
University of Twente
MSc Applied Mathematics

A polyhedral study of a constrained flow
problem on decision diagrams

Author:
T.E. Hugen

Supervisor:
Dr. M. Walter

Graduation committee:
Prof. d.r. M.J. Uetz
Dr. J.M. Meylahn

Dr. M. Walter

December 17, 2023

Discrete Mathematics and Mathematical Programming (DMMP),
Mathematics of Operations Research (MOR),
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS),
University of Twente

Abstract

The graph coloring problem is an NP-hard combinatorial optimization problem that has
many applications. In a recent publication [W.-J. van Hoeve, “Graph coloring with decision
diagrams,” Mathematical Programming, vol. 192, no. 1–2, pp. 631–674, May 2021], an
exact algorithm employing decision diagrams was introduced for the graph coloring problem.
This algorithm generates a sequence of relaxed decision diagrams, and solves an NP-hard
constrained network flow problem posed as an integer linear program (ILP) on each decision
diagram.

In this thesis project, we examined inequalities that are facet-defining for the integer hull
of this ILP. We discovered that the majority of these facet-defining inequalities represented or
were implied by objective cuts. We subsequently derived a method for efficiently finding these
objective cuts. Additionally, we investigated the potential of generating Chvátal-Gomory cuts
(CG-cuts) in one iteration, and reusing parts of those CG-cuts in successive iterations. To
generate such cuts, we set up a mixed-integer linear program (MILP) that finds a CG-cut for
the constrained network flow ILP that has maximum violation with respect to some fractional
solution. We created another model that takes part of a CG-cut from a past iteration as input
and completes this CG-cut to fit the ILP in the current iteration. We furthermore designed
a heuristic algorithm that can complete such CG-cuts efficiently. The performance of our
CG-cut reusage scheme was tested on a selected sample of DIMACS instances. Our results
on these instances indicate that the CG-cut reusage scheme generally yields positive violation
CG-cuts. Furthermore, the best cuts produced with the heuristic algorithm in each iteration
are close to the theoretically best cuts that can be derived.

i

Acknowledgements

This thesis marks the final endeavor of my master Applied Mathematics. Coming from a more
practically oriented bachelor (Industrial Engineering & Management), I expected this rather theo-
retical project to be quite the challenge. And it indeed has been, though I had a lot of fun taking
it on. Of course, I did not do it all on my own, and I would like to dedicate this section to the
people that made this project possible.

First and foremost, I would like to extend my sincere gratitude to my thesis supervisor, Matthias
Walter. Thank you for all the moments where you really inspired me. Thank you for your
enthusiasm, your patience and, above all, your unconditional willingness to help. I think you are
an absolute genius, and I feel fortunate that I had the opportunity to collaborate with you on this
project. Secondly, I would like to express my deepest appreciation to my mom and dad for their
unwavering support throughout my master and my life as a whole. You really helped me to get to
the place where I am now, and it is a place I am very happy to be in. Thirdly, I would like thank
my family and friends, and especially those friends in my informal study group. Abel, Fiona and
Maarten, even through the hardest parts of my thesis, you helped me to stay motivated, and I
would have lost my sanity without you all. Finally, I would like to sincerely thank my boyfriend,
Victor. No matter what, you have always been there for me, and your steadfast support is one of
the main reasons why I succeeded in finishing this thesis. I honestly don’t know what I would be
doing without you.

ii

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Outline . 2

2 Theory & notation 3
2.1 Graph coloring . 3
2.2 Decision diagrams . 3

2.2.1 Relation to graph coloring . 4
2.2.2 Variable ordering & reduced diagrams . 5

2.3 Van Hoeve’s graph coloring algorithm . 7
2.3.1 Initialization . 7
2.3.2 Constraint separation . 8
2.3.3 Conflict detection . 8

2.4 A note on polyhedra . 10

3 Objective cuts 12
3.1 Structural results for decision diagrams . 12
3.2 Monotonicity of the objective function . 14
3.3 Proof of Theorem 3.2 . 18

4 Chvátal-Gomory cut reusage 20
4.1 Maximum violation CG-cuts for P flow . 20
4.2 Theoretical results on CG-cut reusage . 22

4.2.1 Implications of Theorem 4.3 . 24
4.2.2 Proof of Theorem 4.3 . 26

4.3 An efficient algorithm for reusing CG-cuts . 30
4.3.1 The min jumps decision rule . 32
4.3.2 The min local cost decision rule . 32

4.4 Experiments . 32
4.4.1 Collected data . 33
4.4.2 Graph instance selection . 33
4.4.3 Implementation details . 34
4.4.4 Performance of the CG-cut reusage scheme 35
4.4.5 Performance of Algorithm 4 . 35

4.5 Discussion . 40

5 Conclusion 42
5.1 Recommendations for future research . 42

iii

1 Introduction

The graph coloring problem is a well-known NP-hard combinatorial optimization problem. A
coloring of a graph refers to an assignment of colors (or labels) to all vertices on that graph such
that no two adjacent vertices have the same color. The objective of the graph coloring problem is
to find such a coloring while minimizing the number of different colors used. Though the graph
coloring problem is in essence a purely theoretical problem, a wide range of real-world problems
can be posed as a graph coloring problem such as timetabling and scheduling problems [8], [25],
[27] and frequency assignment problems [1], [24], [27]. Methods to solve the graph coloring problem
include meta-heuristics [26], [32], integer linear programming [17], [29] and column generation [28],
[31].

In two recent publications by van Hoeve [15], [16], an exact algorithm employing decision diagrams
was introduced for solving the graph coloring problem. A decision diagram is a layered directed
acyclic graph that can be used to compactly represent (a relaxation of) the solution set of an
optimization problem. The graph coloring algorithm by van Hoeve iteratively refines a decision
diagram that encodes (not necessarily feasible) color assignments for the graph to be colored. In
each iteration, a constrained network flow that represents such a color assignment is computed on
the decision diagram. This constrained network flow problem is posed as an integer linear program
(ILP). If this color assignment is infeasible, a conflict (a pair of adjacent vertices with the same
color) is identified and the diagram is adapted such that this conflict is separated. Unfortunately,
van Hoeve proved in his paper that this constrained network flow problem is NP-hard, and it is
noted to be the computational bottleneck of the algorithm [16, p. 647].

As far as we are aware, the integer hull of this constrained network flow ILP has not been studied.
For some decision diagram with node set N , arc set A and some disjoint subsets A1, A2, ..., An ⊆ A
of the arc set, this integer hull is the following:

P flow
I = conv{y ∈ Z≥0 :

∑
a∈δ−(u)

y(a)−
∑

a∈δ+(u)

y(a) = 0 ∀ u ∈ N \ {r, t},

∑
a∈Aj

y(a) = 1 ∀ Aj ,

y(a) ≥ 0 ∀ a ∈ A.}

We theorize that the constrained network flow ILP can be strengthened through facet-defining
inequalities, which are inequalities that are valid for the integer hull of this. To that end, we
studied the integer hull of this constrained network flow problem to identify families of such facet-
defining inequalities. In doing so, we attempted to answer the following research question:

(Q1) What does the integer hull of the constrained network flow integer linear program
in van Hoeve’s graph coloring algorithm look like?

We used computational methods of the field—Investigating Polyhedra by Oracles (IPO) [36], [37],
which uses the SCIP software suite [5]—to find facet-defining inequalities valid for P flow

I on a
variety of graph coloring instances. A large majority of the facet-defining inequalities we found
represented or were implied by objective cuts, which are inequalities that force a bound on the
objective function of the ILP. One major challenge for the implementation of such objective cuts
is finding a good objective bound value. Fortunately, van Hoeve’s graph coloring algorithm solves
a sequence of similar ILPs, and we show that this similarity can be exploited to generate objective
cuts that force strong objective bounds.

During our work on objective cuts, we speculated that this similarity can also be exploited to
generate general purpose cutting planes, which are inequalities that cut off fractional points. In
particular, we hypothesized that those cutting planes can be used for multiple iterations of van
Hoeve’s graph coloring algorithm due to this similarity. As such, we posed a second question:

(Q2) How can cutting planes for the constrained network flow integer linear program
in some iteration of van Hoeve’s graph coloring algorithm be reused for successive iter-
ations?

1

In our pursuit of an answer to this question, we developed a novel scheme in which cutting planes
are reused for sequences of ILPs such as the ones in van Hoeve’s algorithm. This scheme functions
by storing those parts of the cutting planes that are related to all ILPs in the sequence, and
completing each cut with parts specific to each ILP. We propose an efficient algorithm for cut
completion, and show results on this algorithm and the scheme as a whole.

1.1 Related work
The decision diagram based graph coloring algorithm was first introduced by van Hoeve in 2020
[15]. In this publication, he also shows correctness of the algorithm and he experimentally shows
that the algorithm is competitive with state-of-the-art algorithms for finding lower bounds to
the chromatic number of a graph. In a follow-up publication in 2021, van Hoeve provides more
theoretical results on the algorithm and a more detailed discussion of the experimental results [16].
Van Hoeve’s graph coloring algorithm was furthermore used in a case study on variable orderings
for decision diagrams by Karahalios & van Hoeve [21].

While the application of this particular network flow formulation to decision diagrams is novel,
another network flow formulation on decision diagrams has been widely studied before. Behle [3]
introduced this network flow formulation on decision diagrams representing 0/1 polytopes. He
showed that this network flow formulation can be used for enumerating the facets of the 0/1
polytope and generating cutting planes for that polytope. This network flow formulation has been
applied in a wide variety of other studies as well. For example, Tjandraatmadja and van Hoeve
[35] solves this 0/1 network flow problem to generate target cuts for binary optimization problems,
and Cire et al. [11] reformulated this network flow problem to model a feasible set of clinical
rotation schedules. For a broad overview of the literature on network flow formulations on decision
diagrams—and optimization with decision diagrams in general—we refer to the literature survey
by Castro et al. [9].

Several types of flow problems have been studied that are similar to the constrained network flow
problem we examine in this thesis. Those problems include the minimum cost flow problem with
conflict constraints [34] or disjunctive constraints [33], the flow problem with disjoint bundles [13],
[18] and the minimum cost noncrossing flow problem [2]. As far as we are aware, no studies on the
polyhedra of these problems have been conducted so far.

1.2 Outline
This thesis report is structured as follows: in Chapter 2, we lay the theoretical foundation for
this thesis and describe van Hoeve’s algorithm in detail. We answer our first question—(Q1)—in
Chapter 3, in which we show our theoretical results on the facet-defining inequalities we found. The
second question—(Q2)—is answered in Chapter 4 as we explore methods for finding and reusing
general purpose cutting planes for the constrained network flow problem. In the final chapter,
Chapter 5, we conclude this thesis with some closing remarks.

2

2 Theory & notation

In this chapter, we explain the theoretical concepts that are relevant to the context of this thesis.
In Section 2.1, we discuss our definition of the graph coloring problem and define related concepts.
In Section 2.2, we explain in detail what a decision diagram is and how it relates to optimization.
Having formalized both graph coloring and decision diagrams, we provide a detailed discussion
of van Hoeve’s graph coloring algorithm [15], [16] in Section 2.3. In this section, the constrained
network flow integer program that we study in this thesis is also introduced and explained. We
end this chapter with some remarks on polyhedra in Section 2.4.

Before we discuss these four topics, we shortly introduce common notation for several graph-
related concepts, matrices and vectors. We use set notation, i.e. {u, v} to denote an undirected
edge between nodes u and v. Conversely, an arc or directed edge is denoted using brackets, i.e. for
nodes u and v, (u, v) is an arc directed from u to v. For an undirected graph G = (V,E), we define
Nv := {u ∈ V : {u, v} ∈ E} to be the neighborhood of a vertex v ∈ V , which are all the nodes
adjacent to v. For a directed graph G = (V,A) and some node u ∈ V , δ+(u) := {(u, v) : (u, v) ∈ A}
denotes the set of outgoing arcs of u, and we let δ−(u) := {(v, u) : (v, u) ∈ A} denote the set of
incoming arcs of u. Furthermore, we define a path on a directed graph G = (V,A) to be a sequence
of distinct arcs (a1, a2, ..., ak), all pointing in the same direction, that joins a sequence of distinct
nodes. To indicate that an arc a is on some path p, we slightly abuse notation by writing that
a ∈ p.

For some matrix B, we let Bi,j denote the element in the ith row and jth column, and we indicate
the entire ith row of B by Bi,∗ and the entire jth column of B by B∗,j . Similarly, xi denotes the
ith element of some vector x. Lastly, 1 denotes a vector of all ones, and 0 denotes the zero-vector.

2.1 Graph coloring
In the context of this thesis, with “graph coloring”, we specifically refer to a coloring of vertices.
Let G = (V,E) be an undirected simple graph. We define a coloring of G to be an assignment
of a color c(v) to each vertex v ∈ V . We define such a coloring to be a feasible coloring if each
vertex v is assigned a color such that no two adjacent vertices have the same color, i.e., for all
{u, v} ∈ E, c(u) ̸= c(v). We then define a minimum coloring to be a feasible coloring that uses
the fewest number of colors, and we define the chromatic number χ(G) of G to be the minimum
number of colors required for a feasible coloring of G. We lastly define the graph coloring problem
on G to be the problem of finding a minimum coloring of G. Deciding if an arbitrary graph admits
a feasible coloring of k colors was shown to be NP-complete by Karp [22], so the problem of finding
the chromatic number for an arbitrary graph is NP-hard. As a result, the graph coloring problem,
is also NP-hard.

For any coloring of G, we define a color class for a particular color to be a subset of V containing
all vertices that have been assigned that color. For a feasible coloring, each color class forms
an independent set, which we define as a subset of V such that no two vertices in that subset
are adjacent. Then each feasible coloring is a partition of the node set into mutually exclusive
independent sets.

2.2 Decision diagrams
In the context of this thesis, a decision diagram is a layered directed acyclic graph D = (N,A)
with node set N and arc set A. The node set N is partitioned into n + 1 layers. The first layer
consists of a root node r and the last layer consists of a sink node t. We denote the layer of a node
v ∈ N by L(v), and we denote the set of layers by L.

Every arc (u, v) ∈ A is directed from a node u ∈ N to a node v ∈ N in a consecutive layer, i.e.
L(v) = L(u) + 1 for all (u, v) ∈ A. Though the layers are only defined for the nodes, we say that
an arc (u, v) ∈ A is in layer j if L(u) = j. Furthermore, each arc a ∈ A arc is assigned a label
ℓ(a) ∈ {0, 1}. Similarly to van Hoeve [16], we refer to an arc with label 1 as a 1-arc and an arc
with label 0 as a 0-arc. Each node v ∈ N \{t} has a unique outgoing 0-arc, and may have a unique
outgoing 1-arc, while the sink node t has no outgoing arcs. Each node v ∈ N \ {r} also must have

3

(a) Input graph (b) Exact decision diagram

Figure 1: Input graph to be colored (1a) and the associated exact decision diagram (1b). Each layer
xi on the decision diagram is related to a node i of the input graph. Dashed arcs represent
0-arcs, while 1-arcs represent 1-arcs. This example is taken from [16].

an incoming arc, while the root node r does not have an incoming arc. By this construction, each
arc and each node is part of some directed r-t path. See Figure 1b for an example.

Decision diagrams can be built to graphically represent (an over-approximation of) the solution
space of optimization problems. Consider some optimization problem Π with an ordered set of
binary variables {x1, x2, ..., xn} and feasible set Sol(Π). Furthermore, consider some decision di-
agram D = (N,A) for Π. Then D has n + 1 layers, and the nodes in layer j ∈ L are associated
with variable xj . Moreover, any r-t path (a1, a2, ..., an) on D corresponds to a variable assignment
for Π by setting xj := ℓ(aj). We let P(D) denote the set of all r-t paths on D, and we let X (D)
denote the collection of all variable assignments encoded by r-t paths on D, formally defined as:

X (D) = {{x1, x2, ..., xn} : ∃(a1, a2, ..., an) ∈ P(D) with ℓ(ak) = xk ∈ {0, 1} for k = 1, ..., n} .

As an example, consider Figure 1. Each r-t path on the decision diagram in Figure 1b encodes
independent sets of the input graph in Figure 1a.

2.2.1 Relation to graph coloring

Consider a graph G = (V,E) with node set V = {v1, v2, ..., vn} and a decision diagram D = (N,A)
for G. In the context of graph coloring, we let an r-t path (a1, a2, ..., an) ∈ P(D) encode a subset
V ′ ⊆ V by setting V ′ = {vi ∈ V : ℓ(ai) = 1}. Now, consider a set of r-t paths {p1, p2, ..., pf} ⊆
P(D). Those paths encode node sets V1, V2, ..., Vf that partition the node set V if, for each layer,
exactly one path in the path set {p1, p2, ..., pf} has a 1-arc in that layer. Such a partition can be
used to define a coloring c of G by

1. c(u) = c(v) for all u, v ∈ Vi, i = 1, .., f ,

2. c(u) ̸= c(v) for all u ∈ Vi and v ∈ V \ Vi for i = 1, .., f .

Then we define Sol(D) to be a family of subsets of X (D) such that, for each k = 1, ..., n, exactly
one element of each subset has xk = 1. Then, since X ∈ X (D) encodes a subset of the nodes V ,
any C ∈ Sol(D) encodes a partition of the node set V by construction. As a result, any element
C ∈ Sol(D) can be translated to a coloring of G by the above procedure. Formally, we define
Sol(D) as:

Sol(D) =

{X1, ..., Xf} ⊆ X (i) :

f∑
j=1

Xj(k) = 1 for k = 1, ..., n

 ,

4

(a) Input graph with feasible color
assignment

(b) Exact decision diagram D with paths
representing color classes

Figure 2: The same example as Figure 1 (taken from [16]), but now with a color assignment. The blue
r-t path in (2b) corresponds to the blue color class on (2a), and the red r-t path corresponds
to the red color class. Each colored r-t path encodes an element of X (D) (an independent
set). In each layer, exactly one colored path in (2b) traverses a 1-arc. The red and blue r-t
paths together therefore encode an element of Sol(D) (a coloring).

where X(k) denotes the kth element of X ∈ X (i). Figure 2 illustrates each of the sets defined in
this section.

Note that Sol(D) is defined here to encode colorings of G, but that we did not restrict to feasible
colorings of G. Here, we make a distinction between exact decision diagrams and relaxed decision
diagrams. We define a decision diagram D for a graph coloring problem Π to be an exact decision
diagram if Sol(Π) = Sol(D), and a relaxed decision diagram if Sol(Π) ⊆ Sol(D). For relaxed
decision diagrams, not all colorings encoded by Sol(D) are feasible.

