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ABSTRACT 

This study addresses gaps in the robustness of traditional models under diverse conditions and newly 

released high spectral resolution satellite imagery. It conducts a comparative analysis of established statistical 

methods, including partial least squares regression (PLSR) and narrowband vegetation indices (VIs), on 

DESIS hyperspectral satellite data to assess their adaptability across various tree species over a two-year 

period. A significant finding of the study is the varying accuracy of these methods across species, specifically 

between deciduous species and conifers. The research highlights the importance of the 500-510 nm green 

and 667.9-688.4 nm red spectral regions for deciduous species, alongside the 645-655 nm red spectrum and 

NIR bands at 827.2 nm and 927.9 nm for conifers. PLSR demonstrated good accuracy in estimating canopy 

chlorophylls and carotenoids in deciduous species (e.g., R2 = 0.66 and RMSE = 0.40 for chlorophylls content 

in 2020), but this accuracy varied across species and years. Conversely, indices like the narrowband Datt 

derivative index (nDD) provided consistency but lacked accuracy. Employing VIs, a strong correlation was 

found between the 680-780 nm red edge region and the foliar pigments contents, consistent across years 

and species. The findings of this study emphasize the complexities involved in modelling canopy pigment 

content, emphasizing the necessity for species-specific methodologies and the integration of multi-temporal 

data in statistical models, to improve the retrieval accuracy of canopy pigments content and allow the 

accurate monitoring of stress and disturbance in forest ecosystems in an era of climate change and 

biodiversity loss. 

 

Keywords: DESIS; hyperspectral imagery; canopy chlorophylls content; canopy carotenoids content; 

vegetation indices; partial least squares regression; model robustness; model consistency; forest monitoring 
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1. INTRODUCTION 

1.1. Background 

 

Natural and anthropogenic stressors, including diseases, soil nutrient imbalances, water shortages or 

excesses, interactions with other species (e.g., pests and herbivores), and pollution, can have a profound 

impact on pigment content (Lichtenthaler, 1998; Sanchez et al., 1983). These factors make variations in 

chlorophyll a + b (Cab) and carotenoids (Car) content valuable indicators of physiological changes 

(Mohammed et al., 2000; Sims & Gamon, 2002). During conditions like plant stress and senescence, pigment 

concentrations often change, resulting in changes in the carotenoid-to-chlorophyll ratio: carotenoid content 

tends to increase, while chlorophyll content decreases (Baltzer & Thomas, 2005; Merzlyak et al., 1999; 

Peñuelas & Filella, 1998). Moreover, several factors, including chlorophyll and carotenoid content, water 

content, leaf structure, and the presence of proteins, influence the photosynthetically active absorbed 

radiation in the plant canopy (Gitelson et al., 2015; Homolová et al., 2013). Accurately estimating the 

temporal and spatial distribution of foliar pigment concentrations is of utmost importance for forest 

managers, ecologists, and farmers. It facilitates the monitoring of vegetation canopy adaptation, physiology, 

and functionality, especially in the face of critical challenges including biodiversity loss, climate change, and 

food security (Féret et al., 2017). Appropriately, it has been recognized as an Essential Biodiversity Variable 

(EBV), contributing to the assessment of the Aichi Biodiversity Targets (Skidmore et al., 2015). 

 

Chlorophylls serve as the primary plant pigments responsible for the process of photosynthesis. They 

encompass chlorophyll a and b, collectively referred to as ‘total chlorophyll’. The core physiological role of 

chlorophyll involves the absorption of incident radiation and the subsequent conversion of this energy into 

chemical energy within the photosynthetic apparatus. The concentration of foliar chlorophyll is indicative 

of the overall health of ecosystems and plays a pivotal role in determining the potential for photosynthesis 

and, consequently, primary production (Gholz et al., 1997). In addition to chlorophyll, the second major 

group of foliar pigments is carotenoids (abbreviated as Car). Carotenoids encompass carotenes and 

xanthophylls. Their primary physiological function lies in light absorption, but they also serve a secondary 

role in photoprotection (Ritz et al., 2000). 

 

Traditional methods for measuring foliar pigments involve the extraction of pigments using solvents and 

subsequent spectrophotometric analysis of the resulting solutions, as described by Blackburn (2007). These 

methods allow researchers to estimate individual pigments based on the unique absorption properties of 

each pigment (Lichtenthaler, 1987). However, it is important to note that these conventional practices entail 

the collection of leaf samples, a process that can be destructive to the vegetation and ecosystems. Moreover, 

they necessitate laboratory equipment that can be both time-consuming and costly. These limitations hinder 

the ability to effectively monitor the temporal and spatial dynamics of vegetation health and stress (Sims & 

Gamon, 2002). 
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Remote sensing (RS) technologies, also frequently termed Earth Observation (EO) technologies, play a 

crucial role in assessing and monitoring vegetation across various temporal and spatial scales (Ali et al., 

2020). While traditional multispectral spectroradiometers offer a limited number of broad spectral bands 

with gaps between them, making them unable to capture a continuous spectrum of canopy reflectance (Lu 

et al., 2019), hyperspectral data, characterized by hundreds of narrow bands often less than 10 nm in width, 

provides the detailed information needed for the analysis of biochemical and biophysical properties of 

vegetation (Lucieer et al., 2014). 

 

The deployment of hyperspectral technology, particularly portable spectroradiometers, has facilitated non-

intrusive research in the estimation of photosynthetic pigments (e.g., Datt, 1999; Maccioni et al., 2001; 

Zhang et al., 2021), and such techniques are commonly implemented in field studies. Subsequently, the 

utilization of airborne hyperspectral imagery became prevalent in scientific studies (e.g., Hoeppner et al., 

2020; Sampson et al., 2003; Zarco-Tejada et al., 2001). It is worth noting that acquiring airborne 

hyperspectral imagery is a technically intricate and costly process that demands extensive planning prior to 

acquisition (Hruska et al., 2012). 

 

Hyperspectral satellite sensors available in the past had restrictions in both spatial and temporal coverage 

(Lu et al., 2019). EO-1 Hyperion, in particular, was the sensor of choice for numerous studies employing 

hyperspectral satellite imagery (e.g., Wu et al., 2008, 2010; Yang et al., 2015a). Due to these inherent spatial 

and temporal limitations, the majority of past studies primarily focused on the assessment of chlorophyll 

and carotenoid content at the leaf level, predominantly relying on portable spectroradiometers (e.g., Jiang et 

al., 2022; Lichtenthaler et al., 1996; Sonobe & Wang, 2017). The recent improvements in hyperspectral - 

increasingly termed image spectroscopy - satellite technologies have led to significantly broader global 

coverage and enhanced spatial and temporal resolution, greatly improving the capability for non-

destructively determining individual photosynthetic pigments. 

 

This evolution in hyperspectral satellite technology includes several notable developments. The PRISMA 

(PRecursore IperSpettrale della Missione Applicativa) mission, developed by the Italian Space Agency (ASI) 

and launched in 2019, stands as a significant milestone. Additionally, sensors developed by the German 

Aerospace Center (DLR), including the Earth Sensing Imaging Spectrometer (DESIS) launched in 2018 and 

the Environmental Mapping and Analysis Program (EnMAP) in 2022, contribute to the ongoing progress 

in this field. Future missions involving space-borne spectrometers like the Hyperspectral Infrared Imager 

(HyspIRI) and the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) hold the 

potential for further advancing hyperspectral remote sensing applications. Specifically, DESIS is a 

hyperspectral instrument designed and built by DLR, integrated into the Multi-User-System for Earth 

Sensing (MUSES) platform aboard the International Space Station (ISS). DLR's primary focus is to utilize 

the data acquired through DESIS for scientific research within the realms of earth and atmospheric sciences, 

with the goal of enhancing our current understanding of passive hyperspectral remote sensing (Eckardt et 

al., 2015). 
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Various methods are available to quantify biochemical variables from remote sensing data. Verrelst et al. 

(2015) classified these methods into three main categories in a comprehensive review. First, statistical 

approaches encompass parametric and non-parametric techniques. Parametric methods assume predefined 

relationships between biochemical variables and spectral measurements, often utilizing band formulations 

like vegetation indices (VIs). Non-parametric methods derive linear and non-linear functions directly from 

the data, such as stepwise multiple linear regression (SMLR) and partial least squares regression (PLSR). 

