
MSc Computer Science
Final Project

Analysis of automated Virtual
Machine generation and
automation around system
testing at TKH Airport
Solutions.

Tom Grooters

Supervisors: Petra van den Bos (UT), Johan Foederer (TKH-AS)

December, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Research questions . 3

2 Background 4
2.1 TKH Airport Solutions . 4

2.1.1 Confidential information . 4
2.1.2 AGL & CEDD® . 4
2.1.3 Components . 5

2.2 Virtualization terms . 6
2.2.1 Virtualization . 6
2.2.2 Virtualization Technology . 6
2.2.3 Hypervisor . 6
2.2.4 Virtual Machine . 6
2.2.5 Container . 6
2.2.6 Virtual Image . 7
2.2.7 Image Generation . 7
2.2.8 Host Machine . 7

2.3 Virtualization Technologies . 7
2.3.1 VirtualBox . 8
2.3.2 KVM . 8
2.3.3 Docker . 8

2.4 Testing infrastructure . 9
2.4.1 Test system setup . 9
2.4.2 System Test suites . 10
2.4.3 Jenkins pipeline . 10

2.5 Initial process and setup . 10
2.5.1 Image generation . 11
2.5.2 System testing . 12

2.6 Restart Issues VirtualBox . 12
2.6.1 Severity . 13

3 Related work 15
3.1 Image generation . 15
3.2 Performance . 16

3.2.1 Runtime performance . 16
3.2.2 Build performance . 16
3.2.3 Startup performance . 17

I

3.3 System testing . 17
3.4 Pipeline . 17

3.4.1 CI/CD . 17

4 Methodology 19
4.1 Overview . 19
4.2 Technology selection . 20
4.3 Image Generation Implementations . 21
4.4 Pipeline improvements . 21
4.5 Results and conclusion . 21
4.6 Metrics . 22

4.6.1 Data collection and scripting . 22
4.6.2 Median data . 23
4.6.3 Stability . 23
4.6.4 Automation . 24
4.6.5 Performance . 25
4.6.6 Company impact . 26

5 Technology selection 27
5.1 Criteria and requirements . 27

5.1.1 Boot reliability . 27
5.1.2 Multiple network interfaces . 27
5.1.3 Full automation/scripting . 28
5.1.4 Platform support . 28
5.1.5 Partitions . 28
5.1.6 Cost . 28
5.1.7 Summary . 28

5.2 Virtualization Technologies . 29
5.3 Decision Matrix . 29

5.3.1 Criteria scoring . 29
5.3.2 Decision matrix and argumentation 30

6 Image Generation Implementations 32
6.1 Base image . 32
6.2 Packer . 32
6.3 Docker . 33
6.4 Cloud-Init . 34
6.5 Virt-Customize . 35
6.6 Ansible . 35

7 Pipeline redesign 36
7.1 Overview . 36

7.1.1 Setup host machine . 36
7.1.2 Deploy Basic Virtual . 37
7.1.3 Run system test . 37

7.2 Changes . 37
7.2.1 No stash and unstash Virtual Images 37
7.2.2 Delete old Virtual Images . 38
7.2.3 Start Virtual Machines . 38
7.2.4 Headless starting . 38

II

7.2.5 Deploy Master AM configuration . 38
7.2.6 Network interfaces management . 39
7.2.7 Minimizing higher privilege . 39

7.3 Python version validation . 39
7.4 Full automation . 39

8 Results 40
8.1 Stability . 40

8.1.1 Image generation . 40
8.1.2 Pipeline . 41
8.1.3 Summary . 42

8.2 Automation . 43
8.2.1 Image generation . 43
8.2.2 Pipeline . 43
8.2.3 Summary . 44

8.3 Performance . 44
8.3.1 Duration . 45
8.3.2 Resource usage . 46
8.3.3 Pipeline . 48
8.3.4 Summary . 49

8.4 Company impact . 50
8.5 Overview . 51

9 Conclusion 53
9.1 How can we improve the process of generating new system images? 53
9.2 How can we improve the testing pipeline? 54
9.3 How can we improve the technical process around the system testing per-

formed at TKH Airport Solutions? . 54
9.4 Future work . 55

A Graphs 58
A.1 VirtualBox reliability . 58
A.2 Resource usage different Image Generation processes 59

III

Abstract

System testing is an important step in validating the correct workings of larger systems.
One way to reduce cost and shorten testing times is by using a virtual system instead of
the physical system.

In this case study in collaboration with TKH Airport Solutions we will be looking at
what is the best Virtualization Technology to run these systems in. An important aspect
of this decision is the techniques we can use to rapidly build new versions of these systems.
For this, we need a reliable and automated system such that the generation process of the
Virtual Machines can be automated.

Next to the generation process, we will also be looking at the deployment and how to
run the system tests using a Jenkins pipeline, discovering what changes and extensions are
needed to transform into a fully automated build and test cycle using virtualization.

Keywords: Virtualization Technology, System Image Generation, System testing, Test
automation, Pipeline automation, VirtualBox, KVM, Docker, Containers

https://www.tkh-airportsolutions.com/

Chapter 1

Introduction

During this research, we will aim to discover an effective way to generate and test a
virtualized version of a system consisting of multiple machines. We will be exploring
different techniques to generate the Virtualized machines, as well as methods on the setup
for and how to perform system testing on these systems.

In this research, we will be collaborating with TKH Airport Solutions. They are "an
innovator in airfield ground lighting (AGL), providing a complete range of LED AGL prod-
ucts." Their ground lighting is controlled through Contactless Energy & Data Distribution
CEDD®1. In order to manage the ground lighting and the CEDD network there are sev-
eral systems in place spanning the CEDD AGL System. As with any software, especially
in the case of airports, this requires thorough testing to ensure correct working under many
conditions. In the case of TKH Airport Solutions, this is, among other testing, achieved
through system testing.

This system testing is performed on an emulated version of the CEDD AGL system
which has the different components running in separate Virtual Machines. Together these
Virtual Machines form the whole of a virtual setup dubbed the Virtual Basic setup. The
pipeline that has been set up is there to take a new release version of these Virtual Machines
and prepare/set up a physical machine of the developer to be able to run the system tests.

In this research, we aim to look at alternative technologies to run these Virtual Ma-
chines, ways to generate the Virtual Machines themselves and look at ways we can improve
the pipeline to be fully automated and reliable.

1.1 Overview

As is common this thesis is split up into multiple chapters each about a certain aspect of the
overall research project. We will start with the Introduction in which we will introduce the
topic of this thesis, the motivation and the research questions. After this, we will continue
to the Background in which we will introduce the company (TKH Airport Solutions) with
which this research was a collaboration. We will also introduce some of the terminology
and technologies we will be using throughout this thesis and we will give more context
about the CEDD AGL systems at TKH Airport Solutions. After this we will be looking at
the Related work, in this chapter we will be looking at other works covering Virtualization
Technologies, zooming in on the relative performance. We will also take a look at system
testing and pipelines.

Once we have this baseline of knowledge set we will look at the Methodology, which will
1https://www.tkh-airportsolutions.com/cedd-airfield-ground-lighting

1

https://www.tkh-airportsolutions.com/
https://www.tkh-airportsolutions.com/cedd-airfield-ground-lighting

explain how we tackle this research. Our plans for implementing the different techniques
and how to measure this to get to a satisfying and concrete result.

The selection of which technologies to analyse will be made in Technology selection,
then in Image Generation Implementations we will implement the various technologies and
give our experiences. In chapter Pipeline redesign we will look at the changes made to the
pipeline to improve the experience.

After having a good overview of all our efforts and changes we will be presenting the
numbers in Results. In this chapter, the values for our measured metrics will be presented.
Finally in Conclusion we will be concluding our research, presenting our recommendation
and looking at possible future work in areas we saw more potential or could not do enough
research ourselves.

1.2 Motivation

This research aims to take a closer look at different ways and methods to generate Virtual
Machine images. More specifically we wish to look at ways to set up the CEDD AGL
system. This includes a mix of standard software packages, provided by the Operating
System, along with custom software produced by the company. There are several papers
looking into the performance differences between different Virtualization Technology but
we have not been able to find much related to the setup and installation of the Virtual
Image used within these virtualization techniques.

The main topic of this case study will be research towards the generation of these Vir-
tual Images. We aim to find a good balance between flexibility, reliability and performance
while trying to play into the knowledge and expertise the company already has onboard to
minimize the time needed to learn new tooling stacks. During this research, we also look at
how this combines with the process of system testing which is done after the Virtual Images
are generated. This is done by working on the existing testing pipeline and streamlining
this process. We will look at automating several tasks which are now performed manually
and increasing the overall success rate of the pipeline process.

Currently, the system testing is done, for a large part, by using Virtual Machines which
are being run inside VirtualBox, which is a tool to manage and run these machines. The
CEDD AGL systems running on the Virtual Machines are then in turn being tested through
a Jenkins pipeline using Robot Framework

The Virtual Machines are then in turn being prepared and the CEDD AGL system
is tested using a Jenkins pipeline, which allows us to run a bunch of actions/scripts to
complete a larger process. These actions prepare the Host Machine by installing the
required software and libraries and setting up the Virtual Machines accordingly. After this
the system tests are being run with Robot Framework2.

Although this process is functional we notice that a lot of the pipeline runs fail, often
due to issues with the stability. A lot of these issues seem to be correlated to VirtualBox,
this is the main reason why we want to research the alternatives to VirtualBox. In the
process, we also wish to find if the alternatives gave a better suitability for the company
compared to VirtualBox. And despite the stability, if there is more reason to switch to a
different technology or not. Additionally, we will be improving the pipeline process itself,
adding more automation and improving error reporting if an issue may arise.

2https://robotframework.org/

2

https://robotframework.org/

1.3 Research questions

We will be doing this by answering the research questions we propose in this section. As
the main question we will be focused on improving the overall process, the generation of
the Virtual Image and the running of the Jenkins pipeline. To do this we propose the
following Main Research Question

MQ How can we improve the technical process around the system testing performed at
TKH Airport Solutions?

To answer the different aspects of this quite generic question we subdivide into two sub-
questions;

RQ1 How can we improve the process of generating new system images?

With this question we will take a look at the process of creating the Virtual Images used
by several Virtualization Techniques. We will compare different processes and implemen-
tations and measure various metrics on their reliability, automation potential, performance
and the impact they may have on the company.

RQ2 How can we improve the testing pipeline?

With this subquestion we will focus towards the later stages of the testing, after generating
the images they need to be correctly set up and tested. This subquestion will look at what
changes we may make to the existing pipeline to increase, especially its reliability and
attempt to make it a fully automated hands-off process.

3

Chapter 2

Background

To give some light on the terminology used throughout this research, and also give a wider
context, we will first explain something about the company we are working with (TKH
Airport Solutions). This will be done to give more context to where this research fits in
with their practices. After this, we will explain a variety of terminology and dive deeper
into the context of this research giving more context about the company processes we
will be interfacing with as well as more background on the problem that gave rise to this
research.

2.1 TKH Airport Solutions

TKH Airport Solutions is the collaboration partner for this research project, they describe
themselves as:

"TKH Airport Solutions is an innovator in airfield ground lighting (AGL), providing
a complete range of LED AGL products. We build upon the know-how from a long and
successful tradition of pioneering developments in the AGL and connectivity industry."
from TKH Airport Solutions Company Profile1

2.1.1 Confidential information

As with many businesses, also at TKH Airport Solutions, some of their information is
confidential and cannot be shared. This includes but is not limited to, the exact internal
workings of their systems and the source code and builds of many of their software. To
still produce a relevant and exciting thesis, we will abstract away from these details. Since
our results mostly focus on the process and outside tooling and the results do not rely on
the exact programs being installed, we do not believe it is needed to give a comparable
workload.

2.1.2 AGL & CEDD®

Airfield ground lighting (AGL) is, among other things, the lighting equipment on and
around an airfield intended for pilots and ground staff to navigate an airplane. This
includes lighting on and around runways and taxiways.

Contactless Energy & Data Distribution (CEDD®) is "a smart, safe and sustainable
airfield ground lighting technology. Energy and data transport are combined in a single

1https://www.tkh-airportsolutions.com/company/company-profile

4

https://www.tkh-airportsolutions.com/company/company-profile

Figure 2.1: Simplified example of a setup as in production, here the Master CMS
and AM are pictured together as AGL / CEDD Master.

cable. Airfield lights receive their power and data by means of induction, and can therefore
easily and safely be installed or replaced without making electrical contact."2

2.1.3 Components

The control system behind the CEDD® AGL technology consists of three systems, one
Master AM (Asset Management) and two Master CMSs (Control and Monitoring System)
which we will refer to as the Masters. These three masters talk to the Base stations which
in turn control a set of lights 3. together these compose the components of the CEDD AGL
System A simple representation of a setup can be found in figure 2.1. In this figure the
different Masters are combined into one AGL / CEDD Master.

In our context, we are working with a fully virtualized version of this CEDD AGL Sys-
tem where the different masters but also the Basestations are virtualized into VirtualBox
Virtual Machines. These Virtual Basestations have in turn a set of lamps in their memory
without a physical counterpart.

The communication between the CEDD AGL components happens over a bonded net-
work interface4 in broadcast mode, in the image represented by IP network. This results
in all data packets being sent over the network getting sent on each of the interfaces, this
makes an easy way to add redundancy to the networking such that if one of the two net-
works gets disconnected, or there is a different issue, data is still able to reach the other
components.

2https://www.tkh-airportsolutions.com/cedd-airfield-ground-lighting
3https://www.tkh-airportsolutions.com/airfield-products/cedd-components/

cedd-agl-network-layout.html
4https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/

8/html/configuring_and_managing_networking/configuring-network-bonding_
configuring-and-managing-networking

5

https://www.tkh-airportsolutions.com/cedd-airfield-ground-lighting
https://www.tkh-airportsolutions.com/airfield-products/cedd-components/cedd-agl-network-layout.html
https://www.tkh-airportsolutions.com/airfield-products/cedd-components/cedd-agl-network-layout.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking

2.2 Virtualization terms

Virtualization and the accompanying terms may get confusing as they are used very dif-
ferently in different contexts. We will be describing these to give a clearer overview of how
we will use them in this thesis and to give the less experienced reader a better understand-
ing of these terms. For more information and context on these terms in a more general
application the footnotes contain links to webpages with more details.

2.2.1 Virtualization

Virtualization5 is a technology that allows for the creation of an abstraction layer over
physical hardware, enabling multiple operating systems (known as “guests”) to run con-
currently on a single physical machine (the “host”). This is achieved through the use of a
software layer known as a Hypervisor.

2.2.2 Virtualization Technology

Virtualization Technologies are the different technologies that implement or manage the
Virtualization, these are the different types of hypervisors available. Some examples of
these technologies are VirtualBox, Docker and KVM.