2.2.2 Variable ordering & reduced diagrams

An advantage of decision diagrams is that they have to potential to compactly represent solution
sets. Whether this potential is realized depends largely on two factors: the variable ordering and
eliminating redundancy.

The variable ordering is the assignment rule of the variables to the layers. For example, for
a set of binary variables {x1, x2, ..., xn}, a possible variable ordering can be the lexicographical
ordering, under which a node labelled j is assigned to layer j. The choice of variable ordering
has a large impact on the size of exact decision diagrams, and experimental results indicate that
relaxed decision diagrams compiled with good variable orderings give better lower bounds [4].
Unfortunately, the problem of finding an optimal variable ordering is NP-hard [6]. In the context
of graph coloring, Karahalios and van Hoeve [21] tested six heuristic variable orderings on several
graph instances, and found that the so-called MinimumWidth heuristic performed the best, though
none of the six tested heuristics strictly dominated another. The Minimum Width heuristic is
described in Algorithm 1.

The second factor we alluded to was redundancy elimination. For a decision diagram D = (N,A),
we define the subgraph rooted by v ∈ N to be the graph consisting of v and all of its descendants.
Nodes v ∈ N and v′ ∈ N are said to be equivalent nodes if the subgraphs rooted by v and v′ are
isomorphic. The two equivalent nodes v and v′ then have the same set of completions, i.e. every
(v, t) path encodes a partial variable assignment that is also encoded by some (v′, t) path and vice
versa. Either one of these nodes is then redundant, as a smaller decision diagram D′ = (N ′, A′)
can be created with Sol(D′) = Sol(D) by merging v and v′ into one node.

5

Algorithm 1: Minimum Width Variable Ordering Algorithm [21]

Input: Graph G = (V,E).
Output: Ordered list of Vertices L

1 Definition: deg(v,G) is the degree of v in G. L← ∅
2 while V not empty do
3 N ← argminv∈V {deg(v,G)}
4 V ← V −N
5 E ← E − {(i, v) : (i, v) ∈ E, v ∈ N}
6 L← N :L {add N to front of L}
7 G← (V,E)

8 end

(a) Input graph
(b) Exact decision diagram with node la-

bels representing state information

Figure 3: The unique exact reduced decision diagram (3b) for input graph (3a) (taken from [16]). Each
node in (3b) has a label representing the state information of that node.

We call a decision diagram reduced if no two nodes in a layer are equivalent. For a given set of
variable assignments, a reduced diagram is the smallest possible decision diagram that exactly
represents this set [10]. A key result by Bryant [7] is that there exists a unique reduced decision
diagram for each fixed variable ordering. Furthermore, Bergman et al. [4] showed that, for decision
diagrams for independent set problems, two nodes are equivalent if and only if they have the same
state information. The state information S(u) ⊆ V of a node u ∈ N on D is a set consisting of all
nodes vi ∈ V on G that can be encoded by some (u, t) path on D. Essentially, for a partial variable
assignment X = {x1, x2, ..., xj−1} that encodes a subset V ′, S(u) is the set of all other candidates
vi ∈ V that can still be added to V ′ (though not necessarily all at the same time). We refer
to Figure 3 for an example of state information in decision diagrams. This result of Bergman et
al. [4] implies that, for decision diagrams encoding independent sets, the unique reduced decision
diagram can be built by only tracking the state information S(u) to check node equivalence.

Nevertheless, even for reduced exact decision diagrams with an optimal variable ordering, the
number of nodes may scale exponentially (Theorem 7 of [16]). As such, relaxed decision diagrams
may be desirable for large-scale problems because they can be compiled with limited size. For
example, van Hoeve’s shows that there are graph coloring instances where an optimal solution can
be found with a relaxed decision diagram that is exponentially smaller than the reduced exact
decision diagram for that problem (Theorem 7 of [16]).

6

Figure 4: Applying constraint separation to the input graph in Figure 1a. The initial diagram for
Figure 1a is represented in (4a). The graph is refined three times with Algorithm 2 until a
feasible coloring has been found in (4d). Note that (4c) still contains a path that encodes
(2,4) even though that conflict was resolved along another path in the previous iteration.
This figure was directly copied from [16, p.637].

2.3 Van Hoeve’s graph coloring algorithm
[This section is based on van Hoeve’s paper “Graph Coloring with Decision Diagrams” [16]]. We
refer the reader to this paper for more details, such as proofs of the lemmata and theorems shown
in this section.

In this section, we provide all information on the decision diagram based graph coloring by van
Hoeve [15], [16] that is necessary for understanding the remainder of this thesis. From a high-level
perspective, the algorithm initializes a relaxed decision diagram and iteratively refines to tighten
the relaxation. In each iteration, it solves a flow problem on the (refined) decision diagrams to
compute colorings of the input graph until a feasible coloring for that graph is found. The decision
diagram is refined using a method called constraint separation, which is the removal of a path on
the decision diagram that encodes a part of an infeasible solution [10].

To describe the algorithm, we start by explaining how the algorithm initializes the decision diagram.
We continue by showing how the decision diagram is refined in each iteration with constraint
separation. We finish this section by showing how the algorithm computes colorings, which is
through the constrained network flow problem that is the topic of this thesis.

2.3.1 Initialization

For some input graph G = (V,E) with |V | = n, van Hoeve’s algorithm initializes a decision diagram
D = (N,A) with n + 1 layers and one node per layer, where each layer j is associated to some
node vj ∈ V . The first layer consists of the root node r and the last layer being the sink node t.
We define the initial nodes to be all the nodes present in this initial decision diagram. Each initial
node u ∈ N \{t} in layer L(u) = j has both an outgoing 1-arc and an outgoing 0-arc, both directed
to the initial node in the next layer—the initial node v ∈ N with L(v) = j + 1. An example of
such an initial diagram is depicted in Figure 4.

As a result of this construction, any subset V ′ ⊆ V is encoded by some r-t path on D, and therefore
all independent sets of V are encoded by D. As a result, this initial decision diagram D is a valid
relaxed decision diagram. Furthermore, each initial node u ∈ N in layer L(u) = j is assigned state
information S(u) = {vj , vj+1, ..., vn}, since all the nodes in this state information are encoded by

7

the (u, t)-path consisting of only 1-arcs. Since t is located in layer n+ 1, it follows that S(t) = ∅.

2.3.2 Constraint separation

The initial diagram is then refined by a subroutine that van Hoeve calls the separation algorithm.
The separation algorithm refines an input decision diagram by separating a conflict along a path
r-t path. A conflict is a tuple (j, k) with j < k such that {vj , vk} ∈ E is an edge of G. An r-t
path (a1, ..., aj , ..., ak, ..., an) ∈ P(D) containing a conflict (j, k) has a 1-arc in layer j and k, and
therefore represents an infeasible variable assignment. The separation algorithm has the following
inputs: 1) a reduced decision diagram D, 2) an edge conflict (j, k) with j < k, and 3) and the path
with this conflict (aj , aj+1, ..., ak−1) that visits nodes uj , uj+1, ..., uk−1. This path is not allowed
to contain another edge conflict (j′, k′) such that j ≤ j′ < k′ < k.

The separation algorithm resolves the conflict by adding a new node to layers j + 1 to k and
redirecting the input path along these nodes. Each new node in layer i + 1 for i = j, ..., k − 1 is
assigned state information based on the state of their parent node. If the arc ai is a 1-arc, then the
neighbors Nvi of vi ∈ V are removed from the assigned state information. Recall that two nodes
are equivalent if they have the same state information [4], so if the new node has the same state
information as another node in layer i, then those nodes are merged. If the node is not merged,
then the new node receives an outgoing 1-arc if vi+1 is its state information. It also receives the
same outgoing 0-arc as node ui+1. The separation algorithm is described in Algorithm 2. See
Figure 4 for an example of three applications of Algorithm 2 to the input graph in Figure 1a.

The following lemma by van Hoeve shows that the separation algorithm successfully separates a
conflict along a path:

Lemma 2.1 (Lemma 1 of van Hoeve [16]). Let decision diagram D, edge conflict (j, k), and node-
arc specified path (uj , aj , uj+1, aj+1, ..., uk−1, ak−1) be the input to Algorithm 2. The application of
the algorithm results in a decision diagram in which label-specified path (ℓ(aj), ..., ℓ(ak−1), 1 starting
at uj no longer exists, but (ℓ(aj), ..., ℓ(ak−1), 0) with ℓ(ak) = 0 does.

Another important result is that the decision diagram refined with the separation algorithm does
not encode new variable assignments that the original did not. This was shown in the following
Lemma by van Hoeve:

Lemma 2.2 (Lemma 2 of van Hoeve [16]). Algorithm 2 does not introduce new label-specified paths
to the input decision diagram.

Lastly, the following theorem by van Hoeve states that, if the separation algorithm is applied
enough times, the resulting decision diagram only encodes feasible colorings:

Theorem 2.1 (Theorem 1 of van Hoeve [16]). Given a reduced decision diagram D as input and
an oracle that provides us with edge conflicts and associated paths in D, repeated application of
Algorithm 2 results in the unique reduced exact decision diagram.

The oracle alluded to in this theorem is the topic of the next section.

2.3.3 Conflict detection

Recall that, for a (relaxed) decision diagram D = (N,A) for a graph G = (V,E), we defined Sol(D)
to be the set of all partitions of V encoded by D. Van Hoeve’s algorithm finds such partitions
by solving a minimum constrained network flow problem on D using integer programming. For
each arc a ∈ A, a variable ya is introduced that represents the (integer) flow through a. Then the

8

Algorithm 2: Separating edge conflict (j, k) in decision diagram D (van Hoeve [15], [16])

Input: reduced decision diagram D (D[i][j] represents the jth node in layer i), a path
(aj , ..., ak−1), node indices uj , ..., uk−1 of the nodes visited on the path, a conflict
(j, k) (it is assumed that the path contains no edge conflicts (j′, k′) such that
j ≤ j′ < k′ < k) and list of neighbors Nv for each v ∈ V .

Output: reduced decision diagram in which the conflict along the path has been eliminated.
1 for i = j to k − 1 do
2 create node w // split the path towards node w
3 w.S ← D[i][ui].S \ {vi} // copy the parent state and remove i
4 if ℓ(ai) = 1 then w.S ← w.S \Nvi ; // remove Nvi in case of 1-arc

5 t← −1 // t is index of the new node in layer i+ 1
6 if ∃k such that D[i+ 1][k].S = w.S then t← k; // check for equivalent node

7 else
8 if vi+1 ∈ w.S then w.oneArc← D[i+ 1][ui+1].oneArc; // copy 1-arc

9 else w.oneArc← −1
10 w.zeroArc← D[i+ 1][ui+1].zeroArc // copy 0-arc

11 D[i+ 1].add(w) // append w as the new node to layer i+ 1
12 t← |D[i+ 1]| // update t to last index of layer i+ 1

13 if ℓ(ai) = 1 then D[i][ui].oneArc← t; // re-direct path to w in case of 1-arc

14 else D[i][ui].zeroArc← t; // re-direct path to w in case of 0-arc

15 ui+1 ← t // update path index

minimum constrained network flow ILP (F) is as follows:

(F) = min
∑

a∈δ+(r)

ya

s.t.
∑

a=(u,v)|L(u)=j,ℓ(a)=1

ya = 1 ∀ j ∈ L, (2a)

∑
a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀ u ∈ N \ {r, t}, (2b)

y ∈ Z≥0 ∀ a ∈ A. (2c)

The objective function of (F) minimizes the total amount of flow on D, as any r − t flow passes
an arc outgoing of r. Constraints (2b) ensure flow conservation, which is why we refer to them as
the flow conservation constraints. Constraints (2c), which we refer to as the integrality constraints,
force all flow variables to have a nonnegative integer value. Note that we slightly deviate from
van Hoeve’s original formulation, as he defines ya ∈ {0, 1, ..., n}, while we allow ya to be any
nonnegative integer value. Constraints (2a) ensure that in each layer, exactly one 1-arc a has
ya = 1 since all flows have to be integer by the integrality constraints. This constraint ensures that
each node v ∈ V on G is encoded exactly once. We call these constraints the 1-arc constraints.

This minimum constrained network flow ILP formulation (F), which we refer to as the flow model
(F), is the central topic of this thesis. We use Sol(F) to denote the solution space of this model,
and we use y exclusively to refer to any vector y ∈ Sol(F). We use val(y) to refer to the objective
value of any vector y ∈ Sol(F), and y∗ ∈ Sol(F) indicates an optimal solution to (F).

Any solution of flow model (F) can be decomposed into a set of r-t paths, each with a flow value
of 1, to obtain a set of paths on D that encode a partition of V . Van Hoeve proves that this holds
true in the following Lemma:

Lemma 2.3 (Lemma 5 of van Hoeve [16]). A solution to flow model (F) corresponds to a (not
necessarily unique) partition of vertex set V .

Note that, as the lemma states, it is possible that a flow can be decomposed in a number of different
ways.

9

Algorithm 3: Iterative refinement by conflict detection and separation. (van Hoeve [15], [16])

Input: input graph G = (V,E), and list of neighbors Nv for each v ∈ V
Output: chromatic number of G.

1 foundSol ← false
2 initialize decision diagram D
3 while foundsol = false do
4 solve model (F) with decision diagram D
5 lowerBound ← obj(F)
6 decompose solution vector of (F) to determine conflict (j, k) with node/label path vectors

P , L
7 if no conflict is detected then foundSol ← true
8 else separate conflict (j, k) along path P , L in D using Algorithm 2

9 return lowerBound

Furthermore, this partition is guaranteed to be a minimum coloring in case the decision diagram
is exact:

Theorem 2.2 (Theorem 2 of van Hoeve [16]). If the decision diagram is exact, flow model (F)
finds an optimal solution to the graph coloring problem.

An optimal solution to flow model (F) on some relaxed decision diagram may also encode a
minimum coloring, though there is no such guarantee.

Van Hoeve provides an algorithm that decomposes any optimal solution y∗ ∈ Sol(F) into r-t paths
and checks for edge conflicts. If it finds such a conflict, it terminates and returns the conflict and
the associated path. If it does not find a conflict, that means that the solution corresponds to a
feasible coloring. This algorithm itself is outside of the scope of this thesis.

The flow decomposition algorithm and flow model (F) together form the “oracle” for finding con-
flicts that is required for the separation algorithm (Algorithm 2). These three building blocks
together form van Hoeve’s graph coloring algorithm, which is shown in Algorithm 3. By Theo-
rem 2.1, repeated application of the separation algorithm yields an exact decision diagram, and
by Theorem 2.2, flow model (F) finds an optimal solution to the graph coloring problem if the
decision diagram is exact, so Algorithm 3 finds an optimal solution. This is further formalized in
the following theorem:

Theorem 2.3. Given a graph G, Algorithm 3 computes the chromatic number of G.

Note that Algorithm 3 only returns the chromatic number, but could additionally return a min-
imum coloring since the last path decomposition does not contain any conflicts. Furthermore, if
the algorithm is terminated early, the algorithm finds a lower bound to the chromatic number of
G.

We end this section with a closing remark on complexity. Both the separation algorithm and the
flow decomposition run in time polynomial in the number of nodes. However, as mentioned in the
introduction, van Hoeve proved that flow model (F) is NP-hard:

Theorem 2.4 (van Hoeve Theorem 3). Solving model (F) for an arbitrary decision diagram is
NP-hard.

The NP-hardness of flow model (F) motivated us to study this formulation.

2.4 A note on polyhedra
To close this chapter, we introduce some concepts related to polyhedra. Firstly, we define the LP
relaxation of an IP model to be the same model without integrality requirements on the variables.
For flow model (F), we derive such an LP relaxation in standard form as follows: let Im denote
the m ×m identity matrix with m = |A|, and let In(D) denote the node-arc-incidence matrix of
D for all nodes except r and t. The node-arc-incidence matrix of D = (N,A), for which the rows

10

correspond to nodes and the columns correspond to arcs, has the following entries:

In(D)v,a =

−1 if arc a ∈ A leaves v ∈ N \ {r, t},
1 if arc a ∈ A enters v ∈ N \ {r, t},
0 otherwise.

Furthermore, define Λ ∈ {0, 1}n×A as follows:

Λj,a =

{
1 if arc a ∈ A is a 1-arc in layer j on D = N,A

0 otherwise.

Lastly, relaxing the integrality requirement on the integrality constraints (2c) yields ya ≥ 0 for all
a ∈ A. Then the standard form of the LP relaxation of flow model (F) is as follows:

(F rel) = min
∑

a∈δ+(r)

ya

s.t. Λy ≥ 1 (3a)

In(D)y ≥ 0 (3b)

− In(D)y ≥ 0 (3c)

Imy ≥ 0 (3d)

We refer to this model as the LP relaxation (F rel). Furthermore, we let:

B =

Λ

In(D)
−In(D)

Im

 , e =

1
0
0
0

 .

Then the feasible set of the LP relaxation (F rel) is given by the polyhedron P flow := {y ∈ R :
By ≥ e}.

We say that an inequality α⊺y ≥ γ is valid for any polyhedron P = {Ay ≥ b} if α⊺ŷ ≥ γ for all
ŷ ∈ P . We define a face of P to be a set F = P ∩ {y : α⊺y = γ} ≠ ∅ such that α⊺y ≥ γ is valid
for P . Informally, a face can be seen as a boundary of the polyhedron. We call a face a vertex if
F = {y}, and we call a face a facet if dim(F) = dim(P)− 1. Note that P flow does contain at least
one vertex as a consequence of the non-negativity constraints on y (Constraints 3d).

We use P flow
I = conv{P flow ∩ZA} to denote integer hull of flow model (F). Since B is rational, it

follows that P flow
I is also a polyhedron [30]. Secondly, since all integer points of P flow are contained

in P flow
I , it follows that Sol(F) ⊆ P flow

I . Lastly, the vertices of this integer hull are integer points
by construction. As a result, any linear programming solution method that finds optimal solutions
that are vertices—such as the simplex algorithm—can find integer optimal solutions to Sol(F) by

optimizing over P flow
I .

Unfortunately, we do not have any inequality description of P flow
I , which is why we try to find

facet-defining inequalities, which are inequalities that induce a facet of P flow
I . Such inequalities

are always valid for P flow
I but may not be for P flow. If that is the case, adding these facet-defining

inequalities to the LP relaxation (F rel) yields a tighter bound on the relaxation.

