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ABSTRACT

Brain atrophy and white matter hyperintensity (WMH)
are closely related to burdening diseases like stroke or multi-
ple sclerosis. Automated segmentation and quantification is
desirable but existing methods require high-resolution MRI
with good signal-to-noise ratio (SNR). This precludes appli-
cation to clinical and low-field portable MRI (pMRI) scans,
thus hampering large-scale tracking of atrophy and WMH
progression, especially in underserved areas where pMRI has
huge potential. Here we present a method that segments white
matter hyperintensity and 36 brain regions from scans of any
resolution and contrast (including pMRI) without retrain-
ing. We show results on six public datasets and on a private
dataset with paired high- and low-field scans (3T and 64mT),
where we attain strong correlation between the WMH (ρ=.85)
and hippocampal volumes (ρ=.89) estimated at both fields.
Our method is publicly available as part of FreeSurfer, at:
http://surfer.nmr.mgh.harvard.edu/fswiki/WMH-SynthSeg.

1. INTRODUCTION

White matter hyperintensity (WMH) on magnetic resonance
imaging of the human brain is associated with stroke, cogni-
tive decline, and cardiovascular disease. WMH is frequently
detected in brain MRI scans in the elderly population: for
example, in a recent observational study with adult patients
with a vascular risk factor being evaluated for a non-stroke
complaint, more than half of the subjects had WMH [1]. In
addition, WMH is a hallmark of multiple sclerosis (MS), a
disease that creates a demyelination process that may lead to
disability [2]. The MS disease process is correlated with other
neurodegeneration, leading to abnormally high atrophy rates
in different brain regions [3]. Therefore, closer monitoring of
WMH and its progression is desirable at a larger scale.

Inexpensive portable MRI (pMRI) technology is becom-
ing increasingly available and has huge potential for imag-
ing WMH in the community at large scale. For example, the
low-field (64mT) Swoop system (Hyperfine Inc) produces im-
ages that have good agreement with their high-field counter-
parts when WMH are scored by a radiologist [1]. A crucial
component of large-scale deployment is automated segmenta-
tion and quantification of WMH and brain regions, as manual

identification and tracing of regions of interest (ROIs) in 3D
is not only impractical, but also irreproducible.

The ability to quantify WMH and brain anatomy is also
very desirable for clinical MRI. As opposed to research MRI,
which is typically isotropic, clinical scans often comprise a
smaller number of slices acquired in 2D. These take less time
to review by a clinician and are less susceptible to motion
artifacts. Precise quantitative analysis of these scans would
allow closer tracking of atrophy and WMH progression.

A large array of methods exist for segmenting brain
anatomy and WMH. Representative classical methods in-
clude: FreeSurfer [4] and FSL [5] for brain ROIs; LST [6]
and BIANCA [7] for WMH; or SAMSEG [8, 9], which seg-
ments both. Machine learning techniques, often using convo-
lutional neural networks (CNNs), include: QuickNat [10] or
FastSurfer [11], for brain ROIs; or [12, 13] for WMH. These
methods are designed for conventional high-field MRI (1.5-
3T), and often have requirements in terms of resolution (typi-
cally 1mm isotropic), pulse sequence (often T1-weighted for
anatomy, FLAIR for WMH), or both. Therefore, they strug-
gle with the huge variability in orientation (axial, coronal,
sagittal), resolution, and contrast of clinical MRI in real sce-
narios. This problem is exacerbated in pMRI, where the low
field imposes limitations in signal-to-noise ratio (SNR) that
are compensated with large voxel sizes, and where the geom-
etry of the scanner often leads to severe signal loss away from
its center. While domain adaptation [14] can mitigate these
problems to some extent, a CNN than can handle any MRI
contrast and resolution without retraining is highly desirable.

Here we present WMH-SynthSeg, a CNN that segments
WMH and brain anatomy from scans of any resolution and
contrast, including low-field pMRI. WMH-SynthSeg builds
on our previous work on domain randomization [15, 16]
to achieve such agnosticity. Compared with our previ-
ous method for simultaneous segmentation of WMH and
anatomy [17], WMH-SynthSeg: (i) does not require retrain-
ing; (ii) uses a specific WMH model and a composite loss to
improve sensitivity and specificity; (iii) adapts to low-field
MRI; and (iv) uses multi-task learning for enhanced robust-
ness. We show that, as a result, WMH-SynthSeg can robustly
segment WMH and anatomy from clinical and pMRI.



2. LITERATURE REVIEW

2.1. Classical methods

Several studies have already outlined the feasibility of LF or
portable MRI (pMRI) in the clinical field for moderate to se-
vere MS lesions [18, 19]. The latter proved the sensitivity of
existing algorithms initially designed for 3T MRI on LF MRI.
In it, [20] designed MIMoSA, an algorithm that was used for
automatic segmentation: a 3T data automated pipeline utiliz-
ing the coupling of shared information between modalities,
to generate probability maps of white matter lesions. MI-
MoSA yielded superior segmentation results compared to that
of [21], known as OASIS; and LesionTOADS, by [22], a seg-
mentation algorithm that combines fuzzy c-means with the
integration of topological constraints and a statistical atlas.

[8] developed SAMSEG, a methods that utilizes a gen-
erative approach for automated segmentations by inverting a
forward probabilistic model. The method operates on multi-
contrast brain MRI scans, represented by an intensity matrix.
The corresponding labels are estimated by sampling from a
segmentation prior and a likelihood function. The segmen-
tation process involves inferring the unknown labels from the
observed intensities under the generative model. The segmen-
tation prior and likelihood used in SAMSEG, along with the
resulting model, are summarized for obtaining automated seg-
mentations.

SAMSEG was originally designed to handle brain seg-
mentation without white matter lesions. Using a contrast-
adaptive method, [9] builds on SAMSEG to propose a method
for simultaneous segmentation of white matter lesions and
normal-appearing neuroanatomical structures from multi-
contrast brain MRI scans of MS patients. The method inte-
grates a novel model for white matter lesions into a previously
validated generative model for whole-brain segmentation, al-
lowing adaptation to different scanners and imaging protocols
without retraining.