2.2.3 Hypervisor

The Hypervisor6 is a software application that runs on the Host Machine. It manages
the distribution of resources such as CPU time, memory, and I/O between the guest
operating systems, ensuring that each guest has access to the resources it needs without
interfering with the operation of other guests. The hypervisor allows for efficient utilization
of hardware resources, as multiple workloads can be run on a single machine without the
need for additional physical hardware.

2.2.4 Virtual Machine

Virtual Machines7 (VMs) is one such type of guest and are a key component of this
technology. A VM is essentially a software emulation of a physical computer, running
an operating system and applications just like a physical computer. VMs are isolated from
each other, providing security and fault isolation.

2.2.5 Container

Containers8, like virtual machines, are a form of virtualization technology, but they operate
at the application level rather than the operating system level. A container packages an
application along with its runtime environment, including the libraries and other depen-
dencies it requires to run. This ensures that the application will run consistently across
different computing environments.

A simplified comparison would be that a Virtual Machine is an entire computer run-
ning inside another computer. Whereas with containers multiple computers are running
alongside each other on the same hardware.

5https://www.ibm.com/topics/virtualization
6https://www.ibm.com/topics/virtualization#Hypervisors
7https://www.ibm.com/topics/virtual-machines
8https://www.redhat.com/en/topics/containers/whats-a-linux-container

6

https://www.ibm.com/topics/virtualization
https://www.ibm.com/topics/virtualization#Hypervisors
https://www.ibm.com/topics/virtual-machines
https://www.redhat.com/en/topics/containers/whats-a-linux-container

2.2.6 Virtual Image

A Virtual Image9 (also known as a System Image or Container Image) is a single static
unit that contains a snapshot of the operating system, configuration, software, and setup
files necessary to run an instance of an (operating) system or a container. It serves as a
template from which individual virtual machines or containers can be created. When a
VM or container is launched or imported, it’s based on such an image, which defines its
operating system and initial state.

2.2.7 Image Generation

Image Generation is our own definition and refers to the process of creating these virtual
images. The Image Generation involves using scripts or other automation tools to install
the necessary operating system and software components onto an image file. This file can
then be used to create new VMs or containers. Automation ensures that every image
is created with the same configuration, reducing errors and inconsistencies that can occur
with manual setup. Tools like Packer10 or DockerFile11 are often used for automated image
generation.

2.2.8 Host Machine

The Host Machine or Host System is the system that is used to run the virtualization tasks.
This is often a physical machine, as opposed to the virtualized environments focused on
earlier. In our specific case, this was a machine with the following specifications:

• Machine: Dell Optiplex 9020 MT

• CPU: Intel I7-4790

• GPU: (Integrated) Intel HD graphics 4600

• Memory: 4x 4GB DDR3 1600MHz (16GB total)

• Storage: Samsung SSD 860 EVO 500GB

• Operating System: Linux

– Distro: Ubuntu Mate

– Release version: 22.04.3 LTS

– Architecture: x86_64

– Kernel: 5.15.0-86

2.3 Virtualization Technologies

In this thesis, we will talk about several Virtualization Technologies. To better understand
what each of these technologies entails, this section will explain the three main ones we will
focus on, VirtualBox, KVM and Docker. Although there are several other Technologies,
we have opted to put our focus on these three.

9https://www.sciencedirect.com/topics/computer-science/virtual-machine-image
10https://www.packer.io/
11https://docs.docker.com/engine/reference/builder/

7

https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/optiplex-9020-micro-technical-spec-sheet.pdf
https://www.sciencedirect.com/topics/computer-science/virtual-machine-image
https://www.packer.io/
https://docs.docker.com/engine/reference/builder/

2.3.1 VirtualBox

VirtualBox12, or Oracle VM VirtualBox in full, is a type-2 hypervisor for x86 virtualiza-
tion. It was created in 2007 by InnoTek Systemberatung GmbH, a German company. In
2008, Sun Microsystems acquired InnoTek, and in 2010, Oracle Corporation acquired Sun
Microsystems.

VirtualBox has support for multiple operating systems including Windows, macOS,
Linux, Solaris, and OpenSolaris. It allows for the creation and management of guest
virtual machines running different operating systems like Windows, Linux, macOS and
many more.

VirtualBox provides a user interface called VirtualBox Manager for creating, config-
uring, and managing virtual machines. It also supports features such as snapshots for
saving the state of a VM at any point in time and reverting to that state when needed.
VirtualBox is widely used in enterprise settings for running different operating systems on
a single machine for testing or development purposes.

2.3.2 KVM

Kernel-based Virtual Machine (KVM)13 is an open-source Virtualization Technology built
into the Linux kernel. KVM allows Linux to operate as a hypervisor that enables the
host machine to run multiple, isolated environments, called guests or VMs, similar to
VirtualBox.

Every VM is implemented as a regular Linux process, scheduled by the standard Linux
scheduler, with dedicated virtual hardware like a network card, graphics adapter, CPUs,
memory, and disks. KVM was first announced in 2006 and merged into the mainline
Linux kernel version a year later. Because KVM is part of existing Linux code, it imme-
diately benefits from every new Linux feature, fix, and advancement without additional
engineering.

KVM requires a processor with hardware virtualization extensions. It has been ported
to other operating systems such as FreeBSD and Illumos in the form of loadable kernel
modules. KVM supports hardware-assisted virtualization for a wide variety of guest oper-
ating systems including other Linux systems, BSD, Solaris, Windows, macOS, and many
more.

It supports running on Windows through Windows Subsystem for Linux (WSL for
short). This is made possible through the nested virtualization of WSL2, which allows
KVM to run on a Linux kernel hosted on Windows. This integration allows for the ex-
ecution of Linux-based virtual machines directly on a Windows system, expanding the
capabilities of both KVM and WSL.

2.3.3 Docker

Docker14 is an open platform for developing, shipping, and running applications. It employs
OS-level virtualization to deliver software in packages known as containers. These contain-
ers are lightweight and encapsulate everything needed to run the application, thereby
eliminating dependencies on the host system.

Docker’s primary advantage is its ability to separate applications from infrastructure,
enabling rapid software delivery. This separation allows developers to manage infrastruc-
ture in the same way they manage applications. By leveraging Docker’s methodologies

12https://www.virtualbox.org/
13https://linux-kvm.org/page/Main_Page
14https://www.docker.com/

8

https://www.virtualbox.org/
https://linux-kvm.org/page/Main_Page
https://www.docker.com/

for shipping, testing, and deploying code, developers can significantly reduce the delay
between writing code and running it in production.

The Docker platform provides the ability to package and run an application in a loosely
isolated environment called a container. The isolation and security allow many containers
to run simultaneously on a given host. Docker provides tooling and a platform to manage
the lifecycle of these containers.

Docker streamlines the development lifecycle by allowing developers to work in stan-
dardized environments using local containers which provide your applications and services.
Containers are great for continuous integration and continuous delivery (CI/CD) work-
flows.

Docker’s container-based platform allows for highly portable workloads. Docker con-
tainers can run on a developer’s local laptop, on physical or virtual machines in a data
centre, on cloud providers, or in a mixture of environments. Docker’s portability and
lightweight nature also make it easy to dynamically manage workloads, scaling up or tear-
ing down applications and services as business needs dictate, in near real-time.

In conclusion, Docker is a powerful tool for creating isolated, reproducible environ-
ments for software development and deployment. Its use of container technology simplifies
many of the challenges associated with software development, including dependency man-
agement, environment consistency, and deployment speed. As such, Docker has become
an integral part of modern software development workflows.

2.4 Testing infrastructure

At TKH Airport Solutions there are several test setups and sets of tests. These setups
offer varying degrees of complexity and dedicated hardware accordingly to test the real
communication between them. Similarly, there are also several sets of tests, also called
test suites, to test the deployment and conformity of the CEDD AGL systems that are
under test. In this section, we first introduce the different system setups and then introduce
the test suites.

2.4.1 Test system setup

There are three different (CEDD AGL) system setups that are relevant in our situation,
besides there are also demo setups for conferences and a setup at Twente Airport15. In
increasing order of complexity these are the following:

Virtual Basic setup

The most basic setup is a fully virtualized setup and nicknamed accordingly as Virtual Ba-
sic. This setup consists of several Virtual Machines set up using VirtualBox and (usually)
runs entirely on the developer’s system or a dedicated test PC. This setup will also be the
focus of our research as this is the setup we wish to improve the testing and generation of
said Virtual Machines for.

Small physical setup

Next, we have the Small physical setup this setup consists of one physical Basestation and
a VirtualBox setup with the Masters. The Basestation is connected to several lamps to
test functionality between the lamps and the Basestation.

15https://www.tkh-airportsolutions.com/career/locations

9

https://www.tkh-airportsolutions.com/career/locations

Large Hybrid setup

Finally, we have the Large Hybrid setup, this is a full-scale setup with 2 physical Bases-
tations and connected lamps, complemented with many virtual Basestation and virtual
lamps to reach full scale. The two CMS Masters are running virtualized on their own
physical machines, with the Master AM being on the CMS 1 machine, housed in a server
rack.

2.4.2 System Test suites

Similar to how there are multiple setups there are also several standardized test suites that
are being used. These test suites are designed through Robot Framework16 which is an
automation framework with a wide support base and many integrations.

Smoke test

The smoke test is a very basic test which quickly checks some basic functioning of the
system by switching some lights. By doing this the configuration and communication
between all components can be tested in a very efficient manner before more time is spent
on larger tests which often also require a more lengthy setup to ensure the pre-conditions
are met.

Release test

The release test runs all available and applicable tests for the given test system. This will
test a large part of the functionality of the systems and their interoperability. Due to the
extensive nature of this test, a single run also takes quite a lot of time. On the Basic
Virtual setup, it can take over 1 hour to complete.

Endurance test

As the name implies this test performs an endurance test operation. Using this setup a
subset of the available tests can be repeatedly run for an extended time. This is to ensure
correct operation over a larger amount of time.

2.4.3 Jenkins pipeline

TKH Airport Solutions makes use of a Jenkins pipeline17 to set up the Virtual Basic
setup. Through this method, a lot of the manual work for changing versions and setup
is automated. Additionally through the pipeline, a quick Smoke test is run to verify the
correct setup of the CEDD AGL system.

2.5 Initial process and setup

There are two areas we want to do research for at TKH Airport Solutions. First, we have
the generation of the system images. These will be a virtual form of the masters and
the Virtual Basestation as they are mentioned in section 2.1.3. And secondly, we have
the running of the system tests using the Jenkins pipeline. Figure 2.2 shows a simplified
overview of how the process ties together.

16https://robotframework.org/
17https://www.jenkins.io/doc/book/pipeline/#overview

10

https://robotframework.org/
https://www.jenkins.io/doc/book/pipeline/#overview

Figure 2.2: Overview of the whole process including Image Generation and the
system testing pipeline.

2.5.1 Image generation

Packer is currently being used in the Image Generation process to create the VirtualBox
images. To generate the images, the software that is to be installed on the Virtual Images
is first compiled and bundled through Jenkins pipelines. After they are bundled they are
all stored on the release area (a shared network point) which the developers can access.

Once these bundles are made it can then be used by a developer to generate a system
image of the desired component (one of the CEDD AGL Components), this is done through
Packer. First Packer makes a base image with Ubuntu 22.04 installed along some standard
packages. Once this base image is made a snapshot is made to revert to the base. From
this snapshot one by one the CEDD AGL Components are being installed, and exported
and finally the image is reverted to the old snapshot for the next system to be installed.

To install the component Packer fetches and uploads the bundled software along with
several configuration files which are stored alongside the Packer configuration. Then Packer
puts these files in the correct locations with the right permissions and the installer scripts
are run to install the software components on the images.

When a component is completely set up it gets exported through VirtualBox, when all
the components are done some last configuration changes are done on the files. After this
process, they can all be bundled together as a new (internal) release ready for testing.

11

2.5.2 System testing

After the system images are generated they can be tested. When starting the research this
was often done manually or through a simple pipeline with much room for improvement.
Many steps had to be manually prepared before the pipeline could be run. And, often due
to VirtualBox stability, there were multiple points where the pipeline could fail or become
unrecoverable.

This process involved preparing the machine by removing old images and settings. After
this, the images are imported into VirtualBox and VirtualBox is set up for networking.
Once this is done a clone is made of the Master CMS image which is converted to a Master
CMS 2. This is done because cloning and changing the configuration for a Master CMS is
more efficient than generating two almost identical images.

Once all images are ready the Virtual Machines are started and the configuration is
uploaded. First, the Virtual Basestation system is configured with a small number of
Basestations. After this configuration is done the overall network configuration is set up
through the Master AM. This is done through a robot framework18 suite. Once all the
configuration is done a Smoke test is run to validate the basic working of the CEDD AGL
System. This quickly ensures that the most basic of operations is possible such that a
Release test can be run to get a final test report which a test engineer can use in their
validation of the new (internal) release.

2.6 Restart Issues VirtualBox

One of the main reasons to look for an alternative strategy for building the system images
automatically is the instability of VirtualBox. Throughout a complete configuration and
test run using the basic pipeline, there are a large number of issues that can occur causing
failures of this pipeline. Partially due to this reason some of the developers do not make
use of this existing pipeline. We have however identified that a large number of the issues
with this pipeline, and other issues with testing the CEDD AGL System, are due to the
instability of VirtualBox.

When a Virtual Machine is started or rebooted, which happens multiple times during
a full test run, there is the potential to end up in an erroneous state. The most noticeable
effect of the issue was that the boot process would halt partway through with the timing
information, which normally displays as the time since start in seconds, at a very large
number (11 digits) as well as the line RAS: Correctable Errors collector initialized.. Vir-
tualBox would however report the VM as running normally so there was no reliable way
of detecting this issue. We could monitor services coming online, like SSH, to verify that
the VM was booting. But we had no way of knowing if the boot took a little longer due
to different factors or if the VM would never end up successfully booting.

Since this has a lot of unpredictable effects on our testing suite this is a major concern.
Due to the CEDD AGL Systems not starting a large number of tests could fail. The
fact that during the tests the CEDD AGL Systems are rebooted at certain times made
it possible for this issue to start at almost any point during our test runs giving varying
degrees of failed tests that could waste a lot of time. This makes it difficult to discern
between a bug happening or if a VM did not (re)start correctly.

18https://robotframework.org/

12

https://robotframework.org/

CMS1 CMS2 AM VBase Overall
Total failures 138 137 165 150 590
Failure Percentage 1.84% 1.82% 2.20% 1.99% 11.83%
Failure period 54.4 54.8 45.5 50.1 8.5

Table 2.1: Failure rates among VMs in VirtualBox (version 6) out of 7486 cycles.

CMS1 CMS2 AM VBase Overall
Total failures 70 75 79 82 306
Failure Percentage 1.40% 1.50% 1.58% 1.64% 6.14%
Failure period 71.2 66.5 63.1 60.8 16.3

Table 2.2: Failure rates among VMs in VirtualBox (version 7) out of 4987 cycles.

