
CONTROL OF THE PRODUCTION CELL ON
RASPBERRY PI USING A REAL-TIME

ROBOT-SOFTWARE FRAMEWORK

N.E.D. (Nick) in het Veld

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
dr. ir. G. van Oort
H.H. Folmer, MSc

December, 2023

056RaM2023
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Nick in het Veld University of Twente

iii

Summary

This report describes the realisation of an embedded-control-software architecture on the
Raspberry Pi 4 for the Production Cell demonstrator machine. The embedded-control-software
architecture is built with a real-time robot-software framework that has been developed at
the Robotics and Mechatronics (RaM) group. The robot-software framework utilises ROS2,
20-sim and Xenomai to build an embedded-control-software architecture. The design of the
embedded-control-software architecture is based on the layered-controller-structure concept.
The choices of allocations concerning the embedded-control-software architecture have been
made based on design space explorations and set requirements. The chosen allocations
have been implemented for the embedded-control-software architecture using a model-driven
design approach.

The implemented embedded-control-software architecture utilises three Raspberry Pi boards
to control the Production-Cell setup. The various software components, which comprise the
layered controller structure, run on each Raspberry Pi board. Each Raspberry Pi board is re-
sponsible for the control of two Production-Cell Units. The embedded-control-software archi-
tecture for a board is divided into a firm-real-time and soft-real-time part. For the firm-real-
time part, a single Xenomai-based real-time task runs a 20-sim-code-generated motion con-
troller. For the soft-real-time part, multiple ROS2-based tasks are responsible for the discrete-
event control. A ROS2-based bridge is used to allow communication between the firm-real-
time and soft-real-time part. Communication between boards is done by using ROS2’s net-
working capabilities over Ethernet.

Different aspects of the implemented embedded-control-software architecture have been
characterised by performing measurements with a test bed. A test scenario is used to rep-
resent the nominal-load scenario of the Production-Cell setup. The control performance,
load balancing and real-timeness of the embedded-control-software architecture have been
characterised during the nominal-load scenario. For the control-performance aspect, the
setpoint and position error of each unit has been captured. For the load-balancing aspect,
the load per Raspberry Pi core has been measured by evaluating kernel-related information
of Linux and Xenomai. For the real-timeness aspect, the jitter of each embedded-control-
software-architecture component has been measured using a POSIX-based clock command.
The processor-load results show that CPU load of each Raspberry Pi core stays below the re-
commended maximum load (< 90%). The jitter results show that the ROS2-based embedded-
control-software-architecture components can have significant high jitter (< 90% of period),
while the Xenomai-based components have relatively low jitter (< 5% of period).

The test results indicate that load balancing in the embedded-control-software architecture
meets the set requirements and that the architecture can distribute the CPU load well over the
Raspberry Pi cores. Regarding the control performance, the test results show that it falls short
according to the steady-state-error criterion of prior Production-Cell-related work (> 0.5 mm).

In future work, further investigations should be done regarding the system performance dur-
ing high system-stress scenarios. Furthermore, investigations should be done regarding the
relationship between control performance and real-timeness.

Robotics and Mechatronics Nick in het Veld

iv Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Contents

1 Introduction 1

1.1 Context . 1

1.2 Design objectives . 2

1.3 Approach . 2

1.4 Report outline . 3

2 Background 4

2.1 Introduction . 4

2.2 Production Cell . 4

2.3 Embedded control system . 7

2.4 Embedded-control-software design procedure . 9

3 Analysis 11

3.1 Introduction . 11

3.2 Requirements . 11

3.3 Approach to allocation . 13

3.4 Selection of number of Raspberry Pi boards . 14

3.5 Allocation of Production-Cell Units to Raspberry Pi boards 15

3.6 Allocation of controllers to Raspberry Pi cores . 16

3.7 Allocation of safety circuit to Raspberry Pi boards 17

3.8 Conclusion . 18

4 Design 20

4.1 Introduction . 20

4.2 Firm-real-time design . 20

4.3 Soft-real-time design . 23

4.4 PCB interface board . 26

5 Testing 27

5.1 Introduction . 27

5.2 Setup . 27

5.3 Way of measuring . 30

5.4 Results . 30

5.5 Discussion . 35

6 Conclusions and Recommendations 37

6.1 Conclusions . 37

6.2 Recommendations . 37

Nick in het Veld University of Twente

CONTENTS v

A Production Cell 38

A.1 Real world picture . 39

A.2 Units . 40

A.3 Sequence diagram . 41

A.4 Peripherals . 42

A.5 PCB boards . 43

A.6 Electrical switch board . 44

A.7 50-pin connector definitions . 45

A.8 Related work . 47

B icoBoard 48

B.1 PMOD connector . 48

B.2 Mapping Production Cell’s peripherals . 50

B.3 Toolchain . 51

C Embedded-control-software architecture 52

C.1 Motion-control model . 53

C.2 Discrete-event-control model . 57

C.3 Custom 20-sim model blocks . 61

C.4 Physical connections . 70

C.5 Additional diagrams and plots . 71

C.6 Running the demo . 75

D PCB interface board 77

D.1 Design . 77

D.2 Safety circuit . 80

E Design-space-exploration scoring system 81

Bibliography 82

Robotics and Mechatronics Nick in het Veld

1

1 Introduction

1.1 Context

The demand for systems utilising small but powerful computer boards increases day by day.
Here, the Robotics and Mechatronics (RaM) group of University of Twente is active in the re-
search about how to efficiently realise control software on embedded computer boards. To
adopt to the latest trends, the RaM-group uses the Raspberry Pi (RPi) computer board to pro-
totype control software, which is a widely-adopted computer board that enjoys community
support due to its open-sourceness (University of Cambridge, 2023).

At the RaM group, a real-time robot-software framework has been developed for the Raspberry
Pi 4 (Meijer, 2021). In combination with two tools, the framework allows the design of a full-
fledged embedded-control-software architecture. The framework relies on two software tools:
ROS2 and 20-sim. The first tool, ROS2, is a commonly-used software development kit for robot-
ics applications (ROS, 2023b). The second tool, 20-sim, is a modeling and simulation program
which is used for modeling complex multi-domain systems and for the development of control
systems (20-sim, 2021).

While the Raspberry Pi and its robot-software framework have been used for the control of
simple demonstrator systems at RaM (Meijer, 2021), their capabilities with respect to complex
systems remain to be seen. Thus, an opportunity to utilise both on a complex demonstrator
machine would showcase their capabilities.

At the RaM group, a Production-Cell demonstrator machine exists (Van den Berg, 2006). It
is modelled after a plastic-injection molding machine, where multiple units require to work
together to fulfill its objective (Figure 1.1). For the Production Cell, discrete-event control and
motion control play a significant role for its operations.

Figure 1.1: A spectators’s view of the Production Cell (Ridder, 2018).

Robotics and Mechatronics Nick in het Veld

2 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

The Production Cell and robot-software framework provide the opportunity to develop and
deploy an embedded-control-software architecture on the Raspberry Pi (Figure 1.2). The main
issues herein lie that a performant embedded-control-software architecture must be realised,
while taking the available resources of the Raspberry Pi into account.

The Production Cell provides an interface for three embedded-control-software implement-
ations via dipswitches (Figure 1.2), enabling the prototyping of different embedded-control-
software architectures. An implementation, consisting of the work of Sassen (2009), currently
exists, which is the fifth full demonstrator after the work of Maljaars (2006). The implementa-
tion of Sassen (2009) can be shown when the dip switches are in position 1, see Figure 1.2 and
Figure A.6.

Two implementations can still be attached to the setup. In this thesis, a Raspberry-Pi-based im-
plementation will be realised and connected to the setup when the dipswitches are in position
2, see Figure 1.2 and Figure A.6.

RPi4

1

2

3

Dipswitch on
switch board

Contribution of this thesis

Existing work

FPGA

Production
Cell

Command
Centre

Command
Centre

Figure 1.2: Context of this thesis

1.2 Design objectives

The main goals of this thesis are formulated as follows:
1. Realisation of a performant demonstrator for the Production Cell using the Raspberry Pi

4 .
2. Characterisation of the implemented embedded-control-software architecture in terms

of control performance, load balancing, and real-timeness.
The project constraints of this thesis are formulated as follows:

• One or more Raspberry Pi boards are used for the design of the embedded-control-
software architecture.

• The robot-software framework is used as is and will not be modified, unless it is deemed
necessary.

• The Production Cell is not altered such to keep the existing implementation running (Fig-
ure 1.2).

1.3 Approach

To realise a performant demonstrator, different configurations for the embedded control soft-
ware on the Raspberry Pi will be evaluated for its effectiveness. This is done using a design
space exploration. Based on the results of the design space exploration, the best configuration

Nick in het Veld University of Twente

CHAPTER 1. INTRODUCTION 3

is chosen and implemented as the embedded-control-software architecture for the Raspberry
Pi.

The implemented embedded-control-software architecture will be characterised by perform-
ing measurements while the demonstrator is active. The results of the measurements will be
used to determine whether the implemented embedded-control-software architecture is ef-
fective or not. This will be done in comparison with the results of prior Production-Cell-related
work.

1.4 Report outline

Chapter 2, focusses on the background of the Production Cell, the embedded control system
and the embedded-control-software design approach. Chapter 3 applies this knowledge in de-
ciding which embedded-control-software architecture is best to implement with respect to the
Production-Cell demonstrator. Chapter 4 describes the design of the implemented embedded-
control-software architecture on both functional and implementation level. Chapter 5 elabor-
ates on the used test bed and ways of measuring the variables of interest, concluding with a
discussion of the presented measurement results. The last chapter, Chapter 6, concludes the
work of this thesis, where the project goals and future work are discussed.

Robotics and Mechatronics Nick in het Veld

4 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

2 Background

2.1 Introduction

This chapter introduces the necessary background information for understanding the follow-
ing chapters of this thesis. First, it covers important details of the Production Cell, elabor-
ating on its design and purpose, and ending with a brief overview of Production-Cell-related
work. After this, an explanation of the embedded control system of this thesis is given, which
describe the Raspberry Pi and the real-time robot-software framework. Lastly, the aspects of
the embedded-control-software design approach are explained. Here, the layered-controller-
structure approach, real-timeness and the model-driven design approach are described.

2.2 Production Cell

The Production-Cell demonstrator is modelled after a plastic-injection moulding machine cre-
ating buckets (Figure 2.1). Instead of creating buckets, the Production Cell mimics the bucket-
creation process by transferring and performing actions on small metal blocks, symbolising the
bucket. After a block is "moulded" in the Production Cell, the block is transferred away, after
which the block is being fed back again into the system. This results in initiating the moulding
process once more for a block.

Different disciplines play a role in the control of the Production Cell, such as motion control
and discrete-event control. The latter discipline particularly plays a prominent role, since the
handlings among the units have to be synchronised for the Production Cell to function properly
(Figure A.3). In other words, each unit requires to communicate with its nearest neighbours to
fulfill its own objective.

There are six units in the Production Cell, each unit having one degree of freedom for its motion
(Figure 2.1). For a block to complete one cycle, the following units are involved. First, a Feeder
Belt brings a block towards the moulding section. When arrived at the belt’s end, the block is
pushed by the Feeder Robot towards the Molder Door. After opening the door, the Extraction
Robot extracts the block from the moulding section by lifting it with a magnet and placing it
on a belt afterwards. This Extraction Belt then transports it away from the moulding section.
Lastly, the Rotation Robot residing at the end of the belt feeds the block back into the system by
lifting it with a magnet and passing the block to the other belt, thus completing the cycle.

To be able to switch between different embedded-control-software implementations, there are
electrical switch boards to which up to three implementations can be connected (Figure 2.2;
Figure A.6). A dip switch exists on each board. When the dip switch on each switch board is
flipped to the same configuration, it enables one of the three implementations to take full con-
trol of the setup. To interface computer boards with the setup, a 50-pin connector is present on
each switch board (Figure A.7). Each switch board covers the control of two units of the Pro-
duction Cell (Figure A.4). An FPGA-based embedded-control-software implementation (Fig-
ure 2.2d) already exists and can be used when the dip switches are in position 1, see Figure 1.2
and Figure A.6.

Other work has been done on the Production Cell, each work utilising a different set of tools
and frameworks to control the Production Cell. An overview of related work with respect to the
Production Cell is shown in Table 2.1.

Nick in het Veld University of Twente

CHAPTER 2. BACKGROUND 5

Feeder
Belt

Extraction
Belt

Feeder
Robot

Rotation
Robot

Molder
Door

Extraction
Robot

Metal
block

Figure 2.1: Overview of the units of the Production Cell

Robotics and Mechatronics Nick in het Veld

6 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

H-bridge Switch
board

H-bridge

Dip-switch

(a) Switch board 1 plus H-bridges

H-bridge H-bridgeSwitch
board

Dip-switch

(b) Switch board 2 plus H-bridges

H-bridge Switch
board

Dip-switch

H-bridge

(c) Switch board 3 plus H-bridges

Nr. 1 implementation

(d) Inside view

Figure 2.2: Different views of the Production Cell’s internals

Table 2.1: Overview of Production-Cell-related work. The checkmark indicates the existing implement-
ation in FPGA.

Work Embedded board RTOS Tooling
Maljaars (2006) PC104 (CPU) RTAI 20-sim, gCSP, UPPAAL, CT-library
Huang et al. (2007) PC104 (CPU) RTAI POOSL
Zuijlen (2008) Xilinx Spartan III (FPGA) - 20-sim, gCSP, Handel-C
Verhaar (2008) PC104 (CPU) RTAI Ptolemy II
Veldhuijzen (2009) PC104 (CPU) QNX 20-sim, gCSP
Sassen (2009) ✓ Xilinx Spartan III (FPGA) - 20-sim, gCSP, Handel-C
Vos (2015) PC104 (CPU) QNX 20-sim, ROS, LUNA, TERRA
Ridder (2018) RaMstix (CPU) QNX 20-sim, IBM Rhapsody, ROS, LUNA, TERRA

Nick in het Veld University of Twente

CHAPTER 2. BACKGROUND 7

2.3 Embedded control system

2.3.1 Raspberry Pi

GPIO-pins Ethernet-port

(a) Raspberry Pi 4B

4x PMOD

Additional
IO pins

(b) icoBoard

(c) Board stack

Figure 2.3: The available computer boards in this thesis

The Raspberry Pi version 4B (Figure 2.3a) is a single-board computer that houses an ARM pro-
cessor containing four cores (Raspberry Pi Foundation, 2014). It is capable of running different
OSes, but it is standardly shipped with its default Linux operating system, Raspberry OS. For
connectivity purposes, the Raspberry Pi has a 40-pin GPIO interface with which it can interface
with peripherals. However, it can be argued that the capabilities of its pins are inadequate for
interfacing with mechatronic systems. This is due to its capable I/O operations being limited.
To address this issue, at RaM a Raspberry-Pi-compatible icoBoard (Figure 2.3b) is used (Ico-
board, 2016). The icoBoard is an FPGA-based I/O board that can be stacked on the Raspberry
Pi as a HAT (Figure 2.3c). By default it has four PMOD-connectors with which it can interface
with peripherals. More connectors can be added to the icoBoard by utilising its additional I/O
pins.

2.3.2 Robot-software framework

The robot-software framework developed by Meijer (2021) relies on two software tools to build
up an embedded-control-software architecture, which are ROS2 and 20-sim (Figure 2.4).

ROS2 is an open-source software framework for robotics applications (ROS, 2023b). Its
component-based design philosophy enables the partition of user code into seperate com-
ponents, which are called nodes. To facilitate communication between nodes, ROS2 relies on
third-party Data Distribution Services (DDS) and Real-Time Publish Subscribe (RTPS) commu-
nication protocols (ROS, 2023a). ROS2 provides an abstract middleware interface to the user,
which has been built on top of DDS/RTPS implementations’ APIs and tools. Using the middle-
ware interface, nodes can communicate with each other using a publish-subscribe pattern. A

Robotics and Mechatronics Nick in het Veld

8 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Linux Kernel Xenomai Kernel

Interrupt pipeline

Raspberry Pi 4B Hardware

ROS2
nodes

20-sim-generated
code

icoBoard Hardware

PWM-modules

Encoder-modules

Digital input-modules

Digital output-modules

To physical
system

From physical
system

SPI

Robot software framework

Bridge
(reader)

Bridge
(writer)

Figure 2.4: Robot-software framework and the icoBoard-based interface

node has the option to be a publisher and/or subscriber. A publisher puts information onto
a topic, while a subscriber retrieves information from a topic. The name of a topic is always
denoted with a forward slash plus its name, for example /name.

20-sim is a modeling and simulation software package for mechatronic systems (20-sim, 2021).
Inside the modelling environment of 20-sim, systems are modelled using equations, bond
graphs and/or block diagrams. Included with 20-sim are various toolboxes, one of them be-
ing the Code Generation toolbox. This toolbox enables the generation of C/C++ code out of
any 20-sim model. By creating 20-sim models and mapping these to code, rapid prototyping of
control systems can be done on embedded hardware.

Included with the robot-software framework is a Linux operating system that has been patched
with Xenomai on which the framework runs (Xenomai, 2023a). Xenomai is a real-time
operating-system framework for Linux, which enables running real-time applications in Linux
using a dual-kernel approach.

In the framework, a ROS2 node runs on the Linux kernel, while 20-sim-generated code runs on
the Xenomai kernel. To allow communication between components running on either kernel,
a bridge has also been developed by Meijer (2021). The bridge utilises the XDDP protocol of
Xenomai for cross-kernel communication. The XDDP protocol has 32 ports by default over
which data can be sent between Linux and Xenomai (Xenomai, 2023b). The framework divides
the bridge into two seperate ROS2 nodes. One node reads data from XDDP ports based on
a periodic timer, while the other node writes data to XDDP ports based on topic callbacks.
Regarding the 20-sim-generated code, an interface is attached to the 20-sim-generated code
component. With this interface, the component reads from and writes to the XDDP ports every
tick of its period.