Other non-DL-based algorithms include LST (as part of
SPM) and Bianca (FSL). LST is designed by [6] for the au-
tomatic segmentation of brain lesions, particularly in mul-
tiple sclerosis (MS) patients. The authors present a robust
and efficient algorithm that utilizes a combination of tissue
probability maps and intensity-based features to accurately
identify and segment lesions. Their approach demonstrates
promising results in terms of lesion detection and volume es-
timation, providing valuable tools for studying MS pathol-
ogy. Respectively, [7] designed Bianca, i.e., a tool developed
within the FSL (FMRIB Software Library) software package
for the automated segmentation of white matter hyperintensi-
ties (WMH) in brain MRI scans. Bianca utilizes a Bayesian
model to incorporate spatial information and intensity fea-
tures to accurately identify and quantify WMH. The authors
demonstrate the effectiveness of Bianca in various datasets,
showing its potential for studying WMH in clinical and re-
search settings. The tool offers a valuable resource for in-

vestigating the impact of WMH on brain health and cognitive
function.

2.2. Deep Learning methods

The aforementioned non-DL methods often rely on well-
established algorithms that leverage specific domain knowl-
edge or incorporate explicit assumptions about the data.
These methods can be effective when the task at hand is well-
defined, the data characteristics are well-understood, and the
features used for segmentation are carefully designed.

DL-based algorithms, nonetheless, achieved state-of-the-
art performance in various image analysis tasks, such as seg-
mentation [23], including MS lesions segmentation in neuro
MRI [24]. The paper by [25] introduces the V-Net, a fully
convolutional neural network designed for volumetric med-
ical image segmentation. The network architecture incorpo-
rates 3D convolutions and skip connections to effectively seg-
ment medical images. The authors demonstrate the effective-
ness of the V-Net on various medical imaging tasks, high-
lighting its potential for accurate and efficient segmentation.

Similarly, [26] presents an efficient multi-scale 3D convo-
lutional neural network (CNN) with a fully connected condi-
tional random field (CRF) for accurate brain lesion segmen-
tation. The proposed network combines multiple scales of
information to improve segmentation performance. The au-
thors demonstrate the effectiveness of their approach on brain
lesion segmentation tasks, achieving high accuracy. The inte-
gration of the fully connected CRF further enhances the seg-
mentation results.

Other recent studies also include new approaches such as
single image super-resolution. In it, [27] trained a convolu-
tional neural network using pairs of noisy low-resolution im-
ages and noise-free high-resolution images.

2.2.1. Domain adaptation

However, the performance of DL methods heavily relies on
the availability of large, labeled datasets for training. Further-
more, DL methods struggle to adapt to different images and
resolution. This challenge is known as domain gap and it is
precisely this lack of generalisability that keeps many algo-
rithms back from being successfully implemented.

[28] combined a probabilistic, atlas-based approach with
unsupervised DL in an attempt to overcome the domain gap
challenge. A probabilistic atlas is a volume where each voxel
is assigned a vector indicating the prior probability that such
segmentation label be observed at that specific point in space.
The employment of prior knowledge has been also exploited
in similar studies. [29] introduced the concept of template
transformer networks. [30] use a stacked convolutional au-
toencoder to capture the underlying anatomy and represent
such as a statistical distributions that the network will follow.



2.2.2. Data Augmentation

Several authors have shown the relevance of data augmenta-
tion for variance-robust learning [31, 32]. In the context of
one-shot image segmentation, [33] use a set of unlabeled ex-
amples along with a single labeled example to learn spatial
and appearance transformations that will be later used for im-
age synthesis. These synthetic images are subsequently used
to form dataset big enough for successful supervised training.

Similarly, albeit armed with a more substantial dataset,
both [16] and [15] use a randomization strategy in which they
use synthetic MRI images to gain generalisability for their
algorithms, i.e., SynthSR and SynthSeg, respectively.

2.2.3. Synthetic images

In the context of LF brain segmentation, SynthSR is a method
that utilizes DL to reconstruct high-resolution images from
low-resolution MRI scans, thereby enhancing resolution in
MR images to address the limitations of LF MRI systems. By
generating high-resolution images from their low-resolution
counterparts, SynthSR facilitates the visualization of fine de-
tails while also improving the accuracy of brain structure seg-
mentation in LF MRI. Consequently, this advancement en-
ables a more precise brain segmentation. However, it was not
trained taking into account MS lesions, hence leading to the
removal the characteristic signs of the pathology [16].

Similarly, SynthSeg also emerges as a valuable tool.
SynthSeg is a deep learning-based method that focuses on
the accurate segmentation of brain structures. By leveraging
the power of deep learning algorithms, SynthSeg claims to
effectively segment brain regions in LF MRI images, compen-
sating for the challenges associated with lower image quality
and reduced spatial resolution. However, when fed our LF
images, we found that this approach fails and therefore does
not fully aid in precise delineation of brain structures without
the image having been previously processed by SynthSR.
Consequently, MS lesions are erased prior to SynthSeg-based
segmentation and cannot facilitate an improved analysis and
detection of such neurological condition in LF settings like
ours [15]. Figure 1 shows the training process for SynthSeg.
Label generation maps are fed into a generative model that
will create a synthetic image used for training the 3D Unet.
The predicted label map is compared against the ground truth
label segmentation map, and the loss thereby computed is
back-propagated to adjust the weights of the network during
training.

Recent research conducted by some of our collaborators at
UCL (London, UK) led to the implementation of a novel algo-
rithm for brain segmentation, named MindGland. It incorpo-
rates an ensemble of eleven NNs which collectively produce a
majority-voted label map. While initially not intended for LF
MRI applications, our findings indicate its exceptional per-
formance in capturing LF MR lesions, without needing any
previous processing. The algorithm demonstrates promising

potential for accurately delineating MS lesions in the context
of LF MRI, highlighting its relevance and applicability within
this domain. It however shorts fall to produce a complete seg-
mentation of the brain as in SynthSeg, delineating a smaller
number of sections and mixing some labels together.

2.2.4. Low-field domain

Regarding models performance in the LF domain, most of
them, like SAMSEG or LST, were not developed for that aim,
so lower or null performance can be expected.

Other methods, such as MindGland, and WMH-SynthSeg
(ours), have been trained on synthetic data, also simulating
very adverse conditions that make them more adaptable and
suitable to run on LF scans. The base algorithm we are build-
ing on top of, i.e., SynthSeg, however, cannot perform on LF.
Figure 2 (b) shows the product of SynthSeg on a LF scan (a).
Super-resolving by means of SynthSR (d) is recommended in
the documentation as a prior step to segmentation, in an aim
to overcome this challenge posed by the low-resolution of a
LF MRI scan. SynthSR brings the LF image onto the HF do-
main, preserving its anatomical characteristics. However, it
is not designed to maintain WM lesions, which are removed
from the image and therefore cannot be used for our ultimate
goal, that is, segmenting WMH -although it does aid to cap-
ture the rest of the brain structures (e).