2.6.1 Severity

To get an idea of how severe these issues were we performed a large number of stability
tests to predict the potential impact. However, we quickly found out that the rate these
issues occurred seemed to depend on external factors. Since the failure rates19 can vary
wildly between 1 in 20 under good conditions, but we have also seen it occur as often as 1
in 4.

To give a better idea of the problems and their severity we have measured the amount
of problematic runs using both VirtualBox 6 and VirtualBox 7. We do not suspect the
VirtualBox version having any effect and account for the difference in the varying degrees
of system load and background processes.

To test the values we made a script that repeatedly reboots all of the VMs, after this,
we check which of the VMs comes back online within a set amount of time, which is well
sufficient for a normally operating VM. After this period it is logged when a VM does not
come back online, in this case, the VM also gets a hard reset such that it operates again
on the next loop. Each of these loops we call a cycle since we cycle through each of the
VMs being booted.

This process is then repeated a large number of times, often overnight, to get a large
amount of data for comparable results. During these runs, we see that there is no bias
towards a specific component failing more often than the others, all fail at roughly the
same rate and throughout the process it differs which one fails.

The specific numbers can be found in table 2.1 and table 2.2 for VirtualBox 6 and 7
respectively. The rows denote the number of failures as a whole, the percentage of the
total (failure proportion) and thirdly the failure period, every once in X times the VM fails
to boot on average. The columns are each counting a specific VM with the last column
counting the statistics covering all 4 combined. Since our tests require all components to be
operational this is the most relevant number. The others are included to give a comparison
between the different VMs.

Additionally, the graphs showing the interval between failures can be found in Appendix
A.1. These graphs show at which iteration a Virtual Machine failed. This is to show that
the failure rate does not change a lot over time, showing its consistency.

19We define failure rates in this context as on average a failed attempt happening once in every X
times/iterations.

13

Stability workaround

Despite extensive testing with many different setups, including different machines, Virtual
Images, Linux kernel versions and different versions of VirtualBox, we have not been able
to identify the root cause of the problem. However, quite late into the research process,
we found a workaround towards these issues.

This workaround was to set the paravirtualization-config to minimal as opposed to the
default setting. To verify the stability we reran our reboot tests for almost 3000 cycles only
detecting 2 failures that seem unrelated to our previous issues. With a failure rate of only
1 in 1500, we are confident that this workaround is viable. We have also run the release
tests and compared the results with a setup using the old configuration to this setting and
have found no negative impacts on our test results.

With this resolution, we are confident that we have put VirtualBox back on the list of
contending Virtualization Technologies where, due to its lack of stability, we at first had
major doubts about its success.

Although this has made the need to change much lower, and makes the alternatives
seem much less appealing. The reader must keep in mind that this was not clear for a large
part of this research, and the belief up to that point was that an alternative was required
if found viable through other options.

14

Chapter 3

Related work

Before starting our research it is important to keep in mind other works that already have
been published, in this regard we can look at several topics others have already researched.
We will first look at other’s findings in the Image Generation field. After that, we will take
a look at various performance metrics among different Virtualization Technology. Finally,
we will be zooming in on system testing and pipelines.

3.1 Image generation

As we wish to automatically generate Virtual (Machine) Images we need to find relevant
ways to know which technologies can support us with this. One popular technology that
may be employed is Docker1. Wu et al.[14] find that the build failure rate for a majority of
open-source Docker projects is relatively low. Of the 3.828 analyzed projects 2.623 (68,5%)
have a failure frequency of just 20% or lower with a median rate of 10.5%.

Additionally, other tooling, that is focused on system provisioning, may be employed,
Święcicki[9] compared several system configuration tools that work with a central master
where the different systems are the agents being configured. They also propose their
tool designed to work as a standalone program. Torberntsson and Rydin[12] did a more
comprehensive analysis of these configuration management systems. Although these are
all focused at larger cloud scales we may be able to employ them for our use with Virtual
Machines. For example, Salt2 is also able to run without a master to configure the same
machine itself3.

With the aim of automating system testing van der Burg[13] looked at using NixOS
to build Virtual Machines. NixOS is an operating system using the Nix package manager
which allows declarative configuration for setting up an entire system. Although using
NixOS, being a different operating system altogether, may be moving too far away from
our source image it offers many insights in how we may be able to employ other tools.

This tells us there are multiple ways to configure and set up the systems that need
to be on the Images that we wish to generate. Other works were however lacking in the
regard of employing these techniques on Virtual Machines to generate them from scratch.
Therefore, we believe this research to be novel in this regard.

1https://www.docker.com/
2https://docs.saltproject.io/en/latest/topics/about_salt_project.html
3https://docs.saltproject.io/en/3005/topics/tutorials/quickstart.html

15

https://www.docker.com/
https://docs.saltproject.io/en/latest/topics/about_salt_project.html
https://docs.saltproject.io/en/3005/topics/tutorials/quickstart.html

3.2 Performance

Since we don’t want our runs to take a longer amount of time but rather see a decrease we
also need to take the performance of systems/technologies into account. The performance
can be divided into three relevant areas for our case study; runtime performance, build
performance and startup performance.

With runtime performance, we focus on the resource usage and duration for a certain
workload to complete. This will be during the testing process.

Build performance is the time it takes to go from an empty operating ISO to a completed
Virtual Image which we can use and run our tests on, this should be set up with the correct
software packages and versions.

Startup performance relates to the time it takes for a machine to boot and load all
processes such that it is ready to start using it in tests.

3.2.1 Runtime performance

When looking for performance testing/benchmarking between Virtual Machines (VMs)
and containers a few papers can be found. Potdar et al.[7] compared the performance of
KVM (Kernel-based Virtual Machine)4 with Docker5, where they found vast performance
differences in favour of Docker. Chae et al.[1] did a similar study focusing more on resource
usage.

Additionally, Siroky developed VTmark in their master thesis[2] which was used by
Giallorenzo et al.[3] to compare a multitude of virtualization benchmark researches against
their findings.

Overall all these benchmarks produce synthetic loads which may not be relevant in our
more real-world-like situation. This will likely require the need to find other (types of)
benchmarks/load testing to get a better idea.

One overall trend we can see when comparing older papers with newer ones is that the
differences in technologies are decreasing. This can partially be explained by better imple-
mentations and continued work on their efficiency. As well as Hardware-assisted Virtual-
ization6 being introduced to CPUs and slowly getting implemented into these technologies.
However, it seems that with more recent improvements the differences are decreasing, and
the existing differences seem to favour Docker/container workloads.

Using these previous works we believe that for our research, we can abstract away
from what is happening inside the Virtual Machines and put our focus towards the larger
processes.

3.2.2 Build performance

One thing we were unable to find among other research which we are interested in is the
build performance between the different technologies. These are ways to automatically
generate Virtual Machine images with the desired software installed, or Docker images
respectively. We can however note that there are different techniques, Docker has their
build in Docker Images7 we can utilize. On the Virtual Machine side there are multiple
ways, one that is already in use by the company is Packer8. An alternative we might want

4https://www.redhat.com/en/topics/virtualization/what-is-KVM
5https://www.docker.com/why-docker/
6https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
7https://docs.docker.com/glossary/#image
8https://www.packer.io/

16

https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.docker.com/why-docker/
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
https://docs.docker.com/glossary/#image
https://www.packer.io/

to explore is utilizing Ansible to get the image in the desired state. This might even allow
us to efficiently update VM images without replacing them entirely.

3.2.3 Startup performance

Another key aspect is the startup performance, also called deployment or provisioning in
the hosting industry. How long do the systems take to start up their processes, and with
hosting provide a space available for the system to run. This is another area with little
relevant research, however, Lingayat et al.[5] looked at the time it takes for Docker images
to boot on bare metal9 and within a VM and found a large difference in performance in
favour of bare metal. Mao et al.[6] and Hao et al. [4] looked at the time duration of
VM provisioning among different cloud providers. These papers found that, among other
things, in more recent years deployment times have drastically reduced. But for both of
the papers their focus lies on the difference between data centres and providers. Direct
research on boot times between different situations is not something we have been able to
find.

3.3 System testing

For our system testing currently Robot Framework10 is being used. Since this is already
tightly integrated with a vast number of existing tests it is unlikely this will change, this
will also fall quickly outside our scope and as such will not be extensively considered.
However, it can still be valuable to compare it against other methods. The advantage the
Robot Framework has is that it is fully automated. However, as Taipale et al.[10] found
there are trade-offs and require the right type of system/rigidity for automated testing to
give optimal results compared to manual testing.

3.4 Pipeline

The current pipeline being used at TKH Airport Solutions is managed through Jenkins11,
although not a lot of research is available about (testing) pipelines, it can still offer a
way to see the alternatives and their practicality. Tanzil et al.[11] have done a study on
DevOps challenges by looking at Stack Overflow questions. Here they found that under
the category "Cloud & CI/CD Tool" the various Jenkins projects — pipeline, distributed
architecture, and build projects, among others — score very well under their popularity
metrics. However, they do score higher on the difficulty metrics, where Azure scores less
popular but also less difficult. Another alternative is Gitlab CI, however, this is tightly
integrated with Gitlab as a code repository which, although possible, does not suit the
current setup using subversion.

3.4.1 CI/CD

Although our use case does not strictly follow CI/CD, a number of the papers covering this
use case seem to be relevant towards the pipeline and its implementation. Additionally,
this may be a direction the company is heading if the whole process can be stable and fast
enough.

9physical hardware without a virtualization layer
10https://robotframework.org/
11https://www.jenkins.io/

17

https://robotframework.org/
https://www.jenkins.io/

We see that Singh et al.[8] compared Jenkins CI with Gitlab CI on an Amazon server.
Finding that the overall performance between the two is similar. Jenkins is easier to use
with support for many plugins but can grow complex with larger setups. Whereas Gitlab
has a single configuration but offers less flexibility. Due to the complexity and the company
using subversion, which GitLab does not support, Jenkins seems the better fit. Although
looking at an alternative solution will be kept in mind, looking at an alternative will not
be a priority during this research.

18

Chapter 4

Methodology

Before we can start measuring our data and metrics we first introduce our methodology
explaining what metrics we will focus on and how and why we measure these.

We will first give a general outline of the process we will be following, after that we will
zoom in further on each of the processes, what they entail and what we want to research
within this topic. Lastly, we will give an overview of the metrics we wish to measure for
each of our categories.

4.1 Overview

To start we will take several baseline measurements, the results from these will be presented
along with the other measurements and results in chapter 8. The metrics we will be
analysing during this research can be found in section 4.6.

Afterwards, we will be making a selection of Virtualization Technologies we can use
and research. We will first make a selection of requirements and other criteria the Virtu-
alization Technologies must follow before we can consider them. Then we will verify these
Technologies against these criteria and make a ranking among them.

Using this ranking, we will implement each of the Technologies and accompanying
Image Generation methods. We will give a short evaluation of each of these after which
we will move our focus towards the pipeline. For the pipeline we will attempt to improve
the overall usability, since many issues arise from the stability of VirtualBox and human
error we will attempt to increase the stability significantly and reach as close as possible
to full automation.

Once we have all our implementations we will be presenting our (more detailed) findings
and measurements in the Results. Here we will give a comparison between each of the Image
Generation methods and the old and the new pipeline based on each of the categories. We
will conclude each category with a short conclusion ranking each of the Image Generation
methods.

With our Virtual Technologies in hand, we will be looking at the image generation
process to answer Research Question 1. Then to answer Research Question 2, if necessary,
we will be implementing this technology in the pipeline. Our goal will be a fully automated
pipeline from Image generation, using the previously built files to install. Then the setup
of the images on the host machine, and finally executing a full test run.

With all this in hand, we can answer our Main Research Question about how we
improved the System Testing that is being done at TKH Airport Solutions.

To give more context to each of these steps we will explain in more detail in the following
sections.

19

• Technology selection

– Criteria and requirements

– Virtualization technologies

– Decision matrix

• Image Generation Implementations

• Pipeline redesign

• Results

• Conclusion

4.2 Technology selection

Overall this chapter will focus on finding the shortcomings of the potential Virtualization
Technologies for the Image Generation and the Virtualization Technologies. We will deter-
mine what a new technology must support to be considered as a replacement and finally
make a selection of which new Technologies to explore further.

Criteria and requirements First, we will be looking at what technologies are available
and their potential shortcomings. We will also analyze what is required for these tech-
nologies to work within the company and current processes. To get these requirements we
will be in close collaboration with the employees at TKH Airport Solutions. We will be
discussing what each of the components does within the CEDD AGL System and how they
communicate. We will also be discussing the operational requirements and communication
between the components and we will be discussing potential issues or pitfalls they have
run into in the past.

Once we have a clear view of the requirements we will be making a list of the most im-
portant criteria each of the new Image Generation and Virtualization Technologies must
abide by to be considered in our future comparisons. We will be doing this by making
a decision matrix comparing, which is introduced later, and scoring each of the Virtual-
ization Technologies to the criteria and scoring them. The scores for the Virtualization
Technologies will dictate in which order we will be implementing our technologies. Such
that in cases of time delays or other obstacles the candidates with the highest potential
are implemented.

Validation through prototypes Based on these criteria we will need to do some vali-
dations to confirm whether or not a certain technology suffices by our standards set. This
will prevent us from spending time on a candidate which may never meet our minimum
requirements. This will be done separately by implementing simple prototypes pertaining
just to the aspect that is desired to be tested.

The discussion and results from these prototypes will be discussed along the decision
matrix in the relevant criteria.

Decision matrix Once we have set up all our criteria and have collected the information
we can fill in our decision matrix. Once we have filled our decision matrix with the data and
scored each Virtualization Technology accordingly we will look at the accompanying Image
Generation Techniques that can be combined with these Virtualization Technologies.

20

4.3 Image Generation Implementations

Once we have selected the Image Generation techniques we will first make a simple imple-
mentation manually in the Virtualization Technologies. This is to confirm this platform
can be supported and used. As well as finding any shortcomings and tweaks we may need
to account for with the Image Generation techniques. Once we have confirmed that the
Virtualization Technology matches our expectations, and can run a successful release test
to confirm it is working, we will be starting the implementation of the Image Generation
techniques.

Once we have built the CEDD AGL Components, and measured various metrics from
the build process, it is key to know the final state of the build process. Since this can be
hard to detect we use the Smoke test to quickly test the final state of the build process
and whether it builds the images correctly.

Using this data we will already be making a selection of which Image Generation
technique is best fit with the company. This will be done by giving a presentation providing
all our findings at this point to the colleagues in the team we are working with. After
this presentation, we will have a discussion where we take all final considerations into
account and make a selection among the techniques with which we will be going forward.
This Image Generation technique will then be integrated into the pipeline where further
adjustments will be made.

In this chapter, we will explain our experiences and findings using these techniques.
The overall metrics and results will be shared later in the chapter Results.