Second, physical-based methods rely on established physical laws and cause-effect interactions, employing 

radiative transfer functions to acquire model variables. Examples include the PROSPECT and LEAFMOD 

models. Third, hybrid approaches combine elements from physical-based models and non-parametric 

statistics, offering flexibility in estimating biochemical variables. These diverse approaches provide a range 

of tools for remote sensing-based biochemical variable quantification. 

 

Empirical relationships involving hyperspectral VIs are frequently utilized to estimate foliar pigments (Yang 

et al., 2015b). These VIs are derived from specific combinations of narrow spectral bands, making the 

identification of key bands crucial for practical applications. For instance, Chen et al. (2007) identified the 

significance of spectral regions near the green peak around 550nm and the red edge position (REP) for 

estimating pigments like chlorophyll a, b, and carotenoids in rice crops. Similarly, Hoeppner et al. (2020) 

explored the utility of airborne hyperspectral imagery in assessing forest canopy chlorophyll content, 

pinpointing important spectral regions in the visible range between 390-400 nm and 460-540 nm, in the 

near-infrared range around 1050-110 nm, and in the shortwave infrared region spanning 2000-2700 nm. In 

a prior study conducted in two broadleaf forests, Sonobe & Wang (2018) found that spectral regions around 

500, 516–517 nm in the visible spectrum and between 744–750 nm in the near-infrared spectrum yielded 

the most reliable results for estimating carotenoid content. 

1.2. Research gap 

 

Up to now, most of the research in the field of vegetation pigments has concentrated on chlorophyll, with 

relatively limited attention directed toward the assessment of carotenoids at a canopy level (e.g., Blackburn, 

1998; Hernández-Clemente et al., 2012, 2014; Kong et al., 2017; Miraglio et al., 2019, 2022; Sonobe & Wang, 

2018; Stagakis et al., 2010; Yi et al., 2014; Zarco-Tejada et al., 2013). Monitoring the changes in diverse 

pigment contents, such as carotenoids, is essential to tackle several vegetation-related challenges, 

encompassing plant stress, diseases, invasive species, and photosynthetic phenology (Féret et al., 2017). 

 

Previous research suggests that statistical approaches exhibit less generality than physically based models as 

they tend to be species, site, and time-specific due to their reliance on measured data (Ali et al., 2020; Zhen 

et al., 2021). However, the literature review reveals a gap, with no studies investigating the cross-species and 

temporal consistency of statistical methods for retrieving canopy chlorophyll (Cab) and carotenoid (Car) 

content using hyperspectral satellite imagery in forest ecosystems. Many of the reviewed studies are 

grounded in agricultural settings, comparing crop species (Croft et al., 2020; Ju et al., 2010) and consistency 

across years (Zhang et al., 2021), while others have employed airborne sensors (Hernandez-Clemente et al., 

2014; Miraglio et al., 2019). The development of robust and operational methods for estimating foliar 

pigments at the canopy scale is critical for minimizing the reliance on model calibration, an expertise 

demanding process, field sampling, and high computational capacity. 
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1.3. Research objectives and questions 

 

Study aim: 

 

To assess how the accuracy of RS models for canopy chlorophylls and carotenoids content estimation 

varies among distinct tree species and across different years, using hyperspectral data. 

 

Specific objectives: 

 

1. To evaluate and compare the spectral bands/regions that are the most important for canopy 

chlorophylls and carotenoids content estimation in distinct tree species (Norway spruce, 

European beech, Scots pine, and English oak) and two successive years using hyperspectral 

satellite data. 

 

2. Analyse and compare the accuracy and precision in predicting canopy chlorophylls and 

carotenoids content of multiple narrow-band vegetation indices (VIs) and partial least 

squares regression (PLSR) for distinct tree species and over two successive years. 

 

Research questions 

 

1. Which narrow spectral bands/regions are most important for the estimation of canopy 

chlorophylls and carotenoids content in the studied tree species and two successive years? 

 

2. How does the accuracy of remote sensing statistical models (narrowband VIs and PLSR) vary 

when developed for specific tree species (Norway spruce, European beech, Scots pine, and 

English oak) and over two successive years? 

2. STUDY SITES AND DATASETS 

2.1. Bavarian forest 

 

This study focuses on two temperate forest sites. The Bavarian Forest National Park (BFNP) is situated in 

southeast Germany (48°58’N, 13°23’E) beside the border with the Czech Republic. It covers an area of 

24,369 hectares and forms part of the Eastern Bavarian Forest, which along with the Czech Bohemian 

Forest constitutes one of the largest Central European continuous forests (Heurich et al., 2010). The park’s 

elevation ranges from 600 meters to 1453 meters, it has a temperate climate with mean annual temperatures 

from 3 to 6 °C and annual precipitation varies between 1200 mm and 1800 mm (Ali et al., 2020). The 

national park is composed of three main forest types (Sommer et al., 2015). Sub-alpine spruce forests are in 

the highlands (over 1,100 m a.s.l.) and cover 16 percent of the area with Norway spruce (Picea abies) as the 

dominant species. The slopes are characterized by mixed mountain forests (from 600 to 1,100 m a.s.l.) 

covering 68 percent of the BFNP, with Norway spruce, European beech (Fagus sylvatica) and silver fir 

(Albies alba) as prevailing species. Spruce forests cover the rest of the area, with Norway spruce, mountain 

ash (Betula pendula), and birch (Betula pubescens) prevailing in the valleys. 
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2.2. Veluwe forest 

 

 
The Veluwe forest (52°11′–52°24′ N, 5°71′–5°92′ E) is situated in the centre of the Netherlands, in the 

province of Gelderland. The climate of the Netherlands is temperate oceanic with a mean air temperature 

of 14.1 °C and mean annual precipitation of 832.5 mm (Neefjes, 2018). By the 19th century the land cover 

changed from forest to open heathlands and drift sands by 50 percent due to overgrazing and deforestation, 

these areas deteriorated, and their agricultural use diminished, consequently, degraded zones were planted 

with pine and deciduous trees (Plakman et al., 2020). The Veluwe Zoom NP and the Hoge Veluwe NP are 

study areas within the Veluwe forest. The Veluwe Zoom NP (52°00’N, 06°01’E) is located northeast of the 

city of Arnhem, covering an area of approximately 5000 hectares. The Veluwe Zoom entails mostly 

deciduous forests mixed with farmlands and pastures (Mos et al., 2014). The Hoge Veluwe NP (52°06’N, 

05°52’E), is located between the villages of Otterlo and Hoenderloo, it has an area of about 5500 hectares 

(Turnhout et al., 2004). Approximately 2282 hectares of coniferous forest and 613 hectares of deciduous 

forest cover the Hoge Veluwe National Park, along with heathlands and drift sands (Hein, 2011). 

 

 

 

 

 

Figure 1. Location of the Bavarian Forest National Park. Base map source: Google satellite 
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Figure 2. Location of Hoge Veluwe and Veluwe Zoom. 
Base map source: Google satellite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Data collection and processing 

 

The research presented in this thesis was a part of the BIOSPACE project, financially supported by the 

European Research Council (ERC) within the framework of the European Union's Horizon 2020 research 

and innovation programme, as indicated by grant agreement number 834709. The data employed consisted 

of secondary sources and can be categorized into two primary sections: 

 

2.3.1. Hyperspectral 

 

DESIS hyperspectral data were acquired for both study sites in the summer of 2020 and 2021 (Table 1). 

DESIS operates across a continuum of 235 spectral bands, spanning from 400 to 1000 nm in the visible 

near-infrared region, enabling a spectral sampling distance of 2.5 nm and a ground sampling distance (GSD) 

of 30m (Krutz et al., 2019). To obtain the canopy reflectance, the spectra from the DESIS imagery were 

extracted from the pixel corresponding to the centroid of the field plots (30x30m), this was done for each 

year and location. Out of a total of 220 plots that were surveyed, 48 plots were excluded from the study due 

to their location falling outside the DESIS image extent. 
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Table 1. Specifications of hyperspectral datasets. 