11

3 Objective cuts

Recall from the introduction that the first question we attempted to answer is the following:

(Q1) What does the integer hull of the constrained network flow integer linear program
in van Hoeve’s graph coloring algorithm look like?

In the pursuit of an answer, we generated a number of instances of flow model (F) and found
facet-defining inequalities for the integer hulls of all of these instances using IPO [36], [37]. In our
examination of these inequalities, we noticed the following:

Observation 3.1. Nearly all observed facet-defining inequalities represented or were implied by
r-t cuts.

To illustrate this, consider any r-t cut (X,N \X) for some decision diagram D = (N,A) and some
X ⊆ N such that r ∈ X and t ∈ N \ X. Let K denote the set of arcs that cross the cut, i.e.
K = {(u, v) : u ∈ X, v ∈ N \X}. Then such an inequality representing an r-t cut can be written
in the following form: ∑

a∈K

ya ≥ f. (4)

Such a cutting plane forces a flow of at least f through the network, and cuts off fractional solutions
if f equals a larger integer amount. The largest value for f that still yields cutting planes valid
for the integer hull is the objective value for (F). As such, inequalities of the form 4 actually
bound the objective function. In particular, the outgoing arcs of r form an r-t cut, which are also
precisely the arcs contributing to the objective function. We will use the term objective cut to refer
to any cutting plane that explicitly bounds the objective function.

These objective cuts could be added to strengthen flow model (F), but unfortunately, finding the
correct bounding value f is NP-hard as a consequence of Theorem 2.4; suppose this bounding value
could be found in polynomial time for any decision diagram. This implies that certificate for a yes-
instance could be found in polynomial time with some algorithm for any flow value. Repeating this
algorithm for all possible flow values (f = 1, ..., n) would then imply a polynomial time algorithm
to solve model (F) and P = NP, but we assume the contrary in this thesis.

Fortunately, a decision diagram in some iteration i and its successor in iteration i+1 are relatively
similar. Then, if the objective values of the optimal solutions in each iterations bear similarity as
well, we can use the objective value of some iteration to generate objective cuts for the successive
iteration. To support our discussion of objects in multiple iterations in this particular chapter, we
use a superscript (i) to denote a certain object in iteration i.

In this chapter, we prove that there is indeed some similarity between the objective values of two
successive iterations in the following theorem:

Theorem 3.2. If Algorithm 3 detects a conflict for an optimal solution y∗(i) to flow model (F (i))
in some iteration i, then for iteration i+1, val(y∗(i+1)) = val(y∗(i)) or val(y∗(i+1)) = val(y∗(i))+1.

As a consequence of this theorem, for some iteration i+ 1, we can add the following objective cut
to accelerate solving in case iterations i and i+ 1 have the same objective value:∑

a∈δ+(r)

y(i+1)
a ≥ val(y∗(i)).

To prove Theorem 3.2, we firstly derive some structural results of the decision diagrams generated
with Algorithm 3 in Section 3.1. Using those structural results, we prove that the objective value
is monotonically increasing in i in Section 3.2. Using the results from both of these sections,
Theorem 3.2 is be proven in Section 3.3.

3.1 Structural results for decision diagrams
In this section, we establish results on the existence of some types of paths on each decision
diagrams generated with Algorithm 3. In particular, we show results on zero-paths, which we
define as follows:

12

Definition 3.1 (Zero-path). A zero-path is an r-t path for which all arcs on the path have label
0.

A zero-path encodes the empty node set on G. Since the empty set is an independent set, this
zero-path exists on each decision diagram formed with Algorithm 3. Notably, it can be shown that
such a zero-path always exists along the initial nodes:

Lemma 3.1. Each decision diagram formed with Algorithm 3 has a zero-path along the initial
nodes.

Proof. The zero-path along the initial nodes exists on the decision diagram initialized in Algorithm
3, as all initial nodes except t have an outgoing 0-arc to another initial node. the separation
algorithm (Algorithm 2) does not remove existing arcs and can only redirect them. It therefore
suffices to show that the separation algorithm cannot redirect 0-arcs from the initial nodes.

Consider a conflict (j, k) to be resolved along the path (aj , ..., ak). Since (j, k) is a conflict, ℓ(aj) =
1, so in the first iteration of the separation algorithm, the redirected arc is a 1-arc. In any other
iteration h ∈ {j + 1, ..., k − 1} of the separation algorithm, the new node created in that iteration
receives an incoming arc from the node that was created or merged in iteration h− 1. Therefore,
only if a new node in layer h is merged with an initial node in the same layer, a 0-arc can be
redirected from an initial node.

A new node is merged with an existing node only if they have the same state information. To
show that a 0-arc cannot be redirected from an initial node, we show that no new node can have
the same state information as an initial node in the same layer.

All new nodes created with the separation algorithm inherit the state information of the previous
nodes along the path. For any iteration except the first, this means that a new node inherits the
state information from the node created or merged in the previous iteration.

The new node in the first iteration of the separation algorithm has an incoming 1-arc. It therefore
inherits the state information of the previous node and subtracts the neighbours of node vj ∈ V .
Since (j, k) is a conflict, vk is one of the neighbours of vj , so vk is removed from the state information
of the node created in the first iteration (line 4 of Algorithm 2). The state information of all nodes
created or merged in the next iterations of the separation algorithm therefore also cannot contain
vk.

For every layer h, the state information of the initial node in that layer is {h, ..., n}. Therefore,
all initial nodes in layer 1 to k have state information containing vk. Furthermore, the state
information of an existing node does not change during any iteration of Algorithm 3. No new node
can therefore have the same state information as an initial node in the same layer. Therefore, 0-arcs
cannot be redirected from the initial nodes, and each decision diagram formed in every iteration
of has a zero-path.

We will denote the zero-path along the initial nodes by pZ . It follows from Lemma 3.1 that pZ is
actually the only zero-path on each decision diagram:

Corollary 3.1.1. pZ is the unique zero-path on each decision diagram formed with Algorithm 3.

Proof. pZ exists by Lemma 3.1. Every non-sink node on a decision diagram has exactly one
outgoing 0-arc, and all outgoing 0-arcs of initial nodes are directed towards other initial nodes.
Since r and t are also initial nodes, there is only one r-t path of only 0-arcs possible.

Other trivial independent sets on graphs are sets containing only one node. Those sets are encoded
by paths with only one 1-arc on a corresponding decision diagram. Using the existence of pZ , we
can show that paths with only one 1-arc exist as well on each decision diagram:

Corollary 3.1.2. Consider any decision diagram D = (N,A) formed with any number of appli-
cations of the separation algorithm. Then the path pk=1 = (a1, ..., aj , ..., an) with ℓ(ak) = 1 and
ℓ(aj) = 0 for j = 1, ..., k − 1, k + 1, ...n exists on D = (N,A) for k = 1, ..., n.

13

Figure 5: Schematic overview of the monotonicity proof. We relate elements of Sol(F (i) to elements of Sol(D(i)

in Lemma 3.3. We show in Lemma 3.5 that Sol(D(i+1) ⊂ Sol(D(i). We furthermore relate the elements
of Sol(D(i+1) to elements of Sol(F (i+1) in Lemma 3.4.

Proof. By Lemma 3.1, there exists a path (a1, ..., ak−1) with ℓ(aj) = 0 for j = 1, ..., k−1 along the
initial nodes, ending in the initial node uk. In the initial decision diagram, all initial nodes have
an outgoing 1-arc and the separation algorithm does not remove arcs. Therefore, there exists an
arc (uk, uk+1) ∈ A with label 1 ℓ((uk, uk+1)) = 1 to some node uk+1 ∈ N . Since all initial nodes
have an outgoing 0-arc and all new nodes are assigned an outgoing 0-arc, there must also exist a
path (ak+1, ..., an) from uk+1 to t with ℓ(aj) = 0 for j = k + 1, ..., n.

3.2 Monotonicity of the objective function
We continue by proving monotonicity of the objective function. Recall that X (D(i)) denotes
the collection of all variable assignments defined by r-t paths on D(i). Furthermore, recall that
Sol(D(i)) denotes the set of all partitions of V encoded by paths of D(i), and for each C ∈ Sol(D(i)),
we have that C ⊆ X (D(i)). We establish monotonicity by showing that Sol(D(i+1)) ⊂ Sol(D(i)).
A consequence of this result is that a smallest cardinality element of Sol(D(i)) is smaller than or
equal to a smallest cardinality element of Sol(D(i+1)). If we then relate objective values of solutions
y(i) ∈ Sol(F (i)) to the cardinality of elements of Sol(D(i)), monotonicity follows. For a schematic
overview of the monotonicity proof, we refer to Figure 5.

To facilitate the proofs, we introduce a function ϕ : Sol(F (i))×P(A(i))×Z 7−→ ZA(i)

, where P(A(i))
denotes the power set of A(i). This function is, for some y(i) ∈ Sol(F (i)), some A′ ⊆ A(i) and some
f ∈ Z defined as follows:

ϕ(y(i), A′, f) :=

{
y
(i)
a + f if a ∈ A′,

y
(i)
a otherwise.

(5)

This function ϕ satisfies the following property, which is also a well-known operation for establishing
the Flow Decomposition Theorem [23, p. 177]:

Lemma 3.2. Consider a vector y(i) that satisfies the flow conservation constraints (2b) and the
integrality constraints (2c) for some decision diagram D(i). Consider an r-t path p ∈ P(D(i)) with

fmin := {y(i)a |a ∈ p}. Then the vector y′(i) := ϕ(y(i), p, f) for any f ∈ Z, f ≥ −fmin also satisfies
the flow conservation constraints (2b) and the integrality constraints (2c).

14

Proof. Consider the vectors y(i) and y′(i) defined in this lemma. As y(i) satisfies the flow con-
servation constraints (2b) and the integrality constraints (2c), all constraints containing only arc

variables y
(i)
a for a ∈ A \ p are satisfied for y

′(i)
a as well. To complete the proof, we show that y′(i)

is feasible for all flow conservation constraints and integrality constraints containing at least one
variable related to an arc on P .

Consider any node u ∈ N (i) \ {r, t} with one incoming arc a− that lies on p. Since p is a path,
there must also be exactly one arc a+ ∈ p outgoing of u. Then the flow conservation constraint
for u is as follows:∑

a∈δ−(u)

y′(i)a −
∑

a∈δ+(u)

y′(i)a =
∑

a∈δ−(u)\a−

y′(i)a + y
′(i)
a− −

∑
a∈δ+(u)\a+

y′(i)a − y
′(i)
a+ ,

=
∑

a∈δ−(u)\a−

y(i)a +
(
y
(i)
a− + f

)
−

∑
a∈δ+(u)\a+

y(i)a −
(
y
(i)
a+ + f

)
,

=
∑

a∈δ−(u)

y(i)a −
∑

a∈δ+(u)

y(i)a = 0.

the flow conservation constraints (2b) therefore also hold for y′(i).

Furthermore, y
′(i)
a := y

(i)
a + f ≥ y

(i)
a − fmin ≥ 0 for all a ∈ pZ by definition of fmin. Additionally,

y
(i)
a is integer by the integrality constraints (2c) and f is integer by definition, so y

(i)
a − f =: y

′(i)
a is

integer as well. As a result, y
′(i)
a ∈ Z≥0 for all a ∈ pZ , and y

′(i)
a satisfies the integrality constraints

(2c)

We firstly relate the objective value of solutions y(i) ∈ Sol(F (i)) to the cardinality of corresponding
elements of Sol(D(i)). We define an element C(i) ∈ Sol(D(i)) to be corresponding to y(i) if there
exists a flow decomposition of y(i) into r-t paths that encode C(i) such that the paths have a
positive integral flow.

Van Hoeve [16] shows that val(y(i)) = |C(i)| for some C(i) ∈ Sol(D(i)) corresponding to y(i) for a
specific flow decomposition algorithm. In general, flow decompositions are not unique, and as such,
we wish to prove that this notion holds for any flow decomposition, regardless of the algorithm
chosen.

This notion seems trivial for optimal solutions, but for non-optimal solutions, this is not immedi-
ately obvious, especially if those solutions have positive flow along all arcs of the zero-path pZ ; for
those solutions, decompositions could consist of different numbers of r-t paths, or the decomposi-
tion may contain r-t paths that are not unique.

To facilitate the discussion, we introduce the following definition:

Definition 3.2 (Reduced solution). A reduced solution is a vector y that is feasible for flow model
(F) with min{ya : a ∈ pZ} = 0.

For any reduced solution, any flow decomposition into r-t paths with positive integral flow cannot
contain a zero-path as part of the decomposition, because pZ is the unique zero-path according to
Corollary 3.1.1. It also follows that optimal solutions are reduced solutions, since flow along pZ can
be subtracted from any non-reduced solution to obtain a feasible solution with a lower objective
value.

The following holds for reduced solutions:

Lemma 3.3. Consider a reduced solution y(i) ∈ Sol(F (i)) to flow model (F (i)) for some decision
diagram D(i). Then y(i) can be decomposed into val(y(i)) many unique r-t paths with flow value
1. Furthermore, any flow decomposition of y(i) into r-t paths with flow value 1 consist of val(y(i))
many unique r-t paths.

Proof. We show that this result follows by induction on a sequence of vectors y(i),j generated by
removing flow along paths.

15

Consider a reduced solution y(i),0 ∈ Sol(F (i)), and let p1 be an r-t path with y
(i),0
a ≥ 1 for all

a ∈ p1. This path necessarily exists because D(i) is acyclic and because the 1-arc constraints (2a)
and the flow conservation constraints (2b) hold for y(i),0. Since y(i),0 is reduced, p1 must contain at
least one 1-arc a1. Moreover, a1 has a flow of exactly 1 because y(i),0 satisfies the 1-arc constraints
(2a).

Let y(i),1 = ϕ(y(i), p1,−1), i.e., y(i),1 is the vector obtained by subtracting flow from y(i),0. Then

val(y(i),1) =
∑

a∈δ+(r) y
(i),1
a = val(y(i),0)− 1 and p1 traverses exactly one arc in the first layer. By

Lemma 3.2, y
(i),1
a also satisfies the flow conservation constraints (2b) and the integrality constraints

(2c).

Assume that, for any reduced solution y(i),0, there exist distinct r-t paths p1, ..., pj , j ≤ val(y(i),0)−1
such that the vector y(i),j , obtained through the recursion y(i),k := ϕ(y(i),k−1, pk,−1), 1 ≤ k ≤ j,
satisfies the flow conservation constraints (2b) and the integrality constraints (2c), and has objective
value val(y(i),j) = val(y(i))− j.

Because 1) y(i),j satisfies the flow conservation constraints (2b), 2)D(i) is acyclic, and 3) val(y(i),j) ≥
1, there must exist an r-t path pj+1 with positive flow. Since y(i) is reduced, pj+1 ̸= pZ and there
must therefore be a 1-arc aj+1 ∈ pj+1. From the integrality constraints (2c) and the 1-arc con-

straints (2a), it follows that y
(i),j
aj+1 = 1. As a result pj+1 has to be distinct from paths p1, ..., pj .

Let y(i),j+1 := ϕ(y(i),j , pj+1,−1). For the same reasons as for p1 in the base case, pj+1 traverses only
one arc in the first layer, and therefore val(y(i),j+1) = val(y(i),j)−1 = (y(i))−(j+1). Furthermore,
since y(i),j satisfies the flow conservation constraints (2b) and the integrality constraints (2c), then
so must y(i),j+1 by Lemma 3.2. This concludes the induction step.

For k = val(y(i),0), it follows that val(y(i),k) = 0. Then, by the flow conservation constraints (2b)
and the integrality constraints (2c), this implies that y(i),k = 0, and that we can only decompose a
reduced solution y(i),0 into exactly val(y(i),0) many unique r-t paths with flow value 1. Furthermore,
the presented arguments hold for an arbitrary choice of r-t paths, so any flow decomposition of
a reduced solution y(i),0 into r-t paths with flow value 1 consist of val(y(i),0) many unique r-t
paths.

Since the labels in each r-t path pj encode a variable assignment Xj , a consequence of this lemma
is that any reduced solution y(i) corresponds to elements of Sol(D(i)) that all have a cardinality
equal to the objective value of y(i). Furthermore, using this result, we can show the following for
non-reduced solutions:

Corollary 3.3.1. An integral flow decomposition of any non-reduced solution y(i) consists of at
least val(y∗(i)) + 1 many r-t paths.

Proof. Let fmin = min{y(i)a : a ∈ pZ}, with fmin > 0 as y(i) is non-reduced. Note that fmin is
integer by the integrality constraints (2c). Then, let y′(i) := ϕ(y(i), pZ ,−fmin). Since y(i) satisfies
the flow conservation constraints (2b) and the integrality constraints (2c), by Lemma 3.2, so does

y′(i). Furthermore, y(i) satisfies the 1-arc constraints (2a), and since y
′(i)
a and y

(i)
a have the same

value on any a ∈ A with ℓ(a) = 1, y
′(i)
a must satisfy the 1-arc constraints (2a). We conclude that

y′(i) is feasible for flow model (F (i)).

y′(i) has objective value val(y′(i)) = val(y(i))− fmin. Furthermore, by construction, this vector has

an arc a ∈ pZ with y
′(i)
a = 0. It is therefore reduced, and any flow decomposition of y′(i) into r-t

paths consists of val(y′(i)) = val(y(i))−fmin many r-t paths by Lemma 3.3. As a result, y(i) can be
decomposed into val(y(i))−fmin many unique r-t paths with flow value 1 plus pZ with a flow value
of fmin. This decomposition yields a total of val(y(i)) − fmin + 1 = val(y′(i)) + 1 ≥ val(y∗(i)) + 1
many r-t paths.

Consider a decomposition of y(i) with a flow f ′ ∈ Z≥0 such that f ′ < fmin along pZ . Then any other
r-t path in the decomposition traverses a 1-arc, so every other r-t path in the decomposition has a
flow value of at most 1. The decomposition then consists of val(y(i))−f ′+1 > val(y(i))−fmin+1 ≥
val(y∗(i)) + 1 many r-t paths.

16

The implication of this result is that all elements of Sol(D(i)) that correspond to a non-reduced
solution cannot be a smallest cardinality elements of Sol(D(i)).

Conversely, we can relate the cardinality of any C ∈ Sol(D(i)) to the objective value of some
corresponding solution y(i) ∈ Sol(F (i)):

Lemma 3.4. Any C ∈ Sol(D(i)) corresponds to a vector y(i) that is feasible for flow model (F (i))
with |C| = val(y(i)).