4.4 Pipeline improvements

Once we have our Image Generation technique we can look at how we need to adapt the
pipeline to accommodate this technology if necessary, and how we can implement other
improvements.

These improvements will be mainly focused on streamlining and stabilizing the process.
We aim to achieve this through improving the stability through catching problems. But
also by automating more steps such that there is less room for human error. We will
also attempt to increase the ease of use and the sense of security such that more of the
developers are comfortable and eager to use the new pipeline.

4.5 Results and conclusion

To answer our research questions we will be gathering the Metrics we have collected during
the baseline measurement and while implementing and measuring the Image Generation
process and the pipeline.

This data will first be presented in the Results chapter where we will analyse each
metric separately. We will first introduce our data for the different topics of this research,
the image generation process and the system testing process, and discuss them shortly
giving our take on the results we found. At the end of each metric, we will give a summary
concluding our findings and giving a ranking among the Image Generation Technologies.

In the Conclusion we will take the resulting information from each of the metrics and
look at the overall larger picture. We will be combining the results of each metric and the
advantages found in the Technology selection to select a winner. Within the company, this
winner will already be chosen earlier, with close collaboration with the developers, testers

21

and team lead, which allows us to implement the new technology in the pipeline when
necessary.

After discussing the overall improvements we will focus on each of the research questions
separately. For the first question, we will be discussing the Image Generation Techniques
and in what situations some of the Techniques may be applied in the future. After this,
we will zoom in on our most impactful changes to the pipeline and system testing process
in general.

After this, we will take both the Image Generation process and the pipeline into account
to answer the Main Research Question on how we improved the system testing at TKH
Airport Solutions. We will also be discussing with employees to find what our impact has
been on their processes and their findings for the new pipeline and the Image Generation
process.

Lastly, we will give a few suggestions for potential future works which we had to leave
out of our scope either due to complexity or time constraints.

4.6 Metrics

During the research we want to collect multiple metrics, in this section, we explain these
metrics; what we want to measure, how will we measure and what is their purpose. First,
we will explain how we collect a large part of our data, after that, we will expand upon
the different metrics we will put our focus on. These metrics are based on the following
topics; Stability, Automation, Performance and Company impact. What each of these
topics entails will be explained in their respective sections after the data collection and
scripting.

4.6.1 Data collection and scripting

To collect a large part of our data in a (partially) automated manner we will be using some
wrapper scripts to automate the process together with several existing process measuring
tools to collect the data. For most cases, we will often make use of three scripts. We will
be calling these scripts the cycle, benchmark and the process scripts after their functional
tasks.

The purpose of these scripts is to allow for ease of use in automatically/repeatedly run-
ning the tasks at hand as well as collecting valuable information. Most of this information
gathering is focused on the resource usage of various processes as well as on how stable
something is running by logging this information.

The cycle script is a simple script which does some basic setup like creating the folder
where all the logs will reside and then will run the benchmark script a defined number of
times (often enough to run throughout the night).

The benchmark script which gets repeatedly started by our cycle script is the core of
our benchmarking process. This script restores the host machine to a starting state by, for
example, deleting residual files from the previous run, as well as removing old images. Once
everything is ready for a new run this script starts the benchmarking tools like procpath
and psrecord, and then will run the process script. After the process script is done the
benchmark script often checks the state of the output, if not already directly done by the
process, for example, by running a Smoke test or checking certain file states.

The process script as mentioned is what is actually running the process we want to
measure. This can, for example, run the entire Image Generation for a certain tool, or
it can cover a different set of actions we wish to measure. All the system resources used

22

during this process are measured by the tools from the benchmark scripts. This is done
by, besides measuring the process script itself also, logging all child processes spawned by
the commands being run in the process script. This way we can easily measure multiple
tasks being done by different commands without repeatedly setting up the monitoring for
each separate command.

Additionally, these scripts also contain a large number of timestamp logging, this in-
formation can then be used to extrapolate a timeline for each install to get information on
how long a certain process took, for example, the cloning/exporting of an image or how
long it took to run the installation script.

Deliverables

Due to the confidential nature of the software being installed and tested, combined with
the close interfacing these scripts at times do with this software, we can not publish the
used scripts. These scripts, along with the configurations for the image generation, will be
made available within the company for potential future reference. Additionally, we plan
to implement our findings in a final pipeline setup for both the image generation process
and the system testing process.

4.6.2 Median data

For our data metrics, we will mostly focus on the median1 values. Opposed to the average
value the median is less susceptible to outliers in the data. Which, given that our image
generation should mostly focus on standard, near ideal, circumstances the outlier data is
not interesting for our comparisons. Additionally as can be seen in the graph of figure
4.1 with the other situations available in Appendix A.2 the resource usage is quite stable.
Couple this with the fact that the data we collect is dependent on a lot of outside factors2.

Additionally, outliers may often be caused by hard-to-explain external factors stalling
a process or taking up resources that the process wants to use. One example having a
major impact was the disk usage, while exporting or cloning the Virtual Machine this
process could often take up all the read/write power on the SSD in the host machine.
This could cause a larger variation in the data when other tasks, like using the browser or
going through test reports, were performed. These are not representative of happening on
a dedicated build machine or a system with more I/O performance.

Taking these considerations into account we feel that the median will give us a suffi-
ciently reflective reference number for our data without the need to dive into deeper and
more complex mathematics to take out outliers.

4.6.3 Stability

With stability we will focus on how stable the process is during running, this will be done
through a focus on the success rate. What portion of running certain actions does succeed
without further interaction, this can be running tests, configuration or image generation.

An important aspect of this is the boot reliability. Early on we found that the reliability
for VirtualBox booting was simply too low, impacting both the image generation and the
system testing. As such we will also emphasize the stability in regards to successful reboots.

1The median is the value in the middle of a data set, this means that half of the number of values are
below this value, and the other half above.

2During our tests multiple other background processes may or may not have affected various performance
metrics measured

23

Figure 4.1: Example of the overall stability of resource usage over multiple runs.
This data is from the old Packer implementations

For the image generation this will focus on when a build is successful, a build is con-
sidered successful when the build process exits with an intact build. We consider a build
intact if there is no corruption with the files and no obvious wrong signs. In situations
where this can be done easily, we will perform a smoketest to validate the success of the
build.

For system testing/pipeline we will focus on successful runs of the pipeline. Since the
pipeline is designed to stop when a step fails we have opted to not consider the results of
the large release test. This is due to the fact that not all tests are working correctly at the
time of research. The release tests cover several known issues that have a low priority to
solve for the developers at the moment. This often covers edge cases or scenarios that are
nearly impossible to find in the real world.

4.6.4 Automation

The automation measurement will be based on how well the stage can execute on its own.
We want to minimise the manual steps/interventions of the user. As such this metric
should measure the amount of effort a user needs to perform to run the desired stage.
Although automation is closely related to stability, often requiring manual restarting of
the pipeline after some instability occured, we will count these incidents separately to focus
more objectively on the specific task at hand.

This task will not be able to be automated since it inherently relies on the amount
of human interaction that is needed, at what points they are needed and the amount of
effort required to perform the task. We will manually be logging these instances where
interactions are required, we will do this by running the pipeline several times throughout
our research such that we do not become too experienced with every step and simulate the
experiences a developer/tester has who occasionally uses the pipeline.

In measuring the automation we will focus on two aspects, how often user input is
required and how much effort this input requires. For the first, we will measure the
frequency and moments the user needs to perform certain actions and categorise them.

24

An initial setup or tear down3 is less bothersome than having to manually perform a task
partway through the process, possibly at a random moment.

Next to this, we will classify the effort of the action. For this, we will look at how long
it took to perform the action and the complexity. Was it clicking a single button or was it a
way more involved task deleting select files in certain locations. Although complexity and
duration are often linked it may be the case that a few button presses with some waiting
moments takes more time than a hugely complex series of operations.

In the context of manual steps for the second research question, we will also look at
categorising the kind of issue the manual action triggers. This can be forgetting to execute
a previous step or performing an, often error-prone, task (partially) incorrectly.

4.6.5 Performance

Although less important than the stability and automation metrics it is important to keep
the build and testing stage performing well. We do not want the duration of testing to
take exponentially longer or many more resources to be required to perform all tasks. As
such we have the performance metric which will measure how long the build stage takes
and how long the tests need to run. We will also look at the resource usage of both stages
to see that this does not explode and stays manageable.

Measuring the resource usage of the Virtual Systems themselves is very tricky, due to
them being managed by a hypervisor and the resources are often loosely coupled/hard to
get the process information for. Also, different Virtualization Technologies use different
ways to measure their resource usage making this data unreliable. As a result, we decided
to leave the resource usage of the Virtualized system out of scope and we will focus solely
on the resource usage of the tooling/programs used.

For the build stage, we want to measure the memory and CPU usage as well as how
much disk space gets used by potential caches and the final system images. Storage space
is important when we want to keep older versions, especially the usage of completed builds.
These older versions may be used for comparison and to see where a regression may have
introduced itself.

The testing stage will be measured by manually making scripts that perform the same
steps as the pipelines and measuring the resource usage of these steps. Since we plan to
make large overhauls to the pipeline we will make very granular measurements not taking
separate steps into account but looking at a larger set of actions to perform greater tasks
like configuring the host machine. Our focus will lie on the memory and CPU usage, since
a developer/tester usually only has one version they use and all PCs are equipped with
SSD storage the storage usage and intensity are less of a concern.

We make heavy use of procpath4 version 1.6.1 to take measurements and log the mem-
ory usage and the usage of CPU time. We also take support from psrecord5 version 1.2
to keep track of overall CPU % and Memory usage and we use pidstat6 version 12.5.27 to
monitor disk usage (read and write speeds) per process.

To ensure that we focus on the metrics we want and not, for example, the resource
monitoring tools themselves, we have been able to filter most of the noise from the mea-
surement of our tooling, additionally, we have manually checked at various points through

3A teardown is an action at the end of a process to finalise this task.
4https://procpath.readthedocs.io
5https://github.com/astrofrog/psrecord
6https://man7.org/linux/man-pages/man1/pidstat.1.html
7The version of pidstat is not directly available, the version used is packaged in sysstat 12.5.2 on Ubuntu

25

https://procpath.readthedocs.io
https://github.com/astrofrog/psrecord
https://man7.org/linux/man-pages/man1/pidstat.1.html

the measured data to check the impact of the leftover ’noise’. From this, we can con-
clude that the impact of our measuring toolset should be minimal and negligible between
different test runs as well as the different implementations.

4.6.6 Company impact

Our goal is to keep the pipeline simple, as such we wish to introduce as little new software
as possible, or keep them as simple as we can, such that the employees have a minimal
learning curve towards working with the new pipeline.

With this in mind, our preference goes out to keep using tooling that is already used,
like Packer and Docker, or have other tooling be similar in setup/usage. With this met-
ric covering both the build and testing stages, we count the amount of newly introduced
tooling and classify the complexity of new tooling/features compared to the existing setup.
Although this type of classification is quite abstract we will be looking at the potential
learning curve, the documentation clarity and the length and availability of tutorials, plu-
gins and other helpful resources that may aid in the usage of the tooling.

26

Chapter 5

Technology selection

An important decision we need to make is to decide which Virtualization Technologies
we will be looking at during this research. This decision will also influence which Image
Generation processes we can look at, which will be explored in the next chapter (Image
Generation Implementations).

During this chapter, we will first be setting up several criteria each of the Virtualization
Technologies has to support. We will be basing a ranking on these criteria on how well
they score. The better they score on the criteria, where there is room for variation, the
more interesting this Virtualization Technology will likely be for our research. Using these
criteria we will be scoring the Virtualization Technologies on a matrix which will decide
the order in which we will explore the technologies.

5.1 Criteria and requirements

In an attempt to potentially rule out some of the technologies that may not fit our needs
and requirements we can set up some criteria these technologies need to meet before we
will start implementing a generation set up with them.

5.1.1 Boot reliability

Since a large number of our issues can be related to the problems with booting the Virtual
Machines we will need a more reliable technology. For this, we will verify that the desired
Technologies can repeatedly reboot a Virtual System without running into an error during
the boot.

5.1.2 Multiple network interfaces

The current setup makes tight use of network bonding to add resilience towards cables
being cut or other temporary hardware failures in the network stack. Although not critical
in the virtual test setup it is still very much desired to test this functionality. To accurately
test this we ideally employ a Virtual setup where network bonding is supported. Although
we acknowledge that one of the interesting contenders, Docker, has no support for this due
to how it is integrated with the Linux Kernel. To still accurately test the other aspects of
the network we require at least the support for multiple (virtual) networks (bridges) to be
set up.

27

5.1.3 Full automation/scripting

Since our ultimate goal is to automatically test our software stack after code commits we
need a way to fully automate the generation of images without the need for user interaction.
As such we will need a system that can reliably generate these images, ideally, from the
command line.

5.1.4 Platform support

While we were in the process of implementing and testing the various Virtualization Tech-
nologies and Image Generation tools an extra requirement became apparent. This was the
need that other departments also had to use the Virtual Basic setup, with the very strong
desire to only rely upon one generation technique/implementation for the Virtual Images
this technology had to be supported on both Windows and macOS.

5.1.5 Partitions

The CEDD AGL Components currently make use of different partitions to store different
types of data like configurations and logging. This is to ensure that (failures causing)
excessive logging would not prevent other parts of this machine from operating by being
full on disk space.

Ideally, we should employ a technology that supports multiple partitioning or limits on
storage as this emulates the production best. However since our test suite does not rely
on this functionality, and this has never come up within nominal testing operations we do
not consider this a hard requirement.

5.1.6 Cost

Although it is not a problem for software to have a cost, in enterprise situations these
costs can quickly grow to large numbers. With this in mind, we will take a look at the
licensing models and pricing and predict what kind of effect this has on our needs. Since
each employee has their own machine (often also a laptop that may be used), and several
other machines may be used by the developers and testers the potential cost can quickly
rise if each developer machine needs a unique license key.

5.1.7 Summary

In summary, we have the following criteria to consider ordered from most important to
least important;

• Boot reliability

• Platform support

• Automation/scripting

• Network interfaces

• Cost

• Partitions

28

5.2 Virtualization Technologies

The Virtualization Technologies we found that abide by our minimum requirements, and
thus will be scored on our decision matrix are the following:

• VirtualBox

• KVM

• Docker

• VMWare

There are some other Virtualization Technologies that we found, they do however not
abide by our requirements for various reasons. The most prominent is that they do not
have support for Linux which is the Operating System that most developers use.

Some of the dropped options and their reason for being left out are:

• Hyper-V (Windows only)

• Parallels (macOS only1)

• LXC (Containerization which is more efficiently covered by Docker)

5.3 Decision Matrix

Using the previous criteria and findings we produce our decision matrix. First, we introduce
how we will be scoring each of the criteria and afterwards, we will show our matrix and
will explain some of our argumentation.