To allow the real-time task running the 20-sim-generated code to interface with the physical
system, it can communicate with the interface running on an icoBoard via the SPI protocol
(Figure 2.4). Using an SPI-based interface which can be attached to a 20-sim-generated code
component, the component reads from and writes to the icoBoard FPGA every tick of its period.
The icoBoard runs Verilog code on its FPGA which is dedicated to interfacing with physical
systems. The interface consists of digital inputs, digital outputs, encoders and PWMs. With
each PMOD-connector of the icoBoard two digital inputs, one digital output, one PWM and
one encoder is associated (Figure B.1).

Nick in het Veld University of Twente

CHAPTER 2. BACKGROUND 9

2.4 Embedded-control-software design procedure

2.4.1 Model-driven design approach

The workflow underlying the embedded-control-software design procedure is the model-
driven design approach (Broenink and Ni, 2012). An overview of this workflow with respect
to the robot-software framework is shown in Figure 2.5. By following the principles of model-
driven development, a first-time-right approach for the design of the embedded software is
strived for.

ROS2

20-sim

(a) General view of the workflow and the covered aspects by the framework

Soft-real time:
ROS2

Firm-real-time:
20-sim

Design

(b) Abstract view of the workflow in the framework

Figure 2.5: The model-driven design workflow (Broenink and Ni, 2012) and its relations with the robot-
software framework. For real-timeness, see Section 2.4.3.

2.4.2 Layered controller structure

With the robot-software framework a layered controller structure can be built to realise an
embedded-control-software architecture (Figure 2.6). The layered controller structure embod-
ies the functional and timing partition of controllers. In this structure, each controller requires
a certain degree of real-timeness for its tasks.

Robotics and Mechatronics Nick in het Veld

10 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

20-simROS2

Figure 2.6: The functional and timing partition of an embedded control system (Broenink et al., 2010).
The partition of controllers with respect to the robot-software framework is also shown.

2.4.3 Real-timeness

Real-time tasks have to adhere to a deadline, unlike non-real time tasks (Liu et al., 2015). There
are different degrees of real-time, which are described below (Boode, 2018; Bezemer et al.,
2011):

• Hard real-time (HRT): Whenever a deadline is missed, the consequences are cata-
strophic.

• Firm real-time (FRT): Infrequent deadline misses, less than k deadline misses in a given
time frame of t s, will not be catastrophic for the system.

• Soft real-time (SRT): After a deadline miss the system may still execute, though possibly
with less functionality, but may recover to normal operation.

• Non real-time (NRT): Deadlines do not have to be met, so the response time of a task
does not have to be guaranteed.

Associated with deadlines is the utility function u(τ), describing the usability of the system
when a deadline has been missed. Depending on the degree, the utility function can drop to 0
or −∞ when one or more deadlines have been missed (Figure 2.7).

catastrophe for
k missed deadlines

in t time

t t

kΔt : catastrophe for k
missed deadlines in

t time

Figure 2.7: The utility function u(τ) for hard, firm and soft real-time systems. Adapted from Boode
(2018).

Nick in het Veld University of Twente

11

3 Analysis

3.1 Introduction

Goal 1 is to realise a performant demonstrator for the Production Cell using one or more Rasp-
berry Pi boards. The design aspects that are involved in which embedded-control-software
architecture to implement are the following:

• Number of Raspberry Pi boards. One can choose which Raspberry Pi board controls
which part of the Production-Cell setup.

• Communication method between Raspberry Pi boards. One can choose over which
available communication protocols of the Raspberry Pi to communicate with other Rasp-
berry Pi boards.

• Core partition of a Raspberry Pi board over Linux and Xenomai. Within each Raspberry
Pi one can choose the partition of soft-real-time and firm-real-time cores.

• Mapping of components to a Raspberry Pi board’s cores. Within each Raspberry Pi one
can choose which processes and components to run on which core.

Since the core partition and mapping of components is dependent on the number of boards
used, the number of boards is preselected.

On the other hand, the main functional requirements of the embedded-control-software-
architecture realisation are the following:

• It must adhere to required timing.
• It must have appropiate load balancing.

Further requirements of the realisation are described in this chapter.

Lastly, a summary of the chosen embedded-control-software architecture is given. Related to
this, additional information is given about the design approach that is used for the realisation
of the embedded-control-software architecture.

3.2 Requirements

3.2.1 Use cases

A working demonstrator is the use case for goal 1. The working demonstrator will be such
that spectators see that the demonstrator performs its operations effectively. Safety measures
should also be incorporated for the demonstrator to avoid potential harm to spectators.

For goal 2 the system needs to be analysed while it is running. For this, a test bed should be
used. The test bed must be able to test the embedded-control-software architecture and to
show whether the requirements are met or not. This implies that the implemented embedded-
control-software architecture must allow enough headroom to run software-based instrument-
ation, without significantly influencing the system’s performance. Therefore, an implementa-
tion that distributes CPU load well and does not fully utilise the Raspberry Pi’s cores is neces-
sary.

3.2.2 Functional requirements

1. Architectural requirements
(a) The embedded-control-software architecture must incorporate the layerered control-

ler structure
Goal 1 is realise a performant demonstrator by means of a well-thought-out layered
controller structure (Section 2.4.2).

(b) The embedded-control-software architecture must make use of both the Linux and
Xenomai kernel

Robotics and Mechatronics Nick in het Veld

12 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

To uphold the timing partition of the layered controller structure, it must be the
case that at least both kernel types are used for the embedded-control-software ar-
chitecture, since both are required to map the controllers to their required degree
of real-timeness.

(c) The embedded-control-software architecture must at least use ROS2 and 20-sim for
its components
One of the project constraints is that the robot-software framework must be used,
therefore ROS2 and 20-sim must be utilised for the embedded-control-software ar-
chitecture. Though, other tools which can integrate with either tool to ease the de-
velopment process of components are useful (Table C.1).

(d) The embedded-control-software architecture must take the existing bridge into ac-
count for its design
While not formally a controller layer, the bridge of the robot-software framework is
considered as a layer in this thesis. Since the bridge is necessary for the embedded-
control-software architecture to function, it must therefore be taken into account
in the architecture deisgn.

2. Communication requirements
(a) Used communication protocols must be supported by the Raspberry Pi

It is possible that software components on a Raspberry Pi board need to commu-
nicate with components running on another Raspberry Pi board, in case multiple
Raspberry Pi boards are used. To allow communication between components and
boards, a communication protocol must be used which is supported by the Rasp-
berry Pi.

(b) Used communication protocols must at least be soft-real-time capable
It must be ensured that communication between the units of the Production Cell
happens with a certain degree of real-timeness, such to avoid system malfunctions
due to desynchronization issues.

3. Performance requirements
(a) The system must be able to balance CPU load well

Since multiple processes have to run on a Raspberry Pi board, the system must be
able to balance these processes on the processor well, such to avoid quality-of-
service degradation due to a processor working at maximum capacity. For a real
system the CPU utilization should range from 40% to 90% (Silberschatz et al., 2014).

(b) The system should perform equal or better than previous work
It has been reported by Ridder (2018) that the round-trip time of one block is ap-
proximately 8 seconds in prior Production-Cell-related work. On the other hand, in
the work of Maljaars (2006) it is said that the steady-state error of the units should
not exceed 0.5 mm. To evaluate the performance of the realised demonstrator in
this thesis, the same metrics will be used.

(c) The system will not solve deadlock situations
Similar to the existing demonstrator for the Production Cell, the realised demon-
strator in this thesis will not solve a deadlock situation. An added benefit of this is
that the concept of deadlock can be visually demonstrated to spectators.

4. Safety requirements
(a) The system must include a emergency button to allow proper outside intervention

In prior work an emergency stop button has not been included in the design of

Nick in het Veld University of Twente

CHAPTER 3. ANALYSIS 13

the demonstrator. For safety purposes an emergency button must be taken into
account for the design of the demonstrator in this thesis.

(b) The system should keep the metal blocks inside its boundaries at all times
The units of the Production Cell can perform their motions rapidly, with the possib-
ility of metal blocks leaving the Production Cell’s intended perimeters. To avoid
metal blocks being flung towards spectators, the demonstrator should be made
such to avoid these situations from happening.

5. Testing requirements
(a) The test bed must analyse the performance and real-time capability of the system

Goal 2 is to characterise the embedded-control-software architecture, therefore the
test bed must be able to measure the variables of interest.

(b) The used instrumentation should have minimal influence on the system
Running software-based instrumentation alongside the embedded-control-
software-architecture components and/or processes should not significantly affect
the system’s performance. The instrumentation should take only a small share of
the CPU load, such to avoid degradation of the system’s quality of service.

3.2.3 Non-functional requirements

1. The existing demonstrator must not be affected
An existing demonstrator using the FPGA is present (Figure 1.2). To keep this demon-
strator running, no significant changes must be made to the setup (e.g. cabling).

2. The base Production Cell demonstrator must be realised
Goal 1 is to realise the base Production-Cell demonstrator using the Raspberry Pi. Here,
base refers to the Production-Cell setup containing the six units and not more.

3. The demonstrator will not be extended with image processing and/or sorting functionality
In prior Production-Cell-related work, work has been done on including image pro-
cessing and block-sorting functionality in the Production-Cell setup. In this work, ad-
ditional units have been made for and have been incorporated into the Production Cell.
These will not be taken into consideration for the demonstrator in this thesis, mainly due
to project-time constraints.

3.3 Approach to allocation

In the following sections the different design aspects are discussed which comprise the con-
stituents of an embedded-control-software-architecture alternative. Using a design space ex-
ploration for these design aspects, the best alternative is chosen and implemented in the final
design. For an overview of the used design-space-exploration scoring system, see Appendix E.

First, a design space exploration is done for the selection of the number of Raspberry Pi boards.
Connected to this, a design space exploration is also done for the interboard communication
method. By means of a combined design space exploration, the best alternative setup is chosen
with respect to the number of Raspberry Pi boards and the interboard communication method.
After this, the allocation of Production-Cell Units to the chosen number of Raspberry Pi boards
is discussed and chosen.

Subsequently, a design space exploration for the allocation of controllers to Raspberry Pi cores
is done. The best alternative is chosen with respect to the partition of cores over Linux and
Xenomai and the mapping of controllers to these cores.

Lastly, a design space exploration is done for the allocation of a safety circuit to Raspberry Pi
boards and the best alternative is chosen.

Robotics and Mechatronics Nick in het Veld

14 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

3.4 Selection of number of Raspberry Pi boards

The selection criteria used in Table 3.1, Table 3.2 and Table 3.3 are discussed in this section. For
the described alternatives in this section many configurations exist. However, some configur-
ations are unsuitable due to set requirements and/or existing constraints. These are discussed
in the following subsections.

3.4.1 Number of Raspberry Pi boards

Table 3.1: Design space exploration for the number of Raspberry Pi boards

Alternative:
Number of boards

Criterion Weight One Two Three Six
Development time 2 ++ + +/- --
Load distribution 2 -- +/- + ++
IO coverage 1 -- - +/- +
Total 5 -2 1 2 1

The following selection criteria are related to Table 3.1.

Development time for number of boards. With some options a long development time is
associated. One example is the case for using multiple Raspberry Pi boards. While the load
can be distributed better when opting to use more boards, the development time will increase,
since it will take more time to deploy software to multiple target systems. Due to the project-
time constraints, a high importance is attached to the development-time criterion.

Load distribution. An ideal number is where the Production-Cell Units are divided evenly
over the Raspberry Pi boards. In this case, either 1, 2, 3, or 6 boards should be used. By doing
so, the processes associated with the units are evenly distributed as well. Based on goal 1, a
high importance is attached to the load-distribution criterion.

IO coverage. Considering the Raspberry Pi boards need to cover the required inputs and out-
puts of the Production Cell’s peripherals (Figure A.4), it is of importance that the allocated Rasp-
berry Pi boards have enough connections to do so. To achieve a minimal fit for the peripherals
with respect to the boards, at least three Raspberry Pi boards need to be used (Figure B.2).
Some modifications or workarounds still require to be made to achieve the minimal fit, which
consists of abusing the encoder inputs as digital inputs. When fewer boards than three boards
are used, to increase IO capability it will be required to solder more PMOD-connectors to the
icoBoard and/or to modify the robot-software framework significanty. While the IO-coverage
criterion is important, it does not directly contribute to goal 1, so less importance is attached
to it.

3.4.2 Interboard communication

Table 3.2: Design space exploration for interboard communication

Alternative:
Communication

Criterion Weight In software Pins Ethernet
Development time 2 +/- - +
Real-timeness 1 + + +/-
Total 3 1 -1 2

The following selection criteria are related to Table 3.2.

Nick in het Veld University of Twente

CHAPTER 3. ANALYSIS 15

Development time for communication. If only one board is used, communication between
units can take place on the board itself via code-based linkage. In case two or more boards are
used, there are two options to consider for interboard communication. The first option is to
allow communication to go over the PMOD-connectors via pin cables. The second option is
to allow communication to go over Ethernet cables, since the Raspberry Pi has an Ethernet-
port. Other options such as USB-based communication are not considered, since this type of
connection is based on a master/slave communications protocol.

Since Ethernet-based communication is supported by ROS2 out of the box, it is favoured over
other communication methods from the development-time point of view. For pin-based com-
munication, the interface on the icoBoard has to be modified significantly such to fit the needs
of the communication. This, however, will require significant development time to set up. This
also holds for communication via code-based linkage, which is referred to as in-software com-
munication in this context. In this case, a custom and well-thought-out communication struc-
ture must be made between the units, which will take more development time than the out-
of-the-box solution for Ethernet. Due to the project-time constraints, a high importance is
attached to the development-time criterion.

Real-timeness. One of the requirements is that communication between units needs to
be at least soft-real-time. While Ethernet-based communication is not as real-time capable
as pin-based communication, it is considered to be effective for soft-real-time communic-
ation (Kweon and Cho, 2004). When using Ethernet-based communication, an Ethernet-
switch can be used such that the Raspberry Pi boards are on the same network. Regarding
in-software communication, it is considered to be more soft-real-time capable than Ethernet-
based communication. With respect to development time, less importance is attached to the
real-timeness criterion.

3.4.3 Conclusion

A combined design-space-exploration table of the design space explorations done in Sec-
tion 3.4.1 and Section 3.4.2 is shown in Table 3.3. The design space explorations show that
a setup with three Raspberry Pi boards and Ethernet-based interboard communication is the
best alternative.

Table 3.3: Combined design-space-exploration table of Table 3.1 and Table 3.2

Alternative
Criterion Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7
Number of boards One: -2 Two: 1 Two: 1 Three: 2 Three: 2 Six: 1 Six: 1
Communication Software: 1 Pins: -1 Ethernet: 2 Pins: -1 Ethernet: 2 Pins: -1 Ethernet: 2
Total -1 0 3 1 4 0 3

3.5 Allocation of Production-Cell Units to Raspberry Pi boards

The electrical switch boards of the Production Cell have an existing partition of the Production-
Cell Units (Figure A.4). The switch boards divide the Production-Cell Units into three pairs,
where each pair is associated with a switch board. In Section 3.4, three Raspberry Pi boards are
chosen for the embedded-control-software architecture. The Production-Cell-Unit partition
of the switch boards is utilised for the Raspberry Pi boards as well. Therefore, the following
mappings of Production-Cell Units to Raspberry Pi boards are done:

• Board 1: Extraction Belt, Rotation Robot
• Board 2: Feeder Belt, Feeder Robot
• Board 3: Molder Door, Extraction Robot

The control stack of each Production-Cell Unit, consisting of the controllers of the layered con-
troller structure, is run on their assigned board. A reliable cable interface between the Rasp-

Robotics and Mechatronics Nick in het Veld

16 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

berry Pi board and the Production Cell is necessary, which should also include probing options
for debugging purposes.

3.6 Allocation of controllers to Raspberry Pi cores

There are many alternatives to consider when mapping controllers to cores. For the purpose
of constraining the number of alternatives, requirements are set for an alternative to be viable
(Table 3.4).

Table 3.4: Set requirements for an embedded-control-software architecture to be viable

Requirement Description
If multiple layers are mapped
as a single component onto a
core, then they must be adja-
cent to each other

Mapped controller layers must be layers that are computed sub-
sequently without any layers in between. By doing so, the in-
formation flow of the layered controller structure is upheld.
For example, the loop controller should not be mapped to-
gether with the measurement-and-actuation layer if the safety
layer is not mapped as well, since the loop controller and
measurement-and-actuation layer are not directly adjacent to
each other.

A computationally-expensive
user-interface layer must not
be run on a board

A user-interface layer with high overhead must not be run on the
already resource-constrained boards. Instead, these processes
should be off-loaded to a system which has more resources
available, if possible. A minimal user-interface layer must still be
considered for the embedded-control-software architecture. It
is assumed that, due to its low computational cost for the board,
the minimal user interface does not warrant seperate resources
to be reserved for it.

The measurement-and-
actuation layer is always
coupled with the safety layer

It is assumed that the measurement-and-actuation layer does
not warrant its own seperate component and/or core. With
respect to the other layers, it is assumed to be less computa-
tionally expensive and to have less overhead. For the sake of
structure simplification, the measurement-and-actuation layer
always accompanies the safety layer.

A single core is always re-
served for the bridge, unless it
is not possible

Since the architecture is heavily dependent on communication
taking place between Linux and Xenomai, it is warranted to re-
serve seperate resources for the bridge to avoid a bottleneck
situation.

The supervisory, sequence
and loop controller can be
split, provided more than one
core is available for them

These controllers run relatively computational-heavy processes.
Therefore, one should respectively consider to split these con-
trollers over multiple cores, if possible. For example, in case two
Production-Cell Units reside on a board, then both their loop
controllers can be mapped onto their own core, provided that
there are two Xenomai cores available. Likewise, this proposi-
tion is applicable for the supervisory plus sequence controller,
provided that there are two Linux cores available.