Site Date of acquisition 
Sun zenith 

angle 

Scene incidence 

angle 

% Cloud 

shadow 

Bavaria 01/07/2020 55.21 19.22 11.57 

Veluwe 23/06/2020 45.54 3.80 1.34 

Bavaria 17/06/2021 26.54 3.12 0.22 

Veluwe 16/06/2021 29.77 4.11 1.25 

 

2.3.2. Field measurements 

 

In-situ measurements were collected during the summer of 2020 and 2021 (Table 2). Plots were randomly 

distributed within the study sites and had an area of 30 x 30 m. Two to three representative trees within 

each plot were selected for sampling. A Leica differential Global Positioning System (GPS) was employed 

to log the central coordinates of each plot. This system offers a geometric accuracy of less than a meter after 

post-processing. Sunlit leaves from the top of the canopy of the trees were recollected using a slingshot. 

The samples were stored in airtight plastic bags surrounded by ice blocks within an ice cooler for a maximum 

of six hours for transportation, the final storage was in a lab freezer. LAI was measured for each plot using 

the LAI 2200 Plant Canopy Analyzer (Li-COR). Five readings were taken below the canopy, within the plot 

boundaries, and three calibration readings (above the canopy) were taken at the nearest open area. 

 
Table 2. Timeline of the 2020-2021 field campaign period. 

 

 

 

 

 

 

 

 

 

 

 

 

A detailed description of the datasets for both the 2020 and 2021 campaigns is provided in Table 3. 

 
Table 3. Summary of the number of plots with specific canopy dominance in the 2020 and 2021 
campaigns. 

Site Year Campaign period 

Bavaria 

2020 July - August 

2021 July - August 

Veluwe 

2020 June - July 

2021 May - June 

Site Year European 

beech 

Norway 

spruce 

Scots 

pine 

Mixed English 

oak 

Silver 

fir 

Birch Total 

Bavaria 2020 16 13 0 15 0 1 0 45 

Veluwe 2020 2 3 4 1 1 2 3 16 

Bavaria 2021 16 16 0 0 0 0 0 32 

Veluwe 2021 19 16 19 0 25 0 0 79 

Total 53 48 23 16 26 3 3 172 
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2.3.3. Wet chemistry analysis of pigment content 

 
The chlorophyll and carotenoids content in leaves were measured using two disks of different leaf sections 

on each tree sampled per plot. The extraction process involved adding 6 ml of acetone buffered with 10 g 

of MgCO3, and Leaf disintegration was facilitated employing liquid nitrogen and sand A UV/Vis 

spectrophotometer was used to measure the absorbance. The concentrations of chlorophyll a + b (Cab) and 

carotenoids (Car) in the solutions were determined by extracting the absorbance readings at specific 

wavelengths, following the equations by Lichtenthaler and Buschmann (2001), a widely recognized standard 

for measuring chlorophyll and carotenoid concentrations in plant samples. This method enabled the 

calculation of chlorophylls and carotenoids content per unit of leaf area (μg/cm2). For each tree, the 

measurements were done in duplicates (< 10% CV), and the resulting leaf chlorophylls and carotenoids 

content was averaged for a single measurement per plot. Subsequently, the collected measurements were 

multiplied by the corresponding Leaf Area Index (LAI) to upscale them to the canopy level, as outlined in 

Equations 1 and 2. These values were then converted into grams per square meter (g/m²), a unit 

conventionally utilized in canopy level studies. 

 

 

 
Table 4. Descriptive statistics of field measurements for the years 2020 and 2021, for canopy chlorophyll a 
and b content (Cab) and carotenoids content (Car). 

 
2020 2021 

Statistics Cab (g/m2) Car (g/m2) Cab (g/m2) Car (g/m2) 

Number of samples 57 111 

Minimum 0.53 0.09 0.13 0.04 

Maximum 3.08 0.56 3.35 0.68 

Range 2.55 0.47 3.21 0.65 

Mean 1.91 0.33 1.29 0.25 

Coefficient of variation 0.36 0.37 0.55 0.53 

Standard deviation 0.69 0.12 0.71 0.13 

 

 

 

 

 

 

 

 

 

 

 

𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑎𝑏 = 𝐿𝑒𝑎𝑓 𝐶𝑎𝑏 × 𝐿𝐴𝐼 

 

(1) 

𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑎𝑏 = 𝐿𝑒𝑎𝑓 𝐶𝑎𝑏 × 𝐿𝐴𝐼 

 

(2) 
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Figure 3. Boxplot demonstrating the variation of canopy chlorophyll content in collected temperate 
species for the years 2020 and 2021. 

Table 5. Descriptive statistics of field measurements for the distinct temperate species, for canopy 

chlorophyll a and b content (Cab) and carotenoid content (Car). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Norway spruce European beech Scots pine English oak 

Statistics Cab 

(g/m2) 

Car 

(g/m2) 

Cab 

(g/m2) 

Car 

(g/m2) 

Cab 

(g/m2) 

Car 

(g/m2) 

Cab 

(g/m2) 

Car 

(g/m2) 

Number of 

samples 
47 50 23 26 

Minimum 0.77 0.12 0.33 0.07 0.54 0.09 0.13 0.04 

Maximum 2.98 0.54 3.35 0.68 1.17 0.24 1.81 0.28 

Range 2.21 0.42 3.02 0.61 0.64 0.15 1.67 0.24 

Mean 1.72 0.31 1.8 0.35 0.92 0.17 0.67 0.13 

Coefficient of 

variation 

0.33 0.34 0.43 0.38 0.2 0.21 0.63 0.48 

Standard 

deviation 

0.56 0.11 0.77 0.13 0.18 0.04 0.42 0.06 

 n = 16  

 n = 16  

 n = 3  

 n = 19  

 n = 25  

 n = 19  

 n = 13  
 n = 16  

 n = 3  

 n = 16  
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Figure 5. Boxplot demonstrating the variation of carotenoid content in collected temperate species for the 
years 2020 and 2021. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Ethical considerations 

 

In this study, which employs secondary data, authorization was obtained to utilize field data and DESIS 

imagery, facilitated by the BIOSPACE program and the German Aerospace Center (DLR). A commitment 

was made to the intellectual property rights of DLR, and the professionals engaged in the collection and 

processing of this data. Our responsibility includes adhering to the terms specified in our agreements and 

being attentive to any future amendments. An important aspect of our research is its focus on the foliar 

pigment content of temperate forest ecosystems. Given the nature of this data, which is neither confidential 

nor sensitive, additional ethical considerations typically required for sensitive data were deemed unnecessary. 

Our approach ensures compliance with standard research ethics while recognizing the specific context of 

our data. 

 

The aim of this research is to contribute to the broader scientific community. To this end, we intend to 

make our findings and as much data as possible available in an open-access format, in line with the consensus 

reached with all participating parties. Additionally, it is imperative for subsequent studies that build upon 

our conclusions to be cognizant of the limitations as outlined in our final document. Understanding these 

constraints is essential to ensure the continued validity and applicability of research in this field. 

 

 

 

 

 

 

 

 

 n = 16  

 n = 16  

 n = 13  
 n = 16  

 n = 3  

 n = 19  

 n = 25  

 n = 19  

 n = 3  

 n = 16  
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2.5. Data preparation and pre-processing 

 

Pre-processing is an essential preliminary phase in the domain of hyperspectral imagery. A common practice 

involves eliminating problematic spectral bands, which encompasses addressing issues like atmospheric 

water absorption bands and low signal-to-noise ratio bands, since the inclusion of these bands can 

significantly impact the accuracy of predictive models (Ji et al., 2019). Vaiphasa (2006) states that signal noise 

is a concurrent problem in image spectroscopy, since the narrow bandwidth of hyperspectral sensors capture 

small amounts of energy that can be interfered by the noise generated inside the sensor. Also, physical 

external factors like variations in light illumination and atmospheric conditions further reduce the accuracy 

of the recorded spectral signals. Hyperspectral remote sensing studies frequently use spectral smoothing and 

aggregating techniques, to remove noise from spectral data (Y. H. Li et al., 2021). Atmospheric correction 

is a crucial initial step in handling challenges associated with hyperspectral images since, despite their 

information richness, these datasets often suffer from atmospheric distortions and may not faithfully 

represent the true surface reflectance (Rani et al., 2017). These steps ensure the imagery is optimized for 

clarity, precision, and consistency, making it suitable for further data manipulation. In this study, the DESIS 

datasets, being Level 2A products, underwent atmospheric correction through DLR's preprocessing chains. 

