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Abstract

Walking is an activity that most people take for granted every day. However, not everyone is so fortunate.
For instance, a large part of people who encounter a spinal cord injury have to rely on wheelchairs to move
around. Even though wheelchairs are a reliable and cheap solution, they have numerous disadvantages such
as restricted access to public transport and buildings, and health issues related to the sitting lifestyle. As
an alternative or companion to wheelchairs, lower limb exoskeletons could be a solution. These devices show
great potential to improve impaired people’s lives, but they need to be improved in multiple aspects as energy
consumption and disturbance handling. This thesis focuses on the disturbance handling of exoskeletons. The
user of an exoskeleton continuously exerts (disturbance) forces on the exoskeleton. These forces can cause
the exoskeleton to slip or fall. This failure occurs due to the robot facing physical limits such as friction or
motor torque limits. Therefore, it is useful to consider these limits when planning a trajectory and stay as
far away as possible from them.

This thesis presents a method to optimize trajectories of bipedal robots to withstand a force on the center
of mass (CoM) that cannot be counteracted without changing the planned trajectory. These trajectories are
obtained by transcribing the optimization problem to a direct collocation problem, which is solved as a non-
linear problem via an interior point method. The trajectory optimization was performed on a planar 7-DoF
walker model. This study shows that optimizing for robustness for bipedal robots leads to trajectories that
are more robust against disturbances on the CoM. To implement the optimization algorithm in a real-world
application, two shortcomings have to be overcome. First, the optimization needs to be applied and tested
on a 3D model instead of a planar model. Second, the computational time should decrease to enable online
implementation.
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1 General Introduction

1.1 Spinal Cord Injury

Around 250.000-500.000 people suffer from a spinal cord injury (SCI) each year [1]. People who suffer from
SCI have damage to their spinal cord. This is mostly caused by trauma, but can also be caused by disease.
An SCI can result in loss of sense or motor control in the upper limbs, lower limbs, or body. In very severe
cases it can even cause loss of organ functions. The extent to which the patient is paralyzed is determined
by the severity and the location of the SCI. The higher up the spine the injury, the more muscles are affected
by the injury. Further, SCIs are categorized as complete or incomplete. With a complete SCI, all feeling and
motor control is lost in the affected parts. In incomplete SCI only a part of the feeling and motor control
is lost. Almost half of the patients have a complete SCI [2]. This has an enormous impact on their daily
lives, mostly due to the loss of their ability to walk. For mobility, they often rely on manual wheelchairs.
Even though a wheelchair is an accessible and helpful tool, wheelchairs have multiple issues that constrain
the lives of their users. Besides issues such as restricted access to public transport and buildings, people in
wheelchairs also experience the negative physical effects of (manual) wheelchairs. Under wheelchair users,
there is a high prevalence of shoulder and wrist pain due to the repetitive and straining motion [3]. This
pain can lead to a downward spiral in which decreasing exercise leads to a decrease in the physical fitness
of wheelchair users. This can lead to conditions such as obesity, diabetes, cardiovascular diseases, metabolic
syndromes, and osteoporotic conditions.

1.2 Exoskeletons as a Solution

As an alternative or companion to wheelchairs, this thesis will focus on lower limb exoskeleton robots (LLE).
Van Dijsseldonk et al. found that exoskeleton use can improve patients’ lives with complete SCIs on both a
social and physical level [4]. However, the users also reported that it had some shortcomings as an assistive
device during daily life. The main issue was needing a buddy and crutches when using the exoskeleton. This
was found to be limiting the individual’s independence. Ideally, the exoskeleton should be used independently.
To achieve this, four general aspects need to be improved for exoskeletons, or more generally for all bipedal
robots [5]:

1. The ability to adapt to various terrains.

2. The ability to handle unknown disturbances.

3. To switch between different types of gait.

4. To be energy efficient.

1.3 Scope of this Thesis

This thesis will focus on the improvement of disturbance handling. When an unknown force is applied to
a legged robot, it can cause it to fail to track the original trajectory, slip, or fall over. This failure occurs
due to the robot reaching its physical limits. These can be friction limits, torque limits, or configuration
limits. Exoskeletons continuously experience disturbances from their users. To prevent the disturbances from
the users causing the exoskeleton to fall, these disturbances must influence the exoskeleton as minimally as
possible. This can be achieved by preventing the robot from crossing its physical limits.

Considering physical limits when planning the robot’s motion is widely done for legged robots. One of the
most recent methods is using the feasible wrench polytope (FWP). This polytope contains all the wrenches
on the CoM of the robot that adheres to friction, torque, and configuration constraints [6]. However, the
‘distance’ to these constraints is rarely considered. So when the planned control wrench is close to the edge
of the FWP, a small disturbance could push the system into a situation in which the wrench needed to
counteract the disturbance is outside of the FWP.
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1.4 Goal of this Thesis

The goal of this thesis is to optimize trajectories for exoskeletons for robustness against disturbances on
the CoM and in a broader sense for all bipedal robots. The idea is to prove the added value of optimizing
robustness. If successful it can be used as a stepping stone to implementing this type of optimization in
model predictive control.
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2 Background

In this chapter, three key concepts that are used in this thesis will be discussed. First, non-linear programming
will be explained. Next, the concept and mathematical representation of polytopes will be discussed. Last,
the Chebyshev center and radius are discussed.

2.1 Nonlinear Programming

A nonlinear program is a specific form of a constrained minimization problem that has either nonlinear terms
in the objective or the constraints. A NLP is typically represented as [7]:

min
z

J(z) s.t.

f(z) = 0

g(z) ≤ 0

zlow ≤ z ≤ zupp .

(1a)

(1b)

(1c)

(1d)

The goal is to minimize the objective function J(z) by adjusting the decision variables z, while satisfying
all constraints. These constraints can be equality constraints (f(z) = 0), inequality constraints (g(z) ≤ 0)
and/or boundaries on the decision variables zlow ≤ z ≤ zupp . In this thesis, the NLP is solved using an
interior point method. An explanation of the interior point method is given in Appendix C.

2.2 Polytopes

A polytope can be defined in two ways, it can be defined by a set of points or by a set of linear inequalities
[8]. In this section, the focus will be on convex polytopes. The definition for a convex polytope using a set
of points is as follows: Consider a set S in Rn. S is a convex polytope if and only if a line between any two
points in S, is fully in S. The definition for a convex polytope using linear inequalities is: A convex polytope
is an intersection of a finite number of closed halfspaces which also has an upper bound on the distance of
any point in the polytope with respect to the origin. A closed halfspace is the set of points, satisfying a linear
inequality as given in Eqn. (2).

ax ≤ b (2)

So a convex polytope can be represented as:

Ax ≤ b, (3)

under the condition that the inequalities define a closed space.