Nick in het Veld University of Twente

CHAPTER 3. ANALYSIS 17

A visual representation of the alternatives adhering to the requirements in Table 3.4 is shown
in Table 3.5. The selection criteria used in Table 3.6 are discussed further in this section.

Table 3.5: Different configurations to allocate controller layers to Raspberry Pi cores

Cores
Alternative Core 0 Core 1 Core 2 Core 3

A
(2x) Supervisory • (2x) Sequence • Bridge • (2x) Loop

(2x) Safety
(2x) Meas. & Act.

B
(1x) Supervisory

(1x) Sequence
(1x) Supervisory

(1x) Sequence
Bridge • (2x) Loop

(2x) Safety
(2x) Meas. & Act.

C
(2x) Supervisory

(2x) Sequence
Bridge • (2x) Loop • (2x) Safety

(2x) Meas. & Act.

D
(2x) Supervisory

(2x) Sequence
Bridge

(1x) Loop (1x) Loop (2x) Safety
(2x) Meas. & Act.

= Linux core
= Xenomai core

• = Functional-to-implementation mapping

Table 3.6: Design space exploration for the controller-to-core allocations of Table 3.5

Alternative
Criterion Weight A B C D
Quality of service 2 - + +/- -
Functional-to-implementation mapping 1 + - +/- --
Total 3 -1 1 0 -4

The following selection criteria are related to Table 3.6.

Quality of service. To support the execution point of view, it is beneficial to map multiple
controllers onto cores. By doing so, communication time between controllers is improved,
such that the quality of service of the control stack is improved. Another consideration to im-
prove the quality of service, is to allocate more Linux cores than Xenomai cores. Since Linux has
to schedule its own processes as well, it is beneficial to leave headroom for Linux by means of
using more Linux cores. Based on goal 1, a high importance is attached to the quality-of-service
criterion.

Functional-to-implementation mapping. To support the modelling point of view, it is bene-
ficial to do mappings from the functional design to the implementation design. In this context,
the best functional-to-implementation mapping is achieved when mapping one controller to
one core, such that each core shares only one computing responsibility. While it is beneficial
to do functional-to-implementation mappings, it does not directly contribute to goal 1, so less
importance is attached to the functional-to-implementation-mapping criterion.

3.7 Allocation of safety circuit to Raspberry Pi boards

The set safety requirement in Section 3.2.2 is that an emergency button must be included in
the embedded-control-software-architecture design. There are different ways to propagate

Robotics and Mechatronics Nick in het Veld

18 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

the emergency signal to the Raspberry Pi boards, which can be either done through Ethernet-
based or pin-based communication. Safety must adhere to hard-real-time constraints, there-
fore this leaves only pin-based communication to be an option, as it is closest to the hardware.
A design space exploration is done for the allocation of a safety-circuit on the Raspberry Pi
boards (Table 3.7).

Table 3.7: Design space exploration for safety-circuit allocation to Raspberry Pi boards

Alternative:
Safety circuit

Criterion Weight Leader-follower Daisy-chain
Worst-case prevention 2 +/- ++
Development time 1 ++ +/-
Total 3 2 4

The following selection criteria are related to Table 3.7.

Worst-case prevention. A safety-circuit alternative is that one board is the leader and the
other boards are its followers. By doing so, the emergency button only needs to be connected
to one Raspberry Pi board. The followers actively listen whether the leader has received an
emergency signal or not. Another safety-circuit alternative is to daisy chain a safety circuit
through each Raspberry Pi board. The emergency button when pressed will then propagate
its signal to every board at once. If a disconnect occurs in the daisy-chained safety circuit, the
circuit will indicate that the emergency signal is present.

The leader-follower alternative has a worse worst-case scenario than the daisy-chain alternat-
ive. A situation could occur that the leader does not respond to the emergency button. This
results in the emergency signal not being propagated across the boards. A high importance is
attached to the worst-case-prevention criterion, since safety is a high priority of the demon-
strator.

Development time for the safety circuit. The leader-follower alternative requires less devel-
opment time than the daisy-chain alternative. For the daisy-chain alternative an external safety
circuit must be made, since the current configuration of the Raspberry Pi boards does not sup-
port this structure. With respect to safety, less importance is attached to the development-time
criterion.

3.8 Conclusion

Concluding, three Raspberry Pi boards are being used together with Ethernet as the interboard
communication medium. The Production-Cell Units communicate with each other by making
use of ROS2’s networking capabilities.

To each Raspberry Pi board two Production-Cell Units are mapped. The mapping that is used
is in line with the existing Production-Cell-Unit partition of the switch boards (Figure A.4).

A safety circuit is created for the setup by daisy chaining an emergency-signal line through the
Raspberry Pi boards. An emergency button is connected to the safety circuit, propagating its
signal to each Raspberry Pi board when pressed.

Alternative B of Table 3.5 is chosen for the controller-to-core allocation. A three-to-one core
partition is used for each Raspberry Pi board. Three Linux-cores are dedicated to discrete-event
control, while one Xenomai-core is dedicated to motion control.

In the Linux domain, two supervisory controllers, two sequence controllers and the bridge are
run. Two supervisory-sequence pairs are developed, where each pair is a ROS2 node. Each of
these nodes run on a seperate Linux-core. The ROS2-based supervisory-sequence component

Nick in het Veld University of Twente

CHAPTER 3. ANALYSIS 19

encapsulates the discrete-event-control logic necessary for one unit. For the bridge, a seperate
Linux-core is reserved as well.

In the Xenomai domain, the loop controller, safety layer and measurement-and-actuation layer
are split up into two seperate but identical 20-sim models. The same 20-sim model is used
for each Production-Cell Unit. All together they are run as one code component, which runs
on the sole Xenomai-core. This component is then responsible for the motion control of two
Production-Cell Units.

To follow the workflow of the model-driven design approach, first the motion controller has
been designed in 20-sim (Figure 3.1). Here, the necessary verification steps have been done
for the motion controller. After this, the discrete-event-control part of the embedded-control-
software architecture has been created using ROS2 nodes. Likewise, verification steps have
been done for the discrete-event-control components as well.

Soft-real time:
ROS2

Firm-real-time:
20-sim

Design

Step 1Step 2

Figure 3.1: The sequential ordering that is followed in the design of the embedded-control-software-
architecture design, which is based on the model-driven design approach shown in Figure 2.5.

Robotics and Mechatronics Nick in het Veld

20 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

4 Design

4.1 Introduction

Switch boards

Xenomai

RPi-1

Extraction Robot

Molder Door

Feeder Robot

Feeder Belt

Rotation Robot

Extraction Belt

Command
Centre

Network
switch

icoBoard

FPGA

FPGA

FPGA

U
se

r
in

te
rf

ac
e

S
up

er
vi

so
ry

 c
on

tr
ol

le
r

RPi-2

RPi-3

Linux

B
ri
dg

e

S
eq

ue
nc

e
co

nt
ro

lle
r

Lo
op

 c
on

tr
ol

le
r

S
af

et
y

la
ye

r

M
ea

s.
 &

 A
ct

.

Xenomai

Soft-real time Firm-real time

Figure 4.1: Overview of the implemented embedded-control-software architecture

This chapter contains a description of the firm-real-time and soft-real-time design of the im-
plemented embedded-control-software architecture (Figure 4.1). First, the design is explained
on a functional level, after which details are highlighted in the design at the implementation
level. Lastly, a brief description is given of the designed PCB interface board between the Rasp-
berry Pi board and Production Cell.

For the physical connections associated with the implementation, see Figure C.9. For the
design of the implemented safety circuit, see Section D.2.

4.2 Firm-real-time design

The motion controller for each Production-Cell Unit is modelled in 20-sim. Each motion
controller contains a loop controller, safety layer and measurement-and-actuation layer (Fig-
ure 4.2).

Since two Production-Cell Units reside on one board, two motion controllers are modelled in
20-sim. The structure of this 20-sim model is reused for the other two boards as well. This
model is code generated using 20-sim’s Code Generation toolbox and mapped as a task to the
sole Xenomai core (Figure 4.2). In the work of Van den Berg (2006), it is stated that the loop
controller should be executed in real-time with a frequency in-between 100 H z and 5 kH z.
Based on this criterion, it is chosen to run the motion controller with a period of 1 ms, which is
equal to 1 kH z. More importantly however is that by choosing this period, jitter of the motion
controller can be compared with the jitter results of Meijer (2021). In the work of Meijer (2021)
the same period of 1 ms is used for the jitter experiments. To ensure the motion-controller task
runs as real-time as possible, a priority of 99 is granted to the task, which is the highest priority
that can be given for a task.

Nick in het Veld University of Twente

CHAPTER 4. DESIGN 21

FPGA
Xenomai

Xenomai
Core: 0,1,2

XDDP

FPGA

FPGA

Extraction Robot

Molder Door

Feeder Robot

Feeder Belt

Rotation Robot

Extraction Belt

icoBoard

Lo
op

 c
on

tr
ol

le
r

S
af

et
y

la
ye

r

M
ea

s.
 &

 A
ct

.

Timer: 1 ms
Core: 3

Linux

Figure 4.2: Overview of the firm-real-time design. For simplicity the switch board is omitted.

Figure 4.3: The motion controllers modelled in 20-sim for a single board. For an overview of the model
blocks see Loop Controller: Figure C.1; Safety Layer: Figure C.2; Measurement & Actuation: Figure C.5.

The loop-controller block is responsible for calculating the correct control signal. A custom
20-sim PD-controller model block is used, since controllers in 20-sim’s standard library did not
fulfil controller-parameter-tuning requirements. These requirements are that the controllers
are tunable with the system-identification data of the work of Ridder (2018). In the work of Rid-
der (2018), system-identification tests have been done for each Production-Cell Unit. With the
parameters extracted from the system-identification data, the controller for each Production-
Cell Unit is tuned accordingly.

The safety-layer block consists of an error detector, safety controllers and a decision maker
as suggested in Ni (2015). This structure provides a modular approach to safety, where the
checked error, safeguarding strategy and safety controllers can be modelled separately from
each other. The following design considerations are present for the safety-layer block:

• With the error detector, different types of errors that may be present in the system are
checked. Some errors that are checked describe whether the Production-Cell Unit is out-

Robotics and Mechatronics Nick in het Veld

22 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

of-bounds, which is based on physical limits and/or virtual limits. Virtual limits are util-
ised such to improve the safety of the setup even further. Other errors that are checked
are related to the peripherals, such as the magnet, the motors and the emergency button.
For the magnet, it is checked whether the magnet is active when it is turned on. For the
motors, it is checked whether it experiences an undervoltage situation. For the emer-
gency button, it is checked whether an emergency situation has occurred according to
the emergency-button operator.

• To allow the decision maker to execute context-aware safeguarding strategies, a ’mode’
signal from the discrete-event-control component of the Production-Cell Unit is relayed
to the decision maker. The mode signal describes the current operation state of the
Production-Cell Unit.

• When an emergency occurs during normal operations, the decision maker will decide to
brake the Production-Cell Unit and keep its magnet active when present. The purpose
of keeping the magnets active is to avoid flinging a metal block during the motion of the
magnet-based units.

The measurement-and-actuation block is used to filter and scale signals coming from and go-
ing to the Production Cell. Other types of operations which do not fall in the category of filtering
and scaling are done as well. The following operations are done on signals passing through the
measurement-and-actuation block:

• All signals are logically inverted where applicable, since the signals coming from and go-
ing to the peripherals of the Production-Cell Units are defined as active-low. By logically
inverting these signals, a positive-logic-based environment is created for the embedded-
control-software-architecture components which utilise these signals.

• The calculated control signal of the loop controller is scaled into the range accepted
by the PWM-module on the icoBoard (range between -2047 and 2047). Control signals
which exceed the extrema of this PWM-range are filtered such that these do not exceed
the extrema. Braking-mode control (Van den Berg, 2006) is used for the motors, there-
fore the PWM-range-scaled control signals are mirrored with respect to the PWM-range
extrema. For example, when it is required to actuate a motor with a control effort of 10%,
a PWM duty cycle of 90% must be sent to the brake input of the motor’s H-bridge.

• Due to the limited number of bits reserved for the encoder count on the icoBoard, the
encoder count can overflow. This results in reading a discontinuous encoder count for
a Production-Cell Unit. To solve this issue, a custom 20-sim model block is used which
tracks the encoder-count overflows. The necessary offset for the encoder count is cal-
culated in this model block and added on top of the current encoder-count reading. By
doing so, the encoder count is made continuous. This encoder count is then scaled into
a meter-based position, which describes the end-effector position of the unit.

• To solve the issue of the limited number of digital inputs for the system, the encoder
inputs are abused on the icoBoard. To this end, some of the encoder-modules on the
icoBoard have been adjusted. The adjusted encoder-module reads two digital inputs
and describes their state with a fixed set of encoder-count numbers. This encoder-count
number is then read by the measurement-and-actuation layer. A custom 20-sim model
block is used to convert the read encoder-count number into two seperate signals. Each
signal describes the state of one of the two digital inputs.

• When the emergency button is pressed it generates a pulse signal for the emergency sig-
nal. Due to the pulse being in its active state for only a short period of time, the emer-
gency signal will become inactive shortly afterwards. To save the state of the emergency
signal, a custom 20-sim model block is used to detect the edge of the pulse. When an
edge-event has been detected by the model block, it keeps outputting an active signal.

Related to the measurement-and-actuation block, the SPI-based interface for a 20-sim-
generated code component is attached to the motion-control component. Since the motion-

Nick in het Veld University of Twente

CHAPTER 4. DESIGN 23

control component is run with a period of 1 ms, values are read from and sent to the FPGA with
a period of 1 ms respectively. With the SPI-based interface, values on the FPGA are written to
the 20-sim-code-component inputs, while values on the 20-sim-code-component outputs are
written to the FPGA.

For in-depth implementation details of the motion controller see Section C.1.

4.3 Soft-real-time design

The discrete-event-control logic for each Production-Cell Unit is run with ROS2 nodes. It con-
sists of a supervisory controller and sequence controller, of which their information flow is
propagated through a ROS2-based bridge to the motion controller (Figure 4.4). Using publish-
subscribe relations, discrete-event-relevant information is exchanged between ROS2 nodes. In
total, there are four ROS2 nodes involved in the discrete-event control of one board.

For the discrete-event-control logic of the two Production-Cell Units residing on one board, two
ROS2 nodes are realised (Figure 4.5). One ROS2 node contains the discrete-event-control logic
of the first Production-Cell Unit, while the other ROS2 node contains the discrete-event-control
logic of the second Production-Cell Unit. This arrangement is used for the other boards as well.
For these ROS2 nodes the same code structure is used. The code structure consists of one ROS2
node executing the discrete-event-control model of one Production-Cell Unit. This discrete-
event-control model contains the supervisory-controller and sequence-controller functional-
ity. Every tick of the ROS2-node timer, the discrete-event-control model reads the values on
subscribed topics, calculates values and puts these values on its outputs. The ROS2 node then
publishes the values on these outputs into the ROS2 network (denoted as /write). Each of the
two Production-Cell-Unit ROS2 nodes are mapped to a seperate Linux core.

Two ROS2 nodes are used to establish the information flow between the discrete-event-control
component and the motion-control component (Figure 4.5). These two ROS2 nodes represent
the bridge. The first bridge ROS2 node is responsible for sending information from the discrete-
event-control component to the motion-control component. This ROS2 node sends the in-
formation based on ROS2-topic callbacks. When a ROS2-topic callback occurs, values from
a Production-Cell-Unit ROS2 node are written to XDDP ports. The second bridge ROS2 node
is responsible for sending information from the motion-control component to the discrete-
event-control component. This ROS2 node sends the information based on the tick of its
ROS2-node timer. When this timer is raised, values from the motion-control component are
published into the ROS2 network (denoted as /read). These values are read by the Production-
Cell-Unit ROS2 nodes. The arrangement of the bridge ROS2 nodes is used for the other boards
as well. Since two Linux cores are reserved for the Production-Cell-Unit ROS2 nodes, the two
bridge ROS2 nodes are mapped to the remaining Linux core.

The handlings among the Production-Cell Units are synchronised by means of exchanging in-
formation between their control stacks. To this end, a Production-Cell-Unit ROS2 node is al-
lowed to read the motion-control-component measurement data of its adjacent Production-
Cell Units. Furthermore, a Production-Cell-Unit ROS2 node is allowed to read the current state
of its adjacent Production-Cell Units as well (denoted as /state).

A rule of thumb is used for the period of the ROS2 nodes involved in the discrete-event control.
All together the ROS2 nodes are run with a period of 10 ms, thus resulting in the motion control
running ten times faster than the discrete-event control does.

Robotics and Mechatronics Nick in het Veld

24 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Linux

Xenomai
Core: 3

XDDPNetwork
switch

DDS messages

U
se

r
in

te
rf

ac
e

S
up

er
vi

so
ry

 c
on

tr
ol

le
r

S
eq

ue
nc

e
co

nt
ro

lle
r

B
ri
dg

e

Timer: 10 ms
Core: 0,1 Core: 2

Linux

Figure 4.4: Overview of the soft-real-time design. For simplicity the command centre is omitted.

Supervisory
controller

Sequence
controller

Sequence
controller

Supervisory
controller

Sequence
controller

Supervisory
controller Bridge-reader

0 3

15 18

4 12

19 27

XDDP
write

read()

Unit 1

Unit 2

Unit 1

Unit 2

Unit 1

Unit 2

Unit 2

Supervisory
controller

Sequence
controller

Unit 1
Bridge-reader

RPi
2 /state

/state

/state

Bridge-reader

XDDP-

ports

RPi
3

RPi
1

/read2

/write1

/read2
XDDP-

ports

XDDP
read

XDDP-

ports
read()/read1

Bridge-writer

/write2

/read1

XDDP
read

XDDP
read

19 27
Unit 2

4 12
Unit 1

Supervisory
controller

Sequence
controller

Unit 1

Supervisory
controller

Sequence
controller

Unit 2

Figure 4.5: The general ROS2-based structure running the discrete-event logic for a single board. For an
overview of the models underlying the components see Supervisory Controller: Figure C.6; Sequence
Controller: Figure C.7; Bridge-reader/-writer: Figure C.8.

