

∇pm

)
= ∇ ·

(
Hh

um
(um)

Ah
um

)
. (B.9)

Where Hh
um

(um) denotes the off-diagonal components of the coefficient matrix, multiplied
by the vector of velocity solutions, and subtracted by the right-hand side of the system of
equations.

B.3.3 Dispersed Phase Volume Fraction

The manufactured solution proposed for the dispersed phase volume fraction field will be
the sum of the spatial coordinates and time squared, and divided by their maximum value,

αMMS
d =

(x+ y + z + t)2

max(αMMS
d )

. (B.10)

The division restricts the solution to the interval αMMS
d ∈ [0, 1] in order to retrieve relevant

solutions for the mixture viscosity field presented in equation 5.10.

B.3.4 Oxygen Partial Pressure

The manufactured solution proposed for the oxygen partial pressure field is the sum of the
spatial coordinates and time, divided by the sum of the squares of the spatial coordinates.
A value of unity is additionally added to the denominator to prevent unbounded solutions
as x, y, z → 0, and the relation is scaled such that the maximum value is on the interval
PMM
O2

∈ [0, 120],

PMM
O2

=
120

max(PMM
O2

)

x+ y + z + t

x2 + y2 + z2 + 1
. (B.11)

The scaling allows the observation of SO2(max(PMM
O2

)) → 1.
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Appendix C

OpenFOAM Code
Implementations

This appendix provides the crucial code implementation listings used for the numerical
analyses considered in this study.

C.1 Governing Relations

C.1.1 Conservation of Mixture Momentum

The conservation of mixture momentum implementation, corresponding to equation 8.4.

1 tmp <fvVectorMatrix > tUEqn

2 (

3 fvm::ddt(U)

4 + fvm::div(phi , U)

5 - fvc::div(nu_m * dev2(T( fvc::grad(U))) )

6 - fvm:: laplacian(nu_m , U)

7 ==

8 fvOptions(U)

9 );

Listing C.1: Conservation of mixture momentum.

C.1.2 Conservation of Dispersed Phase Mass

The conservation of dispersed phase mass implementation, or migration model implemen-
tation, corresponding to equation 8.6.

1 fvScalarMatrix HtEqn

2 (

3 fvm::ddt(Ht)

4 + fvm::div(phi_ , Ht)

5 - K_c*sqr(a)*fvm:: laplacian(Ht*shearRateMag_ , Ht)

6 - K_c*sqr(a)*fvc:: laplacian(sqr(Ht), shearRateMag_)

7 - K_mu*sqr(a)*fvc:: laplacian(shearRateMag_*sqr(Ht)/nu_m_ , nu_m_)

8 ==

9 fvOptions(Ht)

10 );

Listing C.2: Conservation of dispersed phase mass.
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C.1.3 Conservation of Oxygen mass

The conservation of oxygen mass implementation, or oxygenation model implementation,
corresponding to equation 8.7.

1 fvScalarMatrix PO2Eqn

2 (

3 (1.0 + C_HbO2_) * (fvm::ddt(PO2) + fvm::div(phi_ , PO2))

4 - fvm:: laplacian(D_eff_ , PO2)

5 ==

6 fvOptions(PO2)

7 );

Listing C.3: Conservation of oxygen mass.

C.2 Boundary Conditions and Source Terms

C.2.1 Newtonian Inlet Velocity

The Newtonian inlet velocity implementation.

1 inlet

2 {

3 type codedFixedValue;

4 value uniform (0 0 9.55e-3);

5 name inletVelocity;

6 code #{

7 const fvPatch& boundaryPatch = patch ();

8 const vectorField& Cf = boundaryPatch.Cf();

9 vectorField& inletVelocity = *this;

10

11 forAll(Cf, faceI)

12 {

13 const scalar y = Cf[faceI].y();

14 const scalar x = Cf[faceI].x();

15

16 const vector solU (0,0, 2*9.55e -3*(1 - sqr( sqrt(

sqr(x) + sqr(y) ) / 50e-6) ));

17 inletVelocity[faceI] = (solU);

18 }

19 #};

20 }

Listing C.4: Hagen-Poiseuille velocity profile.

C.2.2 No-Penetration Boundary Condition

The no-penetration boundary condition implementation, corresponding to equation 8.15.