 

2.5.1. Co-registration 

 

Georeferencing is the process of associating images with specific ground-based coordinate systems. This 

process is essential for converting images from satellites, aerial perspectives, or ground-based sources into 

valuable mapping assets (Zhu et al., 2008) To ensure the precision of georeferencing for the DESIS datasets, 

they were cross-checked against Sentinel-2A imagery from the same location and date. The Image-to-image 

co-registration processing QGIS plugin was used to spatially align the target image (DESIS) to the reference 

image (Sentinel-2A). An automated global algorithm was used to adjust the entire image on both distance 

and direction. Following this, the aligned image was set against its original to determine the extent and 

direction of the shift. This entire process was conducted for each individual image in the dataset. 

 

2.5.2. Outlier and band removal 

 

The hyperspectral datasets were thoroughly examined. A comparative analysis of sample reflectance was 

conducted, wherein each sample's spectral signature was visually compared with those of other samples. 

Within this analysis, it was observed that three European beech plots and one Norway spruce plot exhibited 

deviating reflectance characteristics, inconsistent with the typical spectral profile of healthy vegetation. 

These outlier plots were situated near non-forested pixels, thus raising concerns about potential 

georeferencing errors. Such misalignment can significantly impact the accuracy of reflectance values derived 

from remote sensing data, as the selected pixel may inadequately represent the plot's attributes. 

Consequently, the decision was made to categorize these four plots as outliers and exclude them from 

further analysis. 

 

In the preprocessing of the DESIS hyperspectral dataset, a careful selection of spectral bands was performed 

to enhance the accuracy of chlorophyll content retrieval. To mitigate noise, and minimize redundancy, the 

first 10 bands were excluded from the analysis, due to low signal-to-noise when compared to the other 215 

longer wavelength bands. The exclusion of these bands aligns with established practices in hyperspectral 

data processing, as the initial bands of a sensor are susceptible to more interference due to various factors 

such as atmospheric conditions and sensor limitations (X. Li et al., 2022). 
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Figure 7. Smoothed spectral curves of field measurements of deciduous plots in 2021 
using the Savitzky-Golay filter. 

Figure 6. Spectral curves of field measurements of deciduous plots in 2021 without smoothing. 

2.5.3. Smoothing 

 

The Savitzky-Golay filter, a low-pass filtering technique, is based on the premise that neighbouring data 

points exhibit significant similarities. This characteristic enables it to effectively mitigate noise, as mentioned 

by Flannery (2007). Its effectiveness in handling hyperspectral data has been highlighted in studies by Tsai 

& Philpot, 1998 and Schläpfer et al., 2011. To enhance the quality of the data, reflectance values from each 

plot were subjected to smoothing using the Savitzky-Golay filter, implemented through the 'sgolay' R 

package. The filter was configured with a window size of seven and a second-degree polynomial order. The 

reflectance for deciduous trees in 2021 can be seen in Figure 5 and the smoothed spectra in Figure 6. 
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3. METHODS 

3.1. Research methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Narrowband vegetation indices  

 

Vegetation indices (VIs) are a combination of reflectance data from two or more spectral bands. Their 

specific construction provides better reliability than isolated bands (Asner et al., 2003). Additionally, these 

indices have a diminished response to atmospheric effects and variations in soil brightness (Bannari et al., 

1995). Quantifying foliar pigment concentration by using the empirical relations between narrow band 

optical indices and field samples has successfully been applied to hyperspectral satellite data (e.g., Stagakis 

et al., 2010; Wu et al., 2008; Wu et al., 2010). The generalized index approach will be employed using the 

most extensively used and best-performing index formulations. The narrow band vegetation indices were 

computed using the equation of the indices provided in Table 6. 

 

 

 

 

 

 

 

 

Figure 8. The methodological framework of the study. 
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Table 6. Selected narrowband vegetation indices and their respective formulations. 

Index name Algorithm References 

Simple ratio index (nSRI) 𝑛𝑆𝑅𝐼 =   
𝑅𝜆1

𝑅𝜆2

 
Pearson et al., 

1972 

Modified simple ratio index (nMSR) 𝑛𝑀𝑆𝑅 =   

𝑅𝜆1

𝑅𝜆2
− 1

√
𝑅𝜆1

𝑅𝜆2
+  1

 
J. M. Chen, 

1996 

Carotenoid reflectance index (nCRI) 𝑛𝐶𝑅𝐼 =   
1

𝑅𝜆1

−  
1

𝑅𝜆2

 
Gitelson et al., 

2003 

Normalised difference vegetation 

index (nNDVI) 
𝑛𝑁𝐷𝑉𝐼 =   

𝑅𝜆1  − 𝑅𝜆2

𝑅𝜆1 + 𝑅𝜆2

 
Rouse et al., 

1974 

Optimised soil adjusted vegetation 

index (nOSAVI) 
𝑛𝑂𝑆𝐴𝑉𝐼 =   (1 + 0. 16) 

(𝑅𝜆1  − 𝑅𝜆2)

(𝑅𝜆1 + 𝑅𝜆2 + 0.16)
 

Rondeaux et 

al., 1996 

Datt derivative index (nDD) 𝑛𝐷𝐷 =   
𝐷𝜆1

𝐷𝜆2

 Datt, 1999 

 

Pearson et al. (1972) introduced one of the earliest simple ratio indices (SRI), this approach involved using 

the ratio of near-infrared and red wavelengths for the estimation of leaf area index (LAI). This particular 

SRI had been identified as a robust technique for assessing canopy chlorophylls by Inoue et al. (2016) who, 

in their comprehensive review encompassing a variety of vegetation indices and models, proved the efficacy 

of an SRI that employs a near-infrared wavelength at 815 nm in combination with either 704 nm from the 

red-edge region or 578 nm from the green region. Addressing the sensitivity of NDVI to various geometrical 

and optical factors affecting plant canopies, a non-linear function known as the modified simple ratio index 

(MSR) was introduced. This modification offers a robust alternative to NDVI (Chen, 1996). Derived from 

the SRI, the carotenoid reflectance index (CRI) was developed to accommodate variations in leaf structure 

across diverse plant species inhabiting different biomes (Gitelson et al., 2003). 
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The prevalent indices in use include ratio-based like the normalized difference vegetation index (NDVI) and 

soil-based such as the optimized soil-adjusted vegetation index (OSAVI). These indices make use of specific 

red and near-infrared spectral bands, taking advantage of the unique reflectance traits exhibited by vegetation 

(Darvishzadeh et al., 2008). NDVI is a ratio index based on the normalized difference between the red and 

near-infrared spectra, since these specific spectral bands are known for their heightened sensitivity to 

photosynthetically active biomass (Tucker, 1979). OSAVI reduces soil-induced interference on reflectance 

values in areas with sparse vegetation, this is achieved through the incorporation of a canopy background 

adjustment factor. OSAVI eliminates the need for prior knowledge of the soil line, making it a simpler 

alternative to the transformed soil-adjusted vegetation index (TSAVI) (Rondeaux et al., 1996). The Datt 

derivative index (DD), was designed to mitigate the effects of scatter variations arising from fluctuations in 

canopy density, leaf structure, and soil background (Datt, 1999b) This method focuses on the curvature and 

slope of spectral curves instead of individual reflectance values by using the first derivative of the reflectance 

(Datt, 1999a). 

 

Narrowband vegetation indices were methodically calculated using the canopy spectra by considering all 

possible combinations of two bands from a dataset comprising 215 bands, spanning the wavelength range 

of 430 nm to 1000 nm, resulting in a total of 46,010 unique wavelength combinations (215 × 214) 

(Darvishzadeh et al. 2008). Subsequently, simple linear regression models were established to explore the 

associations between these indices for each band combinations and the canopy foliar pigments measured in 

the field. The most important wavelength combinations for each index were ranked by the coefficient of 

determination (R2). Linear regressions were established between the best band combinations and pigments 

to estimate the pigment concentrations in different species and years. 