The supervisory-controller model is based on a finite-state-machine model. With each
Production-Cell Unit the same high-level finite-state-machine structure is associated, consist-
ing of a Startup, Idle, Action and Shutdown state. By reusing the same structure, development
time has been reduced and the possible superstates per unit is standardized. The Startup state
contains substates which are responsible for the homing procedures and motion profile gen-

Nick in het Veld University of Twente

CHAPTER 4. DESIGN 25

eration for a unit. The Idle and Action state describe the normal operations of a unit when the
demonstrator is active. Since the performed handlings by the Production-Cell Units differ, the
Action state is described by a different set of substates depending on the unit. Lastly, the Shut-
down state contains substates that brings the unit home to its start position and disables the
peripherals for safety purposes.

The sequence-controller model is based on a motion profile generator which creates a setpoint
lookup table after homing procedures. The setpoint lookup table ensures that a Production-
Cell Unit is bounded to a static range. This range is based on the position of the limit switches
of a unit, if these are present for the unit. By utilising a lookup table, setpoints do not require to
be calculated online, which reduces the load generated by the sequence controller.

The original bridge nodes that exist in the robot-software framework have been modified.
In this case, the modified bridge nodes merge functionality to improve system performance.
While the original bridge is based on a single value being propagated by respectively one node,
the modified bridge is based on multiple values being propagated by one node instead. For an
overview of the differences, see Figure 4.6.

For in-depth implementation details of the discrete-event control see Section C.2.

Float64: /topic_0

Bridge ROS2 node 0

0

Float64: /topic_1

Bridge ROS2 node 1

1

Float64: /topic_2

Bridge ROS2 node k

k

Float64: /topic_1

Float64: /topic_k

ROS2 topic

ROS2-topic message attribute

XDDP port

Bridge ROS2 node 1

Float64: value_4

Float64: value_5

Float64: value_12

Custom: /read1

Float64: /topic_k1

Bridge ROS2 node k+1

k+1

Float64: /topic_1

Bridge ROS2 node k+2

k+2

Float64: /topic_2

Bridge ROS2 node n

n

Float64: /topic_k2

Float64: /topic_n

Bridge ROS2 node 0

0Float64: value_0

Float64: value_1

Float64: value_3

Custom: /write1

write()

write()

Original

Modified

ROS2 node

3

4

12
read()

read()

write() read()

read()

read()

write()

write()

1
write()

5
read()

15Float64: value_15

Float64: value_16

Float64: value_18

Custom: /write2

write()

write()

18

16
write()

Float64: value_19

Float64: value_20

Float64: value_27

Custom: /read2

19

27
read()

read()

20
read()

Figure 4.6: The modified bridge nodes with respect to the original bridge nodes

Robotics and Mechatronics Nick in het Veld

26 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

4.4 PCB interface board

Each Raspberry Pi board needs to interface with the 50-pin header of the switch board. To
avoid extensive cabling, a PCB board has been developed that maps 50-pin-header signals to
the PMOD-connectors of an icoBoard. The PCB design is chosen such that the three needed
PCB boards are identical. Furthermore, additional functionality is added to the PCB board,
such as probing points for signals coming from and going to the setup.

For information about the design of the PCB interface board, see Section D.1.

Nick in het Veld University of Twente

27

5 Testing

5.1 Introduction

Goal 2 is to characterise the control performance, load balancing and real-timeness of the im-
plemented embedded-control-software architecture. This chapter discusses the characterisa-
tion. First, a description of the test scenario and the test bed is given. This is followed up by
an explanation of the way of measuring the variables of interest. After this, the results obtained
from the test scenario are shown in plots. where observations are made per aspect of goal 2.
Lastly, both the test bed and the results are discussed.

5.2 Setup

For the test scenario it is desired to capture the variables of interest when the system has nom-
inal load. One can define nominal load as a scenario where only one block makes a full round
trip. Alternatively, one can also define nominal load as a scenario where it circulates more than
one block, which is more similar to the real world process where many blocks circulate simul-
taneously. One basic cycle in the Production-Cell setup is achieved with one block. Therefore,
the one-block scenario is chosen to represent the nominal load for the system. For the test
scenario the block is placed on the Extraction Belt and in front of the Extraction Robot (Fig-
ure 5.1). This location is chosen over other possible locations, since other locations do not al-
low easy operations regarding the scenario start. Furthermore, this location is one of the closing
points in the Production-Cell setup, where the round-trip time of a block can be determined
when the Extraction Robot finishes its motion.

Block start

Figure 5.1: The test scenario where one block starts the round trip

Robotics and Mechatronics Nick in het Veld

28 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

To characterise the control performance, load balancing and real-timeness as stated in goal 2,
it is also of importance to know the variables of interest associated with these aspects. The
variables of interest include the following:

• Setpoint, position error: characterise the control performance during a unit’s motion.
• CPU load: characterises the load balancing with respect to the Raspberry Pi cores.
• Timing: characterises the real-timeness of a component’s operations.

Regarding the instrumentation for the variables of interest, the following design considerations
are present:

• Setpoint, position error, and timing with existing components. To capture these vari-
ables of interest, it is necessary to build logging capabilities into some existing com-
ponents of the embedded-control-software architecture (Table 5.1). For the control-
performance aspect, the variables of interest are already present in the system for the
logger to capture. For the real-timeness aspect, components must send their timing to
the logger at hand.

• Timing of motion-control component. Since the Xenomai-side runs quicker than the
Linux-side, the issue is that timing-related variables in the former are too quick for the
latter to capture per sample. To circumvent this issue, one logger has to run in Linux and
one logger has to run in Xenomai. For the Linux-side logger, a ROS2-node-based log-
ging component is created which obtains motion-control-component timing variables
over XDDP ports. This logger is denoted as Xenomai logger (Table 5.1). This ROS2-based
logger functions as a bridge which publishes these variables into the ROS2 environment.
For the Xenomai-side logger, the variables are stored per sample, which eventually are
written to a CSV-file. For the ROS2-based logger, a slower sample time is used with re-
spect to the Xenomai-side logger. With the two-logger approach, the low-resolution data
obtained with the ROS2-based logger can be overlaid with the high-resolution data that
has been obtained with the Xenomai-side logger (Figure C.10).

• CPU load of the Raspberry Pi cores. The CPU-load-related variables are not yet captured
by the existing components. To this end, an additional logging component is made. This
logging component is a ROS2 node and is denoted as CPU logger (Table 5.1).

For the components involved in the logging process, the following design decisions are present:
• Core assignment for the additional ROS2-based loggers. Since additional ROS2-based

logging components are created, it is necessary to assign on which Linux-core these will
run. The problem, however, is that to each Linux-core a component from the embedded-
control-software architecture is already mapped. The result is that this embedded-
control-sofware-architecture component needs to share a core with the ROS2-based
logging components. Thus, one should choose which of the existing ROS2-based
embedded-control-software-architecture components are the most crucial. An appropi-
ate decision must be made such to minimise degradation of the quality of service of the
system. To this end, it is chosen to avoid running the logging components on the core
which run the bridge ROS2 nodes. With respect to the Production-Cell-Unit ROS2 nodes,
the bridge ROS2 nodes run more computationally-expensive operations. The reason is
the bridge ROS2 nodes utilise many system calls for the data transport. Hence, the log-
ging components are mapped to the cores on which the existing Production-Cell-Unit
ROS2 nodes are run. To divide the CPU load generated by the ROS2-based logging com-
ponents, each of these components are mapped to a seperate core (Table 5.1).

• Period of the additional ROS2-based loggers. The period of the additional ROS2-based
logging components must be chosen appropiately. Running these quickly will result in
a higher resolution for the variables of interest, but possibly results in their associated
core becoming overloaded. On the other hand, running these slowly minimises their
influence on the CPU load, but might result in the data being not useful due to its low
resolution. Different periods have been tested: a 1 ms and 10 ms period would overload

Nick in het Veld University of Twente

CHAPTER 5. TESTING 29

the core to 100%, while a 100 ms period would not. A period of 100 ms is thus chosen
for the logging components (Table 5.1). The 100 ms period resulted in the logging-
responsible cores not being overloaded to their maximum capacities. Furthermore, the
100 ms period provides a sufficient resolution to see the general trend of the variables of
interest.

• Across-the-board timeline for logged data. A central point of logging needs to capture
the data on the boards with an across-the-board timeline, since the data captured from
components are asynchronous with respect to each other. It can be chosen such that
one of the boards is the central point of logging, but this results in an asymmetrical load
distribution across the boards. Therefore, it is chosen to offload this logging responsibil-
ity to another device, which is the command centre. The command centre is the central
point of logging, on which a ROS2 node will capture the available data on the boards
via subscriptions. The ROS2-based command-centre logger is subscribed to the logging-
related ROS2 topics in Table 5.1. When a topic callback occurs in the command-centre
logger, the topic values are written to one of the logger’s temporary buffers. The topic val-
ues are stored in this buffer until the next topic callback writes new values in this buffer.
The values in this buffer are therefore updated based on the publishing rate of the topic.
While the command-centre logger is running, it stores the buffer values into a tabular
data container with a period of 1 ms (Figure C.11). A period of 1 ms is used to detect the
change in buffer values as fast as possible. The contents of the tabular data container is
printed to a CSV-file when the command-centre logger is stopped. Based on the timeline
of the command-centre logger, the data captured from each board is thus respectively
synchronised with each other.

Table 5.1: Overview of the components involved in the logging process. C & C: Command & Control
centre

Component Runs on Timer Variables Outgoing channel To component

Unit 1 Supervisory Sequence
(1x) RPi 1, core 0
(1x) RPi 2, core 0
(1x) RPi 3, core 0

10ms
Setpoint

Timing

/write1

/timing1

Logger (C&C)

Logger (C&C)

Unit 2 Supervisory Sequence
(1x) RPi 1, core 1
(1x) RPi 2, core 1
(1x) RPi 3, core 1

10ms
Setpoint

Timing

/write2

/timing2

Logger (C&C)

Logger (C&C)

Bridge-reader
(1x) RPi 1, core 2
(1x) RPi 2, core 2
(1x) RPi 3, core 2

10ms Position error
/read1

/read2

Logger (C&C)

Logger (C&C)

Loop Safety Meas. & Act.
(1x) RPi 1, core 3
(1x) RPi 2, core 3
(1x) RPi 3, core 3

1ms Timing
Internal

XDDP

CSV-file

Xenomai logger

Xenomai logger
(1x) RPi 1, core 0
(1x) RPi 2, core 0
(1x) RPi 3, core 0

100ms Timing /timing_20simtask Logger (C&C)

CPU logger
(1x) RPi 1, core 1
(1x) RPi 2, core 1
(1x) RPi 3, core 1

100ms Processor load /cpuload Logger (C&C)

Logger (C&C) (1x) C&C cores 1ms

Setpoint
Position error
Processor load

Timing

Internal CSV-file

Robotics and Mechatronics Nick in het Veld

30 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

5.3 Way of measuring

To obtain the timing in each component, the POSIX-based function clock_gettime() is
used to capture the cycle-to-cycle time of a component and of certain segments of code. In the
function call the CLOCK_MONOTONIC_RAW argument is given, which uses a raw hardware-
based monotonic time that is not subject to NTP-based clock adjustments (Die.net, 2023).

The CPU load is obtained by parsing device files in the /proc/ directory of Linux. For
reading the CPU load of the Linux cores, the cpp-linux-system-stats library on Git-
Hub is used (improvess, 2023). This library allows one to read the current CPU load in
Linux by parsing the /proc/stat device file. For reading the CPU load of the Xenomai
cores, a derivative of this library is made. The library is modified such that it parses the
/proc/xenomai/sched/stat device file, from which it reads the CPU load of a Xenomai
core.

5.4 Results

In this section the data obtained from the test scenario is shown. First, observations are made
concerning the performance of the system, which includes both the control performance and
the load balancing. After this, observations are made concerning real-timeness-related aspects.

5.4.1 Performance

An overview of performance-related plots can be seen in Figure 5.2. First, observations are
made about the controller-performance results. Afterwards, observations are made about the
CPU-load results.

Controller performance

The plots concerning the Extraction Robot indicate that the block makes one full round trip
in approximately 9 s, as it shows that the Extraction Robot finishes its movement around this
time. Compared to previous work, the round-trip time of a block is slower, which is reported to
be around 8 s.

When looking at the steady-state error of the units, units generally do not violate the 0.5 mm
steady-state-error criterion of the requirements, except for the Rotation Robot and Feeder Belt.
The results show that the steady-state error of the Rotation Robot after transporting a block
is 1.0 mm. On the other hand, at the begin phase of the Feeder Belt a steady-state error of
approximately 2.0 mm is found, which in this context is the steady-state error of its prior-made
motion. Looking at the position error when a unit is in motion, the unit which has the best
control performance is the Feeder Belt, while the unit with the worst control performance is the
Rotation Robot.

CPU load

Regarding the load balancing per core, none of the cores exceed the 90% processor-load bound-
ary that was described in the requirements. Still, noteworthy is that the core which runs the
ROS2 node of the Rotation Robot reaches a load of 80%. At this 7.5 s timestamp, a sudden
change in CPU load can be seen for the other cores on the board as well. For the Linux cores
the CPU load increases, while for the Xenomai core the CPU load decreases, albeit little. When
looking at the same timestamp in the position-error plot of the Extraction Belt, some points
indicate that the position error decreases suddenly, albeit little as well.

Overall, the CPU load per board is comparable over the other boards, where they mainly differ
in maxima but not significantly in mean. This applies to both the Linux cores and the Xenomai
core. For the Xenomai core, the CPU load ranges from 38% to 41%. For the Linux cores, the
CPU load ranges from 25% to 80%.

Nick in het Veld University of Twente

CHAPTER 5. TESTING 31

= Deadline-misses-per-time violation (k∆t = 540 misses/s)

Figure 5.2: Overview of the control performance and load balancing during one round-trip time of a
block.

Robotics and Mechatronics Nick in het Veld

32 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

5.4.2 Real-timeness

An overview of the jitter per component in relation to Figure 5.2 is shown in Figure 5.3. A closer
look of the timing of the real-time task running 20-sim-generated code is shown in Figure 5.4.

It can be observed that the jitter differs per component (Figure 5.3). Specifically, the magnitude
of jitter differs between the ROS2 nodes and the real-time task running the 20-sim-generated
code, which is approximately a difference of 102 to 103.

Regarding the ROS2 nodes, the jitter range varies from 0 ms to 8.7 ms. The maximum of this
range indicates that a node is approximately 90% over its intended deadline, since the ROS2
nodes run with a period of 10 ms. Overall, most of the jitter of ROS2 nodes is clustered around
the 0 ms mark, where eventually not so much jitter is observed after the 3 ms mark. However,
noteworthy are the jitter plots for the Extraction Belt and the Molder Door, where a significant
cluster of jitter can be observed around the 4 ms mark. Also noteworthy is that these plots
show higher worst-case jitter than the other ROS2-node-based plots, but these are mostly one-
off values.

For the real-time task running the 20-sim-generated code, the jitter range varies from 0 µs to
48.7 µs. This indicates that the real-time task is at maximum approximately 5% over its inten-
ded deadline, since the real-time task is run with a period of 1 ms. Noteworthy is that most of
the jitter in the higher range are one-off values or close to being one-off values. Instead, most
of the jitter is clustered around the 0 µs mark.

The execution cycle of the real-time task running 20-sim-generated code consists of different
phases (Figure 5.5). When taking a closer look at the timing concerning these different phases
(Figure 5.4), one can observe that a significant part of the cycle is spent on receiving data and
sending data. In contrast with these communication-related phases, the actual calculations
done by the 20-sim model is relatively a small segment of the cycle. Overall, the job of the real-
time task running the 20-sim-generated code takes approximately 0.3 ms to complete, with
some outliers reaching towards the 0.5 ms range. This indicates that the job for its worst case
requires approximately 50% of the period of 1 ms. These observations are applicable to each
board.

Deadline-misses-per-time violations k∆t are searched for in the data (Figure 5.2). Using dif-
ferent values for this violation criterion, timestamps are found on which the criterion is vi-
olated. These violations are based on the time evolution of deadline misses of the real-time
task running the 20-sim-generated code (Figure C.13). The first violations are found when
k∆t = 540 mi sses/s, which is shown in Figure 5.2. However, it must be noted that these vi-
olations occur while the units are idling, so its implications on the results cannot be observed
here. For the purpose of looking for a relation between the violations and the system perform-
ance, the violation criterion is adjusted to k∆t = 520 mi sses/s (Figure C.12). Using this value
for the criterion, it can be observed that violations occur during the motion of units. However,
no significant decrease in system stability or position error is observed. Making the criterion
stricter eventually results in all points violating the criterion, resulting in the plot not being able
to provide useful insights. Therefore, stricter values for the criterion are not evaluated for the
plots.

A direct relationship between CPU load (Figure 5.2) and deadline misses (Figure C.13) is not
visible. As had been described before, a significant CPU load fluctuation can be observed at
the 7.5 s mark for the components on board 1. Though, the influence of this fluctuation cannot
be observed in the deadline-misses plots of board 1. Overall, no steep increases in deadline
misses are observed in the deadline-misses plot of the components.

Nick in het Veld University of Twente

CHAPTER 5. TESTING 33

Figure 5.3: Overview of the jitter per component during one round-trip time of a block

Robotics and Mechatronics Nick in het Veld

34 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Figure 5.4: Closer look at the timing of the real-time task running the 20-sim-generated code. For an
overview of the execution timeline see Figure 5.5.

Cycle

Idle
SendCalculateReceive

Job

Timer signal raised:
write model outputs to FPGA,

write FPGA values to model inputs

Model outputs towards FPGA are
written to a buffer.

Values in this buffer are written to
FPGA on next timer raise.