Proof. Consider any C ∈ Sol(D(i)), and denote its elements by X1, X2, ..., Xc. By definition of
Sol(D(i)), every Xj , j = 1, 2, ..., c is an element of X (D(i)) and is therefore encoded by an r-t path
on D(i). Let pj denote the r-t path on D(i) corresponding to Xj . The following procedure creates
a vector y(i) corresponding to C:

1. Initialize y
(i)
a := 0 for all a ∈ A(i).

2. For j = 1, 2, ..., c, set y(i) := ϕ(y(i), pj , 1).

We show that |C| = val(y(i)) holds and that the vector y(i) is feasible for flow model (F (i)).

The initial vector with y
(i)
a := 0 for all a ∈ A(i) satisfies the flow conservation constraints (2b)

and the integrality constraints (2c). Then, by Lemma 3.2, after setting y(i)(p1) := ϕ(y(i), p1, 1), it
follows that y(i) still satisfies the flow conservation constraints (2b) and the integrality constraints
(2c) since in this instance, f = −1 < 0 ≤ fmin. Repeating this operation for paths p2, p3, ..., pc
yields a vector y(i) that still satisfies the flow conservation constraints (2b) and the integrality
constraints (2c).

The procedure transforms C into |C| r-t paths pj on D(i), and the flow through all arcs traversed
on any pj is increased by 1 for all pj . Because D

(i) is layered and acyclic, each r-t path has exactly
one arc in the first layer. Therefore, the sum of flows through all arcs in the first layer is equal to
the number of r-t paths, i.e.:

val(y(i)) =
∑

a∈δ+(r)

y(i)a = |C|

Consider any layer on D(i) corresponding to a node v ∈ V . By definition of Sol(D(i)), there is only
one variable assignment Xj ∈ C that has xv = 1 for xv ∈ Xj . As a result, for each layer, there is
exactly one path pj with a 1-arc in that layer, and the flow through that arc is 1 by construction of
y(i). Therefore, the 1-arc constraints (2a) are satisfied, and y(i) is therefore feasible for flow model
(F (i)).

As a last step for establishing monotonicity of the objective function, we show that Sol(D(i+1)) ⊂
Sol(D(i)) in the following lemma:

Lemma 3.5. Consider any non-terminal iteration i. Then Sol(D(i+1)) ⊂ Sol(D(i))

Proof. From Lemmata 2.1 and 2.2 we conclude that the separation algorithm (Algorithm 2) re-
moves at least one label-specified path and does not introduce new label-specified paths. Since
each r-t path on D(i) corresponds to a variable assignment, it follows that X (i+1) ⊂ X (i).

Consider any C ∈ Sol(D(i+1)), and recall that C ⊆ X (i+1). By the previous result, it follows that
C ⊂ X (i). This means that C ∈ Sol(D(i)), and it follows that all elements of Sol(D(i+1)) are also
in Sol(D(i)).

Let X ∈ X (i) \ X (i+1) denote the variable assignment encoded by the removed r-t path. Since
this conflict was detected, X was part of an infeasible color assignment, and there exists some
C ′ ∈ Sol(D(i)) such that X ∈ C ′. But since X /∈ X (i+1), it follows that C ′ /∈ Sol(D(i+1)).

17

Using the results established in this section, we can now show monotonicity:

Theorem 3.1. val(y∗(i)) is monotonically increasing in i.

Proof. Consider some iteration i of Algorithm 3. Let y∗(i) ∈ Sol(F (i)) denote an optimal solution
and let C ′(i) denote any element of Sol(D(i)) corresponding to y∗(i) (which exists by Lemma 3.3).
Furthermore, in the successive iteration, let C∗(i+1) denote a smallest cardinality element of
Sol(D(i+1)), and let y′(i+1) denote the corresponding solution vector (which exists by Lemma 3.4).

By definition, val(y∗(i)) ≤ val(y(i)) ∀y(i) ∈ Sol(F (i)). Consider any reduced solution y(i) ∈
Sol(F (i)). By Lemma 3.3, for any C(i) corresponding to y(i), val(y(i)) = |C(i)|, and it follows
that |C ′(i)| ≤ |C(i)| for all C(i) corresponding to reduced solutions. For any non-reduced solution
y(i) ∈ Sol(F (i)), we can conclude using Corollary 3.3.1 that |C ′(i)| < |C(i)| for all C(i) corresponding
to non-reduced solutions. It follows that C ′(i) is a smallest cardinality element of Sol(D(i)).

From Lemma 3.5, it follows that C∗(i+1) ∈ Sol(D(i)). Then |C ′(i)| ≤ |C∗(i+1)| because C ′(i) is a
smallest cardinality element of Sol(D(i)).

For any smallest cardinality C∗(i+1) ∈ Sol(D(i+1)), it holds by definition that |C∗(i+1)| ≤ |C(i+1)|
for all C(i+1) ∈ Sol(D(i+1)). From Lemma 3.4, it follows that |C∗(i+1)| = val(y′(i+1)). We can
then conclude that val(y′(i+1)) ≤ val(y(i+1)) ∀y(i+1) ∈ Sol(F (i+1)), which means that y′(i+1) is an
optimal solution to flow model (F (i+1)).

Combining these results, we find that val(y∗(i)) = |C ′(i)| ≤ |C∗(i+1)| = val(y′(i+1)) = val(y∗(i+1)).
We conclude that val(y∗(i)) is monotonically increasing in i.

3.3 Proof of Theorem 3.2
The optimal objective value can only grow between two successive iterations as a result of Theo-
rem 3.1. We show that this growth is bounded in the following theorem, which is the main result
of this chapter:

Theorem 3.2. If Algorithm 3 detects a conflict for an optimal solution y∗(i) to flow model (F (i))
in some iteration i, then for iteration i+1, val(y∗(i+1)) = val(y∗(i)) or val(y∗(i+1)) = val(y∗(i))+1.

Proof. Consider an optimal solution y∗(i) to flow model (F (i)) with objective value f , and sup-
pose y∗(i) was decomposed into r-t paths p1, ..., pf where a conflict was detected along some
path pc = (a1, a2, ..., an) ∈ P(D(i). Such a decomposition necessarily exists as a consequence
of Lemma 3.3. Consider the path (aj , ..., ak−1, ak) with ℓ(ak) = 1 along which the conflict was
detected. Lemma 2.1 states that, after application of the separation algorithm (Algorithm 2), the
label-specified path (ℓ(aj), ..., ℓ(ak−1), ℓ(ak)) with ℓ(ak) = 0 still exists in iteration i + 1, and all
other label-specified r-t paths in the flow decomposition of y∗(i) remain unchanged; only the 1-arc
ak is removed, which is part of only 1 r-t path in the decomposition by the 1-arc constraints (2a).

Let p′c denote the r-t path on D(i+1) defined by arcs (a′1, a
′
2, ..., a

′
n) such that ℓ(a′h) = ℓ(ah) for

h = 1, ..., k − 1, k + 1, ..., n and ℓ(a′k) = 0. Consider a new vector y′(i+1) obtained as follows:

1. Initialize y
′(i+1)
a := 0 for all a ∈ A(i+1).

2. For j = 1, ..., c− 1, c+ 1, ..., f , set y′(i+1) := ϕ(y′(i+1), pj , 1).

3. Set y′(i+1) := ϕ(y′(i+1), p′c, 1).

Then val(y′(i+1)) = val(y∗(i)). Note that y′(i+1) satisfies the integrality constraints (2c) and the
flow conservation constraints (2b) because of Lemma 3.2. Furthermore, since y∗(i) satisfies all 1-arc
constraints (2a), y′(i+1) is feasible for all 1-arc constraints except for the 1-arc constraint in layer
k.

Consider the r-t path pk=1 = (a1, ..., ak, ..., an) with ℓ(ak) = 1 and ℓ(al) = 0 for l = 1, ..., k− 1, k+
1, ..., n. This path necessarily exists as a consequence of Corollary 3.1.2. Then, let
y(i+1) := ϕ(y′(i+1), pk=1, 1). This new vector satisfies the 1-arc constraints (2a) in layer k, and the
above operation does not influence 1-arc constraints in other layers since only flow through a 0-arc
in those layers is changed. Furthermore, the flow conservation constraints (2b) and the integrality

18

constraints (2c) are satisfied for y′(i+1), and therefore also for y(i+1) by Lemma 3.2. As a result,
there exists a solution y(i+1) to flow model (F (i+1)) with val(y(i+1)) = val(y∗(i)) + 1.

By monotonicity of the objective function (as established in Theorem 3.1), val(y∗(i+1)) ≥ val(y∗(i))
and since the flow is integral, an optimal solution y∗(i+1) can only have value val(y∗(i+1)) =
val(y∗(i)) or val(y∗(i+1)) = val(y∗(i)) + 1.

19

4 Chvátal-Gomory cut reusage

As mentioned in Observation 3.1, nearly all observed facet-defining inequalites for flow model (F)
were r-t cuts. Furthermore, we showed that those r-t cuts bear a strong relation with objective
cuts on decision diagrams. Because we did not find any patterns in the remaining facet-defining
inequalities, we approached the strengthening of flow model (F) from another angle: general
purpose cutting planes. We theorized that the same trick of using information of previous iterations
could to these cutting planes, and therefore formulated the following question:

(Q2) How can cutting planes for the constrained network flow integer linear program
in some iteration of van Hoeve’s graph coloring algorithm be reused for successive iter-
ations?

To answer this question, we considered the usage of Chvátal-Gomory cutting planes, which are
defined as follows:

Definition 4.1. Let P = {y ∈ R : By ≥ e} be a polyhedron, and let α⊺y ≥ β be valid for P ,
where α ∈ Zn. Then a Chvátal-Gomory cutting plane (CG-cut) is an inequality α⊺y ≥ ⌈β⌉ that is
valid for P ∩ Zn.

These types of cutting planes can strengthen formulations by cutting off non-integer elements of
the polyhedron P if β < ⌈β⌉ and P ∩{y : α⊺y = β} ≠ ∅, but they remain valid for the integer hull.

One method for finding CG-cuts is through the use of multiplier vectors u ∈ [0, 1)m, as evidenced
by the following lemma:

Lemma 4.1 (Adaptation of Lemma 5.13 by [12]). Let P = {y ∈ R : By ≥ e} be a polyhedron with
B ∈ Zm×n and e ∈ Rm. Then every CG cut for P can be expressed as u⊺By ≥ ⌈u⊺e⌉ for some
0 ≤ u⊺ < 1 such that u⊺B ∈ Zn, or is implied by such an inequality and By ≥ e

As a consequence of this lemma, we can find CG-cuts by finding multiplier vectors u such that
uB ∈ Zn. Preferably, we wish to find a multiplier vector such that the corresponding CG-cut
removes as much of the polyhedron P as possible, but finding such cuts is generally difficult.
Instead, we compute a fractional solution ŷ, and attempt to find a CG-cut that cuts off this
solution such that the distance between the cutting plane and the point ŷ is maximized. For such
a CG-cut α⊺y ≥ ⌈β⌉, we measure this distance by the violation, which is equal to ⌈β⌉ − α⊺ŷ.
Finding such cuts can be expensive, but if a CG-cut in some iteration can be reused in successive
iterations, we can pay the initial computational price of generating such a CG-cut to win on time
in future iterations. Such an approach would require an efficient algorithm for cheaply generating
reused CG-cuts.

In this chapter, we derive a scheme for reusing CG cuts in successive iterations. In Section 4.1, we
show an MILP-formulation that finds a CG-cut α⊺y ≥ ⌈β⌉ that cuts off some fractional point ŷ with
maximum violation. In Section 4.2, we show a method for reusing CG-cuts and some structural
insight about the method. In Section 4.3, we develop an efficient algorithm for reusing CG-cuts.
In Section 4.4, we show our experimental results on the efficacy of the cut reusage scheme, and we
discuss those results in Section 4.5.

To aid our discussions, we introduce some additional notation. We let fr(x) = x − ⌊x⌋ be the
fractional part of some scalar x. Additionally, for some decision diagram D = (N,A), we let
A1 = {a ∈ A : ℓ(a) = 1} be the set of 1-arcs A0 = {a ∈ A : ℓ(a) = 0} be the set of 0-arcs.

4.1 Maximum violation CG-cuts for P flow

In this section, we show a method for finding maximum violation CG-cuts. Consider any binary
decision diagram D = (N,A) with set of layers L. Let 0 < ε < 1 and let ŷ be some fractional
optimal solution to the LP relaxation (F rel). We introduce the following mixed-integer linear

20

program (MILP) for finding maximum violation CG-cuts given this fractional optimal solution:

min
∑
a∈A

ŷaµa +
∑
a∈A1

ŷaπL(a) − γ

s.t. αa = πj + λu − λv + µa ∀a = (u, v) ∈ A1, L(a) = j, (6a)

αa = λu − λv + µa ∀a = (u, v) ∈ A0, (6b)

γ −
∑
j∈L

πj ≤ 1− ε, (6c)

λr = λt = 0, (6d)

αa ∈ Z ∀a ∈ A, (6e)

γ ∈ Z, (6f)

πj ∈ [0, 1) ∀j ∈ L, (6g)

λu ∈ [0, 1) ∀u ∈ N, (6h)

µa ∈ [0, 1) ∀a ∈ A. (6i)

The correctness of this formulation is shown in the following theorem:

Theorem 4.1. Consider a decision diagram D = (N,A) with set of layers L. Let A = A1 ∪ A0,
with A1 being the set of 1-arcs and A0 being the set of 0-arcs. Furthermore, let 0 < ε < 1 and let
ŷ be a solution to the LP relaxation (F rel) on D. Then the MILP-formulation (6) yields a CG-cut
α⊺y ≥ γ with maximum violation of at most 1− ε with respect to ŷ.

Proof. Consider Formulation (3) (the LP relaxation (F rel). From Lemma 4.1, it follows that, for
any vector u such that 0 ≤ u < 1 and u⊺B ∈ ZA, the inequality u⊺B ≥ ⌈u⊺e⌉ is a CG-cut.

We firstly construct such a vector u by splitting it into four parts, depending on which rows of B
those parts are multiplied with: 1) π ∈ [0, 1)L×1 for Constraints (3a), 2) λ+ ∈ [0, 1)(N\{r,t})×1 for
Constraints (3b) (with the dimension being (N \ {r, t})× 1 because there are no flow conservation
Constraints for the root and sink node), 3) λ− ∈ [0, 1)(N\{r,t})×1 for Constraints (3c) and 4)
µ ∈ [0, 1)A×1 for Constraint (3d).

We then let u′⊺ = (π⊺, (λ+)⊺, (λ−)⊺, µ⊺), which by construction meets the requirement that 0 ≤
u′ < 1. For u′⊺B ≥ ⌈u′⊺e⌉ to be valid for PCh, it is required that u′⊺B ∈ ZA. To that end, we
introduce a vector α ∈ ZA such that α⊺ = u′⊺B, i.e.:

α⊺ = π⊺Λ + (λ+)⊺In(D)− (λ−)⊺In(D) + µ⊺Im.

We then define λ′ := (λ+ − λ−) with λ′ ∈ (−1, 1)(N\{r,t})×1 and simplify this equation to:

α⊺ = π⊺Λ + λ′⊺In(D) + µ⊺Im. (7)

We can further simplify this equation by firstly noting that Λj,a = 1 if and only if a ∈ A1 and
L(a) = j. Then π⊺Λ∗,a1

= πj for any arc a1 ∈ A1 that is a 1-arc in layer j, and π⊺Λ∗,a0
= 0 for

any 0-arc a0 ∈ A0.

Secondly, because In(D) is the node-arc incidence matrix for all nodes except r and t, In(D)u,a = 1
if and only if u ∈ N \{r, t} is the head of arc a ∈ A, and In(D)v,a = −1 if and only if v ∈ N \{r, t}
is the tail of arc a. Therefore, for all arcs a = (u, v) ∈ A with u, v ∈ N \ {r, t}, it follows that
λ′⊺In(D)∗,a = λ′

u − λ′
v. Conversely, for arcs ar = (r, v) ∈ A, we find that λ′⊺In(D)∗,ar = −λ′

v and
for arcs at = (u, t) ∈ A, we have λ′⊺In(D)∗,at

= λ′
u. For compact notation, we introduce λr and

λt with λr = λt = 0, and we let λ⊺ = (λs, λ
′⊺, λt) ∈ (−1, 1)N×1.

21

Lastly, µ⊺Im = µ⊺ and we conclude that equations (7) read:

αa = πj + λu − λv + µa ∀a = (u, v) ∈ A1 s.t. L(a) = j, (8a)

αa = λu − λv + µa ∀a = (u, v) ∈ A0, (8b)

λr = λt = 0, (8c)

α ∈ ZA, (8d)

π ∈ [0, 1)L, λ ∈ (−1, 1)N , µ ∈ [0, 1)A. (8e)

Then for any α⊺ = u′⊺B satisfying this system it follows that α⊺y ≥ ⌈u′⊺e⌉ is a CG-cut. Since
the system (8) matches Constraints (6a), (6b), (6d), (6e), (6g), (6h) and (6i), we conclude that
Formulation (6) finds an α such that α⊺y ≥ ⌈u′⊺e⌉ is a CG-cut.

Let ⌈u′⊺e⌉ = γ ∈ Z. Then, for a CG-cut with a violation of at most 1− ε, it should hold that:

1− ε ≥ γ − u′⊺e

= γ − π⊺1− λ+0− λ−0− µ0

= γ −
∑
j∈L

πj ,

which matches Constraint (6c). Then Formulation (6) finds an α such that α⊺y ≥ ⌈u′⊺e⌉ is a
CG-cut with a violation of at most 1− ε.

A CG-cut a⊺y ≥ γ with the largest violation can be found by minimizing α⊺y − γ. Substituting
equations (8a) and (8b) in this expression, we obtain:

α⊺ŷ − γ =
∑
a∈A0

αaŷa +
∑
a∈A1

αaŷa − γ,

=
∑

a=(u,v)∈A0

(λu − λv + µa) ŷa +
∑

a=(u,v)∈A1

(
πL(a) + λu − λv + µa

)
ŷa − γ,

=
∑
a∈A

µaŷa +
∑
a∈A1

πL(a)ŷa +
∑

a=(u,v)∈A

λuŷa −
∑

a=(u,v)∈A

λv ŷa − γ,

=
∑
a∈A

µaŷa +
∑
a∈A1

πL(a)ŷa +
∑
u∈V

∑
a∈δ+(u)

λuŷa −
∑
v∈V

∑
a∈δ−(v)

λv ŷa − γ. (9)

Note that ŷ ∈ P , and therefore ŷ satisfies the flow conservation constraints (2b). As a result, for
any u ∈ N \ {r, t}:

∑
a∈δ+(u)

λuŷa −
∑

a∈δ−(u)

λuŷa = λu

 ∑
a∈δ+(u)

ŷa −
∑

a∈δ−(u)

ŷa

 = 0.