2.3 Chebyshev Centre

The Chebyshev Centre is the centre of the maximum inscribed ball in a polytope [9]. In the coming section,
a derivation will be done on how to find the Chebyshev Centre. Consider a ball defined by:

B = {xc + u : ∥u∥2 ≤ r} , (4)

where xc is the centre of the ball, r is the radius of the ball and u is the set of points within the ball. Also,
consider a polytope described by a set of linear equations:

aTi x = bi, for i = 1, 2, · · ·n. (5)

Where n is the number of constraints. To find the largest inscribed ball, the radius must be maximized and
all points xc + u must lie within the polytope:

aTi (xc + u) = bi for i = 1, 2, · · ·n. (6)
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To find the largest radius the supremum needs to be found:

sup
∥u∥2≤r

{
aT
i (xc + u)

}
≤ bi, for i = 1, 2, · · · , n (7)

Since u is the parameter that is related to the radius, it is the only parameter that needs to be optimized:

aT
i xc + sup

∥u∥2≤r

{
aT
i u

}
≤ bi, for i = 1, 2, · · · , n (8)

The largest value of the inner product is when they are in the same direction, therefore:

sup
∥u∥2≤r

{
aT
i u

}
= aT

i

(
∥u∥max

2

ai
∥ai∥2

)
= r · ∥ai∥2 (9)

Then the maximum radius can be found by minimizing −r:

min
xc

−r s.t.

aT
i xc + ∥ai∥2 for i = 1, 2, · · · , n.

(10a)

(10b)
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Optimizing Trajectories of Bipedal Robots for
Robustness Against Disturbances

S. de Bruin, A.Q.L. Keenmink, E.H.F. van Asseldonk, H. Koroglu

Abstract—Robustness against disturbances is one of the key
aspect for stable gait and balance of bipedal robots. This work
presents a method to optimize trajectories to withstand a force
on the center of mass that cannot be counteracted without
changing the planned trajectory. These trajectories are obtained
by transcribing the optimization problem to a direct collocation
problem, which is solved as a non-linear problem via an interior
point method. This study shows that optimizing for robustness
for bipedal robots leads to more trajectories that are more robust
against disturbances on the CoM.

I. INTRODUCTION

Disturbance rejection against unknown forces is an impor-
tant aspect of maintaining balance for legged robots. When
an unknown external force is applied to a legged robot, it can
cause the robot to fail to track the original trajectory, slip, or
fall over. This failure occurs due to the robot facing physical
limits such as friction or motor torque limits. Therefore, it
is useful to take these limits into account when planning a
trajectory and stay as far away as possible from them. This
is especially important for lower limb exoskeletons as these
can be considered as a legged robot with disturbances coming
from the user.

Considering physical limitations is already widely done in
trajectory planning for legged robots. The planning of the
trajectory of the robot can be performed both offline and
online. When a trajectory is planned offline, all necessary
joint positions, velocities, and torques to perform a movement
are determined beforehand. This planned trajectory is then
executed by low-level controllers that can control the joint
angles and/or torques. In online planning, the trajectory is
planned and simultaneously executed by low-level controllers.
The advantage of online planning is that the trajectory can
be replanned when facing an unexpected disturbance. A way
to implement online trajectory planning is model predictive
control (MPC). MPC is an iterative control strategy that
optimizes trajectories for a specified period of time using a
model of the robot it controls. Each timestep the horizon of
the time period is shifted and the trajectories are optimized
again given the current state of the system [1].

Considering friction limits when planning trajectories can
be done by using the contact wrench cone (CWC). The CWC
contains all contact wrenches on the center of mass (CoM)
of the robot that satisfy the friction constraints [2]. As long
as the contact wrenches are in their CWC the planned motion
can be performed without slipping. Multiple works showed
that this can be used to generate stable gait or balance [3]–[5].
However, more constraints apply to bipedal robots, e.g. torque
and configuration limits. To include these constraints in the

planning of trajectories, the CWC can be extended to a feasible
wrench polytope (FWP). The FWP contains all wrenches that
comply with friction, actuation, and configuration limits [6].
The FWP is a combination of the contact wrench cone (CWC)
and the actuation wrench polytope (AWP). The AWP contains
all wrenches that satisfy all configuration and torque limits
of the robot, so these are the wrenches that the robot can
generate given the current configuration of the robot and the
torque limits of the actuators [6]. Multiple works have been
published that successfully used the FWP in the planning of
trajectories of their robots [6]–[8].

Even though these methods result in stable gait and/or
stances, the ‘level’ of robustness is rarely considered. This
level of robustness is especially important for exoskeletons
since they continuously experience disturbances from the user.
When the planned trajectory gets close to the limits, a small
disturbance can lead to the robot falling or slipping.

Orsolino et. al. consider a robustness metric when planning
a trajectory [6]. They compute an FWP using a vertex de-
scription. The stability metric they use is the amount the FWP
can shrink while still containing the gravito-inertial wrench.
This metric is optimized when planning the trajectory of the
robot. They were able to implement this in online trajectory
optimization. However, they use a quadrupedal robot instead of
a bipedal robot. Furthermore, during the generated gait only
one of the legs moves during a step. This allowed them to
assume quasi-static conditions during the optimization. Also,
they assumed that the FWP does not change when performing
a step. These assumptions are not valid when planning gait
trajectories for bipedal robots.

Ferrolho et al. proposed a method using the smallest un-
rejectable force (SUF) [9], [10]. They defined the SUF as
the smallest force that cannot be rejected without changing
the original trajectory. They optimized the SUF on the 6-DoF
end-effector which was mounted on a quadruped. The results
showed increased robustness against disturbances on the end-
effector. However, the optimization was only performed and
tested during stance and not during locomotion.

This work optimizes trajectories for bipedal robots while
maximizing the SUF on the CoM. The contributions are
threefold. First, it assesses the robustness for disturbances on
the CoM instead of an end-effector. Second, the robustness is
also tested during locomotion instead of only during stance.
Thirdly, the robustness is optimized on bipedal robots instead
of quadrupeds. The outcome of this work could show that
optimizing for robustness leads to a more stable gait.
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II. METHODS

This section describes the used methods of this work. First
the used model and the used optimization technique will be
discussed. Hereafter, the implementation of the optimization
algorithm is discussed.

A. Model Formulation

A legged robot can be modeled as a floating body with
limbs attached to it. This work uses a 7-DoF planar model of
a bipedal robot, as shown in Fig. 1. The vector of generalized
coordinates is denoted by q. The Equation of Motion (EoM)
of the floating frame interacting with its environment can be
written as:

M(q)q̈+C(q̇,q)q̇+ g(q) = Su+ JT
λ (q)λ+ JT

com(q)κ,

(1)
where M(q) is the mass matrix that describes the rotational
and translational inertia of the system; C(q̇,q) describes the
Coriolis and centripetal behavior of the system; g(q) describes
the potential forces in the system; S is a selection matrix that
maps the joint torques u to the actuated generalized forces;
JT
λ (q) maps the ground reaction forces (GRF) λ to generalized

forces; JT
com(q) maps a force κ on the center of mass (CoM)

to generalized forces. To convert the EoM to an equation that
describes the dynamics, the EoM is rewritten to:

q̈ = M−1(−C(q̇,q)q̇− g(q) + Su+ JT
λ (q)λ+ JT

comκ).

