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ABSTRACT

In this thesis, a methodology has been researched and developed to aid in the decision-making
process of Energy Management Systems (EMS). Current solar energy forecasting methods
forecast the expected energy production of solar panels at certain points in the future, called
point forecasts. However, due to a lack of information about the environment the solar pan-
els will be in, caused by the unpredictable nature of the weather, point forecasts cannot fully
describe the future.

Therefore, a different modelling method has been researched and developed that takes this
uncertainty into account and provides additional information to the energy management sys-
tem about this uncertainty. This is done by forecasting a probability distribution of the expected
solar energy generation of the PV installation. Probability distributions describe possible future
outcomes and their likelihood, instead of point forecasts which represent one possible future.
Given the different nature of probabilistic forecasts, the traditional methodology and data used
for point forecasts need not apply to probabilistic forecasts. Therefore, new forecasting meth-
ods and data sources have been investigated that are best suited for probabilistic solar power
forecasting, without it being based on assumptions on point forecasts.

The models designed in this thesis have been analysed to see how performance and relia-
bility is influenced by weather conditions and how model specific features are related to this
behaviour. The models were implemented and tested on an embedded device to verify the
feasibility of the methodology for real-life applications. Additionally, different use cases and
methods are provided in this thesis on how these probabilistic forecasts can be interpreted
to enhance an EMS’ operation and how it allows for unique applications that are not possible
using point forecasts. Based on the findings in this thesis, new research directions to improve
EMS robustness can be identified.
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CHAPTER 1

INTRODUCTION & PROBLEM
STATEMENT

In the last few years, a rising trend is observed in the energy market towards sustainability, as
is concluded by the International Energy Agency in their World Energy Outlook 2023 report [1].
They found that the global investment into clean energy has risen by 40% between 2020 and
2022. One of the key players in this transition is solar power, of which a total of 220GW capacity
worldwide was installed in 2022 alone. This market has seen many positive developments in
their manufacturing cost, energy efficiency, and durability. These key factors made choosing
solar panels more attractive and as a result the solar market has been gaining popularity.

There are however issues that still need to be addressed in order to make solar power a
better fit for the energy market. Current fossil based power plants have the advantage of being
predictable and adjustable in their power output. This is in contrast to solar and wind power,
whose power generation depends on external factors and are as such not always a good fit
for new power plants. The main problem is that solar power, like wind power, is dependent
on the weather around its location. The evolution of weather over time is however known to
be difficult to predict, two big issues here are the approximation of the actual behaviour of
the weather and the uncertainty in current conditions [2]. These predictions always have a
level of uncertainty and as a result make predicting the expected solar power output difficult
as well. This uncertainty is a problem for the stability of the electricity grid [3]. Mainly because
fluctuations in the production give rise to degradation of the distribution infrastructure and an
imbalance to the supply and demand of electricity can be costly for grid operators to rectify.
Therefore, a more active type of control is needed to reduce these imbalances and fluctuations,
Smart Grids can fulfil this need.

1.1 Smart Grids

With the growing need for more robust energy grids and increased energy efficiency, many
improvements have been made to the systems that control how energy is used. Stimulated
by the rising contribution of renewable energy, smarter and more reactive systems have been
developed to tackle the problems caused by the intermittent and unpredictable power produc-
tion. These digital systems span from simple solar power prediction applications to various
other applications in the energy sector, these systems are as a whole called Smart Grids (SG)
[4].

SG is a broad term and applies to numerous applications, this however does not really give an
indication of the variety and possibilities that they enable. In general, they are digital systems
that measure, monitor, and manage energy usage of interconnected components connected to
the same energy grid. These networks can actively collaborate, making the grid more resilient
to disruptions and optimize grid operation to ensure each user receives an efficient and reliable
service. Smart grids can range from small to large energy girds, or consist of a many small
grids called microgrids that together form a larger grid. Another facet of SG is Demand Side
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1.2 – Problem Statement

Management (DSM) [5] that, with the use of Energy Management Systems (EMS), aim to
steer energy usage, for example to reduce peaks in energy consumption, or to reschedule
energy consumption when energy is abundant. By doing this, operational costs can be reduced
and the stability of the energy grid can be improved. Steering energy usage can be done
dynamically by controlling energy prices so users who are able to reschedule are incentivised
to do so, or are compensated if they cooperate.

Energy Management Systems (EMS) are the systems which provide the services and func-
tionality needed to manage or control the Smart Grids. On a smaller scale and in a similar vein
to microgrids, an EMS can be used to manage a few locally interconnected devices. This could
be for example a solar park with battery storage, or a car park with Electric Vehicle (EV) charg-
ers [6]. For an EMS scheduling the charging of EVs, which can use locally generated power
from solar panels, the influence of inaccurate solar energy forecasts can be more significant
on this smaller scale, as is described in [3]. In [7] such an algorithm is proposed for scheduling
EV charging by using the available headroom between the base load and a maximum charg-
ing power variable called the fill-level. This fill-level variable is set according to the amount of
energy requested to charge the vehicle within the available time and the availability of energy.
This methodology produces accurate results in most cases, except where the electric vehicles
are charged with PV power. The algorithm is less effective for cases with a smaller energy
request due to the variability in available solar energy and low energy requirements. The re-
search done in [8] builds on top of this algorithm by combining solar power forecasts with the
power availability from the grid, but also notes that the actual charging profile deviates from the
planning due to solar power forecast errors.

1.2 Problem Statement

The aim of this thesis is to provide more robust and reliable solar energy forecasts for energy
management systems, such that issues caused by inaccurate forecasts can be mitigated or
taken into account. To do this, a hypothetical EMS example is introduced in this thesis to
function as a reference point when design decisions need to be made, it also aids as a demon-
strative tool to indicate how each part fits into the bigger picture. This EMS is based on an EMS
used by the University of Twente for research purposes called SlimPark [9]. The SlimPark site
is a car park located on the University’s campus, which is partially covered by a total of 27 kWp
solar panel array which are connected to 9 EV chargers, a 30 kWh battery, and the local power
grid [6]. The demonstrative EMS application in this thesis would be responsible for charging
electrical vehicles using as much local solar energy as possible, with the goal to provide a re-
liable and robust service. The definition and the control algorithms of the EMS itself is outside
the scope of this thesis, the focus will remain on the forecasting part of the system.

In Figure 1.1, the evolution of power generated by the SlimPark solar panels is shown for four
different days to give an idea of how much the generated power by solar panels can vary
between days, as well as within a day. Predicting the behaviour of the power is difficult due
to the imperfect information known about the future, as well as the many facets that influence
the power output of solar panels. The research field has seen many endeavours to improve
the quality of these forecasts. Most research focusses on accuracy to achieve better quality
forecasts, but forecast accuracy does not directly imply better performance by the systems
that use these forecasts. This is concluded by [10], which promotes choosing and optimising
forecasting models based on the consequences of forecast errors alongside overall accuracy
of the forecast.
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Figure 1.1: Generated power by solar panels on four different days at the SlimPark car
park.

Many energy management systems currently use point forecast models to tackle the issues
caused by the ever-changing weather on PV power generation. Point forecasts predict the
power generated by solar panels, which an EMS uses to base its control decisions on. Point
forecasts are however limited in the information they can provide, as only the expected value of
the future power production is forecasted by the model. These forecast models are not perfect
and might differ from reality. These inaccuracies in the forecasts can lead to an EMS making a
bad decision, which can have consequences for the service that these systems provide. If an
EMS could have more information about what might happen in the future and how likely that is
to happen, it could make better decisions that in turn makes the system more robust to these
anomalies.

Recently, new wind forecast methodologies are preferring probabilistic forecasts to point fore-
casts as a way to tackle this issue [11]. Probabilistic forecasts give insight into the uncertainty
of the future power generation, by estimating the spread of values the future power can take
and how likely each value is to happen. In 2014 the Global Energy Forecasting Competition
was held, a competition to forecast load, price, and solar and wind energy. The results of this
competition, together with a small survey of the state of probabilistic forecasting in this field,
have been bundled in [12]. For probabilistic wind power forecasting, the results did show good
maturity, attested to the fact that wind power is closer to meteorological forecasting where prob-
abilistic forecasting is well-established. However, the probabilistic forecasting of solar energy
was deemed not mature enough at the time. A more recent survey [13] however, has shown an
increased interest and improvements in probabilistic forecasting of solar energy due to recent
advancements in artificial intelligence.

The main theme in probabilistic forecasting of solar energy has been to increase its forecasting
accuracy [13]. Less attention has been given to practicality and feasibility of these forecasts
as most studies kept their contributions as theoretical models without implementation in mind,
as was noted by [10]. Therefore, more research needs to be done to see how these forecasts
would fit in real-life EMS applications and how their requirements or behaviour would differ with
point forecasts.

1.3 Research Questions

Weather is inherently unpredictable and as such the weather forecasts also have a degree
of uncertainty. This level of uncertainty is however not always represented when looking at
the results. The output of these forecasts are the most likely values to happen in the near
future. But these situations do not always happen, and the predictions can sometimes be off
by a significant amount. This makes it difficult to have solar energy as a predictable energy
source. In order to reduce the errors of these predictions, an effort can be made to improve

3



1.4 – Thesis Outline

the accuracy of the solar energy production. Although this would be the best solution, it might
be very difficult or even unachievable given spatial, temporal or computational constraints. But
instead of trying to predict the correct future, it might be enough to provide information of
how likely that prediction is to happen or the range of values the future might be in. Thus,
instead of focusing on accurate predictions, a focus on informing the user of the uncertainty in
each forecast might be enough. This would allow an EMS to be aware of the possible futures
and thus make strategic choices, minimising possible risks and thus making these systems
more robust to this ambiguity. This overall objective is best represented by the following main
research question:

“How can the reliability of energy prediction of solar panels be improved?”

This question would, on its own, be difficult to answer and depends on the context. As such,
some accompanying questions are made to guide the research and give scope to the directions
that are explored.

Question 1: What data can have a meaningful contribution to predicting the expected
solar output power of solar panels and its uncertainty?
To answer this question, research has to be done on what data is available and can be used
in real time as well. These types of data can then be tested to see if it shows correlation with
the solar output. And thus give an answer to this question. It is possible that the model used to
predict solar power might have an influence on the actual usefulness of the data, as such the
outcome of this question should not be regarded as a hard truth, but as a guide for selecting
data that should be tested with in this thesis.

Question 2: What methods can be used to make these predictions more reliable?
To answer this question, a list of possible methods must be researched that can help achieve
the desired results. Attention should be taken to how these models can provide additional data
about the end result, as they don’t have to produce the same metrics.

Question 3: How can the reliability of the predictions be assessed?
For this question, first the performance metrics found in the literature study are used to find
a common ground on what reliability entails and how it can be quantified. The found models
should then be evaluated using these metrics to find possible drawbacks these models might
have. This can be done for example by correlating the models’ accuracy with potential states
the environment can be in.

Question 4: Are the found models practical and resource efficient solutions for real-
world applications implemented on an embedded device?
Embedded devices have limited resources available to make these types of predictions with.
Therefore, the models made in this thesis should also adhere to these architectural constraints.
Otherwise, the models would perform well in theory, but have no practical use in a real world
application. There may be trade-offs necessary to make the models work on an embedded de-
vice, hence the size and computational complexity of the models should be taken into account
during the selection process.

1.4 Thesis Outline

• Background: In this chapter, the necessary background information is given on the
current state of solar energy prediction, as well as the core concepts the thesis builds

4



Chapter 1 – Introduction & Problem Statement

upon. In Section 2.1 the different types of solar energy predictions are discussed. Then,
in Section 2.2 the different types of data that are commonly used for these predictions are
listed. In Section 2.3 the noteworthy methodologies that are used to predict solar energy
are discussed. Alongside this, in Section 2.4 an introduction into probability is given
explaining the necessary concepts of probability used in this thesis and how probability
can be used for predicting solar energy.

• Methodology: Chapter 3 describes the methodology used for creating the forecasting
models, together with the different data sources that are used in this thesis. In Section
3.2 the description of the overall model is given alongside explanations of its subcompo-
nents and how they are connected as a whole. Each component has their design and
parameters discussed separately in their own sections.

• Experiments & Results: This chapter explores different model configurations based on
the parameters discussed in Section 3.2 and selects the best performing model configu-
ration for further analysis. First, the test setup is described in Section 4.1, after which the
experiments exploring the different model configurations are discussed in Section 4.2.
The final models are then compared in Section 4.3 with a benchmark model to assess
the reliability of the found models, these models are tested based on overall performance,
data dependencies, and embedded characteristics. From these results, the practical ap-
plication of these forecasts in energy management systems are discussed in Section 4.4.
At the end of the chapter, the results are discussed and summarized in Section 4.5.

• Conclusion: Lastly, in the conclusion, the research questions are answered in this chap-
ter to wrap up the thesis along with recommendations for future work.

5



CHAPTER 2

BACKGROUND

In this section, more information is given on the different types of solar energy forecasting,
how they are impacted by environmental factors, and the current state of PV-power forecast-
ing methodology. The information discussed here is supported by three survey papers that
focused on this field of research. The first survey [11] focused on the different deep learning
methods used to predict solar and wind energy and what data is used to make these predic-
tions. The second survey [14] focused on the data-mining methods used in this field. The
third survey [13] is aimed at probabilistic forecasting of solar energy and energy consumption,
showing similarities and gaps in research and providing individual discussions of the results in
the studies. This last survey is a recommended read for a wider and more in depth background
on solar energy prediction. In addition to these surveys, more specific example studies related
to answering the research questions were explored. The results of this research are divided
into the relevant subjects for this thesis.

2.1 Types of Predictions

Current endeavours in the field of energy prediction focus on a wide range of applications. For
example, accurate solar power generation forecasts for better scheduling in energy markets
[15], or integrating PV in smart grids [16, 17, 18]. The different types of predictions specific to
solar energy used in literature can broadly be described by three, and often related, character-
istics. They consist of the type of energy it predicts, the spatial, and the temporal characteristics
of the prediction.

1. Energy type In literature, there are two types of energy predicted by models. The first
predicts the amount of solar energy radiated onto an area, as is done in [19, 20, 21, 18].
The second type predicts the electrical energy generated by the solar panel [22, 23]. The
models predicting the electrical energy often use the output of solar energy prediction
models as an input for their own predictions. Some studies present models for both
types, as is done in [15].

2. Spatial The spatial horizon and resolution characteristic is the scale and detail for which
the prediction is meant. Smaller scale prediction models are more common for single PV
installations, which can be optimised for their specific environment. This characteristic
is more prevalent in studies predicting the output power, as local variables can influence
the power production [24, 25]. Larger scale predictions predict for single or multiple
areas and are more common in solar irradiance prediction [21, 19, 20] as it is more
universally applicable and varies less over larger areas compared to the power production
of individual solar panels.

3. Temporal The temporal horizon and resolution characteristics describes the amount of
time the complete prediction spans and the time between consecutive samples. This
can be for the intraday forecasts with a resolution in the minute or hour range [26, 27,
18, 23, 28], or for day-ahead predictions [15, 21, 29] which span one or more days in
the future, often with a one-hour resolution [13]. Several studies [30, 19, 27] state that
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Chapter 2 – Background

models predicting up to 4 hours in the future generally perform better when using past
measurements and observations, while 6+ hour predictions using data from Numerical
Weather Prediction (NWP) models give better results.

2.2 Data

Each application has its own requirements and as such its own set of data it relies on. The
literature reviewed for this thesis select their data from a wide assortment of sources and
parameters. These parameter selections can differ significantly from study to study, as is
evident from the three surveys [11, 14, 13] where the datasets and application are listed per
study. These choices are commonly based on the availability of the data, the application,
and prediction requirements, its hypothesized significance to the output, or are determined
by a correlation analysis or heuristic. In this section, first an overview of these types of data
and their uses are given. After which a summary of possible sources for this data is listed and
discussed. Lastly, in the conclusion, a summary is given relating the research to the application
of this thesis.

2.2.1 Types of Data

The two most prominent types of data used in PV-power forecasting are past power observa-
tions and meteorological variables that describe the weather in the area. There are however
many possible parameters used to describe the weather, but not all of them are relevant to
PV-power generation. As such, the most commonly used meteorological parameters as found
in [13] are discussed here.

2.2.1.1 Meteorology

The influence of weather on the performance of solar panels is a well acknowledged concept in
solar energy prediction. As such, the inclusion of meteorological variables is very common in
these studies. Meteorological variables describe the atmospheric properties that drive weather
processes around the world. These variables such as temperature, humidity, cloud cover, and
solar irradiance can have a direct impact on the power output of solar panels. Other meteoro-
logical variables also have an impact, although indirectly or help give a better impression on
how the future weather will evolve over time, such as air pressure and wind speed impacting
the movement of clouds for example. Here, the most commonly used meteorological variables
used in literature are explained by group and how they are used in practice.

Generic Parameters

• Temperature is derived for both the surface and air. The air temperature (◦C or K) is
often given at different pressure levels or altitudes in the atmosphere, the most commonly
used being the air temperature at a height of 2m. The temperature directly impacts the
electrical power generated by PV-panels, as is discussed in [24] where an increase in
temperature negatively impacts the produced power of a solar panel. But as noted in
[25] and [24], the ambient temperature can differ significantly from the PV panel temper-
ature. Both conclude the PV panel temperature is more closely correlated to the power
production, but temperature sensors are not always present at every PV installation.

• Air pressure or atmospheric (surface) pressure comes from the weight of the air above
pressing down. As a more general description, pressure is the force applied to an area
(1N/m2 = 1Pa). The atmospheric pressure given in weather reports is expressed as if

7



2.2 – Data

measured at the average sea level, not at the actual surface altitude of the region. The
latter is also used in models and is called the atmospheric surface pressure. It is however
not always clear which version is used in studies when air pressure is mentioned.

• Wind speed is expressed at multiple pressure or altitude levels, with 10m elevation being
the most common. There are two common ways the wind speed is expressed. Either as
UV components where the wind speed is considered from two orthogonal directions, for
example North/South and East/West each have their own wind speed(m/s). The other
is the wind speed(m/s) relative to the surface of the earth and the direction it is going
relative to north (◦).

• Total Column Water is the amount of liquid water, ice, rain, water vapour and snow
present in an imaginary vertical column expressed as (kg/m2). Each component listed
here can also have its own separate variable, as each component can behave differently.
In the case of solar radiation, each component has different absorption and scattering
characteristics altering the sunlight passing through the volume, which in turn influences
the path and intensity of sunlight reaching the surface depending on the amount of water
present in the column.

• Relative Humidity (RH) is the concentration of water vapour pressure in the air com-
pared to the saturation pressure point of air. At 100% relative humidity, when the air is
fully saturated, water vapour will turn through condensation into water droplets. Or when
it is cold enough and at low enough pressure, turn water vapour into ice through depo-
sition. This variable indicates possible accumulation of water on the PV panels through
condensation, which refract and scatter light and influences the productivity of the PV
panel. This saturation pressure point depends on the temperature and pressure of the
air, colder air can hold less water vapour while warmer air can hold more. Its inverse, the
dew point, is the temperature at which the air at its current water vapour concentration
and pressure would reach 100% relative humidity and saturate. This measure is more
akin to how we would experience “dry” or “humid” air. At higher altitudes, both the air
pressure and temperature are lower, which reduces the saturation point and in the right
circumstances allows condensation or deposition to form clouds.