Furthermore, recall that λt = λr = 0. Combining these two facts, Equation (9) reduces to:

α⊺ŷ − γ =
∑
a∈A

µaŷa +
∑
a∈A1

πL(a)ŷ(a)− γ. (10)

Then a largest violation CG-cut can be found by minimizing
∑

a∈A µaŷa +
∑

a∈A1
πL(a)ŷ(a) − γ,

which matches the objective function of Formulation (6).

This result implies that the choice of λ does not affect the objective function directly, and only
affects integrality of the Constraints (6a). For any λu, u ∈ N valid for Constraints (6a) such that
1 < λu < 0, it follows that λ′

u := λu + 1 is also valid for those constraints. Then any λu, u ∈ N
can be restricted to the domain [0, 1), which completes Constraints (6h).

4.2 Theoretical results on CG-cut reusage
As outlined in the introduction of this chapter, we attempt to devise a method that finds CG-cuts
in some iteration and reuses those cuts efficiently in successive iterations. Recall that, through

22

Formulation (6), a CG-cut can be found by finding appropriate values of the vectors λ ∈ [0, 1)N ,
µ ∈ [0, 1)A and π ∈ [0, 1)L such that Constraints (6a), (6b) and (6d) are satisfied. However, finding
a maximum violation CG-cut with this method is computationally expensive.

In each iteration of Algorithm 3, the number of arcs and nodes change, and so do the dimensions
of λ and µ. However, the number of layers remains constant throughout the iterations. As such,
we theorize that the π-values derived in some iteration i can be reused to generate cutting planes
in iterations j > i. Suppose we then find an efficient algorithm to calculate corresponding µ-
and λ-values to yield a maximum violation CG-cut. Then with an initial investment of solving
Formulation (6), we can efficiently generate CG-cuts in successive iterations. In this section, we
present theoretical insights that substantiate the design of such an algorithm.

Suppose, in some iteration, we solved the LP relaxation (F rel) on a decision diagram D = (N,A)
and obtained a fractional optimal solution ŷ. Furthermore, assume that we obtained some vector
π by solving Formulation (6) in a previous iteration, with πj > 0 for some j ∈ L. To simplify
notation, we introduce the vector π̂, which we define as follows:

π̂a =

{
πj if a is a 1-arc with L(a) = j,

0 otherwise.
(11)

This vector allows us to write Constraints (8b) and (8a) in a single sentence. Note that, since π̂
is now fixed, then γ is known as well by Constraints (6c) and (6f). As a result, we can rewrite
Formulation (6) to:

min
∑
a∈A

ŷaµa

s.t. π̂(u,v) + λu − λv + µ(u,v) ∈ Z ∀(u, v) ∈ A, (12a)

λr = λt = 0, (12b)

λu ∈ [0, 1) ∀u ∈ N, (12c)

µa ∈ [0, 1) ∀a ∈ A. (12d)

With this new formulation, the problem of finding a CG-cut α⊺ŷ ≥ γ given π̂ transforms to a
labelling problem where each node u ∈ N is assigned a label λu ∈ [0, 1) and each arc a ∈ A is
assigned a label µa ∈ [0, 1) such that Constraints (12a) are satisfied. See 6 for an illustration of
this analogy to a labelling problem.

Because only the µ-values incur costs in this formulation, λ should be chosen such that integrality
in Constraints (12a) is maintained while simultaneously avoiding µ > 0.

A first important insight about Formulation (12) can be obtained by reconsidering its objective
function. Recall from the proof of Theorem 4.1 that the objective function of Formulation (6) is
a simplification of minα⊺y − γ. But then the objective function of Formulation (12) is essentially
given by minα⊺y, as the term γ is fully dependent on π̂, which is now a constant. What we
learn from this realization is that our only objective for Formulation (12) is to keep α as small as
possible—though of course with respect to the “costs” ŷ.

Since π̂, µ and λ are all restricted to the domain [0, 1), it follows that α(u,v) = π̂(u,v) + λu − λv +
µ(u,v) ∈ {0, 1, 2}. Furthermore, any arc (u, v) with π̂(u,v) + λu > λv means that µ(u,v) should be
chosen to be larger than 0 to maintain integrality. But this immediately results in an α(u,v) ≥ 1,
which increases the objective function and is therefore undesirable. We refer to the situation that
π̂(u,v) + λu > λv as a jump. This leads us to our first insight about Formulation (12):

Observation 4.1. To optimize Formulation (12), λ should be chosen such that jumps—situations
with π̂(u,v) + λu > λv—are avoided as much as possible.

Note that a jump is sometimes unavoidable; in the case of π̂(u,v)+λu > 1, it follows that α(u,v) > 0
regardless of the choice of λv.

A second insight about Formulation (12) follows from formulating Constraints (12a) as µa =
fr(λv − λu − π̂(u,v)) for all (u, v) ∈ A. By substituting these reformulated constraints into the

23

Figure 6: Subgraph of some decision diagram D to illustrate the physical interpretation of λ, µ and π.
Note that π̂ is related to the arcs, but π, the vector that is used to create π̂, is related to the
layers as depicted in this example.

objective function, we obtain:

g(λ) =
∑

(u,v)∈A

ŷ(u,v)fr
(
λv − λu − π̂(u,v)

)
. (13)

This substitution can be used to prove the following property of Formulation (12):

Theorem 4.3. Consider a decision diagram D = (N,A). Let ŷ be a fractional optimal solution
to the LP relaxation (F rel), and let π̂ ∈ [0, 1)A×1 be some vector with π̂a = 0 for all a ∈ A0. Then
there exists a solution (λ∗, µ∗) that minimizes Formulation (12) such that, for all v ∈ N \ {r, t},
λ∗
v = fr

(
λ∗
u∗

+ π̂(u∗,v)

)
for some direct predecessor u∗ of v.

The relevance of Theorem 4.3 may not be immediately clear. As such, we will first provide an
interpretation of this theorem, and we prove the theorem afterwards.

4.2.1 Implications of Theorem 4.3

Consider some decision diagram D = (N,A), some π̂ ∈ [0, 1)A with π̂a = 0 for all a ∈ A0 and some
fractional optimal solution to the LP relaxation (F rel) ŷ. We define a predecessor labelling to be
any solution (λ, µ) to Formulation (12) such that, for all v ∈ N \ {r, t}, λv = fr

(
λu∗ + π̂(u∗,v)

)
for some direct predecessor u∗ of v. Essentially, v inherits the label from this predecessor u∗.
Theorem 4.3 states that there exists an optimal solution to Formulation (12) that is a predecessor
label labelling. Therefore, an optimal solution to Formulation (12) can be found by only considering
all predecessor labellings. For a decision diagram D = (N,A) with a finite number of arcs, this
means that the solution space for Formulation (12) can be truncated to a finite solution space.

We can even obtain results on the size of this solution space by establishing the link between
predecessor labellings and r-arborescences. For any decision diagramD = (N,A), an r-arborescence
is an acyclic subgraph (N,T) of D such that each v ∈ N \ {r} has exactly one incoming arc. An
r-arborescence can be seen as the directed analogue of a rooted spanning tree. See Figure 7 for an
example of such an r-arborescence.

For any predecessor labelling (λ′, µ′) that is a solution to Formulation (12), each node v ∈ N \{r, t}
inherits a node label from exactly one direct predecessor. As a result, we can construct an r-
arborescence (N \ {t}, T) by including only the arcs over which each node v ∈ N \ {r, t} inherits a
node label, i.e.:

T =
{
(u, v) ∈ A : λ′

v = fr
(
λ′
u + π̂(u,v)

)
, |δ−(v)| = 1 ∀v ∈ N \ {r, t}.

}
24

(a) Example decision diagram (b) R-arborescence on the example deci-
sion diagram

Figure 7: An example decision diagram D = (N,A) (7a) and an example of an r-arborescence (N \
{t}, T), where all arcs a ∈ T are colored red. Each node N \ {r, t} has an incoming arc.
These arcs represent from which ancestor each node “inherits” their node label.

The sink-node t is excluded from this r-arborescence because it has label λt = 0 by default.

Equivalently, for any r-arborescence (N \ {t}, T) on D, we can set λv := fr
(
λ′
u + π̂(u,v)

)
(starting

from the root node r and updating labels layer by layer) to obtain a predecessor label labelling
that is a solution to Formulation (12). If we then find an r-arborescence with a corresponding λ
that minimizes g(λ)—the reformulated objective function of Formulation (12)—we find an optimal
solution to Formulation (12). Consequently, an optimal solution to the following problem is also
an optimal solution to Formulation (12):

Problem 4.1 (Arborescence labelling problem).

Input: a decision diagram D = (N,A), a vector π̂ ∈ [0, 1)A with π̂a = 0 for all a ∈ A0, and a
fractional optimal solution ŷ to the LP relaxation (F rel).

Feasible solutions: acyclic subgraphs (N \ {t}, T) of D = (N,A) such that T ⊆ A and every
v ∈ N \ {r, t} has exactly one incoming arc.

Goal: find such an acyclic subgraph (N \{t}, T) that minimizes g(λ) with λv := fr
(
λ′
u + π̂(u,v)

)
for all (u, v) ∈ T .

The solution set of Problem 4.1 is equal to the number of distinct r-arborescences on D. Lemma 4.2
gives an upper bound to the number of r-arborescences on D. As a result, it also provides an upper
bound on the size of the “truncated” solution space of Formulation (12):

Lemma 4.2. The number of distinct r-arborescences (N \ {t}, T) on some decision diagram D =
(N,A) is less than 2|N |−2.

Proof. Under any r-arborescence (N \ {t}, T), each node v ∈ N \ {r, t} has exactly one incoming
arc. In each node v ∈ N \ {r, t}, there are |δ−(v)| decisions that can be made for arcs to include
in the r-arborescence, so the total number of distinct r-arborescences on D is

∏
v∈N\{r,t} |δ−(v)|.

25

Recall that t is an initial node, which means that t has an incoming 0-arc by Lemma 3.1. Likewise,
the 1-arc from the initial node that is a predecessor of t cannot be redirected to any other node
because t is the sole node in its layer. It follows that |δ−(t)| ≥ 2. Furthermore, since each node on
D can have at most two outgoing arcs, it follows that:

2|N | − 2 ≥
∑

v∈N\{t}

|δ+(v)|,

=
∑

v∈N\{r}

|δ−(v)|,

≥
∑

v∈N\{r,t}

|δ−(v)|+ 2,

or 2|N | − 4 ≥
∑

v∈N\{r,t} |δ−(v)|.

Consider the AM-GM inequality, which states that, for a list of non-negative numbers, the arith-
metic mean is larger or equal than the geometric mean. Using this inequality and our previous
result, we obtain:

|N |−2

√ ∏
v∈N\{r,t}

|δ−(v)| ≤ 1

|N | − 2

∑
v∈N\{r,t}

|δ−(v)| ≤ 1

|N | − 2
(2|N | − 4) = 2.

It then follows that ∏
v∈N\{r,t}

|δ−(v)| ≤ 2|N |−2,

from which we conclude that the number of distinct r-arborescences (N \ {t}, T) on some decision
diagram D = (N,A) is bounded by 2|N |−2.

Theorem 4.2. An optimal solution to Formulation (12) can be found in time O(|N |2|N |).

Proof. For any r-arborescence (N \ {t}, T) on some decision diagram D = (N,A), calculating
the costs per arc can be done O(1), and since there are at most 2|N | − 2 arcs on a decision
diagram, calculating g(λ) for that r-arborescence can be done in O(|N |) time. By enumerating
over all possible r-arborescences on D—which is done in time O(2|N |) by Lemma 4.2—calculating
the costs per r-arborescence (time O(|N |)) and storing the r-arborescence with the minimum cost
(time O(|1|)), we find an optimal solution to Problem 4.1 in time O(|N |2|N |). This r-arborescence
can then be translated to a solution to Formulation (12).

In conclusion, the important implications of Theorem 4.3 are that the Formulation (12) can be
solved by finding a minimum cost r-arborescence with respect to g(λ) (Problem 4.1). This truncates
the solution space of Formulation (12) to a finite solution space. Furthermore, there exists an
O(|N |2|N |) time algorithm for solving Formulation (12).

4.2.2 Proof of Theorem 4.3

Now that the relevance of Theorem 4.3 has been established, we show its proof. In order to prove
this theorem, we define a function ζv(λv) : [0, 1) 7−→ R≥0 as follows:

ζv(λv) =
∑

(u,v)∈δ−(v)

ŷ(u,v)fr
(
λv − λu − π̂(u,v)

)
+

∑
(v,w)∈δ+(v)

ŷ(v,w)fr
(
λw − λv − π̂(v,w)

)
. (14)

This function expresses all arc-costs in g(λ) that are influenced by a change in λv. Essentially, it’s
the local cost-function of λv. This function ζv(λv) has the following form, arising from the fact
that ŷ satisfies the flow conservation constraints (2b):

26

Proposition 4.1. Consider a node v ∈ N . Let Uv ⊆ N be the set of direct predecessors of v with
fixed labels λu ∈ [0, 1) for u ∈ Uv, and let Wv ⊆ N be the set of direct successors of v with fixed
labels λw ∈ [0, 1) for w ∈ Wv. Furthermore, let π̂ ∈ [0, 1)A×1 be some vector with π̂a = 0 for
all a ∈ A0, and let ŷ denote a fractional solution to the LP relaxation (F rel). Then ζv(λv) is a
piece-wise constant function with breakpoints (λu + π̂u,v) for all u ∈ Uv and (λw − π̂v,w) for all
w ∈Wv.

Proof. Let ρu = fr(λu + π̂u,v) for u ∈ Uv, and let ρw = fr(λw − π̂w,v) for w ∈ Wv. Consider two
nodes v1, v2 ∈ Uv ∪Wv such that there is no other node v′ such that ρv′ lies between ρv1 , i.e. ρv2
ρv1 < ρv2 and ρv′ /∈ (ρv1 , ρv2) for all v

′ ∈ Uv ∪Wv. Furthermore, consider any λ′
v ∈ (ρv1 , ρv2) and

any ε such that 0 < ε < ρv2 − λ′
v.

By definition of ε and λ′
v, it holds that λ

′
v+ε < ρv′ for any ρv′ > λ′

v. As a result, fr (λ′
v + ε− ρv′) =

fr (λ′
v − ρv′)+ ε, and fr (ρv′ − λ′

v − ε) = fr (ρv′ − λ′
v)− ε. This and the fact that ŷ satisfies the flow

conservation constraints (2b), imply that:

ζv(λ
′
v + ε) =

∑
(u,v)∈δ−(v)

ŷ(u,v)fr (λ
′
v + ε− λu − π̂u,v) +

∑
(v,w)∈δ+(v)

ŷ(v,w)fr (λw − λ′
v − ε− π̂v,w) ,

=
∑

(u,v)∈δ−(v)

ŷ(u,v)fr (λ
′
v − ρu) +

∑
(v,w)∈δ+(v)

ŷ(v,w)fr (ρw − λ′
v) + ε

∑
(u,v)∈δ−(v)

ŷ(u,v) − ε
∑

(v,w)∈δ+(v)

ŷ(v,w),

=
∑

(u,v)∈δ−(v)

ŷ(u,v)fr (λ
′
v − ρu) +

∑
(v,w)∈δ+(v)

ŷ(v,w)fr (ρw − λ′
v) = ζv(λ

′
v),

from which we conclude that ζv(λv) is constant for λv ∈ (ρv1 , ρv2).

Let ρmin := min {ρv′ : v′ ∈ Uv ∪Wv} and ρmax := max {ρv′ : v′ ∈ Uv ∪Wv}. Then there is no
ρv′ , v′ ∈ Uv ∪ Wv in the interval (ρmax, 1 + ρmin). It follows by the previous derivation that
ζv(λv) is constant for λv ∈ (ρmax, 1 + ρmin). Furthermore, fr (λv − (1 + ρmin)) = fr (λv − ρmin) and
fr (1 + ρmin − λv) = fr (ρmin − λv), and consequently, ζv(λv) is also constant for λv ∈ (ρmax, 1) ∪
[0, ρmin). Then ζv(λv) is a piecewise constant function with breakpoints ρu = (λu+π̂u,v) for u ∈ Uv

and ρw = (λw + π̂w,v) for w ∈Wv.

The fact that ζv(λv) is a piecewise constant function can be used to prove the following property
of ζv(λv):

Lemma 4.3. Consider a node v ∈ N and let Uv ⊆ N be the set of direct predecessors of v
with fixed labels λu ∈ [0, 1) for u ∈ Uv. Furthermore, let π̂ ∈ [0, 1)A×1 be some vector with
π̂a = 0 for all a ∈ A0, and let ŷ denote a fractional solution to the LP relaxation (F rel). Then
λ∗
v := fr

(
λu∗ + π̂(u∗,v)

)
for some u∗ ∈ Uv minimizes ζv(λv).

Proof. Let Wv ⊆ N be the set of direct successors of v with fixed labels λw ∈ [0, 1) for w ∈ Wv.
Furthermore, let ρu = fr(λu + π̂u,v) for u ∈ Uv and let ρw = fr(λw + π̂w,v) for w ∈ Wv. As
shown in Proposition 4.1, these values ρu and ρw are the breakpoints of the local cost function
ζv. We prove this lemma by considering three consecutive values ρv1 , ρu, ρv2 and examining if
the local cost function increases or decreases when going from ρv1 to ρv2 . We show that the local
cost function decreases when going from ρu1 to ρu2 for predecessor nodes u1, u2 ∈ Uv such that
ρu1 < ρu2 . Subsequently, we show that the local cost function increases when going from ρw1 to
ρw2

for successors w1, w2 ∈ Wv such that ρw1
< ρw2

. We do so by considering what happens on
the breakpoint in between those two points. Because breakpoints may overlap, we instead consider
a set of breakpoints with the same value.