MindGland, on the other hand, is able to run on the same
LF scan that SynthSeg failed (c). Figure 2 shows the pre-
diction label map produced by MindGland on WM lesions.
Since no prior steps were taken and it was run on the origi-
nal LF image, WMH are preserved and may be segmented.
This makes MindGland an algorithm worth examining in the
context of pMRI and WMH quantification.

2.2.5. Architectures

The aforementioned methods illustrate the importance of
data pre-processing in DL. As a more topological approach,
however, several algorithms architectures can be highlighted
within the scope of medical image segmentation.

The paper by [31] introduces the U-Net architecture,
which is convolutional neural network designed for biomed-
ical image segmentation, and considered most suitable. The
U-Net model consists of an encoder-decoder structure with
skip connections, allowing for the integration of both local
and global information in the segmentation process. The
authors demonstrate the effectiveness of U-Net on various
biomedical image segmentation tasks, achieving accurate
and detailed segmentation results. The U-Net architecture
has since become widely used in the field of medical image
analysis.

Some time later, [34] built on the aforementioned U-net
by replacing all 2D operations by their 3D counterparts. The
3D U-Net model has been shown to achieve competitive



Fig. 1: How label maps are used for synthetic image generation and training of SynthSeg: Label maps (ground truth labels) are
used for the generation of synthetic images. That synthetic image is fed into the 3-Unet. Its predicted label map is compared to
the ground truth label map, and the error back-propagated. We note that SynthSeg uses DICE in its loss function.

Fig. 2: (a) LF sample image from the MGH dataset. (b) Synthseg label map. (c) MindGland label map. (d) Super-resolved
image by SynthSR. (e) Synthseg on (d), i.e., on the super-resolved image. It is observable how SynthSeg fails on a LF scan
without it having been previously super-resolved. SynthSR super-resolution does, however, remove WM lesions from the
image, thus turning it useless for our purpose of WMH segmentation. MindGland is able to run on LF scans without prior steps.

performance in various medical image segmentation tasks,
even with limited annotated data. By leveraging the U-Net ar-
chitecture and addressing the challenge of sparse annotations,
this approach offers a promising solution for dense volumetric
segmentation tasks in the medical imaging domain.

During the Medical Segmentation Decathlon (MSD) or-
ganized by [35], three DL algorithms achieved top scores.
K.A.V.athlon method was proposed by [36]. It utilized
an automated training and prediction process using image
data and descriptions, combining V-Net and U-Net architec-
tures with SE and residual blocks, employing various aug-
mentations and DSC loss with the Adam optimizer, without
any human intervention or parameter changes. No ensem-

bling strategy was employed. [37] designed NVDLMED, i.e.,
a fully-supervised uncertainty-aware multi-view co-training
strategy, utilizing 2D pre-trained models and three views to
enhance robustness and generalization. They employed a 3D
ResNet with anisotropic kernels and applied augmentation
techniques. The ensemble consisted of three models trained
on different views (coronal, sagittal, axial) to handle the ten
tasks and utilized the DSC loss with the SGD optimizer.

Finally, the nnU-Net that was proposed by [38] took
the first place at the MSD challenge -and kept wining other
challenges during the following years ([39]). It is designed
to handle a hugely wide range of medical image segmenta-
tion tasks and modalities with minimal manual intervention



-including brain, hypothalamus, lung, or heart. The archi-
tecture incorporates 3D U-Net and various data augmentation
techniques, achieving state-of-the-art performance in differ-
ent medical imaging challenges. There are several parame-
ters that are fixed, such as the optimizer, the loss function,
or the architecture template; rule-based parameters that are
set according to the specific data fingerprint, such as the pre-
processing, batch size, or topology; as well as empirical pa-
rameters that are chosen by cross-validation, such as the the
optimal ensemble of models and the final post-processing.

The nnU-net is not the only modification of the well-
known U-net architecture. [40] proposed the MultiResUNet
as a modified and improved version upon the already state-
of-the-art U-Net model, designed for multimodal biomedical
image segmentation. The proposed architecture incorporates
residual blocks and dense connections, which enhance infor-
mation flow and enable better feature representation. These
modifications improve the overall performance of the model
by capturing and leveraging the complementary information
present in multiple modalities. The experiments conducted
in the paper demonstrate that MultiResUNet outperforms the
traditional U-Net architecture in terms of segmentation accu-
racy and robustness in the context of multimodal biomedical
image analysis.

Building in the idea of the U-net, [41] combined the
strengths of both U-Net and Transformer into what they
named UNETR. They incorporate the self-attention mecha-
nism of Transformers into the U-Net framework, enhancing
the modeling capacity and capturing long-range dependencies
within the 3D medical images. The UNETR model leverages
self-attention mechanisms to capture long-range dependen-
cies and enhance information flow within the network. It
is demonstrated on the paper that UNETR achieves state-
of-the-art results in 3D medical image segmentation tasks,
surpassing other existing methods.

Interestingly, [42] proposed replacing multiplication op-
erations in convolutional neural networks (CNNs) by their
addition-based counterparts. An Addernet achieves so by
computing the l1 distance between the feature input and the
filter, rather than a conventional multiplication operation. Al-
beit initially meant for minimizing computational resources,
this approach does promote clustering of features -rather than
an angle-based division of the samples in the feature space,
as would produce a conventional CNN. Although the success
of clustering-based feature mapping depends on the nature of
the dataset, the specific task, and the network architecture,
Addernets might be able to offer benefits in promoting clus-
tering behavior and it might be an approach worth exploring.

3. RESEARCH QUESTIONS

After our research on different methods for brain segmenta-
tion, we noticed that most algorithms fail to generalize, es-
pecially to the LF domain. In our analysis of algorithms

specifically tailored for the LF setting, three main approaches
were examined. SynthSeg, one of the algorithms considered,
demonstrated improved performance on LF MRI when pre-
ceded by prior processing using SynthSR. However, SynthSR
may not be suitable for LF MS lesions due to its erasing ef-
fect on them. Notably, the novel algorithm developed at UCL,
i.e., MindGland, showcased promising results in MS lesion
detection while exhibiting relatively lower segmentation per-
formance for other brain areas.