Clouds have multiple characterizations in weather descriptions that try to capture its com-
plex nature while giving useful and quantifiable measures that apply on a more macro scale.
Common examples used in solar energy prediction are:

• (Total) Cloud Cover is a value between (0-1) which describes the amount of cloud cover
over a certain region relative to the size of the region. For total cloud cover this spans
the entire vertical height of the atmosphere, but can also be given for separate levels in
pressure. A weighted version of cloud cover exists where the weight is the amount of
light let through by the cloud, this gives an indication of how much light is blocked by the
cloud as seen from the surface.

• Cloud height expressed in meters (m) gives the top of the cloud in that region. Its
inverse, cloud base height, gives the lowest altitude a cloud can be found, excluding fog.

• Total Column Cloud is very similar to the previously mentioned Total Column Water. But
only the liquid water and ice water, excluding rain and snow, that are part of the clouds in
the same vertical column are estimated. Rain and snow would fall under Precipitation.

• Precipitation is the amount of liquid or frozen water that falls on the earths surface within
a certain time frame and area. Its unit is commonly a height where the volume spread
evenly over a unit area has one dimension remaining m3/m2 = m, but it can also be
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expressed with respect to its mass as (kg/m2). The precipitation is given for two distinct
types based on the atmospheric conditions at that time, called large-scale and convective
precipitation. Large-scale precipitation releases its water more evenly over time, whereas
convective precipitation can release large amounts of water in a short amounts of time
but nothing outside of that. As the precipitation describes the accumulated amount, this
behaviour would not be evident when looking at the combined value alone.

Solar Irradiance is a meteorological variable used in most studies on solar energy prediction.
It describes the amount of electromagnetic energy radiated by the sun and going through or
hitting a unit of surface per unit of time (J/(m2·s)), or in the more frequently used form (W/m2).
Solar Radiation on the other hand would refer to the total amount of solar energy received by
that surface accumulated over time (J/m2) and should not be confused. Solar Irradiance is
used as an input for PV modelling, or as an output to predict solar irradiance for areas where
sensors are not necessarily available. It comes in multiple forms:

• Direct Normal Irradiance (DNI) describes the radiation hitting a surface on earth which
is directly facing the sun. This variable is also called Beam Normal Irradiance in some
cases, or Beam Horizontal Irradiance when measuring irradiance relative to a horizontal
surface.

• Diffuse Horizontal Irradiance (DHI) describes the radiation hitting a horizontal surface
at ground level from all directions, excluding the direction of the sun. This radiation is
generalised to be uniform for all other angles, as the term diffuse implies.

• Global Horizontal Irradiance (GHI) is the total amount of radiation from the sun hitting
a horizontal surface at ground level and is the weighted sum of DNI and DHI:

GHI = DHI +DNI ∗ cos(zenith)

Where zenith is the angle between the direction of the sun and the direction orthogonal
to the horizontal surface. The cosine factor rectifies the contribution of DNI to match what
the direct irradiance would be if measured on a horizontal plane.

• Plane Of Array (POA) is the total amount of radiation from the sun hitting a tilted surface
at ground level. This is most similar to a PV panel installation. This can directly be mea-
sured by sensors or approximated from the previous variables. A simple and common
model for approximating the POA is the sum of direct radiation, reflected radiation, and
radiation from the atmosphere. It is formulated as follows:

POA = direct+ reflected+ diffuse

= DNI ∗ cos(AOI) +GHI ∗ albedo ∗ 1− cos(tilt)

2
+DHI ∗ 1 + cos(tilt)

2

Here AOI is the angle of incidence between the direction of the sun and the direction
the surface is facing, tilt is the angle of incidence between the surface and the horizontal
ground, albedo is the reflection coefficient of the ground, i.e. the ratio between the radi-
ation hitting the ground and the amount of radiation reflected off the ground. The DNI,
DHI and GHI variables give more generic descriptions of the solar irradiance compared
to POA. This is because POA depends on a specific tilt and albedo of the environment
for it to work, which is more akin to a PV installation. Hence, when predicting the ex-
pected power production of PV panels, the POA can be used as a method to reduce the
complexity of the model by reducing the number of variables from 3 to 1 and embedding
the PV configuration in the data. Evidence for this is given in [25] where the measured
POA shows a higher correlation with respect to the output power when compared to the
measured GHI.
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• Top-Of-Atmosphere (TOA) refers to solar irradiation as if measured at the top of the
atmosphere. This variable represents the amount of sunlight reaching the earth before it
is influenced by the atmosphere and can be a starting point to determine the DNI, DHI,
or GHI from. It can also be used to estimate how much solar energy would reach earth
as if it is a cloudless sky.

• Clear Sky Irradiance models the same variables as the DNI, GHI, and DHI for exam-
ple. It uses the same atmospheric conditions as the normal counterpart, but assumes a
cloudless sky in its model. This value is more stable over time compared to its counter-
part, as clouds can cause sharp fluctuations in the received irradiance within minutes [3].
As it ignores the influence from clouds, the impact of clouds on the irradiance can then be
modelled independently. As clouds attenuate the amount of sunlight by either absorbing
or scattering the light away, the Clear Sky Irradiance will generally follow the upper bound
of the irradiance that could be received at that point in time. In certain conditions, clouds
can scatter sunlight on the same surface as direct sunlight that is not blocked by clouds,
increasing the total irradiance received compared to the same situation with a clear sky.
This situation is most noticeable in short time spans and small areas where clouds are
just about to cover or just passed over the solar panel. For larger time intervals and ar-
eas this would not show up as the event only lasts a few minutes and would have been
averaged out. It is important to note that the Clear Sky Irradiance is modelled and cannot
be measured, unless it is a cloudless day, so the quality of the model is important and
should be taken into account when used.

• Clear Sky Index is calculated as the ratio between the actual DNI/GHI/DHI received
at the ground level and the Clear Sky Irradiance counterpart. It represents how much
clouds are interfering with the irradiance at the ground. Normally the ratio is in the (0-1)
range where 0 means fully occluded and 1 means clear sky, but as discussed before
can also produce peeks exceeding 1 in the right situations. In [28] the use of the Clear
Sky Index is discussed and instances are shown where the use of the Clear Sky Index is
discouraged in PV modelling. Although the Clear Sky Index does produce values closer
to the measurements in clear sky settings, the downside is that the uncertainty of the
ratio is amplified around sunrise and sunset where the Clear Sky Irradiance is small or
even 0 at night. And as discussed before, the Clear Sky Index will show large peaks
and fluctuations for small areas and time intervals when it’s cloudy, making it more useful
when predicting solar irradiation for larger areas and time intervals. The Clear Sky Index
is used in [20] as an analysis tool to show the relative performance of these model for
different clear sky conditions to see how well they handle varying cloud coverage.

• Clearness Index is very similar to the Clear Sky Index, but here it is the ratio between
the solar irradiance received at the ground relative to the irradiance at the top of the
atmosphere. It models the total influence of the atmosphere on the irradiance on the
ground. The Clearness Index generally has lower values compared to the Clear Sky
Index as in most cases the atmosphere attenuates the received irradiance, which was
already taken into account for the Clear Sky Index.

2.2.2 Data Sources

There are a few different sources where both the meteorological variables and PV-power data
can be obtained from. Each source has its advantages, disadvantages, and spatial and tem-
poral characteristics. Each source is discussed in their own section.
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2.2.2.1 Weather Stations

Weather stations are a reliable source of local meteorological variables with frequent and ac-
curate measurements. Their downside however is that the distance of these weather stations
relative to the point of interest influences how significantly their readings are correlated to the
point of interest as is shown in [15]. But these readings are still used in [20, 21, 18, 27] to predict
the solar irradiance. Or as is used in [15] the measurements are used to correct for biases in
solar irradiance forecasts with the actual observations improving performance. These weather
stations are often managed by national weather institutes such as the KNMI [31] managing the
weather stations in the Netherlands.

2.2.2.2 Radar and Satellite

As weather stations cannot be placed anywhere due to practical and economical constraints,
the gaps in measurements can be filled by satellite imagery and radar systems which observe
these meteorological phenomena from a distance. The most natural and well known example
of such an observation is cloud cover, where either a satellite’s or radar’s reading gets trans-
formed into cloud density based on the changed scattering of light due to clouds. Another
purpose of these satellites or radars is to predict a cloud’s density and their likelihood to pro-
duce rain. With their high spatial and temporal resolution covering large areas, their data are
useful for near future predictions, as is stated by the survey paper [13]. These readings are
also directly used in [32] for predicting future GHI based on a local sky imager and lagged GHI
readings. A review paper [33] which covers the use of satellite imagery independently recom-
mends persistence models near the minute prediction range, where it outperforms statistical
methods and neural networks.

A satellite specifically employed for this purpose is the SEVIRI satellite, shorthand for Spinning
Enhanced Visible and InfraRed Imager. It has 12 channels to measure parts of both the in-
frared and visible light spectrum with 3 km or 1.5 km spatial resolution, providing information
about both temperature and atmospheric composition. The data from this satellite is used by
[19] to provide live irradiance forecasting based on cloud movement, it outperforms standard
weather forecasts in the first 2–3 hours and also outperforms the smart persistence bench-
mark model in the first hour. These readings together with weather stations form the basis
of the CAMS solar radiation service, a reevaluation of the irradiance in the past made by the
Copernicus Atmosphere Monitoring Service.

2.2.2.3 Numerical Weather Predictions

The most common source of data are from Numerical Weather Predictions (NWP), they pre-
dict how the weather will evolve over time. These predictions are made available by different
meteorological institutes around the world. These predictions are based on data from weather
stations and satellite data around the world. Each institute has its own focus and/or speciality,
this difference can be based on the region it operates in or its purpose, like predicting naval
tides or rainfall. The type of forecasts mostly dictates the temporal and spatial resolution of
the weather prediction, as well as how far into the future the prediction goes. Therefore, these
forecasts can be obtained from different institutes around the world and are available in differ-
ent prediction formats, for example a 14-day ahead weather prediction with a per day statistical
description or a day ahead prediction with variables predicted for each time step into the future.
ECMWF [34] is one of such institutes focused on Europe and provides multiple datasets of its
past and present forecasts to be used in research. Often, near future predictions can be made
with higher temporal and spatial resolutions and overall accuracy, but only span a day at most.
These near future predictions are commonly used in solar power prediction, as the short term
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predictions are most important for regulating the energy grid and for giving an estimate of the
production for the day-ahead market.

The main advantages of using NWPs for solar irradiance predictions is that the data can be
used on its own without the need of additional sensors and can be accessed from anywhere
on earth as long as the installation has an internet connection. This allows for smaller models
that can be run on an embedded device as the heavy computation is offloaded onto a central
computer. Although the technology of NWP is steadily advancing and is made available with
greater accuracy, the data can still span multiple kilometres and is predicting the average
weather for that region, which might not apply for a location within that region due to nearby
environmental factors. This observation has been an inspiration for the research done in [15] to
improve the accuracy of the prediction. The improvement is based on site specific observations
and on neighbouring installations. There the RMSE score improved from a 36% for a single
station to 13% for the complete area of Germany.

The most common sources of weather forecasts are by the ECMWF with their High resolution
forecast (HRES) and Ensemble (ENS) forecast. The ECMWF also provides another weather
forecast on behalf of the Copernicus Atmosphere Monitoring Service, which uses the same
base model as ECMWF but with additional parameters estimating atmospheric compositions.
The national weather institute of the Netherlands also has its own NWP called HARMONIE-
AROME with a higher spatial resolution compared to the other NWP. The specifications of each
prediction model are listed in Table 2.1.

ECMWF HRES
[35]

ECMWF ENS
[36]

HARMONIE-
AROME
[37, 38]

CAMS [39]

Version 47r3 47r3 Cy40 47r3
#Forecasts 1 51 1 1
Time Horizon 10 days 15 days 2 days 5 days

Time Resolution 1h 3h 1h
1h(single level)
3h(multi level)

Spatial Horizon Global
Western Eu-
rope

Global

Spatial Resolution 0.1° x 0.1° 0.2° x 0.2° 0.05° x 0.05° 0.4°x0.4°
Vertical Levels 137 N.A. 137

Forecast start 00:00, 06:00, 12:00, 18:00
00:00, 06:00,
12:00, 18:00

00:00, 12:00

Available after 6h 7h 3h 10h

Table 2.1: NWP specifications

2.2.2.4 Local Measurements

Next to the NWP, it has also been observed that including local weather measurements into
the solar power predictions can give better accuracy, as shown in [24]. These improvements
are only significant for near future predictions (up to 3 hours) as the paper showed that taking
the state of the PV-installation itself has a significant impact on the power output. One such
variable is the temperature of the solar panels which might not match the ambient temperature
as computed by the NWP, which impacts the power output of the solar cells. Another study [25]
showed the impact of several variables that can influence the performance of solar cells, here
the correlation between humidity and the output power was noted to be a noticeable factor in
the prediction.
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However, depending on the PV-installation it might be that these measurements are not avail-
able as it requires additional sensors that have to be installed near the installation. For large
solar parks this might be a feasible addition, but for households an additional array of sensors
might not be worth the cost. Therefore, [30] employs the spatial and temporal correlation of
multiple PV-installations nearby to fill this gap by using the realized power production of these
installations as a substitute for a local weather measurement setup.

It should be noted that the correlation between measurements can differ significantly based on
the time resolution of the measurements and their distance apart. This has been studied in
[40] where the evolution of two clearness indices correlated over time is plotted as a function
of the distance they are apart, their correlation decreases significantly faster over distance as
the time resolution of the measurements increases from 60 minutes to 1 minute. Therefore,
the number of useful sources are limited to their locality and update frequency as temporal
resolution requirements increase.

2.2.2.5 Solar Power Logs

To predict the generated power of a PV-panel, one needs actual datasets of these measure-
ments. There are however not many publicly available datasets that have this information.
Hence, most papers opt for a locally sourced dataset or private datasets from solar companies
that cannot be shared. These measurements are either from one up to a few solar installations
or span a certain region, as can be seen in the datasets listed in the review papers [14, 13].
These recording usually don’t last more than a year. As a result, the training data is from the
same location and time as the data used to validate the model, leaving models that perform
well but are specialized for the data it has encountered. Meaning, the model is trained for that
specific location and time period, but when used in practice might not hold for other locations
and time periods as the model has never been configured with that data before. Hence, it is
difficult to compare models and justify the validity of said model, as is the conclusion of two
survey papers [14, 13].

An Australian study [3] from 2012 showed the possible pitfalls of integrating PV-installations
into the Australian energy grid. Based on measurements from solar parks, it discusses the
current situation, the problems that the volatility and unpredictable nature of PV-energy cause
and possible remedies for these problems. Key observations include that cloud coverage is
the main cause of the variability, which cause sharp fluctuations in the PV-output in less than
a minute, for which most NWP do not have the spatial or temporal resolution to be able to
predict these changes. It states that higher (temporal) resolution data is required to manage
solar intermittency issues. This would not necessarily apply to large solar parks due to the
area the panels cover, as the shade cast over the panels would change more gradually over
time compared to a single panel. It therefore proposes to also use the previous PV-output
as an input to the model to give a better estimate in which the range of future predictions lie,
as these can be measured directly and should always be available. It also states that high
impedance energy grids (small, local or rural grids) experience more frequent voltage swings
that can cause degradation of performance, or in some cases trip safety functions in the solar
inverters stopping the PV-output all together due to these quick fluctuations. Therefore, PV-
panel measurements with a temporal resolution of less than 1 minute are preferred.

2.2.3 Summary Data

In the field of solar and wind power prediction, there is a lack of commonality in benchmark
methods, datasets, and parameters used by these studies. The differences range from the
parameters used to the locality, time and time interval of the dataset. A big influence on the
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locality and time aspect is the lack of publicly available datasets of the actual power measure-
ments of these PV-panels. Therefore, most papers use their own datasets or have requested
private access to the data of local providers, resulting in a segmented state where comparing
methods becomes difficult and methods are adapted to the available data. This is a conclusion
which both the second and third survey share [14, 13]. This is not a problem if the purpose is
to use the model for those situations and share the findings, but claiming that one method is
generally better than another is more difficult to support. Next to this, a common issue among
the studies from the surveys and the specific ones listed here is that the data used is not doc-
umented well enough to reproduce the results. This is again a conclusion that both previously
named surveys share.

Furthermore, most parameters are selected based on their correlation with the output, this
however can limit the accuracy of the model as is shown in [25] where, although RH is not
correlated with the output its inclusion does lead to a better and more accurate model. The
(Pearson) Correlation test determines how linearly correlated two parameters are. When this
score is utilized in the selection procedure it assumes that the best parameters share a lin-
ear relation with the output, this is however a rather limited view on the problem. Firstly, the
assumption of a linear relationship would exclude non-linear relationships such as parabolas,
which can carry additional information. Secondly, two parameters together might give more
information about the environment than they would on their own, which is not covered in the
selection process. Lastly, the parameters might not directly correlate with the current output,
but can give better predictions for the future output if those parameters indirectly influence
other parameters in the future predictions. This makes selecting parameters rather restrictive
and can lead to models which might not perform at the best of their ability. So more tests with
different parameters per model need to be done before parameters are prematurely written off
or use a different method to select these features which improves on these drawbacks.

The common strategy in dataset selection is the use of an NWP as an input for the models and
are often augmented with local measurements if available, either from on-site measurements or
from weather stations nearby. Information about the installation environment is almost always
used to either pre-process the data or used in the model itself. Combining data from multiple
sources often show better performance in short term predictions compared to inputs on their
own, and are explored further in this thesis.
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2.3 Current Prediction Methods

Applying AI methods in solar power prediction is not new. Many studies show implementations
following popular AI methods or derivations of them. Both [11] and [14] conclude and recom-
mend that hybrid combinations of these methods give better accuracy and should be pursued
over the single method approach. Both papers cite over 50 papers each as a basis for their
conclusions. For more in depth information about the different methods and combinations, it is
recommended to look into these surveys.

In this section, some well regarded methods are described in Section 2.3.1 to give an idea of
what has been attempted before and their outcomes. After that, a few noteworthy architectures
related to the use cases of this thesis are discussed in Section 2.3.2.

2.3.1 Common methods

2.3.1.1 Linear Regression

Linear regression is a modelling approach where it is hypothesized that the output variable
y has a strong linear relationship with n other independent variables x = {1, x1, x2, ..., xn}.
As each variable has its own relation with the output, the contribution of each variable to the
final result has to be weighted by its significance as well, this weight is denoted as β. This
relationship is best described as the sum of all contributions where each input variable has its
own individually weighted contribution and can be formulated as follows:

y = β0 + β1x1 + β2x2 + ...+ βnxn + ϵ (2.1)

y = xTβ + ϵ (2.2)

ŷ = xTβ (2.3)
y = ŷ + ϵ (2.4)

Here β1 is the weight that is assigned to x1, β0 is the bias or offset parameter and is indepen-
dent of the input variables, ϵ denotes the error between the prediction ŷ and the actual output
value y.