1 wall

2 {

3 type codedMixed;

4 refValue uniform 0;

5 refGradient uniform 0;

6 valueFraction uniform 0;

7 source uniform 0;
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8 value uniform 0;

9 name wallHematocrit;

10 codeInclude #{

11 #include "fvCFD.H"

12 #};

13 code #{

14 // Get the reference of the mesh

15 const fvMesh& mesh = patch ().boundaryMesh ().mesh();

16 // Get the variable fields

17 const volScalarField& Ht =

db().lookupObject <volScalarField >("Ht");

18 const volScalarField& shearRateMag =

db().lookupObject <volScalarField >("shearRateMag");

19 const volScalarField& nu_m =

db().lookupObject <volScalarField >("nu_m");

20 // Get temp gradient fields

21 surfaceScalarField snGradGamma

22 (

23 IOobject

24 (

25 "snGradGamma",

26 db().time().timePath (),

27 db(),

28 IOobject ::NO_READ ,

29 IOobject :: NO_WRITE

30 ),

31 mesh ,

32 dimensionedScalar("snGradGamma",

dimless/dimTime/dimLength , 0.0)

33 );

34 surfaceScalarField snGradNu

35 (

36 IOobject

37 (

38 "snGradNu",

39 db().time().timePath (),

40 db(),

41 IOobject ::NO_READ ,

42 IOobject :: NO_WRITE

43 ),

44 mesh ,

45 dimensionedScalar("snGradNu", dimViscosity/dimLength ,

0.0)

46 );

47 // Set temp gradient fields

48 snGradGamma = fvc:: snGrad(shearRateMag);

49 snGradNu = fvc:: snGrad(nu_m);

50 // Get current patch object reference

51 scalarField& field = *this;

52 // Model coefficients

53 const scalar Kc = 0.4;

54 const scalar Km = 0.6;

55 // outerCorrector coefficients

56 const scalar Nx0 = 0.45;

57 const scalar Ny0 = 0.5;

58 const scalar Nx1 = 0.8;
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59 const scalar Ny1 = 1.0;

60 const scalar& N =

readScalar(db().lookupObject <IOdictionary >

61 ("solverControlDict").lookup("outerCorrectorIndex"))

62 /readScalar(db().lookupObject <IOdictionary >

63 ("solverControlDict").lookup("nOuterCorrectors"));

64 scalar fN = (Ny1 -Ny0)*erf (2.0/(Nx1 -Nx0)*(N-Nx0))+Ny0;

65 // Loop over patch faces

66 forAll(field , faceI)

67 {

68 const scalar Ht_I =

Ht.boundaryField ()[patch().index()][ faceI];

69 const scalar Y_I =

shearRateMag.boundaryField ()[patch().index()][ faceI];

70 const scalar gradY_I =

snGradGamma.boundaryField ()[patch ().index ()][faceI ];

71 const scalar Nu_I =

nu_m.boundaryField ()[patch().index()][ faceI];

72 const scalar gradNu_I =

snGradNu.boundaryField ()[patch ().index ()][faceI ];

73

74 this ->refGrad ()[faceI] = - fN * (1.0/ Y_I * gradY_I +

Km/Kc * 1.0/ Nu_I*gradNu_I)*Ht_I;

75 }

76 #};

77 }

Listing C.5: No-penetration boundary condition.

C.2.3 Cyclic Mixture Momentum Source

The cyclic mixture momentum source implementation.

1 momentumSource

2 {

3 type meanVelocityForce;

4 active true;

5

6 meanVelocityForceCoeffs

7 {

8 selectionMode all;

9

10 fields (U);

11 Ubar (0 0 9.55e-3);

12 }

13 }

Listing C.6: Cyclic mixture momentum source.
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C.3 Closure Models

C.3.1 Mixture Shear Rate Magnitude

The mixture shear rate magnitude implementation, corresponding to equation 5.2.

1 void setShearRateMagnitude(const volVectorField& U, const

dimensionedScalar& baseShearRateMag , volScalarField&

shearRateMag)

2 {

3 // Set internal field velocity gradient

4 const volTensorField gradU = fvc::grad(U);

5 // Set strain rate tensor

6 const volTensorField D = 0.5 * (gradU + gradU.T());

7 // Set shear rate magnitude

8 shearRateMag = sqrt(2 * (D && D)) + baseShearRateMag;

9 }

Listing C.7: Mixture shear rate magnitude.

C.3.2 Yeleswarapu-Wu Mixture Viscosity

The Yeleswarapu-Wu viscosity model implementation, corresponding to equation 5.10.