(2)
This expression is used to define a function that describes the
dynamics.

ẋ =

[
q̇
q̈

]
= f(q, q̇,u,λ,κ). (3)

Fig. 1: 7-DoF bipedal model, with generalized coordinates and
contact points. q1 and q2 are the x and y-coordinate of the upper
body. The angle of the upper body is q3. The angles of the hip, knee,
and ankle joints are q4 − q9.

B. Trajectory Optimisation

In trajectory optimization, non-linear programs (NLP) are
used to optimize trajectories. The optimizer tries to optimize
an objective function under a set of constraints. To be able to
use an NLP to solve the optimization problem, the continuous
time optimization problem has to be converted to a discrete

optimization problem. For this a direct transcription method is
used, also known as collocation. The first step in collocation
is to write the continuous time problem into a discrete-time
problem [11]. This is done using so-called knot points. On
each knot point, all variables need to be defined:

t → [t0 t1 . . . tN ] ,

x → [x0 x1 . . . xN ] ,

ẋ → [ẋ0 x1 . . . ẋN ] ,

(4)

where N is the number of knot points; t is the time;
x =

[
qT q̇T

]T
and; ẋ =

[
q̇T q̈T

]T
. To make the

transition of states between knot points physically possible,
a set of constraints is set on the dynamics. The dynamics are
approximated with some quadrature method. The idea is that
the state change of the system between knot points is equal
to the integral of the approximation. This work uses first-
order trapezoidal collocation for integration. The first-order
trapezoidal integration constraints are defined as:

xk+1 − xk − hk

2
(fk+1 + fk) = 0. (5)

Where xk+1 are the states on the next knot point, xk are the
states on the current knot point, hk is the time step between the
knot points, and fk+1 and fk are the output of the dynamics
on both knot points, as defined in Eqn. 3. A derivation on how
to formulate this constraint is given in Appendix A.

C. Problem Formulation

To improve convergence for the robust trajectory generation,
the process is split into three parts. First, a trajectory is
generated that does not take into account any robustness
metrics. The second step is to obtain the robustness metrics
for the trajectory found in the previous step. The last step is to
use the found trajectory and robustness of the previous steps
as an initial guess for the robust optimization. This method
is an adapted version of the method described by Ferrolho
et al. [10]. In the following subsections, each step will be
discussed.

1) Non-Robust Trajectory Generation
Two parts are essential to construct an NLP: the decision

variables and the constraints. The decision variables are the
states of the system and the forces (in this case the ground
reaction forces and the joint torques) acting on the system
at each knot point. So the vector of decision variables z is
defined as:

z =
[
xT
0 uT

0 λT
0 xT

1 uT
1 λT

1 · · · xT
N uT

N λT
N

]T
. (6)

Next, constraints should be defined. Three sets of constraints
will be defined: boundary constraints, collocation constraints,
and contact constraints.

Boundary constraints constrain the decision variables. Those
are needed because the decision variables are physically con-
strained in reality, e.g. joints have maximal angles, actuators
have torque limits, and GRFs have to be positive in the y-
direction as feet cannot pull on the ground.

The next set of constraints is the collocation constraints, as
given in Eqn. 5.
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Last, constraints regarding contact with the ground need to
be constructed, these differ when the foot is in contact with
the ground. Three types of constraints are involved; constraints
regarding foot velocity, foot position, and constraints regarding
the GRFs. There are two constraints for position and velocity.
The y-position of the contact point of the foot that is in contact
with the ground should be equal to zero, if not in contact,
it should be larger than zero. In addition, during contact,
the horizontal velocity of the foot should be equal to zero,
if not in contact it is unconstrained. These constraints are
mathematically represented as:

Cc(z) =





pfoot
y = 0 Contact

vfoot
x = 0 Contact

pfoot
y ≥ 0 No contact.

(7a)

(7b)

(7c)

When in contact the GRFs should be within the friction cone.
When the GRFs are within the friction cone, the foot does not
slide. The constraint that the GRF is within the friction cone
is described by:




−1 −µ
1 −µ
0 −1



[

λx
k

λy
k

]
= Aλλk ≤ bf =




0
0
0


 , (8)

where µ is the static friction coefficient, λx and λy are the
horizontal and vertical component of λ respectively and k is
the current knot point index. When the foot is not in contact
the GRFs are equal to zero. Note that these constraints need to
hold for all contact points, so each contact point has a set of
GRF constraints. Whether a foot is in contact with the ground
is determined beforehand for each knot point and contact
point, this will be referred to as the contact sequence. The
contact sequence was based on the human contact sequence
during gait [12]. Using all the constraints, the total NLP can
be defined as:

min
z

1

N

N∑

k=1

(wuu
T
k uk + wλλ

T
k λk) s.t.

xLB ≤ xk=2,...,N−1 ≤ xUB

uLB ≤ uk ≤ uUB

0 ≤ λy,k

xLB
1 ≤ x1 ≤ xUB

1

xLB
N ≤ xN ≤ xUB

N

xk+1 − xk − hk

2
(fk + fk+1) = 0

(9a)

(9b)

(9c)
(9d)

(9e)

(9f)

(9g)

Cc(z) =





pfoot
y,k = 0 Contact

vfoot
x,k = 0 Contact

Aλλk ≤ bf Contact

pfoot
y,k ≥ 0 No contact

λk = 0 No contact.

(9h)

(9i)

(9j)

(9k)

(9l)

Here Eqn. 9e and Eqn. 9f, are additional constraints on the
initial and final state to enforce a movement from the start
location to the goal.

2) Obtaining Robustness Metrics
By solving Eqn. 9, a locally optimal trajectory is obtained,

but the robustness metrics still need to be found. This subsec-
tion will discuss what the robustness metric is and how it is
used in the forming of the NLP.

The robustness is defined as the largest inscribed hyper-
sphere, of which the radius is called the Chebyshev radius,
inside the polytope formed by the GRF and torque constraints.
The larger the radius, the more stable the system is against
disturbances on the CoM. Fig. 2 shows a two-dimensional
example of a polytope with the largest inscribed ball in it.

Fig. 2: Schematic example of a 2-dimensional polytope, with the
largest inscribed ball in it. The black lines indicate hyperplanes that
define the halfspaces. The green area is the polytope defined by these
halfspaces. The red dot is the center of the largest inscribed sphere
(the blue circle).