In linear regression, the goal is to make the error ϵ as small as possible, such that the prediction
ŷ matches y as best as possible. To do this a loss function is used, loss functions give a
score, or loss, of how good the predictions made by the model are with respect to their error.
Common loss functions are the sum of the squared errors L(ϵ) =

∑M
i=m ϵ2i = ||ϵ||22 or any

other norm function. To find the optimal values of β the gradient of the loss with respect to the
weights is taken δL(ϵ)

δβ . Solving for δL(ϵ)
δβ = 0 with respect to β give the optimal values for these

weights.

Linear regression is often expanded upon by changing how the inputs are presented to the
algorithm. For example, one might instead of just providing x also provide x2 as an input, this
way the model xTβ is a polynomial fit of x to y. In this case x was squared, but any function
can be used to transform x first, as long as there exists a derivative of that function.

Some nice benefits of using linear regression are that its weights give direct insight into how y
would change relative to a change in x because of this linear relationship. Now the significance
of each input variable to the output can be understood immediately. A large magnitude for a
certain weight means a higher correlation with the output compared to a small magnitude. As
such, linear regression can be used for feature selection by sorting the input variables by their
weights and selecting the variables with the most significant contributions.
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2.3.1.2 Support Vector Machine

A Support Vector Machine (SVM) in its original form is a supervised learning method used for
classification problems. Classification is done by separating the two different classes with a
hyperplane and decide which side of the plane the sample belongs to. A hyperplane is defined
as: wTx − b = 0, where x is the input space or the feature space and w is a learned weight
vector that determines the slope of the hyperplane, b gives an offset to the plane. A sample xi
can be classified by taking the dot product of the learned weight vector w with the sample and
subtracting the bias b from it. Based on the sign of the result, the sample either lies above or
below the hyperplane, meaning it either belongs to class A or B. A 2D visual representation is
shown in Figure 2.1.

Figure 2.1: An example of a 2D SVM classification problem. Here the two classes are
separated by a hyperplane, of which the zero intersection is shown as the black line. The
red and blue shaded areas form the classification regions, where if a sample falls in that
area it is classified as such. In the transition area no classification is given to the sample.

In the original version the classification needs to have a minimal boundary between the inter-
section of the plane and the nearest sample, the optimization function requires this as the goal
of SVMs is to maximize the gap that is defined by the boundary between the two classes that
the hyperplane creates. This was defined as follows:

yi =

{
1, wTxi − b >= 1

−1, wTxi − b <= −1

This however requires the classes to be linearly separable, which in practise might not be the
case. To solve this issue, a different optimization objective can be used. Instead of maximizing
the gap between the classes, the distance from samples that are on the wrong side of the
plane is minimized. This allows the model to still give its best effort classification where it is
sometimes wrong, instead of not being able to give a classification at all. This different update
method is called the soft-margin approach and has multiple functions that can be used to
calculate the distance between the plane and the sample point.

SVMs are commonly used in combination with what has been called the “kernel trick”. With
this method, instead of trying to find which side of the hyperplane the sample is on using the
linear mapping wTxi− b, the SVM first maps the sample onto a higher dimension using a non-
linear kernel function. Classification is however still done with a hyperplane, but now acting on
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a higher dimensional feature space. SVMs have been used in [18, 27] to predict the generated
power of PV-panels.

2.3.1.3 Decision trees

Decision trees are hierarchical rule based classifiers. The decision-making is done by asking
questions (rules) about the data and based on the answers follow an associated path (branch)
to a next question or arrive at the classification result (leaf). An example is shown in Figure
2.2.

Figure 2.2: An example of a decision tree. Here the process starts at the arrow at the top,
where depending on the sample a path along the tree is followed until it ends up in a leaf
where the sample is classified.

Random (Decision) Forests are like decision trees. But here multiple trees are trained on
different parts of the training dataset or on different features. The results of each tree are then
combined to give, for example, for classification the probability for each class based on the
classification of each tree, or for regression a (weighted) average of each tree. This method
was used in [26] to estimate the IV-characteristics of the solar panel in the near future. Here
it showed a mean absolute error percentage (MAPE) of 0.13%, performing better than Neural
networks and with lower training and execution time. This method can be used as a last step in
predicting the actual PV-output, as the expected irradiance values can be used as an input to
this model. This step has shown high correlation with the actual environment of the PV-panel
as described in [25], and can improve the accuracy of the prediction over the use of a static
PV-model.

2.3.1.4 Artificial Neural Networks (ANN)

One of the most commonly known methods in the field of AI are Artificial Neural Networks
(ANN). These networks have been applied in various fields and purposes. The main advan-
tage of an ANN is its ability to approximate any continuous function, this is known as being a
universal function approximator. The most basic neural network is a dense-connected network.
A visual representation of a dense network is shown in Figure 2.3. Each node in a layer, also
called a neuron, computes the weighted sum of its inputs and a bias. This sum is known as the
activation. The output is the activation value after it is applied to an activation function. This
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function is often non-linear, as it allows the whole network to model non-linear behaviour. This
process for one layer can also be represented as follows: y = f(W · x + b).

Figure 2.3: An example of a dense neural network consisting of two layers. Each line
represents a multiplication of the input with the weight associated to that input and the
target node. The circle represents the node where the sum of all arrows is taken, and the
activation function is applied. This process is then repeated for each layer after that until
the final answer is obtained.

An ANN is trained by the use of a loss function, which describes how well the network per-
formed. This decision is based on the output of the network and its expected output. The
training algorithm then updates the network weights and biases or other trainable parameters
to find the solution for which the loss function is minimized. An example of such a training algo-
rithm is the gradient descent. Here, the weights are updated based on the derivative of the loss
function with respect to the output of the network. The new weights are updated in the direction
where the gradient of the loss function is lower, like a ball rolling down a hill. This update rule
can be described as follows where η represent how far it moves down the slope:

wi+1 := wi − η · ∇f(wi)

A downside of this algorithm is that it is possible to get stuck in a local minimum, as it always
moves down the slope. This can be helped by adding momentum to the update rule, or use
a more modern update rule like ADAM [41]. The problem of finding the most optimal solution
is however not only restricted to getting stuck in local minima. Another significant problem is
the solution space, which grows in dimension for each parameter that is learned. In a dense
network where each weight and bias are learned parameters, the solution space can grow
quite quickly. This often means more local minima in the solution space and more iterations
that have to be taken for the update rule to find a minimum. In addition, it is also possible that
when the training data is not sufficient, larger networks due to their large solution space can
show overfitting. This is a phenomenon where the output of the network matches the training
set closely, but under performs when presented with new unseen data. This can also be seen
as the network not being able to generalize the data well enough due to noise in the data or
missing data where the network is filling in the gaps incorrectly.

In order to solve these issues, there have been new methods proposed to reduce the amount
of parameters that have to be learned. In general, these solutions can be summarized as
weight sharing or better information extraction/representation. Two common examples are
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).
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Convolutional Neural Networks (CNN)
Normally each node in a dense network layer takes all previous results into account, as can be
seen in Figure 2.3, this leads to many connections in the network and thus also many weights.
A node in a CNN only takes a small subset or window of the input into account when calculating
its result. This reduces the amount of connections that need to be calculated and the number
of weights in the model. Next to that, each node shares the same weights with all nodes in
the layer, reducing the number of weights further. The resulting sliding window with shared
weights closely resembles the convolution operation, hence the name. The layer has a few
parameters, the kernel/window size describes how many inputs should be taken into account
for each node. The next parameter is the stride interval, or how many inputs the sliding window
should shift over by between nodes. The number of filters describes the amount of different
convolutions the network should perform, each filter has its own set of weights.

This network structure is often used when images are involved as the relationships within
nearby pixels often hold more information compared to distant pixels, but this structure can be
used whenever it is assumed that nearby data points hold the most information. An example
in the field of solar energy forecasting is the research done in [32] where CNNs are used to
process images made by a total-sky-imager to predict the GHI. A total-sky-imager gives a 180◦

dome view of the sky above, this image is used together with lagged measurements of the GHI
to model the effect of cloud cover on GHI.

Recurrent Neural Networks (RNN)
Recurrent neural networks are employed when time series data is used as an input. These
networks try to find patterns in the past data which can help predict the (near)future, the most
well-known RNN is the Long Short-Term Memory (LSTM). LSTM rose to prominence as most
RNN suffer from the “vanishing/exploding gradient problem”, where the back propagation gradi-
ent would become too small or infinite such that the weights would not change or be undefined
due to its (infinite) recursion over past time series data. LSTM limits the amount of past sam-
ples that are included in the backpropagation gradient, while still retaining information outside
this time window in its internal state. It does this by deciding based on the current input and its
internal state if it should store/remove/output information. The network is still recurrent, as for
each time step in the data the LSTM cell receives the hidden state and activation state from the
previous time step as an input. Although the data passed to each LSTM cell is not the same
for each cell, the cells do share their weights across time. Some notable uses of recurrent
networks in PV power prediction can be found in [21, 42].

2.3.2 Special Architectures

The previously mentioned methods can be modified and/or combined to make the model better
equipped for these predictions. These modifications are based on assumptions about the
environment which can help generalise the model, reduce the complexity, and filter out noise
from the input. Some architectures of note are described here with their applications.

2.3.2.1 Autoencoders (AE)

Autoencoders represent the input data with as little variables as possible. Autoencoders are
neural networks that consist of two parts, an encoder network and a decoder network. The
encoder outputs a transformed version of the input data with as little variables as possible,
whilst the decoder tries to reconstruct the original input data as accurately as possible based
on the output of the encoder. This structure ensures that the most relevant data is kept from
the input and the redundant information is discarded, giving a more generic description of the
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data. This strategy allows for the network to be used as a pre-processing step to reduce the
number of input dimensions and perform feature extraction on the input data for other models.
The encoder network is used in these situations as an input for other models to make their
predictions better. Or for noise filtering, as the output from the decoder is also more generic
and thus less affected by noise on the input. Some examples of these autoencoders can be
seen in [43, 44, 45]

2.3.2.2 Clustering

Not all data is unique, and often shares similar behaviour with other samples from the same
data. As such, it may be worthwhile to find these samples and group them together, this is
called clustering. For weather data these types could be for example sunny, rainy, or cloudy.
There are many methods and techniques to try to find these clusters in the data, some of which
are discussed here.

A simple form of clustering can be done manually, as is done in [22] where the data is divided
into 4 clusters based on manually defined thresholds for DHI and GHI. In that paper, a model
is trained on each cluster and later combined into one single output.

Another method is called K-Means clustering, where it is assumed that the data can be divided
into K clusters and the data is assigned to the nearest cluster based on a distance function.
This method learns where the centres of each cluster are by iteratively moving the centres to
the mean value of the samples that belong to that cluster. This method is used in [18] to divide
the data and train a model on each group, which is later combined. K-Means clustering is
combined in [45] with an autoencoder to find these clusters on an embedded representation
instead of directly in the dataset.

Another approach, as is done in [44], is to modify the output of the encoder stage from an
autoencoder to only output its k-highest activations and set the others to 0. By gradually
decreasing k from the full width of the output to 1 during training, the output of the encoder
will no longer represent features but a cluster. The actual value of k does not have to be 1,
an optimal value for k can be small. This would mean that combinations or a superposition
of clusters would give a better representation of the data. A similar technique is used in [43]
where the sparse activation technique is applied to the filter activations of a convolutional layer
and should result in more unique filters found by the network. This would mean one filter is
selected to describe that part of an image.

A disadvantage of manual clustering and K-Means clustering is the inherent assumption that
the number of clusters can be known beforehand, or how they can be separated. This be-
comes difficult when describing the weather, as it changes continuously between situations.
For example, the weather shifts from sunny to cloudy and somewhere in that time the classi-
fication of the weather also has to change. For manual clustering, this transition point would
be well-defined, but the values near the transition point would not be well represented as it
is not completely cloudy or sunny. For K-Means clustering, the transition is influenced by the
distances of the data point to the cluster means, and the classification can transition gradually.
But this all depends on how the cluster means are distributed, and not by the characteristics
themselves. [45] improves on K-Means clustering by learning an embedded representation
which can better shape these transition boundaries. K-Sparse [44] learns an embedded rep-
resentation as well, but on top of that allows for multiple independent classifications to exist at
the same time, compared to a competitive classification using K-Means clustering.
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2.3.2.3 Combinations

A general recommendation from the survey [11] is to combine multiple deep learning strategies
to achieve better performance. The idea here is to play into the strengths of each method or to
compensate for its shortcomings. These combinations can be described by three characteris-
tics:

1. Series models use the output of one method as the input of another, the autoencoder
examples described before would fall in this category. These are commonly used with
pre-processing steps like feature extraction, or in the case of [22] to separate climate and
weather to reduce location and seasonal influences.

2. Parallel models or Ensemble models use multiple methods in parallel on the same input
and are later combined to produce one output, as is used in [29] for irradiance prediction.
A more formal description of ensemble methodologies and their respective combination
strategies are listed in [46].

3. Meta models are used in the development of other models but are not used in the final
model. For example, in [18] the dataset is divided based on k-means clustering to train
different methods for different types of weather. Another example is feature selection
where the model tries to select the best features in the input to be used by the other
model as is done in [47] and shows promising results as it can learn complex non-linear
relations in the data compared to standard feature selection based on correlation or linear
regression.

2.3.3 Metrics

Metrics give a score of how well a model performs compared to another, therefore making it
possible to quantify how much better one model performs over the other. These metrics are
designed with an attribute in mind. Such an attribute could be how far off a model’s prediction
is compared to the truth, how consistent its accuracy is over time, or how computationally com-
plex a model is. The most commonly used metrics found by the survey papers are explained
below.

• Mean Absolute Error (MAE) measures how far the prediction was off from the observed
value. When taken over all samples, it represents the average error from the true value.
A smaller value means a better prediction. The value has the same unit as the variable.
The MAE is also often scaled to the observed value, in that case it would be called the
Mean Absolute Percentage Error(MAPE).

MAE =
1

N

N∑
i=1

|xi,forecast − xi,observed|

MAPE =
100

N

N∑
i=1

∣∣∣xi,forecast − xi,observed
xi,observed

∣∣∣
• Mean Square Error (MSE) measures how far the prediction was off from the observed

value, but penalizes extreme errors more and small errors less compared to the MAE. If
the square root is taken of the MSE it is called the Root Mean Square Error(RMSE). The
RMSE does share the same unit as the variable itself, like the MAE.

MSE =
1

N

N∑
i=1

(xi,forecast − xi,observed)
2
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RMSE =

√√√√ 1

N

N∑
i=1

(xi,forecast − xi,observed)2

• Mean Bias Error (MBE) gives a measure of how much the model, on average, is above
or below the observed value. Here a positive value would mean that the model is over-
estimating the actual value and negative means underestimating, 0 would mean no bias
is present. The MBE indicates how much the prediction should be trusted, as over or un-
derestimating the actual value can have different consequences depending on how the
model is used.

MBE =
1

N

N∑
i=1

(xi,forecast − xi,observed)

These scores are often reduced to one number for all samples in the dataset, giving one
score to summarize the performance of the model. Most methods only present this score as
the performance metric of the models, without looking into uncommon situations that may be
present in the data. As these scores give a summary over all situations and time, meaning that
there can be situations where the prediction errors are significant, but are not reflected in the
results and thus relying on these scores alone might be misleading to the actual performance
of the model in all situations. To remedy this problem, some papers divide the predictions
based on these types of pitfalls and give individual performance metrics for each of them.
These divisions could be based for example on the time of day/year, the Clear Sky Index, the
prediction time window, or weather type.

2.3.4 Benchmarks

Often the performance of a model is compared to other models, but this would mean that the
performance increase claims only hold relative to these models. In order to move from the rel-
ative performance claims away to a more grounded claim, benchmark models are employed.
Benchmark models are used to show that the proposed model performs better than a model
which is based on simple and often more intuitive assumptions. If the proposed model per-
forms better than the benchmark model, it would mean that the proposed design does have a
better representation of the inner workings of the environment. There are two main benchmark
models used in this field:

2.3.4.1 Climatology

The climatology benchmark model is based on the assumption that the energy production at a
certain point in time is similar to previous measurements at similar times of the day and year
from the past. Meaning that for a prediction for a day in June, the energy production would
be the similar to that from the same date a year or multiple years ago. The model can be
the actual measurement from a year ago, an average over the last few days at a certain point
in time, or a model fitted to data from the past with time of year and time of day as its input
parameters. A common model used here is a linear regression model with the time of day and
time of year as its inputs.

2.3.4.2 Persistence

The persistence benchmark model is based on the assumption that the future energy produc-
tion will not change much from the current energy production. As such, this model predicts
that the energy production for all time windows in the future will remain the same as the cur-
rent measurement. This model performs well for time windows in the near future, but start to
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degrade for more distant windows in the future. Some papers use a modification to this model
where the last few samples are also included in the model, this way the progression in the
production can be extrapolated from the past measurements.

2.3.5 Summary Methods

Based on the methods discussed in this section, a focus on generalization and classifica-
tion/specialization for weather data seems promising, as a few papers show their models im-
proving when grouping their weather data. Therefore, the feature selection architecture called
LassoNet proposed by [47] is looked at further for feature selection and the sparse clustering
approach used in [44] is considered. The proposal by the survey papers [11, 14] recommend-
ing the combination of different methods is followed. The need for better evaluation of the
performance of models using the aforementioned metrics is followed by additionally searching
for possible pitfalls and conditions where the model might perform worse. For example, by
comparing dependencies of the models of rainy days to other days, or looking for a depen-
dency on the time of day, time of year, the clear sky index, or the magnitude of the power
production.
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2.4 Probability

By their nature, weather forecasts have a systemic uncertainty in their predictions, as weather
itself is too complex to accurately model within current practical limitations. This uncertainty in
turn also influences the performance of the solar energy forecasts, which depend on accurate
weather forecasts. Currently, most solar energy forecasts use point forecasts, these are pre-
dictions where the future energy production is given as a single value. This value is the best
guess of the model based on the data that is available, but on its own cannot provide insight
into the likelihood of that actually happening.
Research has been done to move from these point forecasts to probability forecasts, which by
design contains information about the possible spread of future values and the likelihood of
those happening. In this section, an overview is given on how point forecast models can be
replaced with probabilistic ones. First, some necessary background and theory on probability
is introduced. Secondly, what methods can be used to produce probabilistic forecasts and how
they compare to their point forecast counterparts. After that, the possible performance metrics
and benchmark models are introduced. Finally, in the conclusion, the advantages and possible
pitfalls of probabilistic forecasting are discussed.

2.4.1 Types of Uncertainty

Probability
For point forecasts, the output is assumed to be a deterministic value, meaning that the value
can be determined beforehand. In contrast, the probabilistic forecast provides the possible
values that can happen from this point and how likely they are to happen. An example would
be rolling dice, where the deterministic forecasts will predict what value the dice will land on,
while the probabilistic forecasts would predict the chance of landing on that side as well as the
chances of landing on any of the other values. In the following paragraph, the rolling of the dice
is used as an example for all the mathematical facets of probability.