These findings shed light on the intricacies and trade-offs
associated with algorithm selection for LF MRI analysis, em-
phasizing the need for further tailored solutions to the specific
context of LF MS. Some of the questions we aim to answer
while implementing a solution are:

• What methods lead to most accurate WMH segmentation,
both in HF and LF?

• Can synthetic images solve a new domain gap, i.e., LF
MRI?

• Can we use some of the innovations by MindGland to fur-
ther develop SynthSeg into a better brain segmentation al-
gorithm?

4. METHODS

4.1. Data preparation

WMH segmentation was performed with regards to, usually,
the T1 image. Other MRI sequence images were, however,
not in the same space. We perform a robust registration to
align the rest of each subject’s images to the T1 image used
for delineation of the lesion. We then convert those images
to a reference image with a voxel size of 1x1x1. The affine
transformation matrix and reference image are used to resam-
ple and register the images. By both registering and convert-
ing the unregistered MRI images, we ensure proper alignment
and voxel size consistency with the mask for further analysis.

After that, lesions are smoothed with a Gaussian filter
within the boundaries of the feasibly affected anatomical ar-
eas. Setting threshold was a difficult and arbitrary decision,
so a different threshold was randomly set for each image. Fi-
nally, we take k-means to have some labels for the rest of the
image, i.e., external structures (mainly the skull) that are still
not labelled since they are not part of the brain but that will
appear in real MRI images. Albeit meaningless, those labels
make sure that a more realistic synthetic MRI image is gen-
erated. Thus, the NN does not collapse during testing when
the whole head is fed as input, and not just the brain (labelled
area of the image).

4.2. Synthetic training data

WMH-SynthSeg relies on a synthetic MRI generator simi-
lar to [16], which requires a training dataset with N 1mm
isotropic T1-weighted (T1w) scans {In} and corresponding



3D segmentations {Sn}; these are defined on the same 1mm
isotropic grid and include labels for brain ROIs and WMH.

Figure 3 shows the process of image synthesis: At every
iteration during training: (i) a random pair (In, Sn) is se-
lected; (ii) (In, Sn) are augmented with affine and non-linear
deformation; (iii) a Gaussian mixture model conditioned
on the deformed labels is sampled independently at every
voxel, with means and variances that are randomly sam-
pled from uniform distributions – except for the WMH class
(details below); (iv) the Gaussian image is corrupted by a
random smooth bias field; (v) random orientation and resolu-
tion are simulated to synthesize a lower resolution scan; and
(vi) the low-resolution scan is upsampled to the original 1mm
isotropic grid. The output of the generator comprises: the
upsampled synthetic scan Isyn, the deformed segmentation
S, the deformed real image I , and the bias field B. All these
outputs are defined on the original 1mm isotropic grid.

During synthetic image generation with [16], several pa-
rameters can be adjusted on the problem at hand. The main
parameters that are used in this project are:

• patch size: This parameter defines the size of the patch. It
determines the spatial dimensions, such as width, height,
and depth, of the output images. Bigger patches should
lead to better performance since they provide more con-
text, but might unintentionally also cause overfitting. We
settled a size of [160, 160, 160]. We saw no difference
when modifying these values.

• max rotation, max shear, max scaling: These parame-
ters control the maximum amount of rotation, shear, and
scaling that can be applied to the input image during the
generation process. They introduce variations in orienta-
tion, shape, and size, respectively, to create diverse syn-
thetic images. We set each parameter to 15, 0.2, and 0.2,
respectively.

• nonlin scale min, nonlin scale max, nonlin std max:
These parameters influence the non-linear deformation
applied to the input image. They control the range of
scaling and the maximum standard deviation of the de-
formation field, which contributes to generating realistic
deformations in the synthetic images. We set each param-
eter to 0.03, 0.06, and 4, respectively.

• bf scale min, bf scale max, bf std min, bf std max:
These parameters control the generation of bias field in
the synthetic images. They specify the range of scaling
and the minimum and maximum standard deviation of the
bias field, which simulate intensity variations across the
image due to non-uniformities in the imaging system. We
set each parameter to 0.02, 0.04, 0.1, and 0.6, respectively.

• gamma std: This parameter was set to 0.1. It controls
the standard deviation of gamma correction applied to the
synthetic images. Gamma correction adjusts the image
contrast and can introduce subtle variations in the intensity
values.

• min noise std, max noise std: These parameters define

the range of noise standard deviation applied to the syn-
thetic images. Adding noise introduces randomness and
variations in the pixel values, contributing to a more re-
alistic and diverse dataset. We define the such range be-
tween 5 and 15.

• deform one hots: This parameter determines whether to
deform the one-hot encoded labels along with the input
image. It determines whether the labels are deformed
in accordance with the applied deformations to maintain
their spatial consistency.

• integrate deformation fields: This parameter controls the
integration of deformation fields. It determines whether
the deformation fields from different transformations are
accumulated, resulting in more complex and intricate de-
formations.

• parcial volume: This parameter influences the the slice
thickness, specially useful for clinical scenarios where
doctors prefer thick 2D scans (faster and higher SNR) that
might mix several tissue types, leading to underperfor-
mance by NN segmentation methods.

The new generator we propose has 4 key improvements
compared with [16]:
(i) The mean intensity of the WMH class does not follow the
same distribution as the other classes (i.e., U [0, 255]). In-
stead, we simulate WMH hyperintensity in T2-like sequences
(including FLAIR) and hypointensity in T1w-like sequences.
This is done as follows: when the white matter (WM) mean
is high (over 128), we constrain the WMH mean to be lower
than the WM mean (T1w-like). Conversely, when the WM
mean is below 128, we constrain the WMH mean to be greater
than the WM mean (T2-like). Examples of two FLAIR syn-
thetic images are shown in Figure 4.
(ii) The standard deviation of the noise (Gaussian variances)
and bias field strength is twice as large as in [16], to accom-
modate the lower SNR and stronger signal losses of pMRI.
(iii) The generator produces not only Isyn but also a deformed
image I and a bias field B that will be used as regression tar-
gets by the CNN in a multi-task learning setting. This boosts
the robustness of the CNN as shown in the experiments.
(iv) The sampling scheme for the random resolution covers a
wider spectrum of acquisitions. 25% of the time, we gener-
ate 1mm isotropic images, to support high-resolution scans.
Another 25% we generate clinical scans of random orienta-
tion with 1mm in-plane resolution and random slice spacing
between 2.5mm and 8.5mm. 25% of the scans mimic the res-
olution of the stock sequences that the Hyperfine Swoop ships
with (axial with ∼1.5mm in plane and 5mm spacing). The fi-
nal 25% simulates more isotropic scans acquired at low field,
with random voxel sizes between 2-5 mm in every direction.