Write values of inbound
XDDP ports to 20-sim

model inputs

Write 20-sim model
outputs to outbound

XDDP ports

Compute 20-sim
model outputs

⏱

Wait for asynchronous-raised
timer signal

Timer signal raised:
write model outputs to FPGA,

write FPGA values to model inputs

⏱

Figure 5.5: Execution cycle of the task running the 20-sim-generated code. For an overview of the un-
derlying code see Listing C.12.

Nick in het Veld University of Twente

CHAPTER 5. TESTING 35

5.5 Discussion

For ROS2 nodes, it can be argued that they can adhere to soft-real-time constraints most of
the time, as most of their jitter is bounded between an acceptable range. In this case, jitter
is mostly centered around the 0 s mark. Beyond that, jitter starts to taper off and eventually
become one-off values, where jitter is bounded to be 30% of the period at most. However, in
the results it also has been observed that ROS2 nodes can have a large jitter, which in the worst-
case is approximately 90% of the period. This indicates that ROS2 nodes can potentially have
jitter which makes them less soft-real-time-capable than desired.

For the real-time task running 20-sim-generated code in Xenomai, it can be argued that it ad-
heres to its firm-real-time constraints. While jitter can be found away from the 0µs mark, which
can reach up to 5% of its period, most of these jitter values are one-off values. In that regard, the
results show that Xenomai-based tasks are always ensured a timely execution time with respect
to jitter, unlike the ROS2 nodes. Noteworthy is that the worse-case jitter of the real-time task
running 20-sim-generated code is worse than has been found in the work of Meijer (2021). In
the work of Meijer (2021) it is reported that jitter is bounded to be 3% of the period at most, but
where an one-off value for the jitter has been found which reached into the 4% range. A pos-
sible explanation for the differences in results is that the context underlying the results in this
work and Meijer’s work differs. While in Meijer’s results the system load is likely to be relatively
low, the system load underlying the results of this thesis is not. It is probable that due to the
many processes being run during system testing, a difference in jitter can be observed. This
argument is based on the assumption that Xenomai is actually affected by the processes that
run in Linux.

Related to the real-time task running the 20-sim-generated code, it was expected that the
time needed for its calculations would be a significant section of its period. This expecta-
tion was based on the fact that both the model in 20-sim and the size of the resulting code
are relatively large. However, the results show that a significant part of the period is spent on
communication-related aspects instead of the calculations. This indicates that the code gener-
ated from 20-sim can be performant regardless of its size, and that most of the time gains can
be achieved by optimizing the communication instead.

In the work of Meijer (2021) a criterion is set for the jitter, where sufficient real-time perform-
ance is achieved when jitter is below 3% of the period. This criterion is used as a relaxed meas-
ure of what a deadline constitutes, since it differs per application what magnitude of jitter is
acceptable. However, in the deadline-misses results of this thesis (Figure C.13) the strictest cri-
terion is adhered to, where a deadline miss is considered anything that is positive jitter. It is
likely that this criterion is too strict with respect to the setup. This argument is based on the
fact that no significant control performance drops or signs of instability were observed with
respect to the deadline-misses-per-time violations. This indicates that while adhering to real-
time constraints is important, the non-zero jitter is not critical enough to significantly influence
the control in this application. With respect to the results, a statement can therefore be made
that jitter up till 5% is acceptable for the motion control of the Production-Cell setup.

To measure the variables of interest, it was chosen to run additional logging components along-
side the embedded-control-software-architecture components. However, it is obviously the
case that the former have influenced the results of the latter. It was observed that a signi-
ficant cluster of jitter was located away from the 0 ms mark. This possibly indicates that
the embedded-control-software-architecture component shares a significant amount of pro-
cessor time with the logging component. Furthermore, the worst-case jitter were found for the
embedded-control-software-architecture components which run alongside the logging com-
ponents.

Robotics and Mechatronics Nick in het Veld

36 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

For some units, the control performance did not satisfy the requirement for the steady-state
error. A reason for the poor performance is that the controllers for the units are not tuned well
enough. Furthermore, for some units the motion profile may have been set to be too aggressive.
Due to project-time constraints, further tuning of the system was not done.

Nick in het Veld University of Twente

37

6 Conclusions and Recommendations

6.1 Conclusions

The first goal of this thesis is achieved within the project constraints of this thesis. The first
goal describes that a Production-Cell demonstrator must be realised by means of a perform-
ant embedded-control-software architecture on the Raspberry Pi. Different alternatives for the
architecture are evaluated and the best alternative is chosen. Using a real-time robot-software
framework and a model-driven-design workflow, a layered controller structure is built based on
the chosen embedded-control-software-architecture alternative. The real-time robot-software
framework uses 20-sim for motion control and ROS2 for discrete-event control, where both
tools are adequate to build the architecture. The Raspberry-Pi-based demonstrator is able to
circulate a block, thus being a next addition to the working Production-Cell demonstrators.

The second goal of this thesis is achieved as well. The second goal describes that the real-
ised embedded-control-software architecture must be characterised in terms of performance
and real-timeness. This characterisation is shown in Chapter 5. The variables of interest of
the performance aspect and real-timeness aspect are logged using a test bed. This test bed is
run during a nominal-load test scenario. In this scenario, one block makes one full round trip.
For the performance aspect, results are shown of the control performance of each Production-
Cell Unit and the load balancing with respect to the Raspberry Pi cores. For the real-timeness
aspect, results are shown of the timing and deadline misses of the embedded-control-software-
architecture components. According to the processor-load requirements, the results show that
the architecture is well-performant in terms of load balancing (< 90% CPU load). According to
the control-performance requirements, the results show that in terms of the steady-state er-
ror for a Production-Cell Unit, the architecture does not perform as well as prior work (> 0.5
mm). For the nominal-load scenario, the results have shown that worst-case jitter of ROS2-
based tasks can be approximately 90% of their period. For the same scenario, is is shown that
the worst-case jitter of the real-time task in Xenomai running 20-sim-generated code is approx-
imately 5% of its period at most.

6.2 Recommendations

In future work, a relationship between deadline-misses-per-time violations and control per-
formance should be investigated. With respect to the results of Chapter 5, it is unclear if the
deadline-misses-per-time violations can be related to the control performance.

Additionally, in future work stress tests should be done for both the processor-load aspect and
the networking aspect of the embedded-control-software architecture. The effects of overload-
ing the Raspberry-Pi processor cores are not investigated in this thesis. Furthermore, the in-
fluence of network interference between the boards is not investigated as well. Due to project-
time constraints these extra tests were not done.

Furthermore, in future work other embedded-control-software architectures should be ex-
plored using newer components. At the moment of writing the Raspberry Pi company has
started the roll-out of the Raspberry Pi version 5. Furthermore, the Xenomai project is active
with developing the newest version of Xenomai, which is Xenomai EVL (version 4). These com-
ponents provide the opportunity to create another demonstrator for the Production-Cell setup,
which eventually can be compared to the demonstrator of this thesis.

Lastly, in future work the functioning of the safety circuit with the emergency button must be
tested. Due to project time constraints, this functioning has not been tested.

Robotics and Mechatronics Nick in het Veld

38 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

A Production Cell

This chapter of the appendix describes different aspects concerning the Production Cell. Sec-
tion A.1 until Section A.7 serve as documentation for the Production Cell. These sections de-
scribe the following:

• The Production-Cell Units and their associated peripherals
• Details of the switch boards and the per-pin definition of its onboard 50-pin header

For more information about the Production-Cell setup see the electronically-handed-in docu-
mentation.

Lastly, Section A.8 describes the realised embedded-control-software architectures for the Pro-
duction Cell in related work.

Nick in het Veld University of Twente

APPENDIX A. PRODUCTION CELL 39

A.1 Real world picture

Figure A.1: Top-down view of the Production Cell

Robotics and Mechatronics Nick in het Veld

40 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

A.2 Units

Sorter Module (SM)

S

USB

Camera Module (CM)

L
1b

LME
2a

S

S

S

S

S

1a

M

E

3a
3b

2b

m LL M E

mLLME

Right

Front

Rear

LeftPerspective
definition

Legend

M Motor

E Encoder

L Limit switch

S Optical sensor

m Magnet

S

ME

M E

Molder Door (MD)
Feeder Robot (FR)

Extraction Robot (ER)

S

Extraction Belt (EB)

Rotation Robot (RR)

Feeder Belt (FB)

Gate

Fetch site

Deliver site

Gate

Fetch site

Deliver site

Optoswitch

Figure A.2: Functional overview of the units of the Production Cell. The arrows indicate the allowed
directions for a unit’s motion. The number-letter markings symbolise the sequence of motion handlings
at the moulding section.

Nick in het Veld University of Twente

APPENDIX A. PRODUCTION CELL 41

A.3 Sequence diagram

Feeder
Belt

Feeder
Robot

Molder
Door

Extraction
Belt

Rotation
Robot

Extraction
Robot

Feeder robot home?

Transport block to
feeder robot, then stop

Feeder robot out Molder door closed?
Push block to molder
door

Open molder door

Molder door open?

Bring feeder robot home

Extraction robot home?

Open molder door

Pick up block

Close molder door

Transport block

Pick and place block on
extraction belt

Pick up block

Transport block to
rotation robot

Transport block

Feeder robot home?
...

Feeder belt has room?

Extraction belt has room?

Figure A.3: Normal operation sequence diagram of the Production Cell. Adapted from Groothuis et al.
(2008).

Robotics and Mechatronics Nick in het Veld

42 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

A.4 Peripherals

Rotation Robot

Encoder 02

Motor1 3

Magnet1 1

Lim. switch1 0

Lim. switch1 0

Sensor1 0

Extraction Robot

Sensor1 0

Encoder 02

Motor1 3

Magnet1 1

Lim. switch1 0

Lim. switch1 0

Molder Door

Encoder 02

Motor1 3

Sensor1 0

Feeder Robot

Sensor1 0

Encoder 02

Motor1 3

Lim. switch1 0

Lim. switch1 0

Feeder Belt

Sensor1 0

Encoder 02

Motor1 3

Sensor1 0

Extraction Belt

Encoder 02

Motor1 3

Sensor1 0

Sensor1 0

Peripheral# #

Required
input pins
on FPGA

Required
output pins
on FPGA

Switch board 1 Switch board 2 Switch board 3

Figure A.4: Overview of the required IO per peripheral of the Production-Cell Units. To each electrical
switch board the peripherals of two Production-Cell Units are connected. For the specific signal defini-
tions per peripheral see Table A.1.

Nick in het Veld University of Twente

APPENDIX A. PRODUCTION CELL 43

A.5 PCB boards

Front-view

SWB3MD🟠 ER🟠ER🟣

Left-view

SWB2 FR🟠FB🟠

Rear-view

RR🟣SWB1RR🟠ER🟠

= motor board

= magnet board

Figure A.5: Abstract overview of the PCB boards residing on the Production Cell’s sides. For the abbre-
viation definitions see Figure A.2 and Figure A.6. The motor boards use the Si9978DW H-bridge-driver
chip.

Robotics and Mechatronics Nick in het Veld

44 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

A.6 Electrical switch board

2

S4 S3 S2 S1 m O2 O1

E2 M2

L2-2 L2-1

E1 M1

L1-2 L1-1

1 3

SWB#

ON
2
1

OFF

Pin headers for Production Cell's peripherals

50-pin connector

50-pin connector 50
-p

in
 c

on
ne

ct
or

Optical sensors Magnet Extra outputs
Motor 1Motor 2

2
1

2
1

2 - RPi4

2

1 1 - FPGA

3

Dip switch

Figure A.6: Abstract overview of the Production Cell’s electronic switch board

Nick in het Veld University of Twente

APPENDIX A. PRODUCTION CELL 45

A.7 50-pin connector definitions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

3

5

7

9

11

13

15

17

19

SW
B#

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

M1 motor fault

M1 limit switch A

M1 limit switch B

M1 encoder channel A

M1 encoder channel B

Magnet current sensor

Sensor 1

Sensor 2

Sensor 3

Sensor 4

M1 direction

M1 PWM

M1 brake

M2 direction

M2 PWM

M2 brake

Magnet toggle

Extra output 1

Extra output 2

VCC controller node

SW
B1

SW
B2

SW
B3

M2 motor fault

M2 limit switch 1

M2 limit switch 2

M2 encoder channel A

M2 encoder channel B

GND =

I/O =

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

RR motor fault

RR limit switch ⬅

RR limit switch ➡

RR encoder channel A

RR encoder channel B

RR magnet sensor RR direction

RR PWM

RR brake

EB direction

EB PWM

EB brake

RR magnet toggle

SM toggle

EB motor fault

EB encoder channel A

EB encoder channel B

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

FR motor fault

FR limit switch ⬅

FR limit switch ➡

FR encoder channel A

FR encoder channel B

FR direction

FR brake

FB direction

FB PWM

FB brakeFB motor fault

FB encoder channel A

FB encoder channel B

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

ER motor fault

ER limit switch ⬅

ER limit switch ➡

ER encoder channel A

ER encoder channel B

ER magnet sensor ER direction

ER PWM

ER brake

MD direction

MD PWM

MD brake

ER magnet toggle

MD motor fault

MD encoder channel A

MD encoder channel B

VCC controller node

VCC controller node

VCC controller node

EB gate

EB fetch site

RR deliver site

FB gate

FB fetch site

ER deliver site

MD optoswitch

49

50

FR PWM

Figure A.7: Definitions of the 50-pin connector on the switch board. For the abbreviation definitions
see Figure A.2.

Robotics and Mechatronics Nick in het Veld

46 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Table A.1: The 50-pin-connector definitions in Figure A.7 with respect to the peripherals of the
Production-Units in Figure A.4.

Peripheral
Pin numbers

on 50-pin header
Is input or output

(FPGA perspective)
Description

Limit switch 3, 13 Input The Production-Cell Unit is out-of-bounds (left-hand side)
5, 15 Input The Production-Cell Unit is out- of-bounds (right-hand side)

Encoder 7, 17 Input Channel-A signal of the encoder
9, 19 Input Channel-B signal of the encoder

Motor 1, 11 Input
The motor experiences a fault
(zero pulse is overcurrent, zero signal is undervoltage)

31, 37 Output
The actuation direction of the motor
(active-low 0 is counterclockwise, active-low 1 is clockwise)

33, 39 Output

Freerunning-mode control:
duty cycle to H-bridge (0% is stand still, 100% is max. torque)

Braking-mode control:
enable signal to H-bridge (active-high 1 is enable)

35, 41 Output

Freerunning-mode control:
enable signal to H-bridge (active-low 0 is enable)

Braking-mode control:
duty cycle to H-bridge (0% is max. torque, 100% is stand still)

Magnet 21 Input Current is flowing through the magnet
43 Output Activates the magnet

Sensor 23, 25, 27, 29 Input Entity is detected (metal block or door). See Figure A.7.

Nick in het Veld University of Twente

APPENDIX A. PRODUCTION CELL 47

A.8 Related work

Global
Safety

Rotation Robot
state machine

Feeder Belt
state machine

Feeder Robot
state machine

Molder Door
state machine

Extraction Robot
state machine

Extraction Belt
state machine

Digital
Sensors

Encoders

Motor

Magnets

Globals

Supervisor Layer Sequence Layer Safety Layer Meas. & Act. Layer

Controller rendevouz channel

Algorithm

Loop Layer

(a) Sassen (2009) on Xilinx FPGA

(b) Ridder (2018) on Intel NUC and RaMStix

Figure A.8: Embedded-control-software architectures that have been realised for the Production Cell in
prior work.

Robotics and Mechatronics Nick in het Veld

48 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

B icoBoard

This chapter of the appendix describes the details of the icoBoard, which is used as an exten-
sion board for the Raspberry Pi. In Section B.1 the I/O associated with the icoBoard’s PMOD-
connectors is shown, showing the per-signal definition of a PMOD-connector. Afterwards, in
Section B.2 the peripheral mapping of the Production-Cell Units onto the PMOD-connectors is
illustrated. Lastly, Section B.3 describes the required toolchain for the icoBoard that is used for
compiling FPGA code and running it on the icoBoard.

B.1 PMOD connector

The interface running on the icoBoard is developed by Hofstede (2022). This interface has pre-
defined signal definitions for the PMOD-connectors of the icoBoard. A visual overview of the
mapping of the pin definitions of Hofstede (2022) to the pin definitions of the PCB interface
board (Appendix D) is shown in Figure B.1. For a tabular overview of this pin-definition map-
ping, see Table B.1.

3V3

B_OPT3

B_DIR

B_BRK

B_OPT2

B_PWM

B_ENCA

B_ENCB

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

3V3

EMB

B_OPT1 B_MFLT

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

PMOD 3 PMOD 4

Unit 1 Unit 2

3V3

A_LIML

A_DIR

A_BRK

A_LIMR

A_PWM

A_ENCA

A_ENCB

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

PMOD 2

3V3

EMB

A_MGNT

A_MFLT

A_MGNS

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

PMOD 1

ENC_A

ENC_B

3V33V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

3V3

IN_1

PWM_ENB

PWM_VAL

IN_2

OUT_1

ENC_A

ENC_B

PWM_ENA

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

IN_1

IN_2

OUT_1

PWM_ENB PWM_ENA

PWM_VAL

ENC_A

ENC_B

3V33V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

PMOD 2 PMOD 1

3V3

IN_1

PWM_ENB

PWM_VAL

IN_2

OUT_1

ENC_A

ENC_B

PWM_ENA

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

IN_1

IN_2

OUT_1

PWM_ENB PWM_ENA

PWM_VAL

Hofstede
(2022)

PCB
interface

board

PMODs of ...definitions

PMOD 3 PMOD 4

Pin

Figure B.1: The per-pin definition of the PMOD-connectors on the icoBoard

Nick in het Veld University of Twente

APPENDIX B. ICOBOARD 49

Table B.1: A tabular overview of the mapping of PMOD-pin definitions of Figure B.1.