To start of with, a probability of something happening is given in the (0-1) range, where 0
means it will never happen and 1 means it will always happen. For a standard 6-sided dice the
chance of rolling a 1 would be 1

6 , rolling a 2 would also have a 1
6 chance, etc. . . . Let’s say that

we’ve been rolling the dice a lot and have noted down these outcomes. The outcomes of these
rolls are grouped under a random variable, for example the random variable X. The random
variable X would map in this case each roll that we’ve done to a single number x, the side
that the dice landed on. So x is a particular value out of the random variable X. This allows
us to specify constraints to what we consider to be part of the experiments and its influences.
Moreover, it gives us a notation for describing probability: Pr(X = x) would describe the
probability of rolling x given the random variable X. The example of rolling a 1 can be written
as Pr(X = 1) = 1

6 and the chance of rolling 4 or less can be written as Pr(X ≤ 4) = 4
6 , these

examples are also represented in Figure 2.4 for the more visually inclined.

Rolling a 7 cannot happen, so the probability of Pr(X = 7) = 0, the chance of the dice landing
on any of its sides is Pr(X = anyside) = 1 as the dice must always land on one of its sides.
This last example can be generalised to a simple rule: the probabilities of all possible outcomes
added together must equal 1: Pr(X = anyside) =

∑
Pr(X = side) = 1

6+
1
6+

1
6+

1
6+

1
6+

1
6 = 1.

Consequently, one can use this rule to calculate the probability of the opposite happening.
If there is a 4

6 chance of rolling a 4 or less, there is also a 2
6 chance of rolling above a 4:

Pr(X > 4) = 1− Pr(X ≤ 4) = 1− 4
6 = 2

6 . These examples shown here are based on discrete
events and outcomes, but these rules also apply in the continuous case, for which examples
are given in Section 2.4.1. These examples are meant to give a basic understanding of what
probability entails and its terminology. This is built upon further in the following sections.
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Figure 2.4: A visual example of what the probabilities are for each possible outcome on
a standard 6-sided dice (X), the chance of landing on each number Pr(X = x) and the
chance of rolling less or equal to that number Pr(X ≤ x).

Aleatoric and Epistemic Uncertainty
When talking about probability the term uncertainty is also often brought up, like in the dice
example the outcome of the role is not known beforehand and as such its outcome is uncer-
tain. To make it easier to talk about uncertainty, the term can be split into two definitions: the
aleatoric uncertainty and epistemic uncertainty. The aleatoric uncertainty refers to the uncer-
tainty of the outcome, for example the uncertainty of what value the dice will land on or due
to noise in the sensor readings. This uncertainty will always be there and can be referred to
as a “known-unknown”. This uncertainty can be quantified or described with models, but the
actual outcome will never be known until it happens. Mitigating this type of uncertainty is rarely
possible, due to its random nature.

The epistemic uncertainty is the uncertainty due to a lack of information. This lack of infor-
mation could be due to sensor measurements that are not available, or missing information
about situations that have not happened yet. For example, a rare weather event might not be
in the dataset, so how the model will behave in that case is uncertain. Or there is a possible
influence on the outcome that is not known or modelled yet which might be perceived as an
aleatoric uncertainty in the model at first, but is actually an epistemic uncertainty. This type of
uncertainty can be reduced by gathering more data, adding more input types to the model, or
gain more insight into the inner workings of what is modelled. But reducing this is not always a
practical approach due to for example time or monetary constraints.

Probability Distributions
Probability distributions describe the likelihood of the possible outcomes to happen, an exam-
ple for discrete random variables has already been discussed in Section 2.4. For continuous
random variables, a similar visualization can be made as for the discrete random variable and
is shown in Figure 2.5. The probability density function (PDF) f(x) describes how a random
variable is distributed over its range and how frequent a value in that range is observed, sim-
ilar to the Pr(X = x) histogram shown in Figure 2.4 as they are each-other’s discrete and
continuous counterparts. However, for the PDF, the height of the graph is not the probability
of that value happening. This is because the range of possible values for f(x) is infinite as
it is a continuous random variable, in contrast to the discrete random value whose range is
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bounded. This, together with the rule stating that the probabilities of all possible outcomes
added together must equal 1, results in the fact that Pr(X = x) will always be 0. In order to
get a real probability from the PDF an integral over an interval can be taken, this would be
written as Pr(a < X < b). Contrary to the PDF, the cumulative distribution function (CDF) or
F (x) does describe a probability. The CDF describes the probability of the continuous random
variable X being smaller or equal to x, as is done for Pr(X ≤ x) in Figure 2.4 for the discrete
case. To put it more formally, the CDF can be obtained from the PDF by taking the integral of
f(x) up to z as done in Equation 2.5 and describes the probability of X being smaller or equal
to z as shown in Equation 2.6. The observed value y, also called the realization of X, can be
represented as a CDF as well. It is a step function with the transition at the observed value, or
more generally as an indicator function as shown in Equation 2.7 where expr = x ≥ y.

F (z) =

∫ z

−∞
f(x)dx (2.5)

Pr(X = z) = F (z) (2.6)

1{expr} =

{
1 if expr evaluates to true
0 otherwise

(2.7)
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Figure 2.5: An example of a standard normal distribution showing the relation of the prob-
ability density function f(x) with its cumulative density function F (z)

Parametric Distributions
Parametric distributions use a limited set of parameters to describe how the PDF and CDF
could look like. A common parametric distribution is the normal distribution, which requires
only two parameters (µ, σ) to define its shape.

f(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (2.8)

Here µ represents the mean of the distribution and σ represents the standard deviation or more
intuitively how spread out the random variable is around µ. The PDF and CDF with parameters
(µ = 0, σ = 1) is shown in Figure 2.5. An extension of the normal distribution is the truncated
normal distribution. where the range of possible values for the random variable is limited to the
interval (a, b). This can be useful for PV power prediction, as the power can never be negative
or more than its rated power. For the standard normal distribution predictions around these
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edges would lead to inaccurate predictions as values outside this range would still be possible
and likely according to the standard normal distribution, because of this the truncated normal
is favoured over the standard normal distribution in [20] to model GHI.

Non-Parametric Distributions
Using parametric distributions to model CDF and PDF often rely on assumptions of how the
observed power PDF is shaped. But choosing a parametric distribution might not hold with
reality, as is proven in [28] where the observed PDF and CDF did not follow the normal, t-
location-scale or logistic distributions the data were fitted to. It therefore proposed to use
quantiles to model the CDF. Quantiles can be seen as the inverse of the CDF, instead of
giving the probability for certain values in X it estimates the values qτ which lie in X where
Pr(X ≤ qτ ) = τ holds. Or more formally defined as the quantile function as shown in Equation
2.9 and its density forecast Q̂t as shown in Equation 2.10 for M quantiles at time t.

qτ = F−1(τ) (2.9)
Qt = {qt,τ ; 0 ≤ τ1 ≤ τ2 ≤ .. ≤ τM ≤ 1} (2.10)

This mapping of τ to qτ is visualised in Figure 2.6 where the values for qτ are estimated for
a normal distribution. If the probabilities τ are evenly distributed, as is done in this example,
the values for qτ represent the cut-off points to divide the random variable X in equally likely
chunks. In practise, when estimating values for qτ , it might happen that the predicted values
are not monotonically increasing with τ . By the definition of the CDF this must however always
be true, as q0.1 should be less than q0.2 for the statement Pr(X ≤ qτ ) = τ to hold. A naive
solution for this problem is by sorting qτ first and reassigning τ based on the new ordering
before estimating the CDF. But when quantiles cross, it is a good indication that the model is
under performing due to unusual data at the input or the model cannot represent the actual
distribution. A common case when this happens is near or during nighttime when the density is
very slim and near zero, here the chance of quantiles crossing is more likely due to the limited
numerical precision and accuracy of the model.

By using quantiles any distribution can be approximated, but choosing the appropriate number
of quantiles is a trade-off between accuracy, computational complexity, and the size of the
dataset. The size of the dataset matters, as increasing the number of quantiles also increases
the chance of quantiles crossing due to the decreasing amount of samples that fall in the
interval of two neighbouring quantiles. In [28] 18 quantiles are used to estimate the probability
density, in [42] only 3 quantiles are used {0.1, 0.5, 0.9}, in [20] only 5 quantiles are used to
estimate the probability density and in [48] two quantile estimators are used in series with 9 and
51 quantiles respectively. In these studies there is no justification is given for why this number of
quantiles are chosen except for [28, 48] where the quantiles were chosen for form, readability,
or convenience but none discussed trying multiple quantile configurations or a trade-off in
performance.

Another way to create a non-parametric distribution is to let a point forecast model run multiple
predictions, with each time a slightly different input to the model based on the uncertainty of
the input data. With these different predictions, an empirical cumulative probability density can
be modelled by sorting the predictions by value and assign each prediction a probability by the
order of the sorting. For example, when a random ensemble of 10 predictions is made, the
lowest predicted value is given the probability 1

10 and the second 2
10 . From then on it behaves

the same as the quantile ensemble with a regular spacing τ for the probability and qτ being
the sorted predictions. This method is also used by ECMWF to forecast the many ways that
the weather can evolve over time. There 50 perturbations are made based on measurements
done by weather stations and satellite readings taking their uncertainty into account.
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The difference between quantile and random ensemble densities is that ensemble predictions
are assumed to be from a regular spacing in the probability range when constructing the
CDF, whereas the quantile function generates the predictions in X for these specific proba-
bility thresholds. This means that when the input data is not sampled properly or not enough
predictions are made, the resulting ensemble does not represent the distribution of the ran-
dom variable well and can lead to inaccurate forecasts. This issue has been studied in [49]
where the amount of predictions that have to be made for the density estimator to be accu-
rate needs to be above 1000 predictions before the random ensemble method becomes stable
enough to be compared with the standard normal distribution, whereas for quantile ensembles
30 quantiles seems to be good enough.
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Figure 2.6: An example of how a CDF F (z) of a standard normal distribution relates to its
inverse, the quantile function qτ = F−1(τ)

2.4.2 Non-Parametric Methods

In this section, the most popular non-parametric methods as found by [13] are discussed. Only
non-parametric methods are discussed, as shown in [13] the more recent studies moved from
parametric to non-parametric as other studies have shown that the observed power distribu-
tions don’t match parametric models well. The non-parametric methods listed here are all
derivations of the methods previously mentioned in Section 2.3.1. As such, only the major
differences is discussed here.

• Quantile Regression (QR) works similar to standard linear regression and shares the
same matrix structure. But instead of training just one linear regression model, multi-
ple models are trained in parallel such that each model predicts a unique qτ using the
quantile score listed in Section 2.4.3 as the loss function. The output of the model is the
combined set of qτ from which the CDF can be reconstructed. QR can suffer from quan-
tile crossing as the predictions qτ are made independent of each-other and its effects
should be considered before using the output of the model.

• Quantile Neural Networks (QNN) are an extension of standard neural networks and
similarly to QR the point predictions are replaced by a vector of qτ predictions. QNN can
also suffer from quantile crossing due to the possible complexity of the model. The effects
of quantile crossing can be decreased by adding a penalty during training to enforce
correct quantile ordering, this has been done in [28] along with a penalty to predictions
made outside the range of possible values that the random variable can be in.
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• Monotone Composite Quantile Regression Neural Network (MCQRNN) [50] takes
the quantile crossing problem one step further by making it impossible for to occur by
using a special activation function and constructing the network layers in such a way that
each qτ is guaranteed to increase with τ . This method is used in [20] to predict solar
radiation.

• Quantile Regression Forests (QRF) [51] is similar to a standard regression forest, but it
uses the returned observations O, which each tree thinks belongs to the same set as the
input data differently. Instead of calculating the weighted mean over the observations, it
calculates the empirical chance that the output is smaller than some threshold y. It does
this by comparing each value in the returned observations with this threshold, and then
takes a weighted average of the number of times the threshold y was smaller. This can
be done for any number of y and when complete it can be processed like an ensemble
forecast. The QRF is also used in [20] to predict solar radiation.

2.4.3 Metrics

• Reliability diagrams [52] give an indication of how often the predicted quantiles line up
with the observed frequency, such that the premise of Pr(X ≤ qτ ) = τ indeed is correct.
This means that in 10% of cases the observed values of yt must fall below the predicted
quantile q̂t,0.1 associated with τ = 0.1, the observed probability can be calculated using
Equation 2.12. The reliability can be visually assessed by plotting the nominal probability
τ against the observed probability τ̂ , this is called the reliability diagram. The reliability
can also be represented with a score by taking the absolute distance of the two probabil-
ities, as is shown in Equation 2.13.

ξt,τ = 1{yt ≤ q̂t,τ} (2.11)

τ̂ =
1

N

N∑
t=1

ξt,τ (2.12)

Dev = |τ − τ̂ | (2.13)

• Continuous Ranked Probability Score (CRPS) [53] is the generalised representation
of the mean absolute error discussed in Section 2.3.3 and allows two density functions
to be compared to one another. The definition of the CRPS is shown in Equation 2.14
for comparing two density functions, when comparing the density to a scalar observation
the indicator function defined in Equation 2.7 can be used to represent the empirical CDF
of the observation and is shown in Equation 2.15. The integral form of the CRPS is not
practical in its application, as such it has been proven that for distributions with a finite first
moment the CRPS can be written as Equation 2.16. For quantile or random ensembles,
the CRPS can be estimated by the discretized version shown in Equation 2.17 with M
representing the number of ensemble members. It is used in [20, 48] for the validation
of their forecasts. As the discretized version of the CRPS is an estimation of the CRPS,
the estimation will not always be correct. To remedy this, the research done in [49] gives
recommendations on how to select the number of quantiles and the minimum amount of
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samples needed before the discretized CRPS becomes accurate.

CRPS(F,G) =

∫ ∞

−∞
(F (x)−G(x))2dx (2.14)

CRPS(X, y) =

∫ ∞

−∞
(F (x)− 1{y ≤ x})2dx (2.15)

CRPS(F, y) = EX |X − y| − 1

2
EX,X′ |X −X ′| (2.16)

CRPS(x, y) ≈ 1

M

M∑
i=1

|xi − y| − 1

2M2

M∑
i,j=1

|xi − xj | (2.17)

• Quantile Loss (QL)/Pinball Loss [53] is a weighted median estimation loss function
where the error between the quantile and the observed value is weighted differently
based on the value of τ the quantile represents and the sign of the error, its two most
used definitions are shown in Equations 2.18 2.19. For quantile τ = 0.5 both sides of the
error would be weighted equally and is the same as the MAE in Section 2.3.3, whereas
for τ = 0.2 the contribution of the negative error would be weighted with 80% of the max
weight and the positive side with 20% of the max weight. This shifts the minimum of the
loss function to the point where roughly 20% of the values would fall on the left side and
80% on the right side. This function is used in [28, 42] to train their neural networks.
This loss function is known under many names, “quantile loss”, “pinball loss”, “tick loss”,
“linlin”, in this thesis the loss is only referred to as the quantile loss.

QS(qτ , y) = (qτ − y)(1{y < qτ} − τ) (2.18)
QS(qτ , y) = max(τ(qτ − y), (1− τ)(y − qτ )) (2.19)

2.4.4 Benchmarks

In the literature study for this thesis, no probabilistic forecast specific benchmark model has
been found, other than altered versions of the Climatology and Persistence models such that
their output is a probabilistic forecast. These adjusted benchmark models are discussed here.
But if the proposed models are compared using the CRPS for validation, the MAE error can be
used for the point forecast benchmark models as they describe the same score without having
to use these adjusted models.

Climatology
The Climatology benchmark described in Section 2.3.4 can be extended upon to produce
either parametric or non-parametric probabilistic forecasts. For the parametric forecast one
can use the linear regression model to predict the mean forecast and from that train another
linear regression model to forecast the standard deviation such that both models combined
can predict a (truncated) normal distribution. For the non-parametric forecast, one can swap
the linear regression for quantile regression to model the distribution.

Persistence
For the persistence model, a similar technique to the climatology model can be used to go from
a point forecast to probabilistic. For the parametric forecast, one can calculate the standard
deviation of the sample data compared to the current power production for each of the future
power windows. If a (truncated) normal is used, the current power can be used for µ and the
calculated standard deviation for its σ. For non-parametric forecasts, the same distribution of
the difference between the current power and the power production for each time window can
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be used with the quantile function to determine the values for qτ . These values for qτ can then
be added to the current power to give a density forecast.

2.4.5 Summary Probability

As recommended by [28, 20] the best choice for modelling probabilistic forecasts of PV-power
installations seems to be using quantiles to model the probabilistic densities. As for the num-
ber of quantiles to be used, there is no clear selection criteria other than the recommendations
given in [49] to use 30 or more quantiles to accurately model the CRPS when the observed val-
ues follow a normal distribution. CRPS seems to be a commonly used and easily interpretable
score to use when validating the performance of the proposed models. For training a model
with an ensemble, the Quantile loss is to be preferred over CRPS as the CRPS has no relation
with how τ is distributed and results in learned ensembles without an associated τ . This would
make the learned ensemble randomly distributed and from the results of [49] would mean a
worse performance compared to regularly spaced quantiles. The QR and QRF methods are
recommended by [20] over standard QNN or MCQRNN methods and are considered for this
thesis. But as was shown in the deep learning surveys [11, 14] the use of neural networks give
better results when special structures and constraints are used, and is considered the main
focus for this thesis with QR and QRF as reference models.
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METHODOLOGY

Here, the developed model is discussed together with its dependencies and configurations.
But first the available data is discussed, as their characteristics dictate the shape of the inputs
and what methods are applicable. After which the general structure of the model is discussed
and how each subcomponent fits into the model. Then each subcomponent is discussed
individually on how and why the model is designed, along with its hyperparameters that need
to be fine-tuned.

3.1 Data Selection

In this section, the choices for each data source are discussed. These are the PV-panel mea-
surements, weather forecasts, satellite images used by the model. The data sources used for
validating the performance of the model are also discussed here. Each source has its data
dimensions listed, as well as the variables that are part of it.

3.1.1 Solar Power Logs

As summarized in Section 2.2.3, there are not many publicly available datasets of power mea-
surements or standardized data collection guidelines for PV-panels. Next to that, power mea-
surements made with a temporal resolution of less than 1 minute are preferred, as is discussed
in Section 2.2.2.5. Therefore, a custom dataset is used that does have this high temporal res-
olution data and comes from the SlimPark car park introduced in Section 1.2. The data has
a temporal resolution of 10 seconds and spans the full year of 2022, an overview of the PV
measurement data and PV specification can be seen in Table 3.1. The power recorded in this
dataset is measured after the solar power inverter, which converts the electricity generated by
the solar panels and feeds it to the other connected systems. This dataset therefore describes
the usable solar power available to the other systems and not the exact solar power gener-
ated by the PV-panels. This definition of solar power might not necessarily align with other
datasets that are used in the literature, as specified in Section 2.2.2.5. It is however favourable
for the EMS application described in this thesis, as no further transformations of the power
or solar inverter models are required to estimate the available solar energy produced by the
PV-panels.