3.3. Partial least squares regression 

 

One downside of high spectral resolution data is the high dimensionality and collinearity between the 

explanatory variables (spectral bands) (Hoeppner et al., 2020). Multivariate statistical methods such as 

multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression 

(PLSR) can retrieve biophysical and biochemical variables using the whole hyperspectral dataset, 

overcoming the problem with parametric methods in which the wavelength selection changes depending on 

the sensor, location, and year (Inoue et al., 2012). Nevertheless, MLR is susceptible to multicollinearity and 

is greatly impacted by the number of samples and independent variables (Grossman et al., 1996). PCR and 

PLSR operate similarly and can deal with the high dimensionality and redundancy of hyperspectral datasets 

(Inoue et al., 2018). However, PCR may be less suitable for predictive purposes as the principal components 

are solely determined by the variance of the independent variables, while in the PLSR latent variables are 

defined considering the covariance between the target and independent variables (Norgaard et al., 2000). 

PLSR has been extensively used as a predictive model for biochemical variable retrieval from hyperspectral 

data (e.g., Darvishzadeh et al., 2008; Hoeppner et al., 2020; Miraglio et al., 2022). PLSR is a latent variable 

regression method that iteratively selects linear models that have the maximum correlation with the 

dependent variable (Inoue et al., 2012). 
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PLSR can be prone to overfitting, such as other multivariate approaches, when an excessive number of 

components are selected. This can potentially result in a model that does not include bands causally related 

to the target variable. Consequently, a regression model might seem to be a good fit and statistically 

significant but may be specific to the dataset used for model building. Therefore, the selection of the optimal 

number of components is a critical phase in model fitting. According to Gowen et al. (2011), overfitting is 

associated with model bias and variance, typically characterized by low bias and high variance in overfitted 

models. Hence, assessing variance through cross-validation is a conventional practice for determining the 

optimal number of components to include in the model. In this context, the determination of the optimal 

number of components for the PLSR model was guided by assessing the root mean square error (RMSE) 

between measured and predicted foliar pigment values through a leave-one-out cross-validation approach. 

To avert collinearity and overfitting, the inclusion of components in the model was subject to their ability 

to reduce cross-validation RMSE by more than 2% (Cho et al., 2007; Darvishzadeh et al., 2008; Kooistra et 

al., 2004). 

 

The PLSR regression model was developed using the entire set of 215 spectral bands, ranging from 430 nm 

to 1000 nm. the R 'pls' package was used for model fitting and the MATLAB TOMCAT toolbox 

(Daszykowski et al., 2007) for verification. Prior to model fitting, the reflectance values were scaled and 

centred. Scaling involved dividing each variable by its standard deviation to ensure uniform scaling and 

facilitate model convergence, while centring entailed adjusting the data to have a mean of zero. This 

preprocessing step enhances the model's robustness and interpretability, allowing for a more effective 

analysis of the hyperspectral data. 

3.4. Validation 

 

Cross-validation is a widely used technique for evaluating the predictive performance of statistical models. 

In leave-one-out cross-validation (LOOCV), a single data point is reserved for validation, while the 

remaining n − 1 (where n represents the number of observations) are used for iterative model training. 

LOOCV proves especially beneficial when working with limited datasets where dividing the data into 

training and test sets is unworkable, as it maximizes the size of the training set. In our study, LOOCV was 

employed for model validation and ranking. Model ranking relied on cross-validated metrics, including root 

mean square error (RMSE), normalized root mean square error (NRMSE), and coefficient of determination 

(R2) (Ali et al., 2020; Cheng et al., 2017; Ramoelo et al., 2013). The following equations were used: 

 

 

 

Where 𝑦 denotes the observed or measured values, 𝑧 represents the predicted values and  

�̅� is the mean of the observed values. 

𝑅𝑀𝑆𝐸 =
√∑(𝑦 − 𝑧)2

𝑛
 

 

(3) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 
 

 

(4) 

𝑅2 = 1 − 
∑(𝑦 − 𝑧)2

∑(𝑦 − �̅�)2
 

(5) 
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4. RESULTS 

4.1. Narrowband vegetation indices 

 

Among the chosen vegetation indices, the coefficient of determination (R2) was systematically calculated for 

every waveband combination to identify the optimal narrowband combination. All indices featuring the best 

combination presented statistically significant correlations with canopy chlorophylls and carotenoids (p < 

0.01). 

 
Table 7. RMSE and R2 of best band combinations using different vegetation indices equation for canopy 
chlorophylls data across years. 

 

 

Upon a thorough analysis of the canopy chlorophylls data, it was observed that the most consistent 

vegetation index across the two years is nDD, with only a 3% difference in the R2 values (ΔR2) (Table 7). 

While others, such as nNDVI, nSRI, and nOSAVI experience a decrease in accuracy in the transition from 

2020 to 2021. Based on the average R2 values, the best-performing models (or vegetation indices) for the 

canopy chlorophylls data are nSRI, nMSR, nOSAVI, and nDD as they all share a high average R2 of 0.385 

(nSRI and MSR),0.375 (nOSAVI), and 0.355 (nDD). 

 

 

 

 

 

 

 

VI Year λ1 λ2 R2 
RMSE 

(g/m2) 

NRMSE 

(%) 

nNDVI 
2020 760.3 729.4 0.44 0.51 17% 

2021 809.1 767.5 0.26 0.6 8% 

nSRI 
2020 760.3 742 0.44 0.51 17% 

2021 757.7 752.3 0.33 0.57 10% 

nCRI 
2020 506.9 568.4 0.23 0.60 9% 

2021 517.2 519.6 0.17 0.64 5% 

nMSR 
2020 760.3 742 0.44 0.51 17% 

2021 757.7 752.3 0.33 0.57 10% 

nOSAVI 
2020 760.3 744.5 0.41 0.52 16% 

2021 809.1 767.5 0.34 0.57 11% 

nDD 
2020 747.2 701.5 0.37 0.54 15% 

2021 757.7 729.4 0.34 0.57 11% 
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Table 8. RMSE and R2 of best band combinations using different vegetation indices equation for canopy 
carotenoids data across years. 

 

 

The nSRI, nMSR, and nCRI indices are the most consistent models for the canopy carotenoids data, as they 

each exhibit a ΔR2 of less than 5% between 2020 and 2021. nSRI, nMSR, nOSAVI, and nDD are the top-

performing models for the canopy carotenoids data. nSRI and nMSR also demonstrate the highest average 

R2 value of 0.385 while for nOSAVI and nDD is 0.380. The most consistent and best-performing models 

are nSRI and MSR both with a ΔR2 of 1% and an average R2 of 0.385. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI Year λ1 λ2 R2 
RMSE 

(g/m2) 

NRMSE 

(%) 

nNDVI 
2020 760.3 742 0.39 0.09 19% 

2021 755.2 749.7 0.28 0.11 17% 

nSRI 
2020 760.3 742 0.39 0.09 19% 

2021 757.7 752.3 0.38 0.10 15% 

nCRI 
2020 506.9 568.4 0.19 0.11 23% 

2021 514.7 524.7 0.22 0.12 18% 

nMSR 
2020 760.3 742 0.39 0.09 19% 

2021 757.7 752.3 0.38 0.10 15% 

nOSAVI 
2020 760.3 744.5 0.42 0.09 19% 

2021 809.1 767.5 0.34 0.11 17% 

nDD 
2020 747.2 716.4 0.35 0.1 21% 

2021 755.2 517.2 0.41 0.1 15% 
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Table 9. RMSE and R2 of best band combinations using different vegetation indices equation for canopy 
chlorophylls data for different species. 