PMOD number
Pin definition

Hofstede (2022) PCB-interface board
1 OUT_1 A_MGNT

IN_2 -
IN_1 EMB

PWM_ENB -
PWM_ENA -
PWM_VAL -

ENC_B A_MGNS
ENC_A A_MFLT

2 OUT_1 A_BRK
IN_2 A_LIMR
IN_1 A_LIML

PWM_ENB A_DIR
PWM_ENA -
PWM_VAL A_PWM

ENC_B A_ENCB
ENC_A A_ENCA

3 OUT_1 B_BRK
IN_2 B_OPT2
IN_1 B_OPT3

PWM_ENB B_DIR
PWM_ENA -
PWM_VAL B_PWM

ENC_B B_ENCB
ENC_A B_ENCA

4 OUT_1 -
IN_2 B_OPT1
IN_1 EMB

PWM_ENB -
PWM_ENA -
PWM_VAL -

ENC_B -
ENC_A B_MFLT

Robotics and Mechatronics Nick in het Veld

50 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

B.2 Mapping Production Cell’s peripherals

Are encoder inputs, but
are abused such that two
digital inputs are created.

= emergency button

3V33V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

3V3

EMB

B_OPT1 B_MFLT

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

1

1

3

3

3

2

2

1
Unit 2

B_OPT3

B_DIR

B_BRK

B_OPT2

B_PWM

B_ENCA

B_ENCB

1B_OPT1

3V3

A_LIML

A_DIR

A_BRK

A_LIMR

A_PWM

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

1

1

3

3

3

2

2

3V3

EMB

A_MGNT

3V3

GND

InputOutput

InputInput

OutputInput

OutputOutput

GND

11
Unit 1

1A_ENCA

A_ENCB

A_MFLT

A_MGNS

Figure B.2: Per-board mapping of two Production-Cell-Units’ peripherals (Figure A.4) to the PMOD-
connectors (Figure B.1). The pin definitions of the PCB interface board are used in this figure, see Fig-
ure B.1.

Nick in het Veld University of Twente

APPENDIX B. ICOBOARD 51

B.3 Toolchain

The necessary tools to program the FPGA are shown in Table B.2. These are run on the com-
puter, where the toolchain compiles Verilog code into a .bin file. This .bin file can be used by
the Raspberry Pi to flash the icoBoard.

Table B.2: The open source FPGA toolchain for the Icoboard. Adapted from Vinkenvleugel (2022).

Tool Description
Yosys An open synthesis suite for Verilog, used to convert the

initial Verilog code to an intermediate representation in
JSON.

Nextpnr A place and route tool that accepts the JSON file that was
generated by Yosys and converts it to a hardware-specific
layout in an ASC file.

Icestorm A package that contains hardware support for the particu-
lar Lattice iCE40- HX8K FPGA that is used in the Icoboard.
A program called Icepack is used to convert the ASC file to
a binary file that can be flashed on the FPGA chip.

Icotools Tools to flash the binary file on the FPGA, either to flash
or to run it as a bitstream.

Icarus Verilog A tool to simulate Verilog code on a computer.

Robotics and Mechatronics Nick in het Veld

52 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

C Embedded-control-software architecture

This chapter of the appendix describes different aspects concerning the implemented
embedded-control-software architecture. Section C.1 until Section C.3 describe the in-depth
implementation details of the embedded-control-software architecture. These sections de-
scribe the following:

• Overview of the 20-sim models of the motion-control layers
• Models used for the discrete-event-control layers
• Custom 20-sim model blocks that are used for the motion-control layers

In Section C.4, the physical connections underlying the implemented embedded-control-
software architecture is shown. Section C.5 describes additional diagrams and plots concerning
the embedded-control-software architecture, primarly serving as an addendum to Chapter 5.
Lastly, Section C.6 describes the run commands to activate and deactivate the Raspberry-Pi-
based demonstrator.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 53

C.1 Motion-control model

This section describes the 20-sim model blocks of the motion-control layers, which consist of
the loop controller, safety layer and measurement-and-actuation layer (Figure 4.3). In Sec-
tion C.1.1, an overview of the elements of the loop-controller model block in 20-sim is shown.
After this, in Section C.1.2, an overview of the elements of the safety-layer model block in 20-
sim is shown. Next, in Section C.1.3 an overview of the elements of the measurement-and-
acuation-layer model block in 20-sim is shown. In Section C.3 an overview of the used cus-
tom 20-sim model blocks is given. These blocks have been used in the motion-controller-layer
model blocks and are not present in 20-sim’s standard library.

C.1.1 Loop-controller model

Figure C.1: Loop controller model in 20-sim. For descriptions of the used model blocks see for Control-
ler: Listing C.1; MeterToRad/RadToMeter: Listing C.2.

Robotics and Mechatronics Nick in het Veld

54 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

C.1.2 Safety-layer model

Figure C.2: Safety layer model in 20-sim. For descriptions of the used model blocks see for Decision
Maker: Table C.2; Error Detector: Figure C.3, Table C.3; Safety Controllers: Figure C.4.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 55

Figure C.3: 20-sim model of Error_Detector in Figure C.2. Depending on the Production-Cell Unit some
error signals are disabled with a Snip block, since they are either not applicable to the unit or are con-
sidered unneccesary for the unit. For descriptions of the used model blocks see for Guard: Listing C.3;
LimitGuard: Listing C.4; TON: Listing C.5.

Figure C.4: 20-sim model of Safety_Controllers in Figure C.2. The homing controllers output low-voltage
control signals which rotates the motor of the unit either clock-wise or counter-clockwise. The safety-
controller block only covers homing procedures.

Robotics and Mechatronics Nick in het Veld

56 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

C.1.3 Measurement-and-actuation model

Figure C.5: Measurement-and-actuation model in 20-sim. For descriptions of the used model blocks see
for VoltToPWM: Listing C.6; Mirror: Listing C.7; SignalConverter: Listing C.8; CntToMeter: Listing C.9;
WrapCounter: Listing C.10; Toggle: Listing C.11.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 57

C.2 Discrete-event-control model

This section describes the models that are used for the discrete-event-control layers, which
consist of the supervisory controller, supervisory controller and bridge (Figure 4.5). In Sec-
tion C.2.1, the finite-state-machine model underlying the supervisory controller is shown. After
this, in Section C.2.1 the trajectory-generation model that is used for the sequence controller is
shown. Lastly, in Section C.2.3 an overview of the signal lines in the embedded-control-sofware
architecture is shown. In this signal-line overview, it is illustrated how the bridge components
transports the information between Linux and Xenomai.

C.2.1 Supervisory-controller model

Startup Idle Shutdown

Action

DeliverMotion IdleIdle Waiting

Extraction Belt

LiftBlock DropBlock FetchMotionDeliverMotionIdle Idle

Rotation Robot

Waiting

DeliverMotion IdleIdle FetchMotion

Feeder Robot

Waiting

LiftBlock DropBlock FetchMotionDeliverMotionIdle

Extraction Robot

Waiting Idle

OpenMotion IdleIdle Open

Molder Door

CloseMotion Waiting

DeliverMotion IdleIdle Waiting

Feeder Belt

Figure C.6: Supervisory controller functionality is based on finite state machines. In the bottom of the
figure the substates of the Action-state is shown for each unit.

Robotics and Mechatronics Nick in het Veld

58 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

The information in Table C.1 serves as additional information regarding supervisory control-
lers. In this table different tools are shown which can create supervisory-like code components
using certain models of computation (finite-state machines or behaviour trees). These tools
have the potential to be integrated in the model-driven design workflow of the robot-software
framework. Some of the tools support a ROS2-based solution out of the box and/or promise
that it is adequate for real-time systems.

Table C.1: Existing tools that can create supervisory-like code components

Tool Description
Simulink Simulink (Stateflow) provides a graphical language that includes state transition dia-

grams, flow charts, state transition tables, and truth tables. Stateflow enables you to
design and develop supervisory control, task scheduling, fault management, commu-
nication protocols, user interfaces, and hybrid systems. Here, Simulink Coder allows
you to generate C and C++ code from models that contain Stateflow charts. You can then
use the generated code for real-time and non-real-time applications.

20-sim 20-sim is modeling and simulation software package for mechatronic systems. With 20-
sim you can enter models graphically, similar to drawing an engineering scheme. With
these models you can simulate and analyse the behaviour of multi-domain dynamic sys-
tems and create control systems. The Real Time toolbox of 20-sim allows you to create
C-code out of any 20-sim model for the use in real-time applications.

UPPAAL Uppaal is an integrated tool environment for modeling, validation and verification of
real-time systems modeled as networks of timed automata, extended with data types
(bounded integers, arrays, etc.).

Rhapsody Rhapsody is part of the IBM Engineering portfolio that provides a collaborative design
development, and test environment for systems engineers that supports UML, SysML,
UAF as well as AUTOSAR import and export capabilities.

Groot Groot is the Integrated Development Environment to build and debug Behavior Trees. It
allows you to create and edit trees, using a drag and drop interface, monitor the state of
a tree remotely in real-time and debug and test your behaviors.

Papyrus Papyrus for Robotics is graphical editing tool for robotic applications that complies with
the RobMoSys approach. It manages complexity of robotics development by supporting
composition-oriented engineering of robotics systems and separating the task into mul-
tiple tiers executed by different roles.

SmartMDSD SmartMDSD is an Eclipse-based IDE for software development and system composition
in a robotics software business ecosystem. It supports the different roles that act around
the development of robotics systems to offer software components and/or use software
components to build systems.

SMACC2 SMACC2 is an event-driven, asynchronous, behavioral state machine library for real-
time ROS 2 (Robotic Operating System) applications written in C++, designed to allow
programmers to build robot control applications for multicomponent robots, in an in-
tuitive and systematic manner.

YASMIN YASMIN is a project focused on implementing robot behaviors using Finite State Ma-
chines (FSM). It is fully integrated into ROS2, allows fast prototyping and a webviewer is
included which allows the monitoring of the execution of the state machines.

MERLIN2 MERLIN2 is a hybrid cognitive architecture based on symbolic planning and state ma-
chine decision-making systems that allows performing robot behaviors. The architec-
ture can run in any robot running ROS2 , the latest version of the Robot Operative Sys-
tem. The latest version of MERLIN only supports ROS2 using Python.

TinyFSM TinyFSM is a simple finite state machine library for C++, designed for optimal perform-
ance and low memory footprint. This makes it ideal for real-time operating systems. The
concept is very simple, allowing the programmer to fully understand what is happening
behind the scenes. It provides a straightforward way of mapping your state machine
charts into source code.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 59

C.2.2 Sequence-controller model

t0 t1 t2

Piecewise quadratic trajectory in terms of
position derivative constraints

t0 = 0
t1 = q1, max / q2, max

t2 = q0, max / q1, max

t3 = (q1, max / q2, max) + (q0, max / q1, max)

t3

Traverse the following polynomial per time segment

q0 = (1/2) ⋅ q2,i ⋅ t2 + q1,i ⋅ t + q0,i

t0 < t < t1 : q0,i = 0
q1,i = 0
q2,i = q2,max

t1 ≤ t < t2 : q0,i = -q1,max
2 / (2 ⋅ q2,max)

q1,i = q1,max

q2,i = 0

t2 ≤ t < t3 : q0,i = (-q0,max
2 ⋅ q2,max

2 - q1,max
4) / (2 ⋅ q1,max

2 ⋅ q2,max)
q1,i = (q0,max ⋅ q2,max / q1,max) + q1,max

q2,i = -q2,max

q0, max : position maximum (stroke)
q1, max : velocity maximum
q2, max : acceleration maximum

q0

Tunable parameters

From this follows ...

Figure C.7: Sequence controller functionality is based on second-order motion-profile equations

Robotics and Mechatronics Nick in het Veld

60 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

C.2.3 Bridge model

In Figure C.8, an overview is shown of the signal lines that are present in the embedded-control-
software architecture. The overview describes the information flow between:

• The discrete-event-control component (ROS2-node) and the motion-control component
(20-sim model)

• The motion-control component (20-sim model) and the icoBoard-based interface
(icoBoard-PMOD)

In this overview, the functionality of the bridge nodes is shown with the black rectangles.

Unit 1: 20-sim model

XDDP-read ports

optical sensor

motorfault + magnet activity

emergency button

magnet toggle

pwm

encoder count

limit switch ⬅

limit switch ➡

brake toggle
A_BRK

A_LIMR

A_LIML

A_ENC_A, A_ENC_B

A_PWM

A_MGNT

EMB

A_MFLT, A_MGNS

B_OPT1LOGIC3

MAGNETACTIVITY

MOTORFAULT

EMERGENCYBUTTON

MAGNETTOGGLE

BRAKETOGGLE

LOGIC2

LOGIC1

POSITION

icoBoard-PMODUnit 1: ROS2-node

brake

sensor2

sensor1

position

position_error

setpoint

magnetactivity

sensor3

magnet

mode MODE

4

6

7

8

9

10

11

5

1

2

3

0setpoint

magnet

brake

mode

positionerror

position

sensor1

sensor2

sensor3

motorfault

magnetactivity

emergencybutton

/write1

/read1

SETPOINT

XDDP-write ports

Bridge node (writes to XDDP)

Bridge node (reads from XDDP)

20-sim model input

20-sim model output

XDDP-port number

name ROS2-topic-message attribute

DEBUG12debug

motorfault

emergency button

pwm

encoder count

optical sensor

optical sensor

brake toggle

LOGIC3

MAGNETACTIVITY

MOTORFAULT

EMERGENCYBUTTON

MAGNETTOGGLE

BRAKETOGGLE

LOGIC2

LOGIC1

POSITION

brake

sensor2

sensor1

position

position_error

setpoint

NOT USED

mode MODE

19

21

22

24

26

20

16

18

15setpoint

magnet

brake

mode

positionerror

position

sensor1

sensor2

sensor3

motorfault

magnetactivity

emergencybutton

/write2

/read2

SETPOINT

XDDP-write ports

XDDP-read ports

Bridge node (writes to XDDP)

Bridge node (reads from XDDP)

DEBUG27debug

Unit 2: 20-sim model Icoboard-PMODUnit 2: ROS2-node Unit 2: 20-sim model icoBoard-PMOD

B_BRK

B_OPT2 / B_OPT3

B_OPT1 / B_OPT2

B_ENC_A, B_ENC_B

B_PWM

EMB

B_MFLT, B_MGNS

Figure C.8: An overview of the general structure of the embedded-control-software-architecture signal
lines. The entries under a component represent the attributes of the component. The arrows indicate
how the component attributes are interrelated via the signal lines. The bridge nodes transport signals
between Linux and Xenomai over the available XDDP ports.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 61

C.3 Custom 20-sim model blocks

This section describes the custom 20-sim model blocks that are used for the motion-control
layers in Section C.1. For each custom 20-sim model block its respective code is shown, except
for the Decision_Maker model block of the safety-layer model block (Figure C.2). Instead of the
code, an overview of the Decision_Maker’s strategies is shown. Similarly, an overview of the
checked errors by the Error_Detector model block of the safety-layer model block is shown.

parameters
// See global editor for values
r e a l global beta ; // Tameness f a c t o r
r e a l global zeta ; // Damping f a c t o r
r e a l global wc ; // Cutoff frequency
r e a l global Z ; // Total moving mass

variables
r e a l hidden Kc , tau_z , tau_p ; // Parameters for c o n t r o l l e r
r e a l hidden _yk2_ , _yk1_ ; // Delay variable c o e f f i c i e n t s (output)
r e a l hidden _uk2_ , _uk1_ , _uk0_ ; // Delay variable c o e f f i c i e n t s (input)
r e a l hidden yk2 , yk1 ; // Delay variables (output)
r e a l hidden uk2 , uk1 ; // Delay variables (input)

initialequations
// Controller c o e f f i c i e n t s
Kc = (Z* (wc) ^2) / sqrt (beta) ;
tau_z = sqrt (beta) * (1 / (wc)) ;
tau_p = 1 / (sqrt (beta) * (wc)) ;
// Delay variable c o e f f i c i e n t s
yk2 = (−4*sampletime^2*tau_p^2 + 4*sampletime * tau_p * zeta −

1) /(4* sampletime^2*tau_p^2 + 4*sampletime * tau_p * zeta + 1) ;
yk1 = 2*(4* sampletime^2*tau_p^2 − 1) /(4* sampletime^2*tau_p^2 +

4*sampletime * tau_p * zeta + 1) ;
uk2 = Kc*(−2* sampletime * tau_z + 1) /(4* sampletime^2*tau_p^2 +

4*sampletime * tau_p * zeta + 1) ;
uk1 = 2*Kc/(4* sampletime^2*tau_p^2 + 4*sampletime * tau_p * zeta + 1) ;
uk0 = Kc * (2 * sampletime * tau_z + 1) /(4* sampletime^2*tau_p^2 +

4*sampletime * tau_p * zeta + 1) ;
equations

// Output dif ference equation (c o n t r o l l e r output)
yk0 = _yk2_ * yk2 + _yk1_ * yk1 + _uk2_ * uk2 + _uk1_ * uk1 + _uk0_ * uk0 ;

// Store current samples to " previous " samples
yk2 = previous (yk1) ;
yk1 = previous (yk0) ;
uk2 = previous (uk1) ;
uk1 = previous (uk0) ;

Listing C.1: 20-sim model of Controller in Figure C.1. This custom 20-sim model block describes
a PD-controller-based transfer function (Equation C.1). The controller can be tuned with the total
moving mass (Z) and cutoff frequency (ωc) of a system (Equation C.2). The transfer function has been
discretized with the bilinear transform and is modelled as the Controller block.