3.1.2 NWP data

The Numerical Weather Prediction models described in Section 2.2.2.3 were all considered
for this thesis, but due to practical limitations, only the CAMS option remained. The ECMWF
HRES and ensemble models were considered, as the ensemble model inherently describe
some level of uncertainty and would be interesting for this study. But for practical reasons the
time required to download all predictions for the year 2022 would take 2 years for both the
ensemble and the HRES dataset due to the high strain on the ECMWF public servers, as such
these models were not feasible options for this study. The archive storing the predictions made
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Dimension Values
Measurement start 01/01/2022
Measurement end 31/12/2022
Temporal resolution 10 seconds
Total samples 3153600
Max power 27 kWp
Latitude 52.239891
Longitude 6.852906

Table 3.1: Data specifications of the SlimPark PV-installation located at the University of
Twente [6].

by the HARMONIE-AROME model [37] does not go back far enough in time to get all the data
for 2022, also removing it as an option. Therefore, only one possible weather model option
was remaining, the CAMS model. The CAMS model [39] is implemented by ECMWF on behalf
of the Copernicus programme of the European Commission with the same model behind it as
the ECMWF HRES and ENS models, but with a reduced spacial resolution as well as less
frequent forecasts.

Although the CAMS dataset [39] has a total of 498 variables available for download, the selec-
tion has been reduced to 29 variables based on the most often used variables, as discussed
in Section 2.2.1.1. The complete list of variables and their identifiers in the CAMS dataset are
listed in Table 3.3. The auxiliary data dimensions are listed in Table 3.2. As is listed in Table
2.1, every 12 hours a new forecast is made, each taking a total of 10 hours to complete. The
forecast time steps are therefore taken for the hours 10 through 29, by doing this it is guaran-
teed that there will be at least a 7-hour window available for all power forecast times that fall in
the 12 hours between forecasts.

Dimension Values
Time window 01/01/2022 - 31/12/2022
Forecast interval 12 hours
Temporal resolution 1 hour
Forecast time steps 10–29
Latitude 53.0, 52.6, 52.2, 51.8, 51.4, 51.0
Longitude 6.0, 6.4, 6.8, 7.2, 7.6, 8.0

Table 3.2: CAMS data dimensions used.

3.1.3 Satellite

As discussed in Section 2.2.2.2 a proven source for irradiance forecasting using satellite im-
agery is done in [19] where the output of the SEVIRI satellite is used directly to model cloud
movement. From the review paper [33] the use of SEVIRI seems like a good choice as well.
As such, the possible derived products of the SEVIRI satellite were researched. There, two
options were deemed useful, the filtered visible and infrared channels images, and a derived
product made by EUMETSAT that produces a cloud coverage mask from these channels. Both
options were considered until it became clear that the storage and processing time needed for
the visible and infrared channels would prove unworkable. This is due to its 10 times larger
memory footprint compared to the cloud mask, necessitating the processing of the images to
be done by the shared and busy EUMETSAT server instead of locally before the preprocessed
data can be stored and used. This would consume a large part of the time available for this
thesis, therefore only the cloud mask remains as a viable option. This cloud mask is called the
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Identifier Description Unit
u10 10 metre U wind component m/s2

v10 10 metre V wind component m/s2

t2m 2 metre temperature K

cdir Clear-sky direct solar radiation at surface J/m2

cp Convective precipitation m

dsrp Direct solar radiation J/m2

fal Forecast albedo (0− 1)

hcc High cloud cover (0− 1)

lsp Large-scale precipitation m

lcc Low cloud cover (0− 1)

mcc Medium cloud cover (0− 1)

sund Sunshine duration s

ssr Surface net short-wave (solar) radiation J/m2

ssrc Surface net short-wave (solar) radiation, clear sky J/m2

sp Surface pressure Pa

ssrdc Surface solar radiation downward clear-sky J/m2

ssrd Surface short-wave (solar) radiation downwards J/m2

tisr TOA incident solar radiation J/m2

tsr Top net short-wave (solar) radiation J/m2

tsrc Top net solar radiation, clear sky J/m2

tcc Total cloud cover (0− 1)

tciw Total column cloud ice water kg/m2

tclw Total column cloud liquid water kg/m2

tcrw Total column rain water kg/m2

tcsw Total column snow water kg/m2

tcslw Total column supercooled liquid water kg/m2

tcw Total column water kg/m2

tp Total precipitation m

fdir Total sky direct solar radiation at surface J/m2

Table 3.3: All downloaded parameters and their units from the CAMS global atmospheric
composition forecasts available at [39]

“Cloud Mask—MSG - 0 degree” product [54] by EUMETSAT, an example output of this cloud
mask can be seen in Figure 3.1. The data specifications used to download the data are shown
in Table 3.4.

Dimension Values
Time window 01/01/2022 - 31/12/2022
Temporal resolution 15 minutes
Latitude 56 - 48
Longitude -1 - 11
Projection geographic
Horizontal resolution 258 pixels
Vertical resolution 172 pixels

Table 3.4: ”Cloud Mask - MSG - 0 degree” [54] data dimensions and preprocess settings
used.
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Figure 3.1: An image taken from the cloud mask dataset taken on January 5th at 11:00
with country outlines overlaid on top. Here the black shaded area represents the cloud
cover and white no cloud cover, the greyed out areas are outside the longitude and latitude
range of the dataset.

3.1.4 Validation Datasets

To validate the performance of the model, two additional datasets were downloaded. Their
purpose is to give context to the observed power measurements. The first dataset [55] consists
of statistics derived from measurements made by a nearby weather station called “Twenthe”
and is maintained by the KNMI. As researched in [15, 40], the correlation of meteorological
measurements from weather stations with PV-panel power generation is negatively impacted
by the distance between them. But in this case the distance between the nearest weather
station and the solar installation is 4.5 km, so well within significance according to their results.
Information about the weather station and data can be found in Table 3.5, its weather variables
can be found in Table 3.6. The data in the dataset are hourly statistics, as such the data is not
highly correlated in time with the power measurements and not useful for correlation analysis.
It can however be used to divide the power forecasts into groups with similar circumstances,
as the data does describe the general weather type observed at that time.

Next to meteorological measurements, the CAMS solar radiation time-series made by Coper-
nicus [56] is useful to analyse a model’s performance based on irradiance information. The
CAMS solar radiation dataset is derived from local weather station data and satellite observa-
tions with a temporal resolution of 1 minute, meaning correlation analysis is useful according
to [40]. The irradiation variables and their specification can be seen in Table 3.7.

Dimension Values
Time window 01/01/2022 - 31/12/2022
Temporal resolution 1 hour
Latitude 52.274
Longitude 6.891

Table 3.5: KNMI automatic weather station ”Twenthe” data specification

35



3.1 – Data Selection

Variable Description
DD Wind direction
FH Hourly mean wind speed
FF Mean wind speed past 10 minutes
FX Maximum wind gust
T Temperature
T10N minimum temperature past 6 hours
TD dew point temperature
SQ Sunshine duration
Q Global radiation
DR Rain duration
RH Rain amount
N Cloud coverage
U Relative Humidity
M Mist occurrence (Yes/No)
R Rain occurrence (Yes/No)
S Snow occurrence (Yes/No)
O Thunder occurrence (Yes/No)
Y Ice formation occurrence (Yes/No)

Table 3.6: KNMI automatic weather station measurement variables

Dimension Values
Time window 01/01/2022 - 31/12/2022
Temporal resolution 1 minute
Latitude 52.239891
Longitude 6.852906
Variables TOA, (Clear sky) GHI, (Clear sky) BHI, (Clear sky) DHI, (Clear sky) BNI

Table 3.7: CAMS all-sky irradiation
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3.2 Model

The model framework to create the models used in this thesis are built from five possible
components that can be connected together to form the complete model. There are four input
components that each process a unique input, and one output component that produces a
quantile forecast from the results of these input components. The structure of this framework
can be seen in Figure 3.2 together with the input and output shapes of the model. Each of the
four input components create a list of features from their input. The list of features that each
component produces are discussed separately in their own sections. These lists of features
made by the components are then joined together and are processed by the last component
such that a quantile forecast can be made.

With this framework, it is possible to remove certain input components from the complete
model. Now, multiple input combinations can be made to see how much information each
input component contributes to the overall forecast, without many changes that need to be
made. Each component consists of a neural network and are all described in detail in the
following sections. Each component has their own section in which their design considerations
and overall structure are discussed, together with the hyperparameters that need to be tuned
for this component.

Future Power Forecast
Model

Weather Model Satellite Model Past Power Model Time & Season
Model

CAMS NWP Forecast EUMETSAT Cloud Mask

Time & Date

Past Measurements Time & Season

Figure 3.2: Graphical overview of the model’s subcomponents, the model’s inputs and
outputs, and how they are connected.
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3.2.1 Past Power Model

For this model, the architecture and its performance is largely dependent on how the past
power measurements are measured and used. It depends on the sampling interval Tsample and
the time period Tspan that describes the power measurements pt that are taken into account
and spans the samples {pi | t− T ≤ i ≤ t} at time t. Using these samples directly as an input
is however not efficient, as not every sample on its own carries much information. Therefore,
it is more useful to reduce the samples to statistical descriptions, like the average power of
past samples. However, defining the most effective number of elements and how they are
distributed over time is not trivial. There are many ways to compute statistics from a time
interval Tspan into N unique elements, so to limit the amount of combinations to try out three
windowing strategies and two time distribution algorithms were thought of to find a resource
efficient model with computational complexity and performance in mind.

The two time distribution algorithms used in this thesis distribute at most Nmax points in time
in the time interval T . This is done by either linearly spacing the points such that each point
is T

Nmax
away from the other points in time, or by exponentially decreasing the distance from

the current time t, starting with its largest possible distance Tspan. The two algorithms are
described in Algorithm 1 and 2 respectively. As the power measurement dataset has a limited
temporal resolution of 10 seconds, the value for point ti needs to be rounded to the nearest
10 second sampling interval. Any of the rounded points that are now duplicates are removed
from the set. This leaves a set of {t1, ..., tN | t− T ≤ ti ≤ t} points in time with 0 < N ≤ Nmax

points that can be used.

Algorithm 1 Constant decay
i← Nmax

while i ≥ 1 do
ti ← i

Nmax
Tspan

i← i− 1
end while

Algorithm 2 Exponential decay
i← Nmax

ti ← T
while i > 1 do

ti−1 ← 2
3 ti

i← i− 1
end while

Now, the question of how to summarize the data covered by these points in time remains.
Here, three options are defined. The first option reduces the samples between the current time
t and t− ti to its average power p̄i and is called the ’overlap’ option as its time window overlaps
with the time windows of the other points. Whereas the ’separate’ option reduces the samples
between two successive points in time t − ti and t − ti−1 to its average power p̄i and does
not overlap with the time windows of the other points. The last option, ’single’ takes a single
measurement pt−ti as its representative value p̄i. The combination of these three options with
the two interval spacing algorithms can be seen in Figures 3.3 and 3.4 for constant spacing
and exponential spacing respectively.
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Figure 3.3: Distribution of windows with the constant decay algorithm for a time period
Tspan of 300 seconds and the number of elements Nmax set to 6.
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Figure 3.4: Distribution of windows with the exponential decay algorithm for a time period
Tspan of 300 seconds and the number of elements Nmax set to 6.

The obtained values are the inputs to a neural network with two hidden layers and N units with
sigmoid activations, this network can be seen in Figure 3.5. The output of this model then gets
used by the main dense network for further processing. The complete list of hyperparameters
that need to be tuned for the Past Power model are listed in Table 3.8.

Dense Dense

Figure 3.5: Graphical representation of the Past Power model component.
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Hyperparameter values
Window type ’overlap’, ’separate’, ’single’
Window step ’constant’, ’exponential’
Max number of elements Nmax

Time period Tspan

Number of output features NP N

Table 3.8: Hyperparameters values under consideration for the past power model.

3.2.2 Time & Seasons Model

The goal of the time and seasons component is to allow the model to learn a naive represen-
tation of the expected irradiance given the time of day or year at that point time. The path
that the irradiance takes over a day is similar for cloudless days and is the inspiration for the
clear sky model. To give the model a similar input without providing actual clear sky estimates,
the time of day and year can be used instead. In order to make a time and date suitable for
machine learning, the dates and time have to be mapped to scalar values while keeping the
cyclical relation of irradiance with respect to time. To do this, the time of day is mapped along
a unit circle, where one full rotation represents the passing of 24 hours. The time of day can
then be represented by the sine and cosine components associated by that point in time. The
same strategy can be employed for the time of year, where one full rotation along the unit circle
represents the passing of a year. These 4 components together describe the date and time of
day, with each component’s values within a [−1, 1] range. A graphical illustration of this process
is shown in Figure 3.6.
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Figure 3.6: Decomposition of time and date used in the Time & Seasons model.

These 4 components are the inputs of a neural network with two hidden layers and 10 units
each and is shown in Figure 3.7. Both layers have the hyperbolic tangent function as its
activation function to keep the values in a [−1, 1] range and allow the model to learn specialised
representations of time. This model has no hyperparameters to optimize for and will be the
same for all model configurations.
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Dense Dense

Figure 3.7: Graphical representation of the Time and Season model component.

3.2.3 Weather Model

The steps needed to find a good performing weather model with as little resource usage as
possible are two-fold. First, it would be preferred if the number of features F used by the model
could be reduced with as little impact to performance as possible. To do this, the LassoNet ar-
chitecture and algorithm described in [47] is implemented and analysed to find an appropriate
feature subset, the details on how LassoNet is implemented is discussed in Section 3.2.3.1.
Next to this, a clustering algorithm proposed in [44] is implemented to see if the weather in-
formation can be generalised further into clusters types. The clustering of weather data was
recommended by papers discussed in Section 2.3.2.2 to generalise the data and prevent over-
fitting. This algorithm is explained in Section 3.2.3.2. The architecture of the model and its
hyperparameters are discussed in Section 3.2.3.3.

3.2.3.1 LassoNet

LassoNet [47] is designed to bring lasso regularization to non-linear neural network models.
Lasso regularization reduces the magnitude of a features weights after each training epoch
with a value of λ, such that eventually most irrelevant features contribute nothing to the output
of the model and only useful features remain. The neural network required by LassoNet is a
residual network. A residual network is a network consisting of two parts, a network with any
number of hidden layers and a residual layer which bypasses the hidden layers and directly
connects the input of the network to the output of the network. This architecture can be seen
in Figure 3.8, where LassoNet is used on the weather forecast data directly.

The training process is comparable to the standard gradient descent algorithm used for training
neural networks, but with a few extra steps. This process is described in Algorithm 3 and
in essence constrains the magnitude of the first layer’s weights W to the magnitude of the
residual layer’s weights θ, whilst consistently reducing the magnitude of the residual layer’s
weights after each epoch. The algorithm needs a few parameters to function: λ0 is the lasso
penalty coefficient the process starts with and increases exponentially with a factor ϵ each
training epoch. The hierarchy multiplier M balances the influence of the linear residual layer’s
weights θ and the hidden network’s weights W on the significance of a feature, M = 0 would
mean only the residual layer will contribute to the output of the model, and M → + inf would
mean the hidden network is unconstrained by the residual network. The weights of the residual
and the first hidden layer are constrained using the Hier-Prox algorithm, which is described in
Algorithm 4.
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Algorithm 3 LassoNet training
f ← NFeatures

i← Nepochs

λ← λ0

while i > 1 and f > 0 do
Increase regularization factor:
λ← (1 + ϵ)λ

Perform back-propogation:
θ ← θ − α∇θL(θ,W )
W ←W − α∇WL(θ,W )

Perform regularization using Hier-Prox:
(θ,W )← Hier-Prox(θ,W,αλ,M)

Count number of non-zero features:
f ←

∑
j∈θ 1{| θj |> 0}

i← i− 1
end while

Algorithm 4 Hier-Prox

procedure HIER-PROX(θ,W, λ,M )
Iterate over every feature in the input:
for j ∈ {1, ..., F} do

W sorted
j ← sort(|Wj |) ▷ Sort values in Wj from largest to smallest

for m ∈ {1, ..., F} do
sm ←| θj | +M ·

∑m
i=1W

sorted
j,i ▷ Cumulative sum of weights up until m

wm ← M
1+m·M2 · sign(sm) ·max(| sm | −λ, 0) ▷ Reduce magnitude of weights

end for
Find the first index where wm becomes greater than W sorted

j,m :
m̃←

∑
m∈{1,...,F} 1{W sorted

j,m ≥ wm}

Scale and clamp θj and Wj to wm̃:
θ̃j ← 1

M · sign(θj) · wm̃

W̃j ← sign(Wj) ·min(wm̃, |Wj |)
end for
return (θ̃j , W̃j)

end procedure

3.2.3.2 K-Sparse Clustering

K-sparse clustering [44] works as an extension to a standard dense network and modifies the
output produced by the dense network to only let the highest k activations through and sets
the others to 0. This procedure is shown in Algorithm 5, where K corresponds to the width
of the output and is the number of clusters or features that can be found, k is the number of
activations that are allowed to progress. During training, only the selected activations are used
when back-propagating the error, the other weights are left untouched. This allows the network
to only adjust for the errors caused by this cluster, but can mean that some activations in the
vector will never be used and trained if they never reach the activation threshold required to be
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in the top k activations. To circumvent this, the value for k is set to K at the start of training,
such that each activation will be a part of training, k will then slowly count down during training
till at the end of training k will be 0. By saving snapshots of the model during training whenever
k changes, the best value for k can be chosen as a trade-off between accuracy while limiting
the number of activations.

Algorithm 5 K-Sparse

z ←W Tx+ b
ẑ ← sort(z)
for i ∈ {1, ...,K} do

if zi ≥ ẑk then
z̃i ← zi

else
z̃i ← 0

end if
end for

3.2.3.3 Model Architecture

The Weather model used for this thesis is show in Figure 3.8. The input to the model is a
two-dimensional matrix with shape F × T , where F is the number of features used by the
model from the weather forecast for T time steps into the future. First, a LassoNet network is
used, which is described in Section 3.2.3.1. This network is applied T times for each forecast
time step in the input weather forecast, that way each time step shares the same set of found
features. The LassoNet network outputs F transformed features for each time step, a total
of F × T transformed features. After the LassoNet an LSTM layer is used to find patterns in
the data, the number of LSTM cells in this layer is equal to the number of features used and
will keep the same shape as its input. For clustering, the output of the LSTM can then be fed
into a dense network that can be used by the k-sparse algorithm discussed in Section 3.2.3.2
to select the k highest activations in the output at each time step. This is then flattened to a
one-dimensional array to align with the outputs of the other models, totalling K × T features in
the case of clustering, or F × T features without clustering.
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Figure 3.8: Graphical representation of the Weather model component.
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The Weather model has quite a lot of hyperparameters to optimise. Therefore, the model is
first optimised without k-sparse clustering to find the most significant features. After which the
model is downsized to only use these features and trained again with k-sparse clustering but
without the LassoNet weight reduction process active. The complete list of hyperparameters is
shown in Table 3.9.

Hyperparameter values
Hierarchy coefficient M

Lasso penalty coefficient λ0

Lasso penalty multiplier ϵ

K-sparse width K

K-activations 0 < k ≤ K

Number of output features NW K × T or F × T

Table 3.9: Hyperparameters values under consideration for the Weather model.