Assume there exist a set of nodes U ′
v = {u′

1, ..., u
′
k} ⊆ Uv, and nodes v1, v2 ∈ Uv ∪Wv such that

ρv1 < ρu′
1
= ... = ρu′

k
< ρv2 , and there is no other v′ ∈ (Uv ∪Wv) \ U ′

v with ρv′ ∈ (ρv1 , ρv2). Let
u′ ∈ U ′

v, and consider some ε > 0 such that ε < ρv2−ρu′ and ε < ρu′−ρv1 . Then fr (ρv′ − ρu′ + ε) =
fr (ρv′ − ρu′) + ε, and fr (ρu′ − ε− ρv′) = fr (ρu′ − ρv′) − ε for all v′ ∈ (Uv ∪Wv) \ U ′

v. Using this
fact, the fact that ŷ satisfies the flow conservation constraints (2b) and because λr = λt = 0, we

27

can show that the following holds:

ζv(ρu′ − ε) =
∑

(u,v)∈δ−(v)

ŷ(u,v)fr
(
ρu′ − ε− λu − π̂(u,v)

)
+

∑
(v,w)∈δ+(v)

ŷ(v,w)fr
(
λw − ρu′ + ε− π̂(v,w)

)
,

=
∑

(u,v)∈δ−(v)
u/∈U ′

v

ŷ(u,v)fr (ρu′ − ρu)−
∑

(u,v)∈δ−(v)
u/∈U ′

v

ŷ(u,v)ε+
∑

(u,v)∈δ−(v)
u∈U ′

v

ŷ(u,v)fr (ρu − ε− ρu)

+
∑

(v,w)∈δ+(v)

ŷ(v,w)fr (ρw − ρu′) +
∑

(v,w)∈δ+(v)

ŷ(v,w)ε,

= ζvρu′)−
∑

(u,v)∈δ−(v)
u/∈U ′

v

ŷ(u,v)ε+
∑

(u,v)∈δ−(v)
u∈Uv

ŷ(u,v) (1− ε) +
∑

(v,w)∈δ+(v)

ŷ(v,w)ε,

= ζvρu′)−
∑

(u,v)∈δ−(v)

ŷ(u,v)ε+
∑

(v,w)∈δ+(v)

ŷ(v,w)ε+
∑

(u,v)∈δ−(v)
u∈U ′

v

ŷ(u,v) = ζvρu′) +
∑

(u,v)∈δ−(v)
u∈U ′

v

ŷ(u,v).

Since ρu′ + ε− ρu′ = ε, we can show using the same derivation and arguments that ζv(ρu′ + ε) =
ζv(ρu′). We conclude that, for u1 ∈ Uv and u2 ∈ Uv, if ρv′ /∈ (ρu1

, ρu2
) for all v′ ∈ Uv ∪Wv, then:

ζv(ρu1) ≥ ζv(ρu2) (15)

Assume there exist a set of nodes W ′
v = {w′

1, ..., w
′
m} ⊆ Wv and nodes v1, v2 ∈ Uv ∪Wv such that

ρv1 < ρw′
1
= ... = ρw′

m
< ρv2 , and there is no other v′ ∈ (Uv ∪Wv) \W ′

v with ρv′ ∈ (ρv1 , ρv2).
Let w′ ∈ W ′

v and consider some ε > 0 such that ε < ρv2 − ρw′ and ε < ρw′ − ρv1 . Then it
follows that fr (ρv′ − ρw′ − ε) = fr (ρv′ − ρw′) − ε and fr (ρw′ + ε− ρv′) = fr (ρw′ − ρv′) + ε for all
v′ ∈ (Uv ∪Wv) \W ′

v. This fact and the fact that ŷ satisfies the flow conservation constraints (2b)
imply the following:

ζv(ρw′ + ε) =
∑

(u,v)∈δ−(v)

ŷ(u,v)fr (ρw′ + ε− λu − π̂u,v) +
∑

(v,w)∈δ+(v)

ŷ(v,w)fr (λw − ρw′ − ε− π̂v,w) ,

=
∑

(u,v)∈δ−(v)

ŷ(u,v)fr (ρw′ − ρu) +
∑

(u,v)∈δ−(v)

ŷ(u,v)ε+
∑

(v,w)∈δ−(v)
w/∈W ′

v

ŷ(v,w)fr (ρw − ρw′)

−
∑

(v,w)∈δ−(v)
w/∈W ′

v

ŷ(v,w)ε+
∑

(v,w)∈δ−(v)
w∈W ′

v

ŷ(v,w)fr (ρw − ρw′ − ε)

= ζv(ρw′) +
∑

(u,v)∈δ−(v)

ŷ(u,v)ε−
∑

(v,w)∈δ−(v)
w/∈W ′

v

ŷ(v,w)ε+
∑

(v,w)∈δ−(v)
w∈W ′

v

ŷ(v,w) (1− ε) ,

= ζv(ρw′) +
∑

(u,v)∈δ−(v)

ŷ(u,v)ε−
∑

(v,w)∈δ+(v)

ŷ(v,w)ε+
∑

(v,w)∈δ−(v)
w∈W ′

v

ŷ(v,w) = ζv(ρw′) +
∑

(v,w)∈δ−(v)
w∈W ′

v

ŷ(v,w),

and ζv(λu′ − ε) = ζv(λu′) follows from the same arguments and derivation. Then, for w1 ∈ Wv

and w2 ∈Wv, if ρv′ /∈ (ρw1
, ρw2

) for all v′ ∈ Uv ∪Wv, then:

ζv(ρw1
) ≤ ζv(ρw2

) (16)

As a consequence of Inequality (15), Inequality (16) and the fact that ζv(λv) is a piecewise constant
function of λv ∈ [0, 1) by Proposition 4.1, we conclude that all ρv ∈ [ρu∗ , ρw∗] minimize ζ for some
u∗ ∈ Uv and some w∗ ∈ Wv such that no nodes lie between u∗ and w∗, i.e. for all v′ ∈ Uv ∪Wv,
ρv′ /∈ (ρu∗ , ρw∗). Then ζv(ρu∗) = ζv(λu∗ + π(u∗,v)) is a minimum of c.

Then the following corollary also follows from the last paragraph of the proof:

28

Corollary 4.3.1. Consider a node v ∈ N and let Wv ⊆ N be the set of direct successors of v with
fixed labels λw ∈ [0, 1) for w ∈ Wv. Then λ∗

v := fr
(
λw∗ − π̂(v,w∗)

)
for some w∗ ∈ Wv minimizes

ζv(λv).

Finally, Theorem 4.3 can be proven using the results from the previous lemma.

Theorem 4.3. Consider a decision diagram D = (N,A). Let ŷ be a fractional optimal solution
to the LP relaxation (F rel), and let π̂ ∈ [0, 1)A×1 be some vector with π̂a = 0 for all a ∈ A0. Then
there exists a solution (λ∗, µ∗) that minimizes Formulation (12) such that, for all v ∈ N \ {r, t},
λ∗
v = fr

(
λ∗
u∗

+ π̂(u∗,v)

)
for some direct predecessor u∗ of v.

Proof. Let Uv denote the set of direct predecessors of some node v, and consider any optimal
solution (λ′, µ′) to Formulation (12).

Consider any node v′ ∈ N that does not have a predecessor label. By Lemma 4.3, there exists
some u∗ ∈ Uv′ such that ζv′(λv′) is minimized for λv′ = fr

(
λ′
u∗

+ π̂(u∗,v′)

)
. We construct a new

solution (λ∗, µ∗) to Formulation (12) by setting λ∗
v′ = fr

(
λ′
u∗

+ π̂(u∗,v′)

)
, λ∗

u = λ′
u for all other

nodes u ∈ N \ {v′} and setting µ∗
(u,v) := fr

(
λ∗
v − λ∗

u − π̂(u,v

)
for all (u, v) ∈ A.

By construction, (λ∗, µ∗) satisfies all constraints of Formulation (12) and is therefore feasible.
Furthermore, by Lemma 4.3, ζv′(λ∗

v′) ≤ ζv′(λ′
v′). Then, by considering our choice for µ∗

(u,v), it

follows that the objective function of Formulation (12) is equal to the function g(λ∗) defined in
Equation (13). We can show the following about g(λ∗):

g(λ∗) =
∑

(u,v)∈A

ŷ(u,v)fr
(
λ∗
v − λ∗

u − π̂(u,v)

)
=

∑
(u,v)∈A
u,v ̸=v′

fr
(
λ∗
v − λ∗

u − π̂(u,v)

)
+

∑
(u,v′)∈A

ŷ(u,v′)fr
(
λ∗
v′ − λ∗

u − π̂(u,v′)

)
+

∑
(v′,w)∈A

ŷ(v′,w)fr
(
λ∗
w − λ∗

v′ − π̂(v′,w)

)
=

∑
(u,v)∈A
u,v ̸=v′

fr
(
λ∗
v − λ∗

u − π̂(u,v)

)
+ ζv′ (λ∗

v′)

≤
∑

(u,v)∈A
u,v ̸=v′

fr
(
λ′
v − λ′

u − π̂(u,v)

)
+ ζv′ (λ′

v′) = g(λ′)

Since (λ′, µ′) was defined to be optimal, then g(λ∗) = g(λ′) must follow. This means that (λ∗, µ∗)
is an optimal solution to Formulation (12) as well.

Let Nj := {v ∈ N : L(v) = j} be all nodes of N that are located in layer j, with N1 = {s} and
NL+1 = {t}. Let (λ(1), µ(1)) be an optimal solution to Formulation (12). We construct a sequence
of solutions (λ(j), µ(j)), j ∈ {2, ..., L} by setting

1. λ
(j)
v := λ

(j−1)
v for all v ∈ N \ Nj ,

2. λ
(j)
v := fr

(
λ′
u∗

+ π̂(u∗,v)

)
for all v ∈ Nj and u∗ ∈ Uv such that ζv(λv) is minimized for

λv = λ′
u∗

+ π̂(u∗,v) (which exists by Lemma 4.3), and

3. µ
(j)
(u,v) := fr

(
λ
(j)
v − λ

(j)
u − π̂(u,v

)
for all (u, v) ∈ A.

By our previous observations, if (λ(j−1), µ(j−1)) is feasible and optimal for Formulation (12), then

so is (λ(j), µ(j)). Furthermore, for the solution (λ(j), µ(j)), all v ∈
⋃j

k=1Nj satisfy that λv =
fr(λu+ π̂(u,v)) for some u ∈ Uv. It follows that (λ

(|L|), µ(|L|)) is an optimal solution to Formulation

(12) with λv = fr(λu + p̂i(u,v)) for some u ∈ Uv for all v ∈ N \ {r, t}

Then, from Corollary 4.3.1 follows a similar result for direct successors:

29

Corollary 4.3.1. Consider a decision diagram D = (N,A). Let ŷ be a fractional optimal solution
to the LP relaxation (F rel), and let π̂ ∈ [0, 1)A×1 be some vector with π̂a = 0 for all a ∈ A0. Then
there exists a solution (λ∗, µ∗) that minimizes Formulation (12) such that, for all v ∈ N \ {r, t},
λ∗
v = fr

(
λ∗
w∗
− π̂(v,w∗)

)
for some direct successor w∗ of v.

Proof. The proof is analogous to the proof of Theorem 4.3 by starting with (λ(|L|), µ(|L|)), working
towards (λ(1), µ(1)) and using Corollary 4.3.1.

4.3 An efficient algorithm for reusing CG-cuts
So far, we showed a method for finding maximum violation CG-cuts in Formulation (6). Sub-
sequently, we set up a method for reusing parts of a CG-cut in future iterations by storing the
π-values and completing the CG-cut with Formulation (12). Afterwards, we discussed some results
about solving this formulation. The goal of this approach was to find a method to efficiently and
inexpensively reuse CG-cuts. As shown in Section 4.2.1, a consequence of Theorem 4.3 is that
solving Formulation (12) reduces to finding an r-arborescence on the decision diagram that has
a minimum cost with respect to g(λ). We showed that such an r-arborescence—and thereby a
solution to Formulation (12)—can be found in time O(|N |2|N |). However, such an exponential
time algorithm makes computing reused CG-cuts computationally expensive as well.

For arborescences with fixed costs on each arc, a minimum cost arborescence can be found in
polynomial time through the matroid intersection of both the partition matroid and the graphical
matroid [20]. However, for Problem 4.1, the costs of including some arc in the r-arborescence
depends on which other arcs are included in that r-arborescence and are therefore variable. Because
of this variability, the matroid intersection algorithm cannot be applied to Problem 4.1, and it might
not be polynomial time solveable as a result. At the same time, we have yet to find a reduction
from some NP-hard problem, so the complexity of Problem 4.1—and thereby Formulation (12)—is
still open.

Without any clear results on complexity, we instead developed a greedy labelling algorithm, which
is depicted in Algorithm 4. Given some decision diagram D = (N,A), a fractional solution ŷ to the
LP relaxation (F rel) and some π̂ ∈ [0, 1)A with π̂a = 0 for all a ∈ A0, Algorithm 4 assigns labels
λv to each node layer by layer from r to t. What label values are assigned to each node depends on
some algorithm called decision rule(v, λ, π̂, ŷ) which, for all v ∈ N \{r, t} returns a value in
[0, 1) given a current vector λ ∈ [0, 1)N , given π̂ and given ŷ. By Theorem 4.3, the decision rule

algorithm should assign a value λv based on the value of some predecessor u∗ of v to create a
predecessor labelling.

After having completed the node labels λv, the algorithm finds the corresponding µ-values (line 8)
and α-values (line 9). To find the corresponding γ, the algorithm firstly reconstructs the original
π-values (for which we refer to Equation (11)) by setting πL(u) ← π̂(u,v) for all arcs (u, v) ∈ A that
are 1-arcs. These π-values are then used to find a γ that completes the CG-cut.

If decision rule(v, λ, π̂, ŷ) is efficient, then Algorithm 4 is certainly efficient as well, as
evidenced by the following theorem:

Theorem 4.4. Suppose finding the values λv ∈ [0, 1) for all v ∈ N \{r, t} using decision rule(v,

λ, π̂, ŷ) can be done in time O(f(|N |)). Then Algorithm 4 finds a CG-cut α⊺y ≥ γ in time
O(|N |+ f(|N |)).

Proof. We firstly show that an inequality α⊺y ≥ γ returned by Algorithm 4 is actually a CG-cut by
showing that the vectors λ, µ and α after termination of Algorithm 4 are feasible for Formulation
(6).

Because of how decision rule(v, λ, π̂, ŷ) is defined, λv ∈ [0, 1) for all v ∈ N \{r, t}. Addition-
ally, since λr and λt are not updated, λr = λt = 0. Then Constraints (6d) and (6h) are satisfied.
Furthermore, µa ∈ [0, 1) for all a ∈ A because of the fr() operator, satisfying Constraints (6i). As
for α ← π̂(u,v) + λu − λv + µ(u,v), Constraints (6a) are satisfied because π̂(a) = 0 for all a ∈ A0

and Constraints (6a) are satisfied as well since π̂(u,v) = πj for (u, v) ∈ A1 such that L(u) = j.

30

Algorithm 4: Greedy labelling

Input: a decision diagram D = (N,A) with n+ 1 layers, a vector π̂ ∈ [0, 1)A with π̂a = 0 for
all a ∈ A0, and a fractional optimal solution ŷ to the LP relaxation (F rel).

Output: a CG-cut α⊺y ≥ γ
1 Initialization: set λv ← 0 for all v ∈ N , µa ← 0 for all a ∈ A, πj ← 0 for j = 1, ..., n, αa ← 0

for all a ∈ A and δ ← 0;
2 for j = 2 to n do
3 foreach v ∈ Nj do // assign λ-value to each v ∈ V using decision rule

4 λv ← decision rule(v, λ, π̂, ŷ)
5 end

6 end
7 foreach (u, v) ∈ A do
8 µ(u,v) ← fr(λv − λu − π̂(u,v)) // find corresponding µ-values per arc

9 α(u,v) ← π̂(u,v) + λu − λv + µ(u,v) // complete left hand side of the CG-cut

10 if ℓ(u, v) = 1 then
11 if πL(u) = 0 then // reconstruct original π-vector
12 πL(u) ← π̂(u,v)

13 end

14 end

15 end
16 for j = 1 to n do
17 γ ← γ + πj // reconstruct original γ
18 end
19 γ ← ⌈γ⌉

Moreover:

α(u,v) = π̂(u,v) + λu − λv + µ(u,v),

= π̂(u,v) + λu − λv + fr(λv − λu − π̂(u,v)),

= π̂(u,v) + λu − λv + (λv − λu − π̂(u,v))− ⌊λv − λu − π̂(u,v)⌋,
= −⌊λv − λu − π̂(u,v)⌋ ∈ Z,

so α satisfies Constraints (6e) as well.

Setting πL(u) ← π̂(u,v) for all (u, v) ∈ A1 yields a vector π with π ∈ [0, 1)L, so Constraints (6g)
are satisfied too. Furthermore, by lines 16 to 19, γ = ⌈

∑
j∈L πj⌉, so

∑
j∈L πj ≤ γ <

∑
j∈L πj + 1,

which satisfies Constraint (6c) by using the same value of ε that was used to generate π in the
first place. Lastly, because γ is rounded, γ ∈ Z, which means that Constraint (6f) is satisfied as
well. This means that the α, λ, µ, π and γ generated by Algorithm 4 are feasible for Formulation
6, and therefore, α⊺y ≥ γ is a CG-cut.

Because the number of arcs on D is bounded by 2|N |−2 and because the number of layers is equal
to the number of nodes in the worst case, the initialization step of Algorithm 4 takes time O(|N |).
Finding the values λv ∈ N for all nodes v ∈ N \ {r, t} takes time O(f(|N |)) by our assumption
(line 2 to 6). Updating µ, α and π for each arc takes O(|N |) because the number of arcs is O(|N |)
and the operation is linear time (lines 7 to 15). Summing all π-values takes O(|N |) time in the
worst case (lines 16 to 18), and rounding is an O(1) time operation (line 19). Then the complexity
of Algorithm 4 is O(|N |+ f(|N |))

While Theorem 4.4 shows that Algorithm 4 has a clear upper bound on complexity, the CG-cut
resulting from Algorithm 4 has no quality guarantee. The performance of the algorithm is highly
dependent on how the labels λ are chosen, i.e. based on decision rule(v, λ, π̂, ŷ). Exploiting
the results gathered in this chapter so far, we have developed two decision rules: min jumps and
min local cost. In the next two sections, we discuss these decision rules in detail.