1 void setKinematicViscosity (volScalarField& nu_m) override

2 {

3 // Set bounding viscosities

4 // Get hematocrit powers

5 const volScalarField Ht2_ = pow(Ht_ ,2);

6 const volScalarField Ht3_ = pow(Ht_ ,3);

7 // Get viscosities

8 const volScalarField mu_0 = a1*Ht_ + a2*Ht2_ + a3*Ht3_;

9 const volScalarField mu_00 = b1*Ht_ + b2*Ht2_ + b3*Ht3_;

10

11 // Set log operand

12 const volScalarField operand = 1.0 + k*( shearRateMag_ + y0);

13

14 // Set kinematic viscosity

15 nu_m = ((1.0 - Ht_)*mu_c + Ht_*( mu_00 + (mu_0 - mu_00)*(1.0 +

log(operand))/operand))/rho_m;

16 }

Listing C.8: Yeleswarapu-Wu viscosity model.

C.3.3 Hill Equation

The Hill equation implementation and its derivative, corresponding to equations 7.8 and
8.8.

1 void setSaturation(const volScalarField& PO2 , volScalarField&

S_O2) override

2 {

3 S_O2 = pow(PO2 , n)/(pow(PO2 , n) + pow(p_50 , n));

4 }

Listing C.9: Hill equation.
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1 void setSaturationChange(const volScalarField& PO2 ,

volScalarField& dS_O2dPO2) override

2 {

3 dS_O2dPO2 = n*pow(p_50 , n)*pow(PO2 , (n-1.0))/sqr(pow(PO2 , n) +

pow(p_50 , n));

4 }

Listing C.10: Hill equation derivative.
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Appendix D

Additional Blood Flow Modelling
Considerations

This appendix considers two fluid model approaches to blood flow modelling deemed out-
of-scope throughout the main body of the thesis.

D.1 Interphasic Interactions

D.1.1 Two-Fluid Model Interphasic Interactions

The most important interphasic interaction modelling consideration in a dispersed two-
fluid model is the generalized drag force [48], which describes the total force exerted on the
dispersed phase [70]. The total force should mathematically capture the physical response
of the red blood cells to the fluidic behaviour of the blood plasma, as was described in
section 2.3.2. The general approach of modelling is to consider the generalized drag force
to consist of a linear combination of all important interfacial forces [48],

Iud
=

αd

Vd

(
FD
d + F V

d + F L
d + · · ·

)
. (D.1)

Where subscript d denotes the consideration of the dispersed phase, Vd the typical dis-
persed phase or particle volume, FD

d the standard drag force, F VM
d the virtual mass force,

F L
d the lift forces which will be discussed in more detail in chapter 6. Depending on the

application, many other forces may be considered, such as [48, 53, 64, 75, 106]:

• Pressure Gradient Forces: These forces arise due to spatial variations in fluid
pressure, causing particles to move towards regions of lower pressure.

• Bassett Forces: Bassett forces consider the influence of the particle’s past motion
on its current behaviour, contributing to inertial effects.

• Faxén Forces: Non-uniform flow Faxén forces arise from spatial variations in fluid
velocity, influencing particle motion near boundaries or interfaces.

• Magnus Forces: Magnus forces occur when particles move toward regions of higher
fluid velocity, resulting in their deviation from expected trajectories.

• Turbulent Dispersion Forces: Turbulent dispersion forces lead to the dispersion
and mixing of particles in turbulent flows.

• Buoyancy Forces: Buoyancy forces are caused by the density difference between
particles and the surrounding fluid, resulting in upward or downward forces.

• Thermal, Chemical, or Electro-magnetic Interaction Forces: These forces
arise from particles and fluid interactions based on temperature, chemical composi-
tion, or electro-magnetic properties.
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D.1.2 Drag Force

The standard drag force is that observed by particles under steady-state [75], and is in
combination with the consideration of lift forces the most important type of force in
consideration of blood flow [65]. Many different types of drag force models exist, but they
generally fall into two flavours. The first flavour considers the drag force as a function of
the drag coefficient [48, 70],

FD
d = −1

2
CD
Fd
(Red)A

P
d Vdj |Vdj |. (D.2)

Where AP
d denotes the projected area of the dispersed phase and CD

d the drag coefficient
for which numerous empirical relations are considered in [48, 70].
The second flavour considers the drag force as a function of a hindrance coefficient [53],

FD
d =

9µc

2a2d
CH
Fd
(αd)Vr. (D.3)

Where µ denotes the dynamic viscosity, ad the characteristic particle size and CH
d the

hindrance coefficient for which several closure relations are available in [106].