VI Species λ1 λ2 R2 RMSE 

(g/m2) 

NRMSE 

(%) 

nNDVI Spruce 918.4 972.9 0.18 0.51 8% 

Beech 814.3 770.3 0.27 0.65 9% 

Pine 685.9 683.5 0.2 0.16 31% 

Oak 999.5 724.2 0.25 0.36 15% 

nSRI Spruce 862.9 972.9 0.24 0.49 11% 

Beech 468.3 509.5 0.38 0.6 13% 

Pine 888.1 870.6 0.26 0.15 41% 

Oak 506.9 650 0.4 0.32 24% 

nCRI Spruce 972.9 918.4 0.16 0.51 7% 

Beech 793.1 814.3 0.24 0.66 8% 

Pine 675.8 685.9 0.03 0.18 5% 

Oak 709.4 711.8 0.16 0.39 10% 

nMSR Spruce 862.9 972.9 0.24 0.49 11% 

Beech 816.9 795.9 0.3 0.64 10% 

Pine 888.1 870.6 0.26 0.15 41% 

Oak 506.9 650 0.4 0.32 24% 

nOSAVI Spruce 734.4 732.1 0.20 0.50 9% 

Beech 814.3 770.3 0.25 0.66 8% 

Pine 734.4 732.1 0.20 0.50 31% 

Oak 534.9 599.1 0.29 0.35 17% 

nDD Spruce 644.9 734.4 0.33 0.46 15% 

Beech 501.8 583.7 0.31 0.63 10% 

Pine 655.2 827.2 0.35 0.15 55% 

Oak 683.5 923.9 0.39 0.32 23% 

 

The nSRI and nDD indices emerge as the most accurate models for the canopy chlorophylls data across 

various tree species, both registering average R2 values of 0.32 and 0.345 respectively. The nDD vegetation 

index demonstrates to be the most consistent model with a ΔR² of 6% suggests that its predictive ability is 

less affected by species variability compared to other indices. 
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Table 10. RMSE and R2 of best band combinations using different vegetation indices equation for canopy 
carotenoids data for different species. 

VI Species λ1 λ2 R2 
RMSE 

(g/m2) 

NRMSE 

(%) 

nNDVI 

Spruce 918.4 972.9 0.1 0.1 24% 

Beech 757.7 747.2 0.24 0.11 18% 

Pine 685.9 683.5 0.13 0.03 20% 

Oak 509.5 667.9 0.31 0.05 21% 

nSRI 

Spruce 827.2 972.9 0.18 0.10 24% 

Beech 494 506.9 0.30 0.11 18% 

Pine 890.9 870.6 0.21 0.03 20% 

Oak 506.9 667.9 0.44 0.05 21% 

nCRI 

Spruce 972.9 918.4 0.06 0.1 24% 

Beech 747.2 760.3 0.21 0.12 20% 

Pine 844.7 890.9 0.05 0.04 27% 

Oak 634.7 522.2 0.15 0.06 25% 

nMSR 

Spruce 827.2 972.9 0.18 0.1 24% 

Beech 496.5 504.3 0.26 0.11 18% 

Pine 890.9 870.6 0.21 0.03 20% 

Oak 506.9 667.9 0.44 0.05 21% 

nOSAVI 

Spruce 734.4 732.1 0.11 0.1 24% 

Beech 614.3 770.3 0.24 0.11 18% 

Pine 634.7 642.3 0.11 0.04 27% 

Oak 522.2 690.9 0.3 0.05 21% 

nDD 

Spruce 460.7 594 0.21 0.09 21% 

Beech 501.8 583.7 0.35 0.11 18% 

Pine 903.7 809.1 0.48 0.03 20% 

Oak 850 688.4 0.37 0.05 21% 

 

No vegetation index consistently performs across different tree species, as all ΔR2 values exceed the 10% 

threshold. The nDD shows an overall better performance (lower RMSE and higher R2) for multiple tree 

species compared to the other indices. This may indicate their versatility and effectiveness for a range of 

species. 

4.2. Most relevant spectral regions 

 

The narrowband Datt derivative index (nDD) consistently outperforms the other indices in terms of 

accuracy for both years and across all species, as indicated by its lower RMSE and higher R2 values. This 

superior performance points to the effectiveness of the narrowband index in identifying the spectral bands 

that are most crucial for estimating foliar pigment content. To reveal these key spectral regions, two-

dimensional correlation matrices are employed. These matrices graphically display the relationship between 

the nDD values and the foliar pigment content for each potential combination of bands, using non-cross-

validated determination coefficients (R²) values as a metric for correlation strength. 

 

 

 



COMPARING THE ACCURACY OF REMOTE SENSING METHODS FOR ESTIMATING FOLIAR PIGMENTS ACROSS TREE SPECIES AND YEARS USING DESIS IMAGERY 

 

27 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

(a) 

 

Figure 10. Year-specific 2D correlation plot illustrating R² values between canopy carotenoids (Car) content and the 
narrowband Datt derivative index (nDD) calculated from each spectral band combination for (a) 2020 and (b) 2021. 

Figure 9. Year-specific 2D correlation plot illustrating the R² values between canopy chlorophylls (Cab) content and the 
narrowband Datt derivative index (nDD) calculated from each spectral band combination for (a) 2020 and (b) 2021. 
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(b) 
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(d) 

 

(a) 

 

Figure 11. Species-specific 2D correlation plot illustrating the R² values between canopy chlorophyll 
content (Cab) and the narrowband Datt derivative index (nDD) calculated from each spectral band 
combination for distinct tree species, (a) English oak, (b) European beech, (c) Norway spruce, and (d) 
Scots pine. 
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Figure 12. Species-specific 2D correlation plot illustrating R² values between canopy carotenoids content 
(Car) and the narrowband Datt derivative index (nDD) calculated from each spectral band combination 
for distinct tree species, (a) English oak, (b) European beech, (c) Norway spruce, and (d) Scots pine.  

4.3. Partial least squares regression 

 

The results of the partial least squares regression (PLSR) analysis performed for different years and different 

species are presented below. 

 
Table 11. RMSE and R2 obtained from PLSR for the estimation of canopy chlorophylls (Cab) and 
carotenoids (Car) data across two years. 

 

The optimal number of components for canopy chlorophyll remained consistent at five across both years. 

However, the number of components for the canopy carotenoids increased from two in 2020 to five in 

2021, suggesting a more complex model or more variability in the 2021 data for canopy carotenoids. For 

canopy chlorophylls, there was a decrease in R2 and an increase in RMSE from 2020 to 2021. While for 

canopy carotenoids, a significant change in R2 (from 0.27 to 0.53) indicates that the performance of this 

model also shifted considerably from one year to the next. In conclusion, neither the canopy chlorophylls 

nor carotenoids model demonstrated stability or consistent performance from 2020 to 2021. 

 
Table 12. RMSE and R2 obtained from PLSR for the estimation of canopy chlorophylls (Cab) and 
carotenoids (Car) data across different species. 

Pigment Species 
Number 

of samples 

Number of 

components 
R2 

RMSE 

(g/m2) 

NRMSE 

(%) 

Canopy 

Cab 

Spruce 47 4 0.36 0.44 21% 

Beech 50 5 0.62 0.47 17% 

Pine 23 1 0.06 0.17 27% 

Oak 26 3 0.43 0.31 19% 

Canopy 

Car 

Spruce 47 2 0.12 0.09 21% 

Beech 50 5 0.63 0.08 13% 

Pine 23 1 0.06 0.04 27% 

Oak 26 3 0.47 0.04 17% 

 

For both the canopy chlorophylls and carotenoids pigments, the Beech species demonstrated the highest 

R2 values, making it the most accurately predicted species in this dataset. Neither the canopy chlorophylls 

nor carotenoids models consistently perform across all species. The ΔR2 values surpass the 10% threshold, 

suggesting variability in the models' performance across different tree species. 

 

The models for both canopy chlorophylls and carotenoids exhibit good predictive capabilities. The canopy 

chlorophylls models present higher R2 values, indicating a better fit to the variance in the data. While the 

canopy carotenoids models have a lower absolute RMSE, the proportionate error for both pigments is 

comparable when adjusting for the mean pigment values. 

Foliar 

pigment 
Year 

Number of 

samples 

Number of 

components 
R2 

RMSE 

(g/m2) 

NRMSE 

(%) 

Canopy 

Cab 

2020 57 5 0.66 0.40 16% 

2021 111 5 0.52 0.49 15% 

Canopy 

Car 

2020 57 2 0.27 0.10 21% 

2021 111 5 0.53 0.09 14% 
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R2 = 0.44 

RMSE = 0.51 

n = 57 

R2 = 0.37 

RMSE = 0.54 

n = 57 

R2 = 0.66 

RMSE = 0.40 

n = 57 

(b) (a) 

(c) (d) 

Figure 13. Panels (a) to (c) display scatter plots comparing in-situ measured canopy chlorophylls values 
with predictions from three different methods for the year 2020, panel (d) features a boxplot of both 
predicted and measured canopy chlorophylls values. The dashed lines in panels (a) to (c) indicate the ideal 
1:1 correlation between predictions and in-situ measurements. 