3.2.4 Satellite Model

The satellite model is inspired by [57], which focuses on spatial-temporal problems with quan-
tile regression output. This is similar to the problem tackled here, as the goal of this component
is to forecast the influence of cloud movement on PV-panels power generation, based on past
satellite images. In [57] they use two Convolutional LSTM layers in series with a dense network
to forecast quantiles for a single time step for each pixel in the input. That is different from what
is needed for this model, as only one PV-panel is used and the model needs to predict for
multiple time steps in the future. This model has been adapted to fit the needs of this thesis
by replacing the first Convolutional LSTM by a standard convolutional layer which is applied to
each time step and a Convolutional LSTM or a 3D Convolutional layer which returns its state
for all time steps. This architecture is shown in Figure 3.9. The hyperparameters used in the
Satellite model are all depended on the dimensions of the satellite images used and are listed
in Table 3.10. Image zoom represents the downsampling factor, allowing the model to cover a
larger area with fewer pixels as its input, reducing its resource footprint.
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Conv 2D

Conv 3D Conv LSTM

Figure 3.9: Graphical representation of the Satellite model component.

Hyperparameter values
Image zoom level z

Image width/height 0 ≤W/H ≤ Wmax/Hmax

z

Number of past images T

Number of filters N1, N2

Kernel size k1, k2
Strides s1, s2

W1/H1

⌊
W/H−k1

s1

⌋
+ 1

W2/H2

⌊
W1/H1−k2

s2

⌋
+ 1

Number of output features NS T ×H2 ×W2 ×N2

Table 3.10: Hyperparameters and architecture definitions for the Satellite model.

3.2.5 Future Power Forecast Model

For the Future Power model, a neural network is used with a quantile forecast as its output.
The shape of the model is defined by the number of quantiles to predict for (Q) and the number
of time windows it should predict (T ). The architecture of this model component is shown in
Figure 3.10. First, the concatenated outputs (NW +NS+NP +NT ) of the previously listed input
components are fed through two dense layers with 60 units each and function as intermediate
layers to the quantile forecast. This allows the model to learn complex relationships in the
combined date. The quantile forecast network consists of two layers, the first layer is a dense
network that outputs T × Q values. This output is then sliced up into T parts, which the
next layer then uses to predict Q quantiles. This way, the quantile forecasts are created the
same way for all time windows in the forecast and encourages the model to find a generic
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representation to produce quantiles with, this reduces the chance for the model to over-fit
and is less likely for the quantiles to cross. The architecture is inspired by the MCQRNN
architecture [50] discussed in Section 2.4.2, which tries to establish a connection between
quantiles to ensure monotonically increasing quantiles. Predicting a multi-horizon forecast
in one go with shared weights has other benefits, compared to forecasting each time step
separately or iteratively. As [58] notes that the direct multi-horizon forecasting approach is
overall less biased, more robust, and does not suffer from error accumulation.

The Quantile loss described in Section 2.4.3 is used as the main loss function of the model
in combination with two additional loss functions to constrain the model. The first additional
loss function penalises forecasts with quantile crossing, incentivising monotonically increasing
quantiles over improper forecasts. Checking the relations between quantiles separately is
required, because Quantile Loss on its own scores each quantile independently and does not
penalise quantile crossing. The second additional loss function limits the range the prediction
can be in to the (0-1) range, as it is impractical to allow a PV-panel to consume power and the
PV-panels cannot produce more power than its maximum.

Dense

Dense

Dense

Dense

Figure 3.10: Graphical representation of the Future Power Forecast model component.

46



CHAPTER 4

EXPERIMENTS & RESULTS

In this chapter, the models previously defined in the methodology are implemented, and their
hyperparameters are chosen. First, the datasets used for training, testing, and validation are
prepared for these experiments, this process is detailed in Section 4.1. After which, the hy-
perparameters of all the model’s subcomponents are explored separately for each component
in Section 4.2 together with their final values, which are used by the final models. With these
hyperparameters selected, the final models are configured and trained. These models are
then compared against each other in Section 4.3 where their overall performance as well as
situation specific dependencies are investigated. The models are then implemented on an em-
bedded device to determine their practical feasibility. Next, the relation to energy management
systems are explored in Section 4.4. Finally, the results are discussed in Section 4.5.

4.1 Test Setup

Before the models can be trained, multiple datasets need to be prepared to train, test, and
validate the models with. To do this, the data sources described in Section 3.1 are prepared
and aligned in time to form one complete dataset. The complete dataset is divided into 6 parts,
5 training datasets and one validation set, following the k-fold cross validation strategy. K-fold
cross validation is used to ensure that the model that is trained is not overfitting or biased to
a particular type in the dataset. By dividing the training set into k parts, or 5 parts used here,
the model can be trained 5 times on 4 of the training sets and validated on the other. This
procedure is illustrated in Figure 4.1 where for each iteration a new test set to validate the
trained model on the other 4 training sets, the test scores can be then used to analyse the
validity of the model and be used to choose the optimal hyperparameters. The performance
scores should be similar for all iterations in the training process for the model to be considered
a valid forecasting model which represents the overall behaviour of the data well. The validation
set is left untouched until all models have been trained and is used to compare the performance
of all the models.

To make the distribution of samples across the different datasets as fair as possible the dataset
is partitioned by month and divided up by day, the validation set is then given 5 random days
of each month and the other days per month are divided equally among the training sets. To
make sure each dataset represents the different types of weather equally, the dataset is made
with another fairness constraint in mind. By using the weather types provided by the weather
station dataset referenced in Section 3.1.4, the shuffled datasets are compared to make sure
each dataset has a somewhat equal share per type. But as these weather types are non-
exclusive, and the dataset is divided by day, the datasets are not completely equal in their
distribution. The resulting distribution of the datasets are shown for the weather type and cloud
coverage levels in Figures 4.2 and 4.3 respectively.
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Figure 4.1: Illustration of how the dataset is split and used for each iteration in the k-fold
cross validation procedure.
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Figure 4.2: Weather types and their frequency in 2022 distribution across all datasets
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Figure 4.3: Cloud types and their frequency in 2022 distribution across all datasets. Level
0 refers to almost no cloud cover, and level 9 means total cloud cover.
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4.2 Parameter Selection

In this section, the best model configurations are found by optimizing for the hyperparameters
for each component discussed in Section 3.2. To limit the search space, each subcomponent is
optimized separately and combined later using these found hyperparameters, the optimization
processes are discussed in their own sections. The Future Power Forecast component is
optimized in Section 4.2.1, the Past Power component is optimized in Section 4.2.2. In Section
4.2.3 the Weather component is optimized, where feature selection and weather clustering is
performed. Lastly, in Section 4.2.5 the Satellite component is optimised.

4.2.1 Future Power

First the output needs to be defined before any model parameters can be selected as the
output specification directly influences what hyperparameters are chosen. To determine the
future power output windows, the power needs to be analysed first. As a start, the power
has been averaged over multiple time windows to see how the power is distributed over time,
the results of this analysis can be seen in Figure 4.4. Here it can be seen that the power is
distributed mostly on the left side, with long tails stretching far to the right. The tails do reduce
as the time window grows, which makes sense, as the outliers will average out more and take
on less extreme values. But the effect of the night samples on the distribution can still be seen
at the large time windows, where the mass density has shifted more to the left compared to
the smaller time windows. This imbalance in power is expected, but should be noted when
validating the models as the models are optimized relative to the average error, which will
favour the lower power predictions.

Another analysis has been performed to see how much the power will change over time can
be seen in Figure 4.4. For small time intervals the power will not change significantly from the
current power production, but there are outliers which can still deviate significantly from the
current power, likely due to cloud cover. The distribution becomes more spread out from the
10-minute interval onward, this is also why the persistence benchmark model is recommended
by [33] for below the 5-minute interval. From then on, the tails of the distribution become more
populated and the deviation becomes more significant and is where the most useful windows
to predict lie. It is however more difficult to predict as the further into the future you predict
the weather is more likely to deviate from its prediction. But as the time window increases,
the average power becomes more stable due to the averaging and less likely to change. This
does reduce the temporal resolution of the prediction, but like for the EV charging problem,
the average power is still useful as long as it is accurate enough to determine its schedule
on.

For EV charging based on solar energy, it is good to know if and when the forecasted power
does not line up with the previous forecasts anymore. That way, a new charging schedule
can be made preemptively, hopefully reducing the chance that the charging schedule will fail
its promised deadlines. As such, the following time windows were selected which strikes a
balance between providing enough information about the near future such that small changes
in the schedule are possible and giving enough information about the farther future such that
a complete schedule can be made in the first place. The windows used to predict can be seen
in Figure 4.6.
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Figure 4.4: The distribution of the power production in 2022 for different time windows
using the ’overlap’ averaging method. Only the results where there is a non-zero power
are shown here to filter out the nighttime samples, which would otherwise outweigh the
daytime samples.
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Figure 4.5: The distribution of how the power can change from its current production at
time t to certain points in time of its future. The x-axis represents the distance of the
current power pt with its point in the future pt+∆window

using the ’single’ windowing method.
Similar to Figure 4.4, the samples within |pt − pt+∆window

| < 0.002 are excluded, as they
are nighttime samples where no change happens and would otherwise overshadow the
daytime samples contribution.
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Figure 4.6: Window definitions for predicting the future average power using on the ’sep-
arate’ windowing strategy. For each time window, a prediction is made that estimates the
average power that will be generated in that time window. For example, the prediction cor-
responding to window 7 will predict the average power that will be generated from 2 up to
4 hours from now.

4.2.2 Past Power Production

As discussed in Section 3.2.1 there are 4 hyperparameters that need to be chosen for the
Past Power model. The parameter search list is shown in Table 4.1. For this experiment, the
Satellite and Weather models are removed so that the model is only influenced by the past
power measurements and the current time of day and year. The results of this experiment are
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shown in Figure 4.7 where the relations between the maximum window length and the number
of windows are shown. A clear relation can be seen between the maximum window length
and the best performance that a model can achieve with that window length. Increasing the
largest window length increases the performance of the model up until the 1-hour mark where
it almost flattens off, but for resource efficiency the 1-hour window length is preferred as fewer
samples need to be saved and processed.

For the number of windows used there is a less noticeable dependency relative to the best
performing models, but between 8 and 12 windows there seems to be a slight improvement.
From the models in Tspan = 600s and 8 ≤ Nmax ≤ 12 there is no window type or window
step that dominates this list and all combinations perform approximately equal. The window
length does matter as the models with the number of windows equal to 10 are in the top
5 with 4 of its 6 models. Within those 4 models the ’exponential’ and ’separate’ are most
significant, but with the differences in CRPS scores the choice does not really matter. These
found hyperparameters were however used to determine the final hyperparameters for the Past
model and are listed in Table 4.1.

Hyperparameter Values Final value
Window type ’overlap’, ’separate’, ’single’ ’separate’
Window step ’constant’, ’exponential’ ’exponential’
Nmax 4,8,12,16 12
Tspan 30, 60, 300, 600, 1800, 3600 seconds 600

Table 4.1: Hyperparameter values under consideration for the past power model, giving a
total of 3× 2× 4× 6 = 144 model configurations.

0 500 1000 1500 2000 2500 3000 3500
largest window size (s)

0.08

0.09

0.10

0.11

0.12

0.13

CR
PS

2 4 6 8 10 12 14 16 18
number of windows

Figure 4.7: Performance scores for all permutations in the past power production hyperpa-
rameter selection experiment. On the left, the CRPS is plotted against the largest window
size used for that model. On the right, the CRPS is plotted against the number of windows
used for that model. The red dots represent the best performing model for each window
size considered and match the red dots in the plot on the left.

4.2.3 Weather Forecast Parameter Selection

As described in Section 3.2.3 the weather model has many hyperparameters to optimize for,
therefore first a feature selection process is done to find the most significant weather variables.
The hyperparameters used to find these variables are listed in Table 4.2 with the values that are
used. During training, the weight reduction process described in [47] will gradually decrease
the contributions of the individual weights. During training the reduction becomes significant
enough that a variable will no longer contribute to the model, this is monitored during the
training process and after each training epoch the model is checked to see how many variables
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are still active and saves a snapshot of the best performing model with that number of variables
for each iteration and configuration. As it is a dynamic process, there is no guarantee to how
many variables will be removed during a training run or how many variables will be removed at
a time.

Hyper Parameter Values
M 2, 6, 10
λ0 0.005, 6.67, 13.33, 20.0
ϵ 0.005, 0.01

Table 4.2: Hyperparameter values under consideration for weather forecast parameters
selection. This gives 3× 4× 2 = 24 permutations to test.

The found models are plotted against the CRPS scores on the test set in Figure 4.8. In that
scatter plot, a clear trend can be seen between the number of features remaining and the
models with the lower and consequently better CRPS scores, which increases as the number
of features used decreases.

The varying CRPS scores per number of features used also shows a trend, with the spread in
CRPS scores reducing as the number of features used also reduces. This can be explained in
two ways, the first is that the training process uses the same training iteration to find multiple
feature sets and save a model for each number of features used. As a result, the model found
with fewer features has been trained for longer than the model with more features, as the
process ensures that the number of features will always decrease and never increase. The
second reason is that the ADAM optimizer can find the best performing model easier as the
problem becomes less complex with each feature removed, thus reducing the chance that the
model gets stuck in a local minimum. The second explanation is more likely, as most models
with a large amount of features used are distributed more closely to its best performing models
and the worse models are less frequent.
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Figure 4.8: The CRPS scores of all considered weather models relative to the amount of
features needed to make their prediction. Each dot represents the performance of a single
model, the red dots are the best performing models that fall within the selection criteria and
are used to select the best features in the weather model, the blue dots will not be taken
into account.

These models each learned their own set of features that they deem significant. To come to
one set of features, the best performing models are compared to see what features they chose
to explain the future power generation of PV-panels. The amount of times that a feature was
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used in these models was counted and can be seen in Table 4.3 where the feature is sorted by
how frequently it was chosen by these models, a graphical representation of this list is shown
in Figure 4.9. Here, the most prominent features found in the models are the variables that
are related to clouds and the water suspended in the atmosphere, both reducing the amount
of sunlight received by the PV-panel.

Although irradiance variables are the most prominent variables used in solar power predictions,
as discussed in Section 2.2, the only significant variable regarding irradiance found in this ex-
periment is the DHI at place 8. This is due to the fact that most irradiance information can be
reconstructed from other weather variables in combination with the Time and Seasons infor-
mation, which has a higher temporal resolution compared to the weather forecast, and thus the
irradiance predictions are less informative to the model as a whole. To demonstrate this dis-
tinction, the same experiment has been replicated with a weather only model where the Time &
Seasons model component has been removed, everything else has been left unchanged. The
results of this experiment can be found in Appendix A, where irradiance variables are more
prominently featured.

The convective precipitation and total column cloud variables remain among the most important
variables in both experiments. These variables were surpassed by the surface net radiation
(ssr ) variable in the weather only experiment as the most important variable, this is a stark
difference to the first experiment where the ssr variable is ranked 19th and only used by 1/5
of the models. Convective precipitation is regarded as the most useful variable among all
precipitation variables, exceeding large-scale precipitation and total precipitation. Convective
precipitation is the chaotic type of precipitation where large amounts of water can fall in a short
amount of time and indicates sporadic or fast changing cloud cover. Large-scale precipitation
would be more consistent over time and is also recorded in the cloud cover variables, making
its overall information contribution less significant. There is no variable in the CAMS weather
forecasts that describes how irregular the cloud cover can be, in the same vein that convective
precipitation is related to large-scale precipitation. Convective precipitation is therefore the only
variable that can give an indication on the irregularity in cloud cover.

From the results of both experiments, the variables wind, temperature, and surface pressure
were all deemed negligible in their contribution. However, based on the studies listed in [13],
these variables are often included as inputs to these types of models. As was discussed in
Section 2.2, these meteorological variables are directly related to solar power production, but
in Section 2.2.2.4 it was noted that these variables need to be measured locally as the temporal
and spatial resolution of these forecasts are not representative of the actual situation.

The subset of weather features to be used by the final model are chosen based on a trade-off
of how often a feature is chosen and the amount of features that would remain, as the total
amount of features influences the computational complexity of the model. Therefore, the top 9
features were chosen for the final weather features used to strike a balance between accuracy
and efficiency.

54



Chapter 4 – Experiments & Results

0 5 10 15 20 25 30
Feature ranking

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Figure 4.9: Graphical representation of the data shown in Table 4.3 as a sorted frequency
graph showing how often a feature remained significant in the best performing weather
models. A value of 1 means the feature was present in all of these models, and a 0 means
no model kept that feature.

4.2.4 Weather Clustering

Now the model of the model found in the previous Section 4.2.3 are extended with a dense
network at its output as described in Section 3.2.3. The K-sparse algorithm was implemented
in the model and configured with the hyperparameters described in Table 4.4. During training
the value of k is slowly reduced to 1 and for each value of k the best performing model is
saved, this is recommended by the paper [44] itself to find the k-sparse activations instead of
individually training a network with a fixed value for k.

The results of this experiment can be seen in Figure 4.10, in this experiment most models
could not find a good representation of the weather variables to cluster the data with. This is
evident as most models are distributed above a CRPS of 0.08 which is worse than the original
performance of these models without clustering as can be seen in Figure 4.8. There are a
few models that do perform better than their non-clustered counterparts, these are all made
by a few runs where the initial models already found a balanced representation of the data
which made clustering more performant. Each initial model specification had a run where a
k-fold iteration found such a representation whereas the other iterations did not, it should be
noted that the iteration ID is not the same for these runs and is not biased to a training or test
set. This performance can be explained by looking at how each node in the output layer is
used. The bar graph in Figure 4.11 shows how the best performing iteration also has learned a
more balanced activation frequency over all output nodes compared to the models that did not
find a similar representation. Due to the unstable nature of the model, this approach was not
considered for the final model and the model defined in Section 4.2.3 is used instead.
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top Identifier Description Unit Frequency
1 tciw Total column cloud ice water kg/m2 1.000
2 tclw Total column cloud liquid water kg/m2 1.000
3 cp Convective precipitation m 0.992
4 tcrw Total column rain water kg/m2 0.983
5 tcslw Total column supercooled liquid water kg/m2 0.958
6 mcc Medium cloud cover (0− 1) 0.925
7 lcc Low cloud cover (0− 1) 0.900
8 fdir Total sky direct solar radiation at surface J/m2 0.892
9 hcc High cloud cover (0− 1) 0.850
10 tcsw Total column snow water kg/m2 0.675
11 tcw Total column water kg/m2 0.617
12 cdir Clear-sky direct solar radiation at surface J/m2 0.533
13 lsp Large-scale precipitation m 0.500
14 ssrc Surface net short-wave (solar) radiation, clear sky J/m2 0.492
15 dsrp Direct solar radiation J/m2 0.442
16 ssrdc Surface solar radiation downward clear-sky J/m2 0.408
17 tsrc Top net solar radiation, clear sky J/m2 0.383
18 tcc Total cloud cover (0− 1) 0.258
19 ssr Surface net short-wave (solar) radiation J/m2 0.200
20 tisr TOA incident solar radiation J/m2 0.175
21 sund Sunshine duration s 0.117
22 ssrd Surface short-wave (solar) radiation downwards J/m2 0.092
23 tp Total precipitation m 0.083
24 u10 10 metre U wind component m/s2 0.017
25 v10 10 metre V wind component m/s2 0.008
26 t2m 2 metre temperature K 0.000
27 fal Forecast albedo (0− 1) 0.000
28 sp Surface pressure Pa 0.000
29 tsr Top net short-wave (solar) radiation J/m2 0.000

Table 4.3: Sorted list of weather features by how often the feature was present in the best
models.