The conversion of this idea to an NLP is an adaptation of
the work of Ferrolho et al. [9]. First, extended torques and
GRFs are defined. These are the combination of the planned
torques and GRFs plus the contributions of the disturbance
force to them, which is represented as:

u+ = u+Kuκ (10)

λ+ = λ+Kλκ, (11)

where Ku and Kλ are matrices that map the force on the CoM
to the joint torque space and GRF space respectively. There
should be no variation in position, velocity, and acceleration
if we were to be robust, substituting Eqn. 10 and Eqn. 11 in
the EoM gives:

0 =
(
SKu + JT

λKλ + JT
com

)
κ. (12)

Next, Eqn. 10 and Eqn. 11 can be used to redefine the torque
constraints and friction cone constraints:

Auu
+ ≤ bu (13)

Aλλ
+ ≤ 0, (14)

where bu is a vector of torque limits. In the next step, each
row is taken from Eqn. 13 and Eqn. 14, then Eqn. 10 and
Eqn. 11 are substituted in these equations, this gives:

au,i (u+Kuκ) ≤ bu,i (15)

aλ,i (λ+Kλκ) ≤ 0. (16)

Here, au,i is the ith row of Au,i and aλ,i is the ith row of
Aλ,i. All points Kuκ inside the ball have to satisfy ||κ|| ≤ ρ,
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where ρ is the radius of the ball. To find the largest radius,
the following equation needs to be solved:

au,iu+ sup
||κ||≤ρ

{au,iKuκ} ≤ bu,i (17)

The largest value of κ is obtained when au,iKu and κ are
parallel. This gives:

au,iu+ ||au,iKu|| ρ ≤ bu,i. (18)

The same holds for the GRF constraints:

aλ,iλ+ ||aλ,iKλ|| ρ ≤ 0. (19)

To remove the bilinear product, Kuρ and Kλρ are redefined
as Kuρ = Ku and Kλρ = Kλ. Substituting this in Eqn. 12,
18 and 19 gives:

SKu + JT
λKλ + JT

comρ = 0, (20)

au,iu+
∣∣∣∣au,iKu

∣∣∣∣ ≤ bu,i (21)

aλ,iλ+
∣∣∣∣aλ,iKλ

∣∣∣∣ ≤ 0. (22)

Due to the structure of S in Eqn. 20, the number of decision
variables can be reduced by splitting the equation:

[
0
I

]
Ku = −

[
J
Tupp

λ

J
Tlegs

λ

]
Kλ −

[
J
Tupp
com

J
Tlegs
com

]
ρ (23)

Where I is an identity matrix. From the top part an equality
is obtained:

J
Tupp

λ Kλ + J
Tupp
comρ = 0 (24)

From the lower part of Eqn. 23 an expression for Ku is found,
which is substituted into Eqn. 21:

au,iu+
∣∣∣
∣∣∣au,i

(
−J

Tlegs

λ Kλ − J
Tlegs
com ρ

)∣∣∣
∣∣∣ ≤ bu,i. (25)

The last constraint is that the radius should be positive:

ρ ≥ 0. (26)

Next, the NLP can be constructed. First, matrix Kλ is trans-
formed to a vector:

rKλ =
[
kλ,1 kλ,2 · · · kλ,Nr

]
, (27)

where kλ,i is the ith row of Kλ and Nr is the number of rows
of Kλ. Next, the decision variables are defined:

zr =
[

rKλ,0 ρ0 rKλ,1 ρ1 · · · rKλ,N ρN

]T
, (28)

Hereafter, the NLP can be defined as:

min
zr

1

N

N∑

k=1

−wρρk s.t.

J
Tupp

λ,kKλ,k + J
Tupp

com,kρk = 0

aλ,iλk +
∣∣∣∣aλ,iKλ,k

∣∣∣∣ ≤ 0

au,iuk +
∣∣∣
∣∣∣au,i

(
−J

Tlegs

λ,k Kλ,k − J
Tlegs

com,kρk

)∣∣∣
∣∣∣ ≤ bu,i

ρk ≥ 0,

(29a)

(29b)

(29c)

(29d)

(29e)

where all torques, GRFs, and Jacobians are obtained from
the solution found in Eqn. 9. Since the interior point method

that solves Eqn. 29 uses the gradients of the constraints, the
norms in Eqn. 29c and Eqn. 29d can give computational errors
when the norm approaches zero. To overcome this problem,
a small constant is added to the calculation of these norms in
the final implementation. However, this raises a new problem
when solving Eqn. 29. When the found trajectory of Eqn. 9
approaches the torque and GRF limits, the added constants
in the norm cause the problem to become infeasible. To
overcome this problem a slack variable s is introduced. The
slack allows the optimizer to find a solution even when the
problem is infeasible. By adding the slack to the objective
function the slack will be zero unless the optimizer cannot
satisfy the constraints without the slack variable. Adding this
slack leads to the following NLP, changes compared to Eqn. 29
are colored blue:

min
zr,s

1

N

N∑

k=1

−wρρk+wss
2
k s.t.

J
Tupp

λ,kKλ,k + J
Tupp

com,kρk = 0

aλ,iλk +
∣∣∣∣aλ,iKλ,k

∣∣∣∣+sk≤ 0

au,iuk+
∣∣∣
∣∣∣au,i

(
−J

Tlegs

λ,k Kλ,k − J
Tlegs

com,kρk

)∣∣∣
∣∣∣

+sk≤ bu,i

ρk ≥ 0,

(30a)

(30b)

(30c)

(30d)

(30e)

3) Robust Trajectory Generation
The robust NLP formulation is a combination of the NLPs

presented in Sec. II-C1 and Sec. II-C2. Combining these gives
the following NLP, changes compared to
Eqn. 9 are colored blue:

min
z,zr,s

1

N

N∑

k=1

(wuu
T
k uk + wλλ

T
k λk

−wρρk + wss
2
k) s.t.

xLB ≤ xk=2,...,N−1 ≤ xUB

uLB ≤ uk ≤ uUB

0 ≤ λy,k

xLB
1 ≤ x1 ≤ xUB1

xLB
N ≤ xN ≤ xUB

N

xk+1 − xk − hk

2
(fk + fk+1) = 0

J
Tupp

λ,kKλ,k + J
Tupp

com,kρk = 0

au,iuk+
∣∣∣
∣∣∣au,i

(
−J

Tlegs

λ,k Kλ,k − J
Tlegs

com,kρk

)∣∣∣
∣∣∣

+sk ≤ bu,i

ρk ≥ 0

(31a)

(31b)

(31c)
(31d)

(31e)

(31f)

(31g)

(31h)

(31i)
(31j)

Cc(z) =





pfoot
y,k = 0 Contact

vfoot
x,k = 0 Contact

aλ,iλk+
∣∣∣∣aλ,iKλ,k

∣∣∣∣
+sk ≤ 0 Contact

pfoot
y,k ≥ 0 No contact

λk = 0 No contact

Kλ,k = 0 No contact.

(31k)

(31l)

(31m)

(31n)

(31o)

(31p)
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III. EVALUATION TECHNIQUE

To assess the influence of optimizing robustness, the system
needs to be disturbed. To be able to disturb the system with
the SUF, the direction has to be determined as the optimizer
only returns the magnitude. The method to determine the
SUF direction will be discussed first. Hereafter, the method
of disturbance rejection will be discussed.