5.3.1 Criteria scoring

First, we will compare each of our technologies (both virtualization and image generation)
against the set of criteria we found. We will be doing this on a four-tier scoring system.
Each tier will have a name and a character representing the tier, the characters will be
used in the decision matrix to show information more quickly and compactly. The scores
are as follows:

• Inadequate (x): This is the lowest tier. It signifies that the performance or quality
is not up to our standard or expectations. This tier signifies that the scoring in this
regard is insufficient for us to use this tool covering these criteria. Further changes
along the way may make room to loosen this requirement.

• Workable (-): This is the second tier, above “Inadequate”. It signifies that while
the performance or quality is not fully up to standard, it is functional or acceptable
for the time being but requires improvement or adjustment to reach the standard.

• Adequate (=): This is the third tier. It signifies that the performance or quality
meets the basic standards or expectations but still has room for improvement. This
will be able to perform the necessary tasks but does not necessarily offer great support
for further depending on this tooling set.

1Parallels dropped support for other operating systems since 2013

29

• Excellent (+): This is the highest tier. It signifies that the performance or quality
not only meets but exceeds the standards or expectations. With this score, the
criteria are well met along with any extra nice-to-have/use features it will likely
accommodate.

With these scores and our decision matrix, we will be ranking the Virtualization Tech-
nologies. An inadequate score in a requirement which can not be overcome or worked
around should invalidate the Technology from being used further. Since this would invali-
date our efforts and block progression towards a more suited tool.

5.3.2 Decision matrix and argumentation

Boot
Reliability

Network
Interfaces

Automation
/Scripting

Platform
support Partitions Pricing Overall

Score
Virtual-
Box old x + = + + + x

Virtual-
Box new + + = + + + +

Docker + - + = - = =
KVM + = = - + + =
VMWare + + = + = - =

Table 5.1: Comparison of the various Virtualization Technologies.

VirtualBox Old Our main concern with the old VirtualBox situation is the boot relia-
bility. As we have previously determined this was insufficient causing us a lot of trouble.
As a result, we can not give this a passing mark.

VirtualBox New The new situation of VirtualBox which has found a workaround for the
boot reliability solves our concerns and as a result, can receive a passing mark. Considering
it scores well in many of the other categories we can even give it an excellent score.

Docker Docker has a lot of nice features outside our direct needs. One concern we have
with Docker is the lack of support for network bonding. We have done extensive testing
to try and get network bonding working but we found out later that due to the design and
how it is connected with the Linux Kernel, it is not possible. Technically there are some
ways to work around this issue but these would defeat the purpose of bonding in the first
place. Next to this, there is no real/proper support for partitions. Docker data resides on
the container itself and there are ways to limit the size of the storage but these all work
differently and not as well as partitions would in this situation.

Considering these limitations we can not give Docker an excellent score, but since it
performs well in many of our criteria we give it an adequate score.

KVM KVM is a tool which also offers a lot of features outside our direct need. It has
very good performance and also a good amount of tooling available for automation. It
lacks however in the platform support. Since KVM is directly tied to the Linux kernel this
limits in which ways it can be used. Using online resources we found that KVM can be

30

used through Windows Subsystem for Linux2. Direct support on macOS is also lacking
but QEMU is supported3, which is closely related to KVM and should be able to run many
of the same images. Additionally, through nested Virtualization these different platforms
could be supported and since the situations where other platforms need to be used should
be minimal and workable it should be possible to continue with KVM.

Since KVM offers us a lot of features, but may not be able to cover full native platform
support, we can not give it an excellent rating, but since many of our requirements are
still met and we can work around the downsides we can still give it a score of adequate.

VMWare VMWare has a lot to offer and seems to be similar in supported features to
VirtualBox. One huge downside to VMWare is its licensing cost making it very expensive
for a company to run. Additionally, this cost comes back with our testing implementation.
There is only a 30-day free trial offered which caused us to select this technology last such
that we would have the most experience to find a proper implementation quickly. That
also meant that if time ran short this option would be the first to be dropped, which turned
out to be the case.

2https://serverfault.com/a/1115773
3https://stackoverflow.com/a/53783839

31

https://serverfault.com/a/1115773
https://stackoverflow.com/a/53783839

Chapter 6

Image Generation Implementations

In this chapter, we will be looking at and giving our impressions of alternative options
for the Image Generation process. In the last chapter we looked at the different Virtual
Technologies we will be looking at for this research. Based on those technologies we have
made a selection of Image Generation Technologies. Some of these are only available for one
Virtual Technology whereas others have support for multiple, in each case, the supported
Virtual Technologies are indicated between brackets.

• Packer new (VirtualBox)

• Docker (Docker)

• Cloud-init (KVM)

• Virt-Customize (VirtualBox/KVM)

• Ansible (VirtualBox/KVM)

6.1 Base image

One quick time-saving option we identified at the start was to make use of the base image.
Even in the old Packer implementation, a base image was created on which the other
components were installed. This base image was a simple installation of the operating
system along with a few packages that were shared among all the separate components of
the CEDD AGL System.

The advantage of using a base image is that instead of building each machine from
scratch, including the operating system install, this process only has to be done once. By
keeping this base image around and using it for future installations this time was saved.
Except for the Cloud-init method which on purpose installs the whole image from scratch.

In each of our other implementations, we made use of this base image. The downside
is that a copy of this base needs to be made. VirtualBox offers an efficient clone operation
but requires to be exported afterwards. With KVM we can make a copy of the disks this
base image is installed on and use those copies to install the components.

6.2 Packer

Packer1 is the tooling already used by TKH Airport Solutions, and as such was already
configured to be used. Implementing new ideas was therefore very straightforward since

1https://developer.hashicorp.com/packer/integrations/hashicorp/virtualbox

32

https://developer.hashicorp.com/packer/integrations/hashicorp/virtualbox

we could easily adapt the current configuration. One downside of Packer is that it is only
compatible with VirtualBox and not with KVM due to their KVM implementation not
supporting multiple network interfaces.

As mentioned in the background section 2.6.1 we have solved the main issue with
stability under VirtualBox. The solution was the para-virtualization mode for the VM.
How this changes things exactly and what the underlying issue was is as of now still unclear.
This does mean that Packer is among the potential candidates again

The first point of improvement compared to the old implementation was that instead of
regenerating the base image we now keep a spare copy of the base image. This base image
was reused (one by one) for each of the systems to be installed. Using VirtualBox to make
copies of this base image for each of the Components to be implemented also allowed us to
generate each of the Components in parallel instead of consecutively. Although this would
bottleneck the disk I/O more this would allow for more, less resource-intensive, tasks to
run at the same time. This seemed to speed up the generation process quite a bit.

Overall not many changes were needed since all the hard parts were already figured
out and implemented.

6.3 Docker

Docker2 is a very popular tool in the world of automated testing and deployment. Although
Docker is designed to be used for running applications and not for running larger parts
like an operating system, and it is often recommended against, it is still possible to do so.
Since Docker has the potential to offer a large set of features, like build caching and a large
set of tooling, it is still a candidate worth considering for investigation.

A very useful tool that recently got integrated into Docker is Docker-Compose3. Docker-
compose makes managing multiple containers, and the networking and other tasks much
easier. Using Docker-Compose we could much more easily manage the multiple containers
we were working with to emulate the whole CEDD AGL System as a single sort of unit.
This made the higher level management of building, setting up, turning on or of the Virtual
Basic setup as a whole possible with single commands.

What we found out when implementing Docker was that support for nested Docker-in-
Docker was less optimal than hoped for. We encountered some trouble getting a reliable
way set up, first looking at the SysBox4 environment. Although very promising in their
ability we ran into some compatibility issues within our nested Docker containers which
needed more privileges. As a result, we decided to run with privileged5 containers to extend
this support.

An additional issue we ran into was that we could not import/build the needed Docker
images inside the containers without starting them up. This removed one of the large
potential advantages Docker had with its cache. To circumvent this we could start up the
containers, perform the required actions which require the containers to be running and
then export the complete state using Docker commit6. Alternatively, it is possible to leave
the tasks for which Docker needs to be started to the developer during the import. This
would, however, greatly extend the setup time for a new version and could much more
efficiently be done once when generating the images.

2https://www.docker.com/
3https://docs.docker.com/compose/
4https://github.com/nestybox/sysbox
5https://docs.docker.com/engine/reference/commandline/run/#privileged
6https://docs.docker.com/engine/reference/commandline/commit/

33

https://www.docker.com/
https://docs.docker.com/compose/
https://github.com/nestybox/sysbox
https://docs.docker.com/engine/reference/commandline/run/#privileged
https://docs.docker.com/engine/reference/commandline/commit/

Due to the design/integration of Docker in line with the Linux Kernel, it is also not
possible to make use of network bonding. Due to the fact that both are managed at a
kernel layer and Docker receives network interfaces at a lower level than where bonded
traffic is sent to the OS, it is impossible to implement. Luckily Docker does offer the
ability to make use of multiple network interfaces, such that the bonded network can be
emulated and communication is still possible to be tested.

Overall once set up the configuration and management for Docker is quite simple, there
are a small number of pitfalls that one can run into when adapting the DockerFile or when
changing some of the generation steps. One concern is also the lack of support for network
bonding, this is a fairly high priority internal to be working and the company would very
much like this being tested using the early stage Virtual Basic setup.

6.4 Cloud-Init

Cloud-init7 is a tool for configuring cloud instances, it is also used as the automatic network
installer of Ubuntu, which works with both VirtualBox and KVM. The Cloud-init method
is mostly aimed at installing complete pre-defined hardware devices, including all drivers
and other potential device-specific aspects. This tool does however also fit our needs in
regards to the automated installation. One advantage, but also a drawback, is its simplicity.
This simplicity allows one configuration file with which the installed packages, partitions,
network interfaces and more can be configured. However, this is also a large downside
since post-installation steps are a lot more difficult, which we need for our configuration.
Additionally, for file transfers we need to look at an alternative strategy, like setting up a
webserver to share the files.

The largest problem with Cloud-init was the stability. The tooling would often work
the first time, but consecutive runs often had a weird error where the configuration, which
can be hosted over the network in a central location, was never even requested. One trick
around this was to host the desired configuration inside an ISO file, which likely also could
be applied to the files that needed to be transferred but we elected to keep this method
out of scope.

Finally what also hurt the stability of Cloud-init was failures during the OS installa-
tion. This would silently fail with no real way of detecting this from the outside besides
some timeout method. The info reporting why this would fail also consisted of crash log-
ging, including stack traces, in which we could, with our experience, not find any useful
information.

Overall the perceived stability of the Cloud-init method made it far less favorable
compared to the other options. A lot of the issues we encountered while setting this
method up were unclear as to what their cause was. Additionally, we found some conflicting
information in the documentation which was also very sparse to find. However, we do see
potential in this tool when working in an environment where the OS needs to be installed
from scratch on unknown hardware.

7https://cloud-init.io/

34

https://cloud-init.io/

6.5 Virt-Customize

Virt-customize8 is a tool part of lib-guestfs which "is a set of tools for accessing and modi-
fying virtual machine (VM) disk images."9 Only a select few types of disks are supported,
however. This limits Virt-customize in the Virtualization Technologies that it can be
together with, in our case only KVM.

This allows us to edit the System Images, install packages, insert files and change
permissions as well as set up a boot script with which we can further finalize the installation.
Using this script we were able to easily perform the latest configuration steps that required
a running system, like importing/setting up the internal Docker systems. This allowed us
to simply prepare the System Images, which we could copy from a base image, and run
them a single time for a full setup. Setting a shutdown command as the last step in the
boot script made it easy for the generation script to get a signal when the process was
done.

Overall the process using Virt-customize was very enjoyable and easy to manage. It
took little effort to get an initial version working, which may partially be because of our
previous experience, but the tooling itself also was easy to work with.

6.6 Ansible

Ansible comes from a set of tooling that is aimed at platform configuration, where pre-
installed cloud machines can be set up with the desired software and configuration. This
type of tooling knows multiple alternatives, like salt10, puppet11 and Chef12. From these
tooling types, we decided to look at one option to not get overwhelmed and look at the
viability of applying this type of software within this context.

We have chosen Ansible, compared to the other alternatives, since it is much easier
to set up the machines to be configured. Where Ansible needs to be able to SSH to the
nodes, other tooling often requires specific software to be run on the nodes and additional
configuration. This allowed for easier integration and less hassle in the setup part, before
the image generation process.

When using Ansible the broad selection of options proved to be very useful to get done
exactly what was needed in a straightforward manner. The downside of this is that there
are a lot of options and finding the correct one can, at times, be challenging. For example,
19 different actions can be formed from the ansible.builtin.file module13 alone.

Some troubles we had with Ansible was with it using the right Python version internally.
It tried using the outdated python2.7 internally for which it tried to automatically install
the python-apt library which was not available anymore.

Overall when the right options to use are figured out Ansible is very flexible in its opera-
tion. We did, however, have some trouble getting Ansible set up in regards to dependencies
and Python versions.

8https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
virtualization_deployment_and_administration_guide/sect-guest_virtual_machine_disk_access_
with_offline_tools-using_virt_customize

9https://www.libguestfs.org/
10https://docs.saltproject.io/salt/install-guide/en/latest/topics/quickstart.html
11https://www.puppet.com/
12https://www.chef.io/products/chef-infrastructure-management
13https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html

35

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-guest_virtual_machine_disk_access_with_offline_tools-using_virt_customize
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-guest_virtual_machine_disk_access_with_offline_tools-using_virt_customize
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-guest_virtual_machine_disk_access_with_offline_tools-using_virt_customize
https://www.libguestfs.org/
https://docs.saltproject.io/salt/install-guide/en/latest/topics/quickstart.html
https://www.puppet.com/
https://www.chef.io/products/chef-infrastructure-management
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html

Chapter 7

Pipeline redesign

During this research, we also looked at a large number of ways to improve the pipeline
and improve the stability and avoid issues, which could often be caused by user error. We
planned to achieve a lot of this through automating more processes implementing fallbacks
and better logging about wrong states when something unrecoverable does come up.

For this research, we have made a copy of the pipeline as it was at the start of this
research and will solely work on this copy. This will ensure that the old baseline state stays
intact as a point to compare our new pipeline with.

7.1 Overview

The overall process that was to be achieved can be viewed as three different goals, of which
the old pipeline only covered the first two. In the new pipeline, we split each of the stages
into a separate pipeline since these sets of actions are intended to be used together but at
different frequencies.

1. Setup of the host machine

2. Deployment of the Virtual Basic setup

3. Running of the Release test

Each of these pipelines/goals consists of several stages each achieving a smaller task,
for example installing the correct version of VirtualBox, or deploying the configuration to
the Master AM component. For most of these tasks, a selection can be made for whether
or not they should be executed. This allows for extended flexibility if only part of the
pipeline process is desired.