31

4.3.1 The min jumps decision rule

We concluded in Observation 4.1 that “jumps”—situations with π̂(u,v) + λu > λv—should be
avoided because those jumps incur costs, though a jump is sometimes unavoidable if π̂(u,v)+λu > 1.
Such jumps can be avoided by setting λv to be the highest value of fr(π̂(u,v) + λu) among all u
with (u, v) ∈ A for some v ∈ V . This decision rule can be improved by realizing that, if ŷa = 0
for some arc a ∈ A, no costs are incurred regardless of the choice of λv. Arcs with ŷ(u,v) = 0 can
therefore be ignored for the decision rule. If none of the incoming arcs of v then have a positive
cost ŷ, then a good choice for λv is λv := 0 to limit the chance of having π̂(u,w) + λu exceeding 1
in successive layers. This is the logic behind our first decision rule, the min jumps decision rule,
which is formally given by:

min jumps(v, λ, π̂, ŷ) := max
{
{fr(λu + π̂(u,v)) : (u, v) ∈ A, ŷ(u,v) > 0} ∪ {0}

}
Corollary 4.4.1. Algorithm 4 runs in time O(|N |) with the min jumps decision rule.

Proof. Consider lines 2 to 6 from Algorithm 4. Because the min jumps decision rule considers
all incoming arcs for each node, all arcs are considered exactly once. Since the number of arcs
on some decision diagram D = (N,A) is at most 2|N | − 2, lines 2 to 6 from Algorithm 4 run
in time O(f(|N |) = O(|N |). Then Algorithm 4 with the min jumps finds a CG-cut in time
O(|N |) +O(|N |) = O(|N |)

4.3.2 The min local cost decision rule

Another logical choice for a decision rule is one that directly aims to minimize g(λ). However,
since Algorithm 4 considers each node separately from r to t, any node label will have to be
determined without the information of all successive layers. Therefore, for each decision, not
enough information regarding g(λ) is available to decide on a label that will minimize g(λ), or even
the local cost function ζv(λv)

What can be done, however, is considering only the information that is available so far, i.e. the
incoming arcs of v. This is what our second decision rule min local cost does; it considers all
possible node labels among incoming arcs (among which, according to Lemma 4.3, exists a label
that minimizes ζv(λv)), and selects the label that minimizes the cost along the incoming arcs, i.e.:

min local cost(v, λ, π̂, ŷ) := argmin
λv∈{fr(λu+π̂(u,v))}

(u,v)∈A

{
∑

(u,v)∈A

ŷ(u,v)fr
(
λv − λu − π̂(u,v)

)
}

Corollary 4.4.2. Algorithm 4 runs in time O(|N |) with the min local cost decision rule.

Proof. The proof is analogous to the proof of Corollary 4.4.1.

4.4 Experiments
In the previous section, we have shown that Algorithm 4 finds a CG-cut for some decision diagram
D = (N,A) with a fractional optimal solution ŷ to the LP relaxation (F rel) given some input vector
π̂. Moreover, we have shown two decision rules such that this algorithm finds CG-cuts in time linear
in the number of nodes. However, we have yet to show any results on the performance of Algorithm
4 and the CG-cut reusage scheme as a whole. Specifically, it is unknown 1) if reused CG-cuts have
sufficient quality in general, 2) what the quality is of the cuts generated with Algorithm 4, and
3) to what extent the quality of reused CG-cuts changes over successive iterations. To shed light
on these matters, we ran a series of experiments. We explicate our approach for collecting data in
Section 4.4.1, we describe our method for selecting test instances in Section 4.4.2, and we explain
how Algorithm 4 and exact solution methods for Formulations (6) and (12) were implemented in
Section 4.4.3. In the two sections afterwards, we show the results of our experiments.

32

4.4.1 Collected data

The objective of the experiments is to measure the quality of reused CG-cuts found with both
Algorithm 4 and Formulation (12). To meet this objective, we generated a sample of 10 initial
CG-cuts for several graph coloring instances, and recorded the quality of the reused CG-cuts over
50 successive iterations. As a performance measure for quality, we used the violation, which we
measured as ⌈β⌉ − α⊺ŷ for a CG-cut α⊺y ≥ ⌈β⌉ and some fractional optimal solution ŷ. This
violation roughly measures how well a fractional optimal point is separated from the resulting
solution set. For a CG-cut to separate a fractional optimal point—and be useful in strengthening
the formulation—this violation needs to be positive. We wish to stress that, for two CG-cuts
α⊺
1y ≥ ⌈γ1⌉ and α⊺

2y ≥ ⌈γ2⌉ that have an identical violation with respect to ŷ, one cut may remove
more from the polyhedron than the other depending on the norms of α1 and α2. The violation is
therefore not an exact measurement of quality.

To conduct the experiments, we considered the LP relaxation (F rel) in each iteration of the Al-
gorithm 3 and recorded whether the solution was fractional. We call any iteration of Algorithm 3
where the recorded optimal solution to the LP relaxation (F rel) is fractional a fractional iteration.
We firstly observed that, in the earlier iterations of Algorithm 3, the the LP relaxation (F rel) yields
integer optimal solutions. Secondly, for the first few fractional iterations of many instances, the
LP relaxation (F rel) was solved before 10 CG-cuts could be generated. We therefore decided to
start collecting data only after a set number of fractional iterations τ . We define the first iteration
after τ fractional iterations—the iteration where data collection starts—to be the starting epoch.
The later the starting epoch, the larger the decision diagram and the more variables Formulation
(6) and Formulation (12) have. The starting epoch should therefore stay relatively small to remain
tractability.

At the starting epoch, a sample of 10 CG-cuts was generated by repeating the following procedure
10 times:

1. find a fractional optimal solution to the LP relaxation (F rel),

2. find a maximum violation CG-cut α⊺y ≥ γ that separates this solution using Formulation
(6), and

3. add the CG-cut to the LP relaxation (F rel).

For each of these CG-cuts, a pair consisting of the π̂-values and the γ-value was recorded.

For the 50 successive fractional iterations of Algorithm 3, we considered the fractional optimal so-
lution ŷ to the LP relaxation (F rel), and we generated a maximum violation CG-cut that separates
this point using Formulation (6). The violation of this CG-cut serves as a benchmark for the max-
imum violation that can be achieved for any CG-cut separating this point. Then, for each of the
recorded (π̂, γ)-pairs, we generated a CG-cut using Formulation (12), a CG-cut using Algorithm
4 with the min jumps decision rule, and a CG-cut using Algorithm 4 with the min local cost

decision rule. The violation of the CG-cut generated using Formulation (12) then represents a
benchmark for the maximum violation that can be achieved for any reused CG-cut separating ŷ,
such as the ones generated with Algorithm 4.

4.4.2 Graph instance selection

The DIMACS benchmark set of the second DIMACS challenge [19] provides with a total of 137
graphs to benchmark the performance of a graph coloring algorithm. The benchmark set consists
of a number of large graphs, some graph types that are particularly hard to color, and some graphs
based on real life data. From among this benchmark set, we did preliminary testing on several
instances, and observed that solving Formulation (12) 500 times (10 CG-cuts for 50 iterations) on
all instances with 100 or more nodes is intractable. We therefore only examined instances with
100 or fewer nodes. We also filtered all instances that were solved before reaching 50 iterations
of fractional solutions, and we filtered all instances that required a large number of iterations
of Algorithm 3 (and thereby a large decision diagram) before a sensible starting epoch—that is,
a fractional iteration where the LP relaxation requires more than 10 CG-cuts to be solved to
optimality.

33

Instance |V | |E| χ τ
1-FullIns 4 93 593 5 50
3-insertions 3 56 110 4 50
david 87 812 11 150
myciel4 23 71 5 250
myciel5 47 236 6 100
queen7 7 49 952 7 50

Table 1: Numerical summary of the DIMACS instances selected for exper-
imentation, with number of nodes (|V |), number of edges (|E|),
the chromatic number (χ) and number of fractional iterations to
the starting epoch (τ) per instance. Values for τ were determined
experimentally, while |V |, |E| and χ were taken from [16].

From the remaining instances, we selected the largest instance of each graph type such that solving
Formulation (12) 10 times for 50 iterations after the starting epoch was still tractable. These
instances were 1) myciel5 which is a 6-colorable graph obtained using the Mycielski transformation,
2-3) 1-FullIns 4 and 3 insertions 3, which are generalizations of the Mycielski graphs with
inserted nodes to increase graph size but not density, 4) david, which is a graph where each
node represents a character from Charles Dicken’s book David Copperfield and where two nodes
are connected if the corresponding characters meet each other in the book, and 5) queen7 7,
representing a 7 × 7 chessboard where each node corresponds to a square and two nodes are
connected by an edge if the corresponding squares are in the same row, column or diagonal. For
each of these instances, we experimentally determined a good starting epoch.

We included an additional instance to investigate the effects of delaying the starting epoch. This
instance was myciel4, which is small enough such that generating CG-cuts after many fractional
iterations is still tractable, while still requiring a large number of fractional iterations before solving.
For myciel4, a fractional solution requiring 10 CG-cuts can be found already at the 50th fractional
iteration, but we started collecting data for this instance after 250 fractional iterations. A summary
of the selected instances can be found in Table 1.

4.4.3 Implementation details

Algorithm 3, Formulation (6), Formulation (12) (posed as an MILP) and Algorithm 4 were imple-
mented in Python, and we solved each MILP formulation using the Gurobi software suite [14]. We
set ε = 0.001 for Formulation (6) and we limited the domain of λ, µ and π to [0, 0.9999] for both
Formulation (6) and Formulation (12). To prevent numerical instability, we rounded each number
to 6 decimals. For the variable ordering, we used the Minimum Width heuristic (Algorithm 1).

We noticed that, for several instances of Formulation (6) and Formulation (12), an optimal solution
was found quickly but the MILP-solver required a lot of time to prove optimality of that solution.
We sampled a number of CG-cuts and found that, for every sample cut, an optimal solution was
found before exploring 200000 branch & bound nodes while proving optimality typically required
over 1 million nodes. We therefore set a limit of 500000 branch & bound nodes to reduce compu-
tation times. As a result, some CG-cuts found with Formulation (6) and Formulation (12) might
not be truly optimal in our experiments.

To improve upon the solutions of Algorithm 4, we implemented a local search algorithm that
continuously loops over all nodes and replaces node labels with the node label of another predecessor
if it improves the objective function. The procedure terminates once a set limit to the number
of improvements has been reached or if no improvements can be found anymore. Looping over
each node v ∈ N once and testing all possible labels takes O(|A|2) = O(|N |2) time. However, the
algorithm may need to to loop over the set of nodes N multiple times. Among our entire data set
though, the largest number of updates we recorded was 5 nodes, so the number of times the local
search algorithm loops over N stays limited.

34

1-FullIns 4 3 insertions 3 david myciel4 myciel5 queen7 7
OPT reused 0.582 0.754 0.718 0.914 0.558 0.654
min jumps 0.22 0.656 0 0.48 0.29 0.226
min local cost 0.204 0.4 0.718 0.286 0.284 0.548

Table 2: Proportion of cuts with a violation larger than 0 per instance of all reused
CG-cuts generated with Formulation (12) (the OPT reused row), Algorithm 4
with the min jumps decision rule (the min jumps row) and Algorithm 4 with the
min local cost rule (the min local cost row).

4.4.4 Performance of the CG-cut reusage scheme

Figure 8 shows, per instance, the comparisons between the performance of a maximum violation
CG-cut generated using Formulation (6) and the performance of reused CG-cuts generated using
Formulation (12) with ten different pairs of (π̂, γ)-values. Table 2 shows the proportion of reused
CG-cuts with a positive violation. In nearly all instances, the mean violation for the reused CG-
cuts is consistently positive. Furthermore, for each instance, the number of generated cuts with
positive violation was at least 50%.

The results seems to indicate that the larger the maximum violation of the optimum CG-cut,
the larger the maximum violation of a reused CG-cut; for the instances 3 insertions 3, david,
myciel5 and queen7 7, the performance of reused CG-cuts with the highest violation was in
most iterations identical to the performance of the maximum violation CG-cut generated with
Formulation (6). However, in most iterations of the instances david, myciel5 and queen7 7, this
theoretical optimum hovers around 0.5 and the mean of the reused cuts is barely positive. For
the 3 insertions 3 instance and the myciel4 instance, on the other hand, the CG-cuts generated
with Formulation (6) had a much larger violation, and the mean of the reused cuts is larger as well.
This idea is further supported by the results in Table 2, which shows that both the 3 insertions 3

instance and the myciel4 instance had the highest number of CG-cuts with positive violation. The
1-FullIns 4 instance seems to be a counterexample to this idea, as the violations of the CG-cuts
generated with Formulation (6) are also comparatively large. It should be noted that only two out
of the ten original cuts for this instance had a violation higher than 0.5, so potentially, the quality
of a reused CG-cut also depends on the quality of the initial CG-cut.

The quality of the reused CG-cuts did not seem to substantially increase or decrease with the
number of iterations, while we expected the quality to degrade over time. We hypothesize that
this behavior might occur once the performance of reused CG-cuts is measured over a larger number
of iterations.

Lastly, in the earlier iterations of the myciel4 instance, the highest violation reused CG-cuts seem
to outperform the maximum violation CG-cut. Theoretically, this is impossible, but we likely
generated these results because the true optimum for the maximum violation CG-cut was not
found within the 500000 branch & bound node limit.

4.4.5 Performance of Algorithm 4

Figure 9 shows, for each instance, the mean violations of all reused CG-cuts generated with Al-
gorithm 4 for both the min jumps decision rule and the min local cost decision rule, compared
to the mean violations of the reused CG-cuts generated with Formulation (12). Figure 10 depicts
per instance the maximum violations among CG-cuts in each iteration for these three series. Ta-
ble 2 shows the proportion of reused CG-cuts with a positive violation for Algorithn 4 with either
decision rule.

In almost all cases, the mean violation for Algorithm 4 with either decision rule is below 0, indi-
cating that most of the generated CG-cuts do not add any value to the formulation. Furthermore,
in nearly all instances, at least one of the decision rules fails to produce more than 150 CG-cuts
with a positive violation (Table 2). On the other hand, in nearly every iteration of each instance,
there is at least one CG-cut generated with Algorithm 4 that has a similar or even identical perfor-
mance to the reused CG-cuts found with Formulation (12). In the case of 3 insertions 3 even,
in each iteration, Algorithm 4 produced a CG-cut with either decision rule that performed as well

35

as Formulation (12).

As evidenced by Figure 9 and Table 2 for the david instance, the min local cost decision rule
outperformed the min jumps decision rule, while the converse was true for the myciel4 instance.
Table 2 also shows that the min jumps decision rule was generally better for the 3 insertions 3

instance, while the min local cost decision rule had a better performance for the queen7 7 in-
stance. These results indicate that one decision rule does not strictly outperforms the other.
Rather, the performance of the decision rules seems to be largely dependent on the instance itself.

The results on the david instance with the min local cost decision rule may seem a bit counter-
intuitive given that 70% of the cuts had a positive violation while the mean violation was below 0
in almost every iteration. This happened because two pairs of (π̂, γ)-values consistenly produced
CG-cuts with a violation of −3.0 or less, while all CG-cuts with a positive violation had a positive
violation of 0.5.

Lastly, we again observe that the quality of the reused CG-cuts does not seem to substantially
increase or decrease over the 50 recorded iterations.

36

(a) (b)

(c) (d)

(e) (f)

Figure 8: Comparison of the theoretical maximum violation CG-cut in each iteration (OPT series, gen-
erated with Formulation (6)) and the mean violation of all reused CG-cuts (mean OPT reused
series, generated with Formulation (12)) over 50 successive fractional iterations for the six
selected graph instances. The shaded blue area represents the spread of the violation values
of all reused CG-cuts.

37

(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison of the mean violations of all reused CG-cuts generated with either Formulation
(12) (mean OPT reused series), or Algorithm 4 with the min jumps decision rule (mean
min jumps series), or Algorithm 4 with the min local cost decision rule (mean min local cost
series) over 50 successive fractional iterations for the six selected graph instances.

38

(a) (b)

(c) (d)

(e) (f)

Figure 10: Comparison of the maximum violation among all reused CG-cuts generated with either
Formulation (12) (mean OPT reused series), or Algorithm 4 with the min jumps decision
rule (mean min jumps series), or Algorithm 4 with the min local cost decision rule (mean
min local cost series) over 50 successive fractional iterations for the six selected graph in-
stances. Each data point represents the maximum violation present in the data set, so all
data points in the same series do not necessarily come from the same pair of (π̂, γ) pair

39

4.5 Discussion
From the results in Figure 8 and Table 2, we conclude that the CG-cut reusage scheme as a whole
definitely has potential to produce useful CG-cuts. This holds especially true for the myciel4

instance, for which 90% of the reused CG-cuts had a positive violation. Generally, the results also
indicate that the larger the violation of the optimum, the larger the mean violation of a reused
CG-cut. We have two potential explanations for this: 1) for instances where CG-cuts with large
violations can be found, it is also easier to find reused CG-cuts with large violations, and 2) the
performance of a reused CG-cut depends on the pair of (π̂, γ)-values that were used to generate
the cut.

Explanation 1) seems elementary; the violation of a maximum violation CG-cut is the largest that
can be achieved. Naturally, if that number increases, then so does the upper limit of the violation
for reused CG-cuts. Explanation 2) seems to be supported by the results on the 1-FullIns 4

instance; most of the CG-cuts used for producing the pairs of (π̂, γ)-values had a violation of 0.5.
In the later iterations of that instance, most maximum violation CG-cuts had a violation of 0.7 or
higher while the violations of the reused CG-cuts did not exceed 0.5. This seems to indicate that
the quality of a reused CG-cut is dependent on the pairs of (π̂, γ)-values used to generate the cut.

Both of the explanations can be true at the same time, but we think that more evidence is required
to give a definitive answer. We currently only gathered data for a number of simpler instances of
the DIMACS benchmark set, and we started collecting data after 50 to 250 fractional iterations,
while all instances in the sample required many more fractional iterations before finding an optimal
solution. We think that more evidence for either explanation can be gathered by investigating more
complex instances, either through selecting harder graph instances or by postponing the starting
epoch. In general, we hypothesize that the CG-cut reusage scheme also just works better after
many fractional iterations, given that it performed best for the instance with the latest starting
epoch (myciel4).