4.3. Model Architecture and Training
WMH-SynthSeg uses the architecture of the original 3D U-
net designed by Özgün Çiçek et al (depicted in Figure 5),



Fig. 3: SynthSeg training process.

Fig. 4: Original FLAIR image from the ADNI dataset, and
two synthetic images produced from its label segmentation
map, in axial orientation. Since the WM intensity value that
was randomly sampled falls in the lower range of the WM
intensity values distribution, the WMH intensity values are
forced to be brighter, as they would show on a real FLAIR
image.

which was an expansion of the original model, in 2D, by Ron-
neberger [31]. Our architecture is composed by five levels, 64
feature maps per level, and group normalization [43]. Each
level has two convolutions (kernel size: 3x3x3) followed by
ReLU activations. The final layer has L + 2 channels: the
first L correspond to the labels and are fed to a softmax layer
to produce soft segmentations; the last two correspond to the
predicted bias field and high-resolution T1w intensities.

Training uses the Adam optimizer to minimize a loss
function consisting of four terms with equal weight: the
cross-entropy and Dice scores between the predicted and
ground truth segmentations; the average ℓ1 error of the pre-
dicted T1w intensities (normalized such that the median
intensity of the WM is 1); and the ℓ1 error of the predicted

Fig. 5: Architecture of a 3D U-net [34].

bias field (in logarithmic scale):

L = CE(S, Ŝ)−AvDice(S, Ŝ))+ |I− Î|+ | logB− log B̂|,

where Ŝ, Î , and B̂ are the predictions for the segmentation,
T1w intensities, and bias field, respectively.

We note that, while training with Dice may be more com-
mon in segmentation, combining it with cross-entropy has
two advantages. First, it provides a more informative gra-
dient in the first iterations of training, when the gradient of
the Dice loss is rather flat. And second, it explicitly penalizes
false positives in scans without WMH – in which the Dice
score for the WMH is zero independently of the prediction.
In addition, including I and B in the loss increases the ro-
bustness of the method, as shown by the experiments below.

At test time, the input scan is resampled to 1mm isotropic
resolution and fed to the CNN. Test-time augmentation is per-
formed by left-right flipping the image, flipping the output
back, and averaging with the non-flipped version. The first L
channels of the output yield the final segmentation; the out-
puts corresponding to the bias field and the T1w intensities



are a potentially useful by-product, but are disregarded here.
Our framework is implemented in PyTorch, and its vali-

dation loss typically converges is ∼100,000 iterations using
minibatches of size 1 with 160x160x160 voxel cubes.

5. EXPERIMENTS AND RESULTS

5.1. Datasets

We used nine different datasets in our experiments, some just
for training (“Tr”), some for testing (“Te”), and some for both
using cross validation (“Tr/Te”). The advantage of using a
large number of different datasets is two-fold. Firstly, the total
number of images, both for training and testing significantly
increases. Secondly, we have different datasets, containing
images with different characteristics. Thereby, we ensure that
we are building a more robust algorithm and obtaining more
reliable results, since more samples were used for both proce-
dures but also, and most importantly, different and indepen-
dent datasets were used for testing -thus reducing even further
the risk of overfitting.
HCP [44] (Tr): 897 1mm isotropic scans of young subjects
from the Human Connectome Project. We used FreeSurfer
to automatically segment the anatomy into 36 ROIs. Since
they are very young, we only consider healthy patients in this
dataset, i.e., without WM lesions. Still, they are helpful for
the generation of synthetic images used for overall brain seg-
mentation during training.
ADNI [45] (Tr): 1148 1mm isotropic scans from the ADNI.
We used FreeSurfer to segment the anatomy and WMH. We
do not consider WMH in this dataset either.
GE3T (Tr/Te): 20 cases with 1mm isotropic T1w and
1x1x3mm axial FLAIRs. This a subset of the WMH segmen-
tation challenge [46]. We combined the automated FreeSurfer
segmentation of the T1w with the manual delineations avail-
able for the FLAIRs into a single ground truth segmentation.
This dataset contains meaningful WM lesions and is these are
used both for synthetic image generation during training and
DICE scoring of WMH during testing.
Singapore (Tr/Te): another subset of the WMH segmenta-
tion challenge with 20 cases from a separate site (same MRI
acquisitions and labels).
Utrecht (Tr/Te): another subset with 20 cases from a third
site.
ISBI [47] (Tr/Te): 15 1mm isotropic T1w scans (segmented
with FreeSurfer) and 1x1x2mm axial FLAIRs with manually
traced WMH (merged with the anatomy into one label map).
Similarly to the three datasets from teh WMH segmentation
challenge, this data is used for either training and testing, de-
pending on the fold chosen for training.
FLI-IAM [48] (Tr/Te): T1w and FLAIR scans from 15 cases
(from three different centers) with varying resolution but all
close to 1mm isotropic. Consensus WMH tracings are avail-
able from 7 raters, which we merged with the FreeSurfer seg-

mentations of the T1w scans. We use all data for either train-
ing or testing.
ADHD [49] (Te): 20 1mm isotropic T1w scans from typically
developing control children and adolescents and no WMH.
This datatset is used to test for FP. Since no WM lesions
should be found, the lesion load predicted counts as an in-
dicator of lower specificity.
MGH (Te): 12 MS patients from our hospital (MGH) with
1mm T1w and FLAIR, as well as pMRI axial T1w and FLAIR
(in-plane resolution: 1.6-1.8mm; slice spacing: 5-6mm).

5.2. Competing methods

We compare our method with: (i) SAMSEG [8, 9], which is
a Bayesian method that is adaptive to MRI contrast, and is (to
our best knowledge) the only existing (published) method that
can readily segment anatomy and WMH from scans acquired
with any pulse sequence; (ii) LST-LPA [50], which yields
great performance on FLAIR acquisitions but does not work
on other MRI contrasts; and (iii) MindGland, which does not
perform as well as other methods in HF -but it has a great
generalizability that allows it to adapt to the LF realm. It also
does not predict as many labels as SynthSeg. Other methods
such as BIANCA [7], or LST-LGA [51] were not considered
since they needed retraining or more than one inpout image,
respectively.