Width K k features
5 1, 2, 3, 4, 5
10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Table 4.4: Hyperparameter values under consideration for weather clustering. Width spec-
ifies the width of the clustering layer, and k-features the amount of sparse activations that
can be active at the same time. The training loop is run 1 time for each width, while reduc-
ing the value for k steadily during training to obtain the models for each k-features. This
leads to a total of 5 + 10 + 15 = 30 model configurations.

4.2.5 Satellite

The satellite model described in Section 3.2.4 has been implemented and run with the hyper-
parameters listed in Table 4.5. The results as shown in Figure 4.12 shows similar behaviour
to what was found when using the k-sparse clustering algorithm in Section 4.2.4 where most
models would not converge to a passable performing model. This is likely due to insufficient
information represented in the model on how to steer the gradient towards optimal values be-
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Figure 4.10: Performance of each trained cluster model with the best 3 models per number
of sparse features used shown in red
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Figure 4.11: Activation frequency of the K = 5 wide network with k = 2 activations showing
how the best performing model, Run ID 0, also has the most diverse activations.

cause of the sheer number of variables in the Satellite model. This can be seen in Figure 4.12
comparing the number of past images to the CRPS score, where fewer images increases the
likelihood of the model converging to decent representations of the output. But there are some
useful patterns that can be found in the data, as the models that cover a larger area generally
perform better than a more local view. This implies that the models that were found do indeed
have some understanding of how the clouds impact the power generated.

As has been shown in [33, 19] the use of satellite images is only useful in the near future.
This is also the domain of the Past Power model, which converges more consistently to per-
formant models and generally performs better with a less complex network. Therefore, the
Satellite model is not considered a viable option and is removed from consideration in the final
model.
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Hyperparameter Values
Zoom z 1, 2, 4
Image width W / height H 32
Number of past images T 2, 3, 4
Number of filters N1 = 4, N2 = 10

Kernel size k1 = 5, k2 = 4

Strides s1, s2 3

W1/H1 10

W2/H2 3

Table 4.5: Hyperparameters used for generating the satellite model, giving a total of 3 ×
3× 2 = 18 model specifications to be tested.
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Figure 4.12: CRPS performance scores of each trained satellite model plotted against the
zoom level and number of past images used. The red dots are the best performing models
per zoom level, the green dots are the LSTM models and the blue dots the Conv3D models.
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4.3 Results

In this section, different model combinations are evaluated to test their reliability using the
validation set that has not been used so far. These models use the hyperparameters found
in Section 4.2 for their respective components. Next to the neural network models, a QR
model is made and will function as a baseline model to compare these models with. The QR
model is trained on the same data and data dimensions used by the Time + Past + Weather
model. Similar to the neural network models, the QR model is trained with the Quantile Loss
function as described in Section 2.4.3. The complete list of models and model combinations
that are used are listed in Table 4.6. Before evaluating the reliability of these models, they
are first evaluated based on their overall performance and accuracy in Section 4.3.1. After
which in Section 4.3.2, the models’ reliability and accuracy are presented by evaluating their
performance, these are illustrated from the perspective of multiple environmental variables that
can influence the energy production of solar panels.

Combination
QR
Time
Time + Past
Time + Past + Weather
Time + Weather

Table 4.6: The final 5 models that are considered.

4.3.1 Overall Performance

4.3.1.1 Day Forecast

In this analysis, the power forecasts of the models are used to show how their output changes
over a day and how the models react to different environmental changes. The models are used
to generate a new forecast every 10 seconds using the real life data that would be available at
that moment in time. These forecasts together with the actual average power generated at that
time in the future can be seen in Figure 4.13. Here the models predict their power forecasts for
June 3rd, 2022. Three of the eight time windows are shown to illustrate how these predictions
change over time and how the input data influences the time windows differently. A large blue
area coupled with a narrow red area means the prediction is very certain to be in the red, but
can take extreme values in rare occasions. A large area with a slow transition from red to blue
corresponds to a less clear view of the future.

Here it can be seen that for all models using the weather forecast as an input that their forecast
changes significantly when a new weather forecast is used, this is evident from the jagged
transitions between forecast on the hour mark. The influence of the weather is most notable
on the 4h time window, which is further into the future, indicating the significance of the weather
forecast in this time interval. For the models which use the past power measurements as an
input, the forecasts follow the actual power production more closely. This makes sense as
the past power measurements are the only source of data with a short and frequent update
cycle.

The QR model has trouble producing forecasts with a good fit around the actual power, produc-
ing forecasts with large uncertainties in the outliers as well as significant uncertainty around
the median. The same can be said for the Time model, which can only rely on seasonality
and time of day. The Time + Past model also predicts large lower bounds for the outliers, but
has more realistic expectations of what the upper bound would look like. The upper and lower
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bounds are shaped similar to the Time model, but its quantiles around the median are more
densely distributed around the actual average power production for time windows in the near
future. The neural networks with a weather input produce better estimates of the upper and
lower bounds of values the outliers are expected to take. But for the Time + Weather model,
the network has a very dense distribution of quantiles around the median quantile. Meaning
that the model is confident of the expected power being near that value, but as can be seen its
prediction can be significantly off the mark in the shorter time windows.

0.0

0.2

0.4

0.6

0.8

1.0

QR

10m window forecast 40m window forecast 4h window forecast

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

0.0

0.2

0.4

0.6

0.8

1.0

tim
e 

+ 
pa

st

0.0

0.2

0.4

0.6

0.8

1.0

tim
e 

+ 
pa

st
 +

 w
ea

th
er

02:00 07:00 12:00 17:00 22:00
0.0

0.2

0.4

0.6

0.8

1.0

tim
e 

+ 
we

at
he

r

02:00 07:00 12:00 17:00 22:00 02:00 07:00 12:00 17:00 22:00

interval 0.02 - 0.98
interval 0.05 - 0.95
interval 0.08 - 0.92
interval 0.12 - 0.88
interval 0.15 - 0.85
interval 0.18 - 0.82
interval 0.22 - 0.78
interval 0.25 - 0.75
interval 0.28 - 0.72
interval 0.32 - 0.68
interval 0.35 - 0.65
interval 0.38 - 0.62
interval 0.42 - 0.58
interval 0.45 - 0.55
interval 0.48 - 0.52
actual
GHI

Figure 4.13: Power forecast of June 3rd, 2022 as described in Section 4.3.1.1. The predic-
tions shown here are aligned to when the predictions were made, not the time the predicted
window covers. The evolution of the actual power average for that time window is shown
in black. For the predictions, the outermost quantiles are shown in blue and transitions to
red for quantiles closer to the predicted median with τ = 0.5.

4.3.1.2 Reliability Diagram

As discussed in Section 2.4.3, reliability diagrams are used to visualise how accurate the fore-
casted distributions match with their observations. For this analysis a reliability diagram is
made for every model as well as every time window that that model forecasts, these diagrams
can be seen in Figure 4.14. The ideal distribution is shown as a dashed black line, meaning
the observed frequency matches with the probability associated with that quantile. If a line is
above the dashed line, the model is generally overestimating the thresholds for that quantile
and covers more samples than expected. If the line is under the dashed line, the model is
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generally underestimating the threshold for that quantile.

It should be noted that the reliability diagrams were made using most of the forecasts gener-
ated by the models, but not all. The samples from the evaluation needed to be filtered first, as
the data included samples at nighttime which skewed the distributions in the diagram. This is
because the power produced at night is almost zero, making numerical instabilities and quan-
tiles overlapping each other due to the very dense probability distribution a significant issue.
Next to that, the observed quantile frequency is counted using Equation 2.12, which relies on a
less than equal comparison. This all disproportionally affects the observed frequency, as such
the samples where the average future power is less than 0.01 are not considered.

In these diagrams, it can be seen that both neural networks using weather data as an input
deviate significantly from their ideal distribution. Both models are overestimating the lower
quantiles and underestimating the upper quantiles, meaning the distribution around the median
quantile is denser than it should be. This can also be seen in Figure 4.14 where these two
models forecast distributions that are very compact around the median. For the model combing
weather data and the past measurements, the reliability diagram becomes more accurate with
a smaller time window. At these time windows, the forecast is using mostly the information
from the past measurements and less from the weather forecast. The QR model also uses
weather data, but does not show the same effects.
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Figure 4.14: Reliability diagram for all models under consideration. The ideal distribution is
shown as a dotted black line. The distribution for the different time windows are shown as
a range of colours transitioning from blue to red, blue meaning windows in the near future
and red windows further away.

4.3.1.3 Time Interval Performance

The next performance analysis is done by evaluating the forecast of a model using the CRPS
metric defined in Section 2.4.3. The performance of each model is grouped by their CRPS for
each time window in the forecast. In this analysis only daytime data is used, as otherwise the
CRPS distributions would be heavily skewed to 0 as these samples will have almost no predic-
tion error and would provide no useful information. In Figure 4.15, the CRPS is shown based
on the relative frequency of that score happening. For the models with past measurements,
their CRPS is significantly lower at small time windows compared to the models without. How-
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ever, the neural network models with weather data perform significantly better at the longer
time windows. For QR, the model performs well at small time windows, but performs signifi-
cantly worse the further away the prediction is from the time the forecast is made. The neural
network model combing both past measurements and weather data performs better across all
time windows.
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Figure 4.15: Distribution of CRPS scores based on future windows. The shapes’ width
indicates the relative frequency that a score is present in the dataset, a wide shape means
frequent and a small width infrequent. The mean and median of these distributions are
shown in green and red, respectively.

4.3.1.4 Relative Performance

For the last performance analysis, the neural networks are compared with the QR model to
measure the relative performance of each model. For this two metrics are used, the first
expresses how often a model was better than another and the second metric gives a score by
how much a model, on average, is better. The first metric shown in Equation 4.1 is the relative
frequency a model had a lower CRPS compared to the QR model for the same sample, the
relative frequency is expressed as a percentage. The second metric is using the Skill Score,
which calculates the relative performance increase of a model compared to another model, its
definition is shown in Equation 4.2 using QR as the reference model. A Skill Score below 0
means the QR performs on average better, above 0 means the other model performs better.
A score of 1.0 would mean the model made forecasts that match the actual observations
perfectly.

RFCRPS =
100%

N

N∑
t=1

1{CRPS(Xmodel
t , yt) < CRPS(XQR

t , yt)} (4.1)

SSCRPS = 1−
1
N

∑N
t=1CRPS(Xmodel

t , yt)
1
N

∑N
t=1CRPS(XQR

t , yt)
(4.2)

In Figure 4.16 the results of the first metric are shown. Here it can be seen that the QR
model is only competitive in the small time windows, but is outperformed everywhere else. The
neural networks using the past power measurements always outperform the QR model. As for
the models with weather data as input, the models perform significantly better at longer time
windows.
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In Figure 4.17 the results of the second metric are shown. With the results from the first metric,
it can be seen that the QR model is outperformed by the neural networks using past measure-
ments at small time windows, but not by much. For the Time and Time + Weather models
the performance at these small time windows is significantly worse than QR, but do improve
at longer time windows. The neural network using both past measurements and weather data
either meets or improves on the neural network models missing either input source, meaning
the model retains the same information from both past and weather sources as its specialised
models without compromises.
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66% 78% 80% 84% 86% 91% 94% 92%

38% 62% 72% 80% 85% 90% 94% 92%

Figure 4.16: Comparison between the QR model and the other models based on how
often the other model gives a better CRPS score as defined in Equation 4.1. 100% means
the other model always outperforms the QR model and 0% means the QR model always
outperforms the listed model.
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Figure 4.17: Comparison between the QR model and the other models using the Skill
Score metric as defined in Equation 4.2.

4.3.2 Data Dependencies

From the background study performed for this thesis, it was concluded in Section 2.3.3 that
the overall performance of a model does not accurately reflect the models’performance for
all situations. Therefore, in this section, the performance of the models are looked at from
different angles to discern whether a model’s performance decreases in particular situations.
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These perspectives should give insight into how robust and reliable a model is in real-life situ-
ations.

4.3.2.1 Seasonality

To see if the models have a seasonal dependency the models’ performance is partitioned by
the month the forecast was made in, this gives insight into possible seasonal influences which
are reflected in the CRPS. The results of this analysis are shown in Figure 4.18. In this figure, a
clear relation between sunny summer months and the more dim winter months can be seen. In
the summer months, when the sun is more intense, differences in forecast and reality become
more pronounced in the CRPS. This is because the CRPS is related to the absolute error,
which is more sensitive to differences in scale.
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Figure 4.18: Averaged CRPS score of all forecast windows categorized by month. The
mean and median of these distributions are shown in green and red, respectively.

4.3.2.2 GHI

From the seasonality analysis done in Section 4.3.2.1 it can be seen that CRPS is sensitive to
solar intensity. As such, another analysis has been done to categorize the CRPS by GHI. The
GHI measurements used for this analysis are taken from the CAMS solar radiation time-series
discussed in Section 3.1.4. The CRPS is averaged over all time windows to give a general
performance indication of a model. The GHI is also averaged over time, which aligns with the
largest prediction window lengths.

The results of this analysis are shown in Figure 4.19. Here it can be seen that the CRPS
increases with GHI for all models. But for the neural network models with weather forecasts
as an input, the CRPS goes down again as GHI goes to its maximum. The GHI is averaged
over the largest prediction window length, meaning that a high GHI correlates to an almost
clear sky. For clear skies, the forecast of the weather models can predict the expected power
production more accurately, as there will be no interference from outside sources on the solar
radiation received at the PV panel.
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Figure 4.19: CRPS categorized by GHI. The histogram at the bottom of the figure corre-
sponds to the frequency of samples whose GHI fall in that data range, the figure on top
shows how the CRPS scores are distributed for samples belonging to that GHI range.

4.3.2.3 Cloud Coverage

From the background study summarised in Section 2.2.3 the influence of clouds on solar ra-
diation was stated as a significant contributor to loss in PV power. Therefore, an analysis on
how cloud coverage influences the CRPS has been performed. For this analysis the measure-
ments from a nearby weather station have been used, this weather station has been detailed in
Section 3.1.4. From this dataset, the cloud coverage variable has been used. These measure-
ments are however for every hour, so the results have been linearly interpolated to match the
10-second prediction interval. The CRPS scores have been averaged over all predicted time
windows, and the cloudiness index has been averaged to match the largest prediction window
length.

The result of this analysis are shown in Figure 4.20. The cloudiness score shown here is an
average over a span of time, meaning scores at the extremes reflect the consistently cloudy or
clear sky samples and the samples in the middle reflect both medium cloudiness and transi-
tions from cloudy to clear sky, or vice versa. The QR and Time model overall perform equally
over all cloudiness levels, whereas the other models perform better at consistently cloudy or
clear sky environments.
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Figure 4.20: Average CRPS score separated by the cloudiness index observed by a nearby
weather station, the weather station and its weather types were discussed in Section 3.1.4.
The cloudiness is measured from 0, meaning no clouds, to 1, meaning full cloud coverage.
The histogram at the bottom of the figure corresponds to the frequency of samples whose
cloudiness fall in that data range, the figure on top shows how the CRPS scores are dis-
tributed for samples belonging to that cloudiness range.

4.3.2.4 Weather Type

The last analysis is aimed at categorising the CRPS by different weather phenomena. The
different weather types and labels are taken from the KNMI weather station dataset described
in Section 3.1.4. The weather types used for this evaluation are Mist, Rain, Thunder, and Ice.
These weather type occurrences are indicated in the dataset by yes/no values and correspond
to 1 and 0 respectively. The Snow weather type could not be used as too few samples were
in the dataset that were measured during the day, so it is missing from this evaluation. Similar
to the previous analysis, the CRPS is averaged over all time windows and the weather types
have been interpolated to match the 10-second prediction interval of the power forecast. The
dataset was then filtered using the weather type indicator, if a sample’s interpolated weather
type indicator was above 0.5, it is included in the distribution. The weather type distributions
are shown in Figure 4.21. For the thunder setting, the models with past measurements per-
form significantly better. Ice and Mist weather types are better handled by the neural network
models. Overall, Rain is significantly more difficult for these models to handle.
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Figure 4.21: Average CRPS score separated by the different weather types observed by
a nearby weather station, the weather station and its weather types were discussed in
Section 3.1.4.

4.3.3 Embedded Implementation

As a last experiment, the 5 models have been implemented on an embedded device to deter-
mine their resource usage characteristics and operational feasibility of a real life application.
For this experiment a NodeMCU-ESP32 DEVKITV1 is used as the embedded device, this
development board houses a ESP32-D0WDQ6-V3 microcontroller running at 240MHz with
512KB of RAM and 2MB of flash memory.

In order to be able to run the 4 neural networks on this device the models have been converted
to TensorFlow Lite model descriptions, these descriptions hold all the practical information
needed to run the neural networks on an embedded device, such as the model’s weights, a list
of what operations need to be executed and in what order, memory buffer locations, and buffer
sizes. An interpreter then uses these descriptions to execute the models on the embedded
device. For the QR model, a program has been written that calculates the dot product between
the weight matrix and the input feature vector.

In Table 4.7 it can be seen that all models are able to produce their output well before the next
input sample is available 10 seconds later, all below 1% of the allotted time. For the neural
networks, the inclusion of weather data increases the execution time of the model significantly
compared to including past power measurements in the model. This can be attributed to the
use of multiple dense layers as well as the use of an LSTM layer, which is computationally
complex.

Overall, the neural networks take decidedly longer to process compared to the QR model,
even the more simple Time model takes significantly longer. This has two causes, the first
is the complexity of the quantile forecast part of the model, which is the same for all neural
network models. The second cause is the additional work done by the interpreter loading,
storing, and moving data around in memory as all operations are evaluated at runtime per
instruction and not optimized beforehand, resulting in work being done that could have been
avoided. The QR model with its dot product is less demanding on memory and computational
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Model
Model size

(bytes)
execution
time (ms)

iterations/second
(1/s)

Time
active (%)

QR 65292 8.843 113.085 0.088
Time 84156 13.044 76.654 0.130
Time + Past 88524 13.342 74.935 0.133
Time + Weather 110540 15.769 63.400 0.158
Time + Past + Weather 114964 16.260 61.333 0.163

Table 4.7: Model characteristics when implemented on an NodeMCU-ESP32 DEVKITV1,
the shown execution time and iterations/second are averaged over a 1000 model execu-
tions. The model size represents the amount of memory needed to fully describe the
model, not program size. Execution time measures the time needed for the model to exe-
cute from input to output. Time active is the ratio between the time spent calculating and
the time available between samples.

complexity, requiring only multiply accumulate operations iterating over the variables, which is
easier for the compiler to optimize for.

4.4 Example EMS Use Cases

The use of probabilistic forecast in EMS requires a different approach compared to the cur-
rently used point forecasts, as the information in the probabilistic forecast is spread out over
all quantiles instead of one single value. The probabilistic forecasts therefore have to be pro-
cessed further before they are used, this allows for the information relevant to the use case
to be represented more efficiently. However, using probabilistic forecasts instead of point fore-
casts in EMS would also enable unique opportunities that are not possible with point forecasts.
These new and unique use cases are discussed in this section, together with options on how
to use probabilistic forecasts where point forecasts are currently used.