4.4. Model performance comparison 

 

In the exploration of the most effective analytical methods, partial least squares regression (PLSR) emerged 

as the superior technique, demonstrating the highest accuracies both annually (R² = 0.66 & RMSE = 0.40 

g/m2, for canopy chlorophylls in 2020) and across different species (R² = 0.63 & RMSE = 0.08 g/m2, for 

canopy carotenoids and Beech). Notably, this enhanced accuracy was only observed when the sample size 

reached a threshold of 50 or more. Contrasting this, the performance of vegetation indices (VIs) appeared 

to be less sensitive to variations in the number of field samples. Within the scope of VIs, the narrowband 

Datt derivative index (nDD) and the narrowband simple ratio index (nSRI) were identified as the most 

effective and reliable indicators. Figure 12 demonstrates the relationships between measured and estimated 

canopy chlorophyll content using these three leading models, and the comparison of their estimations. 
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5. DISCUSSION 

This study aimed to assess the consistency of canopy chlorophylls and carotenoids content when modelled 

statistically for temperate forests, while simultaneously testing the accuracy of the model for inter-annual 

and interspecies variation. Retrieving vegetation traits from canopy reflectance data has multiple challenges, 

yet the results of this study showed that partial least squares regression (PLSR) demonstrated promising 

results in estimating the canopy content of chlorophylls and carotenoids for temperate forests. PLSR 

remained accurate given the natural variation in canopy structure across these protected and unmanaged 

forests, as well as the radiometric alterations from topography and atmospheric conditions, the varying 

angles of solar illumination and sensor viewpoints, and the optical properties of soil, which are particularly 

problematic in areas of sparse vegetation (Darvishzadeh, et al., 2008; Kong et al., 2017; Ollinger, 2011). 

5.1. Accuracy of models 

 

In the exploration of the most accurate statistical method, PLSR emerged as the superior technique when 

compared to the tested vegetation indices, demonstrating the highest accuracies both annually (R² = 0.66 & 

RMSE = 0.40 g/m2, for canopy chlorophylls in 2020) and across different species (R² = 0.63 & RMSE = 

0.08 g/m2, for canopy carotenoids and Beech), as also demonstrated by other studies (Ali et al., 2020; 

Darvishzadeh, et al., 2008; Hoeppner et al., 2020). Notably, this enhanced accuracy was only observed when 

the sample size reached a threshold of 50 or more. In contrast, the performance of vegetation indices (VIs) 

appeared to be less sensitive to variations in the number of field samples. The accuracy of VIs is notably 

lower than the PLSR, with coefficients of determination (R2) lower than 0.50, considered not reliable for 

predicting foliar pigment content, as categorized by (Chang et al., 2001; Sonobe & Wang, 2017). 

 

Among the narrow band VIs analysed, the nDD consistently excelled in estimating canopy chlorophylls and 

carotenoids content across varying years and species, also demonstrated in other studies (Hoeppner et al., 

2020; Sonobe & Wang, 2017). The narrowband simple ratio index (nSRI) ranked second in accuracy and 

consistency. All three models predicted similar median canopy chlorophyll as the measured value, exhibiting 

less variance than the observations, as shown in Figure 12. 

 

5.1.1. Across years 

 

The nDD demonstrates the highest accuracy among all the narrowband VIs, consistently estimating the 

content of foliar pigments over the observed two-year period. It presented an average R² of 0.355 with a 

ΔR² of 3% for canopy chlorophylls and an average R² of 0.380 with a ΔR² of 6% for canopy carotenoids. 

A general decline in model accuracy across all VI was noted for canopy chlorophylls from 2020 to 2021, 

while the results for canopy carotenoids displayed more variability. The influence of the transition between 

years on the accuracy of these indices appears to be index-specific and pigment-dependent. Some indices, 

like nSRI and nMSR, maintain relatively stable performance for canopy carotenoids but are not consistent 

for canopy chlorophylls. Conversely, nNDVI and nOSAVI exhibited a consistent decrease in accuracy from 

2020 to 2021 for both pigments.  

 

 

 

 



 

32 

PLSR showed consistent accuracy values for canopy chlorophylls across the years but a considerable 

difference in accuracy for canopy carotenoids, with R2 changing from 0.27 in 2020 to 0.53 in 2021. The 

increased sample size in 2021 may have contributed to the improved accuracy of the canopy carotenoids 

predictions, as evidenced by the higher R² value. For canopy chlorophylls, the larger sample size did not 

translate to better model performance, suggesting that factors other than sample size may influence the 

predictions' accuracy. The number of components used in the PLSR model showed to have an important 

effect in accuracy. For canopy carotenoids, increasing the number of components from two to five from 

2020 to 2021 correlates with improved model performance. PLSR fitting for canopy chlorophylls in 2020, 

as shown in Figure 12a, revealed a curvilinear relationship, where at higher chlorophyll values the curve 

approaches an asymptote, suggests reduced accuracy of the model's predictions for higher chlorophylls 

values. These results highlight the need for careful selection of model parameters and consideration of the 

unique characteristics of each foliar pigment when applying PLSR for predictive purposes. 

 

5.1.2. Across species 

 

For both canopy chlorophylls and carotenoids, the PLSR and VIs model have a better accuracy with 

deciduous than with conifer species, aligning with the results found in the literature (Hernandez-Clemente 

et al., 2014; Miraglio et al., 2019; Navarro-Cerrillo et al., 2014; Sonobe & Wang, 2017). The mean and 

standard deviation of field measurements for chlorophylls and carotenoids indicate differing levels of 

pigment content across species. Deciduous trees (European beech and English oak) showed higher 

variability in both canopy chlorophylls and carotenoids compared to conifers (Norway spruce and Scots 

pine), as evidenced by larger ranges and standard deviations. This aligns with the notion that the higher 

variability in these species provides a more robust dataset for these models. 

 

The accuracy of VIs in predicting canopy chlorophylls and carotenoids content varies substantially between 

species. This variation is likely due to intrinsic differences in the spectral signatures of each species, which 

are influenced by their unique physiological, biochemical, and canopy structure characteristics. The nDD 

consistently emerges as one of the most accurate and robust indices for both pigments, across all species. 

The performance of the indices suggests that species-specific calibrations could be beneficial, especially for 

coniferous species like Spruce and Pine, where the indices generally perform less effectively. 

 

For PLSR, beech had the highest R2 values among all species (0.62 for chlorophylls and 0.63 for 

carotenoids). For the other species, the R2 was lower than 0.50, considered not reliable for predicting foliar 

pigment content. The model shows a lower performance for conifer species, with the model's performance 

for pine being the weakest among the species (R² = 0.06 for both foliar pigments), having the lowest number 

of samples (n = 23). The number of observations combined with the species type had a considerable 

influence on model accuracy. While certain species like Beech show promising results with the models, there 

is evident variability in performance across tree species. Refinements, such as a high number of training 

samples, or more specific models may be required to enhance predictability across all species, especially for 

Pine. 
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5.2. Most important spectral regions for the estimation of canopy chlorophyll and carotenoids 
content 

 

5.2.1. Annually specific spectral regions 

 

In analysing the canopy chlorophylls data across the two years, a consistent pattern was observed, bands 

near the spectral region of 760 nm, on the red edge region, were constantly highlighted by multiple 

narrowband indices, as seen in Figure 8. This region is commonly associated with the nSRI, nMSR, and 

nOSAVI indices, suggesting its importance in determining canopy chlorophylls content. For the nDD index, 

particular bands within this zone, specifically the 747.2 nm band in 2020 and the 757.7 nm band in 2021, 

are identified as relevant for canopy chlorophylls estimation.  

 

Similarly, for canopy carotenoids, the spectral bands near 760 nm and 742 nm are again of interest, 

consistently involved in the nDD, nSRI and nMSR indices over both years. This spectral range seems to be 

particularly important for canopy carotenoids estimation, as also demonstrated by Sonobe & Wang (2018). 