A. Determine SUF Direction

The NLP returns the magnitude of the SUF, but not the
direction of it. The direction of the SUF is where the ball
touches the constraints. Consider Eqn. 13. The normalised
vector perpendicular to this constraint ξ is given by:

ξ =
KT

ua
T
u,i∣∣∣∣KT

ua
T
u,i

∣∣∣∣ . (32)

Substituting ξ into Eqn. 13 gives:

au,i (u+Kuξρ) ≤ bu,i. (33)

The SUF direction is found when

au,i (u+Kuξρ)− bu,i = 0. (34)

The same can be applied to GRF constraints, which gives:

aλ,i (λ+Kλξρ) = 0. (35)

When the solution of Eqn. 31 is substituted in Eqn. 34 or
Eqn. 35 and it holds, the SUF with its direction is found. The
SUF itself is then given by:

SUF = ξρ. (36)

B. Disturbance Rejection

To investigate the disturbance reaction a new NLP is
created, as this resembles one timestep of an MPC control
scheme and can show how the system would behave when
implemented in an MPC framework. An ideal observer is
assumed as the optimizer knows the exact disturbance force.
From the obtained trajectories from the previous sections, a
point in time is chosen to apply a disturbance. This point
is now referred to as the instance of disturbance (IoD). In
this instance, a linear disturbance force is applied to the
CoM. From that instance, the trajectory to the initial goal is
calculated again, with the original solution from that point
as an initial guess. To simulate the real-life behavior, the
optimizer cannot adjust the torques, positions, and velocities at
the first knot point. So they have to be the same as the initial

guess at the IoD. This leads to the following NLP, changes
compared to Eqn. 31 are colored blue:

min
z,zr,s

1

N − IoD

N∑

k=IoD

(wuu
T
k uk + wλλ

T
k λk

− wρρk + wss
2
k) s.t.

xLB ≤ xk=IoD+1,...,N−1 ≤ xUB

xLB IoD ≤ xIoD ≤ xUB IoD

xLB
N ≤ xN ≤ xUB

N

0 ≤ λy,k

uLB ≤ uk ≤ uUB

uLB IoD ≤ uIoD ≤ uUB IoD

xk+1 − xk − hk

2
(fk + fk+1) = 0

J
Tupp

λ,kKλ,k + J
Tupp

com,kρk = 0

au,iuk +
∣∣∣
∣∣∣au,i

(
−J

Tlegs

λ,k Kλ,k − J
Tlegs

com,kρk

)∣∣∣
∣∣∣

+ sk ≤ bu,i

ρk ≥ 0

(37a)

(37b)

(37c)

(37d)
(37e)

(37f)

(37g)

(37h)

(37i)

(37j)
(37k)

Cc(z) =





pfoot
y,k = 0 Contact

vfoot
x,k = 0 Contact

aλ,iλk+
∣∣∣∣aλ,iKλ,k

∣∣∣∣
+ sk ≤ 0 Contact

pfoot
y,k ≥ 0 No contact

λk = 0 No contact

Kλ,k = 0 No contact.

(37l)

(37m)

(37n)

(37o)

(37p)

(37q)

C. Software

The NLP is constructed in MATLAB 2022b. CasADi was
used to automatically compute the gradients of the NLP [13].
Finally, IPOPT was used to solve the NLP [14].

IV. RESULTS

To evaluate the generated trajectories and thereby also
evaluate the performance of the proposed method, the behavior
is studied during two tasks. One task is a standing task in
which the robot has to stand and move its upper body 6 cm
forward. During the other task, the robot has to walk 2 m
in 5 steps at predefined contact instances. First, the overall
robustness is determined for different wρ during a standing and
walking task. This shows the relation between the weight on
robustness and the increase in robustness. To see how a more
robust trajectory is achieved by the optimizer, the differences
between robust and non-robust trajectories for both tasks will
be evaluated. This is done by comparing the torques, GRFs,
and trajectories.

Besides investigating the robustness of the planned trajec-
tories, it is also important to assess the difference in behavior
when disturbed. The SUF defines the maximum force in any
direction that can be rejected without changing the originally
planned trajectory. However, the robot can also encounter
disturbances larger than this force. Therefore the extent to
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which the system can handle forces larger than the SUF will
be tested as well. Last, the robustness after a disturbance is
evaluated to see the influence of optimizing for robustness in
a disturbance rejection strategy.

A. Influence of the Weight on Robustness

Two sets of trajectories are generated, one for the standing
task, and the other for the walking task. The average ρ over
the whole trajectory for different weights on the robustness
is shown in Fig. 3. In general, the robustness is higher
when a higher weight on the robustness is applied, with an
exception for no weight on robustness when walking. If the
weights get too high the algorithm sometimes fails to converge.
The optimum between robustness and steady convergence is
roughly around a weight of 1–2. It is also notable that there
is only a small increase in overall robustness during walking
for higher weights on the robustness compared to the increase
during the standing task. For small weights, it even seems
to barely influence the overall robustness. This is probably
because, during double support, the optimizer can adjust the
stance to increase robustness, which is not possible during a
single stance, this higher robustness during double stance is
visible in Fig. 8.
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Fig. 3: Average ρ for standing and walking tasks with different
weights.

B. Non-Robust Vs. Robust Trajectories

In this subsection, the difference between non-robust
(wρ = 0) and robust (wρ = 1) trajectories will be discussed
for both tasks. First, the standing task will be discussed, after
this the walking task with humanlike contact sequences and
the walking task with longer contact sequences, more like
exoskeletons .

1) Standing
Fig. 4 shows the magnitude of the SUF during the standing

task. The robustness is higher over the whole trajectory when
it is optimized for robustness.
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Fig. 4: Magnitude of the SUF during non-robust and robust while the
upper body has to move 6 cm forwards.

Fig. 5 shows 3 snapshots of the standing tasks of the non-
robust and robust trajectory. In the figure can be seen that
the optimizer widens the stance to increase the robustness.
Also the GRFs point ‘inwards’ to be more resilient against
disturbances. This wider stance does increase the joint torques.
This is shown in Fig. 6.
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Fig. 5: Snapshots of the stance and GRFs during the standing task.
On the left the snapshot of the non-robust optimization is shown,
and on the right of the robust optimization. The blue arrows show
the normalized GRFs on the left foot, and the red arrows show the
normalized GRFs on the right foot. Note that these GRFs are only
shown for t = 0.44s

Fig. 7 shows the GRFs for each contact point over time for
both non-robust and robust trajectories. It shows that during
the non-robust trajectory, the x-direction of the GRF on each
contact point is close to zero. For the robust trajectory the
GRFs on the left foot are increased in the x-direction and on
the right foot the force is increased in the negative x-direction.
This could also be seen in Fig. 5. Fig. 7 also shows that there is
a higher GRF on the left heel during the start of the trajectory
and a higher GRF on the right toe at the end of the trajectory.
This means that the weight distribution has shifted during the
movement. This happens to a lesser extent during the robust
optimization, so the weight is distributed more evenly over the
contact points during the whole trajectory.
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Fig. 6: Torques for each joint during non-robust and robust while the
upper body has to move 6 cm forwards.
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Fig. 7: GRFs over time for each contact point during the standing
task for both non-robust and robust optimization.