D.1.3 Virtual Mass Force

The virtual mass force is exerted by the continuous phase on the dispersed phase due to
acceleration of the dispersed phase with respect to the continuous phase [31]. The force
may thus also be denoted the unsteady drag force and may be denoted by [31, 75],

F VM
d = C

VM,[0]
Fd

(αd)ρcVd

(
DdVr

Dt
+ Vr ·

[
(C

VM,[1]
Fd

(αd)− 2)∇⊗ ũd

+ (1− C
VM,[1]
Fd

(αd))∇⊗ ũc

])
.

(D.4)

Where C
VM,[0∧1]
Fd

denote two model coefficients related to the interactions between the
phases and the shape of the dispersed phase.

D.1.4 Drift-Flux Model Interphasic Interactions

The interphasic interactions for the drift-flux model in dispersed flows are generally mod-
elled using the macroscopic phase diffusion flux, equation 3.21. This phasic drift flux can
be closed directly or modelled through its relation to the relative phase motion as dis-
cussed in section 3.2.3.2.
The direct modelling of the flux is generally considered in studies where the migration of
the dispersed phase is dominant and will be considered in more detail in chapter 6. In
contrast, the relative motion is often modelled through the slip relation, which generally
depends on the exact flow regime and flow type, i.e. sub-classifications of dispersed flows,
under consideration and is modelled through a complicated combination of analytical and
empirical considerations [73]. A variety of generalized algebraic and differential analytical
models are discussed in [13] and empirical models in [48].
A more generalized, force-based approach is to derive the relative motion using the momen-
tum equations for the dispersed phase and mixture in combination with the generalized
drag force discussed in the previous section. Following [61], the mixture momentum con-
servation may be subtracted from the dispersed phase momentum conservation, where the
sources and mixture interface contribution are generally neglected. Using the respective
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mass conservation relations, neglecting the source and interface contributions, the relation
for the generalized drag force may be denoted by,

Iud
(Vdm) = αd

[
ρd

∂Vdm

∂t
+ (ρd − ρm)

∂um

∂t

]
+ αd

[
ρdũd · (∇⊗ ũd)− ρmum · (∇⊗ um)

]
+∇ ·

(
αd

[
J ud

+J T
ud

])
− αd∇ ·

(
J um +JD

um
+ J T

um

)
.

(D.5)

Where it is assumed all forces included in the generalized drag force are related to the phase
diffusion velocity, i.e. Iud

= Iud
(Vdm), and ũd in the temporal derivative was replaced

using the phase diffusion velocity, see equation 3.18. ⊗ denotes the outer or dyadic vector
product and ∇ ⊗ u the velocity field gradient, often more concisely but mathematically
inconsistent denoted by ∇u [43]. To simplify the relation, it is generally assumed that
the temporal derivative of the phase diffusion velocity, momentum diffusion contributions,
and momentum drift contributions are negligible and that the advection contributions of
the dispersed phase and mixture are roughly equal. The resulting generalized drag is then
denoted by,

Iud
(Vdm) = αd(ρd − ρm)

[
∂um

∂t
− um · (∇⊗ um)

]
. (D.6)

Where the turbulent contributions were omitted, the resulting relation may now be used
to approximate the phase diffusion velocity for the dispersed phase, which, depending on
the included forces, should also be done numerically.

D.2 Rheology of whole blood

D.2.1 Thixotropy

Although the exact physical driving force behind the aggregation is unknown, as discussed
in section 2.3.1, several models exist to simulate this time-dependent behavior [3, 46, 83].
These models commonly incorporate three factors to describe the response: shear break-
age accounts for the breaking apart of rouleaux under shear rate [3]; shear aggregation
describes the formation of rouleaux through particle interactions [83]; and Brownian ag-
gregation characterizes the spontaneous aggregation of red blood cells due to Brownian
motion [83]. The modelling of the thixotropic contribution to the mixture stress tensor
is generally done through the consideration of the temporal change of a scalar quantity
which describes the number of rouleaux present and is denoted by [3, 11],

dλr

dt
=

1

C
(0)
λr

(
− C

(0)
λr

λr|γ̇p|︸ ︷︷ ︸
Shear

breakage

+C
(1)
λr

(1− λr)|γ̇p|
1
2︸ ︷︷ ︸

Shear
aggregation

+ (1− λr)︸ ︷︷ ︸
Brownian
aggregation

)
(D.7)