The general quality of the reused CG-cuts produced with Algorithm 4 was poor, as the mean
violation of all cuts generated with Algorithm 4 was consistently lower than 0 and the number
of CG-cuts with positive violation was less than 30% in many cases. However, in most instances,
Algorithm 4 found a reused CG-cut that had the same violation as the best CG-cut found with
Formulation (12). Since a fractional point needs just one CG-cut for separation, only the CG-
cut with the highest violation matters. As a result, Algorithm 4 was for most of these instances
competitive with Formulation (12).

We also observed that neither decision rule strictly dominates the other, and that the performance
of the decision rule seems to depend on the instance. The difference in performance when looking
at one instance in isolation can be large, as evidenced by our results on the david instance, so
picking the right decision rule for an instance is important.

Overall, we did not observe that the quality of the reused CG-cuts demonstrably changes over
the iterations that we measured, while we did expect to see a decrease in quality as the number
of iterations increases. We currently hypothesize that a larger experiment horizon is required for
demonstrating such effects, though it could very well be the case that the quality of reused CG-cuts
remains stable over time.

Additionally, the clear computational bottlenecks for gathering the data were Formulations (6)
and (12). In many iterations, solving either of these formulations took more time than solving
flow model (F) itself, which defeats the purpose of generating such CG-cuts. With this note on
tractability in mind, we conclude that Algorithm 4 is the preferred choice over Formulation (12)
for producing reused CG-cuts. While the average CG-cuts produced with Algorithm 4 were overall
much worse, it produced in nearly every instance at least one CG-cut that had the same violation
as the best reused CG-cut found with Formulation (12). These CG-cuts are the only ones that
truly matter because the fractional point ŷ needs to be cut off only once. Furthermore, Algorithm
4 finds a CG-cut in time O(|N |) with either decision rule (and O(|N |2) when applying the local
search), so it is inexpensive to generate a set of CG-cuts and check if any of the generated cuts
add value, and one can even test both decision rules to select the better cut. We thus think that
the tractability of Algorithm 4 vastly outweighs the slight reduction in performance compared to
Formulation (6).

40

Lastly, there were some limitations with our approach. First of all, the quality of any CG-cut is
only roughly measured by the violation. For larger decision diagrams, the vector α is larger and
is therefore more likely to have a larger norm, so the results on instances with wildly different
sizes of decision diagrams are less comparable. Secondly, we only tested our implementation on
smaller DIMACS-instances, and we do not know if our results are generalizable to larger instances.
Thirdly, we do not know how our results relate to practice. Four out of our six tested instances—
all the Mycielskians—are purely theoretical graphs that are notoriously hard to color, though the
david and queen7 7 are more reminiscent of practical problems.

41

5 Conclusion

In this thesis, we studied the ILP formulation of the constrained network flow problem (flow model
(F)) that is solved in the decision diagram based graph coloring algorithm by van Hoeve [15], [16]
(Algorithm 3). We firstly studied facet-defining inequalities for integer hull of the ILP formulation,
and found that nearly all facet-defining inequalities represented or were implied by r-t cuts. For this
specific problem, each r-t cut corresponds to an objective cut. To find objective bound values for
the objective cuts, we showed that the objective function of the sequence of ILPs is monotonically
increasing in the number of iterations (Theorem 3.1). We furthermore showed that the increase in
objective function between iterations cannot be larger than 1 (Theorem 3.2).

Secondly, we investigated the possibility of generating CG-cuts in some iteration of van Hoeve’s
graph coloring algorithm (Formulation (6)) using multiplier vectors that assign a value in [0, 1)
to each arc, each node and each layer. We subsequently developed Formulation (12), which takes
the layer-values of a multiplier vector as input and completes the multiplier vector to yield a valid
CG-cut. We introduced a minimum cost r-arborescence problem, Problem 4.1, and showed that
an optimal solution to this problem translates to a multiplier vector that optimizes Formulation
(12).

Furthermore, we developed Algorithm 4, a linear time greedy algorithm that finds (not necessarily
optimal) solutions to Formulation (12) with either of two decision rules. We conducted a series of
experiments to test the performance of Algorithm 4 and the CG-cut reusage scheme in general.
Overall, our results indicate that the CG-cut reusage scheme seems to produce useful CG-cuts,
and the best cuts found with Algorithm 4 are competitive with the best possible reused CG-cuts.
For some instances, one decision rule was clearly better than the other, but overall neither decision
rule seemed to strictly outperform the other.

5.1 Recommendations for future research
Firstly, we discussed the theoretical possibility of using objective cuts to aid the solution of flow
model (F) in Chapter 3, but the practical merit of these objective cuts has not yet been investi-
gated. We do hypothesize that the growth of the objective function generally resembles logarithmic
growth, which implies that the value of objective cuts increases with the number of iterations. We
recommend investigating the effects of objective cuts on solution times.

Van Hoeve did implement a slightly adapted version of his graph coloring algorithm (Algorithm
3) that separates all conflicts it finds in the path decomposition [16]. When multiple conflicts are
separated, the objective function increases faster with the number of iterations, which theoretically
diminishes the value of objective cuts. As such, the compatibility of objective cuts with multiple
conflict resolution should be researched too when measuring the effects of objective cuts on solution
times.

Regarding the CG-cut reusage scheme, we also have a few recommendations. Firstly, similar to
the objective cuts, it is unknown to what extent the cuts generated with Formulation (12) and
Algorithm 4 aid in solving flow model (F). We recommend studying the effects of these types of
cuts on solutions times.

Secondly, because we observed that Formulation (6) and (12) were hard to solve, we suggest using
cheaper methods of finding CG-cuts. In particular, it could be interesting to test the quality of
CG-cuts generated using random π̂-values. Of course, the performance of such methods should
also be tested.

Thirdly, we experimentally investigated the quality of reused CG-cuts generated with Formulation
(12) and Algorithm 4, but we only experimented on theoretical graph instances that are relatively
small. We hypothesize that the quality of the reused CG-cuts increases once the gap between the
relaxed optimum and the integer optimum of flow model (F) becomes larger. We recommend veri-
fying this hypothesis on larger instances, more difficult instances and instances that have practical
applicability to see if this technique is promising for solving those instances.

Lastly, the complexity of Problem 4.1 is still an open question. If an optimal solution to this
problem can be found in polynomial time, then Formulation (12) can be optimized in polynomial

42

time, and it will become more attractive to complete multiplier vectors using this formulation.
We therefore recommend researching the complexity of Problem 4.1. Given the variable arc costs
in this problem, we expect that it is not polynomial time solvable, so we advise starting with
reductions from known NP-complete problems.

43

References

[1] K. I. Aardal, S. P. van Hoesel, A. M. Koster, C. Mannino, and A. Sassano, “Models and solu-
tion techniques for frequency assignment problems,” Annals of Operations Research, vol. 153,
no. 1, pp. 79–129, May 2007. doi: 10.1007/s10479-007-0178-0.

[2] K. Altınel, N. Aras, Z. Şuvak, and Z. C. Taşkın, “Minimum cost noncrossing flow problem on
layered networks,” Discrete Applied Mathematics, vol. 261, pp. 2–21, 2019, issn: 0166-218X.
doi: 10.1016/j.dam.2018.09.016. [Online]. Available: https://doi.org/10.1016/j.
dam.2018.09.016.

[3] M. Behle, “Binary Decision Diagrams and Integer Programming,” Dissertation, 2007.
[4] D. Bergman, A. A. Cire, W. J. Van Hoeve, and J. N. Hooker, “Variable ordering for the

application of BDDs to the maximum independent set problem,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7298 LNCS, no. March 2014, pp. 34–49, 2012, issn: 03029743. doi:
10.1007/978-3-642-29828-8_3.

[5] K. Bestuzheva, M. Besançon, W.-K. Chen, et al., “The SCIP Optimization Suite 8.0,” Op-
timization Online, Tech. Rep., Dec. 2021. [Online]. Available: http://www.optimization-
online.org/DB_HTML/2021/12/8728.html.

[6] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-complete,” IEEE
Transactions on Computers, vol. 45, no. 9, pp. 993–1002, 1996. doi: 10.1109/12.537122.

[7] Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Transactions
on Computers, vol. C-35, no. 8, pp. 677–691, 1986. doi: 10.1109/TC.1986.1676819.

[8] M. W. Carter, “A Survey of Practical Applications of Examination Timetabling Algorithms,”
Operations Research, vol. 34, no. 2, pp. 193–202, 1986. [Online]. Available: http://www.
jstor.org/stable/170814.

[9] M. P. Castro, A. A. Cire, and J. C. Beck, “Decision Diagrams for Discrete Optimization:
A Survey of Recent Advances,” INFORMS Journal on Computing, vol. 34, no. 4, pp. 2271–
2295, 2022. doi: 10.1287/ijoc.2022.1170. [Online]. Available: https://doi.org/10.
1287/ijoc.2022.1170.

[10] A. Cire and J. Hooker, “The separation problem for binary decision diagrams,” in Proceedings
of ISAIM, Jan. 2014.

[11] A. A. Cire, A. Diamant, T. Yunes, and A. Carrasco, “A Network-Based Formulation for
Scheduling Clinical Rotations,” Production and Operations Management, vol. 28, no. 5,
pp. 1186–1205, 2019. doi: https://doi.org/10.1111/poms.12978. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12978.

[12] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming. Cham: Springer, 2014.
[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. USA: W. H. Freeman & Co., 1979, isbn: 0716710447.
[14] L. Gurobi Optimization, Gurobi Optimizer Reference Manual, 2023. [Online]. Available:

https://www.gurobi.com.
[15] W.-J. van Hoeve, “Graph Coloring Lower Bounds from Decision Diagrams,” in Integer Pro-

gramming and Combinatorial Optimization, D. Bienstock and G. Zambelli, Eds., Cham:
Springer International Publishing, 2020, pp. 405–418, isbn: 978-3-030-45771-6.

[16] W.-J. van Hoeve, “Graph coloring with decision diagrams,” Mathematical Programming,
vol. 192, no. 1–2, pp. 631–674, May 2021. doi: 10.1007/s10107-021-01662-x.

[17] A. Jabrayilov and P. Mutzel, “New Integer Linear Programming Models for the Vertex Color-
ing Problem,” in New Integer Linear Programming Models for the Vertex Coloring Problem,
M. A. Bender, M. Farach-Colton, and M. A. Mosteiro, Eds., Cham: Springer International
Publishing, 2018, pp. 640–652, isbn: 978-3-319-77403-9.

[18] K. Jansen, “Integral Flow with Disjoint Bundles,” Nordic J. of Computing, vol. 1, no. 2,
pp. 264–267, Jun. 1994, issn: 1236-6064.

[19] D. S. Johnson and M. A. Trick, “Cliques, coloring, and satisfiability: second DIMACS im-
plementation challenge, October 11-13 1993,” American Mathematical Soc., vol. 26, 1996.

[20] N. Kamiyama, “Arborescence Problems in Directed Graphs: Theorems and Algorithms,”
Interdisciplinary Information Sciences, vol. 20, no. 1, pp. 51–70, 2014. doi: 10.4036/iis.
2014.51.

44

https://doi.org/10.1007/s10479-007-0178-0
https://doi.org/10.1016/j.dam.2018.09.016
https://doi.org/10.1016/j.dam.2018.09.016
https://doi.org/10.1016/j.dam.2018.09.016
https://doi.org/10.1007/978-3-642-29828-8_3
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/TC.1986.1676819
http://www.jstor.org/stable/170814
http://www.jstor.org/stable/170814
https://doi.org/10.1287/ijoc.2022.1170
https://doi.org/10.1287/ijoc.2022.1170
https://doi.org/10.1287/ijoc.2022.1170
https://doi.org/https://doi.org/10.1111/poms.12978
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.12978
https://www.gurobi.com
https://doi.org/10.1007/s10107-021-01662-x
https://doi.org/10.4036/iis.2014.51
https://doi.org/10.4036/iis.2014.51

[21] A. Karahalios and W.-J. van Hoeve, “Variable ordering for decision diagrams: A portfolio
approach,” Constraints, vol. 27, no. 1–2, pp. 116–133, Jan. 2022. doi: 10.1007/s10601-
021-09325-6.

[22] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Com-
putations: Proceedings of a symposium on the Complexity of Computer Computations, held
March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, and sponsored by the Office of Naval Research, Ma, R. E. Miller, J. W. Thatcher, and
J. D. Bohlinger, Eds., Boston, MA: Springer US, 1972, pp. 85–103, isbn: 978-1-4684-2001-2.
doi: 10.1007/978-1-4684-2001-2_9.

[23] B. Korte and J. Vygen, Combinatorial Optimization Theory and algorithms. Springer Berlin
Heidelberg, 2012.

[24] A. M. C. A. Koster, A. Eisenblätter, and M. Grötschel, “Frequency planning and ramifications
of coloring,” Discussiones Mathematicae Graph Theory, vol. 22, no. 1, pp. 51–88, 2002.

[25] R. Lewis, “A survey of metaheuristic-based techniques for university timetabling problems,”
OR Spectrum, vol. 30, no. 1, pp. 167–190, Jul. 2007. doi: 10.1007/s00291-007-0097-0.

[26] R. Marappan and G. Sethumadhavan, “Solution to Graph Coloring Using Genetic and Tabu
Search Procedures,” Arabian Journal for Science and Engineering, vol. 43, 2017. doi: 10.
1007/s13369-017-2686-9.

[27] D. Marx, “Graph Coloring Problems and Their Applications in Scheduling,” Periodica Poly-
technica, Electrical Engineering, vol. 48, 2003.

[28] A. Mehrotra and M. A. Trick, “A Column Generation Approach for Graph Coloring,” IN-
FORMS Journal on Computing, vol. 8, no. 4, pp. 344–354, 1996. doi: 10.1287/ijoc.8.4.
344. [Online]. Available: https://doi.org/10.1287/ijoc.8.4.344.

[29] I. Méndez-Dı́az and P. Zabala, “A cutting plane algorithm for graph coloring,” Discrete
Applied Mathematics, vol. 156, no. 2, pp. 159–179, 2008, issn: 0166-218X. doi: https://
doi.org/10.1016/j.dam.2006.07.010. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0166218X0700100X.

[30] R. R. Meyer, “On the existence of optimal solutions to integer and mixed-integer program-
ming problems,” Mathematical Programming, vol. 7, no. 1, pp. 223–235, Dec. 1974. doi:
10.1007/bf01585518.

[31] D. R. Morrison, E. C. Sewell, and S. H. Jacobson, “Solving the Pricing Problem in a Branch-
and-Price Algorithm for Graph Coloring Using Zero-Suppressed Binary Decision Diagrams,”
INFORMS Journal on Computing, vol. 28, no. 1, pp. 67–82, 2016. doi: 10.1287/ijoc.2015.
0667. [Online]. Available: https://doi.org/10.1287/ijoc.2015.0667.

[32] T. Mostafaie, F. Modarres Khiyabani, and N. J. Navimipour, “A systematic study on meta-
heuristic approaches for solving the graph coloring problem,” Computers & Operations Re-
search, vol. 120, p. 104 850, 2020, issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.
2019.104850. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0305054819302928.

[33] U. Pferschy and J. Schauer, “The Maximum Flow Problem with Disjunctive Constraints,” J.
Comb. Optim., vol. 26, no. 1, pp. 109–119, Jul. 2013, issn: 1382-6905. doi: 10.1007/s10878-
011-9438-7. [Online]. Available: https://doi.org/10.1007/s10878-011-9438-7.

[34] Z. Şuvak, İ. K. Altınel, and N. Aras, “Minimum cost flow problem with conflicts,” Networks,
vol. 78, no. 4, pp. 421–442, 2021. doi: https://doi.org/10.1002/net.22021. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22021.

[35] C. Tjandraatmadja and W.-J. van Hoeve, “Target Cuts from Relaxed Decision Diagrams,”
INFORMS Journal on Computing, vol. 31, no. 2, pp. 285–301, 2019. doi: 10.1287/ijoc.
2018.0830. [Online]. Available: https://doi.org/10.1287/ijoc.2018.0830.

[36] M. Walter, No Title, 2016. [Online]. Available: http://polyhedra-oracles.bitbucket.
org/.

[37] M. Walter and V. Kaibel, “Investigating polyhedra by oracles and analyzing simple extensions
of polytopes,” Ph.D. dissertation, 2015, pp. 17–20.

45

https://doi.org/10.1007/s10601-021-09325-6
https://doi.org/10.1007/s10601-021-09325-6
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1007/s13369-017-2686-9
https://doi.org/10.1007/s13369-017-2686-9
https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/10.1287/ijoc.8.4.344
https://doi.org/https://doi.org/10.1016/j.dam.2006.07.010
https://doi.org/https://doi.org/10.1016/j.dam.2006.07.010
https://www.sciencedirect.com/science/article/pii/S0166218X0700100X
https://www.sciencedirect.com/science/article/pii/S0166218X0700100X
https://doi.org/10.1007/bf01585518
https://doi.org/10.1287/ijoc.2015.0667
https://doi.org/10.1287/ijoc.2015.0667
https://doi.org/10.1287/ijoc.2015.0667
https://doi.org/https://doi.org/10.1016/j.cor.2019.104850
https://doi.org/https://doi.org/10.1016/j.cor.2019.104850
https://www.sciencedirect.com/science/article/pii/S0305054819302928
https://www.sciencedirect.com/science/article/pii/S0305054819302928
https://doi.org/10.1007/s10878-011-9438-7
https://doi.org/10.1007/s10878-011-9438-7
https://doi.org/10.1007/s10878-011-9438-7
https://doi.org/https://doi.org/10.1002/net.22021
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22021
https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830
https://doi.org/10.1287/ijoc.2018.0830
http://polyhedra-oracles.bitbucket.org/
http://polyhedra-oracles.bitbucket.org/

	Introduction
	Related work
	Outline

	Theory & notation
	Graph coloring
	Decision diagrams
	Relation to graph coloring
	Variable ordering & reduced diagrams

	Van Hoeve's graph coloring algorithm
	Initialization
	Constraint separation
	Conflict detection

	A note on polyhedra

	Objective cuts
	Structural results for decision diagrams
	Monotonicity of the objective function
	Proof of Theorem 4.3

	Chvátal-Gomory cut reusage
	Maximum violation CG-cuts for Pflow
	Theoretical results on CG-cut reusage
	Implications of Theorem 4.3
	Proof of Theorem 4.3

	An efficient algorithm for reusing CG-cuts
	The min_jumps decision rule
	The min_local_cost decision rule

	Experiments
	Collected data
	Graph instance selection
	Implementation details
	Performance of the CG-cut reusage scheme
	Performance of Algorithm 4

	Discussion

	Conclusion
	Recommendations for future research