2) Human-Like Walking
Fig. 8 shows the magnitude of the SUF during the walking

task. It shows that the magnitudes are very similar during the
non-robust and robust trajectories, with the exception that in
the robust trajectory, the magnitude of the SUF is on average
slightly higher.

Fig. 8: Magnitude of the SUF during non-robust and robust while
walking 2 meters in 5 steps. The grey areas indicate double stance

This similarity is also visible in the trajectories, shown in
Fig. 9. The trajectories are almost identical, there are only
small differences in foot placement. The GRF and joint torques
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Fig. 9: Snapshots of the configurations during the walking of 2 meters
in five steps at different time instances. On the left the non-robust
walking is shown on the right the robust walking. The lightest gray
shade is the initial position and black is the final position.

also show similarity. The joint torques, shown in Fig. 10, the
shape of the trajectories is the same, only during the robust
trajectory, the torques are slightly higher. The GRFs follow a
similar pattern during non-robust and robust trajectories, with
the only exception that during robust optimization there is a
higher spike in forces when making or breaking contact. This
can be seen in Fig. 11
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Fig. 10: Torques for each joint during non-robust and robust walking.
The gray areas indicate the double stance phases.

Fig. 11: GRFs over time for each contact point during the walking
task for both non-robust and robust optimization. The gray areas
indicate the double stance phases.

3) Walking Longer Double Stance

Exoskeletons are currently not capable of walking using
human contact sequences. They have longer double stance
phases when walking. Therefore, it is useful to assess the
behavior of the optimization on a more practical contact
sequence. Due to the longer double-contact phases, the robot
can cover less distance. Fig. 12 show the radius over time with
30% double contact phase. It shows that during the double
stance phase, the magnitude of the SUF is higher for the robust
trajectory than for the non-robust.

Fig. 12: Magnitude of the SUF during non-robust and robust while
walking 1.5 meters in 5 steps. The grey areas indicate double stance

Fig. 13 shows the trajectories for the non-robust and the
robust trajectories. The non-robust trajectory takes 5 small
steps to cover 1.5 meters. The robust trajectory takes first a
small step back to be able to make two larger steps that are
more robust.
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Fig. 13: Snapshots of the configurations during the walking of 1.5
meters in five steps at different time instances. On the left, the non-
robust walking is shown on the right the robust walking. The lightest
gray shade is the initial position and black is the final position.

C. Disturbance rejection

This subsection shows the behavior of the system when
disturbed. A disturbance force is applied to the robot during
two trajectories in the walking task. As stated before, a linear
disturbance force is applied to the robot while walking. This
disturbance is applied in single stance phase or double stance
phase. The instances of the disturbances are shown in Fig. 14.
Multiple tests will be performed to assess the difference in
the reaction to a disturbance between a non-robust and robust
initial trajectory, and the difference between a non-robust and
robust reaction to the disturbance. The latter is important when
the optimization is implemented in an MPC framework.

Since the SUF itself is defined as the smallest that the
robot cannot counteract without changing its trajectory, it is
interesting to see the difference in the handling of disturbances
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Fig. 14: Magnitude of the SUF during robust and non-robust trajec-
tories with points of disturbance.

larger than the SUF. Note that in this case, the robot has to
adjust its trajectory.

To make sure that the force is outside the feasible polytope,
the disturbance force is applied in the direction of the SUF. It
is tested on what magnitude of force the optimizer can find a
feasible solution. The results are shown in Tab. I. To have a
fair comparison the forces applied at the non-robust trajectory
are in the same direction as the force applied at the robust
trajectory. The table shows that in single stance the maximum
disturbance that can be handled is slightly larger in single
stance and more than double as large in double stance phase.
This is similar to the behavior of the SUF which is also higher
in double stance.

TABLE I: Maximum perturbation in SUF direction that can be
rejected using robust rejection strategy.

Trajectory Max perturbation force (N)
Single stance Double stance

Non-robust 1500 1600
Robust 1600 3700

The difference in reaction of a non-robust and robust rejec-
tion strategy to a disturbance is tested on the robust walking
trajectory. A disturbance of 0.9 times the SUF is applied during
single stance and double stance. Note that these disturbances
are applied in separate simulations. Fig. 15 shows the SUFs
over time for each disturbance for both a non-robust and robust
rejection strategy. The difference in reaction to a disturbance
is in line with the difference between non-robust and robust
trajectory generation. The non-robust rejection strategy leads
to slightly lower SUFs after the disturbance than the robust
rejection strategy. This holds for disturbance during single
stance and double stance.

Fig. 15: Magnitude of the SUF during robust and non-robust rejection
strategies at two different instances of disturbance.

V. DISCUSSION

The goal of this work was to implement an optimization
algorithm that would generate trajectories that are robust
against disturbances on the CoM. The results show that during
the standing task, the robustness is greatly increased when
optimized for it. During walking the increase in robustness
is smaller. The effect of the optimization for robustness is
more clear in the walking with a longer double stance phase.
When there is a longer double stance phase the optimizer takes
a larger step which results in a wider stance, which is more
robust. Ferrolho et al. [9] showed that their quadruped adjusted
its stance to increase the robustness. This work shows that this
also holds for bipedal robots when standing. As an addition,
this work shows that there is also an increase in robustness
against forces larger than the SUF. In the single contact phase
or swing phase, there was only a small increase in SUF. This is
expected as in single contact the robot is inherently not robust
against disturbances. Orsoline et al. [6] were able to perform
a more robust gait, also during the swing phase. However, it
was performed on a quadruped so it could adjust it stance of
the other three legs while walking to improve robustness. This
cannot be done when walking with a bipedal robot.

Besides an increase in the SUF, there is also an increase
in disturbance rejection for disturbances greater than the SUF.
The results showed, during both single and double stances, im-
provement in the resistance against perturbations. The results
also showed an increase in robustness after encountering a
perturbation when optimizing for robustness. This is beneficial
when multiple disturbances are encountered sequentially.

However, there are also some limitations. First of all, a
planar model is used. This can influence the results of the
robustness, especially during double stance and standing. In
these scenarios, a wider stance is used to increase robustness.
In a three-dimensional scenario, this would probably not be
as effective. A wider stance in the anteroposterior direction
does not increase robustness in the mediolateral direction and
vice versa. Still, it would be beneficial to implement robustness
optimization in a 3D model. It will improve the robustness and
a slightly more robust stance can be the difference between
falling and maintaining balance when disturbed.
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If 3D simulations yield positive results, another limitation
has to be overcome before it can be implemented in practice.
This limitation is the computational time. At this point, the
most time-consuming step is generating the initial guess for
the robust NLP. This can take up to 5 minutes when planning
a trajectory for the walking task. By using an educated
guess instead of 2 optimizations, the computational time can
decrease tremendously. However, the total algorithm would
still be too slow to implement online. The robust optimization
also takes several minutes while ideally, the algorithm would
run at 100Hz. To be able to implement the optimization online,
other methods could be investigated. For instance, learning the
behavior of the optimizer to a neural network could be a way
to reach online implementation as this can run at the required
speed.