To give a better overview of what each of these pipelines is meant to achieve and give
further background information about them, the following subsections will each describe
their respective pipeline.

7.1.1 Setup host machine

This pipeline is there to set up the host machine. The focus is solely on the physical machine
a developer uses and so far does nothing with the (virtualized) CEDD AGL System.

This section will set up all required software and configurations. This will for example
install the required (python) packages and set up a Python Virtual Environment1 with

1https://docs.python.org/3/tutorial/venv.html

36

https://docs.python.org/3/tutorial/venv.html

Robot Framework2. Or install/update VirtualBox and set some system configurations to
use all required VirtualBox features.

This pipeline should only be needed very infrequently when a new setup is required
or the developer wishes to ensure a good working environment to be set up from scratch
again, after manually cleaning up the old state.

7.1.2 Deploy Basic Virtual

This pipeline is where the deployment and setup of the Virtual Basic setup takes place. Old
versions of the CEDD AGL System are optionally removed after which the latest version
will be installed. Additionally, all setup and configuration of the CEDD AGL System such
that it is ready for testing will be performed. Once the CEDD AGL System is set up a
quick Smoke test is performed to confirm basic functionality and proper setup. After this,
the developer can run manual tests, change files/configurations they want to test or run
the next pipeline section such that a proper release test is done.

7.1.3 Run system test

Once the desired system setup is done the developer can make use of the last pipeline
to run the Release test. This pipeline also ensures the Virtual Machines are started and
running such that this simple step can not be forgotten. One of the improvements aimed
at reducing user error and increasing the reliability. However, this is not often necessary
due to it often running after the second pipeline, which on purpose leaves the VMs running
by default.

7.2 Changes

As mentioned before a major overhaul we did was splitting the original pipeline up into
three distinct sections each functioning as their own pipeline. Besides this, we worked also
on a lot of automation and implementing fallbacks or error reporting.

Since going into every detail would not be interesting, and would likely get too close to
confidential company information, we will write some of the more interesting changes in
this section. These changes might also be of more interest to the reader since these could
be considered more general recommendations towards the design of a pipeline.

Each of these subsections will receive a short description of the process as the title

7.2.1 No stash and unstash Virtual Images

Based on time and CPU savings the most impactful change was the removal of the transfer
of the Virtual Machine Images through the Jenkins internal tooling using stash/unstash3.
Although this was a very simple solution to transfer the files from the buildserver hosting
the Images to the developer’s machine it did take a long time for the files to get compressed
and decompressed.

By serving the files over a network mount we could circumvent the need for this slow
process. The network mounts were already present to have access to other files but were
not yet used by the pipeline.

2https://robotframework.org/
3https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/

#stash-stash-some-files-to-be-used-later-in-the-build

37

https://robotframework.org/
https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/#stash-stash-some-files-to-be-used-later-in-the-build
https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/#stash-stash-some-files-to-be-used-later-in-the-build

One downside we noticed with this change was that the step to import the images
into VirtualBox, which now directly accesses the images over the network mount, could
get severely slowed down when multiple users were running the pipeline at the same time.
This comes down to the maximum upload speed the buildserver hosting the files could
achieve. Although this is something we did not test on the old pipeline we expect that
the old pipeline would have run into similar bottlenecks, albeit in a different step of the
pipeline.

7.2.2 Delete old Virtual Images

Effort-wise one of the most impactful implementations was the (optional) automatic re-
moval of older images still present in VirtualBox. Beforehand a developer had to manually
remove the old Virtual Images from VirtualBox. This process could easily be done incor-
rectly.

Since this process requires machines to be removed in the correct order. Due to a
technicality in VirtualBox when a machine is cloned, as is the case for CMS2, first the clone
needs to be removed before removing the original machine. If this is not done correctly
some files are left behind which may cause issues when importing the same version again.

By automating this process, and ensuring the correct order, this issue is prevented from
happening. Since this task is quite cumbersome this can save a lot of time and intricate
work.

7.2.3 Start Virtual Machines

Although this step was already automated the implementation was quite naive. This stage
would detect which machines to start, send the start command to VirtualBox and then
wait 30 seconds for the machines to be started.

Our new implementation interfaces with the machines over SSH to detect when they
are started up. By doing this instead of naively waiting 30 seconds we can speed up this
process. This also allows us to set a timeout for if a machine did not boot correctly within
a set amount of time giving a proper alert to the user running the pipeline as opposed to
a future stage failing because one of the machines was not online.

7.2.4 Headless starting

Along with the previous point about more efficient starting of the Virtual Machines, we also
made them start headless. This would have the advantage that the VirtualBox Manager
did not have to be opened beforehand. The exact reason for this has not been found out
but it seems to be a quirk with VirtualBox that non-headless Virtual Machines require the
manager to be opened.

Using the headless Virtual Machines will also allow us to run the Virtual Basic setup
on a machine without a display (required to open the VirtualBox Manager) like a server.

7.2.5 Deploy Master AM configuration

This step was improved by one of the other employees at TKH Airport Solutions, however
is visible in the timing data when comparing the old and the new pipeline. The old process
was found to be too naive and could not correctly handle the situation where the Master
AM was just started and not all internal components were loaded. This led to issues on
multiple occasions where we decided to implement more situational checks and waits to
ensure the Master AM was in the correct state before uploading the configuration.

38

The downside to this change is that the process takes almost double as long, but it is
much more stable and this stage has yet to fail due to being in this state.

7.2.6 Network interfaces management

In the older version of the pipeline, the user had to manually delete the network interfaces
created in VirtualBox. This was done such that the pipeline could always create three
interfaces to ensure that these were present. This was required for the Virtual Basic setup
to run, but also because the pipeline needed these to be present for other configuration
steps.

The new pipeline instead detects the presence of these interfaces through the vboxman-
age list hostonlyifs command and creates new interfaces only if required.

7.2.7 Minimizing higher privilege

One discomfort some developers indicated was that to run, a part of, the old pipeline
escalated privileges with sudo were required. To achieve these permissions with the pipeline
it is required to give the user access to the sudo command without a password prompt.
Since the need to run commands with sudo is not unavoidable, due to the required higher
privileges the apt package manager requires, we have minimized the use of them to only
be present in the first pipeline. We designed the other pipelines in such a way that these
escalated privileges were not required. This has put the concerns of these developers at
ease with the result of them also making (more) use of the pipeline.

7.3 Python version validation

A functionality that is newly implemented in the second and third pipelines is that Python
versions will be reevaluated with the configured versions. For this, the requirements.txt4

file will be reevaluated with pip5 to match the specified versions. This is to ensure that at
all times the versions as intended by the developers are being used. Even when an older
version is being retested this will properly downgrade the required packages to match the
state as desired.

7.4 Full automation

For the pipeline, our goal was to remove as many manual steps as possible. We believe
we achieved support for full automation with the new pipeline from setup to rolling out of
the Virtual Basic setup to running the release test and collecting the results. We have run
tests where we have executed the second and third pipelines multiple times consecutively.
These runs all went successfully without the need for any manual actions besides starting
the pipeline.

There are, however, still some situations where a bad state could prevent full automa-
tion. Due to time constraints and other technicalities, we have not been able to solve all
these issues. As a result, a bad actor could manage to bring the pipeline to a state where
the automation can not fully recover. We believe however that this is not a huge concern
since deliberate abuse would be required to achieve these states and with some manual
cleanup, the normal operations should be able to be resumed.

4https://pip.pypa.io/en/stable/reference/requirements-file-format/
5https://pypi.org/project/pip/

39

https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://pypi.org/project/pip/

Chapter 8

Results

After executing our plans from the Methodology we can present the results from these
measurements. We will split this chapter according to the four different types of metrics
we have gathered:

• Stability
• Automation
• Performance
• Company impact

For each metric we will first be presenting and shortly discussing our results, we will finish
each metric by giving a summary and a ranking of how we believe each of the virtualization
Technologies scored for the metric. We will also be comparing the old and the new pipelines
for each metric to compare the improvements we have made.

Lastly, we will also be giving an overview summarising how each of the technologies
scored in the different metrics. This will be supported by a table giving an overview of
each of the rankings of the different Image Generation Technologies.

8.1 Stability

The focus of the stability is for a large part getting the image generation and the pipeline to
run consistently. The major hurdle in this regard was the lack of stability from VirtualBox
as explained in Section 2.6. However, with the workaround we found for VirtualBox we
worked on a new implementation for Packer.

8.1.1 Image generation

To test the Image Generation Techniques we repeatedly ran the installation scripts we
developed and checked the final state. We tried doing this by running a Smoke test after
setup, however, at times this did not get set up correctly. As a result, we have a set of data
containing just timing and performances and another set which also includes the smoketest
as extra validation for proper setup. During this section, we will focus on the data with
the smoke test where sufficient.

When looking at the installation stability data, which is represented in table 8.1, we
can see that overall the stability is quite high. We see however that the Cloud-init method
can be considered as the outlier having quite a high number of failures, granted the total
amount of runs is also quite low. Despite this, our experiences when setting up Cloud-init
were also that it could fail quite often, expecting a similar trend if more runs were made.

40

If we look at the data with which the smoke test was executed we can conclude that
except for the Cloud-init, Docker and old packer methods the other options are well within
the margins we aim to find.

Ansible Cloud-init Virt-
customize Docker Packer old Packer new

Total runs 52 19 57 32 120 140
Success 52 16 57 29 113 139
Failure 0 3 0 3 7 1
Success rate 100% 84% 100% 90% 93.4% 99%

Table 8.1: Image Generation success rates among various tools as verified by the
smoketest

8.1.2 Pipeline

Stability in the pipeline was also a major concern. When trying out the pipeline the first
couple of times there were a lot of small things that failed. This would result in a failed
stage in the pipeline which would bring the whole process to a halt to avoid further issues.
Although these failures would often be relatively easy to solve they did still add up to the
amount of time a developer would need to spend on getting a complete run through the
pipeline. Next to the overhead of having to wait multiple times to reach the same state of
the pipeline.

In figure 8.1 a Sankey Diagram can be seen depicting the different flows of the pipeline
runs. In this diagram we can see that the successful pipeline runs often contain only a few
actions, this is because often after a failed run the developer would only run part of the
pipeline again from the point that failed onwards. Out of the 100 total runs, only 13 would
perform (almost) the whole pipeline.

Additionally, we can see some clustering in the failed pipeline steps in the smoketest
failing, this could often happen because although a previous setup step did complete it did
not have sufficient post-condition checking to confirm the process was entirely successful.
We also observed several times that the Virtual Machines were not properly booted causing
some of these issues.

In the new pipeline for the host machine configuration, we have only seen one failure in
the last 10 times the pipeline has been run. This issue was caused by a misconfiguration in
the host machine which caused the Apt update command to fail. A situation which should
be far out of scope for such a pipeline to deal with.

For the second pipeline (Deploy Basic Virtual) we also see an increase in the success
rate but smaller. Out of the last 55 runs that either Succeeded or failed (not counting runs
to timeout due to other issues), we see 23 failures against 32 successes for a success rate
of 58%. Of note is the fact that one issue with a chromedriver was recently solved which
accounts for 7 of the failures. Not counting these gets us to a passing rate of 16 out of 48
or 66%.

Most of these last 16 issues can be accounted for by odd states the host machine/pipeline
should not be able to get to when running the pipeline alone. This can happen when
developers want to test partial systems where not all preconditions are met, which will
result in a failing pipeline but often with a clear message indicating what went wrong in
the process.

In the third pipeline for running the Run system test) we saw three failures among the

41

Figure 8.1: Sankey Diagram covering the latest 100 test runs on the old pipeline.

last 26 runs of the full pipeline. These three failures seem to be caused by a race condition
occurring with the Virtual Machines starting.

8.1.3 Summary

Overall we see that most of the Image Generation Processes score very high, with three of
the five new processes succeeding in 99% or more of the cases. Although some of the other
tools have lower success rates this is also based on lower numbers of runs so these may be
more skewed by a few failures.

Nevertheless, we see a clear difference between Ansible, Virt-customize and the new
Packer implementation each having even fewer failures among a much higher amount of
tests. In this regard, there is a clear two-split possible with these three tools (Ansible, Virt-
customize and the new Packer implementations) against the other three options (Cloud-
init, Docker and the old Packer implementations).

This gives rise to the following order:
1. Ansible / Virt-customize
2. Packer New
3. Docker
4. Packer Old
5. Cloud-init
Regarding the pipeline, we also see a huge increase in the amount of successes. We also

see a benefit in the new split structure where the use of the pipeline can be better targeted
towards the desired effect/actions the user wishes to achieve.

42

8.2 Automation

In the automation regard, we can focus mostly on the pipelines since the Image Generation
process was designed from the bottom up to be fully scripted/automated. As a result, there
is not much to compare in this regard.

8.2.1 Image generation

From the aspect of the Image Generation, there was not a lot of difference between the
different Image Generation Techniques. All steps could be automated in some form or
another. Some tools, like virt-customize, made the transfer of files simpler than others.
However, everything we needed to do was possible through automation. As a result, there
was no real difference in this aspect between the system Image Generation methods.

As a result, we do not make a ranking among the tools based on automation. They all,
eventually, complied with our requirements and expectations and the differences between
them feel too minor to make a differentiation between them.

8.2.2 Pipeline

In regards to the pipeline, as mentioned in section 7.4 we believe we have achieved the
point where full automation is possible with the new pipeline. This was also our goal. To
verify us reaching this stage we have run the second and third pipelines after each other
multiple times. During this process, we have not found any issues and the pipeline worked
as expected. As mentioned a bad actor could bring the pipeline to a wrong state but we
do not believe this to be a concern within our context.

To compare the new and old pipelines we can compare them on two aspects, the prepa-
ration actions which are always needed to run a pipeline and the actions which may be inci-
dentally needed based on some issue appearing due to an action being forgotten/executed
wrongly or the process failing in some form.

Preparation steps

The preparations needed to perform a new run of the new pipelines have been brought to
essentially zero. The user only needs to select the pipeline steps that are desired to be
executed, of which the recommended set that is most often used is pre-selected, select the
machine they desire the pipeline to execute on, mostly their own machine, and click on the
start button.

For the old pipeline, this process was much more involved and included removing the old
Virtual Machines, in the correct order, removing the network interfaces and several other
steps. As confirmed with employees all these actions could take up to 5 to 10 minutes for
each run. Since this pipeline is now used much more as well this amounts to a large time
saving in the overall development process.

Incidental repair steps

Besides the regularly required steps at times, some extra steps were required because the
pipeline failed or some of the preparation was performed incorrectly. This would stop the
pipeline, costing time in the need to restart the process, next to the time dedicated to
solving the issue at hand.

43

Below are some of the issues we encountered and an estimation of the amount of time
we estimate solving this issue would take. Additionally, some more context around these
issues is given.

• Wrong order of removal of Master CMS from VirtualBox (2 minutes)
More context is given in section 7.2.2.