We also consider two ablations of our method to assess the
importance of its components: a version with just Dice in the
loss (similar to [17] but with domain randomization), and a
version without the prior on the mean of the WMH class. We
note that LST and SAMSEG operate at the native resolution
of the scan, whereas WMH-SynthSeg always produces a 1mm
isotropic segmentation.

5.2.1. SAMSEG

The SAMSEG algorithm, as presented in [8] and [9], operates
within a Bayesian framework, leveraging probabilistic model-
ing to facilitate the segmentation of anatomical structures and
white matter hyperintensities (WMH) in medical images, par-
ticularly those acquired through magnetic resonance imaging
(MRI).
1. Bayesian Framework: SAMSEG adopts a Bayesian ap-

proach, incorporating prior knowledge and uncertainties
into the segmentation process, contributing to its robust-
ness in handling diverse imaging scenarios.

2. Adaptability to MRI Contrasts: SAMSEG is character-
ized by its adaptability to various MRI contrasts. This
feature enables the algorithm to effectively segment struc-
tures and WMH across different pulse sequences, ensuring
versatility in its application.

3. Probabilistic Modeling: The algorithm utilizes proba-
bilistic models to represent the distribution of pixel inten-
sities corresponding to different tissue types. This proba-



Fig. 6: Different images in each dataset: (a) HCP, (b) ADNI, (c) ADHD, (d) GE3T (T1), (e) GE3T (FLAIR), (f) Singapore
(T1), (g) Singapore (FLAIR), (h) Utrecht (T1), (i) Utrecht (FLAIR), (j) ISBI (T1), (k) ISBI (FLAIR), (l) FLI-IAM (T1), (m)
FLI-IAM (FLAIR), (n) MGH-HF (T1, axial), (ñ) MGH-HF (T1, sagittal), (o) MGH-HF (FLAIR, axial), (p) MGH-HF (FLAIR,
sagittal), (q) MGH-LF (T1, axial), (r) MGH-LF (FLAIR, sagittal), (s) MGH-LF (T1, axial), (t) MGH-LF (FLAIR, sagittal). We
notice each dataset may contain very different images to another, emphasizing the need for a robust algorithm.

bilistic modeling is crucial for capturing the inherent vari-
ability present in MRI images.

4. Segmentation of Anatomical Structures and WMH:
SAMSEG is designed to segment both anatomical struc-
tures and WMH. The segmentation process involves the
identification and classification of pixels or regions cor-
responding to different tissue types, including normal
anatomy and pathological features.

5. Adaptive Nature: SAMSEG demonstrates an adaptive
nature, dynamically adjusting its segmentation strategy
based on the characteristics of the input MRI data. This
adaptability enhances its performance across a variety of
imaging conditions.

6. Incorporation of Contrast Information: SAMSEG in-
corporates information about the contrast properties of
MRI images during the segmentation process. This may
involve considering local intensity variations and adapting
the segmentation strategy accordingly.

7. Fast Implementation: The algorithm is designed for effi-
ciency and computational speed, as indicated by the term
”fast” in [8]. This characteristic is essential for practical
applications in clinical settings, where real-time or near-
real-time results are desirable.

5.2.2. LST

The Lesion Segmentation Toolbox (LST) is a comprehensive
tool for lesion segmentation in medical images, featuring two
primary algorithms: the Lesion Growth Algorithm (LGA)
and the Lesion Prediction Algorithm (LPA).

• Lesion Growth Algorithm (LGA).
At the core of the toolbox is the Lesion Growth Algorithm

(LGA) proposed by [51]. LGA segments T2-hyperintense le-
sions using a combination of T1 and FLAIR images. The al-
gorithm initially segments the T1 image into three main tissue
classes (CSF, GM, and WM). This information is then com-
bined with FLAIR intensities to calculate lesion belief maps.
By thresholding these maps using a pre-chosen initial thresh-
old (kappa), an initial binary lesion map is obtained. The map
is further grown along voxels appearing hyperintense in the
FLAIR image, resulting in a lesion probability map. Although
an unsupervised algorithm, its drawback lies in the sensitivity
to the choice of the initial threshold.

A disadvantage of this unsupervised algorithm is the
choice of the initial threshold. Different kappa-values yield
different segmentation results. Also, two images are required
(T1 and FLAIR) for LGA to run; the reason why we will not
ocnsider this method but, instead, LPA.



• Lesion Prediction Algorithm (LPA).
An alternative to LGA is the Lesion Prediction Algorithm

(LPA), introduced by [50]. LPA offers advantages over LGA,
requiring only a FLAIR image and eliminating the need for
user-set parameters. This algorithm, trained using logistic
regression with data from 53 MS patients, generates lesion
probability maps. The training involves a high-dimensional
model with a novel approach for fitting large-scale regression
models. The derived parameters are then used for lesion seg-
mentation in new images, providing voxel-specific estimates
of lesion probability.

LPA is generally faster and more sensitive than LGA,
making it a favorable option. It demonstrates robustness
across different scanners, but users are advised to consider
training the algorithm with their data if significant differences
exist. Further information on training procedures is available
upon request.

5.2.3. MindGland

Contrarily to the aforementioned methods, MindGland rises
as a Deep Learning-based approach for brain and WMH seg-
mentation. Albeit a smaller number of brain areas can be seg-
mented with MindGland than through SynthSeg, it does allow
WM lesions segmentation. This algorithm shares similarities
with SynthSeg, while also incorporating new additions while
training that might pose an advantage.

Similarly to SynthSeg, MindGland is trained on synthetic
data created by a similar generator to that used by SynthSeg.
However, it does combine synthetic with real data, follow-
ing a 2:1 ratio, where a synthetic image is chosen with twice
as high probability as a real one during model training. Fur-
thermore, CE (cross-entropy) is included in the loss function,
which might help in the early stages of training, as well as
in fighting FP (False Positives). The complete algorithm also
employs an ensemble of 11 models and the prediction of each
is merged via majority voting into a final product. A very
low increase in performance is reported after the combination
of different models. Finally, MindGland uses a significantly
larger dataset than any of the aforementioned. MindGland has
reportedly been trained on a dataset encompassing 20 thou-
sands images, put together by UCL and its collaborating in-
stitutions over the past two decades.