Also, some useful extension of the algorithm would be
to remove the dependence of the pre-specified foot contact
timings. This increases the freedom of the optimizer and
therefore it could improve robustness during both planning the
trajectory and reacting to a disturbance. Methods as performed
by Van Gils can be considered for this [15]. However, this
would most likely lead to an increase in computation time.

VI. CONCLUSION

This work presents an adjusted method to describe and
optimize robustness for bipeds. Robustness is defined as
the Chebyshev radius of the polytope defined by the GRF
and torque constraints. This radius is mapped to a force
on the CoM, which results in the SUF on the COM. This
type of optimization has two advantages compared to non-
robust optimization. First, a robust trajectory leads to a higher
disturbance resistance, which means the system can handle
larger disturbances before failing the desired task. Second,
incorporating robustness in disturbance handling leads to a
higher robustness after a disturbance. This is beneficial when
multiple disturbances are encountered.

For future work, the algorithm should be implemented in
a model predictive control framework. This way real-world
behavior can be simulated and the algorithm can be fully
validated. If these results are positive, the computational time
should decrease to be able to implement it in an online model
predictive control framework.
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4 General Discussion and Conclusion

This section will discuss the outcome of this research. First, some shortcomings and possible improvements
will be highlighted. Next, the steps to real-world implementation will be discussed. It ends with a conclusion
on what extent the goal of the thesis is reached.

4.1 Improvements and Additions to the Current Algorithm

Although the algorithm performs well, some issues could improve the performance if resolved. First, it should
be investigated whether second-order trapezoidal collocation can be used instead of first-order trapezoidal
collocation. According to literature, second-order trapezoidal collocation leads to smaller dynamical errors
in similar computation times [10]. The second-order method was implemented in the algorithm, but it led to
unwanted behavior in the program. This resulted in the robot moving from position between two collocation
points, while the velocity on both collocation points was zero. This is due to the nature of second-order
collocation, where a second-order polynomial approximates the velocities (see Appendix B for the exact
equations used in second-order trapezoidal collocation). This made it possible that the velocity can be zero
on the collocation point, but the integral of this could be non-zero. This resulted in a position change.
The problem was tried to be solved using extra constraints on the position, where the foot position was not
allowed to move during contact. This led to poor convergence of the optimizer. It should be investigated
if revising the contact dynamics and constraints can lead to the successful implementation of second-order
trapezoidal collocation.

Also, during the walking task, robustness is higher for no weight on the robustness than for low weight
on the robustness. This is contrary to what is expected. It could be explained by the fact that the solver
has to solve a ’different’ problem, as it uses other objectives and constraints. Besides, another initial guess
is used. This could also lead to another local optimum.

A useful extension of the algorithm would be to remove the dependence on the pre-specified foot contact
timings. Currently, the used contact timings are based on the contact timings on human contact timings.
This is sufficient when planning a trajectory. However, when disturbed, the same contact sequence is used
as it would when not disturbed. This could lead to suboptimal behavior, as having contact sooner or later
could be beneficial to counteract the disturbance. Removing the dependence on contact timings, the freedom
of the optimizer increases and therefore it could improve robustness. Methods as performed by Van Gils can
be considered for implementing this in the NLP [11].

4.2 Steps to Real World Implementation

To be able to implement the algorithm into a real-world application, the motion plan should be executed. A
logical step is to implement this into a model predictive control framework, as this is also based on optimal
control. It often uses collocation but with a receding horizon. Using model predictive control, the behavior
of the algorithm can be planned while it is run in real-time. If this yields positive results, the model should
be extended to a three-dimensional model. The last step would be to decrease the computational time to
be able to implement the algorithm online. In the current version, three optimizations are done to obtain a
robust trajectory, of which 2 are used to obtain an initial guess for the robust trajectory. Instead of using
two separate optimizations, it could be better to use an estimated guess of the trajectory to improve the
computation time. Although this would greatly improve the computational time of robust trajectories, it
will not be fast enough to be implemented online. A solution to this could be to learn the behavior of the
algorithm to a neural network, which then can be implemented in an online control framework.

4.3 Conclusion

This thesis contributes by showing that optimizing for robustness can improve the stability of biped robots.
The level of robustness against disturbances is defined as the Chebyshev radius of the polytope defined by
the GRF and torque constraints. This radius is mapped to a force on the CoM, which results in the SUF

17



on the COM. The results showed that optimizing for robustness leads to a higher average SUF over the
total trajectory in all tested situations. This means that the robot can withstand higher forces on the CoM
without replanning the trajectory. This is beneficial for planning trajectories for exoskeletons as the user
can generate larger forces without influencing the trajectory of the exoskeleton. This work also showed that
optimizing for robustness leads to the rejection of higher disturbances in situations where the optimizer can
adjust the trajectory. This could also improve the stability of exoskeletons since the disturbances coming from
the user can be larger than the SUF. Last, this work showed that optimizing for robustness when handling
a disturbance leads to higher robustness in the rest of the trajectory. This is advantageous when multiple
disturbances are encountered sequentially.
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[13] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming”, Mathematical Programming, vol. 106, no. 1, Mar. 2006.

[14] N. Andrei, Modern Numerical Nonlinear Optimization (Springer Optimization and Its Applications). Cham: Springer
International Publishing, 2022, vol. 195.

19

https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury


A First-Order Trapezoidal Collocation Constraint Derivation

In first-order collocation, the integration is approximated by a second-order polynomial [7]:

x(τ) = a+ bτ + cτ2

ẋ(τ) = b+ 2cτ.

(1a)

(1b)

Three unknown coefficients need to be found, so three known conditions are used:

x(0) = xk

ẋ(0) = ẋk

ẋ(hk) = ẋk+1.

(2a)

(2b)

(2c)

Here hk is the timestep between the collocation points. By substituting Eqn. (2) into Eqn. (1), the following
expressions for the coefficients are obtained:

a = xk

b = ẋk

c =
1

2hk
(ẋk+1 − ẋk).

(3a)

(3b)

(3c)

Substituting these coefficients into the interpolation polynomials gives, note that ẋk = fk and ẋk+1 = fk+1:

x(τ) = xk + fkτ +
τ2

2hk
(fk+1 − fk) ,

ẋ(τ) = fk +
τ

hk
(fk+1 − fk)

(4a)

(4b)

To find the collocation constraints, the interpolation polynomial is evaluated at xk+1 = x(hk):

xk+1 = xk + fkhk +
h2
k

2hk
(fk+1 − fk) ,

xk+1 = xk + fkhk +
hk

2
fk+1 −

hk

2
fk,

xk+1 = xk +
hk

2
(fk + fk+1) .