The nDD underlines the 747.2 nm and 701.5 nm bands in 2020 with a notable shift to a more diverse 

spectral range including the 755.2 nm band and a jump to the green region 517.2 nm band in 2021. Bands 

around 500 nm and 517 nm were expected to be highlighted (Figure 9), since carotenoids have a maximum 

absorption peak at around 500 nm (Chappelle et al., 1992). 

 

For both pigment types and across the two-year timeframe, the spectral range of 700-800 nm on the red 

edge region is prominent (Figures 8 & 9), aligned with what was found in literature since the red edge region 

has been extensively proven to be very sensitive to foliar pigments (e.g., Hoeppner et al., 2020; Ju et al., 

2010; Sonobe & Wang, 2018; Zarco-Tejada et al., 2000). The higher accuracy and consistency of R² values 

from indices like nNDVI, nSRI, nMSR, nOSAVI, and nDD when using bands within this range corroborate 

its effectiveness for pigment estimation. The consistency of band selection implies that the most important 

spectral regions for both foliar pigments remain stable across years. These highlighted bands capture unique 

attributes of the forest canopy. 

 

5.2.2. Species-Specific spectral regions 

 

Detailed analysis of different tree species reveals distinct spectral patterns. For Spruce, the 644.9 nm to 734.4 

nm spectral bands were selected by the most accurate index, nDD, for the estimation of the canopy 

chlorophylls, and canopy carotenoids the 460.7 nm and 594 nm bands were highlighted. Furthermore, the 

972.9 nm band and the range around 827 and 863 nm are predominant for Spruce in both the SRI and MSR 

indices and leaf pigments. In the case of Pine, the nDD points to bands 655.2 nm and 827.2 nm as important 

for canopy chlorophylls. While for the canopy car, the nDD selected the bands 903.7 nm and 809.1 nm. 

Across the conifers, there is a notable selection in the range of 645 nm to 655 nm on the red region with 

both Spruce and Pine displaying preferences in this spectrum for chlorophylls. This observation aligns with 

the findings of Malenovský et al. (2006), who developed an index to estimate chlorophyll content in Norway 

spruce. Their research highlighted the significance of the chlorophyll absorption feature within the 650-725 

nm wavelength range. Furthermore, the 827.2 nm and 927.9 bands in the NIR are predominant in both the 

SRI and MSR indices, demonstrating their importance for both pigments. This is further evidenced in 

Figures 10 and 11, which demonstrate a strong correlation between these NIR regions and the foliar 

pigments in conifer species. In the NIR region, approximately 750–900 nm, leaf optical properties, including 

reflectance, are primarily determined by the mesophyll structure rather than direct chlorophyll absorption 

(Noda et al., 2021). 
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For Beech, the nDD index distinctly identifies the 501.8 nm and 583.7 nm bands, in the green region, as 

critical for estimating both canopy chlorophylls and carotenoids. Concurrently, the SRI highlights the 468.3 

nm and 509.5 nm bands for chlorophylls, while selecting the 494 nm and 506.9 nm bands for carotenoids. 

For Oak, the 506.9 nm and 667.9 bands, recurrently appear in indices like nSRI and nMSR for both foliar 

pigments. Oak also seems to be particularly sensitive to the bands on the red region around 683.5 nm and 

688.4 highlighted by the nDD. The spectral region around 500 nm to 510 nm in the green region and 

wavelengths between 667.9 – 688.4 nm in the red region are underlined for deciduous species. Research 

conducted by Falcioni et al. (2023) also highlighted the green/yellow spectral regions, specifically between 

500-600 nm, for estimating chlorophylls and carotenoids in Oak and Beech species. This finding aligns with 

other studies that have similarly identified these wavelength regions as critical for chlorophyll content 

estimation for deciduous species (Datt, 1998; Gitelson et al., 2003b). 

5.3. Possible reasons for discrepancies in results and limitations 

 

Upon examining the in-situ measurements (Table 4), a noticeable change was observed in the mean canopy 

chlorophylls and carotenoids from 2020 to 2021, showing a decrease in the mean values. The coefficient of 

variation (CV) for both foliar pigments also increased during this period, potentially indicating a change in 

environmental conditions between the years. Possible sources are drought or stress induced by insect 

infestations, such as the multiyear bark beetle infestation that has been ongoing in central European 

woodlands (Korolyova et al., 2022), affecting pigment concentrations and their uniformity within the canopy 

(Konôpková et al., 2020). Furthermore, the number of samples in 2021 nearly doubled compared to 2020 

for both canopy chlorophylls and carotenoids. This larger dataset in 2021 might offered a broader 

representation of variability. The difference in sampling locations is also significant, as the number of 

samples for Veluwe increased from 15 in 2020 to 79 in 2021. Another factor contributing to the 

discrepancies between years could be the varying dates, times, and sensor positions during image acquisition, 

as well as differences in image specifications and quality, such as radiometric variations between the images. 

 

An essential aspect to consider is the temporal discrepancy between the in-situ measurements and the 

DESIS imagery, as detailed in Tables 1 and 2. This time mismatch may lead to notable differences in the 

data, attributable to changes in environmental conditions or variations in canopy characteristics over time. 

Furthermore, a significant limitation arises from the plot sizes used for in-situ measurements and the DESIS 

imagery ground sampling distance (GSD). For optimal accuracy and representation, the plot size for in-situ 

measurements should exceed the pixel size of the satellite imagery to effectively capture the variability within 

each pixel. 
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6. CONCLUSIONS 

This research compared established statistical methods, considered species and temporally specific, by 

training them on diverse species datasets and analysing two years of hyperspectral satellite data. Most studies 

in the literature mainly focus on improving the already existing models or developing new models, while 

there is still a gap in the performance of traditional models in varying conditions and on newly available 

high-spectral resolution satellite imagery. 

 

Answering the first research question of this study, the spectral region around 500 nm to 510 nm in the 

green region and wavelengths between 667.9 – 688.4 nm in the red region are underlined for deciduous 

species. Across the conifers, the 645 to 655 nm red spectrum range is key for chlorophyll absorption. 

Moreover, the 827.2 nm and 927.9 nm bands in the NIR spectrum have proven essential in both SRI and 

MSR indices for assessing chlorophyll and carotenoid pigments. In analysing the foliar pigment data across 

the two years, a consistent pattern was observed, bands between 700 nm to 800 nm, on the red edge region 

were constantly highlighted by multiple narrowband indices. 

 

Addressing the second research question of this study, partial least squares regression (PLSR) and vegetation 

indices (VIs) have a better accuracy with deciduous than with conifer species for both canopy chlorophylls 

and carotenoids. PLSR showed the highest predictive accuracy across the statistical models but was year and 

species-specific. In comparison, some VIs showed consistent results across years and species, the 

narrowband Datt derivative index (nDD) displays the highest consistency but low accuracy. The accuracy 

of all VIs is notably lower than the PLSR, with an R2 lower than 0.50, considered not reliable for predicting 

the foliar pigment content. Most models show inconsistency across years and species, with the variability 

between species being greater than between years. Overall, the results showed that the choice of narrowband 

VIs and the characteristics of the tree species can substantially influence the accuracy of canopy pigment 

content predictions, as mentioned before in the literature (Ali et al., 2020; Zhen et al., 2021). 

 

The findings of this study highlight the intricacies involved in modelling canopy pigment content, 

emphasizing the necessity for species-specific statistical methodologies and the integration of multi-

temporal data in statistical models. Further research should focus on the robustness and consistency of 

other remote sensing methods for different species and across time. Additionally, exploring a cross-regional 

approach is essential to understand how different forest ecosystems across varied geographical landscapes 

respond to these methodologies, enhancing model adaptability and generalizability. Equally important is the 

advancements in sensor fusion techniques, which involve integrating data from various sensor types such 

as LiDAR, multispectral, and hyperspectral sensors. Future studies could enhance retrieval accuracy by 

synchronizing image acquisition with field data collection, minimizing the time lag between corresponding 

datasets. The deployment of new hyperspectral satellite sensors like the Hyperspectral Infrared Imager 

(HyspIRI) and the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), could 

significantly improve the retrieval accuracy of canopy pigments content and allow the accurate monitoring 

of stress and disturbance in forest ecosystems in an era of climate change and biodiversity loss. 
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