C (s) = Kc · sτz +1

(sτp)2 +2ζτp s +1
(C.1)

Kc =
Z ·ω2

c√
β

τz =
√
β · 1

ωc
τp = 1√

β ·ωc
β= 10 ζ= 0.8 (C.2)

Robotics and Mechatronics Nick in het Veld

62 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

// Description :
// − This block transforms a "meter"−based position of the end− e f f e c t o r into

an equivalent " r a d i a l " encoder position .
parameters

r e a l counts_per_m = 77986; // See Figure 28 of (Van den Berg , 2006)
r e a l counts_per_rev = 2000;

variables
r e a l counts ;
r e a l revs ;
r e a l rev_per_counts ;

initialequations
rev_per_counts = 1 / counts_per_rev ;

equations
// Convert meters to equivalent count (see Figure 28 of {Van den Berg ,

2006})
counts = m * counts_per_m ;
// Convert counts to revolutions needed by motor to achieve t h i s

t r a n s l a t i o n a l position
revs = counts * rev_per_counts ;
// Convert revolutions to radians needed by motor to achieve t h i s

t r a n s l a t i o n a l position
rad = revs * (2* pi) ;

Listing C.2: 20-sim model of MeterToRad and RadToMeter in Figure C.1.

// Description :
// − This "guard" block i s primarily used to check what the incoming signal

value should NOT be , reporting an error i f t h i s i s the case . A
larger −than statement instead of an is −equal statement i s used here as
replacement for f lo at i ng −point comparisons (x > 0.5 instead of x == 1 . 0)

parameters
r e a l boundary = 0 . 5 ;

equations
i f input > boundary then

output = 1 . 0 ;
e lse

output = 0 . 0 ;
end ;

Listing C.3: 20-sim model of Guard in Figure C.3.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 63

// Description
// − This block takes snapshots of the inputted position when the physical

position of the l i m i t switches are found . After t h i s event , the block
w i l l output a f a u l t s ignal when the current position i s out−of −bound

w. r . t . to the clipped " software " l i m i t s .
parameters

r e a l clipping_value = 0.0005; // context dependent ; could be ei ther in
[m] or [counts] −−> in t h i s context in [m]

variables
r e a l boundary_lower ;
r e a l boundary_upper ;
r e a l swap_variable ;
boolean clipping_done ;

initialequations
boundary_lower = 0 ;
boundary_upper = 0 ;
swap_variable = 0 ;
clipping_done = f a l s e ;

code
// I f l i m i t switch (1) i s hit , take a snapshot of the position ; t h i s w i l l
be the f i r s t boundary

i f (l imi t1 > 0 . 5) then
// I f boundary i s zero , then value i s s t i l l u n i n i t i a l i z e d
i f (boundary_lower == 0) then

boundary_lower = position ;
end ;
end ;

// I f l i m i t switch (2) i s hit , take a snapshot of the position ; t h i s w i l l
be the second boundary

i f (l imi t2 > 0 . 5) then
// I f boundary i s zero , then value i s s t i l l u n i n i t i a l i z e d
i f (boundary_upper == 0) then

boundary_upper = position ;
end ;
end ;

// Swap the boundary values , in case i t i s found that the d e f i n i t i o n s are
fl ipped ; do t h i s only when boundaries are non−zero

i f (boundary_lower <> 0) and (boundary_upper <> 0) then
i f (boundary_upper < boundary_lower) then

swap_variable = boundary_upper ;
boundary_upper = boundary_lower ;
boundary_lower = swap_variable ;

end ;
// Clip the values with a f ixed user −defined distance value
i f (not clipping_done) then

boundary_lower = boundary_lower + clipping_value ;
boundary_upper = boundary_upper − clipping_value ;
clipping_done = true ;

end ;
end ;

// When both l i m i t switches have been i n i t i a l i z e d , allow t h i s guard block
to output a f a u l t s ignal

i f (boundary_lower <> 0) and (boundary_upper <> 0) then
// When outside the clipped boundary range , return a f a u l t s ignal
i f (position < boundary_lower) or (position > boundary_upper) then

Robotics and Mechatronics Nick in het Veld

64 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

output = 1 ;
// . . . zero signal in a l l other cases
else

output = 0 ;
end ;
else

output = 0 ;
end ;

Listing C.4: 20-sim model of LimitGuard in Figure C.3.

// Description :
// − This block describes a TON element , which i s commonly used in PLC− l o g i c
parameters

r e a l limit_wait_time = 1 0 . 0 ; // in [s]
variables

r e a l hidden counter ;
r e a l hidden time_count_equivalent ;

initialequations
counter = 0 ;
time_count_equivalent = limit_wait_time / sampletime ;

code
// I f the enable signal i s HIGH, s t a r t the TON and the counting process
i f (previous (enable) > 0 . 5) then

counter = counter + 1 ;
// I f the enable signal i s LOW, reset the TON and i t s counter
else

counter = 0 ;
end ;

// I f the count , which i s equal to a certain time period (since the
sample time i s known) , i s exceeded , then output a signal

i f (counter >= time_count_equivalent) then
output = 1 . 0 ;

e lse
output = 0 . 0 ;

end ;

Listing C.5: 20-sim model of TON in Figure C.3.

// Description :
// − This block transforms a voltage of the c o n t r o l l e r in [V] into an

equivalent PWM− signal in [1] (PWM module on icoBoard accepts range from
−2047 to +2047)

parameters
r e a l motor_voltage_rating = 24; // in [V]
r e a l pwm_limit = 2047;

equations
// Scale the input based on the range of allowed PWM− s i g n a l s
pwm = (controls ignal / motor_voltage_rating) * pwm_limit ;

Listing C.6: 20-sim model of VoltToPWM in Figure C.5.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 65

// Description :
// − This block transforms a PWM− signal into i t s mirrored equivalent , since

inverted d e f i n i t i o n s are required (e . g . braking −mode control) . Allows
the option to f l i p the sign of the control e f f o r t

parameters
// The boundary for the PWM value according to RPi−Icoboard framework

(Hofstede , 2022) ; in other words 11− b i t value
r e a l maximum = 2047;
r e a l minimum = −2047;

variables
r e a l shifted_value ; // S h i f t to [max − N] or [min − N]
r e a l corrected_value ; // Correct to a value that always has a sign b i t
(issue i s b a s i c a l l y : "which sign b i t to use , i f the sent PWM value i s
0 ? ")

boolean f l i p _ s i g n ;
initialequations

shifted_value = 0 ;
f l i p _ s i g n = true ;

equations
i f (input > 0) then

// S h i f t
shifted_value = maximum − input ;

// Correct
corrected_value = i f (input == maximum) then

1.0 // Small POSITIVE o f f s e t to acquire the proper sign b i t . . .
e lse

shifted_value
end ;

// Invert
i f (f l i p _ s i g n) then

output = (−1) * corrected_value ;
e lse

output = corrected_value ;
end ;

else i f (input < 0) then

// S h i f t
shifted_value = minimum − input ;

// Correct
corrected_value = i f (input == minimum) then

−1.0 // Small NEGATIVE o f f s e t to acquire the proper sign b i t . . .
e lse

shifted_value
end ;

// Invert
i f (f l i p _ s i g n) then

output = (−1) * corrected_value ;
e lse

output = corrected_value ;
end ;

else

Robotics and Mechatronics Nick in het Veld

66 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

// Input i s 0 , or an error occurred
output = 2047; // Can also be −2047; both are equivalent to zero output

end ;
end ;

Listing C.7: 20-sim model of Mirror in Figure C.5.

// Description :
// − This block decodes the muxed encoder value , now funct ional ly as d i g i t a l

inputs , into seperate s i g n a l s (s ignal from A , signal from B) . Here , i t
i s assumed : {A } : Motor f a u l t , {B } : Magnet a c t i v i t y

equations
switch signal

case 0 do
signalA = 0 ;
signalB = 0 ;

case 1 do
signalA = 1 ;
signalB = 0 ;

case 2 do
signalA = 0 ;
signalB = 1 ;

case 3 do
signalA = 1 ;
signalB = 1 ;

// Error
default do

signalA = 0 ;
signalB = 0 ;

end ;

Listing C.8: 20-sim model of SignalConverter in Figure C.5.

// Description :
// − This block transforms a "count" position of the encoder into an

equivalent "meter"−based position of the end− e f f e c t o r
parameters

r e a l counts_per_m = 77986; // See Figure 28 of (Van den Berg , 2006)
variables

r e a l m_per_count ;
initialequations

m_per_count = (1 / counts_per_m) ;
equations

// Convert counts to equivalent meter (see Figure 28 of {Van den Berg ,
2006})

m = counts * m_per_count ;

Listing C.9: 20-sim model of CntToMeter in Figure C.5.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 67

// Description :
// − This block counts the wraparounds that occur in the encoder , and saves

t h i s information . With the counted wraparounds , the necessary o f f s e t for
the current encoder−count i s computed .

parameters
// The l i m i t for the encoder value , where the encoder value s t a r t s
wrapping around ; upper boundary −−> 2^(n−1) − 1

integer encoder_boundary_upper = 16383;

// The l i m i t for the encoder value , where the encoder value s t a r t s
wrapping around ; lower boundary −−> −2^(n)

integer encoder_boundary_lower = 0 ;

// The dif ference at which a wraparound " occurs " according to t h i s "wrap
counter " block

integer wrap_threshold = 8000;

variables
integer last_input ;
integer wrap_count ;

initialequations
current_output = 0 ; // Current corrected output
last_input = 0 ; // Previous non−corrected input
wrap_count = 0 ; // Counter for the wraparounds

code
// Store the " current " encoder value as " previous " encoder value ;

eventually check wraparound by comparing these
last_input = previous (current_input) ;

// Wraparound [n . . . −n−1] has occurred (sudden switch in value)
i f (last_input − current_input) > 2* wrap_threshold then

wrap_count = wrap_count + 1 ;
e lse
// Wraparound [−n−1 . . . n] has occurred (sudden switch in value)
i f (last_input − current_input) < −2*wrap_threshold then

wrap_count = wrap_count − 1 ;
end ;
end ;

// Determine the correct format depending on the wrap count

// Travelled { h a l f } map −−> upper
i f wrap_count == 1 then

current_output = (wrap_count * encoder_boundary_upper) +
abs (encoder_boundary_lower − current_input) ;

// Travelled at l e a s t { h a l f + N * whole } map −−> upper
else i f wrap_count >= 2 then

current_output = encoder_boundary_upper + (wrap_count −1) *
(encoder_boundary_upper − encoder_boundary_lower) +
abs (encoder_boundary_lower − current_input) ;

// Travelled { h a l f } map −−> lower
else i f wrap_count == −1 then

current_output = (−wrap_count * encoder_boundary_lower) −
abs (encoder_boundary_upper − current_input) ;

// Travelled at l e a s t { − h a l f − N * whole } map −−> lower

Robotics and Mechatronics Nick in het Veld

68 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

else i f wrap_count <= −2 then
current_output = encoder_boundary_lower + (wrap_count+1) *

(encoder_boundary_upper − encoder_boundary_lower) −
abs (encoder_boundary_upper − current_input) ;

e lse
current_output = current_input ;

end ;
end ;
end ;
end ;

Listing C.10: 20-sim model of WrapCounter in Figure C.5.

// Description :
// − This block describes a ’ toggle ’ element which i s equivalent to a

push−button− l i k e block which saves the button press s t a t e . I t switches
s t a t e when an edge−event has been detected .

variables
r e a l prev_input ;
integer s t a t e ; // OFF: 0 / ON: 1

initialequations
prev_input = 0 ;
s t a t e = 0 ;

equations
prev_input = previous (input) ;

switch (s t a t e)

case 0 do
i f (prev_input == 0) and (input == 1) then

s t a t e = 1 ;
end ;
output = 0 ;

case 1 do
output = 1 ;

end ;

Listing C.11: 20-sim model of Toggle in Figure C.5.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 69

Table C.2: Safeguarding strategies of the Decision_Maker 20-sim model in Figure C.2. The strategy dif-
fers per state of a Production Cell’s unit state machine (Figure C.6) and the present errors (Table C.3).

Checked errors Safeguarding strategy

State
Hardware
boundary

Software
boundary

Motor
fault

Magnet
fault

Emergency
button

Control
signal

Brake Magnet

Startup X X 0 X
Idle, Action X X X X X 0 X X
Shutdown X X X X 0 X

Table C.3: Explanations of the checked errors in the Error_Detector 20-sim model of Figure C.3

Error Name in 20-sim model Functionality
Hardware boundary OUT_hw_outofbound Checks if the unit is out-of-bound by looking at the limit-

switch signals.
Software boundary OUT_sw_outofbound Checks if the unit is out-of-bound by looking at virtual-

set boundaries. These virtual boundaries are derived
from the limit-switch positions, but their range is defined
narrower using some clipping value.

Motorfault OUT_motorfault Checks if the unit’s motor experiences a fault, which de-
scribes an undervoltage situation. If there is an under-
voltage situation for 10 seconds, the motor fault is repor-
ted.

Magnetfault OUT_magnetfault Checks if the magnet is indeed active when it is turned
on. If there is no magnet activity after 10 seconds, the
magnet fault is reported.

Emergency button OUT_emergencybutton Checks if the emergency button signal is active.

Robotics and Mechatronics Nick in het Veld

70 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

C.4 Physical connections

This section describes the physical connections that are present in the embedded-control-
sofware architecture realisation (Figure C.9). In this figure, a complete overview is given of the
mapping of the Production-Cell-Units’ peripherals to the icoBoards’ PMOD-connectors. On
each board two PMOD-connectors cover the inputs/outputs associated with one Production-
Cell Unit (Section B.2). A functional partition is made for the PMOD-connectors. PMOD-
connectors 1 and 2 are responsible for one Production-Cell Unit, while PMOD-connectors 3
and 4 are responsible for the other Production-Cell Unit. Due to project constraints (pertain-
ing cabling) and the design of the PCB interface board (Appendix D), some of the inputs are
assigned to one unit, but belong to the other unit on the board from a functional perspective
however.

I/O

PMOD PMOD

PMOD PMOD

3 4

12

ETH
GPIO

1 L -

1 L -

E -2
M1 3

11

SPI

E -2
M1 3

S1 -

S1 -

FR

FB

RPi-2

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

ETH
GPIO

3
3

2
2

3
1
1

E -2
M1 3

S1 -

S1 -

I/O

PMOD PMOD

PMOD PMOD

3 4

12

13

3
31

1
2
2

1 L -

1 L -

E -2
M1 3
m1 1

EB

RR

RPi-1

SPI

S1 -

1

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

1
1

1*

*

ETH
GPIO

E -2
M1 3

1

1 L -

1 L -

E -2
M1 3
m1 1

MD

ER

RPi-3

SPI

S1 -

1

S1 -*

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

GND

3V3

I

I

O

O

3V3

GND

O

I

I

O

I/O

PMOD PMOD

PMOD PMOD

3 4

12

*

13

3
31

1
2
2

1
1

3

3
31

1
2
2 1

3
3

2
2

3
1

3
3

2
2

3
1

Network
Switch

Figure C.9: Physical connections of the embedded-control-software architecture with respect to an
icoBoard-extended Raspberry Pi board. For definitions of elements in this figure see Figure A.2, Fig-
ure A.4 and Figure B.2. The asterisk denotes that the peripheral input or output is owned by the other
unit on the board from a functional perspective.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 71

C.5 Additional diagrams and plots

In this section additional diagrams and plots are shown that are relevant to Chapter 5. In Fig-
ure C.10 and Figure C.11, descriptions are given about the datasets generated from the test
bed. In Figure C.12, the plot that has been shown in Figure 5.2 is replotted with a different
value for the deadline-misses-per-time criterion. In Figure C.13, the deadline-miss evolution
per embedded-control-software-architecture component during the test scenario is shown. In
Listing C.12, the code that is used for measuring the timing of the motion-controller task is
shown.

A

Low-resolution High resolution

Sample ⏱
A
A
A
A
F
F
F
F
F
K
K
K
K
K
P
...

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
...

Sample ⏱

Sample ⏱

Sample ⏱

Time evolution
of samples

Figure C.10: Symbolic representation of how low-resolution data is related to high-resolution data

New value
every 100ms

New value
every 10ms

New value
every 10 ms

New value
every 10ms

........ New value
every 10ms

New value
every 100ms

New value
every 1ms

/cpuload /write1 /read1 /timing1 /timing_bridge /timing_20simtask

CSV-file from command centre

Timing 20-sim task

CSV-file from board

........

Replaces

0ms

1ms

2ms

3ms

4ms

5ms

6ms

7ms

8ms

9ms

10ms

11ms

12ms

13ms

14ms

15ms

16ms

(low resolution) (high resolution)

Timeline of
command-centre logger

Figure C.11: Overview of the CSV-based datasets of Table 5.1. The CSV-based datasets from the com-
mand centre and the Raspberry Pi board are merged based on the scheme of Figure C.10.

Robotics and Mechatronics Nick in het Veld

72 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

= Deadline-misses-per-time violation (k∆t = 520 misses/s)

Figure C.12: Overview of the control performance and load balancing during one round-trip time of a
block. See Section 5.4.

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 73

Figure C.13: The evolution of deadline misses per component during one round trip time of a block. A
deadline miss is considered a sample which has positive jitter. See Section 5.4.

Robotics and Mechatronics Nick in het Veld

74 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

while (1)
{

t0 = getTimestamp () ; / / −−−−−−−−| t0
/ / |

for (int i = 0 ; i < receiveArraySize ; i ++) / / r e c e i v e
receiveClass [i]−> receive (u) ; / / |

/ / |
t1 = getTimestamp () ; / / −−−−−−−−| t1

/ / |
simclass20 −>Calculate (u , y) ; / / c a l c u l a t e

/ / |
t2 = getTimestamp () ; / / −−−−−−−−| t2

/ / |
for (int i = 0 ; i < sendArraySize ; i ++) / / send

sendClass [i]−>send (y) ; / / |
/ / |

t3 = getTimestamp () ; / / −−−−−−−−| t3
/ / |

logTimingToXDDP(receive , calculate , send) ; / / |
/ / |

/ / Wait unti l timer r a i s e / / |
sigwait (& set , &signum) ; / / i d l e

/ / |
t4 = getCycleTime () ; / / −−−−−−−−| t4 ==> c y c l e

logTimingToXDDP(cycle) ;

/ / This array i s printed to CSV at program e x i t
logTimingToArray (receive , calculate , send , cycle) ;

}

Listing C.12: Inline-code view of the code measuring the execution cycle in Figure 5.5

Nick in het Veld University of Twente

APPENDIX C. EMBEDDED-CONTROL-SOFTWARE ARCHITECTURE 75

C.6 Running the demo

In this section, the prerequisites and step-by-step plan to run the Raspberry-Pi-based demon-
strator are described. Also, a troubleshooting guide is given. For the mentioned Production-
Cell-Unit names in this section, see Figure A.2.