Where λr denotes the scalar quantity ranging from 0 to 1, where zero indicates no observa-
tion of rouleaux and unity represents complete observation, γ̇p the plastic contribution of

the shear rate, and C
(0,1,2)
λr

are model coefficients associated with the build-up and break-
down of the rouleaux. The precise relationship between the mixture stress tensor and the
thixotropic scalar quantity, as well as the determination of the plastic contribution of the
shear rate, depend on the viscoelasticity and viscoplasticity of the mixture, which will be
discussed in the following section.
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D.2.2 Viscoelasticity

The modelling of the viscoelastic effects is generally a complicated matter due to its time-
dependency, and most models do not contribute to the mixture viscosity, as was discussed
for the shear-thinning, but rather a model for the complete mixture stress tensor. These
models generally consist of a linear superposition of the viscoelastic contributions due to
the behaviour of rouleaux along with those of isolated red blood cells, which are usually
modelled through variations of Maxwell or Oldroyd-B viscoelasticity models [3, 46]. These
models are typically complicated first-order inhomogeneous ordinary differential equations
in time where, for example, the standard Oldroyd-B model is denoted by [113],

σO−B + C
(0)
σO−B

∇
σO−B = µm(Dm + C

(1)
σO−B

∇
Dm). (D.8)

Where C
(0∧1)
σO−B respectively denote the characteristic relaxation and retardation times, and

∇
(.) the upper convected derivative denoted for an arbitrary quantity by [113],

∇
F =

∂F
∂t

+ u · ∇F − (∇u)T · F − F(∇u). (D.9)

The contributions due to the viscoelasticity of the rouleaux may, in turn, be modelled as
an ordinary differential equation dependent on the behaviour of the thixotropy [46],

dσr,ve

dt
=


Gλ1.5

r

(
γ̇p −

σr,ve

µRλ1.5
r

)
if

dλr

dt
≥ 0,

Gλ1.5
r

(
γ̇p −

σr,ve

µRλ1.5
r

)
+ 1.5

σr,ve

λr

dλr

dt
if

dλr

dt
< 0.

(D.10)

Where G denotes the shear-modulus of the rouleaux and µR the rouleaux viscosity

D.2.3 Viscoplasticity

The Casson-type viscosity models are typically variations of the Sisko model and model
viscoplasticity through the consideration of a yield stress. A Casson-type model in the
consideration of blood flow is denoted by [22],

µm =

√σV P
y

γ̇m
+ µC

2

, (D.11)

where,

µC = µc

(
1 + 2.0703αd + 3.722α2

d

)
× exp

(
−7.0276

(
1− T0

Tb

))
. (D.12)

Further modelling approaches are extensively discussed in [11], [113].

D.3 Shear-Induced Migration Modelling of Red Blood Cells

D.3.1 Lift Force-Based Migration Modelling

The constitutive momentum modelling for a dispersed two-phase flow was discussed in
chapter 4. Additionally, it was shown in appendix D.1 how various dynamical effects can
be included through force-based modelling using a generalized drag force, see equation
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D.1. While this methodology extends to modelling the migration mechanisms in blood,
its utilization within the continuum modelling literature for whole blood appears limited.
The relevant literature adopting such a force-based modelling methodology, including work
such as [53, 54, 65], predominantly considered the two-fluid model described in section
D.1.1, and primarily included the standard drag force and a shear-induced lift force.
The shear-induced lift force is related to the velocity profile-induced particle lift as was
discussed in section 6.1.2, and may be modelled using a generalized Saffman lift force,
which is denoted by [53],

F L
d = CS

Fd
(ρc, µc, ad)|Dc|

1
2DcVr. (D.13)

Where CS
Fd
(ρc, µc, ad) denotes a model coefficient characterizing the generalized Saffman-

lift force. Additionally, the spin-lift force was also considered in [53], where the spin-lift
force is induced by the rotation of the particle around the major axis, as was discussed
for red blood cells in section 2.3.2. However, the order-of-magnitude analysis showed that
this is generally negligible compared to the shear-induced lift forces [65].
Lastly, the force induced by shear-induced diffusion can be modelled by [65],

F SID
d = CSID

Fd
∇αd. (D.14)

Where CSID
Fd

denotes a model constant.

D.3.2 Mathematical Model Equivalence

In addition to the model equivalence presented in section 6.4, the particle migration models
can also be rewritten in the interest of force-based modelling. The shear-induced migration
force is then denoted by [28],

F SIM
d = −∇µ∗. (D.15)
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