5.3. Experimental setup

5.3.1. SynthSeg and MindGland together

An initial approach was to create a pipeline that uses both
SynthSR and SynthSeg for super-resolution and anatomical
segmentation, respectively, followed by MindGland for le-
sion segmentation. MindGland does a good job at segmenting
WMH, but can only segment few anatomical structures com-
pared to SynthSeg, and with lower accuracy. Combining the
two brings both strengths together. Such pipeline was used at

the beginning of the project for comparison purposes, but it
involved too many re-sampling and recalculating steps to al-
low the image be fed to all different algorithms. It was also
highly time-consuming. Not only does it involve several steps
and algorithms, but also MindGland uses a ensemble method
that computes eleven label maps that are then merged by Ma-
jority Voting. Figure 7 illustrates the flowchart that was de-
signed: A LF image (e.g.: from the Yale dataset) is input into
the pipeline. It must first be super-resolved for SynthSeg to
be able to run. Their product is then used as a reference to re-
sample the image, so that MindGland produces an image that
has the same size too. Both posterior probabilities are merged
by adding the lesion probabilities computed by MindGland
into the total posterior probabilities by SynthSeg, for which
the latter must be re-sampled, too, by means of the following
formula

P ′
n = Pn · (1− PL)

where Pn are the posterior probabilities by SynthSeg in
each of the N anatomical areas, PL are the lesion probability
predicted by MindGland, and P ′

n the merged probabilities that
are reported at the end of the pipeline. The highest probability
of all labels (every anatomical area) is taken as the predicted
label, i.e., the predicted anatomical area, for that voxel.

5.3.2. WMH-SynthSeg : An upgraded version of SynthSeg

We analyze the performance of our proposed method WMH-
SynthSeg with three different experiments. The first exper-
iment assesses the performance of the method directly with
Dice scores. We first trained WMH-SynthSeg using GE3T
and Singapore (using 15 scans for validation), and tested on
ISBI, FLI-IAM, and Utrecht. We then reversed the roles to
obtain Dice scores for GE3T and Singapore. We note that
HCP and ADNI were also part of the training dataset in both
folds. We note that training inputs are all synthetic and that
the real images are only used as regression targets.

The second experiment assesses false positive rates (FPR)
using young healthy controls from the ADHD dataset. Since
WMH is not expected in these scans, we can use the estimated
WMH loads as a proxy for FPR. The model in this experiment
is trained with all the datasets from the first experiment.

The third experiment assesses the ability of the methods
to segment pMRI data, using the same model as in the sec-
ond experiment. We used the FreeSurfer segmentations of the
high-field 1mm T1w scans as ground truth for the anatomy,
and the LST segmentations of the high-field 1mm FLAIRs
as ground truth for the WMH. Since accurate co-registration
of low- and high-field scans is difficult due to nonlinear geo-
metric distortions, we use the correlation between the ground
truth and estimated ROI volumes to assess performance.



Fig. 7: Initial pipeline combining SynthSR, SynthSeg, and MindGland. The input image takes two paths: (i) It is run though
SynthSR and SynthSeg; and (ii) it is re-sliced like the output of SynthSeg, and run through London. The probability map of
image in path (i) is re-sampled to be able to insert the predicted lesion probability computed in path (ii). A single probability
map is produced as the combination of both, and the volumes are thereof computed.

5.4. Results

The Synthseg+MindGland pipeline, albeit accurate and po-
tentially useful, is overly time-consuming. Only MindGland
(the final stage) takes five times longer than WMH-SynthSeg
to run. Figure 8 shows the difference between MindGland
and WMH-SynthSeg in WMH prediction. Both the ground
truth (which might have been expanded by a Gaussian filter
during data preprocessing) and MindGland seem to overseg-
ment the lesion (shown as dark in the T1 image), whereas
WMH-SynthSeg is able to outline the lesion in a much higher
precision degree.

In this particular case depicted in Figure 8, the fact that we
are stating that our model might be outperforming the ground
truth might seemly make no sense. However, the model is
firstly trained with several datasets and, second, with syn-
thetic data. Since we generate our own image from the label
map, this might remove the need for the mask to be extremely
precise, since a new image will be created in which it actu-
ally is. In other words, each labelled brain area will have a
different intensity, so the alignment of the WM-labelled and
the WMH-labelled areas in the synthetic image will, by defi-
nition, perfectly match the label map.

Since the label map used for generation is identical (in
terms of WM and WMH labels) to that used for segmenta-
tion (to compute the loss function and, sub-sequentially for
error propagation), using synthetic data can make the model
outperform the masks regarded as ground truth, outlined by
radiologists. This demonstrates another major advantage of
the use of synthetic data, and again, adds robustness to our
model.

Table 1 shows the average Dice across the high-field

Fig. 8: Lesion prediction on a HF, T1 scan from Utrecht
dataset by MindGland (blue), WMH-SynthSeg (pink), com-
pared to the ground truth (yellow). We notice that both the
ground truth and MindGland, in this case, seem to be over-
segmenting the hypo-intense anatomical area denoting the
WM lesion. Our model, however, is able to more accurately
dealing the lesion, thanks to the robustness granted by the us-
age of synthetic data during training.



Method T1w FLAIR
Anat WMH Anat WMH

LST (LPA) N/A N/A N/A 0.57
SSAMSEG 0.81 0.46 0.72 0.56

WMH-SynthSeg
(NoWMH-noCE-noMTL)

0.83 0.47 0.76 0.53

WMH-SynthSeg (NoWMH) 0.85 0.47 0.78 0.54
MindGland N/A 0.49 N/A 0.56

WMH-SynthSeg (full) 0.85 0.55 0.79 0.62

Table 1: Average Dice scores for anatomy (averaged over
23 ROIs) and WMH, on high-field T1w and FLAIR scans.
NoWMH-noXE-noMTL is the ablation without prior on the
WMH mean, cross-entropy term in the loss, or multi-task
learning (i.e., similar to [17]). NoWMH is the ablation with-
out the prior on the mean of the WMH intensities.

Fig. 9: DICE scores by WMH-SynthSeg, with and wihtout
WMH prior added during image synthesis, on high-field
FLAIR scans.

datasets in the first experiment, for the WMH and for 23 rep-
resentative brain ROIs: brainstem, and left/right cortex, WM,
hippocampus, amygdala, thalamus, caudate, pallidum, puta-
men, accumbens, and cerebellum cortex and WM. WMH-
SynthSeg outperforms the competing methods across the
board.