Prerequisites

Before running the system, check the following points:
• The Raspberry Pi boards are on the same local network. This is done by connecting the

boards to the network switch via Ethernet cables.
• A command centre (laptop or PC) is connected to the same network of the Raspberry Pi

boards. This command centre can be connected to the network switch via an Ethernet
cable as well.

• No blocks are present at the moulding section such that a situation could occur that two
blocks are pushed against the Molder Door.

Step-by-step plan

1. Plug in the connector of the network switch into an available wall socket.
2. Plug in the connector of the black power strip of the Production Cell into a wall socket.

This power strip is responsible for powering the whole Production-Cell setup and the
Raspberry Pi boards.

3. Boot up a command centre. In case the PC command centre near the Production-Cell
setup is used, see the sticker on the keyboard for the login password.

4. Before running the demo, make sure that the Raspberry Pi boards are present on the
local network. Open up a terminal and check if they give a response by pinging each of
the three boards.

ping prodcell −rpi1
ping prodcell −rpi2
ping prodcell −rpi3

5. To START the demonstrator, run the following commands in a terminal.

sshpass −p ramforpresident ssh pi@prodcell −rpi1 ’ /bin/bash −s <
~/demo/ start_board1 . bash ’

sshpass −p ramforpresident ssh pi@prodcell −rpi2 ’ /bin/bash −s <
~/demo/ start_board2 . bash ’

sshpass −p ramforpresident ssh pi@prodcell −rpi3 ’ /bin/bash −s <
~/demo/ start_board3 . bash ’

For the PC command centre mentioned in step 3, run the following command instead.

. ~/Desktop/demo. bash

6. Wait approximately 15 seconds until the homing procedures by the units are finished.
7. Blocks can be placed on top of the belts from this point on. Ensure that there is proper

spacing between the blocks. At least 1 cm of spacing between blocks is ideal.
8. To STOP the demonstrator, run the following commands in a terminal.

sshpass −p ramforpresident ssh pi@prodcell −rpi1 ’ /bin/bash −s <
~/demo/stop_board1 . bash ’

sshpass −p ramforpresident ssh pi@prodcell −rpi2 ’ /bin/bash −s <
~/demo/stop_board2 . bash ’

sshpass −p ramforpresident ssh pi@prodcell −rpi3 ’ /bin/bash −s <
~/demo/stop_board3 . bash ’

For the PC command centre mentioned in step 3, see the stop instructions in terminal.
9. To shutdown the system, unplug the connectors mentioned in step 1 and step 2.

Robotics and Mechatronics Nick in het Veld

76 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Troubleshooting

• One of the boards does not respond to pings. Check if the Ethernet cable is properly
slotted into the Raspberry Pi board and/or network switch. It may be the case that it is
not fully inserted.

• A board does not want to respond via pings, but the LEDs indicate that it is powered.
It is possible that the SD card of the Raspberry Pi board is not slotted properly. In the
worst-case scenario, however, it is possible that the board’s SD card and/or its system
image is broken. As a last resort, one can reflash the SD card of the Raspberry Pi board
with a backup image. For this, see the electronically-handed-in files.

• The belts (Extraction Belt, Feeder Belt) started moving initially, but now suddenly
stopped moving. A watchdog timer has been implemented for the belts. If the belts
have not detected a block moving through the block-detecting sensors for ten seconds,
they stop moving. To trigger movement again, one of these sensors must be triggered.

• One of the robots (Rotation Robot, Extraction Robot, Feeder Robot) does not want to
move. Inspect if one of the limit switches of the robot has been hit. For the magnet-
based robots (Rotation Robot, Extraction Robot) this can be visually inspected, since the
red magnet LED on top of the robot will become active when a limit switch has been hit.
If a limit switch been hit, gently move the robot away from the limit switch to allow the
robot to move to its necessary position.

• The robot does not make contact with its limit switches, but it still does not move. It
may be the case that the robot violates virtual boundaries which have been placed nearby
the limit switches. Try to move the robot further away from the limit switches and see if
it then moves to its necessary position.

• The magnet-based robots (Rotation Robot, Extraction Robot) after transporting a
block look like they are stuck. After transporting a block, these robots expect that the
block arrives at the target location. If no block is detected, it continues to await the signal
that the block has arrived. To allow these robots to continue their operations, trigger the
block-detecting sensor at the target location.

• No matter what is tried, one of the units still does not want to move. It is possible that
a fault has occurred with respect to the peripherals of the unit. Either an undervoltage
situation is occurring for its motor, or no magnet activity is found after the unit tries to
turn on its magnet (Table C.3). Alternatively, it is possible that the Raspberry Pi, icoBoard
and/or PCB board do not function properly. In this scenario consult a technician.

• Debugging has to be done, but is unclear how to do so. Two debugging approaches for
the setup are described hereafter.

1. The first approach that should be taken is to read out the ROS2 topics that de-
scribe the motion-control-component measurement data of the units. When the
PC command centre nearby the Production-Cell setup is used, a ROS2-topic monit-
oring service (Venkatraman, 2023) is started when running the demonstrator script
demo.bash (see step 5 of the step-by-step plan). After clicking the hamburger
menu at the top-left of the monitoring service and obtaining a list of active ROS2
topics, click the topics denoted as /**_RD in this list to read out the motion-control-
component measurement data of a unit. These values describe the state of the peri-
pherals and motion-control component. A value denoted as debug can be found
among these values. This value denotes the current state of the safety layer of
the unit’s motion-control component. The fractional part of this value should be
checked in case a unit does not do its operations: a value of 10X.1 represents that
no error is detected, while a value of 10X.2 represents that an error is detected.

2. The second approach that could be taken is to debug the signals coming from and
going to the Production-Cell setup with the probing points of the PCB interface
board mentioned in Section D.1. Use the appropiate tools to do so.

Nick in het Veld University of Twente

77

D PCB interface board

This chapter describes the design of the PCB board which interfaces the PMOD-connectors
of the icoBoard (Figure B.1) with the 50-pin header of the Production-Cell switch boards (Fig-
ure A.7). In Section D.1, the schematics and design considerations of the PCB board are de-
scribed. Related to this, in Section D.2 the chosen safety circuit of Section 3.7 is illustrated.

D.1 Design

For the design of the PCB board, the following design considerations are present:
• Existing cabling must persist to keep the first demonstrator running. This constraint

means that definitions of the 50-pin connector cannot be altered, and that the PCB
design must adhere to the existing definitions.

• The same signal template is used per two PMOD connectors (Section C.4). In Figure D.1,
a limit-switch-based Production-Cell Unit (Rotation Robot, Feeder Robot, Extraction Ro-
bot) is denoted as A_**, while an optical-sensor-based Production Unit (Extraction Belt,
Feeder Belt, Molder Door) is denoted as B_**.

• It has the Raspberry-Pi-board format such that it can be stacked with the other embedded
boards.

• For debugging purposes, it has probing points for signals coming from and going to the
Production Cell’s peripherals.

Figure D.1: Schematic of the PCB board. For more information about the signal definitions see the
electronically-handed-in documentation.

Robotics and Mechatronics Nick in het Veld

78 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Figure D.2: Front view of the PCB board

Nick in het Veld University of Twente

APPENDIX D. PCB INTERFACE BOARD 79

Figure D.3: Back view of the PCB board

Robotics and Mechatronics Nick in het Veld

80 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

D.2 Safety circuit

3V3

3V3

EMB

GND

EMB

GND

3V3

3V3

EMB

GND

EMB

GND

3V3

3V3

EMB

GND

EMB

GND

The emergency
button

EMBGND

Molex Connector
(2-pin)

Board 3

Board 2

Board 1

To RPi
EMB

To RPi
EMB

To RPi
EMB

To RPi
EMB

Figure D.4: The safety circuit between the interface boards. See Section 3.7.

Nick in het Veld University of Twente

81

E Design-space-exploration scoring system

This appendix chapter is adapted from the work of Hoorweg et al. (2023).

The design-space-exploration scoring is done via the following formula, where S is derived
from the score following Table E.1.

Twei g hted_scor e =
∑

categ or i es
(Wwei g ht ·Sscor e_value) (E.1)

Table E.1: Design-space-exploration scoring system

Score -- - +/- + ++
Value -2 -1 0 1 2

For example, if category 1 has a weight 2 and scored ++, and category 2 has a weight 3 and
scored −, the weighted score would be:

Twei g hted_scor e = 2 · (++)+3 · (−) = 1

= (2 ·2)+ (3 ·−1)

= 1

(E.2)

Robotics and Mechatronics Nick in het Veld

82 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Bibliography
20-sim (2021), Overview - 20-sim.
https://www.20sim.com/

Van den Berg, B. (2006), Design of a Production Cell Setup, Ph.D. thesis, University of Twente,
Enschede.

Bezemer, M., M. Groothuis and J. Broenink (2011), Way of Working for Embedded Control
Software using Model-Driven Development Techniques, IEEE ICRA Workshop on Software
Development and Integration in Robotics, SDIR VI.

Boode, A. H. (2018), On the automation of periodic hard real-time processes: a
graph-theoretical approach, Ph.D. thesis, University of Twente.
https://research.utwente.nl/en/publications/on-the-automation-
of-periodic-hard-real-time-processes-a-graph-th

Broenink, J., M. Groothuis, P. Visser and M. Bezemer (2010), Model-driven robot-software
design using template-based target descriptions, ICRA 2010 Workshop.

Broenink, J. F. and Y. Ni (2012), Model-driven robot-software design using integrated models
and co-simulation, in 2012 International Conference on Embedded Computer Systems
(SAMOS), pp. 339–344, doi:10.1109/SAMOS.2012.6404197.

Die.net (2023), clock_gettime(2): clock/time functions - Linux man page.
https://linux.die.net/man/2/clock_gettime

Groothuis, M., J. Zuijlen and J. Broenink (2008), FPGA based Control of a Production Cell
System, CPA 2008, pp. 135–148, doi:10.3233/978-1-58603-907-3-135.

Hofstede, A. (2022), pi4-icoboard · GitLab.
https://git.ram.eemcs.utwente.nl/hofstedea/pi4-icoboard

Hoorweg, H., B. Wesselink and P. Kingma (2023), Hardware and software design space for a
small pan-tilt robot, Individual report, University of Twente, Enschede.

Huang, J., J. Voeten, M. Groothuis, J. Broenink and H. Corporaal (2007), A model-driven design
approach for mechatronic systems, in Seventh International Conference on Application of
Concurrency to System Design (ACSD 2007), pp. 127–136, doi:10.1109/ACSD.2007.40, iSSN:
1550-4808.

Icoboard (2016), icoBoard - Main Page.
http://icoboard.org/

improvess (2023), cpp-linux-system-stats, original-date: 2021-04-02T11:44:22Z.
https://github.com/improvess/cpp-linux-system-stats

Kweon, S.-K. and M. Cho (2004), Soft Real-Time Communication over Ethernet with Adaptive
Traffic Smoothing., IEEE Trans. Parallel Distrib. Syst., vol. 15, pp. 946–959,
doi:10.1109/TPDS.2004.59.

Liu, X., X. Chen and F. Kong (2015), Utilization Control and Optimization of Real-Time
Embedded Systems, Foundations and Trends in Electronic Design Automation, vol. 9, pp.
211–307, doi:10.1561/1000000042.

Maljaars, P. (2006), Controllers for the Production Cell Set Up, Ph.D. thesis, University of
Twente, Enschede.

Meijer, A. (2021), Real-time robot software framework on Raspberry PI using Xenomai and
ROS2, info:eu-repo/semantics/masterThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/88952/

Nick in het Veld University of Twente

https://www.20sim.com/
https://research.utwente.nl/en/publications/on-the-automation-of-periodic-hard-real-time-processes-a-graph-th
https://research.utwente.nl/en/publications/on-the-automation-of-periodic-hard-real-time-processes-a-graph-th
https://linux.die.net/man/2/clock_gettime
https://git.ram.eemcs.utwente.nl/hofstedea/pi4-icoboard
http://icoboard.org/
https://github.com/improvess/cpp-linux-system-stats
https://essay.utwente.nl/88952/

Bibliography 83

Ni, Y. (2015), System design support of cyber-physical systems: a co-simulation and
co-modelling approach, Ph.D. thesis, University of Twente.
https://research.utwente.nl/en/publications/system-design-
support-of-cyber-physical-systems-a-co-simulation-a

Raspberry Pi Foundation (2014), Raspberry Pi 4 Model B specifications.
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

Ridder, L. W. v. d. (2018), Improvements to a tool-chain for model-driven design of Embedded
Control Software, info:eu-repo/semantics/masterThesis, University of Twente, publisher:
University of Twente.
https://essay.utwente.nl/77036/

ROS (2023a), Different ROS 2 middleware vendors — ROS 2 Documentation: Rolling
documentation.
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-
Different-Middleware-Vendors.html

ROS (2023b), ROS: Home.
https://www.ros.org/

Sassen, T. (2009), Floating-point based control of the production cell using an FPGA with
Handel-C, info:eu-repo/semantics/masterThesis, University of Twente, publisher:
University of Twente.
https://essay.utwente.nl/59191/

Silberschatz, A., P. B. Galvin and G. Gagne (2014), Operating System Concepts, Wiley, ISBN
978-1-118-09375-7, google-Books-ID: 2STYMwEACAAJ.

University of Cambridge (2023), The life of Pi: Ten years of Raspberry Pi.
https://www.cam.ac.uk/stories/raspberrypi

Veldhuijzen, B. (2009), Redesign of the CSP execution engine,
info:eu-repo/semantics/masterThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/58514/

Venkatraman, D. (2023), ROSboard, original-date: 2019-04-03T07:20:03Z.
https://github.com/dheera/rosboard

Verhaar, K. (2008), An integrated embedded control software design case study using Ptolemy II,
info:eu-repo/semantics/masterThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/58154/

Vinkenvleugel, J. T. (2022), Designing an embedded software architecture for a mobile
education robot with real-time control on a Raspberry Pi 4 with FPGA-based I/O,
info:eu-repo/semantics/bachelorThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/92427/

Vos, P.-J. (2015), Demonstrator combining ROS/TERRA-LUNA,
info:eu-repo/semantics/masterThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/69403/

Xenomai (2023a), Xenomai 3 :: Xenomai 3.
https://v3.xenomai.org/

Xenomai (2023b), Xenomai: Real-time IPC.
https://www.cs.ru.nl/lab/xenomai/api3/group__rtdm__ipc.html#
xddp_label_binding

Robotics and Mechatronics Nick in het Veld

https://research.utwente.nl/en/publications/system-design-support-of-cyber-physical-systems-a-co-simulation-a
https://research.utwente.nl/en/publications/system-design-support-of-cyber-physical-systems-a-co-simulation-a
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://essay.utwente.nl/77036/
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://www.ros.org/
https://essay.utwente.nl/59191/
https://www.cam.ac.uk/stories/raspberrypi
https://essay.utwente.nl/58514/
https://github.com/dheera/rosboard
https://essay.utwente.nl/58154/
https://essay.utwente.nl/92427/
https://essay.utwente.nl/69403/
https://v3.xenomai.org/
https://www.cs.ru.nl/lab/xenomai/api3/group__rtdm__ipc.html#xddp_label_binding
https://www.cs.ru.nl/lab/xenomai/api3/group__rtdm__ipc.html#xddp_label_binding

84 Control of the Production Cell on Raspberry Pi using a real-time robot-software framework

Zuijlen, J. v. (2008), FPGA-based control of the production cell using Handel-C,
info:eu-repo/semantics/masterThesis, University of Twente, publisher: University of
Twente.
https://essay.utwente.nl/58152/

Nick in het Veld University of Twente

https://essay.utwente.nl/58152/

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Design objectives
	1.3 Approach
	1.4 Report outline

	2 Background
	2.1 Introduction
	2.2 Production Cell
	2.3 Embedded control system
	2.4 Embedded-control-software design procedure

	3 Analysis
	3.1 Introduction
	3.2 Requirements
	3.3 Approach to allocation
	3.4 Selection of number of Raspberry Pi boards
	3.5 Allocation of Production-Cell Units to Raspberry Pi boards
	3.6 Allocation of controllers to Raspberry Pi cores
	3.7 Allocation of safety circuit to Raspberry Pi boards
	3.8 Conclusion

	4 Design
	4.1 Introduction
	4.2 Firm-real-time design
	4.3 Soft-real-time design
	4.4 PCB interface board

	5 Testing
	5.1 Introduction
	5.2 Setup
	5.3 Way of measuring
	5.4 Results
	5.5 Discussion

	6 Conclusions and Recommendations
	6.1 Conclusions
	6.2 Recommendations

	A Production Cell
	A.1 Real world picture
	A.2 Units
	A.3 Sequence diagram
	A.4 Peripherals
	A.5 PCB boards
	A.6 Electrical switch board
	A.7 50-pin connector definitions
	A.8 Related work

	B icoBoard
	B.1 PMOD connector
	B.2 Mapping Production Cell's peripherals
	B.3 Toolchain

	C Embedded-control-software architecture
	C.1 Motion-control model
	C.2 Discrete-event-control model
	C.3 Custom 20-sim model blocks
	C.4 Physical connections
	C.5 Additional diagrams and plots
	C.6 Running the demo

	D PCB interface board
	D.1 Design
	D.2 Safety circuit

	E Design-space-exploration scoring system
	Bibliography