(5a)

(5b)

(5c)

B Second-Order Trapezoidal Collocation Constraint Derivation

For second-order trapezoidal collocation, the interpolating polynomial of q(τ) is of order three [10]. So for a
given interval, the polynomials for position, velocity, and acceleration are given by:

q(τ) = a+ bτ + cτ2 + dτ3

q̇(τ) = b+ 2cτ + 3dτ2

q̈(τ) = 2c+ 6dτ.

(6a)

(6b)

(6c)

To find the coefficients a, b, c, d, four conditions need to be imposed:

q(0) = qk

q̇(0) = q̇k

q̈(0) = q̈k

q̈(hk) = q̈k+1.

(7a)

(7b)

(7c)

(7d)

20



Here hk is the timestep between the collocation points. By substituting Eqn. (7) into Eqn. (6), the following
expressions for the coefficients are obtained:

a = qk

b = q̇k

c =
1

2
q̈k

d =
1

6hk
(q̈k+1 − q̈k).

(8a)

(8b)

(8c)

(8d)

Substituting these coefficients into the interpolation polynomials gives:

q(τ) = qk + q̇kτ +
τ2

2
q̈k +

τ3

6hk
(q̈k+1 − q̈k)

q̇(τ) = q̇k + q̈kτ +
τ2

2hk
(q̈k+1 − q̈k)

q̈(τ) = q̈k +
τ

hk
(q̈k+1 − q̈k).

(9a)

(9b)

(9c)

To find the collocation constraints, evaluate qk+1 = q(hk) and q̇k+1 = q̇(hk). When simplified this gives:

qk+1 = qk + q̇khk +
h2
k

6
(q̈k+1 + 2q̈k)

q̇k+1 = q̇k +
hk

2
(q̈k+1 + q̈k).

(10a)

(10b)

C Interior Point Method for Nonlinear Programming

In this section, a brief description will be given about the mathematical idea behind the working of interior
point solvers for nonlinear programs. Interior point solvers are made to solve problems with the following
structure:

zmin J(z) s.t.

c(z) = 0

z ≥ 0.

(11a)

(11b)

(11c)

To be able to solve the nonlinear problem as given in sec: 2.1, the constraints need to be rewritten. This is
done using a slack variable, which is here notated as s. s is defined as:

s ≡ g(z)− b (12)

This gives:
f(z) = 0

g(z)− b− s = 0

}
c(z) = 0

z ≥ 0
s ≥ 0

}
z ≥ 0,

(13a)

(13b)

which is the standard form used for the interior point method.

The next step is to write the inequality constraints on the decision variables into the objective function. This
is done using a barrier function:

zmin J(z)− µ

n∑

i=1

ln (zi)

s.t. c(z) = 0.

(14a)

(14b)
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A natural logarithm is used as a barrier function since this is not defined for inputs smaller than or equal to
zero. However, the value increases rapidly when the input of the barrier function approaches zero. This leads
to solutions that lie further for the constraints, while this might not be the optimal solution to the initial
problem. To overcome this the variable µ is introduced. For small µ the barrier function gets ”steeper”,
therefore a small µ is preferred. To find a solution the NLP is not solved directly, but a sequence of barrier
problems with decreasing positive µ values [12]. The optimal solution is found when the solution satisfies the
so-called primal-dual equations [13]:

∇J(z) +∇c(z)λ− y = 0

c(z) = 0

ZYe− µe = 0,

(15a)

(15b)

(15c)

where λ are the Lagrange multipliers, yi =
µ
xi
, Z = diag(z), Y = diag(y) and e is a row vector of ones to make

the dimensions work. For µ = 0 and y, z ≥ 0, the equations of Eqn. (15) are called the Karush–Kuhn–Tucker
(KKT) conditions. To solve the posed barrier problem in Eqn. (14), a damped Newton’s method is applied
to the primal-dual equations in Eqn. (15) For more details on the damped Newton’s method, see sec: C.1.
Applying Newton’s method on Eqn. (15), the following equation is obtained:




Wk Ak −I
AT

k 0 0
Yk 0 Zk






dz
k

dλ
k

dy
k


 = −




∇f (zk) +Akλk − yk

c (zk)
ZkYke− µje


 , (16)

where index j denotes the ’outer loop’ of decreasing µ, k denotes the index of the ’inner loop’ of Newton’s
method, Wk is the Hessian of the Lagrangian function, Ak = ∇c(z) and dz

k,d
λ
k ,d

y
k are the search directions.

The next step is to update the current values of the decision variables, this is done using:

zk+1 = zk + αkd
z
k

λk+1 = λk + αkd
λ
k

yk+1 = yk + αy
kd

y
k.

(17a)

(17b)

(17c)

Here α is the stepsize, more detailed information about how this stepsize is obtained, is described in sec: C.1

C.1 Newton’s Method

Newton’s method is an iterative method that is used to find the solution of a set of nonlinear algebraic
equations [14]. Consider a set of continuous differentiable nonlinear equations:

F(x) = 0. (18)

Newton’s method is interested in finding a point x∗ such that F(x∗) = 0. Let x0 be initial guess for x∗. This
value can be substituted in Eqn. (18) to see the result of the estimation. The outcome is the error:

ϵe = |F(x0)| . (19)

If ϵe is smaller or equal to a user-defined tolerance, the solution is found. If not, a more accurate estimate
should be found. To obtain a better estimate a first-order Taylor series around the current estimate is used

F(xi+1)|xi+1≈xi
= F(xi) + J(xi)(xi+1 − xi) = 0, (20)

where J(x) is the Jacobian of F(x). Since the approximation is a linear function, the new estimate can be
determined analytically:

xi+1 = xi − J(xi)
−1F(xi). (21)
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For the new estimate, the error is checked. If it is within the tolerance, the estimate is accepted as the
solution. When the tolerance is not met, the difference with the previous estimate is checked:

ϵs = |xi+1 − xi| . (22)

When the difference is smaller than the user-defined tolerance, the algorithm is stopped. This is done to
prevent the algorithm from doing many iterations without improving the solution significantly. Otherwise,
the algorithm continues with the next iteration. Newton’s method only guarantees local convergence. When
the initial guess is far away from the solution, it is not guaranteed that the Hessian of F(xi) is positive
definite. This problem is solved using a line search. This type of Newton’s method is called the damped
Newton’s method [14]. By taking a second-order Taylor expansion, the descent direction is given by:

dk = −∇2F(xk)
−1∇F(xk). (23)

The next iterate is then found by:

xi+1 = xk + αkdk, (24)

where αk is the stepsize obtained by the line search. This is done using:

αkmin F(xk + αkdk), (25)

with αk. The same stopping criteria are applied for the damped Newton’s method as for the ’normal’
Newton’s method.
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