The ablations show that cross-entropy and multi-task
learning have a moderate positive impact on the segmentation
of anatomy, whereas the prior on mean of WMH component
greatly boosts the performance of the WMH segmentation.
Figure 9 also shows the DICE score of the WMH-SynthSeg
model with and without adding the WMH prior during syn-
thetic image generation. In absolute terms, our new method
yields competitive Dice scores for anatomy (Dice=.85 for
isotropic T1w) and WMH (Dice=.62 in FLAIR, higher than
SAMSEG, LST, and MindGland). We also highlight its capa-
bility to produce useful WMH segmentations from the T1w,
with Dice scores as high as those of the competing methods
in FLAIR.

Figure 10 shows a qualitative comparison on a FLAIR

Method FP volume (mm3)
LST N/A

SAMSEG 877
MindGland 1076

WMH-SynthSeg
(NoWMH-noCE-noMTL) 1850

WMH-SynthSeg (NoWMH) 1150
WMH-SynthSeg (full) 950

Table 2: False Positives rate by different methods, in mm3,
obtained by each model on the HF, T1 images of the the
ADHD dataset.

scan from the Singapore dataset, both in the high-resolution
axial plane, and in a lower resolution orthogonal view (sagit-
tal). LST produces crisp segmentations of the WMH at native
resolution, but with many false positives around the septum
pellucidum (between the ventricles). SAMSEG, which also
operates at native resolution, struggles with partial volum-
ing (e.g., for the cortex) and often undersegments WMH. Our
method, on the other hand, produces isotropic segmentations
that are accurate for both anatomy and WMH.

Table 2 shows the results for the FPR experiment. In it, the
HF, T1 scans from the young controls in the ADHD dataset
should result in no prediction load. Since there are no WMH,
a higher volumetric (in mm3) prediction load would be asso-
ciated with a higher FPR and lower specificity from that algo-
rithm. This control is done to prevent an algorithm from con-
tinuously segmenting WMH on the same space, regardless of
the representative value intensity of the WM lesion. A model
that segments every periventricular area might show a high
accuracy in WMH segmentation, since that is a very recurrent
anatomical space for WMH to appear. It however might have
no value if it is merely a spacial decision (the model overfits
based on the anatomical area) but is not able to distinguish
cases in which no WMH is apparent (which involves a pixel
intensity-based criteria, too).

Our method produces on average 950 mm3. This is a low
value comparable to that produced by SAMSEG (877 mm3).
It is actually lower than most of the small lesions, and can
therefore be readily solved by means of a threshold. We note
that LST is not compatible with the ADHD dataset as it has
T1w contrast. The ablated versions show a slight increase
when no WM prior is introduced, and a much more signifi-
cant rise in FP volume when both the prior and the multi-task
learning feature are removed, highlighting the contribution of
these components to the accuracy of the algorithm. MindG-
land reports an average of 1050 mm3, somewhat higher val-
ues to our final algorithm, but that still falls behind the ablated
versions.

Finally, Table 3 shows the correlations between the vol-
umetric measurements derived from the high-field scans
(ground truth) and the pMRI, for the WMH and for a rep-



Input             Ground truth             LST                    SAMSEG          MindGland    WMH-SynthSeg

Fig. 10: Input, ground truth, and automated segmentations of a sample high-field scan from the Singapore dataset. The top row
shows the high-resolution axial view; the bottom row shows a lower resolution orthogonal view (in sagittal orientation). Note
that MindGland cannot predict so many brain structures as SynthSeg, so we only show the predicted lesion layer.

Method T1w FLAIR
Hippo WMH Hippo WMH

LST (LPA) N/A N/A N/A -0.33
SAMSEG 0.71 0.63 0.69 0.64

MindGland N/A 0.71 N/A 0.78
WMH-SynthSeg (full) 0.89 0.75 0.86 0.85

Table 3: Correlation between ground truth volumetric mea-
surements obtained from high-field (FreeSurfer from T1w for
anatomy, LST from FLAIR for WMH) and from automated
segmentations of the pMRI (MGH dataset). The hippocam-
pal volumes (“Hippo”) are left-right averaged.

resentative brain ROI (the hippocampus). LST completely
fails at low field, as it was not designed for it. Being contrast
agnostic, SAMSEG yields fairly strong correlations (between
.63 and .71). MindGland is still able to perform better than the
aforementioned methods in the LF domain. WMH-SynthSeg
produces very strong correlations (12-21 points higher than
SAMSEG and 4-7 higher than MindGland). This is attributed
to its excellent ability to adapt to low-field images, which is
qualitatively exemplified in Figure 11.

6. CONCLUSION

Deep Learning algorithms have proved more successful in
overall brain segmentation, including WM lesions. The use
of synthetic images poses a major advantage in fighting the
domain gap challenged, accentuated by different MRI con-
trasts and field strengths, leading to higher generalizability
and domain adaptation.

SynthSeg showed the best overall performance in brain
segmentation up to now, and MindGland in WMH prediction.
The latter leverages a new loss function with CE and an im-
mense dataset (20k images) for great performance in both HF

(a) (c) (e)

(b) (d) (f)

Fig. 11: (a) High-field 1mm isotropic FLAIR from MGH
dataset. (b) LST segmentation, used as ground truth for
WMH. (c) High-field 1mm T1w. (d) FreeSurfer segmenta-
tion of (c), used for ground truth for anatomy. (e) pMRI of
the same subject at 2x2x5.8mm axial resolution. (f) WMH-
SynthSeg segmentation. We note that, despite affine align-
ment of the high-field images to the pMRI, the anatomy on
the slices is slightly different due to nonlinear distortion.

and LF. Joining SynthSeg with some of the innovations by
MindGland gave rise to WMH-SynthSeg, which which shows
high performance in both brain and WMH segmentation. In
the absence of a large dataset, WMH-SynthSeg proves that
adding a prior can significantly improve model performance.

WMH-SynthSeg is the first published method that can
simultaneously segment brain ROIs and WMH in scans of
any resolution and contrast, including low-field pMRI. Future
work will include more realistic modeling of WMH in im-
ages, in order to bridge the so-called “reality gap” between
synthetic and real data. Our approach is publicly available
and has huge potential in analyzing pMRI acquired in medi-
cally underserved areas.
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