Studies like [42, 58] use only a small subset of the produced quantiles, these are often the
median quantile and two quantiles further apart from the median, for example the q0.1 and q0.9
quantiles. The median quantile is used in this case to represent the expected value of the
future power, just like a standard point forecast would, and the two outer quantiles represent
the lower and upper bounds the future power is expected to be in. This allows an EMS to take
these worst case scenarios into account when making decisions.

Other studies like [20, 10] use the full set of quantiles available to perform cost-risk analysis
to evaluate potential economic costs associated with these presumed future realities, or steer
the systems using these forecasts to minimize potential costs. This can be for example to
investigate how likely it is that a certain energy production quota is realized, given a certain
power forecast. This example use case is demonstrated in Figure 4.22, where the Time + Past
+ Weather model forecasts how likely it is that the average power generated will lie within its
allowed power production range, indicated by two red lines. The probabilities of each category
are calculated by sampling or interpolating the quantiles near the point of interest. The allowed
production ranges are kept constant in this example for simplicity, but dynamic ranges could
also be applied. The boundaries of the allowed power production could for example represent
a preferred power profile for charging electric vehicles. The analysis would then indicate the
feasibility of that profile and possibly signal the need to update its charging schedule based
on the likelihood that the current charging profile would not be sufficient. Additionally, the
probabilistic boundary could also be employed to indicate the available headroom on the local
power grid. The probability would then signify the chance that the local energy grid would be
overloaded, allowing preventive actions to be taken.
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In [20] this cost-risk analysis is given a score by comparing the derived chance to exceed a
set value with a variable indicating a probability threshold from what point action should be
taken. Taking action is then associated with a cost, missing an event is then associated with a
loss, and correct rejection is not associated with a cost or loss. The total cost-loss ratio is then
evaluated such that the balance between cost and loss can be optimized.

The last three examples all use previously established reference schedules or conditions to
compare the forecast with, but this can be turned around. For example, the forecast can be
used to generate the electric vehicle charging schedule with, instead of validating a charging
schedule. The quantiles are then used to guide or inform the search for an optimal charging
profile, balancing costs and service reliability. This setup can also be used to inform an EMS
what the optimal state-of-charge should be for its batteries. This allows an EMS to better
handle the unpredictability of the future and reduce the number of cases where PV power is
used inefficiently due to unexpected overproduction or underproduction of PV power and not
enough headroom on the state-of-charge of the batteries to make use of this.

Replacing the ’overlap’ or ’separate’ windowing methods with the ’single’ method would open
up new possibilities as well. The models would in that case forecast a conditional CDF of the
instantaneous power production at a certain time in the future, instead of the average power
during a certain time period, this would give an indication of the volatility in the power genera-
tion. The forecast would then describe the expected range and likelihood of the instantaneous
power that could be observed at that point in the future, similar to the observed power fre-
quency shown in Figure 4.4 or power deviation frequency shown in Figure 4.5. In [50] this is
used to forecast rainfall intensity and duration to predict extreme weather events. This can be
applied to solar power forecasting to warn for sharp changes in the expected power genera-
tion. Another use case would be to estimate the volatility of the instantaneous power and its
impact on the local power grid to model the degradation of grid infrastructure, as advocated by
[3].
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Figure 4.22: Power and probability forecast of June 3rd, 2022 made by the Time + Past
+ Weather model. In the top figures, the power forecast is shown, similar to Figure 4.13.
In the middle figures the predicted probability is plotted of the actual power being below,
between, or above the two threshold indicators as predicted by the model. In the bottom
figures, the instantaneous CRPS of the power forecast and actual power is plotted as an
indication of forecast accuracy.
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4.5 Discussion

The use-case of this thesis drove the decisions for the future window method and the model pa-
rameters, but its selection depends on the use-case and should be researched independently
per application. The results shown in this chapter are to introduce probabilistic forecasting with
a specific focus on EV charging. As was found in the literature study the choice of quantiles
is not fixed and the number of quantiles can be adjusted to the use-case as well, if for exam-
ple only estimates of quantiles are good enough for practical applications without needing to
process the quantiles for comparing performance one might reduce the number of quantiles
significantly. There is likely a relation between the number of quantiles and the value that the
added quantile brings, but this needs to be investigated further.

In Figure 4.21 it can be seen that when thunderclouds are expected, the models with past
power measurement data included perform significantly better than their counterparts. This is
likely because the thunderclouds are more regular in their shape and can be adjusted for more
easily, as they are less likely to change much over time. The neural network with only weather
data cannot accurately predict when exactly the thundercloud will arrive and thus produces
larger errors.

The CRPS used in this thesis is not always an accurate representation of the actual perfor-
mance of a model. The definition of the CRPS equates two continuous probability density
functions and scores the similarity between these two densities, this has been discussed in
Section 2.4.3. The metric used here however approximates the CRPS using a discrete density
function in the form of quantiles together with singular observations. These approximations
however need to be averaged before it converges to the true CRPS and can be compared to
the MAE. In most comparisons, the CRPS scores have been averaged before use or are shown
together with an average CRPS in the case of CRPS density plots like Figure 4.6. The CRPS
densities plotted in these types of figures do not represent an interpretable value like the MAE
does, and are only shown to illustrate how the CRPS is distributed in these situations.

The CRPS is related to the MAE as discussed in Section 2.4.3, this means that errors at high
solar intensity will contribute more to the CRPS than errors in the lower solar intensity spec-
trum. This can give a wrong insight when interpreting CRPS scores, as the CRPS represents
the absolute error, but the relative error is more similar to how an outside influence affects
the generated solar power. An example of this can be seen in Figure 4.18 where the CRPS
is significantly larger during summer months. This however does not necessarily mean that
the models perform better in winter months. The scaled CRPS proposed in [59] would reduce
the influence of scale when assessing the averaged performance of a model. But this method
requires an approximation of the conditional probability density function to which the observed
value belongs to in its calculation, this is not trivial to approximate and not feasible for this
study.

CRPS scores both sharpness and accuracy and cannot be presented independently using
only the CRPS. A wide probability might be more accurate, but a smaller probability distribution
with less accuracy might perform better. As an example, QR has more reliable quantiles as
shown in Figure 4.14 compared to the neural network weather models, but performs worse in
all performance analysis using CRPS as it forecasts wider probability distributions. Different
metrics are required such that accuracy and sharpness can be analysed independently.

Weather models forecast the average power of that hour and do not interpolate nicely from hour
to hour, as can be seen in Figure 4.13. The power forecasts show the average expectation for
that hour, but is actually higher or lower near the these transitions between weather forecasts.
This also influences the reliability diagram shown in Figure 4.14 where this behaviour results
in over or underestimations in the quantile distributions.
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The low resolution weather forecast might however not be the only cause for the poor results
observed in the reliability diagrams. This unreliability might be caused by the network archi-
tecture used, as QR does not have the same issues. This could be caused by the complexity
of the neural network models using weather data, thus increasing the chance of the model
to overfit. This overfitting can then be explained as an overconfidence in the accuracy of the
weather forecast, likely due to a deficit in training data where the true uncertainty cannot be es-
timated and only a handful of examples are available. This overconfidence has been observed
on certain days in the validation set, where the quantile forecast indicate low uncertainty, but
all quantiles differ from the observed value significantly. In these situations, the forecasts also
change significantly when a more recent weather forecasts is available, indicating an overre-
liance on the weather forecast. This goes together with the type of weather forecast used, a
deterministic forecast, which cannot indicate the range of values the future can hold. Thus,
when the weather forecast is off, the models’ forecasts will also be off.
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CONCLUSION

In this thesis, the reliability of energy prediction for solar panels has been investigated and
how it can be improved upon. The most compelling strategy found in the literature study is
to transition from point-forecast methods to probabilistic forecasting methods. Two of these
probabilistic forecasting methods have been used in this thesis to investigate their reliability,
accuracy, and feasibility in practical applications. Next to that, examples have been provided
on how these probabilistic models can be used by existing systems to improve their operation.
Based on the research and studies performed in this study, the research questions stated in
Section 1.3 can now be answered fully. These answers and future research possibilities are
discussed in this chapter.

5.1 Research Questions

In order to answer the main research question of this thesis, how the reliability of energy
prediction for solar panels can be improved, the four related research questions described
in Section 1.3 are answered first. This gives the context needed to give an answer to this
overarching question.

Question 1: What data can have a meaningful contribution to predicting the expected
solar output power of solar panels and its uncertainty?
Four data sources were discussed as an input for future power predictions, time & seasonality,
past power measurements, weather forecasts, and satellite imagery. Each source added value
to their predictions, but as discussed in Section 4.2.5 the Satellite model was more resource
intensive compared to the Past model and did not perform better. Next to that, the Past model
does not require external information to function and can rely on a more reliable stream of
data.

All models using time & seasonality information alongside weather forecasts in their inputs
were found to rely more on variables representing atmospheric water content, compared to
irradiance variables, as can be seen in Table 4.3. In literature, irradiance variables are of-
ten chosen as inputs to forecasting models, as discussed in Section 2.2.3. These irradiance
variables were less preferred to other weather variables that complemented the information
provided by the time and seasons variables, removing redundant or unimportant variables and
decreasing the total number of variables used by the model. This feature selection process
using the algorithm presented in [47] made this selection process more adaptive and specific
to the model that is used, as can be seen in Section 4.2.3.

The information from the Time, Past, and Weather subcomponents complement each other
as can be seen in Figure 4.17, where these three subcomponents together produce the best
performing model. This combined model keeps the short interval performance of the Past
model and the long interval performance of the Weather model, taking the best of both worlds
and improving upon the CRPS in the medium interval windows. The combination of these
three sources is therefore a clear recommendation.
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Question 2: How can methods be used to make these predictions more reliable?
In this thesis, two main methods have been used to make probabilistic forecasts with, namely
neural networks and quantile regression methods. The neural network models have been
augmented with special algorithms like LassoNet [47] to reduce the feature space and make
the models more generic, and K-Sparse layers [44] which try to group weather data into similar
clusters to reduce the feature space even more. Reducing the feature space and restricting
the possible states the models’ layers can take reduces the chance of overfitting and improves
stability. For the weather models, the use of LassoNet did improve the reliability overall without
sacrificing accuracy too much, as can be seen in Figure 4.8.

Question 3: How can the reliability of the predictions be assessed?
As can be seen from the results discussed in Section 4.3 the reliability of the models imple-
mented for this work can be viewed in multiple ways. The reliability diagrams in Figure 4.14
give an indication on how accurately the expected quantile distributions match with the ob-
served distributions, providing a good visual basis of how much the models predictions should
be trusted and when not. The models’ performance is further dissected in Section 4.3.2 based
on different weather types, time and weather observations to show possible shortcomings in
their understanding of these situations. These tests form a good basis to judge the reliability of
these models on.

Question 4: Are the found models practical and resource efficient solutions for real-
world applications implemented on an embedded device?
As can be seen in Table 4.7 all final models can be run on an embedded device within the time
or memory constraints for real-world applications. The time needed to execute the presented
neural networks on an embedded device is very small relative to the time that is available to
produce its results. Although the QR model is faster and uses less memory, it is trumped by
the neural networks based on overall accuracy, as can be seen in Figure 4.17. The absolute
difference between execution time and memory usage is less convincing than the difference in
accuracy. Therefore, the choice for neural networks on embedded devices is overall a better
one, given the results shown here.

How can the reliability of energy prediction of solar panels be improved?
The answers to the four research questions explain how the different aspects of reliability can
be defined, measured, influenced, and how it can be improved upon in the field of energy
prediction of solar panels.

The foremost improvement to energy prediction of solar panels is the change from point fore-
casting to probabilistic forecasts. This change grants the end-user information about the
aleatoric level of uncertainty in the future energy production, which point forecasts do not.
This gives a more realistic representation of the future, improving the overall reliability of the
prediction. The input variables used in literature were selected and optimized for point fore-
casts, but these discarded input variables can still prove useful as they are possibly related to
the unpredictability of the future. This can make previously unused variables useful again and
improve the forecasts with additional information and reduce the epistemic uncertainty.

By studying the behaviour and limitations of models by assessing the models’ performances
in different environmental situations, as is done in Section 4.3, the shortcomings and expected
range of error can be determined. These assessments give insight into the epistemic uncer-
tainty of the model and gives an indication on how much a model should be trusted, given
these specific circumstances. The end-user can then act on this knowledge when these cir-
cumstances arise and improve the reliability of the end-user’s application.
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Multiple different types of data sources used by these models results in more reliable forecasts
overall, as is demonstrated in Figure 4.17. Choosing past power measurements over satellite
imagery improves performance as well as reliability, as past power measurements do not rely
on external sources, improving the availability of the application.

All methods and proposed improvements discussed here are feasible and actionable solutions
for real-life applications, as these solutions have been demonstrated to work on a readily avail-
able embedded device with modest resource constraints.

5.2 Future Work

During the making of this thesis, many paths and opportunities were found that could prove
useful for further studies. There was however not enough time to dive into these topics for this
thesis, but some insights gained during the making of this thesis related to these topics can
prove useful for others. As such, these improvements or other fruitful methodologies are listed
below for inspiration.

Second Order Uncertainty
For future work, the pursuit of second order uncertainty is encouraged, as this can help explain
the uncertainty of the model where the probabilistic forecasts are also bound to be erroneous.
The second order uncertainty would then be the uncertainty of the model in its predicted output
given the set of inputs to the model. This can be done by developing a second model which
predicts the error that the base model will have given the same inputs. This way, the uncertainty
of the model can be taken into account with the decision-making process of an EMS.

Weather Forecast Interpolation
The Weather models used in this thesis rely on data that is updated only once per hour, with
data that spans the average of one hour. As a result, the predictions made by these mod-
els show step-like behaviour in their forecasts, as can be seen in Figure 4.13. This step-like
behaviour is negatively impacting the forecasts, as the forecast nearer to the edges of these
jumps are often over or underestimating the actual future, as can be seen in Figure 4.14. To
fix this, the weather forecast can be interpolated before it is used as an input to the model,
based on the time between the updates. This would mean that the model needs to calculate
the weather subcomponent more often instead of each hour as it is currently, increasing the
average number of operations that need to be done per inference. Another option is to interpo-
late the output of the subcomponent based on the output of the subcomponent for its current
forecast and the weather forecast shifted over one hour into the future. This would mean the
subcomponent has to be run twice per hour instead of each inference like the previous solution
requires, but it might be that the output might not be well suited for interpolating. Based on the
performance differences shown in Table 4.7 the additional computations required for the first
solution might be negligible compared to the effort required to develop the second solution and
should be investigated first.

Weather Forecast Source
Another improvement to the weather model would be finding a more frequent and faster source
for weather forecasts. The main reason is that with the current source of data, there can be
a difference between 10 to at most 28 hours between the moment the last observation was
made and the time the prediction represents. This can lead to differences in the forecast and
reality due to disparities in the weather and the weather model. These errors accumulate as
the forecast and reality differ more and more over time. These errors are more pronounced in
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the model’s CRPS because of the long delay between the last measurements and the current
time. Therefore, more frequent and recent weather forecasts are encouraged to be used in
the future, as these can adjust to changes in the weather more regularly, reducing the drift
between reality and the forecast.

Ensemble weather forecasts represent possible realisations of the future weather. Incorpo-
rating these possible futures as an input can give an estimate of uncertainty in the weather
forecast, thereby improving the reliability of the energy forecast.

Weather Clustering
The experiment done in Section 3.2.3 using K-Sparse clustering to find common clusters in
the weather data showed poor performance in most of the trained models. The models trained
with that algorithm did not converge to useful models most of the time, as can be seen in
Figure 4.10. This does not mean that clustering the weather forecast by type is not a valid
pursuit, as the models that did converge correctly perform similar to the unconstrained models.
The K-Sparse model would however require more time and effort before its predictions can be
used further, with the main focus on ensuring evenly distributed activations before and during
the K-Sparse clustering specific training.

Satellite Model
The Satellite model does have a future for power forecasting with its short update interval and
its regional information, but would be best suited as a separate forecasting service, similar
to how the weather forecast is used in this thesis. In [19] this type of model is proposed,
which forecasts solar radiation variables derived from cloud movement observations made by
satellites. In that research, the cloud movement model outperformed weather forecasts in
the first 2 to 3 hours and could prove to be a worthwhile addition to the models introduced
here.

Quantile Regression Forests
QRF was planned to be used as a benchmark model, but had to be dropped due to time
constraints and uncertainty about the amount of effort required to integrate QRF. But using
QRF for solar power forecasting is still compelling, as [20] recommends using QRF or tree-
based methods for forecasting solar radiation, as they claim that tree-based methods are more
reliable than QR or QNN. QRF would also inherently find commonality in the data and group
similar results together, resulting in sharper and more accurate quantile forecasts. As found
by [20], tree-based models perform better in clear sky situations as it can distinguish these
unique situations separately instead of approximating the relations as a continuous function as
QR and QNN do.
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APPENDIX A

WEATHER ONLY MODEL RUN
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Figure A.1: The CRPS scores of all considered weather models relative to the amount of
features needed to make their prediction. Each dot represents the performance of a single
model, the red dots are the best performing models that fall within the selection criteria as
specified in Section 4.2.3, the blue dots do not.
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Figure A.2: Sorted frequency graph showing how often a feature remained significant in
the best performing weather models. A value of 1 means the feature was present in all of
these models, and a 0 means no model kept that feature.
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5.0 –

top Identifier Description Unit Frequency
1 ssr Surface net short-wave (solar) radiation J/m2 0.967
2 tclw Total column cloud liquid water kg/m2 0.950
3 cp Convective precipitation m 0.933
4 tciw Total column cloud ice water kg/m2 0.875
5 tcrw Total column rain water kg/m2 0.858
6 tisr TOA incident solar radiation J/m2 0.800
7 sund Sunshine duration s 0.792
8 lcc Low cloud cover (0− 1) 0.783
9 tcslw Total column supercooled liquid water kg/m2 0.717
10 tcsw Total column snow water kg/m2 0.708
11 dsrp Direct solar radiation J/m2 0.700
12 lsp Large-scale precipitation m 0.583
13 ssrc Surface net short-wave (solar) radiation, clear sky J/m2 0.575
14 tcw Total column water kg/m2 0.517
15 fdir Total sky direct solar radiation at surface J/m2 0.450
16 tsrc Top net solar radiation, clear sky J/m2 0.433
17 mcc Medium cloud cover (0− 1) 0.408
18 hcc High cloud cover (0− 1) 0.333
19 ssrdc Surface solar radiation downward clear-sky J/m2 0.267
20 tcc Total cloud cover (0− 1) 0.267
21 ssrd Surface short-wave (solar) radiation downwards J/m2 0.233
22 cdir Clear-sky direct solar radiation at surface J/m2 0.117
23 tsr Top net short-wave (solar) radiation J/m2 0.092
24 tp Total precipitation m 0.067
25 t2m 2 metre temperature K 0.033
26 fal Forecast albedo (0− 1) 0.025
27 u10 10 metre U wind component m/s2 0.017
28 v10 10 metre V wind component m/s2 0.000
29 sp Surface pressure Pa 0.000

Table A.1: Sorted list of weather features by the amount of times the feature was present
in the best models.
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