• Deleted disks remain in VirtualBox (5 minutes)
The cause of this issue is unknown, but at times after deleting a Virtual Machine
and the accompanying files from the host machine traces would be left inside the
VirtualBox configuration. This needs one-by-one deletion from the VirtualBox UI.
Often discovering and realising this issue costs a lot more time than solving it.

• Not all processes being cleaned up (1 minute)
Sometimes some processes would not be cleaned up and be dangling in the back-
ground.

• Chromedriver version mismatch (15 minutes)
The Chromedriver used by Selenium could run out of sync by Google Chrome updat-
ing itself in the background. This would require manually installing a newer version,
since the official repository by Google did not contain the newest version yet, or
downgrading the browser. Although not required often this could be a relatively
lengthy process.

8.2.3 Summary

The differences in regards to automation in the Image Generation process are too small to
give a meaningful ranking between the different Techniques.

However, for the pipeline, we see much more difference, mainly in the time that is
being saved through the additional automation, especially in human labour. Talking with
employees at TKH Airport Solutions also reveals that they have started using the pipeline
much more during development already since it is a lot easier to use and requires much
less effort.

The approach of setting it and forgetting it with full automation is also a feature that
is highly praised. Since the trust in the pipeline is much larger they can focus on doing
other work while the pipeline is running in the background without the fear of the run
having failed after a few minutes.

8.3 Performance

We can split the performance aspect into two fields, timing and resource usage. Since one
of our desires is to set up a quicker process such that entire system tests can be run more
often a focus is the reduction in time. Additionally, it is a desire that the resource usage
doesn’t increase too much, such that current hardware is sufficient and to keep costs for
resources in mind.

In regards to resource usage, our focus was mostly on the Image Generation process.
The pipeline has had too many changes to make a reasonable comparison of the resource
usage. One major example of this is the move from the pack/unpack feature of Jenkins
to accessing the System Images via the network. This reduces a lot of the CPU usage to
perform the compression and decompression for the pack/unpack process. However, we
will still compare the base state with the final state to give an overview of the degree of
change this brought up.

In regards to the duration of processes, we have more things to compare.

44

8.3.1 Duration

Looking at the duration of the process we can again look at the image generation and the
pipeline separately. For the Pipeline, since it changed so much, we will try to compare the
three different stages we developed against a similar set of actions being performed in the
old pipeline, since we have seen that timewise the pipeline is fairly stable, we will focus on
a small set of timings due to the difficulty of getting old timing data per stage.

Image generation

Figure 8.2: Building times of Image Generation Techniques in minutes

For the timing of the Image Generation process, we can take a look at the median
numbers for each of the processes. This can be found in figure 8.2. The overall time for the
process to finish is given in blue, the yellow markings are the time it takes to create a copy
of the images for KVM. This is to copy the Base image and start a new installation. In
the Packer Old case, this is the time it took to export the images to new files. For Packer
New, this could not be measured because multiple processes happened at the same time
due to it being parallelized. In this case, the time is included.

For Docker the blue time is how long it takes the Docker Builder to create the new
images and containers, in red the time indicates how long the installation of the components
takes after starting the containers.

Additionally, the data from all different runs is combined in figure 8.3. This graph
shows the progress of build times of the first 60 runs. This image also shows the overall
stability of the build times, a small upward trend can be seen with some implementations.
A suspected reason for this is the host machine becoming slower due to more background
processes having been started and more caches and other system resources filling up.

Overall we can see that the new Packer method is much quicker than the old method,
almost 3 times as fast as the building alone. Additionally, the building and exporting of

45

Figure 8.3: Build times over multiple runs for different generation techniques

the images alone is already faster than the exporting of the previous images. This can
be explained by the exporting happening at the same time as opposed to one after the
other. By using this we make much more efficient use of spare CPU and disk IO resources
reducing the overall time.

Pipeline

As mentioned in chapter 7 Pipeline redesign we remodelled the pipeline into three separate
pipelines each accomplishing a specific goal. In table 8.2 we compare the duration of these
separate pipelines to the old state. A note must be taken of the fact that the release test
was not yet part of the old pipeline and was triggered manually. Additionally, some tasks
were performed in a different order. We attempt to map each previous stage to a new one
as closely as possible.

One major roadblock with comparing the data is the first pipeline for the Host machine
setup. The duration of these tasks relies very heavily on the previous state of the host
machine. For example, some libraries that need to be compiled on the host which adds a
great amount of time, or other parts are already being installed. Since the data coming
from these statistics is so unreliable we have opted to leave these statistics out.

Most of the comparable data is therefore in the second pipeline. From this pipeline,
we will therefore compare the relevant points.

8.3.2 Resource usage

Measuring the performance of each stage in regards to the resource usage we will take
a look at the CPU time, peak memory for a process and peak memory for all processes
combined.

46

Old state New state Remarks
Stash/Unstash 15 minutes Removed This step got removed in the new

pipeline in favour of accessing the files
directly over a network mount.

Update python
libraries

New 4 seconds This describes the overhead caused by
this action since it has not yet happened
while we have had the pipeline in pro-
duction.

VirtualBox
removes
old VMs

Manual
Action

5 seconds Some additional time may be required
if there were still VMs running, send-
ing the stop command and 5 seconds of
sleep are added in such a case.

Import VMs 2 Minutes
20 seconds

2 Minutes
30 seconds

This action happens over a network
mount. This may take longer if multi-
ple developers are importing images at
the same time. However, the network
overhead is minimal compared to im-
porting from the same machine with the
old pipeline. Compared to the reduced
pack/unpack time which was previously
needed it is very unlikely for this com-
bined process overall to take longer.

Network
configuration

1 second 2 seconds

Clone CMS 33 seconds 33 seconds
Start Virtual

Machines
37 seconds 1-25

seconds
Adaptive timing in new pipeline. Can
directly continue if VMs are already
running and when starting looks when
ready instead of naive 30 second sleep.

Upload Virtual
Basestation

configuration

3 seconds 4 seconds Handles existing configuration without
crashing.

Upload
Master AM

configuration

38 seconds 1 minute
10 seconds

Many more failsafe features implement-
ing costing extra time to perform the
checks.

Run smoketest 22 seconds 22 seconds

Table 8.2: Durations of various pipeline tasks in the old and the new pipeline
situation.

47

Image generation

During the Image Generation process, we kept track of the resource usage of each of the
tools. we must note that this does not include the Virtual Environments themselves, this
is for a large part due to their trickiness in attaching monitoring tools to them. As well as
that we noticed that the resources they took seemed to differ minimally between the tools,
as such we left it out of scope for this research. As a result, the following numbers focus
solely on the tooling being used for generating the images.

As mentioned in the methodology we measured the CPU in time it was busy performing
the operations as a total number in seconds, in the graph displayed in 10th of seconds for
better scaling. We also measured the peak memory consumption of a single process within
the stack and the overall peak usage by all tooling combined. The median numbers for
each tool can be found in figure 8.4. it can be seen that the memory usage of the tooling
is staying below 1GB of memory. This is in line with a Running Virtual Machine.

More detailed information is available in appendix A.2 with a graph displaying the
resource usage over consecutive runs for each of the different Image Generation techniques.
These graphs also show the relative consistency between runs in most of the tooling.

Figure 8.4: Differences in resource usage between Image Generation techniques

8.3.3 Pipeline

Testing the pipeline for system performance is not very comparable with the complete
overhaul we did. Many tasks are sped up or removed/reworked, for example, the pack and
unpack operations on the Virtual Images. Other tasks got extra checks to improve error
reporting or recover from certain states the previous pipeline could not recover from, for
example, the Master AM configuration.

Additionally, one major change we made was including the Release test in the pipeline.
This causes the overall runtime of a pipeline to be significantly longer. Due to the release
test simply taking quite a while.

48

What we have elected to do is compare two select sets of actions that are performed
in both pipelines and compare these. These actions start the Virtual Machines, configure
the CEDD AGL system and then run a smoketest. We only selected the runs that had a
passing smoke test.

The results of the resource usage during this process can be found in figure 8.5. From
these results, we can see that there is a minimal increase in resource usage between either
pipeline. Most of this can be accounted for by the Chromedriver performing the extra
checks that are performed in configuring the Master AM. Analysing the raw details we
also noted that there were a lot of different Chromedriver processes with each having a
low memory footprint but which quickly add up together. This is logical by following the
design of chrome1

Figure 8.5: Resource usage between a select set of actions in the old and the new
pipelines

8.3.4 Summary

Overall we see a fairly similar footprint between each of the Image Generation techniques,
where there can be a relatively large difference in resource usage note must be taken that
this does not include the running of the CEDD AGL Systems. This was simply too complex
for us to keep in our scope. It must also be taken into account that although there are some
larger differences the scale is relatively small for an enterprise situation. Currently, most
computer systems on the market should have plenty of resources to manage the current
resource usage and the difference of half a GB should be negligible. To give a reference
this can be achieved by closing a few browser tabs since they each can easily take around
100MB of ram2.

Based on the timing we see two clear leaders in the speed department, the Docker and
the New Packet methods. These have the clear advantage of being twice as fast as the next
close pair, being Ansible and Virt-customize. The slowest two options could be explained

1Although this answer talks about the situation in Windows. the design is similar under other operating
systems https://stackoverflow.com/a/58521183

2https://cloudzy.com/blog/which-browsers-use-the-least-memory/

49

https://stackoverflow.com/a/58521183
https://cloudzy.com/blog/which-browsers-use-the-least-memory/

by Cloud-init having a lot of overhead for installing the Base operating system and by
being a sequential process where all others were (mostly) parallelized.

Based on the fact that the resource usage should be negligible on our scale and most of
our concern lies with a fast build process we can rank our methods according to the Build
times.

This gives rise to the following order:
1. Docker
2. Packer New
3. Virt-customize
4. Ansible
5. Cloud-init
6. Packer Old

8.4 Company impact

This metric is quite abstract but we will estimate how much effort it would be to employ
each of the new Technologies in the company. Additionally, we attempt to look at more
quantifiable aspects as mentioned in the Methodology. We will present this data in a table
and also give a short description of our expectations of how such a tool may be handled
within the company. Within the table, we will score each of the aspects in three tiers from
low (-), medium (=) to high (+), the optimal score being high. Most of our focus will
lie on the learning curve and maintainability scores since these will have the most direct
impact.

Looking at the (perceived) complexity of each of the Virtualization Technologies and
the Image Generation tools we can order them by what impact they would have on the
usability within the company. For this research, we will take the current skillset and
experience of the employees into account which very likely is not representative for every
company. We urge the reader to take their situation into account.

As we already mentioned Packer and Docker are both tools that are already used within
the company. More specifically Packer is already being used for this process. As such this
would play mostly into the already existing experience and knowledge, especially in regards
to fixing potential future issues.

Next to this, the Cloud-init is already partially used for generating the base image.
This tool should require minimal to no guidance in being set up. It, however, lacks some of
the handlebars around it, that other tools like Packer and Docker offer, making automation
more difficult.

The Virt-customize process is unused and very new, it however makes things fairly easy
using scripting, be it in a new manner, we believe this tool should be able to be picked up
with a minimal learning curve.

Ansible is the tool most outstanding in this grouping, it is a completely new type of
Technology for configuring the host machines, to our knowledge no tools like it are being
used within the company. This also makes learning more difficult, it does however have a
lot of online presence with many tutorials and a lot of documentation easing the difficulty
of the learning curve. Ansible still takes a long time to learn thoroughly, and although not
always required, it gives this the bottom pick among the tooling.

Summary Overall we see very good scores from Docker and Packer, as mentioned these
tools are already used but besides that, these tools also offer a large amount of documen-
tation, tutorials and guidance. They are more rigid and less flexible than Ansible but this

50

Learning
Curve

Maintain-
ability Documentation Tutorials Plugins/

flexibility Overall

Packer + + = = = +
Docker + + + + = +
Virt-
customize = = = = - =

Ansible - = + + + =
Cloud-init = - = = - -

Table 8.3: Evaluation of the company impact using various Image Generation
techniques

tool suffers a lot from its high learning curve and complexity.
Virt-customize was a very pleasant tool to work with, the documentation and online

resources are good but not as abundant as Docker and Packer. Cloud-init scores the worst.
This is for a large part due to it being an Ubuntu-only system which does not have the most
complete and compelling online presence among documentation, tutorials and guidance.

This gives rise to the following order:
1. Packer New/Packer Old
2. Docker
3. Virt-customize
4. Ansible
5. Cloud-init

8.5 Overview

Overall the picture for the new pipeline is clear. It offers many improvements in automa-
tion and stability, where we even achieved the point that it can run fully autonomously.
However, this does come at a cost of slightly more resource usage and longer duration
in similar tasks. This effect is for a large part mitigated by removing the very costly old
process for transferring the System Images to the developer’s machine. By using a network
mount this process is hugely more efficient saving up to 15 minutes per run.

51

The situation for the Image Generation process is more nuanced, here we see distinct
advantages for different aspects of each Technology. To give a better overview we present
table 8.4 which contains the ordering of ranking of the Image Generation Technologies
among the different metrics.

Stability Automation Performance Company
Impact

Overall score
by position3

Packer New 3 1 2 1 7
Docker 4 1 1 3 9
Virt-customize 1 1 3 4 10
Ansible 1 1 4 5 11
Packer Old 5 1 6 1 13
Cloud-init 6 1 5 6 16

Table 8.4: Ranking of Image Generation tools along the different metrics. Ordered
from best overall scoring to worst scoring

3Lower score is better, this number is the sum of all positions.

52

Chapter 9

Conclusion

For a quick and fast conclusion we can look at the comparison between the advantages of the
Virtualization Technologies and the Results of the Image Generation process, especially the
ranking in the Overview. We can see a clear preference for VirtualBox with the new Packer
implementations. After finding a workaround for the stability issues with VirtualBox it
became a very enticing option due to it outscoring the other options in most of our metrics.

Combining this knowledge with the fact that this Technology is already well imple-
mented in the processes of TKH Airport Solutions we see no clear reason to switch to a
different Virtualization Technology or a different Image Generation process.

Since our advice is to stay with the current Virtualization Technology, we could also
put more of our efforts into improving the pipeline as opposed to adapting/implementing
a new Technology in the processes. The clear result of this is the fact that we can run
the pipeline fully autonomously without the need for human interaction whereas before
multiple manual steps were required as preparation before the pipeline could be run.

In the following sections, we will dive deeper into a more formal answer to each of our
research questions and also give some recommendations about potential future changes.
At the end, we will give several suggestions for potential future works.

9.1 How can we improve the process of generating new sys-
tem images?

When looking at the accumulated scores of the Virtualization Technologies when we made
our selection in Section 5.3.2 and the results of the Image Generation processes in Section
8.5, we can see that VirtualBox with the new Packer implementation scores as the optimal
combination. Thanks to our find of the workaround fo the VirtualBox stability issuer it
has also become a viable option again. With the added consideration that VirtualBox is
already a well-known and widely used tool within the company, there is in our opinion no
doubt as to why VirtualBox is the obvious best choice.

Besides taking VirtualBox with Packer as the optimal solution there were however still
some changes that we could implement to improve the process compared to the old state.
This included building each of the CEDD AGL System components in parallel, where they
previously were generated consecutively. These improvements combined has been shown
to reduce the time it takes to a quarter of the original.

As with any consideration and comparison, each factor may play a different role in the
future or for other entities. Interestingly we can note that our final ranking would not differ
if we take the company impact score out. Without consideration of the present knowledge
and processes at a company, we believe that this advice could be universal. However,

53

having gained a lot of experience with each of the tools we also see a lot of potential for
the other Image Generation tools in other business cases.

Virt-Customize The Virt-customize tool was a very pleasant tool to work with, it often
worked very well and we had little trouble making various implementations. Although the
resource usage was marginally higher than the other tools it had a great reliability. Where
it fell short was that it has no support for VirtualBox Images and only supports KVM. This
makes it less optimal since KVM did score lower on our usability score than VirtualBox.
However, for a case where only KVM needs to be supported, we are sure that this tool
could be a great fit.

Cloud-Init The situation where Cloud-init really could shine is installations on bare
metal from scratch. When for example, a new installation is made on a hardware server,
attention has to be paid to the compatibility of the libraries that are installed. Using an
installer integrated into the Operating system that handles such dependencies could be a
great solution in favor of custom-created tooling.

9.2 How can we improve the testing pipeline?

Our main advancement in the system testing process was full automation from setting up
the system on a host machine to getting a test report. This has been achieved by looking at
which tasks were done manually and finding solutions for automating these. Additionally,
we have looked at ways the pipeline can trip up/end up in erroneous states and found fail-
safes or detection for these states. If possible we have implemented workarounds for these
situations such that the pipeline could keep working. Where this would be too complex to
achieve we have implemented clear warnings for the user such that they can easily identify
these issues. This way they can work on a solution manually without the need to do a lot
of complex debugging.

As always it is not possible to account for every possible situation, as such when an
error is detected the pipeline stops running and the latest output is available to the user
to debug this. We have also kept the option to select which parts of the pipeline are to be
executed. This will allow the user to quickly get back to the point that failed without the
need to wait on other lengthy processes that are not required in the current state.

Overall we saw a great speedup by working around the stash/unstash step with a
network mount and overall increased the stability and usability of the pipeline. After
talking with some of the developers and testers they also indicated using the pipeline a
lot more compared to the old situation, since the new pipeline saves them a lot of effort.
Where previously due to the stability issues they often would resort to manually running
each of the steps. Additionally, a great effect this has had is the fact that they have become
much more comfortable in trying new things without worrying about breaking the system,
since rolling back to a fresh installation is much easier.

9.3 How can we improve the technical process around the
system testing performed at TKH Airport Solutions?

Overall we have introduced several improvements to the system testing process at TKH
Airport Solutions. These include speeding up and stabilizing the process of creating System

54

Images as well as improving the pipeline itself that is used to optimize the running of the
system tests.

Our most impactful change must be finding, and implementing, the workaround to the
stability issues with VirtualBox, After finding out that, besides the stability, VirtualBox
was one of the most interesting Virtualization Technologies, and along this also had a very
impressive Image Generation process with Packer. It was a very important find to allow
us to continue using VirtualBox which has shown to be the best option. Where at first the
aim was set on finding an alternative technology this find allowed us to select the optimal
solution instead.

Next to the Image Generation process we have also automated or circumvented all the
preparation tasks that were required to run the pipeline, allowing full automation that
could be triggered from the pipeline based on a new version being built.

What this research has taught us however is that in the business context of TKH
Airport Solutions the most optimal Image Generation process and the best Virtualization
Technology is the combination of VirtualBox with Packer. Additionally, we have found and
implemented a large number of improvements to the pipeline granting an overall better
experience which has resulted in more employees making good use of the new pipeline.

9.4 Future work

There are several topics we had wished to look further into but did not have the time
or resources for. In this chapter, we will introduce what we think are some interesting
open-ended questions that could be picked up in the future.

Deeper look into the VirtualBox stability issue to find the root cause and solve
this. Although the issue with VirtualBox’s stability has been solved to a certain extent
with our workaround the root cause has still not been identified. It could be important
to identify this and solve it in the future if for example it is found that a different para-
virtualization setting is required. Additionally, this might be a bug inside VirtualBox or
elsewhere that could impact other users without their direct knowledge.

Analyze resource usage of Virtual Machines/Containers During this research, we
decided to leave the tracking of the resource usage of the Virtual Environments out of our
scope due to the complexity of tracking this. Each different technology showed a different
way of spawning the Virtual Environment and had different, sometimes very rudimentary,
tooling to track different parts of the resource usage.

Future work could look into making a framework, wrapper or other kind of tool to more
easily track these resources. With this kind of tool at hand, another look could be taken
at the differences in the installation between the tools. This time attention could be paid
to the resource usage of the internal processes besides the tooling alone.

Analyse the Image Generation process with VMWare Due to time constraints,
we had to leave VMWare out of the scope for this research, we believe however that in
certain business cases, VMWare could be a very powerful alternative to VirtualBox. A
future work could therefore consider this tool and see if it would fit a situation where
licensing costs are less of a concern.

55

Bibliography

[1] MinSu Chae, HwaMin Lee, and Kiyeol Lee. “A Performance Comparison of Linux
Containers and Virtual Machines Using Docker and KVM”. In: Cluster Comput 22.1
(Jan. 1, 2019), pp. 1765–1775. issn: 1573-7543. doi: 10.1007/s10586-017-1511-2.
url: https://doi.org/10.1007/s10586-017-1511-2 (visited on 05/02/2023).

[2] Filip Široký. “Thesis Report Filip Siroky: Performance and Virtualization Trade-
offs”. Master. Odense, Denmark, Aug. 1, 2020. 79 pp. url: https://gitlab.com/
phillwide/vtmark/- /raw/master/Thesis%20Report%20Filip%20Siroky.pdf
(visited on 05/02/2023).

[3] Saverio Giallorenzo et al. “Virtualization Costs: Benchmarking Containers and Vir-
tual Machines Against Bare-Metal”. In: SN COMPUT. SCI. 2.5 (Aug. 7, 2021),
p. 404. issn: 2661-8907. doi: 10.1007/s42979-021-00781-8. url: https://doi.
org/10.1007/s42979-021-00781-8 (visited on 05/02/2023).

[4] Jianwei Hao et al. “An Empirical Analysis of VM Startup Times in Public IaaS
Clouds”. In: 2021 IEEE 14th Int. Conf. Cloud Comput. CLOUD. 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). Sept. 2021, pp. 398–403.
doi: 10.1109/CLOUD53861.2021.00053.

[5] Ashish Lingayat, Ranjana R. Badre, and Anil Kumar Gupta. “Performance Evalua-
tion for Deploying Docker Containers On Baremetal and Virtual Machine”. In: 2018
3rd Int. Conf. Commun. Electron. Syst. ICCES. 2018 3rd International Conference
on Communication and Electronics Systems (ICCES). Oct. 2018, pp. 1019–1023. doi:
10.1109/CESYS.2018.8723998.

[6] Ming Mao and Marty Humphrey. “A Performance Study on the VM Startup Time
in the Cloud”. In: 2012 IEEE Fifth Int. Conf. Cloud Comput. 2012 IEEE Fifth Inter-
national Conference on Cloud Computing. June 2012, pp. 423–430. doi: 10.1109/
CLOUD.2012.103.

[7] Amit M Potdar et al. “Performance Evaluation of Docker Container and Virtual
Machine”. In: Procedia Computer Science. Third International Conference on Com-
puting and Network Communications (CoCoNet’19) 171 (Jan. 1, 2020), pp. 1419–
1428. issn: 1877-0509. doi: 10.1016/j.procs.2020.04.152. url: https://
www.sciencedirect.com/science/article/pii/S1877050920311315 (visited on
04/25/2023).

[8] Charanjot Singh et al. “Comparison of Different CI/CD Tools Integrated with Cloud
Platform”. In: 2019 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019 9th
International Conference on Cloud Computing, Data Science & Engineering (Con-
fluence). Jan. 2019, pp. 7–12. doi: 10.1109/CONFLUENCE.2019.8776985.

56

https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://gitlab.com/phillwide/vtmark/-/raw/master/Thesis%20Report%20Filip%20Siroky.pdf
https://gitlab.com/phillwide/vtmark/-/raw/master/Thesis%20Report%20Filip%20Siroky.pdf
https://doi.org/10.1007/s42979-021-00781-8
https://doi.org/10.1007/s42979-021-00781-8
https://doi.org/10.1007/s42979-021-00781-8
https://doi.org/10.1109/CLOUD53861.2021.00053
https://doi.org/10.1109/CESYS.2018.8723998
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1016/j.procs.2020.04.152
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://doi.org/10.1109/CONFLUENCE.2019.8776985

[9] Błażej Święcicki. “A Novel Approach to Automating Operating System Configuration
Management”. In: Inf. Syst. Archit. Technol. Proc. 36th Int. Conf. Inf. Syst. Archit.
Technol. – ISAT 2015 – Part II. Ed. by Adam Grzech et al. Advances in Intelligent
Systems and Computing. Cited By :1. Cham: Springer International Publishing, 2016,
pp. 131–142. isbn: 978-3-319-28561-0. doi: 10.1007/978-3-319-28561-0_10.

[10] Ossi Taipale et al. “Trade-off between Automated and Manual Software Testing”. In:
Int J Syst Assur Eng Manag 2.2 (June 1, 2011), pp. 114–125. issn: 0976-4348. doi:
10.1007/s13198-011-0065-6. url: https://doi.org/10.1007/s13198-011-
0065-6 (visited on 06/07/2023).

[11] Minaoar Hossain Tanzil et al. “A Mixed Method Study of DevOps Challenges”. In:
Information and Software Technology 161 (Sept. 1, 2023), p. 107244. issn: 0950-5849.
doi: 10.1016/j.infsof.2023.107244. url: https://www.sciencedirect.com/
science/article/pii/S0950584923000988 (visited on 06/06/2023).

[12] Kim Torberntsson and Ylva Rydin. A Study of Configuration Management Systems
: Solutions for Deployment and Configurationof Software in a Cloud Environment.
2014. url: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva- 228139
(visited on 06/13/2023).

[13] Sander van der Burg and Eelco Dolstra. “Automating System Tests Using Declarative
Virtual Machines”. In: 2010 IEEE 21st Int. Symp. Softw. Reliab. Eng. 2010 IEEE 21st
International Symposium on Software Reliability Engineering. Nov. 2010, pp. 181–
190. doi: 10.1109/ISSRE.2010.34.

[14] Yiwen Wu et al. “An Empirical Study of Build Failures in the Docker Context”. In:
Proc. 17th Int. Conf. Min. Softw. Repos. MSR ’20. New York, NY, USA: Association
for Computing Machinery, Sept. 18, 2020, pp. 76–80. isbn: 978-1-4503-7517-7. doi:
10.1145/3379597.3387483. url: https://dl.acm.org/doi/10.1145/3379597.
3387483 (visited on 06/13/2023).

57

https://doi.org/10.1007/978-3-319-28561-0_10
https://doi.org/10.1007/s13198-011-0065-6
https://doi.org/10.1007/s13198-011-0065-6
https://doi.org/10.1007/s13198-011-0065-6
https://doi.org/10.1016/j.infsof.2023.107244
https://www.sciencedirect.com/science/article/pii/S0950584923000988
https://www.sciencedirect.com/science/article/pii/S0950584923000988
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228139
https://doi.org/10.1109/ISSRE.2010.34
https://doi.org/10.1145/3379597.3387483
https://dl.acm.org/doi/10.1145/3379597.3387483
https://dl.acm.org/doi/10.1145/3379597.3387483

Appendix A

Graphs

A.1 VirtualBox reliability

Figure A.1: Failures over time in VirtualBox Version 6

Figure A.2: Failures over time in VirtualBox Version 7

58

A.2 Resource usage different Image Generation processes

This section lists the various resource usages over multiple iterations of the build process.
Some graphs have been minimally modified to remove the outliers with failed build results.

Figure A.3: Resource usage over multiple runs for Ansible image generation
method.

59

Figure A.4: Resource usage over multiple runs for Cloud-init image generation
method.

Figure A.5: Resource usage over multiple runs for Docker image generation
method.

60

Figure A.6: Resource usage over multiple runs for Packer (New) image generation
method.

Figure A.7: Resource usage over multiple runs for Packer (Old) generation
method.

61

Figure A.8: Resource usage over multiple runs for Virt-customize image genera-
tion method.

62

	Introduction
	Overview
	Motivation
	Research questions

	Background
	TKH Airport Solutions
	Confidential information
	AGL & CEDD®
	Components

	Virtualization terms
	Virtualization
	Virtualization Technology
	Hypervisor
	Virtual Machine
	Container
	Virtual Image
	Image Generation
	Host Machine

	Virtualization Technologies
	VirtualBox
	KVM
	Docker

	Testing infrastructure
	Test system setup
	System Test suites
	Jenkins pipeline

	Initial process and setup
	Image generation
	System testing

	Restart Issues VirtualBox
	Severity

	Related work
	Image generation
	Performance
	Runtime performance
	Build performance
	Startup performance

	System testing
	Pipeline
	CI/CD

	Methodology
	Overview
	Technology selection
	Image Generation Implementations
	Pipeline improvements
	Results and conclusion
	Metrics
	Data collection and scripting
	Median data
	Stability
	Automation
	Performance
	Company impact

	Technology selection
	Criteria and requirements
	Boot reliability
	Multiple network interfaces
	Full automation/scripting
	Platform support
	Partitions
	Cost
	Summary

	Virtualization Technologies
	Decision Matrix
	Criteria scoring
	Decision matrix and argumentation

	Image Generation Implementations
	Base image
	Packer
	Docker
	Cloud-Init
	Virt-Customize
	Ansible

	Pipeline redesign
	Overview
	Setup host machine
	Deploy Basic Virtual
	Run system test

	Changes
	No stash and unstash Virtual Images
	Delete old Virtual Images
	Start Virtual Machines
	Headless starting
	Deploy Master AM configuration
	Network interfaces management
	Minimizing higher privilege

	Python version validation
	Full automation

	Results
	Stability
	Image generation
	Pipeline
	Summary

	Automation
	Image generation
	Pipeline
	Summary

	Performance
	Duration
	Resource usage
	Pipeline
	Summary

	Company impact
	Overview

	Conclusion
	How can we improve the process of generating new system images?
	How can we improve the testing pipeline?
	How can we improve the technical process around the system testing performed at TKH Airport Solutions?
	Future work

	Graphs
	VirtualBox reliability
	Resource usage different Image Generation processes

